
Advanced search

 IBM home | Products & services | Support & downloads | My account

IBM developerWorks : Web services : Web services articles

Web service invocation sans SOAP, Part 2 : The architecture of Web
Service Invocation Framework

Contents:
WSIF's architecture

Modifying the binding
selection algorithm

Updating/adding a binding
implementation at runtime

Stub architecture

Conclusion

Resources

About the authors

Rate this article

Related content:
Web Services Description
Language

Web service invocation sans
SOAP, Part 1

Also in the Web services
zone:

Tutorials

Tools and products

Articles

WSIF's architecture

Nirmal K. Mukhi (nmukhi@us.ibm.com), Research associate, IBM Research
Aleksandor Slominski (aslom@indiana.edu), Research assistant, IU Extreme! Lab,
Indiana University

September 2001

WSIF was introduced in a previous article which explained how it provides
a binding-independent API for simplified Web service invocation. This
article will look at some advanced WSIF features. This will require an
overview of its architecture, following which you will see how to exploit
multiple service bindings, and how to update or add new binding
implementations for Web services.

The Web Services Invocation Framework (WSIF) is a toolkit that provides a simple API
for invoking Web services, no matter how or where the services are provided. In a
previous article (see Resources), we discussed the need for WSIF, the philosophy behind
its design, and described some of the main features. We compared the WSIF's
WSDL-driven API to conventional APIs for using Web services and described the port
type compiler as well as stubless invocation.

WSIF has even more to offer. Its architecture allows invocation ports to be discovered
via port factories. We can implement invocation ports that make service invocations
using customised bindings and plug them into the framework. We can also design our
own port factories so that invocation ports are looked up or created using a customised
algorithm. Finally, WSIF allows us to use any native type system for data used within
messages. In this article, we will describe the architectural aspects of WSIF that enable
these features, and discuss specific ways of exploiting this flexible architecture.

WSIF's architecture
WSIF invokes service operations through the following steps:

It loads a WSDL document.1.

It creates a port factory for this service.2.

The port factory is used to retrieve a service port.3.

It creates messages, if necessary, by using message parts typed according to some native type system.4.

It makes the invocation by supplying the port with the name of the operation to be invoked, along with an input
and/or output message as is required by the operation.

5.

The WSIFPort
The key abstraction here is the run-time representation of a WSDL port, called the WSIFPort. This is responsible for
doing the actual invocation, based on a particular binding. So we have, for example, a WSIFSOAPPort that is capable
of using the SOAP binding specified in the WSDL for this service in order to invoke abstract service operations.
Flexibility in the architecture is centered around the WSIFPort interface shown in Listing 1.

Listing 1: The WSIFPort interface

developerWorks: Web services : Web service invocation sans SOAP, Part 2: The architecture of Web Service Invocation Framework

http://www-106.ibm.com/developerworks/library/ws-wsif2/ (1 of 8) [10/11/2001 8:52:29 PM]

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-109.ibm.com/redirectdWPS.htm
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/products/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/support/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/account/&origin=dwheader
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/webservices/
http://www-105.ibm.com/developerworks/papers.nsf/dw/webservices-papers-bynewest?OpenDocument&Count=500
http://www-106.ibm.com/developerworks/
javascript:void forumWindow()
javascript:void newWindow()
http://www-106.ibm.com/developerworks/webservices/library/ws-peer4/
http://www-106.ibm.com/developerworks/webservices/library/ws-peer4/
http://www-106.ibm.com/developerworks/library/ws-wsif.html
http://www-106.ibm.com/developerworks/library/ws-wsif.html
http://www-106.ibm.com/developerworks/webservices/
http://www-106.ibm.com/developerworks/webservices/
http://www-105.ibm.com/developerworks/education.nsf/dw/webservices-onlinecourse-bynewest?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/tools.nsf/dw/webservices-all-byname?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/papers.nsf/dw/webservices-papers-bynewest?OpenDocument&Count=10
mailto:nmukhi@us.ibm.com
mailto:aslom@indiana.edu

public interface WSIFPort {
 public boolean executeRequestResponseOperation (String op,
 WSIFMessage input,
 WSIFMessage output,
 WSIFMessage fault)
 throws WSIFException;
 // some other methods not specified here
}

An implementation of this interface would have to know how to invoke the operation using the specified abstract input
and output message. A SOAP implementation for the WSIFPort, if based on the Apache SOAP API, might create a
Call object based on the SOAP binding infomation from the WSDL document for this service, and then create the
necessary parameters for invocation using the abstract input message. The SOAP response could be used to populate
the abstract output message which can then be examined by the client.

The WSIFPortFactory
The WSIFPortFactory is responsible for retrieving a WSIFPort to be used for a particular invocation. It has the
interface described in Listing 2.

Listing 2: The WSIFPortFactory interface

public interface WSIFPortFactory {
 public WSIFPort getPort () throws WSIFException;
 public WSIFPort getPort (String portName) throws WSIFException;
}

Notice that the version of getPort with no parameters allows an implementation of this interface to have some
customised algorithm for choosing a WSIFPort for an invocation. The WSIF distribution has two implementations of
this interface: a static port factory and a dynamic port factory. The static port factory stores a list of WSIFPort
objects and returns one of them in a pseudo random manner when getPort() is issued. The dynamic port factory
stores a list of dynamic providers. Each of these providers is capable of creating a WSIFPort at runtime, based on the
WSDL information for the service. When getPort() is invoked on the dynamic port factory, the factory picks a
dynamic provider in a pseudo random manner that allows it to create a WSIFPort which is then returned. An overall
view of the port factory architecture is illustrated in Figure 1.

Figure 1: WSIF port / port factory architecture

The WSIF part
So far we have discussed how WSIF ports are decoupled from specific implementations and how port factories are
used to discover or create ports. Ports allow us to make invocations, but an essential step before carrying out the
invocation itself is creation of the messages required by the operation. Messages in WSDL are composed of named
parts tied to some type system. Typically, WSDL parts are typed using XML schema as the type system. This is
language-independent and quite powerful. Invocation of such services from a client is done by a mapping this schema
type to a more convenient type system and allowing translation between objects belonging to that type system and
schema types. For example, when Java is the native type system, translation between Java and schema is achieved

developerWorks: Web services : Web service invocation sans SOAP, Part 2: The architecture of Web Service Invocation Framework

http://www-106.ibm.com/developerworks/library/ws-wsif2/ (2 of 8) [10/11/2001 8:52:29 PM]

through serialization and deserialization using classes designed for that explicit purpose.

WSIF's part architecture is designed to allow any native type system to be used for a message part, and allows parts
within the same message to be typed using different type systems. The latter is required in cases where parts from two
or more separate WSDL messages, associated with different native type systems, have to be combined into a single
message. Besides allowing different native type systems, there needs to be a common way of interpreting message
parts so that it is possible to view WSIF message objects uniformly. The approach taken by WSIF is that schema is the
standard abstract type used for message parts, and all such schema types have a corresponding JavaBean that can be
defined using a canonical mapping to convert schema to Java. This gives us a common type system for WSIF parts. So
the WSIFPart interface looks like Listing 3.

Listing 3: The WSIFPart interface

public interface WSIFPart {
 public Class getJavaType ();
 public Object getJavaValue ();
}

Specific implementations of this interface can use any internal type system as long as these representations can be
converted to the corresponding canonical Java types. The only implementation of the WSIFPart interface provided
by WSIF is the WSIFJavaPart which uses Java as the type system. Alternative implementations can exploit
common usage patterns to improve efficiency. For example, consider the case where the most common binding used
involves exchange of XML documents as in the document style SOAP binding. Here, it would be very efficient to
represent part values as literal XML instead of Java objects, that way there would be no parsing or
serialization/deserialization required when the document style SOAP binding is used for invocation.

Modifying the binding selection algorithm
Modification of the binding selection algorithm is quite straightforward. All the developers have to do is write their
own WSIFPortFactory implementation, or extend existing ones. Consider the WSIFDynamicPortFactory.
This stores a list of dynamic providers that generate a WSIFPort for a particular WSDL binding on demand. This
port factory looks up dynamic providers by the provider type, so, for example, it knows about one dynamic provider
that handles SOAP ports, one that handles CORBA ports we may define, etc. We can extend this port factory with our
own getPort() method to choose a port that is desirable. To illustrate a situation when this is helpful, consider the
Web service for an address book in Listing 4.

Listing 4: The address book Web service

<?xml version="1.0" ?>
<definitions targetNamespace="http://www.ibm.com/namespace/wsif/samples/ab"
 xmlns:tns="http://www.ibm.com/namespace/wsif/samples/ab"
 xmlns:typens="http://www.ibm.com/namespace/wsif/samples/ab/types"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:java="http://schemas.xmlsoap.org/wsdl/java/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <!-- type defs come here, but we skip them for brevity -->
 <!-- message declarations come here, but we will skip them for brevity -->
 <!-- port type declarations -->
 <portType name="AddressBook">
 <operation name="addEntry">
 <input message="tns:AddEntryRequest"/>
 <output message="tns:AddEntryResponse"/>
 </operation>
 <operation name="getAddressFromName">
 <input message="tns:GetAddressFromNameRequest"/>
 <output message="tns:GetAddressFromNameResponse"/>
 </operation>

developerWorks: Web services : Web service invocation sans SOAP, Part 2: The architecture of Web Service Invocation Framework

http://www-106.ibm.com/developerworks/library/ws-wsif2/ (3 of 8) [10/11/2001 8:52:29 PM]

 </portType>
 <!-- binding declarations -->
 <binding name="SOAPBinding" type="tns:AddressBook">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="addEntry">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="encoded"
 namespace="http://www.ibm.com/namespace/wsif/samples/ab"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:body use="encoded"
 namespace="http://www.ibm.com/namespace/wsif/samples/ab"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 <operation name="getAddressFromName">
 <soap:operation soapAction=""/>
 <input>
 <soap:body use="encoded"
 namespace="http://www.ibm.com/namespace/wsif/samples/ab"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:body use="encoded"
 namespace="http://www.ibm.com/namespace/wsif/samples/ab"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 </binding>
 <binding name="JavaBinding" type="tns:AddressBook">
 <java:binding/>
 </binding>
 <!-- service declaration -->
 <service name="AddressBookService">
 <port name="SOAPPort" binding="tns:SOAPBinding">
 <soap:address location="http://localhost:8080/soap/servlet/rpcrouter"/>
 </port>
 <port name="JavaPort" binding="tns:JavaBinding">
 <java:address class="services.addressbook.AddressBook"/>
 </port>
 </service>
</definitions>

This service offers two bindings: SOAP over HTTP, and native Java. There is no standard way of binding a Java class
in WSDL directly, but that's just a minor speed bump in the way of our race car of comprehension, so we won't dwell
on it. Given the availability of multiple bindings for this service, a client would want to use the one that perhaps gave
best performance such as the Java binding, since it presumably involves direct translation of an abstract operation to a
Java method invocation without network, serialization/deserialization, etc. operations. Of course, the Java binding is
available only in the environment in which the service was deployed. It isn't available for public use on the Internet as
is likely for the SOAP binding. So what we want to do is choose the Java binding when we can, and use the SOAP
binding in other cases. This could be done by writing our own WSIFPortFactory as shown in Listing 5.

Listing 5: A customized binding selection algorithm (see Resources for full code)

developerWorks: Web services : Web service invocation sans SOAP, Part 2: The architecture of Web Service Invocation Framework

http://www-106.ibm.com/developerworks/library/ws-wsif2/ (4 of 8) [10/11/2001 8:52:29 PM]

public class MyWSIFPortFactory extends
 WSIFDynamicPortFactory {
 public WSIFPort getPort () throws WSIFException {
 WSIFException ex = null;
 WSIFPort portInstance = null;
 // examine list of available ports
 // do we have a port with a Java binding?
 for(int i = 0; i < myPortsArr.length; ++i) {
 try {
 Port port = myPortsArr[i];
 Binding binding = port.getBinding();
 if (binding instanceof JavaBinding) {
 // attempt to create a port that can
 // make invocations using this binding
 portInstance =
 createDynamicWSIFPort(def, service, port);
 if(portInstance != null) {
 return portInstance;
 }
 }
 } catch(WSIFException wex) {
 if(ex == null) {
 ex = wex;
 }
 }
 }
 // unable to create a port that can invoke a Java
 // binding (why? perhaps there is no Java port
 // for this service, or the Java port cannot be
 // created for invocation since we are not in
 // an environment that has access to the resources
 // that the Java binding uses)
 // use WSDL ports with other
 // bindings for invoking the service
 // Full code not shown here due to length.
 // Please see the Resources section at the end of
 // this article to download the actual code.
 }
}

Updating/adding a binding implementation at runtime
Suppose we want to upgrade our SOAP implementation. Using this architecture we could complete the migration to
the new implementation without having to recompile user code or stub code, since the WSIF API will remain the
same. We would write a new WSIFPort implementation, capable of making invocations using the modified SOAP
client API that is provided by our new SOAP implementation. Then, we would write a dynamic provider which
translates a WSDL SOAP port to our new WSIFPort implementation. Once we register this dynamic provider it
would replace the previously registered SOAP dynamic provider, and invocation for all WSDL SOAP ports would take
place through our new WSIFPort implementation.

Consider a situation where we define our own WSDL binding. First of all, we have to make sure that the WSIF
runtime is capable of loading the WSDL document with the new binding; this requires us to define handlers for the
extensibility elements we add to our WSDL using WSDL4J's (see Resources) extension registry API. We won't go into
details of how this is done. We can then write WSIFPort and dynamic provider implementations, and register this
new dynamic provider with the port factory in the same manner as we did for our updated SOAP binding.

Stub architecture

developerWorks: Web services : Web service invocation sans SOAP, Part 2: The architecture of Web Service Invocation Framework

http://www-106.ibm.com/developerworks/library/ws-wsif2/ (5 of 8) [10/11/2001 8:52:29 PM]

One of the most important benefits we gain from this architecture is that it enables us to have client stubs that are
customisable by managed environment. All WSIF stubs extend the base class specified in Listing 6.

Listing 6: WSIFStub base class

// some methods and other details omitted
public abstract class WSIFStub {
 /**
 * Locates a port factory using JNDI if available,
 * otherwise uses dynamic port factory with
 * pre-registered dynamic providers
 */
 protected void locatePortFactory(.....) {

 }
 /**
 * Initializes stub with ports defined in WSDL document
 * document must contain *exactly* one service and all
 * ports must implement one and only one port type.
 */
 protected void initializeFromLocation (...) {

 }
 /**
 * Return the port currently being used.
 */
 public WSIFPort getPort () {
 return wp;
 }
 /**
 * Return the port factory currently being used.
 */
 public WSIFPortFactory getPortFactory () {
 return wpf;
 }
 /**
 * Create a new proxy using the given WSIFPortFactory.
 */
 public void setPortFactory (WSIFPortFactory wpf) {

 }
 /**
 * Create a new proxy pre-configured to use the given port
 * for interacting with the service.
 */
 public void setPort (WSIFPort wp) {

 }
 /**
 * Select the port to use by giving the name of the port
 * that is desired. If a port of that name cannot be retrived from
 * the port factory than an exception will be thrown. The port
 * I use will only be updated if this method is successful.
 */
 public void selectPort (String portName) {

 }

developerWorks: Web services : Web service invocation sans SOAP, Part 2: The architecture of Web Service Invocation Framework

http://www-106.ibm.com/developerworks/library/ws-wsif2/ (6 of 8) [10/11/2001 8:52:29 PM]

}

This stub architecture gives us tremendous benefits. It allows applications to use the same stub while allowing the
managed environment to make changes in the plumbing without having to recompile anything. Consider the case in
Listing 5, where we wrote our own port factory with a customised binding selection algorithm. If we operated in an
application server environment with JNDI, we could bind this port factory implementation to the appropriately named
JNDI context. When the stub would lookup the port factory during initialization, it would get the new implementation.
Of course, we can force the change in the port factory used by the stub by directly calling the setPortFactory
method on the stub if that's how we wanted to do it, or we could force use of a particular port using the stub's
setPort method.

Conclusion
As Web services continue to evolve, it will become common to use protocols other than SOAP for access to service
endpoints. When we write applications that use Web services, we therefore need to use APIs that operate at the WSDL
level rather than at the SOAP level.

WSIF provides an abstract way of looking at Web service invocation so we can write applications that use invocation
APIs free of binding dependencies. WSIF has a port type compiler for generation of a customisable stub; the WSIF
API is simple enough so that applications can make stubless invocations by using the it directly. WSIF's architecture
allows a flexible way of defining custom ports and port factories and also allows messages to be created using any
native type system. Generated stubs have entry points for managed environments such as application servers to make
runtime modifications in the port or port factory used by the stub to make invocations.

Web services need an extensible invocation framework that is free of binding dependencies, and WSIF is an initial step
in that direction.

Resources

Participate in the discussion forum on this article by clicking Discuss at the top or bottom of the article.●

Read the introductory article which discusses how WSIF is an improvement over current Web service
invocation models and describes some of WSIF's main features.

●

You can download the full code in Listing 5 of this article and for the examples in Figure 2 and 3 from this
location.

●

Download the WSIF distribution on alphaWorks and try out the easier samples. This will let you see first hand
the different invocation styles supported by WSIF and its advantages over protocol-specific client APIs.

●

Go over the WSDL specification to see what kinds of extensions are allowed; you can also study how WSDL's
extension mechanism is used to define a SOAP binding for accessing Web services.

●

Go over the SOAP specification itself.●

If you haven't programmed with Web services before, the Web Services ToolKit is a good starting point.●

Take a look at WSDL4J, an extensible WSDL parsing framework over which WSIF has been built.●

About the authors
Nirmal K. Mukhi is a Research Associate at IBM's T J Watson Research Lab where he has been working on various
Web services technologies since November 2000. His other interests include AI, creative writing, and outdated
computer games. You can reach Nirmal at nmukhi@us.ibm.com.

Aleksander Slominski is a doctoral student at Indiana University where he is working at the IU Extreme! Lab as a
research assistant on implementing XML/SOAP enabled version of the Common Component Architecture. He has also
designed and implemented the XML Pull Parser and is interested in performance and usability aspects of XML. During
the summer of 2001 he was an intern at IBM's T J Watson Research Lab where he worked on first version of WSIF.
You can reach Alek at aslom@indiana.edu.

developerWorks: Web services : Web service invocation sans SOAP, Part 2: The architecture of Web Service Invocation Framework

http://www-106.ibm.com/developerworks/library/ws-wsif2/ (7 of 8) [10/11/2001 8:52:29 PM]

javascript:void forumWindow()
http://www-106.ibm.com/developerworks/webservices/library/ws-wsif.html
http://www-106.ibm.com/developerworks/library/ws-wsif2/wsif10.zip
http://www-106.ibm.com/developerworks/library/ws-wsif2/wsif10.zip
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.alphaworks.ibm.com/tech/wsif
http://www.w3.org/TR/WSDL.html
http://www.w3.org/TR/SOAP
http://www.alphaworks.ibm.com/tech/webservicestoolkit
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://oss.software.ibm.com/developerworks/projects/wsdl4j
mailto:nmukhi@us.ibm.com
mailto:aslom@indiana.edu
javascript:void forumWindow()
javascript:void newWindow()

What do you think of this article?

Killer! (5) Good stuff (4) So-so; not bad (3) Needs work (2) Lame! (1)

Send us your comments or click Discuss to share your comments with others.

 About IBM | Privacy | Legal | Contact

developerWorks: Web services : Web service invocation sans SOAP, Part 2: The architecture of Web Service Invocation Framework

http://www-106.ibm.com/developerworks/library/ws-wsif2/ (8 of 8) [10/11/2001 8:52:29 PM]

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/ibm/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/privacy/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/legal/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/contact/?origin=dwheader

	ibm.com
	developerWorks: Web services : Web service invocation sans SOAP, Part 2: The architecture of Web Service Invocation Framework

	IAJFCHHDNCPCHNALKIBNOOMCOABFKKGD:
	form1:
	x:
	f1: [dW]
	f2:

	f3:

	form2:
	x:
	f1: Web service invocation sans SOAP, Part 2: The architecture of Web Service Invocation Framework
	f2: Web services
	f3: http://www-106.ibm.com/developerworks/thankyou/feedback-thankyou.html
	f4: Off
	f5:

	f6:

