
Search
for: within

 Use + - () " " Search help

 IBM home | Products & services | Support & downloads | My account

IBM developerWorks > Java technology | Web
architecture

Working with the Echo Web framework, Part 1:
An introduction to Echo

Contents:
Of rich clients and Web
clients

Under the hood

What you'll need

The elements of an Echo
application

Building a user interface
with components

Applying Echo

The future of Echo

Resources

About the author

Rate this article

Related content:
Working with the Echo
Web framework, Part 2

An excerpt from Java Tools
for Extreme Programming

Subscribe to the
developerWorks newsletter

developerWorks Toolbox
subscription

More dW Web architecture
resources

Also in the Java zone:
Tutorials

Tools and products

Code and components

Articles

Learn the basics of building Web-based applications that work like rich
clients

Level: Introductory

Tod Liebeck (tliebeck@nextapp.com)
Chief Software Architect, NextApp, Inc.
September 9, 2003

This two-part series provides an introduction to the Echo framework,
an open source, Java technology-based platform for building Web
applications that look and act like rich clients. Part 1 introduces the
framework and discusses what it does and how it is best used,
providing an introductory walkthrough of its features. Part 2 takes you
more in depth, building on your knowledge from Part 1 to develop a
complete application using the Echo framework.

Of rich clients and Web clients
Web-based applications are typically built as collections of stateless
services. The client -- a Web browser -- invokes a service by making an
HTTP request. The server sends back a dynamically generated HTML page
that is then displayed in the browser. The generated document reflects the
state of the application, providing links and forms that enable the user to
invoke other services.

When requirements call for greater user interface capability, such
Web-based applications often come up a bit short. In these cases, it's
common to see projects move to rich-client architectures; the low
deployment costs of a Web-based architecture are sacrificed to get out from
under the limitations of the Web. The problem is not a lack of capability on
the part of the browser, but rather the fact that its tools are difficult to use to
create complex applications. As many developers have learned the hard way,
HTML and JavaScript are not particularly modular or maintainable in
real-world development.

In a nutshell, the Echo framework provides a Web-based platform that offers
rich-client levels of capability and maintainability. Echo developers create
applications using a component- and event-based API that resembles a
rich-client user interface toolkit (think Java Swing). A translation layer
generates the HTML required to render the user interface to the client
browser. To bring the experience closer to the standard of a thicker client,
Echo uses an extensive library of client-side JavaScript that extends the
capabilities of the browser. The architecture aims to completely remove the
end developer from having to think about the management of multiple

http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/search/help-dw.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/products/&origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/support/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/account/&origin=dwheader
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/web/
http://www-106.ibm.com/developerworks/web/
http://www-106.ibm.com/developerworks/
javascript:void newWindow()
http://www-106.ibm.com/developerworks/java/library/j-echo2/
http://www-106.ibm.com/developerworks/java/library/j-echo2/
http://www-106.ibm.com/developerworks/java/library/j-tools4xp.html
http://www-106.ibm.com/developerworks/java/library/j-tools4xp.html
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www-106.ibm.com/developerworks/newsletter/&origin=dw-article
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=www-106.ibm.com/developerworks/newsletter/&origin=dw-article
http://www-106.ibm.com/developerworks/toolbox/
http://www-106.ibm.com/developerworks/toolbox/
http://www.ibm.com/developerworks/web/
http://www.ibm.com/developerworks/web/
http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/views/java/tutorials.jsp
http://www-106.ibm.com/developerworks/views/java/tools.jsp
http://www-106.ibm.com/developerworks/views/java/code.jsp
http://www-106.ibm.com/developerworks/views/java/articles.jsp
mailto:tliebeck@nextapp.com
http://www-106.ibm.com/developerworks/java/library/j-echo2/

windows, frames, forms, and complex DHTML and JavaScript used to create a sophisticated Web
application.

Under the hood
Echo provides a high level of abstraction between the development of a Web-based user interface and the
requirements of the browser environment. To achieve this abstraction, the framework is built in two
distinct tiers. The first tier, called the Component Framework, provides the developer with a user interface
toolkit API with which applications are built. The second tier, the Application Container, automatically
translates the state of an application into the languages of the browser.

Develop an application
with Echo
Part 2 of this article walks
through the development of a
complete application built
using the Echo framework --
a Web-based e-mail client.

When working with the Component Framework API, a developer is
completely unconcerned with the usual concepts involved in developing
Web-based applications, such as parsing HTTP requests and rendering
HTML and JavaScript code. The Component Framework tier of Echo is
entirely uninvolved in any client-related aspects of the Web application.
All such responsibility is taken on by the Application Container.

The Application Container dynamically creates peer objects for each user
interface component that is presently a part of the application. These peers
function as intermediaries between the user interface components and the client Web browser. Each one
translates the state of its represented component into HTML and JavaScript as required, and fires events to
the component in response to information received in HTTP requests.

Web browser interaction
On the client side, Echo differs radically from the usual architecture of a Web application framework.
Client-side JavaScript is used to ensure that the state of the client is synchronized with that of the server.
Each time the user takes an action that requires the Web client to contact the server, all of the changes the
user made are sent in a single HTTP request, even if they were made in different forms in multiple frames
or windows. Other information is sent as well, such as the positions of scroll bars and checksum-like data
used to ensure that the client state matches the server-side representation.

To make this work, Echo adds a non-visible HTML frame to each of an application's windows on the
client Web browser. This "controller" frame is used as a communications channel between the client and
the server. All actions taken by the user between server interactions are recorded in hidden form elements
in the controller frame. When the user makes a request that will require server interaction -- such as
clicking a button that has ActionListeners -- the controller frame submits all the changes to the
server at once.

On the server side, the Echo Application Container processes this incoming HTTP request, firing events to
components that were updated by the user. The Application Container tracks which components have been
visually changed as a result. Finally, a new controller frame document is created that contains JavaScript
directives to instruct the client to re-render the updated content.

This design removes many of the unusual constraints and annoyances that often show up in Web
application development. The problems that would normally occur when user-input fields are spread
across multiple windows and documents are automatically eliminated. Updating content in multiple frames
and windows at the same time no longer requires any extra work. Scroll bars don't jump back to the top
every time a frame is updated. The list goes on, but the overall effect is that both the developer and the
user enjoy a more rich client-like application experience.

What you'll need
To get started with Echo, you might need to obtain a few new tools. In addition to Echo itself and JDK
version 1.3 or higher, you will need:

Apache Ant. Ant is a Java technology-based build tool used to compile and package applications.
In our case, we'll use it to simplify the task of compiling a few tutorial applications and creating
deployable Web archives (WAR files).

●

http://www-106.ibm.com/developerworks/library/j-echo2/

A servlet container. Echo applications are servlets, and therefore require a servlet container to
make them work. Any container that meets the servlet 2.2 specification should work. If you're new
to the servlet world, try out a recent version of Jakarta Tomcat from the Apache group (see
Resources). It's free and runs on most platforms.

●

The elements of an Echo application
In many ways, creating an Echo application is similar to creating a thick-client using Java Swing. The state
of an application's user interface is represented as a hierarchy of Component objects. Event listeners are
added to these components that perform work in response to a user's actions.

It is the responsibility of the Application Container to ensure that the end user of an Echo application will
see an up-to-date rendering of the application's component hierarchy at all times. The Application
Container uses PropertyChangeListeners to track visual changes made to any components visible
within the application. Each time the client makes a request to the server -- causing the component
hierarchy to be updated -- the state will be subsequently reflected back to the client. The underlying lesson
here is that all you have to do to make a change in what a user will see is to make that change to the
component hierarchy. The Application Container takes care of the dirty work.

The heart of an application: The EchoInstance object
The state of a single user's instance of an Echo application is represented by an EchoInstance object.
When a new user visits an Echo application, a new EchoInstance is automatically created by the
Application Container and stored in the user's servlet session. An EchoInstance is thus a stateful
object, and as such is often used to store application-wide state information. For example, the name of the
currently logged-in user could be stored in an instance variable of the EchoInstance, or perhaps it
might also be used to store references to open transactions or other middle-tier and database resources.

EchoInstance functions as the effective "root" of the user interface. It is responsible for tracking and
managing which windows are open in the application, providing a complete picture of the application's
state.

Every Echo application is required to provide an implementation of the abstract EchoInstance class.
The derived form is only required to provide an implementation of a single method, init(), which
initializes the state of a new application instance. The init() method returns a Window object that
represents the state of the "initial window" of the application. The component hierarchy placed in the
"initial window" is rendered in the browser window used to first navigate to the application.

A very simple implementation of an EchoInstance is shown in Listing 1, displaying the text "Hello,
World!" in the user's browser window:

Listing 1. A simple EchoInstance implementation

class HelloWorld extends EchoInstance {

 public Window init() {
 Window window = new Window();
 ContentPane content = new ContentPane();
 window.setContent(content);
 Label label = new Label("Hello, World!");
 content.add(label);
 return window;
 }
}

The EchoServer: A servlet wrapper for an Echo application
To make Echo applications work as servlets, a servlet class must be defined to house the application.
Echo's EchoServer class (which extends HttpServlet) handles nearly all of this work right out of

the box. For instance, EchoServer provides implementations of the doGet() and doPost()
methods to handle incoming requests automatically by feeding them to the Echo Application Container.

The only task required of the developer when creating an EchoServer implementation is to tell the
object how to create new user instances of an application. This is accomplished by providing a concrete
version of the abstract getEchoInstance() method to return a new application instance on demand.
Listing 2 shows just how simple such a class can be:

Listing 2. An EchoServer implementation

public class HelloWorldServlet extends EchoServer {

 public EchoInstance newInstance() {
 return new HelloWorld();
 }
}

Building a user interface with components
An Echo Component is an object that represents an element or "widget" of a user interface. For example,
a label component is used to display a string of text or an icon, and a text field component is used to enable
the user to input a single line of text. Components may contain child components, enabling the formation
of component hierarchies. An Echo user interface is defined by such a component hierarchy, as shown in
Figure 1:

Figure 1. A user interface represented as a hierarchy of components

Echo provides a basic array of built-in components to cover the fundamental concepts of user interfaces,
such as windows, labels, buttons, text entry areas, listboxes, and tables. Components are designed to be
extended so that developers can derive new reusable or application-specific components from the existing
library.

Responding to user actions through events
While the state of a user interface is defined by components, its dynamics are built using events.
Components that are interactive -- for instance, buttons -- provide methods to register event listeners.
When an event listener is registered with a component, it is notified when the component changes state in
response to a user's behavior. For example, ActionListeners registered with a Button component
will be invoked when the user clicks the button.

As previously mentioned, Echo is an event-driven framework. Once the initial state of an application has
been set up as a result of EchoInstance's init() method being invoked, all future changes to an
application's state will be in response to events.

Listing 3 shows the EchoInstance class of a very simple application that demonstrates the use of
events. It displays three colored buttons that change the background color of the window's content when
they are clicked. The class itself implements the ActionListener event-listener interface, providing
an actionPerformed() method to process action events. When the class creates the buttons, it adds

itself as an action listener to each of them.

Listing 3. The EchoInstance of an application that makes use of events

class ButtonDemo extends EchoInstance
implements ActionListener {

 private Button redButton, greenButton, blueButton;
 private ContentPane content;

 public void actionPerformed(ActionEvent e) {

 if (e.getSource() == redButton) {
 content.setBackground(Color.RED);
 } else if (e.getSource() == greenButton) {
 content.setBackground(Color.GREEN);
 } else if (e.getSource() == blueButton) {
 content.setBackground(Color.BLUE);
 }
 }

 public Window init() {

 Window window = new Window();
 content = new ContentPane();
 window.setContent(content);

 redButton = new Button("Red");
 redButton.addActionListener(this);
 redButton.setBackground(Color.RED);
 content.add(redButton);

 greenButton = new Button("Green");
 greenButton.addActionListener(this);
 greenButton.setBackground(Color.GREEN);
 content.add(greenButton);

 blueButton = new Button("Blue");
 blueButton.addActionListener(this);
 blueButton.setBackground(Color.BLUE);
 content.add(blueButton);

 return window;
 }
}

When a button is clicked, the actionPerformed() method is invoked. The implementation of this
method determines which button was pressed by checking the source of the event and then setting the
background color of the application based on which button fired it.

Laying out the user interface
By default, Echo components will be laid out sequentially, from left to right and then top to bottom on the
user's screen. This default layout is not desirable when building a real application. Echo provides
numerous components whose purpose is to lay out the user interface of an application, such as defining the
positioning and order of other components.

The "strut" component is arguably the simplest of Echo's layout components. Its sole purpose is to provide
horizontal or vertical spacing between two other components. Struts are created by invoking a static
factory method in the Filler class. Two such methods exist: createHorizontalStrut() and
createVerticalStrut(). Each takes an integer value as a parameter to indicate the size -- in pixels
-- of separation desired.

Most application layouts are typically defined using Echo's Grid class. Grids provide a greater degree of
control by letting the developer place components in the cells of a grid. Figure 2 shows an application
using several Grid components to lay out its content. The buttons on the left side of this figure are laid
out using a Grid, as is the content in the central region of the application's window.

Figure 2. An application laid out using pane components and Grids

Windows and panes
In Echo, the Window component represents a complete and independent browser window. In contrast to
most Web-based application architectures, Echo allows the developer complete control over management
of multiple windows involved in a single application. Windows may be opened and closed by invoking
the EchoInstance's addWindow() and removeWindow() methods. Applications can even be
notified when the user attempts to close a window by registering WindowListeners.

Pane components are used for dividing Window components into smaller regions. Windows are

somewhat unique from other components in that they only allow a single component as their content, and
that component must be a pane. All pane components are recognizable by the fact that they are derived
from the AbstractPane class, in addition to having the "Pane" suffix in their class names.

The two most commonly used pane types are ContentPanes and ContainerPanes. A
ContentPane allows regular components (that are not panes) to be added, such as Labels, Panels,
Grids, and TextFields. In both the HelloWorld (see Listing 1) and ButtonDemo (see Listing 3)
examples, ContentPanes have been used as the root content of each application's main window.

ContainerPanes are used to divide a window's "real estate" into distinct areas. ContainerPanes
may only contain other pane components (including other ContainerPanes). In Figure 2, the window
has been divided into major regions using several ContainerPanes.

Style properties
Most Echo components provide settable properties that control their appearance, as shown in Listing 3,
where the background colors of the Button and ContentPane components are modified. At a
minimum, every component is capable of adjusting its font, as well as its foreground and background
colors, because the Component class itself provides these features. Many components contain additional
stylistic properties. For example, TextFields allow you to configure the style, size, and color of their
borders.

When developing a complex user interface, you will often want the same properties applied to many
instances of the same type of component. For example, you might want all text fields to have a light blue
background, black text, and a thin dark blue border. Echo provides a Style class to group such property
settings, so that the same information can be reused by multiple components.

Applying Echo
As you've learned in this article, Echo has a lot in common with a user interface toolkit. As a result, Echo
works best with applications whose user interfaces lend themselves to being built with a user interface
toolkit-like architecture. If a project works well as a rich client application, it will likely work well with
Echo; but if you think a project resembles a Web site more than an application, you will probably want to
use a different technology to build it.

Many projects will benefit from using a hybrid of Echo and other technologies. It's fairly common among
the Echo development community to see projects built using both Echo and other Web application
frameworks and Web scripting languages. These sites are often architected so the page-based technologies
are used to create the content-rich portions of the site, and Echo-based applications are created to handle
the more complex and interactive pieces.

The future of Echo
After more than 20 months of development and testing, Echo 1.0 was finally released in June 2003. There
are two new versions of Echo currently in development: 1.1 will offer some minor updates and is set to be
released in the near future; 1.2 will offer more significant improvements and will be released a few months
later.

For 1.2, a roster of new features is planned. Many of the additions are aimed toward providing a more rich
client-like experience, such as allowing for complete control over component focus, as well as tracking
and updating window screen positions and sizes. Other features target making life easier on developers,
such as allowing style information to be externalized and streamlining the installation process of
third-party Echo component libraries.

Because Echo is an open source project, all development takes place out in the open. The primary vehicles
of communication among developers are the online forums and mailing lists. Anyone is welcome to join
and contribute or discuss ideas for future development.

Resources

The Echo home page provides useful resources for Echo developers.●

http://www.nextapp.com/products/echo

Download the Echo Web application framework. This page provides links to download the latest
versions of the Echo libraries. You'll need them to create Echo applications of your own.

●

The Echo online tutorial provides an in-depth overview of the fundamentals of Echo application
development.

●

The Echo High-Level Technical Overview provides a detailed explanation of how the inner
architecture of Echo works.

●

The Apache Ant home page provides information about Ant and the latest versions for download.
Ant is used to build the sample applications used in this article.

●

Just getting started with Ant? In this excerpt from Java Tools for Extreme Programming (Wiley,
2002), Rick Hightower and Nick Liesecki offer guidance on how to build Java applications with
Ant.

●

The Apache Tomcat home page provides information about the Tomcat servlet container and the
latest versions for download.

●

Find hundreds of Java technology-related resources in the developerWorks Java technology zone.●

About the author
Tod Liebeck founded NextApp, Inc. in 2001 to pursue advanced Web-based user interface technology. He
currently serves as the lead developer of the Echo Web application framework and Chief Software
Architect. Contact Tod at tliebeck@nextapp.com.

What do you think of this document?

Killer! (5) Good stuff (4) So-so; not bad (3) Needs work (2) Lame! (1)

Comments?

IBM developerWorks > Java technology | Web architecture

 About IBM | Privacy | Legal | Contact

http://www.nextapp.com/products/echo/download/
http://www.nextapp.com/products/echo/doc/tutorial/
http://www.nextapp.com/products/echo/doc/hltov/
http://ant.apache.org/
http://www-106.ibm.com/developerworks/java/library/j-tools4xp.html
http://www-106.ibm.com/developerworks/java/library/j-tools4xp.html
http://jakarta.apache.org/tomcat/
http://www-106.ibm.com/developerworks/java
http://www.nextapp.com/
mailto:tliebeck@nextapp.com
javascript:void newWindow()
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/java/
http://www-106.ibm.com/developerworks/web/
http://www-106.ibm.com/developerworks/
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/ibm/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/privacy/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/legal/?origin=dwheader
http://www-106.ibm.com/developerworks/cgi-bin/click.cgi?url=http://www.ibm.com/contact/?origin=dwheader

	ibm.com
	Working with the Echo Web framework, Part 1: An introduction to Echo

	BMJONADGCBBLHGMEDNLMLPLLPKLHIKJL:
	form1:
	x:
	f1: 1
	f2: dW
	f3:
	f4: [dW]

	f5:

	form2:
	x:
	f1: Working with the Echo Web framework, Part 1: An introduction to Echo
	f2: Java, Web architecture
	f3: http://www-106.ibm.com/developerworks/thankyou/feedback-thankyou.html
	f4: Off
	f5:

	f6:

