
Table of contents

I

The Multi-Threading Tutorial (Part I)

Introduction... 1

Displaying animated bitmaps... 2

The fundamental technique... 2
Identifying program code for a thread .. 4
Starting a thread .. 5
Stopping a thread .. 6
Making it thread-safe .. 9

Building an Animation class .. 12

Specifications.. 12
Pre-requisites for program logic ... 13
Creating an Animation object ... 15
Running the animation.. 16
Memory issues .. 18
Stopping the animation ... 18

The two sides of a Thread object ... 21

Basic programming techniques using threads.. 23

Calculating statistics from databases .. 23
Average and standard deviation.. 25
About threads and event loops .. 28

Summary ... 32

Multi-Threading Tutorial Part II (preview)... 33

The Multi-Threading Tutorial (Part I)

The Multi-Threading Tutorial (Part I) 1

- The Multi-Threading Tutorial (Part I)

Part I of the Multi-Threading Tutorial discusses fundamental principles for multi-threading
from the "program logic" point of view. It is intended to give you the knowledge to
effectively use multiple threads in your Xbase++ programs and to take full advantage of
multi-threading. The source code discussed in Part I of this tutorial is available for download
from Alaska Software's home page (MTTUTOR1.ZIP).

Introduction

As you know, multi-threading is a key feature of 32-bit operating systems and every
developer who can master this technology not only makes their life easier but has an
enormous advantage. If you use multi-threading wisely, you can produce user-friendly
applications which include features that will answer your (future) customer's question
whether "to buy or not to buy" your software. If you have previously used multi-threading in
other programming languages, try to forget how frustrating and complicated this process
was. We will discuss typical problems associated with multi-threading and provides elegant
solutions for multi-threading.

Multi-threading is known to be complicated in other programming languages, but with
Xbase++ you have this feature at your finger tips. There are many things you don't need to
care about - because Xbase++ does them for you. You can use multiple threads right out of
the box without problems. However, you will need to be somewhat familiar with the concept
of multi-threading to avoid improper use of program logic required when different parts of a
program run in different threads at the same time.

The classical example of multi-threading is a program that lets a user enter data while a print
job is being processed in the background at the same time. There is no problem if data entry
and printing is implemented in two threads. But there are more exciting examples where
multiple threads are useful, such as animation, tooltips, agents, watchdogs or incremental
search in browsers, just to name a few. What would you think if an application reminds you
five minutes in advance that you have an appointment with your boss at 4:15pm while you
are concentrating on other tasks at your desk or computer. Of course, there are products
specialized for this task, but wouldn't your customers appreciate this feature without having
such a specialized product? If you know how to do it, you can add such a feature to your
application in less than 2 hours using Xbase++. The major task of this tutorial is to explain
program logic required in multi-threading and to open the tremendous possibilities for
solving common programming problems by using multiple threads.

Displaying animated bitmaps

The Multi-Threading Tutorial (Part I)2

Displaying animated bitmaps

This section discusses a variety of multi-threading issues using animation as an example.
Animated graphic images have become popular because they attract the user's attention and
provide for some kind of entertainment. This can be advantageous but can also have the
opposite effect of distracting the user from their original task while using the software. Just
as in real life, the rule "too many is too much" applies to animated images as well, and the
technique should be used sparsely in an application. If used in the right places, however,
animated images can be very informative for the user. So every developer should know how
animated images are programmed and how this is achieved in the easiest way. Besides this,
animation is a perfect topic to hilight different aspects of a multi-threaded program.

The fundamental technique
An animation consists of a series of single images each of which shows a distinct phase of
the animation. We are using bitmaps for the animation and the first thing to start with is
creating the bitmaps. An example of a series of three bitmaps is shown below.

Three phases of an animation

A black and white circle rotated twice by 30 degrees is not very exciting but is a sufficient
example to demonstrate animation and multi-threading. A user gets the impression of a
rotating circle when the three bitmaps are displayed one after the other at the same place and
that is basically the whole story of animation: displaying different images (or phases) at the
same or changing position. Once the series of bitmaps is available, we need the following
two classes to bring the animation to life:

XbpBitmap One XbpBitmap object is required to load one bitmap file and display its
contents. We will create three of these objects for a three-phased animation
and collect them in an array for easy access.

XbpStatic An XbpStatic object is used as a kind of canvas where the bitmaps are drawn.
It provides for the presentation space required by XbpBitmap objects when
displaying the image.

Knowing these two classes we can put the pieces together and discuss the basic technique for
an animation using a simple program:

The fundamental technique

The Multi-Threading Tutorial (Part I) 3

01: PROCEDURE Main

02: LOCAL oXbp, aBitmaps

03:

04: Setcolor("N/W")

05: CLS

06:

07: oXbp := XbpStatic():new(,, {10,300}, {44,44})

08: oXbp:create()

09:

10: aBitmaps := PrepareAnimation({ "Phase1.bmp", ;

11: "Phase2.bmp", ;

12: "Phase3.bmp" })

13: DO WHILE .T.

14: Animate(oXbp, aBitmaps)

15: Sleep(10)

16: ENDDO

17: RETURN

18:

19:

20: // Loads bitmap files

21: FUNCTION PrepareAnimation(aFiles)

22: LOCAL i, imax := Len(aFiles)

23: LOCAL aBitmaps:= Array(imax)

24:

25: FOR i:=1 TO imax

26: aBitmaps[i] := XbpBitmap():new():create()

27: aBitmaps[i]:loadFile(aFiles[i])

28: NEXT

29: RETURN aBitmaps

30:

31:

32: // Displays a collection of bitmaps

33: PROCEDURE Animate(oXbp, aBitmaps)

34: STATIC nCurrent := 0

35: LOCAL oPS := oXbp:lockPS()

36:

37: nCurrent ++

38: IF nCurrent > Len(aBitmaps)

39: nCurrent := 1

40: ENDIF

41:

42: aBitmaps[nCurrent]:draw(oPS, {1,1})

43: oXbp:unlockPS(oPS)

44: RETURN

The fundamental technique

The Multi-Threading Tutorial (Part I)4

The bitmap files participating in the animation are loaded into the program by XbpBitmap
objects in a separate function PrepareAnimation(). The function receives an array of bitmap
file names and creates for each file an XbpBitmap object in line #26 which in turn loads the
bitmap file. The objects are collected in an array which is returned.

The animation is executed by calling procedure Animate() continuously within a DO WHILE
loop (line #14). The procedure receives the XbpStatic object as the place where to draw the
bitmaps, and the array containing XbpBitmap objects which know how to draw a bitmap. A
bitmap becomes visible on the screen in line #42 where the :draw() method of an XbpBitmap
object is called. Once a bitmap is drawn, the program pauses for 0.1 seconds in line #15 (the
unit for the Sleep() function is one hundredth of a second).

The key for the animation is the variable nCurrent. It is declared as STATIC (line #34) and
retains its value when procedure Animate() returns. The only thing necessary for displaying
the next bitmap of the animation is, therefore, to increment the STATIC variable and reset it
to One if its value exceeds the number of available bitmaps (line #37 through #40). As a
result, each call to procedure Animate() displays another bitmap.

This program demonstrates the basic techniques required for programming an animation: one
XbpBitmap object is created for each phase of the animation. Each XbpBitmap object loads a
single bitmap file and draws the image in another Xbase Part. This Xbase Part must know the
method :lockPS() which returns a presentation space required by an XbpBitmap object for
drawing its bitmap. The program uses an XbpStatic object as a canvas but it could be any
Xbase Part derived from XbpWindow() (:lockPS() is a method in the XbpWindow() class that
is inherited by any object derived from YbpWindow(), such as XbpStatic()). You can draw
an animation in a pushbutton, for example, when you use an XbpPushbutton object instead
of an XbpStatic object. If you change XbpStatic() in line #7 to XbpPushbutton(), you see the
animation within a pushbutton. So, it lies within your imagination how to use this technique
in your applications.

Identifying program code for a thread
The example program cannot be used for anything but loading and displaying bitmaps. As a
matter of fact, the program cannot be stopped unless you press Alt+C. So, what is its purpose
in the multi-threading area? The answer lies in the question: Why is the program code
separated into PrepareAnimation() and Animate()? The whole animation could have been
programmed in Main(). To find the answer, take the program logic point of view and think
what makes PrepareAnimation() logically different from Animate()? The difference is that
PrepareAnimation() is called once while Animate() is called multiple times, and this is how
the example program is structured: The part which needs to be called once is separated
entirely from the part that must be called multiple times. This again leads to a key question
you have to answer when using multi-threading: how often is a procedure or function
called? Answering this "key question" will help to structure your multi-threaded programs.

To make the example a bit more useful we will allow for user input while bitmaps are being
displayed. The easiest way to accomplish this is @..SAY..GET followed by the READ
command, which is as good as any other approach for obtaining user input in this discussion.

Identifying program code for a thread

The Multi-Threading Tutorial (Part I) 5

We add a new level of complexity to the program and it consists now of two completely
different things:

User input Animation

@ 10, 10 SAY "X" GET varX DO WHILE .T.

@ 12, 10 SAY "Y" GET varY Animate(oXbp, aBitmaps)

Sleep(10)

READ ENDDO

This is an ideal situation: something requires user input and something else does not. In fact,
an animation must run independently of user interaction and this makes it a perfect candidate
for a separate thread. The main thread allows for data entry in the program while a second
thread is busy with displaying bitmaps. The second thread, however, will execute only that
part of the animation which must be executed repeatedly.

Starting a thread
Once the program code that can be run in a separate thread is identified, we can encapsulate
it in a procedure and let a Thread object handle the program execution. A Thread object
represents an additional thread, or execution path, so that two procedures can be executed at
the same time. This requires only few modifications in our example program:

01: // User enters data in Main

02: PROCEDURE Main

03: LOCAL oXbp, aBitmaps, oThread

04: LOCAL cFirst := "Henry ", cLast := "Miller "

05:

06: Setcolor("N/W,W+/B")

07: CLS

08:

09: oXbp := XbpStatic():new(,, {10,300}, {44,44})

10: oXbp:create()

11:

12: aBitmaps := PrepareAnimation({ "Phase1.bmp", ;

13: "Phase2.bmp", ;

14: "Phase3.bmp" })

15:

16: oThread := Thread():new()

17: oThread:start("ExecuteAnimation", oXbp, aBitmaps)

18:

19: SET CURSOR ON

20: @ 10, 10 SAY "Firstname:" GET cFirst

21: @ 12, 10 SAY " Lastname:" GET cLast

22: READ

23: RETURN

Starting a thread

The Multi-Threading Tutorial (Part I)6

24:

25:

26: // This runs in a separate thread

27: PROCEDURE ExecuteAnimation(oXbp, aBitmaps)

28: DO WHILE .T.

29: Animate(oXbp, aBitmaps)

30: Sleep(10)

31: ENDDO

32: RETURN

The effect of this program is that a user can enter data while three bitmaps are continuously
displayed in a round robin scheme. The code for loading and displaying the bitmaps is not
listed here because it is the same as discussed in The fundamental technique. The important
changes are:

1. The Main() procedure covers user interaction and allows for data entry using the READ
command in line #22.

2. The DO WHILE loop is moved to a separate procedure (line #28 through line #31), so
that it can be executed by the Thread object created in line #16.

The example program consists now of two threads and both execute program code
performing two completely different tasks: data entry versus display of bitmaps. This
situation is perfect for multi-threading since both tasks have nothing in common. The two
threads use different memory variables and different code which is the best (or easiest)
situation a programmer can have in multi-threading. The only task required is creating a
Thread object and telling it what program code to execute. This is done by calling the :start()
method (line #17) which receives as first parameter the name of the function/procedure to be
executed in the new thread. All following parameters passed to :start() are just passed on to
the called procedure.

Since the program flow is not obvious from the program code it must be emphasized that the
DO WHILE loop is executed at the same time as the READ command. This is something
the operating system takes care of and clearly reveals the nature of multi-threading. It also
shows the superiority of the multi-threaded approach over a single-threaded solution. It is
possible to display bitmaps every 0.1 seconds while READ is executed in a single-threaded
application. It is impossible, however, to program this with less code. One would have to
hook into the Get system using a customized Get reader or would need to modify the Get
system accordingly. Both approaches result in an unnecessary programming overhead and
would create a logical dependency between two tasks which don't have anything in common.

Stopping a thread
Although the example program is now capable of performing two tasks simultaneously (user
input and animation) it has a major disadvantage: the thread displaying the animation cannot
be stopped when the READ command is finished. This does not matter in the example
program because the READ command is followed by the RETURN statement which ends

Stopping a thread

The Multi-Threading Tutorial (Part I) 7

the entire program, including the second thread. But what if some other code would follow
the READ command? The animation would continue to run and there is absolutely no way to
stop the thread displaying bitmaps because of the DO WHILE .T. condition. This loop runs
forever and we must find a way to stop the animation, or thread.

Stopping a thread is not as simple as starting it because a Thread object does not have a
:stop() method, there is only a :start() method. A Thread object terminates its thread
automatically if the code has run to completion in the thread. In other words, if a RETURN
statement is executed in that part of a program which is invoked via the :start() method.

The RETURN statement is never reached in procedure ExecuteAnimation() of the example.
The only possibility for this is to exit the DO WHILE .T. loop. This could be achieved by
using a PUBLIC variable serving as logical condition for the loop. The variable would have
to be PUBLIC because it must be visible in two threads. The first thread would set this
variable to .T. before the second thread starts, and would set it to .F. in order to exit the loop.
This in turn would cause the second thread to terminate.

At first thought, this is a feasible scenario but there is a more elegant solution which uses a
special feature of the Thread object. Have a look at the modified example program below
which uses special features of a Thread object:

01: // User enters data in Main

02: PROCEDURE Main

03: LOCAL oXbp, aBitmaps, oThread

04: LOCAL cFirst := "Henry ", cLast := "Miller "

05:

06: Setcolor("N/W,W+/B")

07: CLS

08:

09: oXbp := XbpStatic():new(,, {10,300}, {44,44})

10: oXbp:create()

11:

12: aBitmaps := PrepareAnimation({ "Phase1.bmp", ;

13: "Phase2.bmp", ;

14: "Phase3.bmp" })

15:

16: oThread := Thread():new()

17: oThread:setInterval(10)

18: oThread:start("Animate", oXbp, aBitmaps)

19:

20: SET CURSOR ON

21: @ 10, 10 SAY "Firstname:" GET cFirst

22: @ 12, 10 SAY " Lastname:" GET cLast

23: READ

24:

25: oThread:setInterval(NIL)

26: oThread:synchronize(0)

Stopping a thread

The Multi-Threading Tutorial (Part I)8

27:

28: WAIT "Thread has stopped"

29: RETURN

30:

31:

32: // Displays a collection of bitmaps

33: PROCEDURE Animate(oXbp, aBitmaps)

34: STATIC nCurrent := 0

35: LOCAL oPS := oXbp:lockPS()

36:

37: nCurrent ++

38: IF nCurrent > Len(aBitmaps)

39: nCurrent := 1

40: ENDIF

41:

42: aBitmaps[nCurrent]:draw(oPS, {1,1})

43: oXbp:unlockPS(oPS)

44: RETURN

The solution is that a DO WHILE loop is not required at all when program code must be
executed repeatedly in a thread. This is an important shift in program logic and becomes
possible due to a Thread object's intelligence. The key to the program logic is line #17 where
a time interval of 10 hundredths of a second (0.1 seconds) is set for the Thread object to
restart the Animate() procedure. This procedure is executed in the new thread and called for
the first time in line #18. Once the procedure is finished, it is restarted automatically after 0.1
seconds by the Thread object. This means that program code is executed repeatedly which
runs parallel to the READ command:

From the program logic point of view it is important to understand that while the READ
command is executed in thread A (line #23) the Animate() procedure is executed entirely in

Stopping a thread

The Multi-Threading Tutorial (Part I) 9

thread B from line #33 down to line #44. The RETURN statement is really executed in
thread B but this does not end the thread. Instead, thread B is just halted for 0.1 seconds due
to the time interval set. It resumes with executing Animate() again when the interval has
elapsed. The thread consumes no system resources while it pauses, it is -literally spoken- put
to sleep for 0.1 seconds.

The :setInterval() method of the Thread object is the easiest way to achieve repeated
execution of the same program code in a thread, once a thread is started. This again shows a
major difference in program logic compared to single-threaded programs: Instead of using a
DO WHILE loop for code repetition, a time interval is defined which causes the Thread
object to execute program code again when the time interval has elapsed. Of course, we
could use a DO WHILE loop as well, but there is one big advantage using the :setInterval()
approach: the time interval can be voided and this is our chance to stop a thread easily:

25: oThread:setInterval(NIL)

26: oThread:synchronize(0)

These two lines allow you to effectively stop thread B from thread A because thread B does
not execute the Animate() procedure again when the interval is set to NIL. The
:synchronize() method accepts as a parameter a time-out value. Passing the value zero to this
method means: there is no time-out condition. This causes thread A to wait forever until
thread B has ended. This again is the only way to be sure that thread B is no longer running
and only then may thread A resume with program execution.

Calling the :synchronize() method in line #26 makes sure that thread A waits until thread B
has terminated. This is something you must be aware of when using multiple threads. If you
want to stop a thread you have to assure in your program that the thread you want to stop has
definitely ended. Otherwise you will have a good chance of getting inconsistent runtime
errors in your multi-threaded programs. One time your application bombs, or ends
unexpectedly, but when you restart it to find the error it just runs fine. Such an occasional
runtime error is a worst case scenario in multi-threaded programs and you are well advised to
avoid this kind of problem right from the beginning. You should keep in mind, therefore, that
"stopping a thread" means be sure that the thread has ended.

Making it thread-safe
The example program is now in a stage where we can start an animation, retrieve user input
while the animation is running, stop the thread and restart it if this is necessary. However,
there is still one major design flaw that makes the example unsuitable for reuse. Just recall
how the animation is displayed:

Making it thread-safe

The Multi-Threading Tutorial (Part I)10

01: // Displays a collection of bitmaps

02: PROCEDURE Animate(oXbp, aBitmaps)

03: STATIC nCurrent := 0

04: LOCAL oPS := oXbp:lockPS()

05:

06: nCurrent ++

07: IF nCurrent > Len(aBitmaps)

08: nCurrent := 1

09: ENDIF

10:

11: aBitmaps[nCurrent]:draw(oPS, {1,1})

12: oXbp:unlockPS(oPS)

13: RETURN

Since the Animate() procedure is entirely executed before it is called again, the usage of a
STATIC variable for tracing the current bitmap of the animation is obvious at first sight. A
STATIC variable retains its last value and we get the next bitmap to be displayed in a new
execution cycle by simply incrementing the STATIC variable nCurrent in line #6. This is an
absolutely correct implementation and a sound program logic as long as there is only one
animation running.

But what happens if two animations are displayed using two threads? The STATIC variable
nCurrent would be incremented alternating from two threads and this would spoil both
animations since the sequence of bitmap display is not guaranteed in either case. So, this
implementation is not thread-safe because procedure Animate() is not re-entrant. It cannot
be called simultaneously from more than one thread.

This situation is something you will most probably run into if you are not familiar with
multi-threading, and you must be aware of it! Remember the key question: How often is a
procedure or function called? This question includes not only how often something is
called in one thread, but also How many threads execute the same code simultaneously?
If a program code runs perfectly in one thread, it does not mean that it will work
simultaneously in many threads. Take a look back to the discussion in the The fundamental
technique section where the STATIC variable nCurrent is said to be "the key" for an
animation. In fact, using a STATIC variable is a great idea from the "animation" point of
view, but when we look at the program logic from the "multi-threading" point of view, we
have to come up with a better idea.

The solution for the problem is to program only functions etc. which are re-entrant. This
means that the value of variables a function relies on must not be changed in different
threads at the same time. STATIC variables are in most cases unsuitable for multi-threading
and we have to change the implementation of the Animate() procedure. The easiest way to
replace the variable nCurrent is the array aBitmaps.

Making it thread-safe

The Multi-Threading Tutorial (Part I) 11

 The problem is solved when the array contains not only XbpBitmap objects but also the
array index pointing to the current bitmap:

{ Array index, { XbpBitmap1, XbpBitmap2, XbpBitmap3 } }

Using an array of this structure, the Animate() procedure becomes thread-safe and looks as
follows:

01: // Displays a collection of bitmaps

02: PROCEDURE Animate(oXbp, aBitmaps)

03: LOCAL oPS := oXbp:lockPS()

04:

05: aBitmaps[1] ++

06: IF aBitmaps[1] > Len(aBitmaps[2])

07: aBitmaps[1] := 1

08: ENDIF

09:

10: aBitmaps[2, aBitmaps[1]]:draw(oPS, {1,1})

11: oXbp:unlockPS(oPS)

12: RETURN

The result of this implementation is that all data required for an animation is stored in one
array. Two animations, or threads, respectively, use two different arrays holding different
data for each animation. This means that procedure Animate() can be called from different
threads, but each thread uses its own array when Animate() is executed. The key for the
program logic is now that each thread gets its own set of data because different arrays arrive
in the parameter aBitmaps when the procedure is called simultaneously from multiple
threads.

Building an Animation class

The Multi-Threading Tutorial (Part I)12

Building an Animation class

This section focuses on the various aspects for defining a user-defined Thread class that
inherits the ability to manage a thread from the built-in Thread class. Inheriting from the
Thread class is just as easy as from any other class. However, there are some
implementational rules that must be followed for successfully using objects of a user-defined
Thread class. The example of displaying animated bitmaps is discussed again, using an
object-oriented approach.

Specifications
Before we begin to implement a class we have to find a name for it. A good one is Animation
because this is a synonym for what objects of the class will do in general. The next step is to
define what data an Animation object will have, or know, and what it will do with the data.
You have a pretty good idea about this from the example program in the previous section and
should try to define the specifications on your own. Each animation, for example, must
maintain its own array index for selecting the current bitmap, each must have its own
XbpBitmap objects and so on. Since different data is required in different threads it becomes
obvious that we must tell a Thread object what data to use for the animation and store the
corresponding values directly in the object. Now this is what instance variables are good for:
holding the data required for processing an animation. Instance variables have a symbolic
name used to access their value and it is a good idea to specify not only the required data but
also the names of the corresponding instance variables.

Data is used in the methods of an object and the different stages of an animation must be
implemented in different methods. The entire animation is split into a number of methods,
which also have symbolic names. The following table shows both the name and description
of member variables (data) and methods (functionality) for the Animation class.

Specification of an Animation class
MemberVar/Method Description

Data (Instance variables) for an Animation object (what it knows)

 :aSource Array holding names of bitmap files or their
 resource IDs if a resource file is used
 :cDllName Name of DLL if a resource file is linked to a DLL
 :aBitmaps Array holding XbpBitmap objects
 :nTotal Total number of bitmaps for the animation
 :nCurrent Array index pointing to the current bitmap
 :aRect Coordinates where to draw the bitmaps in an Xbase Part

Specifications

The Multi-Threading Tutorial (Part I) 13

MemberVar/Method Description
Functionality (Methods) of an Animation object (what it does)

 :init() Creates a new thread
 :atStart() Loads bitmap files when the thread starts
 :execute() Displays bitmap files while the thread is running
 :atEnd() Releases bitmaps before the thread ends
 :stop() Stops the animation

Inherited from the Thread class

 :start() Starts the animation

Pre-requisites for program logic
The specifications are detailed enough for declaring and implementing the Animation class.
The key for this class to work properly is the built-in Thread class which enables objects of
the Animation class to manage their own thread. As a matter of fact, each Animation object
is a thread that knows how to display bitmaps. An Animation object uses data stored in
member variables and processes them in its methods. For a better understanding of the
implementation of the Animation class, let us first see how an object of this class is used:

01: // User enters data in Main

02: PROCEDURE Main

03: LOCAL cFirst := "Henry ", cLast := "Miller "

04: LOCAL oXbp, oThread

05:

06: Setcolor("N/W,W+/B")

07: CLS

08:

09: oXbp := XbpStatic():new(,, {10,300},{44,44})

10: oXbp:create()

11:

12: oThread := Animation():new({ "Phase1.bmp", ;

13: "Phase2.bmp", ;

14: "Phase3.bmp" })

15: oThread:start(, oXbp)

16:

17: SET CURSOR ON

18: @ 10, 10 SAY "Firstname:" GET cFirst

19: @ 12, 10 SAY " Lastname:" GET cLast

20: READ

21:

22: oThread:stop()

23:

Pre-requisites for program logic

The Multi-Threading Tutorial (Part I)14

24: WAIT "Thread has stopped"

25: RETURN

The effect of this program is the same as in the previous example program: a series of three
bitmaps is shown in the XbpStatic object created in line #9 and #10, while the user can enter
data due to the READ command in line #20. The object representing the second thread is
referenced in a LOCAL variable which enables us to start and stop the thread as desired.

The usage of an Animation object is very simple. It is created in line #12 where an array of
bitmap file names is passed to the :new() method. The animation is started in line #15 and
stopped in line #22. That means: we need to call only three (!) methods in a program for
effectively using an Animation object. These methods are :new(), :start() and :stop(). What
happens with the member variables and other methods shown in the table listing the
Specification of an Animation class? Well, they are used internally by the Animation object
and provide for its "intelligence". There is something going on behind the scenes when
calling :start() and :stop(). You cannot see this in the example code, but you must understand
it for the implementation of the Animation class:

When an Animation object executes the :start() method, it loads the bitmaps when thread B
begins with executing program code or displaying bitmaps. The bitmaps are displayed in a
round robin scheme while thread B is running and they are released before thread B
terminates.

Pre-requisites for program logic

The Multi-Threading Tutorial (Part I) 15

This circumscribes three vital stages of a thread that must be understood for successfully
implementing user-defined Thread classes, such as the Animation class: a thread starts, it
runs and it ends. The Thread class has three pre-defined methods that are to be used in user-
defined Thread classes for the three stages:

:atStart() This method is called once. It is called automatically before a thread runs the
:execute() method. An Animation object uses the :atStart() method to create
XbpBitmap objects which actually load the bitmap files required for the
animation.

:execute() This method may be called repeatedly as long as the thread runs. It is called
automatically after :atStart() and implements the code which is executed in
the new thread. An Animation object displays bitmaps in the :execute()
method.

:atEnd() This method is is called once. It is called automatically before a thread
terminates code execution. An Animation object uses the :atEnd() method to
release XbpBitmap objects and their system resources.

Creating an Animation object
Up to now you have seen the specification of the Animation class, how objects of this class
can be used within a program and how the program flow looks like when an Animation
object is active. You also know that the Xbase++ Thread class has three methods which are
called implicitly when a thread is started, while it is running and when it ends. With this
knowledge it should be easy to understand the implementation of the Animation class:

01: CLASS Animation FROM Thread

02: PROTECTED:

03:

04: // data required for displaying animated bitmaps

05: VAR cDllName, aSource

06: VAR aBitmaps, nCurrent, nTotal

07: VAR aRect

08:

09: // overloaded methods

10: METHOD atStart, execute, atEnd

11:

12: EXPORTED:

13: // overloaded method

14: METHOD init

15:

16: // new method in Animation class

17: METHOD stop

18: ENDCLASS

19:

20:

Creating an Animation object

The Multi-Threading Tutorial (Part I)16

21: METHOD Animation:init(aSource, cDllName)

22: ::Thread:init()

23: ::aSource := AClone(aSource)

24: ::cDllName := cDllName

25: RETURN self

The class declaration defines all instance variables an Animation object has in addition to the
ones available in the Thread class. The methods :atStart(), :execute(), :atEnd() and :init()
must be declared again, although they do exist in the super class. These methods are called
implicitly and implement code that makes an Animation object different from a Thread
object. The init() method is called implicitly within :new(). Just remember how an Animation
object is created:

12: oThread := Animation():new({ "Phase1.bmp", ;

13: "Phase2.bmp", ;

14: "Phase3.bmp" })

The same parameters passed to :new() are passed on to :init() and that's how an Animation
object obtains the "knowledge" which bitmaps participate in the animation. When an array is
passed to a method and stored in an instance variable, it is always a good idea to make a
copy of that array (line #23). The most important part of the :init() method, however, is line
#22 where the super class's :init() method is called. An Animation object cannot start a
thread without initializing its super class, it would create a runtime error instead. But
everything is fine here, the Animation object is properly initialized and ready to run the new
thread.

Running the animation
The thread is started by calling the :start() method inherited from the Thread class. When
this method is invoked the following code is executed in the new thread. It brings the
animation to life and displays the bitmaps.

28: METHOD Animation:atStart(oXbp, nInterval, aRect)

29: LOCAL i

30:

31: IF nInterval == NIL

32: nInterval := 10

33: ENDIF

34:

35: IF aRect == NIL

36: aRect := oXbp:currentSize()

37: aRect := { 0, 0, aRect[1], aRect[2] }

38: ENDIF

39:

40: ::aRect := aRect

41: ::nCurrent := 0

42: ::nTotal := Len(::aSource)

Running the animation

The Multi-Threading Tutorial (Part I) 17

43: ::aBitmaps := Array(::nTotal)

44:

45: FOR i:=1 TO ::nTotal

46: ::aBitmaps[i] := XbpBitmap():new():create()

47: IF Valtype(::aSource[i]) == "N"

48: ::aBitmaps[i]:load(::cDllName, ::aSource[i])

49: ELSE

50: ::aBitmaps[i]:loadFile(::aSource[i])

51: ENDIF

52: NEXT

53:

54: ::setInterval(nInterval)

55: RETURN self

56:

57:

58: METHOD Animation:execute(oXbp)

69: LOCAL oPS := oXbp:lockPS()

60:

61: ::nCurrent ++

62: IF ::nCurrent > ::nTotal

63: ::nCurrent := 1

64: ENDIF

65:

66: ::aBitmaps[::nCurrent]:draw(oPS, ::aRect)

67: oXbp:unlockPS(oPS)

68: RETURN self

The :atStart() method provides for all resources required by the :execute() method to run
successfully. The XbpBitmap objects, for example, are created in line #46 and load the
bitmaps in turn so that they are available when :execute() draws the images in line #66. Also,
the time interval for an automatic repetition of :execute() is set in line #54 when the thread
begins to run. It defaults to 10 hundredths of a second (line #32) and causes the Animation
object to "sleep" for this period of time before calling :execute() again. This program logic is
the same as we have discussed in the previous section. The only difference is how the thread
is started:

1st try: oThread:start("Animate", oXbp, aBitmaps)

2nd try: oThread:start(, oXbp)

When using the built-in Thread class, the name of the procedure a Thread object excutes in
the new thread is passed to the :start() method. This is not the case in user-defined Thread
classes since the code for the new thread is implemented in the :execute() method, which is
reserved for this very purpose. All but the first parameters received by the :start() method are
passed also to :atStart(), :execute() and :atEnd(). The Animation object knows where to
draw the bitmaps because the parameter oXbp references an XbpStatic object, or Xbase Part.
This parameter is passed to :execute() each time the method is invoked. So this is something

Running the animation

The Multi-Threading Tutorial (Part I)18

to consider for the class design of user-defined Thread classes: We could store the Xbase
Part in an instance variable but this is not necessary since it remains accessible via the
parameter list. This approach has the additional advantage that there is less code to write for
the clean-up at the end of a thread.

Memory issues
Cleaning up memory is good programming practice once you enter the multi-threading
business. This is not an issue in single-threaded programs because the Xbase++ garbage
collector does it automatically for you. But when you use multiple threads, you can relieve
the garbage collector in its work and gain performance. A perfect time for doing a clean-up is
when a thread ends and that is exactly what the :atEnd() method does:

71: METHOD Animation:atEnd(oXbp)

72: AEval(::aBitmaps, {|o| o:destroy() })

73: oXbp:invalidateRect(::aRect)

74: ::aBitmaps := NIL

75: ::aRect := NIL

76: RETURN self

In line #72 system resources allocated by XbpBitmap objects are released. Then the Xbase
Part oXbp is informed that the rectangle on the screen occupied by the bitmaps is no longer
valid (line #73) - which causes a screen update. Finally, all array references created in the
:atStart() method are destroyed by assigning NIL to the corresponding instance variables.

Although memory issues are nothing you are bothered with in Xbase++ you should follow
these rules when you define your own Thread classes:

1. Implement an :atEnd() method that does a clean-up.

2. Call the :destroy() method for all Xbase Parts that become obsolete or unaccessible
(PROTECTED instance variables!) when the thread has ended.

3. Assign NIL to all instance variables that contain references to arrays, code blocks or
objects when they become obsolete or unaccessible.

Stopping the animation
We have discussed now the code that runs in the thread created by an Animation object. The
code implemented in the :execute() method is repeated forever unless we tell the object to
terminate the thread. This is done in the method :stop() whose code is listed below:

80: METHOD Animation:stop

81: ::setInterval(NIL)

82: ::synchronize(0)

83: RETURN self

The method consists effectively of two lines of code (line #81 and #82) which make it both
simple to implement and hard to understand if you are not familiar with multi-threaded

Stopping the animation

The Multi-Threading Tutorial (Part I) 19

program logic. However, it is imperative for you to understand these two lines of code when
you intend to implement your own Thread classes. To stop a thread is a vital issue in multi-
threaded programs but you have absolutely no control over the time when a thread ends
because this lies within the responsibility of the operating system. There are different
strategies how to stop a thread and you have to implement different code depending on how
your Thread class runs, better to say: how the :execute() method is implemented.

An Animation object relies on a time interval being set for repeated execution of the
:execute() method and this makes it easy to stop the thread. When the time interval is set to
NIL (line #81), the :execute() method is not called again and the thread ends.

We have already discussed that :synchronize(0) causes one thread to halt until another
thread has ended. However, calling this method from within a user-defined Thread class
makes line #82 really hard to digest and you ought to recall the situation when the :stop()
method is executed. We have two threads running, A and B. Thread A knows the Animation
object that represents thread B. Thread A stops thread B and must wait until thread B has
actually ended:

The :stop() method is called in thread A which implies that the code of this method is also
executed in thread A. From this it becomes obvious that ::synchronize(0) (line #82) is
executed in thread A and that it is thread A which is "synchronized" with thread B. During
the synchronization, the :execute() method runs to completion and the :atEnd() method is
executed before thread B finally ends:

Stopping the animation

The Multi-Threading Tutorial (Part I)20

The point of this discussion is to make it clear that a Thread object will always have methods
that are executed in two different threads. The :stop() method, for example, is a method that
cannot be executed in the thread represented by the Animation object. Just think what would
happen when :stop() would be called inside the :execute() method? The thread would be
synchronized with itself, or, in other words, it would be busy with waiting for its own end,
which is a deadlock situation. As a matter of fact, this would be a major logical programming
error and Xbase++ prevents you from a deadlock by raising a runtime error if your program
runs into this situation.

The two sides of a Thread object

The Multi-Threading Tutorial (Part I) 21

The two sides of a Thread object

It is not obvious from the implementation of a user-defined Thread class which methods are
executed in which thread, unless you know the purpose of the three pre-defined methods
:atStart(), :execute() and :atEnd(). Code that must run in the thread represented by the
Thread object must be implemented in these methods. However, a Thread object has
methods which must be called from another thread. This makes it necessary to distinguish
two kinds of methods from a logical point of view which is most easily done using the terms
Client and Server.

You may think of a Server being the black box in the computer room down the hallway and a
Client being a similar thing sitting on your desk. This view is correct in the context of
hardware. But in the field of software, Client/Server is a concept not necessarily related to
physical entities. Instead, different parts of a software can play the Client/Server roles when
the program is split into multiple threads. Assume a browser that displays a monthly
consumer statistic. If a thread calculates consolidated data, a user can start viewing the
results for the first months already while the thread still calculates the rest of the year. This
would need two threads, one for the display and one for the calculation:

In this scenario, thread A uses data created by thread B, or, in other words, thread A is being
served with data by thread B. Hence, it is legitimate to state that thread A is a Client of
thread B while thread B is the Server thread. Looking at this from the Thread object's point
of view we can conclude that :start() is a method which must be called in the Client thread
because it causes the Server thread to run. Since a thread cannot be started twice while it is
running, the :start() method is restricted to a Client thread, it is a client-side method.

The two sides of a Thread object

The Multi-Threading Tutorial (Part I)22

In contrast, the :execute() method always runs in the thread represented by the Thread object.
It is impossible that this method runs in another thread, it is a server-side method. We can,
therefore, distinguish two sides of a Thread object by the thread in which methods are
executed: client-side and server-side. The former consists of methods which cannot be
executed in the thread represented by the object, while the latter is a group of methods that
are always executed in this particular thread. There is, however, a third group of methods
which can be executed in any thread. They define settings about how a thread is executed.
This covers thread priority and timing issues.

Method groups of the Thread class
Client side Server side Settings
:new() :atStart() :setInterval()
:init() :execute() :setPriority()
:setStartTime() :atEnd()
:start() :quit()
:synchronize()

The distinction beween client-method and server-method of a Thread object is useful since
both terms help to structure a multi-threaded program easily. Server-methods perform tasks
independently of the rest of a program (they serve something else), while client-methods
create threads and control the program flow between them.

Basic programming techniques using threads

The Multi-Threading Tutorial (Part I) 23

Basic programming techniques using threads

Thread usage and creating a user-defined Thread class is discussed in detail in the chapter
Building an Animation class where a variety of program-logic related issues is outlined. This
chapter deals with programming techniques and implementation issues relevant for applying
multi-threading in your database applications.

Calculating statistics from databases
The calculation of a statistic is a common task in database applications and it provides a
good example for a variety of issues relevant for multiple thread usage. In its broadest sense,
the term "statistic" implies that a program has to pass through all records of a database and
compute a result from its field values. For example, a question that can be answered by
computing a sales statistic might be; "What is the gross revenue of last year?". Let us take
this question as starting point in this discussion and look at a simple implementation:

01: LOCAL nRevenue

02:

03: USE Sales

04:

05: SUM FIELD->SALES TO nRevenue ;

06: FOR Year(FIELD->SALESDATE) = Year(Date()) - 1

07:

08: CLOSE Sales

09:

10: ? nRevenue

The code shows five major characteristics common to all statistics: we need variables to hold
the result (line #1), a database is opened (line #3), the statistic is computed (lines #5 and #6),
the database is closed (line #8) and the result is displayed (line #10). What the code does not
show, but what is also a common feature of all statistics, is that the calculation can be very
time consuming until the result can be displayed. Let us assume now that a user would like to
do some other things while the statistic is being calculated in lines #5 and #6. There is no
chance in the above implementation to accomplish this unless we use a thread that runs the
time consuming part of the code.

Keep the term "time consuming" in mind. It is the key for identifying the code that must be
isolated in order to be executed in a separate thread. In the example, it is the SUM command
that takes time and we convert it to its functional equivalent before we run it in a thread
(Note: the functional form of a command is easily obtained by compiling a PRG file using
the /p switch and copy/paste the result from the PPO file into the PRG file). The modified
example shown below does the same as before:

Calculating statistics from databases

The Multi-Threading Tutorial (Part I)24

01: LOCAL nRevenue, bEval, bFor

02:

03: USE Sales

04:

05: nRevenue := 0

06: bEval := {|| nRevenue += FIELD->SALES }

07: bFor := {|| Year(FIELD->SALESDATE) = Year(Date()) - 1}

08:

09: DbEval(bEval, bFor)

10:

11: CLOSE Sales

12:

13: ? nRevenue

The statistic is defined in two code blocks that are passed to the DbEval() function (line #9).
The function steps through the database and computes the result by evaluating the code
blocks. That means: we have a function name (DbEval), two variables (bEval, bFor) used as
parameters for the function, and this is all we need to run a thread. When we create a thread
object, line #9 could run in the thread:

08: oThread := Thread():new()

09: oThread:start("DbEval", bEval, bFor)

The DbEval() function is executed in the thread and gets two parameters passed by the thread
object. This looks correct, but the code will bomb with the error message "Unknown/Invalid
symbol for alias"! The reason why it will produce a runtime error is due to the fact that work
areas are thread-local resources in Xbase++ (refer to The work space of Xbase++ in the
Xbase++ documentation for details). Although the database is opened in line #3, its fields are
not visible when the code blocks are evaluated in the second thread. The expressions FIELD-
>SALES and FIELD->SALESDATE lead to the error because the fields exist only in the
current thread, not in the second one.

To resolve this problem, we have to open the database in the second thread before DbEval()
is actually executed. The easiest way for this is by assigning two additional code blocks to
the thread object:

01: LOCAL nRevenue, bEval, bFor, oThread

02:

03: USE Sales

04:

05: nRevenue := 0

06: bEval := {|| nRevenue += FIELD->SALES }

07: bFor := {|| Year(FIELD->SALESDATE) = Year(Date()) - 1}

08:

09: oThread := Thread():new()

10: oThread:atStart := {|| DbUseArea(,,"Sales") }

11: oThread:atEnd := {|| DbCloseArea() }

11: oThread:start("DbEval", bEval, bFor)

Calculating statistics from databases

The Multi-Threading Tutorial (Part I) 25

12:

13: Browse() // <... do something else ...>

14:

15: CLOSE Sales

16: oThread:synchronize(0)

17: ? nRevenue

The code blocks assigned to the instance variables :atStart and :atEnd (lines #10 and #11)
are evaluated by the Thread object when the thread starts and when it ends, respectively.
They are perfect to use for tasks that are required only once in a thread, like opening and
closing a database, for example.

The statistic is now calculated independently from any other code which means that a user
can do something else while the thread computes the result. To demonstrate this in the
example code, the function Browse() is called in line #13 which allows the user to view the
Sales database while the thread iterates through the same file and computes the statistic.
There is no possibility, however, that the current thread (Browse()) interferes with the second
thread (DbEval()) when changing the record pointer of the database, since the file is opened
twice (lines #3 and #10) and each thread maintains its own work area (thread-local). When
the user is done with browsing, the result of the calculation is displayed after calling
:synchronize(0) in line #16 (remember: always make sure a thread has ended!).

The example shows that you can execute basically any Xbase++ function in a thread without
having to build a specialized Thread class. The DbEval() function is a very good candidate
for a separate thread because it iterates through a database on its own (note: DbEval() is
faster than a DO WHILE .NOT. Eof() loop). This, again, can be pretty time consuming,
depending on how many records exist that must be processed. However, this does not really
matter as long as the user can do other things and does not have to wait until DbEval()
returns. Since the task for DbEval() is defined in a code block, you can perform calculations
of any complexity using this approach. All you have to make sure is to open/close the
necessary database(s) in the thread when it starts/ends.

Average and standard deviation
After we have seen how to calculate a simple statistic from a database in a separate thread,
we will discuss now a more complex example. Normally, a single figure, like a total, is not
sufficient to give a full picture, there are more things to look at. Average, percentage, total
count or standard deviation are common figures in statistical analysis and they are quite
useful for obtaining meaningful information from a set of data. Assume the question "How
many cars did we sell in the first quarter of this year, what was the average price and what
was the total revenue compared to the last quarter?".

To compute such figures fast, we must get as much information as possible by passing once
through a database since skipping through a file is the "most expensive" operation. This
implies that we have to program a function that computes multiple results by passing once
through a database. Let us first see what this means in terms of code. The function
programmed in the following example calculates the standard deviation, total count and total

Average and standard deviation

The Multi-Threading Tutorial (Part I)26

sum for a numeric database field (Note: the standard deviation indicates how much single
values deviate from the average of all values. A detailed description of the standard deviation
goes beyond the scope of this discussion. It can be found in any good statistics book).

01: PROCEDURE Main

02: LOCAL nStdDev, nTotal, nCount, bFor

03:

04: USE Cars

05:

06: bFor := {|| Month(FIELD->SELLDATE) < 4 }

07:

08: nStdDev := DbStdDev("SELLPRICE", bFor, @nTotal, @nCount)

09:

10: ? "# of cars sold:", nCount

11: ? "Gross income :", nTotal

12: ? "Average price :", nTotal / nCount

13: ? "Std. deviation:", nStdDev

14: RETURN

15:

16:

17: FUNCTION DbStdDev(cFieldName, bFor, nSum, nCnt)

18: LOCAL nPos := Fieldpos(cFieldName)

19: LOCAL nSqr := 0

20:

21: nSum := 0

22: nCnt := 0

23:

24: DbEval({|n| n := FieldGet(nPos), ;

25: nSum += n , ;

26: nSqr += n ^ 2 , ;

27: nCnt ++ ;

28: }, bFor)

29:

30: RETURN Sqrt(((nCnt*nSqr) - (nSum^2)) / ;

31: (nCnt * (nCnt-1)))

The common single-threaded approach to calculate multiple results with one function is to
pass parameters with the reference operator (@) to the function (line #8) where they are used
for computation (lines #21-#27). The results are displayed after the function returns (line
#10-#13). However, it is not possible to pass a parameter by reference to a function that is
executed in a thread. This would mean to use the @ operator when calling the :start()
method of a Thread object and in this case, the operator is ignored. The parameter would
"arrive" in the thread but its value would remain unchanged in the calling routine when the
thread ends.

There are two possibilities to make the function DbStdDev() "threadable". We could replace
the LOCAL variables nTotal and nCount with a two element array. If it holds the value zero

Average and standard deviation

The Multi-Threading Tutorial (Part I) 27

in both elements, the array elements can be used for the calculations done in lines #25 and
#26. In this case, function DbStdDev() would receive the array as third parameter and the
fourth could be dropped.

Although this possibility is feasible, it is not optimal in terms of performance because
accessing an array element is slightly slower than acessing a LOCAL variable. Since the
access takes place within the DbEval() code block, the "slightly slower" can accumulate to a
considerable loss in speed, depending on the size of the database. The better approach is,
therefore, to embed the LOCAL variables in a code block and pass it to the :start() method.
This is done in the following code which shows the modifications that allow the DbStdDev()
function to be executed in a thread. Note the lines #6 and #36 when you read the code:

01: PROCEDURE Main

02: LOCAL nStdDev, nTotal, nCount, bFor, bAssign, oThread

03:

04: bFor := {|| Month(FIELD->SELLDATE) < 4 }

05:

06: bAssign := {|n1,n2| nTotal:=n1, nCount:=n2 }

07:

08: oThread := Thread():new()

09: oThread:atStart := {|| DbUseArea(,,"Cars") }

10: oThread:atEnd := {|| DbCloseArea() }

11:

12: oThread:start("DbStdDev", "SELLPRICE", bFor, bAssign)

13: oThread:synchronize(0)

14:

15: nStdDev := oThread:result

16:

17: ? "# of cars sold:", nCount

18: ? "Gross income :", nTotal

19: ? "Average price :", nTotal / nCount

20: ? "Std. deviation:", nStdDev

21: RETURN

22:

23:

24: FUNCTION DbStdDev(cFieldName, bFor, bAsgn)

25: LOCAL nPos := Fieldpos(cFieldName)

26: LOCAL nSqr := 0

27: LOCAL nSum := 0

28: LOCAL nCnt := 0

29:

30: DbEval({|n| n := FieldGet(nPos), ;

31: nSum += n , ;

32: nSqr += n ^ 2 , ;

33: nCnt ++ ;

34: }, bFor)

Average and standard deviation

The Multi-Threading Tutorial (Part I)28

35:

36: Eval(bAsgn, nSum, nCnt)

37:

38: RETURN Sqrt(((nCnt*nSqr) - (nSum^2)) / ;

39: (nCnt * (nCnt-1)))

The code demonstrates an elegant solution to work around the shortcoming of the reference
operator when a function is to run in a thread. The programming technique of embedding
LOCAL variables in a code block can be used whenever LOCALs must be accessible outside
the function where they are declared. By embedding the two LOCALs nTotal and nCount in
line #6, they remain accessible inside the code block, and the values computed in
DbStdDev() are assigned to the variables in line #36 where the code block is evaluated and
receives the computed data as parameters.

Function DbStdDev() is very useful for statistical analysis since it computes three key figures
(total count, total sum, standard deviation) that can be used to derive other key figures easily,
like average or percentage, for example. During significant "number crunching" -which can
be very time consuming- the user can do other things while the thread is running. As a matter
of fact, you could insert whatever code you like between line #12 and #13 where the new
thread is started and synchronized with the current thread. Note also line #15: the return
value of DbStdDev() is obtained from the Thread object. It stores the return value of the
function executed in the thread in its instance variable :result.

About threads and event loops
After we have seen how easy it is to calculate extensive statistics in a separate thread, or
asynchronously, we have to look at ways how to present the results in a better way. Up to
now, the examples have used the Qout() function (? command) to display the results which is
not appropriate in a pure GUI application. When we choose an XbpDialog object as the
application window, computed results are easily displayed using XbpStatic objects. Let us
assume that a user can enter data in an XbpDialog window while a thread computes the
statistic. When the thread is done, an additional window pops up and displays the result. That
means, there is more than one thread and more than one window, or Xbase Part, involved.

If you plan to use Xbase Parts in more than one thread, there are two rules you have to keep
in mind:

1. Each thread that creates Xbase Parts must run an event loop.

2. Xbase Parts receive events only in the thread that has created them.

Both rules are equally important when you design your programs to use multiple windows
and multiple threads. If you don't comply with these rules, your application will not work. It
will rather appear to you that some parts of your program work while others "hang", or don't
do anything at all. However, there are two approaches you could follow: A) one thread
computes the statistic and displays the result, or B) one thread displays all windows, another
computes the statistic.

About threads and event loops

The Multi-Threading Tutorial (Part I) 29

You can find working examples for both approaches in the directory
\SAMPLES\DBSTDDEV and we will focus on the differences in program logic rather than
discussing the entire code (most of it is required for the user interface which is not covered in
this chapter).

One window per thread
The first approach is programmed in MAIN1.PRG where the Main procedure creates the
application window and a thread is started via a pushbutton. The thread calculates the
statistic and displays the results in a window when the database is entirely scanned. The
following diagram illustrates the program flow (NOTE: Thread B stands for any number of
threads that can be started from Thread A).

Thread A (the Main() procedure) opens a database, creates the application window and runs
an event loop. When a pushbutton is clicked, thread B is started via the :activate code block
(not indicated in the diagram). The new thread opens a database, computes a statistic, creates
a window and runs an event loop. Thus, we have (at least) two event loops running parallel.
The first addresses events to the window created in thread A and the second loop sends
events to the window of thread B. Thread B ends when its event loop is exited, i.e. when the
second window is closed. The program is terminated when the application window is closed
because this exits the event loop in thread A and ends the Main() procedure.

About threads and event loops

The Multi-Threading Tutorial (Part I)30

Multiple windows in one thread
Opening multiple windows in one thread is a common situation and you have most likely
done this already. However, we have to deal now with the situation that we do not know how
long the calculation of the statistic will take. That means, we have to detect when the thread
ends and only then should a new window pop up to display the results. We cannot create the
new window in thread B because it would not receive events (remember rule #1).

In the example program MAIN2.PRG this problem is solved elegantly. Have a look at the
next diagram, which shows the program flow of MAIN2.PRG (by the way, it does the same
as MAIN1.PRG but uses a different programming technique):

The entire screen output is confined to thread A while thread B executes the invisible part of
the program. As in the previous example, the new thread is started via :activate code block
of a pushbutton. The thread does its "number crunching" task and posts a user-defined event
to thread A, just before it ends. Well, to be exact, the event is not posted to thread A but to a
window created in thread A: the application window. Let us see first how this looks in the
code and discuss the implications afterwards (only the relevant parts are shown below):

01: /*

02: * Code running in thread A

03: */

04:

05: #define xbeUser_Eval xbeP_User + 1

06:

About threads and event loops

The Multi-Threading Tutorial (Part I) 31

07: SetAppWindow(oDlg)

08:

09: DO WHILE .T.

10: nEvent := AppEvent(@mp1, @mp2, @oXbp)

11: IF nEvent == xbeUser_Eval

12: Eval(mp1)

13: ELSE

14: oXbp:handleEvent(nEvent, mp1, mp2)

15: ENDIF

16: ENDDO

17:

18:

19: /*

20: * Code executed at the end of thread B

21: */

22: bUser := {|| ResultWindow(<...>) }

23:

24: oThread:atEnd := ;

25: {|| DbCloseArea() , ;

26: PostAppEvent(xbeUser_Eval, bUser,, SetAppWindow()) }

At first we define a new event constant in line #5 as a precondition for the program logic.
This user-defined event constant must use xbeP_User as offset, otherwise it might interfere
with events created by Xbase++. The application window is made accessible for all threads in
line #7 where it is passed to SetAppWindow(). Note that oDlg stands for an XbpDialog
window created in thread A before the program enters the event loop in lines #9 to #16. This
loop runs until the program ends.

Now, what happens when thread B is done with the calculation? The code to be executed at
thread B's end is defined as code block that is assigned to the :atEnd instance variable so that
it is executed automatically. Within the code block in line #26, the database is closed and the
user-defined event constant is posted to SetAppWindow(). The PostAppEvent() function
receives as second parameter the code block defined in line #22. It calls a function which
creates the window displaying the results of the statistic. Because SetAppWindow() returns a
window created in thread A, the event is retrieved from the event queue of thread A in line
#10 and the code block bUser arrives in the first message parameter mp1 of the AppEvent()
function. This again closes the circle: the code block is evaluated in line #12 which causes
the result window to be created in thread A and to receive events in thread A's event loop.

User-defined events provide a very powerful programming technique. They can be used to
control a single-threaded application but they show their real strength in a multi-threaded
program. When you know which thread an Xbase Part was created in, you can post events
along with arbitrary values across thread boundaries, just by using a particular Xbase Part as
addressee of the event (remember rule #2 stated at the beginning of this section).

Summary and Part II preview

The Multi-Threading Tutorial (Part I)32

Summary

Part I of the Multi-Threading Tutorial has discussed a variety of issues for using multiple
threads in an Xbase++ program. These are in particular:

- Identifying tasks for separate threads

- Thread safeness means re-entrant code

- Starting and stopping a thread

- Implementing user-defined Thread classes

- Client-side and server-side methods of a Thread object

- Database usage in threads

- GUI event processing using event loops

- Cross-posting of user-defined events between threads

When you have worked through Part I of this tutorial, you have a pretty good idea of the
DO's and DONT's in multi-threading and you are well prepared for Part II of this tutorial. It
is going to be part of the next TechWire and we will discuss some example programs that
demonstrate HOWTO's, or what can be done with threads in application programs. To give
you an idea of what is coming, we include a "sneak preview" on the next page.

Happy Multi-Threading

Your Alaska-Software Team

Summary and Part II preview

The Multi-Threading Tutorial (Part I) 33

Multi-Threading Tutorial Part II (preview)

Incremental search in browses
The programming technique of using two event loops in two threads allows for an easy
implementation of a generic incremental search routine for a browser. All we need to do
is to combine the various features of Xbase++ and "play the multi-threading piano" using
a database, an XbpBrowse object and an XbpSLE object as the key components.

A database "watchdog"
There is an intrinsic problem in multi-user database programming arising from the fact
that two users may change the same record of a database at the same time. This is
known as "lost update" situation and there are a variety of strategies to cope with it. We
will look at a solution to this problem that uses a thread which warns a user about a lost
update while data is edited.

Combo boxes and database fields
Different problems may occur in the usage of combo boxes for editing database fields.
We are going to discuss the implementation of a DbComboBox() class that makes a
programmer's life easier. This class comes with an "autofill" feature that takes
advantage of a thread and fills a combo box with unique field values stored in a
database.

High-speed browsing of record subsets
The browse display of a subset of records stored in a database is one of the most
challenging programming problems in database applications, and there are many
approaches to achieve a high performance in creating a subset and accessing it with a
browser. The DbSubset class is an elegant solution for this problem since it works on
indexed and non-indexed databases and has the flexibility of the SET FILTER
command. In short, the DbSubset class is a pretty sophisticated example for applied
multi-threading technology.

A personal reminder
We are going to discuss in this section a new area of problems that have little or nothing
to do with database programming but can easily be solved with a user-defined thread
class. We will talk about time-controlled execution of code and persistency of Thread
objects, i.e. you can determine the exact point in time when your computer should do
something, you can store thread objects to disk or send them from one computer to
another.

