
Advanced search

 IBM home | Products & services | Support & downloads | My account

IBM developerWorks : XML zone : XML zone articles

Putting XSL transformations to work

Contents:
The solution: XSL
transformations

XSL application scenarios

Limits of mechanical
translation

Conclusions

Resources

About the author

Rate this article

Related content:
What kind of language is
XSLT?

Transforming XML
documents

Also in the XML zone:
Tutorials

Tools and products

Code and components

Articles

Mark Colan (mcolan@us.ibm.com)
e-business evangelist, IBM Corporation
October 2001

This paper introduces the Extensible Stylesheet Language
(XSL) and highlights several real-world business scenarios that
benefit from the use of XSL transformations. XML data comes
in many forms, so one of the most important technologies
needed for XML applications is the ability to translate the data
from one form to another and to convert it into document types
-- such as HTML and PDF -- that can be rendered visible to end
users. XSL defines a powerful mechanism for doing just that.

The Extensible Markup Language (XML) standard is now almost four years
old, and a lot of progress has been made since the W3C adopted it as an
officially recommended specification. XML.ORG, a registry and repository
for XML vocabularies overseen by the Organization for the Advancement of
Structured Information Standards (OASIS), now has well over a hundred
standard vocabularies for industry-specific usage. With the Electronic
Business XML (ebXML) initiative, standards common to all industries --
such as standards for purchase orders, and the like -- will begin to emerge.
(See Resources for more information on the XML specification, XML.ORG,
OASIS, and ebXML.) Still, compared to the enormous potential of using
XML for Web-based applications, these are still the early days.

Some might fear that a large number of vocabularies represent a
fragmentation in the standard. On the contrary, XML is intended as a
metalanguage for establishing these vocabularies.

XML differs from HTML in that it describes the data but not its presentation. While XML can easily be
understood by programmers and programs, there is the need to display the data on Web pages and other
page-oriented documents as well. To maximize the flexibility of using this data, the presentation should be
specified outside of the XML document, using style sheets, for example, to define its appearance.

The unique business structures that give each company its own competitive edge can be represented in
private vocabularies. Companies can organize their departments separately, treating them as individual
enterprises with vocabularies that reflect their way of doing business. But ultimately, information in the
private definitions must be converted to a public standard for exchange with other organizations.

It is also probable that new versions of vocabularies, even with completely different structures, will
replace the old as companies learn better ways to do business.

All of this points to a need for automatic conversion from one form of XML to another, from XML to
HTML, and from XML to completely different presentation formats, such as PDF. What is needed, then, is
a general way to accomplish mechanical translations from XML to all of these different forms.

The solution: XSL transformations
The Extensible Stylesheet Language (XSL) specification describes powerful tools to accomplish the
required transformation of XML data (see Figure 1). XSL consists of the XSL Transformations (XSLT)
language for transformation, and Formatting Objects (FO), a vocabulary for describing the layout of
documents. XSLT uses the XML Path Language (XPath), a separate specification that describes a means

developerWorks: XML zone : Putting XSL transformations to work

http://www-106.ibm.com/developerworks/library/x-xsltwork/index.html (1 of 9) [10/11/2001 8:48:13 PM]

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-109.ibm.com/redirectdWPS.htm
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/products/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/support/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/account/&origin=dwheader
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/xml/
http://www-105.ibm.com/developerworks/papers.nsf/dw/xml-papers-bynewest?OpenDocument&Count=500
http://www-106.ibm.com/developerworks/
javascript:void forumWindow()
javascript:void newWindow()
http://www-106.ibm.com/developerworks/xml/library/x-xslt/index.html
http://www-106.ibm.com/developerworks/xml/library/x-xslt/index.html
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/40B28792D6FC7F908525683B0052F7F2?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/40B28792D6FC7F908525683B0052F7F2?OpenDocument
http://www-106.ibm.com/developerworks/xml/
http://www-105.ibm.com/developerworks/education.nsf/dw/xml-onlinecourse-bynewest?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/tools.nsf/dw/xml-dtds-bysite?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/tools.nsf/dw/xml-code-bytitle?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/papers.nsf/dw/xml-papers-bytopic?OpenDocument&Count=500
mailto:mcolan@us.ibm.com

of addressing XML documents and defining simple queries. The XSLT 1.0 and XPath 1.0 specifications
are complete, having become W3C recommendations on November 16, 1999. The XSL 1.0 specification
(which also describes FO) is expected to reach W3C recommended status soon. (See Resources for more
information on the latest versions of XSLT, XPath, and XSL from the W3C.)

Figure 1. The Extensible Stylesheet Language and its component technologies

There are now several implementations of processors for XSLT. In particular, the Xalan project from
Apache Software Foundation (see Resources) is a robust and highly compliant XSLT and XPath
implementation. This tool was donated to Apache by IBM; it was developed within Lotus software by
Scott Boag and his team. While Boag's team continues to develop Xalan, being part of Apache means it
will enjoy contributions from individuals and other companies in the industry. With the XSLT
specification in place and with the release of Xalan 1.0 in March 2000, XSLT is now stable and ready for
real-world use. Xalan continues to be developed; the current release on xml.apache.org is version 2.1.

The XSLT language offers a powerful means of transforming XML documents into other forms,
producing XML, HTML, and other formats. It is capable of sorting, selecting, numbering, and has many
other features for transforming XML. It operates by reading a style sheet, which consists of one or more
templates, then matching the templates as it visits the nodes of the XML document. The templates can be
based on names and patterns. Templates include literal text that is used in the resulting transform
interspersed with directives to include specific data. This technique thus defines transformations declared
"by example," a simple programming model. Figure 2 illustrates a simple XSLT transformation that pulls
a literal string from an XML document and places it, with formatting, into an HTML document.

Figure 2. XSLT: A simple example

XSLT is not a general-purpose programming language like Java and C++. For example, symbolic
"variables" cannot be reassigned a new value, so they are really constant definitions. This limitation means
that counters and accumulators are not available. Java-like "for" or "while" statements are also not

developerWorks: XML zone : Putting XSL transformations to work

http://www-106.ibm.com/developerworks/library/x-xsltwork/index.html (2 of 9) [10/11/2001 8:48:13 PM]

available; instead, iteration can be accomplished using recursion.

The limitations in the language definition are intended to support powerful optimization techniques. The
XSLT language has an extension function that allows a style sheet to call out to modules developed in
Java or C++ (depending on the implementation of the XSLT engine). This allows the use of conventional
programming languages for problems that are more easily solved that way.

The most important feature of XSL is the ability to develop transformations quickly, with few lines of
code. A transformation that could be developed and tested in an hour might take days to write using Java,
even when an off-the-shelf XML parser such as Xerces (again, contributed to Apache by IBM) is used.
One could write transformations in Perl, using XML4P to add XML parsing and DOM access support, but
for many transformations it would be faster to use XSL. (See Resources for more information on Xerces
and XML4P.)

XSL application scenarios
XSL is a new technology and the software industry has only begun to come up with uses for it. In the
following sections, you will see some of the ways it is used in these days of its infancy. These scenarios
are not intended as design patterns or definitive approaches, but rather as examples of the many ways in
which XSL may be employed. The purpose in presenting these approaches is to stimulate your thinking for
solving problems by using XSL in ways not yet invented.

Rendering XML as HTML
XSL was originally developed with conversion of XML to HTML in mind, hence "Stylesheet" is its
middle name. In this role, XSL can be run on the client, using a style sheet either local to the client's
system or stored as a resource on a server. Using XSL on the client allows processing to be distributed to
each client's computer.

Most companies find it more convenient to offload processing from client workstations to servers. This
simplifies the task of upgrading the power of an entire system; if more power is needed, the server can be
upgraded or supplemented with other servers. An important advantage to the use of servers is that
applications can be upgraded in only one place -- on the server -- rather than requiring a redeployment of
application software on many client machines. A server-based transformation architecture is shown in
Figure 3.

Figure 3. Server-side rendering of HTML for client browser use

XSL works well on a server. A common way to provide access is to use servlets that respond to a client's
request by starting XSL and returning the resulting stream.

One can even imagine an architecture where XSL is used both on a server and on the client. For example,
the server might select records that match a query, and "prune" parts of the tree that contain information
not needed by the client to reduce transmission time. The client could then run XSL locally to format the
XML data according to the appearance required for viewing.

Recent studies have concluded that browsing will become a small fraction of the total Internet traffic in the
coming years. They suggest that even though there are uncountable Web sites today, a larger use of the

developerWorks: XML zone : Putting XSL transformations to work

http://www-106.ibm.com/developerworks/library/x-xsltwork/index.html (3 of 9) [10/11/2001 8:48:13 PM]

Internet (some say 10 times as much) will be in the exchange of information in XML from one server to
another, in scenarios that do not include a browser. Thus, business-to-business frequently involves
vocabulary translation -- translating from one XML application to another -- rather than transformation of
XML to HTML.

Transcoding
Translation on demand, whether to HTML, XML, or some other form, is recognized as a common use case
on an application server. IBM's recently announced WebSphere Transcoding Publisher (see Resources)
automatically provides XSL translation on demand. It is capable of rendering XML to several different
forms. As such, it is the logical extension of the server XSL transformation model discussed in the
previous section.

Transcoding can be used to create HTML renderings or PDF (via XSL FO and an FO processor such as
Apache FOP, see Resources), thus supporting conventional desktop and laptop clients.

Transcoding can also reformat the data to Wireless Markup Language (WML, see Resources) and other
forms suitable for handheld devices. Doing so often requires pruning the data to a simpler form, as well as
adapting it to the device requirements for handhelds. In the Copernicus project, IBM used transcoding
technology to build a system with SABRE's travel management system coupled to Nokia intelligent
telephones (see Resources). Information from SABRE is transcoded to an appropriate form for the device,
and then sent to the device. At that point the mobile user can make changes to his or her itinerary as
required, using HTTPS to talk to specialized business objects on the server. The flexibility of the
transcoding technology expands the system to support many other types of handheld devices, even when
they involve vocabularies other than WML.

Finally, aside from converting XML to devices for direct client use, the Transcoding Publisher can be used
for automated vocabulary translation, such as may be required for business-to-business transactions.

The major advantage of the transcoding server model is that it can start with support for a few devices,
then add style sheets to support others as the need arises. In addition to applications listed above, it could
be used to support traditional print media -- newspapers, magazines, books -- as well as Web publishing,
or even the new e-books offline readers. It could support a fax-on-demand system. Cars will eventually be
able to connect to the network, and transcoding can be set up to send information in the form they require.
As set-top boxes integrate home entertainment systems with home computers, transcoding will also play a
role. Figure 4 illustrates a number of possible uses for a transcoding server.

Figure 4. XSL used in the Transcoding Publisher Server

developerWorks: XML zone : Putting XSL transformations to work

http://www-106.ibm.com/developerworks/library/x-xsltwork/index.html (4 of 9) [10/11/2001 8:48:13 PM]

IBM's Transcoding Publisher runs the XSL processor from a servlet that handles requests. It also supports
caching of transformed data, so that multiple requests for the same transformation do not require running
XSL for each request.

Enterprise application integration
XML is being embraced by every major software vendor. The ability to both emit XML and incorporate
data expressed in XML is being added to most software products for which it makes sense.

Because XML is a common and portable data format that is, or will be, available in these products, there is
a tremendous opportunity to use XML data to integrate software into a complete system. However,
because the XML data may be in a variety of vocabularies, a company may need a quick and mechanical
means of converting it from the form received into the one the company needs.

It is also possible to imagine that a company's internal structure might evolve into a series of entities with
well-defined interfaces, and XML vocabularies that reflect their function. In this sense, the company's
structure begins to resemble the structure of business-to-business relationships between companies, but on
a smaller scale.

In Figure 5, XML is the exchange medium between departments of a company, and XSL is used to
transform data from the private form favored by one department into a form needed for processing in
another.

Figure 5. Intra-enterprise application integration

The same model can be applied to the exchange of information between companies.

Business integration
There is a new trend in developing companies such that one company specializes in only one aspect of a
complete business cycle. Such companies optimize their processes to be cost effective. Since on their own
they may not be able to provide certain products or services, they may seek complementary products or
services from other small companies, together offering the complete product or service required by their
customers. This arrangement might be a one-time partnership, or it may exist for a longer period. For all
intents and purposes, a "soft merger" of this type begins to look like a virtual company. Indeed, the virtual
company may have a name different from the partners involved in creating the service or product.

In the new economy, this kind of business aggregation requires the ability to respond quickly to new
opportunities. When companies expose their services and products as processes represented in XML, it is
possible to use XSL with not much programming to assemble an operating e-business from the partners'
component systems, as shown in Figure 6. Such companies can be described as "integration-ready."

Prior to the standardization of XML and XSL, building virtual companies from partners -- configuring

developerWorks: XML zone : Putting XSL transformations to work

http://www-106.ibm.com/developerworks/library/x-xsltwork/index.html (5 of 9) [10/11/2001 8:48:13 PM]

middleware to work together and writing the required business logic -- could take days, weeks, or months.
While XML and XSL do not eliminate these requirements, they do provide a quickly implemented and
efficient means of aggregating the partners' business data.

Figure 6. Creation of virtual companies by aggregating data and processes

In most cases there is no requirement that a company be involved in only one such partnership. One could
easily imagine a company that specializes in, say, warehousing and fulfillment, providing the same service
to a large number of partnerships.

Portals
Portals such as My Yahoo! are familiar to many Web users. They allow the client to design a custom home
page with live, updated information according to the user's wishes. My Yahoo! gathers data from many
sources to let users request an up-to-date weather forecast for their area, current stock prices, news
headlines, and the like. This information is combined into a single Web page that has different parts of the
screen allocated to presenting each part of the customized report.

This model can also benefit a business worker. Suppose a clerk is employed to manage the supply of a
particular line of parts needed for his company's manufacturing process. A portal could be designed to
display prices or availability for certain critical components from various vendors. Information from the
company's ERP system, such as inventory and forecasted demand, can be incorporated on the same page.
The similarity with the My Yahoo!-type portal is the ability to gather data from a variety of resources,
select according to a user's profile, and format the data for a particular screen.

When the sources of such data can provide it in XML, XSL can be used to automate the transformation
required for portals. One can imagine sending HTML streams to subobjects on the browser as a means of
managing regions for display. Figure 7 shows an example of pulling data from multiple sources and
formatting it into a single portal screen.

Figure 7. A portal used for aggregating information from diverse sources

developerWorks: XML zone : Putting XSL transformations to work

http://www-106.ibm.com/developerworks/library/x-xsltwork/index.html (6 of 9) [10/11/2001 8:48:13 PM]

Code generation
In all of the examples above, XML is treated as data to be converted from one form to another, either for
consumption by a client or by another server. Yet another way of using XML is to generate procedural
code based on specifications described by XML data.

For example, in configuring a complex product such as a personal computer, the information about
available options might be exported into XML. XSL could convert it into HTML for forms filled out by
the end user. If the user chooses a SCSI adapter, a refresh of the form from the same XML might include
SCSI device options that were not available until the adapter was selected. By writing a new style sheet,
the same XML source document could generate forms definition in other computer languages -- Java code
that instantiates and initializes controls, Windows resource definitions, even forms for older 3270
terminal-based systems.

All of this is possible because XML describes only the content; the presentation is defined using XSL style
sheets. By designing various style sheets for various form systems, the same XML can be used for
different kinds of applications.

The sections above list just a few application categories where XSL can be gainfully employed. Expect
many other uses to emerge as the technology is embraced by creative developers around the world.

Limits of mechanical translation
XSL can solve many problems by translating XML mechanically, but a few caveats apply. It is just one
tool, and it will not address every need for changing XML documents.

As stated above, the language itself is not intended for general-purpose programming. Unlike Java or C++,
for example, variables can be set only once; they are really more like symbolic constants in that respect.
They cannot be incremented, so loop counting is not possible. If there is a need to parse a "lastname,
firstname" string into separate components, it can be done in XSL, but not easily. Such situations may call
for the use of extensions plugged into XSL. With the Java version of Xalan, Java classes can be used to
extend the power of an XSL processor.

developerWorks: XML zone : Putting XSL transformations to work

http://www-106.ibm.com/developerworks/library/x-xsltwork/index.html (7 of 9) [10/11/2001 8:48:13 PM]

Mechanical translation must be done with care. When converting from one vocabulary to another, it is
important to consider the meaning of the data between tags, not just the tag name. Even with a common
tag name like <name> (customer name? company name?), it is hard to be sure what the name means.

In addition to the meaning of the data, the format of the data must be understood. When combining listings
from two catalogs of electronic parts, for example, the specifications of particular components must be
expressed in a similar standard. The working voltage of a capacitor, say, could be expressed as a fixed
value, a range of values, or a fixed value with a percent tolerance. The application that eventually
consumes such data may understand only one form.

Both of these problems are best addressed by having very well-defined vocabularies that are agreed upon
between companies. XML.ORG oversees the definition and development of such vocabularies within an
industry, and it is important that the specifications reflect the input of all companies that will be using the
vocabulary for e-business.

Conclusions
XSL is a powerful transformation facility that provides mechanical translation of XML documents from
one form to another. It can convert to HTML, to another XML vocabulary, or to text that is not XML at
all. Many transformations can be designed using only an XSL processor, and it is possible to add
extensions to the processor to support particular requirements that are not easy using only XSL.

You have seen several scenarios where XSL plays a role. These initial ideas about using XSL represent
solutions to certain problems seen today, but XSL can be used in many ways that have yet to be invented.

Finally, XSL by itself cannot address all incompatibilities between XML documents. When vocabularies
are not well defined, either by the exact meaning of a tag or the exact format of the data associated with it,
mechanical translation will not solve the problem. This underscores the importance of developing
well-defined standard vocabularies for e-business usage under the auspices of a neutral standards
organization such as XML.ORG.

Resources

Participate in the discussion forum on this article by clicking Discuss at the top or bottom of the
article.

●

The Extensible Markup Language (XML) is an officially recommended standard of the W3C. For
the most up-to-date information on XML, go to the W3C's XML page.

●

To stay on top of current XML developments, visit XML.ORG, The XML Industry Portal.●

OASIS, the Organization for the Advancement of Structured Information Standards, is a consortium
that creates interoperable specifications based on XML.

●

The Electronic Business XML Initiative home page is the source for ebXML specifications,
technical reports, reference materials, and news.

●

Review the specification documents for XSL Transformations (XSLT), Version 1.0, XML Path
Language (XPath), Version 1.0, and Extensible Stylesheet Language (XSL), Version 1.0, from the
W3C.

●

Get more information on Xalan, a robust XSLT and XPath implementation from the Apache
Software Foundation. Apache also provides Xerces, an XML parser, XML4P, a DOM parser for
Perl, and FOP, an FO-based print formatter.

●

The IBM WebSphere Transcoding Publisher provides automatic XSL translation and is capable of
rendering XML into several different forms.

●

For a discussion of Wireless Markup Language (WML) and an extensive list of resources, read
"WAP Wireless Markup Language Specification (WML)" in The XML Cover Pages.

●

Read a news release about the SABRE/Nokia project.●

What kind of language is XSLT? by Michael Kay puts XSLT in perspective.●

Transforming XML documents by Doug Tidwell, is a three-part tutorial on how to transform XML
documents into various formats, including HTML, Scalable Vector Graphics (SVG), and PDF.

●

developerWorks: XML zone : Putting XSL transformations to work

http://www-106.ibm.com/developerworks/library/x-xsltwork/index.html (8 of 9) [10/11/2001 8:48:13 PM]

javascript:void forumWindow()
http://www.w3.org/XML/
http://www.xml.org/
http://www.oasis-open.org/
http://www.ebxml.org/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xsl/
http://xml.apache.org/xalan-j/index.html
http://xml.apache.org/xerces-j/index.html
http://xml.apache.org/xerces-p/index.html
http://xml.apache.org/fop/index.html
http://www-4.ibm.com/software/webservers/transcoding/
http://www.oasis-open.org/cover/wap-wml.html
http://www.ibm.com/news/1999/03/18.phtml
http://www-106.ibm.com/developerworks/xml/library/x-xslt/index.html
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/40B28792D6FC7F908525683B0052F7F2?OpenDocument

About the author
Mark Colan is IBM's lead e-business technology evangelist for IBM Corporation. He gives
technical, keynote, and customer presentations on Web Services and XML technologies and
strategy, and has spoken at most XML conferences in 2000 and 2001, as well as Java One '98
and '99. PDFs of Mark's current presentations can be downloaded from
http://ibm.com/developerworks/speakers/colan.

Before joining IBM, Mark worked at Lotus Development Corporation for 12 years, and helped to develop
several commercial products. With over 20 years experience in designing and implementing commercial
software products and technologies, Mark is well versed in component software strategies, operating
systems, and software tools. He served as the Lead Architect for the InfoBus Technology, a Java Standard
Extension developed at Lotus. You can contact Mark Colan at mcolan@us.ibm.com.

What do you think of this article?

Killer! (5) Good stuff (4) So-so; not bad (3) Needs work (2) Lame! (1)

Send us your comments or click Discuss to share your comments with others.

 About IBM | Privacy | Legal | Contact

developerWorks: XML zone : Putting XSL transformations to work

http://www-106.ibm.com/developerworks/library/x-xsltwork/index.html (9 of 9) [10/11/2001 8:48:13 PM]

http://ibm.com/developerworks/speakers/colan
mailto:mcolan@us.ibm.com
javascript:void forumWindow()
javascript:void newWindow()
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/ibm/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/privacy/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/legal/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/contact/?origin=dwheader

	ibm.com
	developerWorks: XML zone : Putting XSL transformations to work

	IGNAONGMLOHDFONEABIHLGKFFCDHILNF:
	form1:
	x:
	f1: [dW]
	f2:

	f3:

	form2:
	x:
	f1: Putting XSL transformations to work
	f2: XML
	f3: http://www-106.ibm.com/developerworks/thankyou/feedback-thankyou.html
	f4: Off
	f5:

	f6:

