
 Table of contents

 I

Alaska Software ActiveX Tutorial

Tutorial: ActiveX with Xbase++ ...1

Xbase++ ActiveX support ...1

What Is ActiveX?...2

How to Find Out What ActiveX Controls are Installed and What Features They Provide2

Let's Talk Xbase++ ..3

Identifying the Task ...4

Beginning Our Project..4

Runtime Errors ...12

Summary ..13

 Tutorial: ActiveX with Xbase++

 Alaska Software ActiveX Tutorial 1

 Tutorial: ActiveX with Xbase++

Based on a real world problem "Integrating Excel capabilities into your Xbase++ application"
this Technote gives you first hand knowledge using ActiveX in the context of Xbase++.
Focusing on practical aspects of ActiveX, this Technote tries to avoid going into the details
of the underlying technologies and concepts related to ActiveX, such as
ActiveX/OCX/COM/DCOM and OLE, just to name a few. Nevertheless, working through
this Technote should put you in the position of being able to utilize capabilities provided by
other ActiveX servers, such as MS Word by your own. As a prerequisite, only basic
experience with Xbase++ and its object-oriented programming model is required.

Xbase++ ActiveX support

Alaska Software has released an early version of its ActiveX library for Xbase++ called
XPPOCX. The latest version requires Xbase++ 1.8 and higher and provides an easy way of
ActiveX integration. In fact, the XPPOCX library is some sort of sneak preview into the
forthcoming Visual Xbase++ (VX) ActiveX support.

Currently, the Xbase++ ActiveX support library is available for free to all Subscription
customers who have renewed their subscription. It was intended as a Thank You for the early
birds of the Developer Subscription renewal program. The ActiveX support library comes
with ready to use sample implementations of Xbase++ classes that utilize the following OCX
controls:

OCX controls
Internet Explorer display any HTML content
MS Common Dialog usage of a calendar class
MS RTF integrate RTF documents

If you are inspired by this article feel free to download the "ActiveX support" from Alaska
Software's ESD system (Electronic Software Delivery).

Here is how it works: Please send an email to esd@us.alaska-software.com, with the word
"HELP" in the subject line. The ESD system will respond with an email containing
instructions that guide you through the authentication process. Be sure to have your EO
(Order ID #) handy which you received with your Subscription Renewal Confirmation.

Note: the source code included with this article requires Xbase++ 1.8 .

What Is ActiveX?

Alaska Software ActiveX Tutorial 2

What Is ActiveX?

Have'nt you asked yourself why you seem to re-invent the wheel over and over again? Do I
really have to write my own HTML rendering engine when IE, Netscape or any other
browser already has one integrated? Do I really have to write my own word processor, or is
there one which I can integrate into my application, one which my customers are already
familiar with? If you asked yourself these or similar questions, you are the perfect audience
for this article, because here, ActiveX could come into play.

ActiveX is a technology that allows you to take advantage of an existing application program
and to incorporate its functionality into your own applications. COM (Component Object
Model) is the standard architecture on which the technology is based and which an ActiveX
component builds on to. A component can be viewed as an object composed of other objects.
Each component exposes a set of interfaces through which all communication to the
component is handled. Interfaces provide methods and properties. Access to methods and
properties is called OLE automation - a great term for the simple fact of calling a method or
getting data from a property alias instance variable.

The ActiveX component which provides the interface functionality is a "server" component,
and the application which uses the functionality of an ActiveX component is the "client".

How to Find Out What ActiveX Controls are
Installed and What Features They Provide

A Windows PC already has many ActiveX components installed, many of which are used as
controls. So the terms Control and Component are used synonymously in this article. To
investigate them, an ActiveX Object Viewer is needed but normally not installed on a
Windows PC, which was the case with my PC. So, I had to find an ActiveX Object Viewer
and went to http://www.yahoo.com where I searched for "ocx viewer". Yahoo returned many
links, and this one looked the most promising:

http://www.microsoft.com/com/resources/oleview.asp

After reading through the brief description I decided to download it:

http://www.microsoft.com/com/resources/OVI386.EXE

A few minutes later the installation was complete and I had a utility which let me browse the
ActiveX components on my PC. What a collection!

While I was scanning through the ActiveX components I found Excel, and quickly decided
on a project to use MS Excel's capability to present a set of values as a chart and print it.

Again, I used the OLE Viewer to search for the term Excel. I searched the "All Objects"
section and found "Microsoft Excel Application" (plus a few more described as Excel

 How to Find Out What ActiveX Controls are Installed and What Features They Provide

 Alaska Software ActiveX Tutorial 3

related). Opening this tree brought up "Application", and after a double click, I came to
"View Type Info".

Note: This feature - that an utility like OLE Viewer can provide information on an ActiveX
component - simply works because every ActiveX component describes which functions,
methods and properties it exposes. ActiveX components are "self descriptive", i.e.
information on ActiveX components is stored in a so-called Type Library.

A type library is a file, or part of a file, that provides information about the interfaces of a
COM object. More specifically, the type library contains information about classes. A class
is a description of an object. Type libraries themselves do not store actual objects; they only
store information about those objects.

A type library specifies all the information required by an automation client for calling an
object's method or inspecting its properties. For properties, the type library describes the
stored value. For methods, the type library provides a list of all the arguments the method
can accept, tells you the data type of each argument, and indicates whether an argument is
required or not.

An object by itself does nothing unless you tell it do something. Generally speaking, objects
provide an interface to a certain feature or functionality to your application. To
programmatically examine or control an object, you can use the properties and methods that
the object supports. A property is a function that sets or retrieves an attribute for an object. A
method is a function that performs some action on an object.

Let's Talk Xbase++

Examining the type library of the Excel component (EXCEL8.OLB or EXCEL9.OLB) with
OLE Viewer displays the constants, properties and methods exposed by this ActiveX
component. But what are these in Xbase++ terms?

As a rule of thumb you could think

OLE Viewer / ActiveX terms Xbase++ equivalents
interface class
object instance
constants / enums #defines
properties iVars
methods methods

Personally, I found OLE Viewer to be a good tool for getting an overview of which
components are installed on your system, but it is not a very good tool to describe which
interfaces, constants, properties and methods an ActiveX component exposes. So I again
connected to the internet and found

http://www.devcomponents.com/comassistant/

Let's Talk Xbase++

Alaska Software ActiveX Tutorial 4

and downloaded

http://www.devcomponents.com/downloads/comassistantsetup.exe

This neat utility extracts the type library information and creates a set of HTML files which
give a complete description of the respective ActiveX control (I used EXCEL9.OLB) as an
HTML help file. Great! Be careful, though, more than 50 MB of HTML documentation
with > 10.000 HTML files is created from the Excel type library!

Side Note: HTML WorkShop has to be installed as well. If you do not have it yet, it may be
installed from <AlaskaCD>:\HTMLHELP

Identifying the Task

The task I wanted to solve is: print a well designed pie chart right to the printer using Excel's
functionality. This sounds quite simple, but I was neither familiar with the object model of
Excel nor with its interfaces. So were should I start? Very easy, I had Excel tell me what to
do via its Macro recorder. That's how it works:

Start MS Excel. On the Tools menu, click Macro, and then select "Record New Macro". In
the "Store Macro In" drop-down box, select the name of the active document. Make a note of
the new macro's name, and then click OK to start recording. Now perform all steps required
to accomplish the task and stop the macro recorder.

On the Tools menu click Macro, and then select Macros. Choose the name of the new macro
in the list and click Edit. Now the Visual Basic Editor displays the recorded macro as Visual
Basic code. It contains all names for properties and methods and all that is left to do is to
translate this code to Xbase++.

Beginning Our Project

To start a new project, select an empty folder and create a PRG file with a Main() function,
which is the starting point. I labelled mine GRAPH.PRG, for instance. Then perform these
commands:

DIR *.prg /b > Graph.txt
PBuild @Graph.txt

Edit the resulting PROJECT.XPJ and change the GUI switch to:

GUI = yes

Now let's look at the VBA code that I generated with Excel's macro recorder. Here is the
entire VBA script:

 Beginning Our Project

 Alaska Software ActiveX Tutorial 5

01: /* VBA (Visual Basic for Applications)
02: Sub Macro1()
03: '
04: ' Macro1 Macro
05: ' Macro recorded 04.08.2002 by Frank Grossheinrich
06: '
07: '
08: ChDir "H:\Alaska\OCX\Tutorial2"
09: Workbooks.Open Filename:="H:\Alaska\OCX\Tutorial\SALES.DBF"
10: Charts.Add
11: ActiveChart.ChartType = xl3DPieExploded
12: ActiveChart.SetSourceData Source:=Sheets("SALES").Range("A2:B5"), _
13: PlotBy:=xlColumns
14: ActiveChart.Location Where:=xlLocationAsNewSheet, _
15: Name:="PrintGraph"
16: With ActiveChart
17: .HasTitle = True
18: .ChartTitle.Characters.Text = "Xbase++ ActiveX Sample"
19: End With
20: ActiveChart.HasLegend = True
21: ActiveChart.Legend.Select
22: Selection.Position = xlCorner
23: ActiveChart.ApplyDataLabels Type:=xlDataLabelsShowValue, _
24: LegendKey:=False,HasLeaderLines:=True
25: ActiveWindow.SelectedSheets.PrintOut Copies:=1, Collate:=True
26: ActiveWorkbook.Close
27: End Sub
28: */

I am going to translate this VBA code to Xbase++, but first we need to prepare Excel and
initialize its capability to act as an OLE automation server:

#pragma library("xppocx.lib")
#pragma library("xppui3.lib")

PROCEDURE Main
 oExcel := XbpOcx():new(AppDesktop(), "Excel.Application")
 oExcel:create()

RETURN

This Xbase++ code creates the Excel application object from the XbpOcx() class and tells the
linker which libraries to link with two #pragma instructions. That means, you must have
these DLLs in your PATH:

Beginning Our Project

Alaska Software ActiveX Tutorial 6

XPPOCX.DLL
XOCMAIN.DLL
XPPUI3.DLL

The XbpOcx() class is not yet documented, but will be with a future version. For now we just
need a few methods of the class, such as :new(), :create() and :destroy(), for the lifecycle of
an ActiveX component, and three other methods, :getProperty(), :setProperty() and
:callMethod(), which are the most important ones to set or retrieve properties of a component
or to call a method of a component. The method names should be self explanatory.

XbpOcx()
Method Parameters Return
:new() oParent, cCLSID, aPos, aSize self
:create() oParent, cCLSID, aPos, aSize self
:destroy() self
:getProperty() cProperty axValue
:setProperty() cProperty, axValue axValue
:callMethod() cMethod, axParam, axValue

The methods :new(), :create() and :destroy() have the same meaning as for Xbase Parts, only
the second parameter differs: it is the Class-ID of the ActiveX component to be accessed.
The Class-ID is ussually a cryptic Hex number that can be obtained from the OLE Viewer.
Creating an application object is much easier using the application's name. So,
"Excel.Application" can be used as Class-ID for the Excel application object.

The two methods :setProperty() and :callMethod() accept as first parameter a string with the
name of the desired property or method. The second parameter axValue can be passed either
by value or as an array.

The easiest and most common approach is passing parameters by value. This means that
standard parameters such as strings, logicals and numerics can be passed as is. No further
conversion is needed (bear in mind that an ActiveX component is written in C/C++ or
another strong typed language and needs parameters to be passed as specific types which are
integer, floats, handles, etc). That means, if a method requires a directory name as string you
can pass the string as is. Example:

cInputTable := "c:\temp\sample.dbf"
oBook := oWorkbook:callMethod("Open", cInputTable)

cInputTable is a standard Xbase++ string. The same applies to logical and numeric values if
the method (:callMethod()) or property (::setproperty()) require these.

The other technique, using strong typing syntax, is to pass the parameter as an array
containing two elements: a constant which specifies the type, and the data value. Example:

oBook := oWorkbook:callMethod("Open", { VT_BSTR, cInputTable })

This code has the same effect as the one above.

 Beginning Our Project

 Alaska Software ActiveX Tutorial 7

Note: These strong typing constants are defined in XBPOCX.CH

Because ActiveX routines use strong typing, the return values of :setProperty(),
:getProperty() and :callMethod() are also in this array format. Example:

aVar := oObject:callMethod(...)
aVar -> { VT_..., ... }

This means we must reference the second element to obtain the data:

xVar := aVar[2]

or directly:

xVar := oObject:callMethod(...)[2]

Here is a real example from our Excel exercise:

lDidPrint := oChart:callMethod("PrintOut")[2]

However, there is an exception to this rule. If the return value of :getProperty() or
:callMethod() is an OCX object, the array normally returned, such as { VT_DISPATCH,
nHandle }, is internally converted to an Xbase++ OCX object. Having OCX return objects
instead of arrays allows message chaining (the in-line syntax where we "chain" multiple calls
to methods in a single line of code):

oXbp := XbpSle():new():create()

Here is an example using XPPOCX, which results in a ready to use workbook object:

oBook := oExcel:GetProperty("Workbooks"):callMethod("Open",cInputTable)

Back to the source code. For the first steps with Excel and its usage as an OLE Automation
Server, I recommend this code to switch the :visible flag ON. This way you can see the
result of each step during debugging .

#ifdef DEBUG
 oExcel:SetProperty("Visible", .T.)
#endif

Excel is now prepared to process commands.

I will now take each line of the VBA macro code from above and show how to write it using
Xbase++ XPPOCX syntax. Beginning with the first line:

08: ChDir "H:\Alaska\OCX\Tutorial2"

There is no need to translate line #8 to Xbase++ code as we fully qualify the path of the table.

09: Workbooks.Open Filename:="H:\Alaska\OCX\Tutorial\SALES.DBF"

To help understand this line, here are some notes on VBA syntax:

Beginning Our Project

Alaska Software ActiveX Tutorial 8

1) Workbooks is a property (in Xbase++ terms it is an iVar). We obtain references to
properties with the :getProperty() method. In this case, the Workbooks property
contains an object which has an Open method.

2) The "." is the same as Xbase++'s ":" operator

3) Open is a method and it gets passed a parameter. Methods must be called using
:callMethod().

4) It's not in line #9 but the underscore "_" is interpreted as line-continuation character,
equivalent to Xbase++'s ";".

In XPPOCX, calls to the OCX object are addressed to the application object that we created
at the beginning of the Main() procedure (oExcel in our example). So our version of line #9
of the VBA code looks like this:

oBook := oExcel:GetProperty("Workbooks"):callMethod("Open",cInputTable)

Note: I have to admit that this call looks a bit strange. I personally would prefer a call such
as

oBook := oExcel:Workbooks:Open(cInputTable)

and in fact this does work as well. But it is not recommended yet because XPPOCX is still
under development and may change. So, use it at your own risk.

10: Charts.Add

Charts is an iVar containing an object. Add is a method, and the return value is a Chart
object:

oChart := oExcel:GetProperty("Charts"):callMethod("Add")

11: ActiveChart.ChartType = xl3DPieExploded

At this point I am changing the code and workflow a bit. Because I saved the ActiveChart
object to oChart, I do not need to call oExcel:ActiveChart. Just a reference to oChart will do.

The purpose here is to assign a value to the ChartType ivar, but what is the value of
xl3DPieExploded? I searched the Excel HTML help file and found a list of values under the
topic XlChartType enumeration. Enumeration is equivalent to our #define directive, so I
added a few from the list for our example code:

#DEFINE xlPieOfPie 68
#DEFINE xlPieExploded 69
#DEFINE xl3DPieExploded 70

So our code is:

oChart:SetProperty("ChartType", xl3DPieExploded)

Note: All Excel related #defines which appear in this article were found in the Excel HTML
help file (which we generated from the type library).

 Beginning Our Project

 Alaska Software ActiveX Tutorial 9

12: ActiveChart.SetSourceData Source:=Sheets("SALES").Range("A2:B5"),
13: PlotBy:=xlColumns

This command is more complex and I had to split it into several lines.

Note: In VBA, some parameters are not enclosed in parentheses. They are named and
comma-separated, and have values assigned to the names, all in the same executable line as
the method call. So in the above line, the method .setSourceData has two parameters, Source
and PlotBy.

The tricky part here is the parameter Source:=Sheets("SALES").Range("A2:B5"), which has
to be prepared more thoroughly. The final value of Source is a range object created from a
worksheet object created from the Excel object. Here is how we arrive at that:

1) Sheets("SALES") is quite easy, a method which returns a worksheet object named
"SALES":

oSheet := oExcel:callMethod("Sheets", "SALES")

2) Defining the range looks also quite simple:

cRange := "A2:B" + ALLTRIM(STR(nRecords + 1))
 (nRecords is from our DBF table)

3) Calling the Range method of the Sheet object is again simple, and results in a range
object:

oRange := oSheet:callMethod("Range", cRange)

Now we face a new issue: how to perform the SetSourceData method call? xlColumns is a
defined constant. But how do we pass the Range object as a parameter?

Earlier in this article we discussed the situation where a return value of a method is an array
containing a handle to an object ({VT_DISPATCH,nHandle}), and how XPPOCX
internally translates this into an Xbase++ OCX object. Now we must do the reverse, and
translate our oRange into a form which SetSourceData can accept. This is done with the
same array of two elements, as discussed earlier. The syntax for this array is

{ VT_UNKNOWN, oRange:GetPunk() }

The constant VT_UNKNOWN (found in XPPOCX.CH) means "pointer unknown".
:getPunk() is a method in all ActiveX objects which returns a handle to the object (this is
similar to our :getHWND() method in Xbase++).

So the final line looks like this:

#DEFINE xlColumns 2 // from the Excel help file

oChart:callMethod("SetSourceData", ;
 { VT_UNKNOWN, oRange:GetPunk() }, xlColumns)

Beginning Our Project

Alaska Software ActiveX Tutorial 10

Here is the complete translation:

12: ActiveChart.SetSourceData Source:=Sheets("SALES").Range("A2:B5"),
13: PlotBy:=xlColumns

XPPOCX:

#DEFINE xlColumns 2

oSheet := oExcel:callMethod("Sheets", "SALES")

cRange := "A2:B" + ALLTRIM(STR(nRecords + 1))

oRange := oSheet:callMethod("Range", cRange)

oChart:callMethod("SetSourceData", ;
 { VT_UNKNOWN, oRange:GetPunk() }, xlColumns)

The next VBA instruction creates a chart in a new work sheet:

14: ActiveChart.Location Where:=xlLocationAsNewSheet,
15: Name:="PrintGraph"

This is equivalent to a method call with two parameters:

#DEFINE xlLocationAsNewSheet 1 // from the Excel help file

oChart:callMethod("Location",xlLocationAsNewSheet,"PrintGraph")

The following lines of VBA script code show a syntax that is not available in Xbase++. It's a
shortcut so you don't have to type the common part of a nested object repeatedly:

16: With ActiveChart
17: .HasTitle = True
18: .ChartTitle.Characters.Text = "Xbase++ ActiveX Sample"
19: End With

Is the same as:

ActiveChart.HasTitle = True
ActiveChart.ChartTitle.Characters.Text = "Xbase++ ActiveX Sample"

This VBA construct allows multiple ivar assignments. Notice line #18 which looks like
several nested properties:

.ChartTitle.Characters.Text

ChartTitle is an ivar containing an object. Characters is an ivar of ChartTitle and also
contains an object, which in turn contains the Text ivar. Because these objects will be
returned as Xbase++ objects by :GetProperty(), our XPPOCX version can use the "message
chaining" technique we discussed earlier:

 Beginning Our Project

 Alaska Software ActiveX Tutorial 11

oChart:SetProperty("HasTitle", .T.)

oChart:GetProperty("ChartTitle"): ;
 GetProperty("Characters"): ;
 SetProperty("Text", "Xbase++ ActiveX Sample")

Looking into the Excel help file (which we generated from the Excel type library), I found
out that it can be shortened to

oChart:GetProperty("ChartTitle"):SetProperty("Text",;
 "Xbase++ ActiveX Sample")

The next line instructs Excel to create a legend for the chart:

20: ActiveChart.HasLegend = True

The XPPOCX version of line #20 reads:

oChart:SetProperty("HasLegend", .T.)

The position of the legend required a mouse click within Excel, and this is recorded in the
VBA code:

21: ActiveChart.Legend.Select
22: Selection.Position = xlCorner

These two lines position the legend of the Chart object. The first line selects the legend,
which is an object, as if it were clicked. The second line assigns a value to its Position
property. Both lines can be combined as:

#DEFINE xlCorner 2 // from the Excel help file

oChart:GetProperty("Legend"):SetProperty("Position",xlCorner)

Finally, I wanted the chart to be printed along with data labels, and this is how it looks in
VBA code:

23: ActiveChart.ApplyDataLabels Type:=xlDataLabelsShowValue,
24: LegendKey:=False,HasLeaderLines:=True

Line #23 and #24 form a single method call with three parameters. It is translated to Xbase++
like this:

#DEFINE xlDataLabelsShowValue 2 // from the Excel help file

 oChart:callMethod("ApplyDataLabels", xlDataLabelsShowValue, .F., .T.)

The creation of the chart is now complete and we are getting to the definition of printer
options and print the chart:

25: ActiveWindow.SelectedSheets.PrintOut Copies:=1, Collate:=True

Beginning Our Project

Alaska Software ActiveX Tutorial 12

In Xbase++, this line of code sends the chart to the printer:

oChart:callMethod("PrintOut" , 1, .T.)

At this point we should find a page waiting for us on the printer and we have to do the clean-
up:

26: ActiveWorkbook.Close

This is a single line in VBA code, but it is not sufficient for Xbase++. Since we had to
initialize and prepare Excel, we also need to de-initialize and release it. The Excel macro
recorder cannot record the shut down of Excel. So, I searched the Excel help files created
from the type library for appropriate methods that would be suitable for a graceful shutdown
of Excel. This is what I came up with:

IF FILE(cExcelFile)
 FERASE(cExcelFile)
ENDIF

oBook:callMethod("SaveAs", cExcelFile)
oBook:callMethod("Close", "SaveChanges", .F.)

oExcel:GetProperty("Workbooks"):callMethod("Close")
oExcel:callMethod("Quit")
oExcel:Destroy()

This Xbase++ code creates an XLS file (remember, I opened a DBF file with Excel!), closes
the work sheet, shuts down Excel and releases the ActiveX component.

Runtime Errors

Runtime errors can occur for various reasons, such as calling an unknown method, omitting
parameters or passing invalid parameters. For example, this line results in an Xbase++
runtime error:

oBook := oExcel:Workbooks:Open()

Xbase++ displays a "parameter not optional" error, because no file name is passed to the
:open() method. Note, however, that it is not Xbase++ which produces the error message. The
XbpOcx() class retrieves error messages from the ActiveX component. Xbase++ doesn't even
know what kind of errors may occur with ActiveX components. So keep in mind that all
error messages which pop up in the context of ActiveX usage are implemented within the
ActiveX component. If you get an unclear message, please contact the producer of that
component.

 Summary

 Alaska Software ActiveX Tutorial 13

Summary

The ActiveX library from Alaska Software opens up a huge source of existing applications
whose functionality can be included into Xbase++ applications. I am not an expert in ActiveX
yet, but I see its potential after having completed a simple project using a common MS
Office application (Excel) as ActiveX component. The potential is tremendous! Of course,
using ActiveX components requires to learn the features and interfaces of an ActiveX
component. But that's no rocket science! If you know how to approach ActiveX, many tasks
can be solved easily without re-inventing the wheel.

My task was "Print a pie chart from data stored in a DBF file using MS Excel's features". I
hope to have demonstrated an easy way for you, how to discover ActiveX technology, how
to learn about ActiveX interfaces and how to incorporate ActiveX components into your own
Xbase++ applications. I bet that most of your customers use the MS Office software, so why
don't you take advantage of that software? All you need to do is:

* Get an OLE Viewer (e.g. OVI386.EXE)

* Get a program that translates a Type Library to Online Help (e.g.
comassistantsetup.exe)

* Take advantage of a Macro Recorder

* Translate VBA script code to Xbase++ code

Well, that's how I approached the ActiveX technology and how I learned what becomes
possible with Alaska Software's new ActiveX library. I have written this article to share my
experiences with you. Please keep in mind, though, that the current ActiveX library is a pre-
release version and is still under development. That's why I have used a programming syntax
in this article that is less comfortable than the one that is intended to work in future.

// guaranteed today and in future
 oExcel:SetProperty("Visible", .T.)

 // not guaranteed today, but works in future
 oExcel:Visible := .T.

Disregarding the programming syntax, I believe that the ActiveX library is a new milestone
in Alaska Software's technology. You can incorporate software into your applications that is
neither developed by your own nor by Alaska Software. For example, if your customer owns
an MS Office package, you can use "Bill's" software in your applications.

Summary

Alaska Software ActiveX Tutorial 14

If you want to read more about OCX, ActiveX and OLE automation, here is a link to an
article which gives you detailed information:

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dno2kta/html/offaut.asp

Best regards,

Frank++
Technical Support
Alaska Software

Applies to Xbase++ version 1.8, "Goodies"

Keywords Xbase++, ActiveX, Goodies

Related Links http://www.alaska-software.com

Copyright Copyright Alaska Software. All rights reserved.

Last time reviewed 2002-09-15

