developerWorks: Web services : Web service invocation sans SOAP, Part 2: The architecture of Web Service Invocation Framework

Advanced search
IBM home | Products & services | Support & downloads | My account

IBM developerWorks: Web services: Web services articles dEVE|UDerw0rks

Web service invocation sans SOAP, Part 2 : The architecture of Web arg, =

Service Invocation Framework Discuss e-mail it!
WSIF's architecture Contents:

WSIF's architecture

Nirma K. Mukhi (nmukhi @us.ibm.com), Research associate, |IBM Research

Aleksandor Slominski (aslom@indiana.edu), Research assistant, U Extreme! Lab, Z/IeIOdifVi nglthe.b;]ndi ng
Indiana University ection algorithm

Updating/adding a binding
September 2001 implementation at runtime

WSIF was introduced in a previous article which explained how it provides Stub architecture
a binding-independent API for simplified Web service invocation. This

article will look at some advanced WSIF features. Thiswill require an

overview of its architecture, following which you will see how to exploit Resources
multiple service bindings, and how to update or add new binding About the authors
implementations for Web services. Rate this article

The Web Services Invocation Framework (WSIF) is atoolkit that provides asimple API Rdated content:

for invoking Web services, no matter how or where the services are provided. In a Web Services Description
previous article (see Resources), we discussed the need for WSIF, the philosophy behind L anauage

its design, and described some of the main features. We compared the WSIF's . .
WSDL-driven API to conventional APIs for using Web services and described the port e Service invocation sans

type compiler as well as stublessinvocation. SOAP, Part 1
WSIF has even more to offer. Its architecture allows invocation ports to be discovered Also in the Web services
viaport factories. We can implement invocation ports that make service invocations Zone:

using customised bindings and plug them into the framework. We can also design our Tutorials
own port factories so that invocation ports are looked up or created using a customised
algorithm. Finaly, WSIF alows us to use any native type system for data used within _
messages. In this article, we will describe the architectural aspects of WSIF that enable Articles
these features, and discuss specific ways of exploiting this flexible architecture.

Tools and products

WSIF's architecture
WSIF invokes service operations through the following steps:

1. ItloadsaWSDL document.

It creates a port factory for this service.

The port factory is used to retrieve a service port.

It creates messages, if necessary, by using message parts typed according to some native type system.

It makes the invocation by supplying the port with the name of the operation to be invoked, along with an input
and/or output message as is required by the operation.

The WSIFPort

The key abstraction here is the run-time representation of aWSDL port, called the WSl FPor t . Thisisresponsible for
doing the actual invocation, based on a particular binding. So we have, for example, aW5l FSOAPPor t that is capable
of using the SOAP binding specified in the WSDL for this service in order to invoke abstract service operations.
Flexibility in the architecture is centered around the WSI FPor t interface shownin Listing 1.

ISEE I

Listing 1: The W8I FPor t interface

http://www-106.ibm.com/developerworks/library/ws-wsif2/ (1 of 8) [10/11/2001 8:52:29 PM]

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-109.ibm.com/redirectdWPS.htm
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/products/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/support/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/account/&origin=dwheader
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/webservices/
http://www-105.ibm.com/developerworks/papers.nsf/dw/webservices-papers-bynewest?OpenDocument&Count=500
http://www-106.ibm.com/developerworks/
javascript:void forumWindow()
javascript:void newWindow()
http://www-106.ibm.com/developerworks/webservices/library/ws-peer4/
http://www-106.ibm.com/developerworks/webservices/library/ws-peer4/
http://www-106.ibm.com/developerworks/library/ws-wsif.html
http://www-106.ibm.com/developerworks/library/ws-wsif.html
http://www-106.ibm.com/developerworks/webservices/
http://www-106.ibm.com/developerworks/webservices/
http://www-105.ibm.com/developerworks/education.nsf/dw/webservices-onlinecourse-bynewest?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/tools.nsf/dw/webservices-all-byname?OpenDocument&Count=500
http://www-105.ibm.com/developerworks/papers.nsf/dw/webservices-papers-bynewest?OpenDocument&Count=10
mailto:nmukhi@us.ibm.com
mailto:aslom@indiana.edu

developerWorks: Web services : Web service invocation sans SOAP, Part 2: The architecture of Web Service Invocation Framework

public interface WSl FPort ({
publ i c bool ean execut eRequest ResponseQperation (String op,
WSl FMessage i nput
W5l FMessage out put
WSl FMessage fault)
t hrows WSl FExcepti on;
/1l some other methods not specified here

}

An implementation of thisinterface would have to know how to invoke the operation using the specified abstract input
and output message. A SOAP implementation for the W5l FPor t , if based on the Apache SOAP API, might create a
Cal | object based on the SOAP binding infomation from the WSDL document for this service, and then create the
necessary parameters for invocation using the abstract input message. The SOAP response could be used to populate
the abstract output message which can then be examined by the client.

The WSIFPortFactory
The WSl FPor t Fact ory isresponsible for retrieving aWsl FPor t to be used for a particular invocation. It hasthe
interface described in Listing 2.

Listing 2: The W5l FPor t Fact or y interface

public interface WSl FPort Factory {
public WSl FPort getPort () throws WSl FExcepti on;
public WSl FPort getPort (String portNane) throws WSl FExcepti on;

}

Notice that the version of get Por t with no parameters allows an implementation of this interface to have some
customised algorithm for choosing a WSIFPort for an invocation. The WSIF distribution has two implementations of
thisinterface: a static port factory and a dynamic port factory. The static port factory stores alist of W5l FPor t
objects and returns one of them in a pseudo random manner when get Port () isissued. The dynamic port factory
stores alist of dynamic providers. Each of these providersis capable of creating a\WBI FPor t at runtime, based on the
WSDL information for the service. When get Port () isinvoked on the dynamic port factory, the factory picksa
dynamic provider in a pseudo random manner that allows it to create a\WSI FPor t which isthen returned. An overall
view of the port factory architectureisillustrated in Figure 1.

Figure 1: WSIF port / port factory architecture

WSIF Port Factory

-"‘""‘" \'\-
WSIF static port " WSIF static port ‘
o factory (x> tactory
WSIF Port i
SOAP dynamic
implementation for
Aeache SOAP 20 x> provider ‘

The WSIF part

So far we have discussed how WSIF ports are decoupl ed from specific implementations and how port factories are
used to discover or create ports. Ports allow us to make invocations, but an essential step before carrying out the
invocation itself is creation of the messages required by the operation. Messages in WSDL are composed of named
parts tied to some type system. Typically, WSDL parts are typed using XML schema as the type system. Thisis
language-independent and quite powerful. Invocation of such services from aclient is done by a mapping this schema
type to amore convenient type system and allowing translation between objects bel onging to that type system and
schematypes. For example, when Java is the native type system, trandation between Java and schemais achieved

http://www-106.ibm.com/developerworks/library/ws-wsif2/ (2 of 8) [10/11/2001 8:52:29 PM]

developerWorks: Web services : Web service invocation sans SOAP, Part 2: The architecture of Web Service Invocation Framework

through serialization and deserialization using classes designed for that explicit purpose.

WSIF's part architecture is designed to allow any native type system to be used for a message part, and allows parts
within the same message to be typed using different type systems. The latter is required in cases where parts from two
or more separate WSDL messages, associated with different native type systems, have to be combined into asingle
message. Besides allowing different native type systems, there needs to be a common way of interpreting message
parts so that it is possible to view WSIF message objects uniformly. The approach taken by WSIF is that schemaisthe
standard abstract type used for message parts, and all such schema types have a corresponding JavaBean that can be
defined using a canonical mapping to convert schemato Java. This gives us a common type system for WSIF parts. So
the WSl FPar t interface looks like Listing 3.

Listing 3: The WSl FPar t interface

public interface WSl FPart {
public C ass getJavaType ();
public Cbject getJavaVal ue ();

}

Specific implementations of thisinterface can use any internal type system as long as these representations can be
converted to the corresponding canonical Javatypes. The only implementation of the W5I FPar t interface provided
by WSIF isthe W5l FJavaPar t which uses Java as the type system. Alternative implementations can exploit
common usage patterns to improve efficiency. For example, consider the case where the most common binding used
involves exchange of XML documents as in the document style SOAP binding. Here, it would be very efficient to
represent part values as literal XML instead of Java objects, that way there would be no parsing or
serialization/deserialization required when the document style SOAP binding is used for invocation.

Modifying the binding selection algorithm

Modification of the binding selection algorithm is quite straightforward. All the developers have to do is write their
own W8I FPor t Fact or y implementation, or extend existing ones. Consider the WEl FDynari cPort Fact ory.
This storesalist of dynamic providersthat generate aW5I FPor t for aparticular WSDL binding on demand. This
port factory looks up dynamic providers by the provider type, so, for example, it knows about one dynamic provider
that handles SOAP ports, one that handles CORBA ports we may define, etc. We can extend this port factory with our
own get Port () method to choose a port that is desirable. To illustrate a situation when thisis helpful, consider the
Web service for an address book in Listing 4.

Listing 4: The address book Web service

<?xm version="1.0" ?>

<definitions target Namespace="http://ww. i bm conl namespace/ wsi f/ sanpl es/ ab"
xm ns:tns="http://ww.ibm com namespace/ wsi f/ sanpl es/ ab"
xm ns:typens="http://ww. i bm coml nanespace/ wsi f/ sanpl es/ ab/t ypes"
xm ns: xsd="htt p: // wwv. wW3. or g/ 1999/ XM_Schema"
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/ "
xm ns: java="http://schemas. xm soap. or g/ wsdl / j ava/"
xm ns="http://schemas. xm soap. org/ wsdl /" >

<!-- type defs cone here, but we skip themfor brevity -->
<I-- message decl arations cone here, but we will skip themfor brevity -->
<l-- port type declarations -->

<port Type nane="Addr essBook" >
<operati on name="addEntry">
<i nput message="t ns: AddEnt r yRequest "/ >
<out put nessage="t ns: AddEnt r yResponse"/ >
</ oper ati on>
<oper ati on nane="get Addr essFr onNane" >
<i nput nessage="t ns: Get Addr essFr omNaneRequest "/ >
<out put nessage="t ns: Get Addr essFr omNaneResponse"/ >
</ oper ati on>

http://www-106.ibm.com/developerworks/library/ws-wsif2/ (3 of 8) [10/11/2001 8:52:29 PM]

developerWorks: Web services : Web service invocation sans SOAP, Part 2: The architecture of Web Service Invocation Framework

</ port Type>
<!-- binding declarations -->
<bi ndi ng nanme="SOAPBi ndi ng" type="t ns: Addr essBook" >
<soap: bi ndi ng styl e="rpc"
transport="http://schemas. xnl soap. or g/ soap/ http"/>
<operati on nane="addEntry">
<soap: oper ati on soapAction=""/>
<i nput >
<soap: body use="encoded"
nanespace="http://ww. i bm conf nanespace/ wsi f / sanpl es/ ab"
encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "/ >
</i nput >
<out put >
<soap: body use="encoded"
namespace="http://ww. i bm com nanespace/ wsi f/ sanpl es/ ab"
encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "/ >
</ out put >
</ oper ati on>
<oper ati on nanme="get Addr essFr omNanme" >
<soap: oper ati on soapAction=""/>
<i nput >
<soap: body use="encoded"
nanespace="http://ww. i bm conf nanespace/ wsi f / sanpl es/ ab"
encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "/ >
</i nput >
<out put >
<soap: body use="encoded"
nanespace="http://ww. i bm com nanespace/ wsi f/ sanpl es/ ab"
encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "/ >
</ out put >
</ oper ati on>
</ bi ndi ng>
<bi ndi ng nanme="JavaBi ndi ng" type="tns: Addr essBook" >
<j ava: bi ndi ng/ >
</ bi ndi ng>
<!-- service declaration -->
<servi ce nane="Addr essBookServi ce">
<port nane="SOAPPort" bi ndi ng="t ns: SOAPBi ndi ng" >
<soap: address |l ocation="http://| ocal host: 8080/ soap/ servl et/rpcrouter"/>
</ port>
<port nane="JavaPort" bindi ng="tns: JavaBi ndi ng">
<j ava: address cl ass="servi ces. addr essbook. Addr essBook" / >
</ port>
</ servi ce>
</definitions>

This service offers two bindings: SOAP over HTTP, and native Java. There is no standard way of binding a Java class
in WSDL directly, but that's just aminor speed bump in the way of our race car of comprehension, so we won't dwell
on it. Given the availability of multiple bindings for this service, a client would want to use the one that perhaps gave
best performance such as the Java binding, since it presumably involves direct translation of an abstract operation to a
Java method invocation without network, serialization/deserialization, etc. operations. Of course, the Javabinding is
available only in the environment in which the service was deployed. It isn't available for public use on the Internet as
islikely for the SOAP binding. So what we want to do is choose the Java binding when we can, and use the SOAP
binding in other cases. This could be done by writing our own WSl FPor t Fact or y asshown in Listing 5.

Listing 5: A customized binding selection algorithm (see Resour ces for full code)

http://www-106.ibm.com/developerworks/library/ws-wsif2/ (4 of 8) [10/11/2001 8:52:29 PM]

developerWorks: Web services : Web service invocation sans SOAP, Part 2: The architecture of Web Service Invocation Framework

public class MyWSI FPort Fact ory extends
WSl FDynam cPort Factory {
public WSl FPort getPort () throws WSl FException {
WEl FException ex = nul | ;
WSl FPort portlnstance = null;
/1 exam ne list of available ports
// do we have a port with a Java bi ndi ng?
for(int i =0; i < nmyPortsArr.length; ++i) {
try {
Port port = nyPortsArr[i];
Bi ndi ng bi ndi ng = port. getBi nding();
i f (binding instanceof JavaBi nding) ({
// attenpt to create a port that can
/1 make invocations using this binding
portl nstance =
cr eat eDynam c\W6SI FPort (def, service, port);
if(portlinstance !'= null) {
return portlnstance;

}
}
} catch(W8l FException wex) {
if(ex == null) {
ex = Wwex;

}

}
}
/1l unable to create a port that can invoke a Java
/'l binding (why? perhaps there is no Java port
/[l for this service, or the Java port cannot be
/'l created for invocation since we are not in
// an environnment that has access to the resources
/1 that the Java bindi ng uses)
/1 use WBDL ports with other
// bindings for invoking the service
/1 Full code not shown here due to |ength.
/'l Please see the Resources section at the end of
/'l this article to downl oad the actual code.

}

}

Updating/adding a binding implementation at runtime

Suppose we want to upgrade our SOAP implementation. Using this architecture we could complete the migration to
the new implementation without having to recompile user code or stub code, since the WSIF API will remain the
same. We would write anew WSl FPor t implementation, capable of making invocations using the modified SOAP
client AP that is provided by our new SOAP implementation. Then, we would write a dynamic provider which
translatesa WSDL SOAP port to our new WSl FPor t implementation. Once we register this dynamic provider it
would replace the previously registered SOAP dynamic provider, and invocation for all WSDL SOAP ports would take
place through our new WSI FPor t implementation.

Consider a situation where we define our own WSDL binding. First of al, we have to make sure that the WSIF
runtime is capable of loading the WSDL document with the new binding; this requires us to define handlers for the
extensibility elements we add to our WSDL using WSDL4J's (see Resources) extension registry API. We won't go into

details of how thisis done. We can then write W5l FPor t and dynamic provider implementations, and register this
new dynamic provider with the port factory in the same manner as we did for our updated SOAP binding.

Stub architecture

http://www-106.ibm.com/developerworks/library/ws-wsif2/ (5 of 8) [10/11/2001 8:52:29 PM]

developerWorks: Web services : Web service invocation sans SOAP, Part 2: The architecture of Web Service Invocation Framework

One of the most important benefits we gain from this architecture is that it enables usto have client stubs that are
customisable by managed environment. All WSIF stubs extend the base class specified in Listing 6.

Listing 6: WSIFStub base class

/1 some nmethods and other details omtted
public abstract class WSl FStub {
/**
* Locates a port factory using JNDI if avail abl e,
* otherwi se uses dynam c port factory with
* pre-regi stered dynam c providers
*/
protected void | ocatePortFactory(.....) {

}

/**
* Initializes stub with ports defined in WSDL docunent
* docunent must contain *exactly* one service and al
* ports must inplenment one and only one port type.

*/
protected void initializeFromocation (...) {
}
/**
* Return the port currently being used.
*/
public WSl FPort getPort () {
return wp;
}
/**
* Return the port factory currently being used.
*/
public WSl FPort Factory get Port Factory () {
return wpf
}
/**
* Create a new proxy using the given WSl FPort Factory.
*/
public void setPortFactory (WSl FPort Factory wpf) {
}
/**

* Create a new proxy pre-configured to use the given port
* for interacting with the service.

*/

public void setPort (WSl FPort wp) {

}

/**

* Select the port to use by giving the name of the port

* that is desired. If a port of that name cannot be retrived from
* the port factory than an exception will be thrown. The port

*] use will only be updated if this nmethod is successful.

*/

public void selectPort (String portNane) {

, o

http://www-106.ibm.com/developerworks/library/ws-wsif2/ (6 of 8) [10/11/2001 8:52:29 PM]

developerWorks: Web services : Web service invocation sans SOAP, Part 2: The architecture of Web Service Invocation Framework

This stub architecture gives us tremendous benefits. It allows applications to use the same stub while allowing the
managed environment to make changes in the plumbing without having to recompile anything. Consider the casein
Listing 5, where we wrote our own port factory with a customised binding selection algorithm. If we operated in an
application server environment with INDI, we could bind this port factory implementation to the appropriately named
JNDI context. When the stub would lookup the port factory during initialization, it would get the new implementation.
Of course, we can force the change in the port factory used by the stub by directly calling the set Por t Fact ory
method on the stub if that's how we wanted to do it, or we could force use of a particular port using the stub's

set Port method.

Conclusion

As Web services continue to evolve, it will become common to use protocols other than SOAP for access to service
endpoints. When we write applications that use Web services, we therefore need to use APIs that operate at the WSDL
level rather than at the SOAP level.

WSIF provides an abstract way of looking at Web service invocation so we can write applications that use invocation
APIsfree of binding dependencies. WSIF has a port type compiler for generation of a customisable stub; the WSIF
API issimple enough so that applications can make stubless invocations by using the it directly. WSIF's architecture
alows aflexible way of defining custom ports and port factories and also allows messages to be created using any
native type system. Generated stubs have entry points for managed environments such as application servers to make
runtime modifications in the port or port factory used by the stub to make invocations.

Web services need an extensible invocation framework that is free of binding dependencies, and WSIF isan initial step
in that direction.

Resources
« Participate in the discussion forum on this article by clicking Discuss at the top or bottom of the article.

« Read the introductory article which discusses how WSIF is an improvement over current Web service
invocation models and describes some of WSIF's main features.

« You can download the full codein Listing 5 of this article and for the examplesin Figure 2 and 3 from this
location.

« Download the WSIF distribution on alphawWorks and try out the easier samples. Thiswill let you seefirst hand
the different invocation styles supported by WSIF and its advantages over protocol-specific client APIs.

« Go over the WSDL specification to see what kinds of extensions are allowed; you can also study how WSDL's
extension mechanism is used to define a SOAP binding for accessing Web services.

» Go over the SOAP specification itself.

« If you haven't programmed with Web services before, the Web Services ToolKit is a good starting point.
« Takealook at WSDL4J, an extensible WSDL parsing framework over which WSIF has been built.

About the authors

Nirmal K. Mukhi isa Research Associate at IBM's T JWatson Research Lab where he has been working on various
Web services technol ogies since November 2000. His other interests include Al, creative writing, and outdated
computer games. Y ou can reach Nirmal at nmukhi @us.ibm.com.

Aleksander Slominski is adoctoral student at Indiana University where he isworking at the IlU Extreme! Lab asa
research assistant on implementing XML/SOAP enabled version of the Common Component Architecture. He has also
designed and implemented the XML Pull Parser and is interested in performance and usability aspects of XML. During
the summer of 2001 hewas anintern at IBM's T JWatson Research Lab where he worked on first version of WSIF.

Y ou can reach Alek at aslom@indiana.edu.

R=ld=" =
Discuss e-mail it!

http://www-106.ibm.com/developerworks/library/ws-wsif2/ (7 of 8) [10/11/2001 8:52:29 PM]

javascript:void forumWindow()
http://www-106.ibm.com/developerworks/webservices/library/ws-wsif.html
http://www-106.ibm.com/developerworks/library/ws-wsif2/wsif10.zip
http://www-106.ibm.com/developerworks/library/ws-wsif2/wsif10.zip
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.alphaworks.ibm.com/tech/wsif
http://www.w3.org/TR/WSDL.html
http://www.w3.org/TR/SOAP
http://www.alphaworks.ibm.com/tech/webservicestoolkit
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://oss.software.ibm.com/developerworks/projects/wsdl4j
mailto:nmukhi@us.ibm.com
mailto:aslom@indiana.edu
javascript:void forumWindow()
javascript:void newWindow()

developerWorks: Web services : Web service invocation sans SOAP, Part 2: The architecture of Web Service Invocation Framework

What do you think of thisarticle?

OKiller! (5) O Good stuff (4) O So-s0; not bad (3) O Needswork (2) O Lame! (1)

Send usyour commentsor click Discussto shareyour commentswith others.

| Submit feedback |

About IBM | Privacy | Legal | Contact

http://www-106.ibm.com/developerworks/library/ws-wsif2/ (8 of 8) [10/11/2001 8:52:29 PM]

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/ibm/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/privacy/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/legal/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/contact/?origin=dwheader

	ibm.com
	developerWorks: Web services : Web service invocation sans SOAP, Part 2: The architecture of Web Service Invocation Framework

	IAJFCHHDNCPCHNALKIBNOOMCOABFKKGD:
	form1:
	x:
	f1: [dW]
	f2:

	f3:

	form2:
	x:
	f1: Web service invocation sans SOAP, Part 2: The architecture of Web Service Invocation Framework
	f2: Web services
	f3: http://www-106.ibm.com/developerworks/thankyou/feedback-thankyou.html
	f4: Off
	f5:

	f6:

