Notes on RichText() Class for Xbase™
12/16/1999
Version 1.00

Author: Paul C. Laney
Internet: pclaney@compuserve.com

Original idea: Tom Marchione, Internet: tmarchione@compuserve.com

RIGHTS/RESTRICTIONS

l. All source code is Copyright © 1999 Paul C. Laney and Tom Marchione. All rights
reserved, except as specifically indicated in this document.

2. As a Xbase™ user, you are granted the right to modify, compile and link the code for end-
user application work, under the following conditions:

You do not redistribute the code without permission from the author.

All file headers are kept intact.

The source code and/or object modules are not offered for sale.

You do not port the code to another language, for other than personal use.

You do not offer a substantially competitive language product for sale or distribution.

You do not use the code in any kind of general purpose database management, reporting or

computer language application.

g. You do not use the code in any type of auditing or emergency response application (NOTE:
This restriction is based on the fact that the author has business interests in these markets.
If you have an application in one of these markets, but would still like to use the RichText()
class, please contact the author. Depending on the application and the market, it may be
possible to make alternate arrangements).

h. You accept complete responsibility for the use of the code and any effects that it might have.

L. You understand that future versions of the code may not be offered for free (although you

may continue to use this version for as long as you like).

hoe a0 o

CONTENTS OF VERSION 1.00
System Files:

README.RTF This file

README.TXT Plain text version of this file
ALASKRTF.PRG Source code for RichText() class
RICHTEXT.CH Header file for RichText() class

ADDON.PRG Some extra functions which are used by the RichText()-class
Sample Files:
DEMRTF.PRG Sample application to add to the TopDown-Demo

FLOWERS.DBF Database file used by sample application

FLOWERS.DBT Memo file associated with FLOWERS.DBF
VEGGIES.DBF Database file used by sample application
RTFDEMO.RTF Output file from sample application
MERGEIN.RTF Input file for sample application mailmerge
MERGEOUT.RTF Output file from sample application mailmerge

GETTING STARTED

If you're really curious about what this thing does, add the files to the Tddemo and compile and run
the application Then open the output file (RTFDEMO.RTF and MERGEOUT.RTF) in an RTF-
capable word processor. If you don't have time to compile and run the app, I've included unedited
copies of the output files in the package.

Which files you have to add to the TopDown-Demo. Those files are:

demRtf.prg
alaskrtf.prg
addon.prg
richtext.ch

and to the DATA subdirectory:

flowers.dbf
flowers.dbt
veggies.dbf
rtfdemo.rtf
mergein.rtf
mergeout.rtf

Furthermore add the following lines to the bottom of your Project.xpj:

// Richtext
demRtf.prg
alaskrtf.prg
addon.prg

Last, but not least, add the following lines to demoMenu.prg before the HELP section:
oSubMenu := XbpMenu():New(oMenuBar):Create()
oSubMenu:title := "~Richtext"

oSubmenu:AddItem({ "~RichText", {|| demRtf() } })
oMenuBar:addltem({ oSubMenu, NIL })

That’s all

NOTE: As indicated in the RTFDEMO.RTF file, this file includes support for an automated table of
contents. However, to see it, you need to insert it. Consult your word processor documentation
for instructions, if you have never generated an automated table of contents.

REQUIREMENTS

RichText() was written for use in Xbase™ applications, in combination with the TopDown library.
Although it can also run without the TopDown-library (see WITHOUT TopDown). To use the
class, you need to have a functional Xbase™ installation. Thanks to the Xbase™ pre-processor, you
don't need to understand object-oriented programming to use the code. However, if you decide to
fiddle with the source code of the underlying class, you will need to have a basic understanding of
object-orientation.

NOTE: By changing one or two user interface functions (TdMsg() and TdYesNo()), it should be
possible to use the class in pure DOS-based Xbase™ applications. You have to change it into:

FUNCTION tdYesNo(cTxt)
RETURN (Alert(cTxt, { "Yes", "No" })==1)

FUNCTION TdMsg(cTxt)
Alert(cTxt)
RETURN (NIL)

WITHOUT TopDown

The RichText-class can perfectly run without the TopDown-library. You only need to rewrite the
functions tdYesNo() and tdMsg(). The DOS-based functions are shown above.

OVERVIEW

RichText() is a class written for Xbase™, designed to export formatted data directly to Rich Text
Format (RTF) files from within an application. RichText() allows you to leverage the power of
common word processors as report formatting engines.

Version 1.0 of the class includes: (1) the source code, build and README files, (2) Xbase"™
directives for xBASE-style command implementation, and (3) a small sample prg. Version 1.0 of
the class is being offered at no charge. This version implements a small subset of the RTF
specification, as taken from Microsoft documentation. ~ RTF is a very detailed specification, and
the intent of Version 1.0 is to provide easy access to the most basic and useful features of RTF,
including attributes such as page setup, fonts, paragraph formatting, character formatting, headers
& footers, tables, etc. To date, most of my testing has been done with Microsoft Word.

WHAT IS RTF?

RTF is an open Microsoft file specification for transferring formatted text between applications.

As such, it it's a great way to move formatted database information into word processors, in a true
word processing format.

HOW CAN RTF HELP ME?
RTF is a great solution in at least three situations:

3. When there is a need to manipulate output in word processors, or integrate database
information into other formatted documents.

4. When there is a requirement to build a custom report that must meet strict, detailed
formatting guidelines.

5. When there is a need to publish a "turnkey" report that might include different formats, page
orientations, fonts, etc. in a single document (my personal favorite...).

The RichText() class is a simple, low-overhead solution for any of these situations. You can
produce one-of-a kind, free-form word-processing documents (for a good example, see the sample
provided with the class). The class is inherently oriented toward paragraphs, bullets, hanging
indents, page orientation, etc., not standard database reporting fare such as column headers,
subtotals, etc. (although you can easily dump data into nicely-formatted tables). Moreover, the
output files are true word-processing files, without extraneous spaces, carriage returns, and other
"lint" that makes life difficult in a word processing context. If you have ever tried to pass off a flat
text output file (or even some RTF files produced by third party report generators) as "word
processor compatible", you'll know what I mean. Compatible? Yes. Usable? Hardly.

ESSENTIAL FEATURES OF RTF

For detailed information about RTF, consult the Microsoft specification, which is available on the
Internet. It is also helpful to analyze the contents of RTF files generated from word processors.
Although the xBASE layer of RichText() makes many of the technical details transparent, it will be
helpful to clarify a few issues here.

Like many "open" file formats, RTF files are text files. RTF uses 7-bit ASCII characters (0-127) to
represent formatting codes and data (higher-order ASCII characters must be represented in
hexadecimal, which is handled transparently by RichText()). The two essential formatting
characters in RTF are "\" (backslash) and "{}" (curly braces). All formatting commands are
preceded by a backslash, and all "groups" are enclosed in curly braces. Groups delineate portions
of' a document to which combinations of formatting information may apply. Groups can be nested,
the RTF file itself is considered a group, so all RTF files have at least one pair of curly braces,
which encloses the entire contents of the file.

Al RTF files have an RTF header (which is to be distinguished from the headers and footers that
you may place in an RTF document). The RTF header appears at the top of the file and contains
information about fonts, colors, styles, etc. For example, the font table within the RTF header
contains a list of all of the fonts that are used in the document. To switch fonts later the document,
an index into this font table must be used. A similar system is used for colors. The RichText()

class creates a basic RTF header for you.

An application that reads RTF files is called an "RTF viewer", which, for our purposes, is usually a
word processor. For the most part, data items that you write to an RTF file appear within RTF
viewers in the sequence that you write them. However certain RTF commands implement
alternate "destinations", such as headers and footers. RTF also supports the "sections" that are
found in Microsoft Word, with section-specific layouts and formats.

FINAL NOTES

As I use the class more and more, it has become obvious to me that the class is more useful than I
had originally imagined. As a result, I have spent a lot more time developing it than I had
originally imagined... <g>. In deference to the costs of adding new features, and improving the
usability of existing ones, I probably will not be able to distribute future versions of the class for
free. However, the cost should be insignificant relative to the benefits that you can offer to your
end users, and your improved ability to give them exactly what they want for output.

Some additional features that are either planned for the future, or that are partially implemented
already, include.

Improved Control Over Table Output
Improved Control Over Paragraph Formatting
Improved Application-Level Components
Colors

Lines and graphic objects

Pictures

Styles

Language Support

Footnotes/Endnotes

Positioned Objects and Frames

Index Entries

Bookmarks

Anything else in the RTF spec that seems useful...

If all goes well, Version 2.0 will effectively become a complete database publishing tool, and we
will all become custom documentation gurus to our end users ...<g>. In addition, I may develop a
companion class for use with Delphi (so far, in my limited use of Delphi, I have not come across a
class that generates comprehensive rich text output, although Delphi does provide an RTF-aware
control).

I greatly appreciate the feedback that I have received to date. If you have any ideas or suggestions,
I'd love to hear them.

Have fun!

Paul C. Laney
VERSION 1.00 FEATURE ADDITIONS
1. Page Number Support

You can add a simple page number via the INSERT PAGENUMBER command.
Typically, this is most useful when defined within a header or footer.

6. File Checking

When defining the RTF, the WARNOVERWRITE clause will cause the class to generate a
warning message if an existing file will be over-written. In addition, you can use the
GETFILENAME and FORCEPATH clauses to allow the user to specify a file name, as
well as to force the file to be written to a specific path.

7. Table of Contents Support

You can generate an automated table of contents. You can mark any paragraph for
inclusion in a table of contents at a particular level by specifying the TOCLEVEL clause.
Refer to the sample application for a simple example.

VERSION 0.91 FEATURE ADDITIONS
Merge Away!

I added a crude subsystem and demonstration of how one could exploit RTF files for defining
report formats and merging database information into them. With this system, you can embed
Xbase™ expressions throughout the "primary" merge file (which can be any old RTF), and then run
a relatively tiny Xbase™ program to merge your database info into it. It's very much like a
standard "mail-merge" that you might do from a word processor, but with the sophistication and
flexibility of Xbase™.

For a simple, silly example, see files MERGEIN.RTF and MERGEOUT.RTF. MERGEIN.RTF is
a "primary" merge file, and MERGEOUT.RTF is the actual file that is produced by the example
program. Notice that MERGEIN.RTF contains a number of delimited Xbase™ expressions. Most
of these are intended to return text, but I also threw in a couple examples to demonstrate how you
might control the record pointer from the merge file itself. In other words, any valid, macro-
compilable Xbase™ expression is fair game. Of course, any functions that you call in the primary
merge file must be linked into your program (if this doesn't ring a bell, see the Xbase™
documentation regarding "REQUEST").

The wonderful advantage of this approach is that you can effectively use a word processor (!) to
design a report format (for certain types of applications). If you need to tweak the look of the
output, or even change it drastically, you just load up MS-Word and make the change to the primary

file -- no clumsy report writer, and no code changes. And, of course, you get all of the power of a
true, word-processor based report.

The downside of the system, as it currently exists, is that it is very slow. My algorithm is not
particularly efficient, and there are inherent speed limitations. Not only does it have to macro
compile every Xbase™" expression that it encounters, it does it repeatedly for each record. Arrrgh!
In addition, I have not yet included an error handler to trap bad Xbase™ expressions, though this
would be simple to do.

The system seems to work OK with the example, but be warned that I have not tested it with
anything else yet. [imagine that it would be easy to make it self-destruct in its current
incarnation...

