
IBM IBM SecureWay Cryptographic Products

IBM 4758 PCI Cryptographic Coprocessor
CCA Basic Services
Reference And Guide

SC31-8609-01

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page xiii.

| Second Edition (August, 1998)

| This is the second edition of IBM 4758 CCA Basic Services Reference and Guide, SC31-8609-01.

| This manual describes the IBM Common Cryptographic Architecture (CCA) Basic Services API that is implemented for the IBM 4758
| Model 001 PCI Cryptographic Coprocessor and it's CCA Support Program feature. This manual revision describes the API provided
| with Release 1.3 of the CCA Support Program.

Changes are made periodically to the information herein; before using this publication in connection with the operation of IBM
systems, consult your IBM representative to be sure you have the latest edition and any Technical Newsletter.

IBM does not stock publications at the address given below; requests for IBM publications should be made to your IBM
representative or to the IBM branch office that serves your location. This and other publications related to the IBM 4758
Coprocessor can be obtained in PDF format from the Library page at http://www.ibm.com/security/cryptocards.

Reader’s comments can be communicated to IBM in these ways:

� On the form for reader’s comments provided at the back of this publication

� Comments can be addressed to the IBM Corporation, Department 57QC, MG81/204, 8501 IBM Drive, Charlotte, NC 28262-8563,
U.S.A.

� On the question and suggestion form provided via the product Support web page that you can locate from
http://www.ibm.com/security/cryptocards.

 Copyright International Business Machines Corporation 1997-98. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . xiii
Trademarks . xiii

About This Publication . xv
| Revision History . xv

Organization . xix
Related Publications . xx

Chapter 1. Introduction to Programming for the IBM CCA 1-1
What CCA Services Are Available with the IBM 4758 1-1
An Overview of the CCA Environment . 1-2

How Application Programs Obtain Service . 1-5
The Security API, Programming Fundamentals 1-7

Verbs, Variables, and Parameters . 1-7
Commonly-Encountered Parameters . 1-9

Parameters Common to All Verbs . 1-10
Rule_Array and Other Keyword Parameters 1-11
Key_Identifiers, Key_Labels, and Key_Tokens 1-11

How the Verbs Are Organized in the Remainder of the Book 1-12

Chapter 2. CCA Node Management and Access Control 2-1
CCA Access Control . 2-2

Understanding Access Control . 2-2
Role-based Access Control . 2-2

Understanding Roles . 2-2
Understanding Profiles . 2-3

Initializing and Managing the Access Control System 2-5
The Access Control Management and Initialization Verbs 2-5
Permitting Changes to the Configuration 2-6
Configuration and Greenwich Mean Time (GMT) 2-6

Logging On and Logging Off . 2-7
Protecting Your Transaction Information . 2-7

| Understanding and Managing Master Keys . 2-8
Access_Control_Initialization(CSUAACI) . 2-13
Access_Control_Maintenance (CSUAACM) . 2-16
Cryptographic_Facility_Control (CSUACFC) 2-22
Cryptographic_Facility_Query (CSUACFQ) . 2-26

| Key_Storage_Initialization (CSNBKSI) . 2-36
Logon_Control (CSUALCT) . 2-38

The use of Logon Context information 2-40
| Master_Key_Distribution (CSUAMKD) . 2-42

Master_Key_Process (CSNBMKP) . 2-46

Chapter 3. RSA Key Administration . 3-1
RSA Key Management . 3-1

Key Generation . 3-2
Key Import . 3-4
Re-enciphering a Private Key Under an Updated Master Key 3-4
Using the RSA Keys . 3-5
Using the Private Key at Multiple Nodes . 3-5

 Copyright IBM Corp. 1997-98 iii

| Registering and Retaining a Public Key . 3-5
PKA_Key_Generate (CSNDPKG) . 3-6
PKA_Key_Import (CSNDPKI) . 3-10
PKA_Key_Token_Build (CSNDPKB) . 3-12
PKA_Key_Token_Change (CSNDKTC) . 3-18
PKA_Public_Key_Extract (CSNDPKX) . 3-20

| PKA_Public_Key_Hash_Register (CSNDPKH) 3-22
| PKA_Public_Key_Register (CSNDPKR) . 3-24

Chapter 4. Hashing and Digital Signatures 4-1
Hashing . 4-1
Digital Signatures . 4-2
Digital_Signature_Generate (CSNDDSG) . 4-4
Digital_Signature_Verify (CSNDDSV) . 4-7
One_Way_Hash (CSNBOWH) . 4-10

Chapter 5. Basic CCA DES Key Management 5-1
Understanding CCA DES Key Management . 5-2
Control Vectors . 5-3

Checking a Control Vector Before Processing a Cryptographic Command . 5-4
Key Types . 5-5
Key Usage Restrictions . 5-7

Key Tokens, Key Labels, and Key Identifiers . 5-8
Key Tokens . 5-8
Key Labels . 5-10
Key Identifiers . 5-10

Using the Key Processing and Key Storage Verbs 5-11
Installing and Verifying Keys . 5-11
Generating Keys . 5-12
Exporting and Importing Keys . 5-14
Storing Keys in Key Storage . 5-15

Security Precautions . 5-15
Clear_Key_Import (CSNBCKI) . 5-16
Data_Key_Export (CSNBDKX) . 5-17
Data_Key_Import (CSNBDKM) . 5-18

| Diversified_Key_Generate (CSNBDKG) . 5-20
Key_Export (CSNBKEX) . 5-23
Key_Generate (CSNBKGN) . 5-25

Key Type Specifications . 5-28
Key Length Specification . 5-29

Key_Import (CSNBKIM) . 5-31
Key_Part_Import (CSNBKPI) . 5-33
Key_Test (CSNBKYT) . 5-35
Key_Token_Build (CSNBKTB) . 5-38
Key_Token_Change (CSNBKTC) . 5-41
Key_Translate (CSNBKTR) . 5-43
Random_Number_Generate (CSNBRNG) . 5-45
PKA_Symmetric_Key_Export (CSNDSYX) . 5-47

| PKA_Symmetric_Key_Generate (CSNDSYG) 5-49
PKA_Symmetric_Key_Import (CSNDSYI) . 5-52

Chapter 6. Data Confidentiality and Data Integrity 6-1
Encryption and Message Authentication Codes 6-1

Ensuring Data Confidentiality . 6-1

iv IBM 4758 CCA Services

Ensuring Data Integrity . 6-2
MACing Segmented Data . 6-3

Decipher (CSNBDEC) . 6-4
Encipher (CSNBENC) . 6-7
MAC_Generate (CSNBMGN) . 6-10
MAC_Verify (CSNBMVR) . 6-13

Chapter 7. Key Storage Verbs . 7-1
Key Labels and Key Storage Management . 7-1

Key Label Content . 7-2
 DES_Key_Record_Create (CSNBKRC) . 7-4
 DES_Key_Record_Delete (CSNBKRD) . 7-5
 DES_Key_Record_List (CSNBKRL) . 7-7
 DES_Key_Record_Read (CSNBKRR) . 7-9
 DES_Key_Record_Write (CSNBKRW) . 7-10
 PKA_Key_Record_Create (CSNDKRC) . 7-11
 PKA_Key_Record_Delete (CSNDKRD) . 7-13
 PKA_Key_Record_List (CSNDKRL) . 7-15
 PKA_Key_Record_Read (CSNDKRR) . 7-17
 PKA_Key_Record_Write (CSNDKRW) . 7-19

| Retained_Key_Delete (CSNDRKD) . 7-21
| Retained_Key_List (CSNDRKL) . 7-22

Chapter 8. Financial Services Support Verbs 8-1
| Processing Financial PINs . 8-1
| PIN Verb Summary . 8-4
| PIN Calculation Method and PIN Block Format Summary 8-5
| Providing Security for PINs . 8-5
| Using Specific Key Types and Key-Usage Bits to Help Ensure PIN
| Security . 8-6
| Supporting Multiple PIN Calculation Methods 8-7
| PIN Calculation Methods . 8-7
| Data_Array . 8-7
| Supporting Multiple PIN-Block Formats and PIN Extraction Methods 8-9
| PIN Profile . 8-9
| PIN Extraction Methods . 8-10
| Personal Account Number (PAN) . 8-11
| Clear_PIN_Encrypt (CSNBCPE) . 8-12
| Clear_PIN_Generate (CSNBPGN) . 8-15
| Clear_PIN_Generate_Alternate (CSNBCPA) 8-18
| Encrypted_PIN_Generate (CSNBEPG) . 8-24
| Encrypted_PIN_Translate (CSNBPTR) . 8-29
| Encrypted_PIN_Verify (CSNBPVR) . 8-34

SET_Block_Compose (CSNDSBC) . 8-40
SET_Block_Decompose (CSNDSBD) . 8-44

Appendix A. Return Codes and Reason Codes A-1
Return Codes . A-1
Reason Codes . A-1

Return Code 0 . A-2
Return Code 4 . A-3
Return Code 8 . A-5
Return Code 12 . A-13
Return Code 16 . A-14

 Contents v

Return Code 24 . A-15

Appendix B. Data Structures . B-1
Key Tokens . B-1

Master Key Verification Pattern . B-1
Token-Validation Value and Record-Validation Value B-2
Null Key Token . B-2
Internal DES Key Token . B-3
External DES Key Token . B-4

DES Key Token Flag Byte 1 . B-4
DES Key Token Flag Byte 2 . B-4

RSA Key Token Formats . B-5
RSA Key Token Sections . B-6

Chaining Vector Records . B-13
Key Storage Records . B-14
Key Record List Data Set . B-16
Access Control Data Structures . B-18

Role Structure . B-18
Basic Structure of a Role . B-18
Aggregate Role Structure . B-19
The Access Control Point List . B-19
Contents of the Default Role . B-20

Profile Structure . B-21
Basic Structure of a Profile . B-21
Aggregate Profile Structure . B-22
The Authentication Data Structure . B-22

| Examples of the data structures . B-25
| Passphrase authentication data . B-25
| User profile . B-26
| Aggregate profile structure . B-27
| Access control point list . B-27
| Role data structure . B-28
| Aggregate role data structure . B-29
| Master Key Shares Data Formats . B-30
| Function Control Vector . B-31

Appendix C. CCA Control Vector Definitions and Key Encryption C-1
DES Control Vector Values . C-1

| Key Form Bits, 'fff' . C-5
Specifying a Control Vector Base Value . C-5

CCA Key Encryption and Decryption Process C-8
| CCA DES Key Encryption and Decryption Process C-8

CCA RSA Private Key Encryption and Decryption Process C-10
Changing Control Vectors . C-11

Appendix D. Algorithms and Processes . D-1
Cryptographic Key Verification Techniques . D-1

Master Key Verification Algorithm . D-1
DES Key Verification Algorithm . D-1

| Encrypt Zeros DES Key Verification Algorithm D-2
Ciphering Methods . D-3

ANSI X3.106 Cipher Block Chaining (CBC) Method D-3
ANSI X9.23 . D-5

MAC Calculation Method . D-7

vi IBM 4758 CCA Services

| PKA92 Key Format and Encryption Process D-8
| Encrypting a Key_Encrypting Key in the NL-EPP-5 Format D-10

Triple-DES Ciphering Algorithms . D-11
| RSA Key-Pair Generation . D-15

Access Control Algorithms . D-16
Passphrase Verification Protocol . D-16

Design Criteria . D-16
Description of the Protocol . D-16

| Master Key Splitting Algorithm . D-18

| Appendix E. Financial PIN Calculation Methods and PIN Blocks E-1
| PIN Calculation Methods . E-1
| IBM 3624 PIN Calculation Method . E-2
| IBM 3624 PIN Offset Calculation Method E-3
| Netherlands PIN-1 Calculation Method . E-4
| IBM German Bank Pool Institution PIN Calculation Method E-5
| VISA PIN Validation Value (PVV) Calculation Method E-6
| Interbank PIN Calculation Method . E-7
| PIN Block Formats . E-8
| 3624 PIN Block Format . E-8
| ISO-0 PIN Block Format . E-9
| ISO-1 PIN Block Format . E-10
| ISO-2 PIN Block Format . E-11

Appendix F. Verb List . F-1

Appendix G. Access Control Request Function Codes G-1

List of Abbreviations . X-1

Glossary . X-3

Index . X-15

 Contents vii

viii IBM 4758 CCA Services

 Figures

| 0-1. New and Modified Verbs for Support of Master Key Loading and
| Coprocessor-Retained Keys . xvi
| 0-2. New Verbs for Support of Finance Industry PIN Processing xvii
| 0-3. CCA RSA-Based Key Management Extended Verbs xviii
| 0-4. Miscellaneous New and Extended Verbs xviii

1-1. CCA Security API, Access Layer, Cryptographic Engine 1-3
2-1. CCA Node, Access Control and Master Key Management Verbs . . . 2-1

| 2-2. Coprocessor-to-Coprocessor Master Key Transfer 2-11
2-3. CSUAACI Rule_Array Input Keywords 2-14
2-4. Contents of the verb_data_1 field . 2-15
2-5. Contents of the verb_data_2 field . 2-15
2-6. Contents of the Name Variable by Rule-array Keyword 2-18
2-7. Contents of the Output_data Variable by Rule-array Keyword 2-18
2-8. Cryptographic_Facility_Query Rule_Array Output Keywords 2-28
2-9. CSUALCT Rule_Array Input Keywords 2-39

2-10. Contents of the authentication parameters field 2-39
2-11. Contents of the authentication data field 2-40

3-1. Public-Key Key-Administration Services 3-1
3-2. PKA96 Verbs with Key Token Flow . 3-2
3-3. PKA_Key_Token_Build Rule_Array Keywords 3-13
3-4. PKA_Key_Token_Build Key Values Structures 3-14
3-5. PKA_Key_Token_Change Rule_Array Keywords 3-18
4-1. Hashing and Digital Signature Services 4-1
4-2. Digital_Signature_Generate Rule_Array Keywords 4-5
4-3. Digital_Signature_Verify Rule_Array Keywords 4-8
4-4. One_Way_Hash Rule_Array Keywords 4-11
5-1. Basic CCA DES Key Management Verbs 5-1
5-2. Flow of Cryptographic Command Processing in a Cryptographic

Facility . 5-5
5-3. Generic Key Types and Verb Usage 5-6

| 5-4. Key_Token_Build Keyword Combinations 5-7
5-5. Control Vector Key-Usage Keywords 5-7
5-6. Key_Token Contents . 5-8
5-7. Key Identifier, Key Tokens, and Key Labels 5-9
5-8. Key Processing Verbs . 5-12
5-9. Key Exporting and Importing . 5-14

5-10. Key_Type and Key_Form Keywords for One Key 5-28
5-11. Key_Type and Key_Form Keywords for a Key Pair 5-29
5-12. Key Lengths by Key Type . 5-30
5-13. Key_Part_Import Rule_Array Keywords 5-34
5-14. Key_Token_Build Rule_Array Keywords 5-39
5-15. Key_Token_Change Rule_Array Keywords 5-42
5-16. Key_Token_Build Form Keywords . 5-45

6-1. Data Confidentiality and Data Integrity Verbs 6-1
6-2. Decipher Rule_Array Keywords . 6-5
6-3. Encipher Rule_Array Keywords . 6-8
7-1. Key Storage Record Services . 7-1
7-2. Key_Token_BuildRule_Array Keywords 7-5
7-3. Key_Token_BuildRule_Array Keywords 7-13
7-4. Key_Token_BuildRule_Array Keywords 7-20

 Copyright IBM Corp. 1997-98 ix

8-1. Financial Services Support Verbs . 8-1
| 8-2. Financial PIN Verbs . 8-3
| 8-3. PIN Verb, PIN Calculation Method, and PIN-block Format Support
| Summary . 8-5
| 8-4. Pad-Digit Specification by PIN-Block Format 8-10
| 8-5. PIN Extraction Method Keywords by PIN-Block Format 8-11
| 8-6. Clear_PIN_Generate_Alternate Rule_Array Keywords (First Element) 8-20
| 8-7. Clear_PIN_Generate_Alternate Rule_Array Keywords (Second
| Element) . 8-21
| 8-8. Encrypted_PIN_Generate Rule_Array Keywords 8-26
| 8-9. Encrypted_PIN_Translate Rule_Array Keywords (First Element) . . 8-31
| 8-10. Encrypted_PIN_Translate Rule_Array Keywords (Second Element) 8-32
| 8-11. Encrypted_PIN_Translate Required Hardware Commands 8-33
| 8-12. Encrypted_PIN_Verify Rule_Array Keywords (First Element) 8-37
| 8-13. Encrypted_PIN_Verify Rule_Array Keywords (Second Element) . . 8-37

A-1. Return Code Values . A-1
A-2. Reason Codes for Return Code 0 . A-2
A-3. Reason Codes for Return Code 4 . A-3
A-4. Reason Codes for Return Code 8 . A-5
A-5. Reason Codes for Return Code 12 A-13
A-6. Reason Codes for Return Code 16 A-14
A-7. Reason Codes for Return Code 24 A-15
B-1. PKA Null Key Token Format . B-2
B-2. Internal Key Token Format . B-3
B-3. External Key Token Format . B-4
B-4. Key Token Flag Byte 1 . B-4
B-5. Key Token Flag Byte 2 . B-4
B-6. RSA Token Header . B-7
B-7. RSA Private Key, 1024-Bit Modular-Exponentiation Format B-7
B-8. Private Key, 2048-Bit Chineese-Remainder Format B-8
B-9. RSA Public Key . B-9

B-10. RSA Private-key Name . B-10
| B-11. RSA Public-key Certificate(s) Section Header B-10
| B-12. RSA Public-key Certificate(s) Public Key Subsection B-11
| B-13. RSA Public-key Certificate(s) Optional Information Subsection
| Header . B-11
| B-14. RSA Public-key Certificate(s) User Data TLV B-11
| B-15. RSA Public-key Certificate(s) Environment Identifier (EID) TLV . . . B-11
| B-16. RSA Public-key Certificate(s) Serial Number TLV B-12
| B-17. RSA Public-key Certificate(s) Signature Subsection B-12

B-18. RSA Private-key Blinding Information B-13
B-19. Cipher, MAC_Generate, and MAC_Verify Chaining Vector Format . B-13
B-20. Key Storage File Header, Record 1 B-14
B-21. Key Storage File Header, Record 2 B-15
B-22. Key Record Format in Key Storage B-15
B-23. Key Record List Data Set Format . B-16
B-24. Role layout . B-18
B-25. Aggregate role structure with header B-19
B-26. Access control point structure . B-20
B-27. Functions permitted in Default Role B-21
B-28. Profile layout . B-21
B-29. Layout of profile Activation and Expiration dates B-21
B-30. Aggregate profile structure with header B-22
B-31. Layout of the Authentication Data field B-23

x IBM 4758 CCA Services

B-32. Authentication Data for each authentication mechanism B-24
| B-33. Passphrase authentication data structure B-25
| B-34. User profile data structure . B-26
| B-35. Aggregate profile structure . B-27
| B-36. Access Control Point List . B-27
| B-37. Role data structure . B-28
| B-38. Aggregate role data structure . B-29
| B-39. Cloning Information Token Data Structure B-30
| B-40. Master Key Share TLV . B-30
| B-41. Cloning Information Signature TLV B-30
| B-42. FCV Distribution Structure . B-31

C-1. Control Vector Default Values for Generic Key Types C-3
C-2. Control Vector Base Bit Map . C-4

| C-3. Multiply-Enciphering and Multiply-Deciphering CCA Keys C-9
C-4. Exchanging a Key with a Non-Control-Vector System C-12
D-1. Enciphering Using the CBC Method D-4
D-2. Deciphering Using the CBC Method D-4
D-3. Enciphering Using the ANSI X9.23 Method D-6
D-4. Deciphering Using the ANSI X9.23 Method D-6
D-5. MAC Calculation Method . D-7

| D-6. PKA96 Clear DES Key Record . D-8
| D-7. NL-EPP-5 Key Record Format . D-10

D-8. EDE2 Algorithm . D-11
D-9. DED2 Algorithm . D-12

D-10. EDE3 Algorithm . D-13
D-11. DED3 Algorithm . D-14
D-12. Example of logon key computation D-16

| E-1. 3624 PIN Block Format . E-8
| E-2. ISO-0 PIN Block Format . E-9
| E-3. ISO-1 PIN Block Format . E-10
| E-4. ISO-2 PIN Block Format . E-11

F-1. Security API Verbs in Supported Environments F-1
G-1. Access control point codes . G-1

 Figures xi

xii IBM 4758 CCA Services

 Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM’s product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM’s
intellectual property rights or other legally protectable rights may be used instead of
the IBM product, program, or service. Evaluation and verification of operation in
conjunction with other products, programs, or services, except those expressly
designated by IBM, are the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY, 10594, USA.

 Trademarks
The following terms, denoted by an asterisk (*) in this publication, are trademarks of
the IBM Corporation in the United States or other countries or both:

3090 ACF/VTAM
AIX AIX/6000
Application System/400 AS/400
CICS Enterprise System/3090
Enterprise System/9000 Enterprise System/9370
ES/3090 ES/9000
ES/9370 IBM
IBM Registry IBM World Registry
Micro Channel MVS/DFP
MVS/ESA MVS/SP
MVS/XA Operating System/2
OS/2 Operating System/400
OS/400 Personal Security
Personal System/2 PS/2
PS/ValuePoint POWERserver
POWERstation RACF
RS/6000 SecureWay
System/360 System/370
System/390 S/390 G3 Enterprise Server
S/390 Multiprise Systems Application Architecture
XGA

 Copyright IBM Corp. 1997-98 xiii

The following terms, denoted by a double asterisk (**) in this publication, are the
trademarks of other companies:

Diebold Diebold Incorporated
Docutel Docutel
MASTERCARD MasterCard International, Incorporated
Pentium Intel Corporation
NCR National Cash Register Corporation
RSA RSA Data Security, Inc.
UNIX UNIX Systems Laboratories, Incorporated
VISA VISA International Service Association

xiv IBM 4758 CCA Services

 Revision History

About This Publication

The manual is intended for systems and applications analysts and application
programmers who will evaluate or create programs for the IBM 4758 Common
Cryptographic Architecture (CCA) support.

Prerequisite to using this manual is familiarity with the contents of the IBM 4758
PCI Cryptographic Coprocessor General Information Manual, IBM form number
GC31-8608, that discusses topics important to the understanding of the information
presented in this manual:

� The IBM 4758 PCI Cryptographic Coprocessor
� An overview of cryptography
� Supported cryptographic functions
� Function sets implemented by various IBM CCA products
� Organization of the relevant publications.

| Revision History

| Second Edition, CCA Support Program Release 1.3
| This is the second edition of the IBM 4758 CCA Basic Services Reference and
| Guide, IBM form number SC31-8609-01.

| This manual describes the Common Cryptographic Architecture (CCA) application
| programming interface (API) that is supported by the CCA Support Program feature
| Release 1.3 for the IBM 4758 PCI Cryptographic Coprocessor. Depending on the
| Release level of the software that you have installed certain capabilities described
| in this manual may not be available to your application program.

| Changes and extensions to material previously published in the Basic Services
| manual are marked with the revision bar as shown at the left.

| The CCA Support Program feature, Release 1.3, includes functional changes and
| enhancements in these catagories:

 Copyright IBM Corp. 1997-98 xv

 Revision History

| � Items related to:

| – Generation of a random master key
| – Distribution of master key shares in an “m of n” scheme
| – Optional retention of newly-generated RSA private keys within the
| Coprocessor
| – Registration of RSA public keys within the Coprocessor
| – Management of Coprocessor-retained keys.

| Figure 0-1. New and Modified Verbs for Support of Master Key Loading and
| Coprocessor-Retained Keys

| Verb| Page| Service Modification

| Cryptographic_Facility_Control| 2-22| Zeriozes (resets, reinitializes) the CCA node, sets the
| Coprocessor clock, and resets the intrusion latch.

| SET-EID and SET-MOFN keywords are added to the
| rule array to initialize the environment Id (EID) and the
| number of master key shares that can be distributed
| and that must be received to clone a master key.

| Cryptographic_Facility_Query| 2-26| Retrieves information about the coprocessor.

| Extended to return information about the m-of-n
| master key distribution shares values and a list of
| shares distributed and/or received.

| Master_Key_Distribution| 2-42| Supports the distribution and reception of master key
| shares.

| New verb.

| Master_Key_Process| 2-46| Enables the introduction of a master key into the
| coprocessor.

| Extended with the RANDOM keyword for generation
| of a random master key, and with the CLR-OLD
| keyword to empty the Old Master Key Register.

| PKA_Key_Generate| 3-6| Generate an RSA key-pair.

| Added the RETAIN keyword and signature support.

| PKA_Public_Key_Hash_Register| 3-22| Register the hash of a public key used later to verify
| an offered public key, see PKA_Public_Key_Register.

| New verb.

| PKA_Public_Key_Register| 3-24| Register a public key used later to verify an offered
| public key. Registration requires that a hash of the
| public key has previously been registered within the
| Coprocessor, see PKA_Public_Key_Hash_Register.

| New verb.

| Retained_Key_Delete| 7-21| Delete a key retained within the cryptographic engine.

| New verb.

| Retained_Key_List| 7-22| List keys retained within the cryptographic engine.

| New verb.

| Note: The key token structure extensions are described “RSA Public-key Certificate Section” on
| page B-10.

xvi IBM 4758 CCA Services

 Revision History

| � Items related to the processing of Finance Industry PINs (personal identification
| numbers). Six new verbs are described in

| Figure 0-2. New Verbs for Support of Finance Industry PIN Processing

| Verb| Page| Service Modification

| Clear_PIN_Encrypt| 8-12| This verb formats a PIN into a PIN-block and outputs
| the PIN-block as an encrypted quantity.

| This verb is extended with keyword RANDOM to
| generate random PINs that are output in encrypted
| PIN blocks.

| Clear_PIN_Generate| 8-15| This verb generates a clear PIN, or a PIN offset.

| Clear_PIN_Generate_Alternate| 8-18| This verb extracts a customer-selected PIN or
| institution-assigned PIN from an encrypted PIN-block
| and generates a PIN offset.

| Encrypted_PIN_Generate| 8-24| This verb generates a PIN and formats the PIN into an
| encrypted PIN block.

| Encrypted_PIN_Translate| 8-29| This verb operates in two modes.

| Translate mode re-encrypts a PIN block under a
| different key.

| Reformat mode does one or more of the following:

| � Reformats a PIN from one PIN block format into
| another PIN block format

| � Changes selected non-PIN digits in a PIN block

| � Re-encrypts a PIN block.

| Encrypted_PIN_Verify| 8-34| This verb extracts and verifies a PIN by using the
| specified PIN calculation method. An offset value can
| be included in the verification of the value in the input
| PIN block.

| Key_Generate| 5-25| This verb is used to generate DES keys.

| The documentation is updated to reflect the additional
| PIN key types that can be generated and to note the
| requirement for use of the Extended Key Generate
| command with selected key-type combinations.

| Note: The PIN block formats and the PIN generation processes are described in Appendix E,
| “Financial PIN Calculation Methods and PIN Blocks” on page E-1.

 About This Publication xvii

 Revision History

| � Items related to additional capabilities for the distribution of DES keys using
| public key techniques.

| � Miscellaneous items

| – A new verb, Diversified_Key_Generate, and a new key-generating key-type,
| to generate a “diversified key” in support of operations with finance industry
| smart cards
| – Extension of the Key_Generate verb to support generation of
| key-generating keys and double-length MAC and MACVER keys.
| – Extension of the Key_Test verb to perform an “encrypt zeros” key test
| pattern generation and verification function
| – Extension of the master key process to permit zeroization of the old master
| key register
| – Extension of the MAC_Generate and MAC_Verify verbs to perform ANSI
| X9.19 double-length DES key MAC generation and verification.

| Figure 0-3. CCA RSA-Based Key Management Extended Verbs

| Verb| Page| Service Modification

| PKA_Symmetric_Key_Export| 5-47| Exports a symmetric key under an RSA public key.

| PKA_Symmetric_Key_Generate| 5-49| For “asymmetric” DES keys (achieved through the use
| of control vectors), generate a local master-key-
| encrypted key, and its asymmetric counterpart,
| encrypted under an RSA public key.

| PKA_Symmetric_Key_Import| 5-52| Imports a symmetric key under an RSA private key.

| Figure 0-4. Miscellaneous New and Extended Verbs

| Verb| Page| Service Modification

| Diversified_Key_Generate| 5-20| Generates a “diversified” key by encrypting an input
| value with a supplied key-generating key.

| Key_Generate| 5-25| Generates a random DES key or DES key pair,
| enciphers the keys, and updates or creates internal
| and external key tokens.

| The verb is extended to support generation of the
| key-generating key key-type and the double-length
| MAC/MACVER key types.

| Key_Test| 5-35| Generates or verifies a verification pattern for keys
| and key parts.

| A verb extension permits the use of the “encrypt
| zeros” key test method with the use of keyword
| ENC-ZERO.

| Master_Key_Process| 2-46| Manages the contents of the master key registers.

| A verb extension permits the contents of the Old
| Master Key Register to be zeroized with the use of
| keyword CLR-OLD .

| MAC_Generate| 6-10| Generates a message authentication code (MAC).

| An extension provides for support of the ANSI X9.19
| double-length MAC-key process.

| MAC_Verify| 6-13| Verifies a message authentication code (MAC).

| An extension provides for support of the ANSI X9.19
| double-length MAC-key process.

xviii IBM 4758 CCA Services

| � Modifications of the original implementation of the SET services are
| documented in Chapter 8, “Financial Services Support Verbs.” These changes
| were made in release 1.1 and are formally published in this manual revision.

 Organization
This manual includes:

� Chapter 1, “Introduction to Programming for the IBM CCA” presents an
introduction to programming for the CCA application programming interface and
products.

� Chapter 2, “CCA Node Management and Access Control” provides a basic
explanation of the access control system implemented within the hardware.
The chapter also explains the master key concept and administration, and
introduces CCA DES key management.

� Chapter 3, “RSA Key Administration” explains how to generate and distribute
RSA keys between CCA nodes and with other RSA implementations.

� Chapter 4, “Hashing and Digital Signatures” explains how to protect and
confirm the integrity of data using data hashing and digital signatures.

� Chapter 5, “Basic CCA DES Key Management” explains basic DES key
management services available with CCA.

� Chapter 6, “Data Confidentiality and Data Integrity” explains how to encipher
data using DES and how to verify the integrity of data using the DES-based
Message Authentication Code (MAC) process. The ciphering and MACing
services are described.

� Chapter 7, “Key Storage Verbs” explains how to use key labels and how to
employ key storage managed by the accesses software.

� Chapter 8, “Financial Services Support Verbs” explains services for the
| cryptographic portions of the Secure Electronic Transaction (SET) protocol and
| PIN processing services.

These appendices are included:

� Appendix A, “Return Codes and Reason Codes” describes the return codes
issued by the TSS products.

� Appendix B, “Data Structures” describes the various data structures for key
token, chaining vector records, key storage records, and the key record list
data set.

� Appendix C, “CCA Control Vector Definitions and Key Encryption” describes
the control vector bits and provides rules for the construction of a control
vector.

� Appendix D, “Algorithms and Processes” describes, in further detail, the
algorithms and processes mentioned in this book.

| � Appendix E, “Financial PIN Calculation Methods and PIN Blocks” describes
| processes and formats implemented by the PIN processing support.

 About This Publication xix

 Related Publications
In addition to the manuals listed below, you may wish to refer to other CCA product
publications which may be of use with applications and systems you might develop
for use with the IBM 4758 product. While there is substantial commonality in the
API supported by the CCA products, and while this manual seeks to guide you to a
common subset supported by all CCA products, other individual product
publications may provide further insight into potential issues of compatibility.

All of the IBM 4758 related publications can be obtained from the Library page that
you can reach from the IBM 4758 home page at
http://www.ibm.com/security/cryptocards.

IBM 4758 PCI Cryptographic Coprocessor General Information Manual, GC31-8608
| The General Information manual is prerequisite reading for this manual.

| IBM 4758 PCI Cryptographic Coprocessor CCA Support Program Guide,
| SC31-8610
| Describes the installation of the CCA Support Program and the operation of the
| Cryptographic Node Management utility.

| IBM 4758 PCI Cryptographic Coprocessor Installation Manual, SC31-8623.

xx IBM 4758 CCA Services

Chapter 1. Introduction to Programming for the IBM CCA

This chapter will introduce you to the IBM Common Cryptographic Architecture
(CCA) application programming interface (API). This chapter explains some basic
concepts you use to obtain cryptographic and other services from the IBM 4758
PCI Cryptographic Coprocessor and its CCA Support Program feature. Before
continuing to read this manual, please review the “About This Publication” on
page xv and first become familiar with prerequisite information as described in that
section.

In this chapter you can read about:

� What CCA services are available with the IBM 4758
� An overview of the CCA environment
� The Security API, programming fundamentals

| � How the verbs are organized in the remainder of the book.

What CCA Services Are Available with the IBM 4758
CCA products provide a variety of cryptographic processes and data security
techniques. Your application program can call verbs (services) to perform these
types of functions:

� Encrypt and decrypt information, generally using the DES algorithm in the
cipher block chaining mode to enable data confidentiality

� Hash data to obtain a digest, or process the data to obtain a message
authentication code that is useful in demonstrating data integrity

� Form and validate digital signatures to demonstrate both data integrity and
non-repudiation

| � Generate, encrypt, transform, and verify finance industry PINs with a
| comprehensive set of PIN-processing services

� Manage the various keys necessary to perform the above operations. CCA is
especially strong and versatile in this area; inadequate key-management
techniques are a major source of weakness in many cryptographic
implementations.

� Administrative services for controlling the initialization and operation of the CCA
node.

This book describes the many available services in the following chapters. The
services are grouped by topic and within a chapter are listed in alphabetical order
by name. Each chapter opens with an introduction to the services found in that
chapter.

The remainder of this chapter provides an overview of the structure of a CCA
cryptographic node and introduces some important concepts and terms.

 Copyright IBM Corp. 1997-98 1-1

An Overview of the CCA Environment
Figure 1-1 on page 1-3 provides a conceptual framework for positioning the CCA
Security API. Application programs make procedure calls to the API to obtain
cryptographic and related I/O services. The CCA API is designed so that a call can
be issued from essentially any high level programming language. The call, or
request, is forwarded to the cryptographic services access layer and will receive a
synchronous response. That is, your application program will lose control until the
access layer returns a response at the conclusion of processing your request.

The products that implement the CCA API consist of both hardware and software
components. The software consists of application development support and
runtime software components.

� The application development support software primarily consists of language
bindings that can be included in new applications to assist in accessing
services available at the API. Language bindings are provided for the C
programming language.

� The runtime software can be divided into the following categories:

– Service-requesting programs, including utility programs and application
programs

– An “agent” function that is logically part of the calling application program or
utility

– An environment-dependent request routing function

– The server environment that gives access to the cryptographic engine.

Generally, the cryptographic engine is implemented in a hardware device that
includes a general purpose processor and often also includes specialized
cryptographic electronics. These components are encapsulated in a protective
environment to enhance security.

The utility programs include support for administering the hardware access controls,
administering DES and public-key cryptographic keys, and configuring the software
support. See the IBM 4758 PCI Cryptographic Coprocessor CCA Support
Program, SC31-8610., for a description of the utility programs provided with the
Cryptographic Adapter Services licensed software.

You can create application programs that use the products via the CCA API, or you
can purchase applications from IBM or other sources. This book is the primary
source of information for designing systems and application programs that use the
CCA API with the IBM 4758 Coprocessor.

| IBM 4758 PCI Cryptographic Coprocessor: The coprocessor provides a secure
| programming and hardware environment wherein DES and RSA processes are
| performed. The CCA support program enables applications to employ a set of
| DES- and RSA-based cryptographic services utilizing the IBM 4758 hardware.
| Such services include:

| � RSA key-pair generation.
| � Digital signature generation and verification.
| � Cryptographic key wrapping and unwrapping, including the SET-standardized
| “OAEP” key-wrapping process.
| � Data encryption and MAC generation/verification.

1-2 IBM 4758 CCA Services

Figure 1-1. CCA Security API, Access Layer, Cryptographic Engine

| � PIN processing for the financial services industry
| � Other services, including DES key management based on CCA's control-vector
| enforced key separation.

| CCA: IBM has created the IBM Common Cryptographic Architecture (CCA) as the
| basis for a consistent cryptographic product family. Implementations of this
| architecture were first released in 1989, and it has been extended throughout the
| years. The IBM 4758 and its CCA support program feature are a recent CCA
| product offering that today implements a portion of those functions available with
| older products as well as many new services such as the support of the SET
| protocol.

| Applications employ the CCA security API to obtain services from and to manage
| the operation of a cryptographic system that meets CCA architecture specifications.

| Cryptographic Engine: The CCA architecture defines a cryptographic subsystem
| that contains a cryptographic engine operating within a protected boundary; see
| Figure 1-1. The coprocessor's tamper-resistant, tamper-responding environment
| provides physical security for this boundary, and the CCA architecture provides the
| concomitant logical security needed for the full protection of critical information.

| Access Control: Each CCA node has an access control system enforced by the
| hardware and protected software. This access control system permits you to
| determine whether programs and persons can use the cryptographic and data
| storage services. Although your computing environment may be considered open,

 Chapter 1. Introduction to Programming for the IBM CCA 1-3

| the specialized processing environment provided by the cryptographic engine can
| be kept secure; selected services are provided only when logon requirements are
| met. The access control decisions are performed within the secured environment
| of the cryptographic engine and can not be subverted by rogue code that might run
| on the main computing platform.

| Coprocessor Certification: After quality checking a newly manufactured
| coprocessor, IBM loads and certifies the embedded software. Following the loading
| of basic, authenticated software, the coprocessor generates an RSA key-pair and
| retains the private key within the cryptographic engine. The associated public key
| is signed by a key securely held at the manufacturing facility, and then the signed
| device key is stored within the coprocessor. The manufacturing facility key has
| itself been signed by a securely-held key unique to the IBM 4758 product line.

| The private key within the coprocessor—known as the device private key—is
| retained in the coprocessor. From this time on, the coprocessor sets all
| security-relevant keys and data items to zero if tampering is detected or if the
| coprocessor batteries are removed . This zeroization will result in the loss of the
| factory-certified device key, the device private key, and all other data stored in
| battery-protected memory. Certain critical data stored in the Coprocessor flash
| memory is encrypted. The key used to encrypt such data is itself retained in the
| battery protected memory that is zerioized upon a tamper detection event.

| Master Key: When using the CCA architecture, working keys—including session
| keys and the RSA private keys used at a node to form digital signatures or to
| unwrap other keys—are generally stored outside of the protected environment.
| These working keys are wrapped (triple-enciphered) by a master key. The master
| key is held in the clear (not enciphered) within the the cryptographic engine.

| The number of keys a node can use is restricted only by the storage capabilities of
| the node, not by the finite amount of storage within the coprocessor secure module.
| In addition, keys can be used by other cryptographic nodes that have the same
| master key data. This feature is useful in high-availability or high-throughput
| environments where multiple cryptographic processors must function in parallel.

| Establishing a Master Key: To protect working keys, the master key must be
| generated and initialized in a secure manner. One method uses the internal
| random number generator for the source of the master key. In this case, the
| master key is never external to the node as an entity, and no other node will have
| the same master key1 unless master key cloning is authorized and in use. If the
| coprocessor detects tampering and destroys the master key, there is no way to
| recover the working keys that it wrapped.

| Another method enables authorized users to enter 168-bit key parts into the
| cryptographic engine. As each part is entered, that part is exclusive-ORd with the
| contents of the new master key register. When all three parts have been
| accumulated, a separate command is issued to promote the contents of the current
| master key register to the old master key register, and to promote the contents of
| the new master key register to the current master key register. “Understanding and
| Managing Master Keys” on page 2-8 provides additional detail about master key
| management.

| 1 Unless, out of the 2168 possible values, another node randomly generates the same master key data.

1-4 IBM 4758 CCA Services

| A master key can be “cloned” (copied) from one IBM 4758 CCA node to another
| IBM 4758 CCA node through a process of master-key-shares distribution. Under
| this process that is protected through the use of digital certificates and
| authorizations, the master key can be reconstituted in one or more additional IBM
| 4758s through the transport of encrypted shares of the master key.

| CCA Verbs: Application and utility programs (requesters) obtain service from the
| CCA support program by issuing service requests (“verb calls” or “procedure calls”)
| to the runtime subsystem. To fulfill these requests, the support program obtains
| service from the coprocessor software and hardware.

| The available services are collectively described as the CCA security API. All of
| the software and hardware accessed through the CCA security API should be
| considered an integrated subsystem. A command processor performs the verb
| request within the cryptographic engine.

| Commands and Access Control: In order to ensure that only designated
| individuals (or programs) can execute sensitive commands such as master key
| loading, each command is assigned a control point value within the cryptographic
| engine access control system.

| The access control system includes roles; each role defines the permissible
| activities for users associated with that role. The access control system also has a
| set of user profile entries that associate a user ID (UID) with its assigned role, its
| logon identification information, and a session key. Within a host process, one and
| only one user can be logged on at a time. The default role defines the operations
| permitted in the absence of a logged-on user. The coprocessor supports multiple
| logons from different host processes. The coprocessor also supports requests from
| multiple threads within a single host process.

| After a user successfully logs on, subsequent requests made to the cryptographic
| system are permitted or denied based on the permissions defined by the role
| associated with the user profile. Verb requests and responses are MACd using the
| session key. “Access Control Algorithms” provides details about the logon method,
| and “CCA Access Control” on page 2-2 provides a further explanation of the
| access control system.

| The Logon_Control verb call establishes a session key. This key is held in user
| application memory space and is used to compute a DES MAC on the information
| in a verb call. The cryptographic engine validates the MAC as one of its checks to
| ensure the authenticity of the verb request. Verb responses are protected in a
| similar manner.

| The user can issue another instance of Logon_Control in order to logoff; logoff
| causes the cryptographic engine to destroy its copy of the session key and to mark
| the user profile as not active.

How Application Programs Obtain Service
Application programs and utility programs (requestors) obtain services from the
products by issuing service requests (verb calls) to the runtime subsystem of
software and hardware. These requests are in the form of procedure calls that
must be programmed according to the rules of the language in which the
application is coded. The services that are available are collectively described as

 Chapter 1. Introduction to Programming for the IBM CCA 1-5

the security API. All of the software and hardware accessed through the security
API should be considered an integrated subsystem.

The cryptographic services access layer can receive requests concurrently from
multiple application programs, will serialize the requests, and return a response to
each requestor. There are other multi-processing implications arising from the
existence of a common master key and a common key storage facility -- these
topics are covered later in this book.

The way in which application programs and utilities are linked to the API services
depends on the computing environment. In the OS/2, AIX, and NT environments,
the operating systems dynamically link application security API requests to the
subsystem DLL code (AIX: shared library). Details for linking to the API are
covered in the guide book for the individual software products, IBM 4758 PCI
Cryptographic Coprocessor CCA Support Program book, SC31-8610.

Together, the security API stub code or DLL and the environment-dependent
request routing mechanism act as an agent on behalf of the application and present
a request to the server. In the OS/2, AIX and NT environments, the requests can
be issued by one or more programs. Each request is processed by the server as a
self-contained unit of work from a first-in, first-out queue. The programming
interface can be called concurrently by applications running as different processes.
The API is also thread safe; that is, use of the API by more than one thread within
a process is permitted and the application programmer need not take any special
precautions to serialize use of the cryptographic API. Both 16-bit and 32-bit entry
point service is provided. You control the choice of entry point through your use of
the import library portion of the cryptographic adapter services software; see the
IBM 4758 PCI Cryptographic Coprocessor CCA Support Program, SC31-8610.
(The cryptographic adapter services software is implemented as 32-bit support.)

In each server environment, a device driver provided by IBM supplies low-level
control of the hardware and passes the request to the hardware device. Requests
can require one or more I/O commands from the security server to the device driver
and hardware.

The security server and a directory server manage key storage. Applications can
store locally-used cryptographic keys in a key storage facility. This is especially
useful for long-life keys. Keys stored in key storage are referenced through the use
of a key label. Before deciding whether to use the key storage facility or to let the
application retain the keys, you must consider system design trade-off factors, such
as key backup, the impact of master key changing, the lifetime of a key, and so
forth.

1-6 IBM 4758 CCA Services

The Security API, Programming Fundamentals
The security application programming interface (API) is the interface for accessing
the services provided by the SecureWay cryptographic products in OS/2, AIX, and
NT workstations.

Most of the services provided are considered an implementation of the IBM
Common Cryptographic Architecture (CCA). Most of the extensions that differ from
other IBM CCA implementations are in the area of the access control services. If
your application program will be used with other CCA products, you should
compare the other product literature for differences.

Your application program requests a service through the security API by using a
procedure call for a verb.2 The procedure call for a verb uses the standard syntax
of a programming language, including the entry-point name of the verb, the
parameters of the verb, and the variables for the parameters. Each verb has an
entry-point name and a fixed-length parameter list; see Appendix F, “Verb List” for
a list of supported verbs and where information about the verb is published.

The security API is designed for use with high-level languages, such as C,
COBOL, PL/I, or Pascal, and for low-level languages, such as assembler. It is also
designed to enable you to use the same verb entry-point names and variables in
the various supported environments. Therefore, application code that you write for
use in one environment generally can be ported to additional environments with
minimal change.

Verbs, Variables, and Parameters
This section explains how each verb (service) is described in the reference material
and provides an explanation of the characteristics of the security API.

Each callable service, or verb, has an entry-point name and a fixed-length
parameter list. The reference material describes each verb and includes the
following information for each verb:

� Pseudonym (general language name)
� Entry-point name (computer language name)

 � Supported environments
 � Description
 � Restrictions
 � Format
 � Selected parameters
� Hardware command requirements.

Entry-Point Name: Each verb has an entry-point name that is used in your
program to call the verb. Each verb's entry point name begins with one of the
following:

CSNB generally the DES services

CSND RSA public key services (PKA96)

2 The term verb implies an action that an application program can initiate; other systems and publications might use the term
callable service instead of verb.

 Chapter 1. Introduction to Programming for the IBM CCA 1-7

CSUA Cryptographic-node and hardware control services.

The last three letters in the entry point name identify the specific service in a
group and are often the first letters of the principal words in the verb
pseudonym.

You use the entry point name in the call statement in your application program
to call the verb.

Format Section: The format section in each verb description lists the
entry-point name on the first line in bold type. This is followed by the list of
parameters for the verb. Generally the direction in which the variable identified
by the parameter is passed is listed along with the type of variable (integer or
string), and the size, number, or other special information about the variable.

The format section for each verb lists the parameters after the entry-point name
in the sequence in which they must be coded.

Parameters: All information that is exchanged between your application
program and a verb is through the variables that are identified by the
parameters in the procedure call. These parameters are pointers to the
variables contained in application program storage that contain information to be
exchanged with the verb. Each verb has a fixed-length parameter list, and
though all parameters are not always used by the verb, they must be included in
the call. The entry-point name and the parameters for each verb are shown in
the following format:

The first four parameters are the same for all of the verbs. For a description of
these parameters, see “Parameters Common to All Verbs” on page 1-10. The
remaining parameters (parameter_5, parameter_6, ... parameter_n), are unique
for each verb. For descriptions of these parameters, see the definitions with the
individual verbs.

Variable Direction: The parameter descriptions use the following terms to
identify the flow of information:

Input The application program sends the variable to the verb (to the
called routine).

Output The verb returns the variable to the application program.

In/Output The application program sends the variable to the verb, or the
verb returns the variable to the application program, or both.

Variable Type: A variable that is identified by a verb parameter can be a single
value or a one-dimensional array. If a parameter identifies an array, each data
element of the array is of the same data type. If the number of elements in the

Parameter name Direction Data Type Length of Data

entry_point_name

return_code Output Integer
reason_code Output Integer
exit_data_length Input Integer
exit_data Input String exit_data_length bytes
Parameter_5 Direction Data Type Length
Parameter_6 Direction Data Type Length
...
Parameter_n Direction Data Type Length

1-8 IBM 4758 CCA Services

array is variable, a preceding parameter identifies a variable that contains the
actual number of elements in the associated array. Unless otherwise stated, a
variable is a single value, not an array.

For each verb, the parameter descriptions use the following terms to describe
the type of variable:

Integer A 4-byte (32-bit), signed, twos-complement binary number.

In the AIX environment, integer values are presented in 4 bytes in
the sequence high-order to low-order (big endian). In the personal
computer (Intel) environments, integer values are presented in 4
bytes in the sequence low-order to high-order (little endian).

String A series of bytes where the sequence of the bytes must be
maintained. Each byte can take on any bit configuration. The
string consists only of the data bytes. No string terminators,
field-length values, or type-casting parameters are included.
Individual verbs can restrict the byte-values within the string to
characters or numerics.

Character data must be encoded in the native character set of the
computer where the data is used. Exceptions to this rule are noted
where necessary.

Array An array of values, which can be integers or strings. Only
one-dimensional arrays are permitted. For information about the
parameters that use arrays, see “Rule_Array and Other Keyword
Parameters” on page 1-11 below.

Variable Length: This is the length, in bytes, of the variable identified by the
parameter being described. This length may be expressed as a specific number
of bytes or it may be expressed in terms of the contents of another variable.

For example, the lengths of the exit_data variable is expressed in this manner.
The length of the exit_data string variable is specified in the exit_data_length
variable. This length is shown in the parameter tables as “exit_data_length
bytes,” The rule_array variable, on the other hand, is an array whose elements
are eight-byte strings. The number of elements in the rule array is specified in
the rule_array_count variable and its length is shown as “rule_array_count * 8
bytes.”

Note: Variable lengths (integer, for example) that are implied by the variable
data type are not shown in these tables.

 Commonly-Encountered Parameters
Some parameters are common to all verbs, other parameters are used with
many of the verbs. This section describes several groups of these parameters:

� Parameters common to all verbs
� Rule_array and other keyword parameters
� Key_identifiers, key_labels, and key_tokens.

 Chapter 1. Introduction to Programming for the IBM CCA 1-9

Parameters Common to All Verbs
The first four parameters (return_code, reason_code, exit_data_length, and
exit_data) are the same for all verbs. A parameter is an address pointer to the
associated variable in application data storage.

Return_Code
The return_code parameter is a pointer to an integer value that expresses
the general results of processing. See “Return Code and Reason Code
Overview” for more information about return codes

Reason_Code
The reason_code parameter is a pointer to an integer value that expresses
the specific results of processing. Each possible result is assigned a unique
reason code value. See “Return Code and Reason Code Overview” for
more information about reason codes

Exit_Data_Length
The exit_data_length parameter is a pointer to an integer value containing
the length of the string (in bytes) that is returned by the exit_data parameter.
The exit_data_length parameter should be set to zero to ensure
compatibility with any future extension or other operating environment.

Exit_Data
The exit_data parameter is a pointer to a variable length string that contains
installation-exit-dependent data that is exchanged with a preprocessing user
exit or a post-processing exit.

Note: The IBM 4758 CCA Support Program does not support user exits.
The exit_data_length and exit_data must be declared in the parameter list.
The exit_data_length parameter should be set to zero to ensure
compatibility with any future extension or other operating environment.

Return Code and Reason Code Overview: The return code provides a
general indication of the results of verb processing and is the value that your
application program should use in determining the course of further processing.
The reason code provides more specific information about the outcome of verb
processing. Note that reason code values generally differ between CCA product
implementations. Therefore, the reason code values should generally be
returned to individuals who can understand the implications in the context of
your application on a specific platform.

The return codes have these general meanings:

Entry_point_name

return_code Output Integer
reason_code Output Integer
exit_data_length Input Integer
exit_data Input String exit_data_length bytes

1-10 IBM 4758 CCA Services

See Appendix A, “Return Codes and Reason Codes” for a detailed discussion
of return codes and a complete list of all return and reason codes.

Value Meaning

0 Normal completion; a few nonzero reason codes are associated with this return
code.

4 The verb processing completed, but without full success. For example, this
return code can signal that a supplied PIN was found to be invalid.

8 Indicates that the verb stopped processing. Generally the application
programmer will need to investigate the problem and will need to know the
associated reason code.

12 Indicates that the verb stopped processing. The reason is most likely related to
a problem in the setup of the hardware or in the configuration of the software.

16 Indicates that the verb stopped processing. A processing error occurred in the
product. If these errors persist, a repair of the hardware or a correction to the
product software may be required.

Rule_Array and Other Keyword Parameters
Rule_array parameters and some other parameters use keywords to transfer
information. Generally, a rule array consists of data elements that contain
keywords that direct specific details of the verb process. Almost all keywords, in
a rule array or otherwise, are 8 bytes in length, and should be uppercase,
left-justified, and padded with space characters. While some implementations
can fold lower-case characters to upper case, you should always code the
keywords in upper case.

The number of keywords in a rule array is specified by a rule_array_count
variable, an integer that defines the number of (8-byte) elements in the array.

In some cases, a rule_array is used to convey information other than keywords
between your application and the server, this is however an exception.

Key_Identifiers, Key_Labels, and Key_Tokens
Essentially all cryptographic operations employ one or more keys. In CCA, keys
are retained within a structure called a key token. A verb parameter can point to
a variable that contains a key token. Generally you do not need to be
concerned with the details of a key token and can deal with it as an entity; see
“Key Tokens” on page B-1 for a detailed description of the key token structures.

Keys are described as one of:

Internal A key that is encrypted for local use. The cryptographic engine
will decrypt (unwrap) an internal key to use the key in a local
operation. Once a key is entered into the system it is always
encrypted (wrapped) if it appears outside of the protected
environment of the cryptographic engine. The engine has a
special key-encrypting key designated a master key. This key is
held within the engine to wrap and unwrap locally used keys.

Operational An internal key that is complete and ready for use. During entry
of a key, the internal key token can contain a flag that indicates
the key information is incomplete.

External A key that is either in the clear, or is encrypted (wrapped) by
some key-encrypting key. Generally, when a key is to be
transported from place to place, or is to be held for a significant

 Chapter 1. Introduction to Programming for the IBM CCA 1-11

period of time, it is required to encrypt the key with a transport
key. A key wrapped by a transport key-encrypting key is
designated External.

RSA public keys are not encrypted values (in PKA96), and when
not accompanied by private key information, are retained in an
external key token.

Internal key tokens can be stored in a flat file that is maintained by the directory
server. These key tokens are referenced by use of a key label. A key label is
an alphanumeric string that you place in a variable and reference with a verb
parameter.

Verb descriptions specify how you can provide a key using these terms:

Key token The variable must contain a proper key token structure

Key label The variable must contain a key label string that will be used to
locate a key record in key storage

Key identifier The variable can contain either a key token or a key label. The
first byte in the variable defines if the variable contains a key
token or a key label. When the first byte is in the range X'20'
through X'FE', the variable will be processed as a key label.
There are additional restrictions on the value of a key label, see
“Key Label Content” on page 7-2. The first byte in all key token
structures is in the range of X'01' to X'1F'. X'FF' as the first
byte of a key-related variable passed to the API raises an error
condition.

How the Verbs Are Organized in the Remainder of the Book
Now that you have a basic understanding of the API, you can find these topics
in the remainder of the book:

� Chapter 2, “CCA Node Management and Access Control” explains how the
cryptographic engine and the rest of the cryptographic node is administered.
There are two topics:

– Master key administration
– Access control administration.

Keeping cryptographic keys private or secret can be accomplished by
retaining them in secure hardware. Keeping the keys in secure hardware
can be inconvenient or impossible if there are a large number of keys, or the
key has to be usable with more than one hardware device. In the CCA
implementation, a master key is used to encrypt (wrap) locally-used keys.
The master key itself is securely installed within the cryptographic engine
and can not be retrieved from the engine.

As you examine the verb descriptions throughout this book, you will see
reference to “Required Commands .” Almost all of the verbs request the
cryptographic engine (the “adapter” or “Coprocessor”) to perform one or
more commands in the performance of the verb. Each of these commands
have to be authorized for use. Access control administration concerns
managing those authorizations.

1-12 IBM 4758 CCA Services

� Chapter 3, “RSA Key Administration” explains how you can generate and
protect an RSA key-pair. The chapter also explains how you can control the
distribution of the RSA private key for backup and archive purposes and to
enable multiple cryptographic engines to use the key for performance or
availability considerations. Related services for creating and parsing RSA
key tokens are also described.

When you wish to backup an RSA private key, or supply the key to another
node, you will use a double-length DES key-encrypting key, a transport key.
You will find it useful to have a general understanding of the DES key
management concepts found in chapter Chapter 5, “Basic CCA DES Key
Management.”

� Chapter 4, “Hashing and Digital Signatures” explains how you can

– Provide for demonstrations of the integrity of data --demonstrate that
data has not been changed

– Attribute data uniquely to the holder of a private key.

These problems can be solved through the use of a digital signature. The
chapter explains how you can hash data (obtain a number that is
characteristic of the data, a digest) and how you can use this to obtain and
validate a digital signature.

� Chapter 5, “Basic CCA DES Key Management” explains the many services
that are available to manage the generation, installation, and distribution of
DES keys.

An important aspect of DES key management is the means by which these
keys can be restricted to selected purposes. Deficiencies in key
management are the main means by which a cryptographic system can be
broken. Controlling the use of a key and its distribution is almost as
important as keeping the key a secret. CCA employs a non-secret quantity,
the control vector to determine the use of a key and thus improve the
security of a node. Control vectors are described in detail in Appendix C,
“CCA Control Vector Definitions and Key Encryption.”

� Chapter 6, “Data Confidentiality and Data Integrity” explains how you can
encrypt data. The chapter also describes how you can use DES to
demonstrate the integrity of data through the production and verification of
message authentication codes.

� Chapter 7, “Key Storage Verbs” explains how you can label, store, retrieve,
and locate keys in the cryptographic-services access-layer managed key
storage.

� Chapter 8, “Financial Services Support Verbs” explains how you can
cryptographically process keys and information related to the Secure

| Electronic Transaction (SET) protocol. A suite of verbs for processing
| personal identification numbers (PIN) in various phases of automated teller
| machine transaction processing and PIN generation are described.

 Chapter 1. Introduction to Programming for the IBM CCA 1-13

1-14 IBM 4758 CCA Services

Chapter 2. CCA Node Management and Access Control

| This chapter discusses:

| � The access control system that you can use to control who can perform
| various sensitive operations at what times

| � Controlling the cryptographic facility

| � The CCA Master Key, what it is and how you manage the key

| � How you can initialize the cryptographic key storage that is managed by the
| support software.

| The verbs that you use to accomplish these tasks are listed in Figure 2-1.

Figure 2-1. CCA Node, Access Control and Master Key Management Verbs

Verb Page Service Entry
Point

Svc
Lcn

Access_Control_Initialization 2-13 Initialize or update access control tables in the
Coprocessor.

CSUAACI E

Access_Control_Maintenance 2-16 Query or control installed roles and user
profiles.

CSUAACM E

Cryptographic_Facility_Control 2-22 Reinitializes the CCA application, sets the
| adapter clock, resets the intrusion latch, sets the
| CCA environment identifier (EID), sets the
| number of master key shares required and
| possible for distributing the master key, loads
| the CCA function control vector (FCV) that
| manages international export and import
| regulation limitations.

| CSUACFC| E

Cryptographic_Facility_Query 2-26| Retrieves information about the coprocessor and
| the state of master key shares distribution
| processing.

CSUACFQ E

| Key_Storage_Initialization| 2-36| Initializes one or the other of the key storage
| files that can store DES or RSA (public/private)
| keys.

| CSNBKSI| S/E

Logon_Control 2-38 Logs on or off the cryptographic adapter. CSUALCT E

| Master_Key_Distribution| 2-42| Supports the distribution and reception of
| master key shares.

| New verb.

| CSUAMKD| E

| Master_Key_Process| 2-46| Enables the introduction of a master key into the
| coprocessor, the random generation of a master
| key, the setting and clearing of the master key
| registers.

| CSNBMKP| E

Svc Lcn: Service location: E: Engine, S: Software

 Copyright IBM Corp. 1997-98 2-1

CCA Access Control
This section describes these CCA Access Control system topics:

� Understanding access control
� Role-based access control
� Initializing and managing the access control system
� Logging on and logging off
� Protecting your transaction information.

Understanding Access Control
Access Control is the process that determines which services of the 4758
Cryptographic Coprocessor are available to a user at any given time. The
system administrator can give users differing authority, so that some users have
the ability to use CCA services that are not available to others. In addition, a
given user's authority may be limited by parameters such as the time of day, or
the day of the week.

Role-based Access Control
The IBM 4758 Cryptographic Coprocessor uses Role-based access control. In a
role-based system, the administrator defines a set of roles, which correspond to
the classes of coprocessor users. Each user will be enrolled by defining a user
profile, which will map the user to one of the available roles. Profiles are
described in “Understanding Profiles” on page 2-3.

Note: For the purposes of this discussion, a user is defined as either a human
user or an automated, computerized process.

As an example, a simple system might have the following three roles.

General User The user class which includes all coprocessor users who do not
have any special privileges.

Key Management Officer Those people who have the authority to change
cryptographic keys for the coprocessor.

Access Control Administrator Those people who have the authority to enroll
new users into the coprocessor environment, and modify the
access rights of those users who are already enrolled.

There would be only a few people who hold the role of Key Management Officer
or Access Control Administrator, but there would be a large population of people
with the role of General User.

A role-based system is more efficient than one in which the authority is assigned
individually for each user. In general, the users can be separated into just a few
different categories of access rights. The use of roles allows the administrator
to define each of these categories just once, in the form of a role.

 Understanding Roles
Each Role defines the permissions and other characteristics associated with
users having that Role. The role contains the following information.

Role ID A character string which defines the name of the role. This
name is referenced in user profiles, to show which role defines
the user's authority.

2-2 IBM 4758 CCA Services

Permitted Operations A list defining which restricted operations the user will be
allowed to perform in the coprocessor. Each command
corresponds to one of the primitive functions that make up the
access control system.

Required User Authentication Strength Level The access control system is
designed to allow a variety of user authentication mechanisms.
Although the only one supported today is passphrase
authentication, the design is ready for others that may be used
in the future.

All user authentication mechanisms are given a strength rating,
an integer value where zero is the minimum strength,
corresponding to no authentication at all. If the strength of the
user's authentication mechanism is less than the required
strength for the role, the user is not permitted to log on.

Valid Time and Valid Days-of-Week These values define the times of the day,
and the days of the week when the users with this role will be
permitted to log on. If the current time is outside the values
defined for the role, logon will not be allowed. It is possible to
choose values that will let users log on at any time on any day
of the week.

Note: Times must be specified in Greenwich Mean Time
(GMT).

In addition, the role contains control and error checking fields. The detailed
layout of the role data structure can be found in “Role Structure” on page B-18.

The Default Role: Every coprocessor must have at least one role, called the
default role. Any user who has not logged on and been authenticated will
operate with the capabilities and restrictions defined in the default role.

Note: Since unauthenticated users have authentication strength equal to zero,
the Required User Authentication Strength Level of the Default Role must also
be zero.

The coprocessor can have a variable number of additional roles, as needed by
the customer. For simple applications, the default role by itself may be
sufficient. Any number of roles can be defined, as long as the coprocessor has
enough available storage to hold them.

 Understanding Profiles
Any user who needs to be authenticated to the coprocessor must have a user
profile. Users who only need the capabilities defined in the default role do not
need a profile.

A profile defines a specific user to the card. Each profile contains the following
information:

 Chapter 2. CCA Node Management and Access Control 2-3

User ID This is the “name” used to identify the user to the coprocessor.
The User ID is an eight byte value, with no restrictions on its
content. Although it will typically be an unterminated ASCII
character string, any 64-bit string is acceptable.1

Role ID This character string identifies the role that contains the user's
authorization information. The authority defined in the role takes
effect after the user successfully logs on to the coprocessor.

Activation and Expiration Dates These values define the first and last date on
which this user is permitted to log on to the coprocessor. An
administrator whose role has the necessary authority can reset
these fields to extend the user's access period.

All four digits of the year are stored, so that there will be no
problem at the turn of the century.

Logon failure count This field contains a count of the number of consecutive
times the user has failed a logon attempt, due to incorrect
authentication data. The user will no longer be allowed to log
on after three consecutive failures. This lockout condition can
be reset by an administrator whose role has sufficient authority.

Authentication Data The authentication data is the information used to verify
the identity of the user. It is a self-defining structure, which can
accommodate many different authentication mechanisms. In the
current coprocessor, user identification is accomplished by
means of a passphrase entered by the user at the client
workstation.

The profile's authentication data field can hold data for more
than one authentication mechanism. If more than one is present
in a user's profile, any of the mechanisms can be used to log
on. Different mechanisms, however, may have different
strengths.

The structure of the authentication data is described in “The
Authentication Data Structure” on page B-22.

In addition to these fields, the profile contains a header which contains the
following information.

Profile structure version This is a two-byte structure which defines the version
| of the profile data structure that follows. For release 1.x of the CCA

Support Program, the structure version is 10. This is specified with a
version field containing 1 in the first byte, and 0 in the second byte.

Profile length This two-byte structure contains the number of bytes contained in
the remainder of the profile, following the header.

When the user enrolls, the profile is stored in non-volatile memory inside the
secure module on the coprocessor. When the user logs on, this stored profile is
used to authenticate the information presented to the coprocessor. In most
applications, the majority of the users will operate under the default role, and will

1 In many cases, a utility program will be used to enter the user ID. That utility may restrict the ID to ASCII characters.

2-4 IBM 4758 CCA Services

not have user profiles; only the security officers and other special users will
need profiles.

In addition, the profile contains other control and error checking fields. The
detailed layout of the profile data structure can be found in “Profile Structure” on
page B-21.

Initializing and Managing the Access Control System
Before you can use a coprocessor with a newly loaded CCA Support Program, it
must be initialized with roles, profiles, and other data. You will also need to
update some of these values from time to time. Access control initialization and
management are the processes you will use to accomplish this.

You can initialize and manage the access control system in either of two ways.

| � You can use the Cryptographic Node Management utility program

| � You can write programs that use the access control verbs described in this
| chapter.

The verbs allow you to write programs that do more than the utility program
included with the CCA Support Program. If your needs are simple, however, the

| utility program may do everything you need. The Cryptographic Node
| Management utility is described in the IBM 4758 Cryptographic Coprocessor;

CCA Support Program, SC31-8610.

The Access Control Management and Initialization Verbs
Two verbs provide all of the access control management and initialization
functions.

CSUAACI Perform access control initialization functions.

CSUAACM Perform access control management functions.

With Access_Control_Initialization, you can perform functions such as:

� Loading roles and user profiles

� Changing the expiration date for a user profile

� Changing the authentication data in a user profile

� Resetting the authentication failure count in a user profile.

With Access_Control_Maintenance, you can perform functions such as:

� Getting a list of the installed roles or user profiles

� Retrieving the non-secret data for a selected role or user profile

� Deleting a selected role or user profile from the coprocessor.

� Get a list of the users who are logged on to the coprocessor.

These two verbs are fully described on pages 2-13 and 2-16 respectively.

 Chapter 2. CCA Node Management and Access Control 2-5

Permitting Changes to the Configuration
It is possible to initialize the coprocessor so no one is authorized to perform any
functions, including further initialization. It is also possible to program the
coprocessor where operational commands are available, but not initialization
commands; meaning you could never change the configuration of the
coprocessor. This happens if you initialize the coprocessor with no roles having
the authority to perform initialization functions.

Take care to ensure that you define roles that have the authority to perform
initialization, including the RQ-TOKEN and RQ-REINT options of the
Cryptographic_Facility_Control (CSUACFC) verb.

You must also ensure there are active profiles that use these roles.

If you accidentally configure your coprocessor so that initialization is not allowed,
you can recover by reloading the coprocessor firmware. This will delete all
information previously loaded, and restore the coprocessor to its new state.

Configuration and Greenwich Mean Time (GMT)
The coprocessor always operates with GMT time. This means that the time,
date, and day-of-the-week values in the coprocessor are measured according to
GMT. This can be confusing because of its effect on access control checking.

Each user has operating time limits, based on values in their role and profile.
These include:

� Profile activation and expiration dates

 � Time-of-day limits

 � Day-of-the-week limits.

All of these limits are measured using time in the coprocessor's frame of
reference, not the user's. If your role says that you are authorized to use the
coprocessor on days Monday through Friday, it means Monday through Friday
in the GMT time zone, not your local time zone. In like manner, if your profile
expiration date is December 31, it means December 31 in GMT.

In the Eastern United States, your time differs from GMT by four hours during
the part of the year daylight savings time is in effect. At noon local time, it is
4:00 PM GMT. At 8:00 PM local time, it is midnight GMT which is the time the
coprocessor increments its date and day-of-the-week to the next day.

For example, at 7:00 PM on Tuesday, December 30 local time, it is 11:00 PM,
Tuesday, December 30 to the coprocessor. Two hours later, however, at 9:00
PM, Tuesday, December 30 local time, it is 1:00 AM Wednesday, December 31
to the coprocessor. If your role only allows you to use the coprocessor on
Tuesday, you would have access until 8:00 PM on Tuesday; after that, it would
be Wednesday in the GMT time frame used by the coprocessor.

This happens because the coprocessor does not know where you are located,
and how much your time differs from GMT. Time zone information could be
obtained from your local workstation, but this information could not be trusted by
the coprocessor; it could be forged in order to obtain access at times the system
administrator intended to keep you from using the coprocessor.

2-6 IBM 4758 CCA Services

Note: During the portions of the year when Daylight savings time is not in
effect, the time difference between Eastern Standard Time and GMT is 5 hours.

Logging On and Logging Off
A user must log on to the coprocessor in order to activate a user profile. This is
the only way to use a role other than the default role. You log on and log off
using the Logon_Control verb, which is described in detail on 2-38.

When you successfully log on, you establish a session with the coprocessor. As
part of that session, you establish a randomly derived session key which is
subsequently used to protect information you interchange with the coprocessor.
This protection is described in detail in the next section. The logon process and
its algorithms are described in “Passphrase Verification Protocol” on page D-16.

In order to log on, you must prove your identity to the coprocessor. This is
accomplished using a passphrase, a string of up to 64 characters which are
known only to you and the coprocessor. A good passphrase should not be too
short, and it should contain a mixture of alphabetic characters, numeric
characters, and special symbols such as “*,” “+,” “!,” and others. It should not
be comprised of familiar words or other information which someone might be
able to guess.

When you log on, no part of your passphrase ever travels over any interface to
| the coprocessor. The passphrase is hashed and processed into a key that
| encrypts information passed to the Coprocessor. The Coprocessor has a copy
| of the hash and can construct the same key to recover and validate the log-on
| information. CCA does not communicate your passphrase outside of the
| memory owned by the calling process.

When you have finished your work with the coprocessor, you must log off in
order to end your session. This invalidates the session key you established
when you logged on, and frees resources you were using in the host system
and in the coprocessor.

Protecting Your Transaction Information
When you are logged on to the coprocessor, the information transmitted to and
from the CCA coprocessor application is cryptographically protected using your
session key. A message authentication code is used to ensure that the data
was not altered during transmission. Since this code is calculated using your
session key, it also verifies that you are the originator of the request, not
someone else attempting to impersonate you.

For some verbs, it is also important to keep the information secret. This is
especially important with the Access_Control_Initialization verb, which is used to
send new role and profile data to the coprocessor. To ensure secrecy, some
verbs offer a special protected option, which causes the data to be encrypted
using your session key. This prevents disclosure of the critical data, even if the
message is intercepted during transmission to the coprocessor.

 Chapter 2. CCA Node Management and Access Control 2-7

| Understanding and Managing Master Keys
| In a CCA node, the master key is used to encrypt (“wrap”) working keys used by
| the node that can appear outside of the cryptographic engine. The working keys
| are triple-encrypted. This method of securing keys enables a node to operate
| on an essentially unlimited number of working keys without concern for storage
| space within the confines of the cryptographic engine.

| The CCA design supports three master key registers, new, current, and old.
| While a master key is being assembled, it is accumulated in the new master key
| register. Then the Master_Key_Process verb is used to transfer (set) the
| contents of the new master key register to the current master key register.

| Working keys are normally encrypted by the current master key. To facilitate
| continuous operations, CCA implementations also have an old master key
| register. When a new master key is transferred to the current master key
| register, the pre-existing (if any) contents of the current master key register are
| transferred to the old master key register. With the IBM 4758 CCA
| implementation, whenever a working key must be decrypted by the master key,
| master key verification pattern information that is included in the key token is
| used to determine if the current or the old master key must be used to recover
| the working key. Special status is returned in case of use of the old master key
| so that your application programs can arrange to have the working key updated
| to encryption by the current master key (using the Key_Token_Change verb).
| Whenever a working key is encrypted for local use, it is encrypted using the
| current master key.

| Master keys are established in one of three ways:

| Introduction of master key parts. The parts are exclusive-ORed within the
| cryptographic engine. Knowledge of a single part gives no information about
| the final key when multiple (random-valued) parts are exclusive-ORed.

| A common technique is to record the values of the parts (typically on paper or
| diskette) and independently store these values in locked safes. When the
| master key is to be instantiated in a cryptographic engine, individuals who are
| trusted to not share the key-part information retrieve the parts and enter the
| information into the cryptographic engine. The Master_Key_Process verb
| supports this operation.

| Entering the first and subsequent parts is authorized by two different control
| points so that a cryptographic engine (the Coprocessor) can enforce that two
| different roles, and thus profiles, are activated to install the master key parts.
| Of course this requires that roles exist that enforce this separation of
| responsibility.

| Setting of the master key is also a unique command with its own control
| point. Therefore you can setup the access control system to require the
| participation of at least three individuals.

| You can check that appropriate information has been entered through the use
| of the Key_Test verb. You can check the contents of any of the master key
| registers, and the key parts as they are entered.

2-8 IBM 4758 CCA Services

| Random generation of a new master key. The Master_Key_Process verb can
| be used to randomly generate a new master key within the cryptographic
| engine. The value of the new master key is not available outside of the
| cryptographic engine.

| This method, which is a separately authorized command invoked through use
| of the Master_Key_Process verb, ensures that no one has access to the
| value of the master key. Random generation of a master key is useful when
| the shares technique described next is used, and when keys shared with
| other nodes are distributed using public key techniques or when DES
| transport keys are established between nodes. In these cases, there is no
| need to re-establish a master key with the same value.

| 'Cloning ' a master key from one cryptographic engine to another
| cryptographic engine. In certain high-security applications, it is desirable to
| copy a master key from one cryptographic engine to another without
| exposure of the value of the master key. The IBM 4758 CCA implementation
| supports copying the master key through a process of splitting the master key
| into n shares. m shares (1≤m≤n≤15) are required to reconstitute the master
| key in another engine.

| The term “cloning” is used to differentiate the process from “copying” because
| no one share, or any combination of fewer than m shares, provide sufficient
| information needed to reconstitute the master key.

| You establish the 'm' and 'n' values through the use of the
| Cryptographic_Facility_Control verb.

| The shares of the current master key are prepared using one mode of the
| Master_Key_Distribution verb. Prepared shares are also obtained from the
| cryptographic engine using this mode of the verb. The other mode of the
| Master_Key_Distribution verb is used to enter an individual share into the
| target cryptographic engine. When sufficient shares have been entered, the
| verb returns status that the cloned master key is now complete within the new
| master key register of the target engine.

| The master key shares are signed by the source engine. Each signed share
| is then triple-encrypted by a fresh triple-length DES key, the share-encrypting
| key. To obtain a share of the master key, you present a certified public key
| from the target cryptographic engine. After validating the certificate, the
| share-encrypting key is wrapped (encrypted) using the supplied public key.

| At the target cryptographic engine, an encrypted share and its wrapped
| share-encrypting key are presented to the engine. The private key to unwrap
| the share-encrypting key must exist within the cryptographic engine as a
| “retained key” (a private key that never leaves the engine). This private key
| must also have been marked as suitable for operation with the
| Master_Key_Distribution verb when it was generated.

| When receiving a share, you must also supply the share-signing key in a
| certificate to the Master_Key_Distribution verb. The engine validates the
| certificate, and uses the validated public key to validate the individual master
| key share.

| The certificates used to validate the share-signing public key and the
| target-engine public key used to wrap the share-encrypting key are validated
| by the cryptographic engine using a retained public key. A retained public
| key is introduced into a cryptographic engine in a two-part process using the
| PKA_Public_Key_Hash_Register and PKA_Public_Key_Register verbs. This

 Chapter 2. CCA Node Management and Access Control 2-9

| allows you to establish two distinct roles. Two different individuals are
| authorized so that split-authority and dual control can be enforced in setting
| up the certificate validating public key.

| You identify the nodes with unique 16-byte identifiers of your choice. The
| environment Id (EID) is also established through the use of the
| Cryptographic_Facility_Control verb.

| The processing of a given share (share 1, 2, ..., n) requires authorization to a
| distinct control point so that you can enforce split responsibility in obtaining
| and installing the shares.

| This secure master-key cloning process is supported by the Cryptographic
| Node Management (CNM) utility. See Chapter 5 of the CCA Support
| Program manual. That utility can hold the certificates and shares in a “data
| base” that you can transport on diskette between the various nodes:

| � The public key certifying node
| � The master-key-share source node
| � The master-key-share target node.

| The certifying node can be either the share source or target node as you
| desire, or can be an independent node that might be located in a
| cryptographic control center.

| Although not currently supported by IBM products, the shares could be stored
| on intermediate devices (e.g., smart cards), provided that the devices could
| perform the required key management and digital signature functions.

| With the current capabilities of the IBM 4758 CCA Support Program, you
| must have initialized the target Coprocessor with its retained private key, and
| have had the associated public key certified, before you obtain shares for the
| target Coprocessor. This implies that the target Coprocessor has been
| initialized and is not reset before a master key is cloned to the Coprocessor.
| Once the master key has been cloned, the target Coprocessor can be
| removed from an active machine.

2-10 IBM 4758 CCA Services

| ┌──────────────────────────────────┐

| │Share-Administration Control Point│

| 2. │ │

| │ SIG{SA}, VER{SA} │

| │ │

| │ CERT{SA}(SA) H(CERT{SA}(SA)) │

| │ ───────┬──── ───┬─────────── │

| │ │ │ │

| └─────────│─────────│──────────────┘

| │ │

| ┌────────────────────────┐ │ │ ┌────────────────────────┐

| │CCA Cryptographic Engine│ │ │ │CCA Cryptographic Engine│

| │(Primary = 'a') │ │ │ │('b') │

| │ │ │ │ │ │

| │ 1 %──── Access │ │ Access ─────────5 1 │

| │ │ Control │ │ Control │ │

| │ │ Initialization │ Initialization │ │

| │ │ │ │ │ │

| │ 2 %──────────────────────────┴─────────────────────5 2 │

| │ │ │ │ │

| │ 3 %────────────────┴───────────────────────────────5 3 │

| │ │ │ │

| │ │ x=(EID_a, m/n_a) y=(EID_b, m/n_b) │ │

| │ 3 %───── x,SIG{SA}(H(x)) y,SIG{SA}(H(y)) ─────5 3 │

| │ │ │ │

| │ 4 ────5 Audit Audit %──── 4 │

| │ │ │ │

| │ │ │ │

| │ 5 ────────5VER{CSS}────5CERT{SA}(VER{CSS})─────────5 5 │

| │ │ │ │

| │ │ │ │

| │ 6 %─────CERT{SA}(ENC{CSR_i})%────ENC{CSR_i}%──────── 6 │

| │ │ │ │

| │ │ │ │

| │ 7 ────────5ENC{CSR_i}(SE_i), │ │

| │ │ e\SE_i(i,mks_i,SIG{CSS}(i,mks_i))─────5 8 │

| │ │ (m times) │ │

| │ │ │ │

| │ │ Set and Verify ────5 9 │

| │ │ the master key %──── │

| │ │ │ │

| └────────────────────────┘ └────────────────────────┘

| Figure 2-2. Coprocessor-to-Coprocessor Master Key Transfer

| Figure 2-2 depicts the steps of a master key cloning scenario. These steps
| include:

| 1. Install and audit appropriate access control roles and profiles. Have
| operators change their profile passwords. Ensure that the roles provide the
| degree of responsibility-separation that you require.

| 2. Generate a retained RSA private key (the Share-Administration (SA) key) to
| certify the public keys used in the scheme and certify the associated public
| key. Distribute the hash of this certificate to the source(s) and target(s)
| nodes.

| 3. Distribute the certified public key (the SA key) that is validated by the
| already distributed hash of the certificate. Also install the environment Ids
| (EIDs) and m-of-n values.

| 4. Audit the node arrangements.

| 5. Generate the Coprocessor Share Signing (CSS) key and have this key
| certified by the SA key.

| 6. Generate the Coprocessor Share Receiving (CSR) key and have this key
| certified by the SA key.

| 7. Obtain shares of the master key. Note that generally fewer shares are
| required to reconstitute the master key than that which can be obtained from

 Chapter 2. CCA Node Management and Access Control 2-11

| the source node. Thus corruption of some of the information that is in
| transit between source and target can be tolerated.

| 8. Deliver master key shares.

| 9. Set and verify the master key.

| Note that the keys in master key registers can be tested through the use of the
| Key_Test verb.

2-12 IBM 4758 CCA Services

 Access_Control_Initialization

 Access_Control_Initialization(CSUAACI)

Platform/
Product

OS/2 AIX NT

IBM-4758 X X X

The Access_Control_Initialization verb is used to initialize or update parameters
and tables for the Access Control system in the 4758 Cryptographic
Coprocessor.

You can use this verb to perform the following services:

� Load roles and user profiles

� Change the expiration date for a user profile

| � Change the authentication data, such as a passphrase, in a user profile

� Reset the authentication failure count in a user profile.

You select which service to perform by specifying the corresponding keyword in
the input rule array. You can only perform one of these services per verb call.

 Restrictions
None.

 Format

| Note: In the first printing of this manual, a name parameter was incorrectly
| included in the parameter list.

CSUAACI

return_code Output Integer
reason_code Output Integer
exit_data_length Input Integer
exit_data Input String exit_data_length bytes
rule_array_count Inp/Outp Integer
rule_array Inp/Outp String array rule_array_count * 8 bytes

| name| Input| String| 8 bytes
verb_data_1_length Input Integer
verb_data_1 Input String verb_data_1_length bytes
verb_data_2_length Input Integer
verb_data_2 Input String verb_data_2_length bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

rule_array_count
The rule_array_count parameter is a pointer to an integer containing the
number of elements in the rule_array variable.

On input, this contains the number of elements you provide in the input rule
array. On output, the verb will set this to the number of rule array elements
it returns to the application program.

 Chapter 2. CCA Node Management and Access Control 2-13

 Access_Control_Initialization

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters.

On input, the keywords in the rule array specify the operation being
performed. The rule array keywords are shown below:

verb_data_1_length
The verb_data_1_length parameter is a pointer to an integer variable
containing the length (in bytes) of the verb_data_1 variable.

verb_data_1
The verb_data_1 parameter is a pointer to a string variable containing data
used by the verb.

This field is used differently depending on the function being performed.
Figure 2-4 shows the content for each of the rule array keywords that
selects a different function.

Figure 2-3. CSUAACI Rule_Array Input Keywords

Keyword Meaning

Keywords used to select which function to perform

INIT-AC Initializes roles and user profiles.

CHGEXPDT Changes the expiration date in a user profile.

CHG-AD Changes authentication data in a user profile or a user's
passphrase.

Note: The PROTECTD keyword must also be used
whenever you use CHG-AD. You must authenticate
yourself before you are allowed to change authentication
data, and the use of protected mode verifies that you have
been authenticated.

RESET-FC Resets the count of consecutive failed logon attempts for a
user. Clearing the count permits a user to log on again,
after being locked out due to too many failed attempts.

Keywords used to select options

PROTECTD Specifies that the verb should operate in protected mode.
Data sent to the card is protected by encrypting the data
with the user's session key, KS.

If the user has not successfully logged on, there will be no
session key in effect, and the PROTECTD keyword will
result in an error.

REPLACE Specifies that a new role or profile can replace an existing
role or profile with the same name. This keyword applies
only when the rule array contains the INIT-AC keyword.

Without the REPLACE keyword, any attempt to load a role
or profile which already exists will be rejected. This
protects against accidentally overlaying a user's profile with
one for a different user, who has chosen the same profile
ID as one that is already on the card. Although less likely,
it also protects against the same kind of problem with
duplicate role IDs.

2-14 IBM 4758 CCA Services

 Access_Control_Initialization

verb_data_length_2
The verb_data_length_1 parameter is a pointer to an integer variable
containing the length (in bytes) of the data in the verb_data_2 field.

verb_data_2
The verb_data_2 parameter is a pointer to a string variable containing data
used by the verb.

This field is used differently depending on the function being performed.
Figure 2-5 shows the content for each of the rule array keywords that
selects a different function.

Figure 2-4. Contents of the verb_data_1 field

Keyword Contents of verb_data_1 field

INIT_AC The field contains a list of zero or more user profiles to be
loaded into the coprocessor.

CHGEXPDT,
CHG-AD, or
RESET-FC

The field contains the eight-character profile ID for the user
profile that is to be modified.

Figure 2-5. Contents of the verb_data_2 field

Keyword Contents of verb_data_2 field

INIT_AC The field contains a list of zero or more roles to be loaded
into the coprocessor.

CHGEXPDT The field contains the new expiration date to be stored in
the specified user profile. The expiration date is an eight
character string, in the form YYYYMMDD.

CHG-AD The field contains the new authentication data, to be used
| in the specified user profile. Authentication data structures
| are described in “Access Control Data Structures” on
| page B-18.

If the profile currently contains authentication data for the
same authentication mechanism, that data is replaced by
the new data. If the profile does not contain authentication
data for the mechanism, the new data is added to the data
currently stored for the specified profile.

RESET-FC The verb_data_2 field is empty. Its length is zero.

 Required Commands
The Access_Control_Initialization verb requires the following commands to be
enabled:

� Initialize the access control system roles and profiles (offset X'0112') with
the INIT-AC keyword

� Change the expiration date in a user profile (offset X'0113') with the
CHGEXPDT keyword

� Change the authentication data in a user profile (offset X'0114') with the
CHG-AD keyword

� Reset the logon failure count in a user profile (offset X'0115') with the
RESET-FC keyword.

 Chapter 2. CCA Node Management and Access Control 2-15

 Access_Control_Maintenance

 Access_Control_Maintenance (CSUAACM)

Platform/
Product

OS/2 AIX NT

IBM-4758 X X X

The Access_Control_Maintenance verb is used to query or control installed roles
and user profiles.

You can use this verb to perform the following services:

� Get a list of the installed roles or user profiles

� Retrieve the non-secret data for a selected role or user profile

� Delete a selected role or user profile from the cryptographic coprocessor

� Get a list of the users who are logged on to the coprocessor.

You select which service to perform by specifying the corresponding keyword in
the input rule array. You can only perform one of these services per verb call.

 Restrictions
None.

 Format
CSUAACM

return_code Output Integer
reason_code Output Integer
exit_data_length Input Integer
exit_data Input String exit_data_length bytes

| rule_array_count| Input| Integer
| rule_array| Input| String array| rule_array_count * 8 bytes

name Input String 8 bytes
output_data_length Output Integer
output_data Output String output_data_length bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

rule_array_count
The rule_array_count parameter is a pointer to an integer containing the
number of elements in the rule_array variable.

On input, this contains the number of elements you provide in the input rule
| array. On output, the verb will set this to the number of rule array elements
| it returns to the application program.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords
are shown below:

On input, the keywords in the rule array specify the operation being
performed. The rule array keywords are shown below:

2-16 IBM 4758 CCA Services

 Access_Control_Maintenance

On input, you put keywords into the rule array to specify what The rule array
keywords are shown below:

name
The name parameter is a pointer to a string variable containing the eight
byte name of a role or user profile which is the target of the request.

This field is used differently depending on the function being performed.
Figure 2-6 shows the content of this field for each of the possible rule array
keywords.

Keyword Meaning

Keywords used to select which function to perform

LSTPROFS Retrieves a list of the user profiles currently installed in the
coprocessor.

Keyword Q-NUM-RP shows how to determine how much
data this request will return to the application program.

LSTROLES Retrieves a list of the roles currently installed in the
coprocessor

Keyword Q-NUM-RP shows how to determine how much
data this request will return to the application program.

GET-PROF Reads the non-secret part of a specified user profile.

GET-ROLE Reads the non-secret part of a role definition from the
coprocessor

DEL-PROF Deletes a specified user profile.

DEL-ROLE Deletes a specified role definition from the coprocessor

Q-NUM-RP Queries the number of roles and profiles presently installed
in the coprocessor. This allows the application program to
know how much data will be returned with the LSTROLES
or LSTPROFS keywords.

Q-NUM-UR Queries the number of users who are currently logged on
to the coprocessor. It can be used to predict the amount
of data that will be returned with the LSTUSERS keyword.

Users may log on or log off between the time you use
Q-NUM-UR and the time you use LSTUSERS, so the list
of users may not always contain exactly the number the
coprocessor reported were logged on.

LSTUSERS Retrieves a list of the profile IDs for all users who are
currently logged on to the coprocessor.

 Chapter 2. CCA Node Management and Access Control 2-17

 Access_Control_Maintenance

output_data_length
The output_data_length parameter is a pointer to an integer variable

| containing the number of bytes of data in the output_data field. This buffer
| must be a multiple of four bytes.

On input, this parameter must be set to the total size of the buffer pointed to
by the output_data parameter. On output, it will contain the number of bytes
of data returned by the verb in the output_data field.

output_data
The output_data parameter is a pointer to a string variable containing data

| returned by the verb. Any integer value returned in the output_data field is
| in big-endian format; the high order byte of the value is in the lowest
| numbered address in memory.

This field is used differently depending on the function being performed.
Figure 2-7 shows the content for each of the rule array keywords.

Figure 2-6. Contents of the Name Variable by Rule-array Keyword

Keyword Contents of name variable

LSTPROFS,
LSTROLES,
Q-NUM-RP,
Q-NUM-UR, or
LSTUSERS

The name field is unused.

GET-PROF or
DEL-PROF

The name field contains the eight-character profile ID for
the user profile that is to be retrieved or deleted.

GET-ROLE or
DEL-ROLE

The name field contains the eight-character role ID for the
role that is to be retrieved or deleted.

Figure 2-7 (Page 1 of 3). Contents of the Output_data Variable by Rule-array
Keyword

Keyword Contents of verb_data_2 Variable

LSTPROFS The output_data field contains a list of the profile IDs for all
the user profiles stored in the coprocessor.

LSTROLES The output_data field contains a list of the role IDs for all
the roles stored in the coprocessor.

2-18 IBM 4758 CCA Services

 Access_Control_Maintenance

Figure 2-7 (Page 2 of 3). Contents of the Output_data Variable by Rule-array
Keyword

Keyword Contents of verb_data_2 Variable

GET-PROF The output_data field contains the non-secret portion of
the selected user profile. This includes the following data,
in the order listed.

Profile version Two bytes containing two one-byte integer
values, where the first byte contains the major
version number and the second byte contains
the minor version number.

Comment A 20-character field containing a comment
which describes the profile.

Role The eight character name of the user's
assigned Role.

Logon failure count A one-byte integer containing he
number of consecutive failed logon attempts by
the user.

Pad A one-byte padding value, which will contain
X'00'.

Activation date The first date on which the profile is valid.
The date consists of a two-byte integer
containing the year, followed respectively by a
one-byte integer for the month and a one-byte
integer for the day of the month.

Expiration date The last date on which the profile is valid
The format is the same as the Activation date
described above.

List of enrolled authentication mechanism information
For each authentication mechanism associated
with the profile, the verb returns a series of
three integer values:

1. The two-byte Mechanism ID.

2. The two-byte Mechanism Strength.

3. The four-byte authentication data Expiration
Date, which has the same form as the
Activation date described above.

Note that the authentication data itself is not returned; only
the IDs, strength, and expiration date of the data are
returned.

 Chapter 2. CCA Node Management and Access Control 2-19

 Access_Control_Maintenance

Figure 2-7 (Page 3 of 3). Contents of the Output_data Variable by Rule-array
Keyword

Keyword Contents of verb_data_2 Variable

GET-ROLE The field contains the non-secret portion of the selected
role. This includes the following data, in the order listed.

Role version Two bytes containing integer values, where
the first byte contains the major version number
and the second byte contains the minor version
number.

Comment A 20-character field containing a comment
which describes the role. This field is
non-terminated.

Required authentication strength level A two-byte
integer defining how secure the user
authentication must be in order to authorize this
role.

Lower time limit The earliest time of day that this role can
be used. The time limit consists of two integer
values, a one-byte hour, followed by a one-byte
minute. The hour can range from 0-23, and the
minute can range from 0-59.

Upper time limit The latest time of day that this role can
be used. The format is the same as the Lower
time limit.

Valid days of the week A one-byte field defining which
days of the week this role can be used. Seven
bits of the byte are used to represent Sunday
through Saturday, where a '1' bit means that
the day is allowed, while a '0' bit means it is
not.

The first bit (MSB) is for Sunday, and the last
bit (LSB) is unused and will be set to zero.

Access control point list The access control point bit
map, defining which functions a user with this
role is permitted to execute.

DEL-PROF or
DEL-ROLE

The output_data field is empty. Its length is zero.

Q-NUM-RP The output_data field contains an array of two four-byte
integers. The first integer is the number of roles currently
loaded with use of the Access_Control_Initialization verb
while the second integer is the number of user profiles
currently loaded with use of the same verb.

Q-NUM-UR The output_data field contains a single integer value,
which indicates the number of users currently logged on to
the coprocessor.

LSTUSERS The output_data field contains an array of eight-character
profile IDs, one for each user currently logged on to the
coprocessor. The list is not in any meaningful order.

2-20 IBM 4758 CCA Services

 Access_Control_Maintenance

 Required Commands
The Access_Control_Maintenance verb requires the following commands be
enabled in the hardware:

� Read public access control information (offset X'0116') with the
LSTPROFS, LSTROLES , GET-PROF, GET-ROLE, , and Q-NUM-RP
keywords

� Delete a user profile (offset X'0117') with the DEL-PROF keyword

� Delete a role (offset X'0118') with the DEL-ROLE keyword,

 Chapter 2. CCA Node Management and Access Control 2-21

 Cryptographic_Facility_Control

 Cryptographic_Facility_Control (CSUACFC)

Platform/
Product

OS/2 AIX NT

IBM-4758 X X X

Use the Cryptographic_Facility_Control verb to perform the following services:

� Reinitialize the CCA application in the coprocessor

� Set the time and date in the coprocessor clock

� Reset the coprocessor Intrusion Latch.

� Load or clear the Function Control Vector, which defines limitations on the
cryptographic functions available in the coprocessor

| � Establish the environment identification (EID), which is a user-setable
| identifier

| � Establish the minimum and maximum number of “cloning information” shares
| that are required and that can be used to pass sensitive information from
| one Coprocessor to another Coprocessor.

Select which service to perform by specifying the corresponding keyword in the
input rule array. You can only perform one of these services per verb call.
space character.

 Restrictions
| Use only these characters in an environment identifier (EID): a...z, A...Z, 0...9,
| @, &, #, and the space character.

 Format
CSUACFC

return_code Output Integer
reason_code Output Integer
exit_data_length Input Integer
exit_data Input String exit_data_length
rule_array_count Input Integer
rule_array Input String array rule_array_count * 8 bytes
verb_data_length Inp/Outp Integer
verb_data Inp/Outp String verb_data_length bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

rule_array_count
The rule_array_count parameter is a pointer to an integer containing the
number of elements in the rule array.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters.

2-22 IBM 4758 CCA Services

 Cryptographic_Facility_Control

This verb requires two keywords in the rule array. One specifies the
coprocessor to which the request is intended, the other specifies the
function to perform. No rule array elements are set by the verb; the rule
array is empty on output. The rule_array keywords are shown below:

verb_data_length
The verb_data_length parameter is a pointer to an integer containing the
number of bytes of data in the verb_data field.

verb_data
The verb_data parameter is a pointer to a string variable containing data
used by the verb on input, or generated by the verb on output.

This field is used differently depending on the value of the function selection
rule array keyword.

� For RQ-TOKEN, verb_data is an output parameter. It receives an
eight-byte randomly generated value, which the application uses with the
RQ-REINT keyword on a subsequent call.

Keyword Meaning

Specifying which adapter to use

ADAPTER1 Specifies which adapter the request will go to. ADAPTER1
is the only value supported.00

Specifying what control function to perform

RQ-TOKEN Requests a random eight-byte token from the adapter,
which is returned in the verb_data parameter. This is the
first step when reinitializing the coprocessor.

The second step for reinitialization uses RQ-REINT,
described below.

RQ-REINT For RQ-REINT, you must set the verb_data field to the
one's complement of the token that was returned by the
card when you executed the verb using the RQ-TOKEN
keyword. This is the second and final step when
reinitializing the coprocessor.

This two-step process provides protection against
accidental reinitialization of the card.

SETCLOCK Sets the date and time on the coprocessor.

You must put the date and time values in the verb_data
parameter, as described under the description of that
parameter.

RESET-IL Clears the Intrusion Latch on the coprocessor.

LOAD-FCV Loads a new Function Control Vector into the coprocessor.

CLR-FCV Deletes the Function Control Vector from the coprocessor.

| SET-EID| Establishes an environment identification, or EID value.

| SET-MOFN| Establish the minimum and maximum number of “cloning
| information” shares that are required and that can be used
| to pass sensitive information from one Coprocessor to
| another Coprocessor.

 Chapter 2. CCA Node Management and Access Control 2-23

 Cryptographic_Facility_Control

On input, verb_data_length must contain the length of the buffer
addressed by the verb_data pointer. This buffer must be at least eight
bytes in length.

� For RQ-REINT, verb_data is an input parameter. You must set it to the
one's complement of the token you received as a result of the
RQ-TOKEN call.

� For SETCLOCK , verb_data is an input parameter. It must contain a
character string which contains the current GMT time and date. This
string has the form YYYYMMDDHHmmSSWW , where these fields are
defined as follows.

YYYY The current year.

MM The current month, from 01 to 12.

DD The current day of the month, from 01 to 31.

HH The current hour of the day, from 00 to 23.

mm The current minutes past the hour, from 00 to 59.

SS The current seconds past the minute, from 00 to 59.

WW The current day of the week, where Sunday is represented as
01, and Saturday by 07.

| � For LOAD-FCV ...

| � For CLR-FCV ...

| � For SET-EID, verb data is an input variable. The variable contains a
| 16-byte environment identification, or EID value. This identifier is used
| in verbs such as PKA_Key_Generate, PKA_Symmetric_Key_Export and
| PKA_Symmetric_Key_Import. Use only these characters in an
| environment identifier: a...z, A...Z, 0...9, @, &, #, and the space
| character.

| � For SET-MOFN, verb data is an input variable. The variable contents
| establish the minimum and maximum number of “cloning information”
| shares that are required and that can be used to pass sensitive
| information from one Coprocessor to another Coprocessor. Verb_data
| contains a two element array of integers. The first element is the m
| required number of shares to reconstruct cloned information (see the
| Master_Key_Distribution verb). The second element is the n maximum
| number of shares that can be issued to reconstruct cloned information
| (see the Master_Key_Distribution verb).

 Required Commands
The Cryptographic_Facility_Control verb requires the following commands be
enabled in the hardware:

� Reinitialize Device (offset X'0111') with the RQ-TOKEN, RQ-REINT
keywords

� Set Clock (offset X'0110') with the SETCLOCK keyword

� Reset Intrusion Latch (offset X'010F') with the RESET-IL keyword.

� Load a Function Control Vector (offset X'0119') with the LOAD-FCV
keyword.

2-24 IBM 4758 CCA Services

 Cryptographic_Facility_Control

� Clear the Function Control Vector (offset X'011A') with the CLR-FCV
keyword.

| � Set EID command (offset X'011C') with the SET-EID keyword.

| � Initialize Master Key Cloning command (offset X'011D') with the
| SET-MOFN keyword.

 Chapter 2. CCA Node Management and Access Control 2-25

 Cryptographic_Facility_Query

 Cryptographic_Facility_Query (CSUACFQ)

Platform/
Product

OS/2 AIX NT

IBM-4758 X X X

The Cryptographic_Facility_Query verb is used to retrieve information about the
Cryptographic Coprocessor and the CCA application program in that
coprocessor. This information includes the following:

� General information about the coprocessor

� General information about the CCA application program in the coprocessor

| � Status of master key shares distribution

| � Environment identifier, EID

� Diagnostic information from the coprocessor

� Export control information from the coprocessor

� Time and date information.

 Restrictions
None.

 Format
CSUACFQ

return_code Output Integer
reason_code Output Integer
exit_data_length Input Integer
exit_data Input String exit_data_length
rule_array_count Input Integer
rule_array Input String array rule_array_count * 8 bytes
verb_data_length Inp/Outp Integer
verb_data Inp/Outp String verb_data_length bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

rule_array_count
The rule_array_count parameter is a pointer to an integer containing the
number of elements in the rule_array variable.

| On input, the verb will examine input rule array elements until either the
| count of elements is exceeded, or until an element of eight space characters
| is encountered.

On output, the verb will set this variable to the number of rule array
elements it returns to the application program, a number that will be less
than or equal to the number input.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters.

2-26 IBM 4758 CCA Services

 Cryptographic_Facility_Query

On input, you set the rule array to specify the type of information you want
to retrieve. There are two input rule array elements, as described below.

The format of the output rule array depends on the value of the rule array
element which identifies the information to be returned. Different sets of rule
array elements are returned depending on whether the input keyword is
STATCCA, STATCARD, STATDIAG, STATEXPT, STATMOFN , or
STATEID.

For rule array elements that contain numbers, those numbers are
represented by numeric characters which are left-justified and padded on
the right with space characters. For example, a rule array element which
contains the number 2 will contain the character string “2 ” .

On output, the rule elements can have the values shown in the table below.

Keyword Meaning

Specifying which adapter to use

ADAPTER1 Specifies the cryptographic coprocessor for which the
request is intended. ADAPTER1 is the only value
supported.

Specifying what information to return

STATCCA Gets CCA-related status information.

STATCARD Gets coprocessor-related basic status information.

STATDIAG Gets diagnostic information.

STATEXPT Gets function control vector-related status information.

| STATMOFN| Gets master key shares distribution information.

| STATEID| Gets the environment identifier, EID.

TIMEDATE Reads the current time, date, and day of the week from
the secure clock within the coprocessor.

2 If multiple adapters are supported in the workstation, they will be referenced using ADAPTER1, ADAPTER2, and so on.

 Chapter 2. CCA Node Management and Access Control 2-27

 Cryptographic_Facility_Query

Figure 2-8 (Page 1 of 7). Cryptographic_Facility_Query Rule_Array Output
Keywords

Element
Number

Name Description

Output rule array for option STATCCA

1 NMK Status State of the New Master Key register.

� 1 means the register is clear
� 2 means the register contains a partially

complete key
� 3 means the register contains a

complete key.

2 CMK Status State of the Current Master Key register.

� 1 means the register is clear
� 2 means the register contains a key.

3 OMK Status State of the Old Master Key register.

� 1 means the register is clear
� 2 means the register contains a key.

4 CCA application
version

An eight character string that identifies the
version of the CCA application that is
running in the coprocessor.

5 CCA application
build date

An eight character string containing the
build date for the CCA application that is
running in the coprocessor.

6 User Role An eight character string containing the
| Role identifier which defines the host

application user's current authority.

2-28 IBM 4758 CCA Services

 Cryptographic_Facility_Query

Figure 2-8 (Page 2 of 7). Cryptographic_Facility_Query Rule_Array Output
Keywords

Element
Number

Name Description

Output rule array for option STATCARD

1 Number of
adapters installed

The number of active cryptographic
coprocessors installed in the machine. This
will always be 1 in the current
implementation.

2 DES hardware
level

A numeric character string containing an
integer value identifying the version of DES
hardware that is on the coprocessor.

3 RSA hardware
level

A numeric character string containing an
integer value identifying the version of RSA
hardware that is on the coprocessor.

4 POST version A character string identifying the version of
the coprocessor's Power On Self Test
(POST) firmware.

The first four characters define the POST0
version, and the last four characters define
the POST1 version.

5 Card Operating
System name

A character string identifying the operating
system firmware on the coprocessor.

6 Card Operating
System version

A character string identifying the version of
the coprocessor's operating system
firmware.

7 Card part number A character string containing the
eight-character part number identifying the
version of the coprocessor.

8 Card EC level A Character string containing the
eight-character EC (Engineering Change)
level for this version of the coprocessor.

9 Miniboot version A character string identifying the version of
the coprocessor's Miniboot firmware. This
firmware controls the loading of programs
into the coprocessor.

The first four characters define the
MiniBoot0 version, and the last four
characters define the MiniBoot1 version.

10 CPU speed a character string containing the operating
speed of the microprocessor chip, in
Megahertz.

11 Adapter ID A unique identifier programmed into the
coprocessor. The coprocessor's Adapter ID
is an eight-byte binary value.

 Chapter 2. CCA Node Management and Access Control 2-29

 Cryptographic_Facility_Query

Figure 2-8 (Page 3 of 7). Cryptographic_Facility_Query Rule_Array Output
Keywords

Element
Number

Name Description

12 Flash memory size A character string containing the size of the
Flash EPROM memory on the coprocessor,
in kilobytes.

13 DRAM memory
size

A character string containing the size of the
dynamic RAM (DRAM) memory on the
coprocessor, in kilobytes.

14 Battery-backed
memory size

A character string containing the size of the
battery-backed RAM on the coprocessor, in
kilobytes.

15 Serial Number The unique serial number of the
coprocessor. The serial number is
factory-installed.

Output rule array for option STATDIAG

1 Battery state A numeric character string containing a
value which indicates whether the battery
on the coprocessor needs to be replaced.

� 1 means that the battery is good
� 2 means that the battery should be

replaced.

2 Intrusion Latch
state

A numeric character string containing a
value which indicates whether the Intrusion
Latch on the coprocessor is set or cleared.

� 1 means that the latch is cleared
� 2 means that the latch is set.

3 Error log status A numeric character string containing a
value which indicates whether there is data
in the coprocessor CCA error log.

� 1 means that the error log is empty
� 2 means that the error log contains

data, but is not yet full
� 3 means that the error log is full, and

cannot hold any more error data.

4 Mesh intrusion A numeric character string containing a
value to indicate whether the coprocessor
has detected tampering with the protective
mesh that surrounds the secure module.
This indicates a probable attempt to
physically penetrate the module.

� 1 means no intrusion had been detected
� 2 means an intrusion attempt detected

2-30 IBM 4758 CCA Services

 Cryptographic_Facility_Query

Figure 2-8 (Page 4 of 7). Cryptographic_Facility_Query Rule_Array Output
Keywords

Element
Number

Name Description

5 Low voltage
detected

A numeric character string containing a
value to indicate whether a power supply
voltage was below the minimum acceptable
level. This may indicate an attempt to
attack the security module.

� 1 means only acceptable voltages have
been detected

� 2 means a voltage has been detected
below the low voltage tamper threshold

6 High voltage
detected

A numeric character string containing a
value to indicate whether a power supply
voltage was above the maximum acceptable
level. This may indicate an attempt to
attack the security module.

� 1 means only acceptable voltages have
been detected

� 2 means a voltage has been detected
above the high voltage tamper threshold

7 Temperature range
exceeded

A numeric character string containing a
value to indicate whether the temperature in
the secure module was outside the
acceptable limits. This may indicate an
attempt to obtain information from the
module.

� 1 means the temperature is acceptable
� 2 means the temperature has been

detected outside of acceptable limits

8 X-ray radiation
detected

A numeric character string containing a
value to indicate whether X-ray radiation
was detected inside the secure module.
This may indicate an attempt to obtain
information from the module.

� 1 means no X-ray radiation has been
detected

� 2 means X-rays radiation has been
detected

 Chapter 2. CCA Node Management and Access Control 2-31

 Cryptographic_Facility_Query

Figure 2-8 (Page 5 of 7). Cryptographic_Facility_Query Rule_Array Output
Keywords

Element
Number

Name Description

9, 11,
13, 15,

17

Last five
commands
executed

These five rule array elements contain the
last five commands that were executed by
the coprocessor CCA application. They are
in chronological order, with the most recent
command in element 9. Each element
contains the SAPI command code in the
first four characters, and the subcommand
code in the last four characters.

10, 12,
14, 16,

18

Last five return
codes

These five rule array elements contain the
SAPI return codes and reason codes
corresponding to the five commands in rule
array elements 9, 11, 13, 15, and 17. Each
element contains the return code in the first
four characters, and the reason code in the
last four characters.

2-32 IBM 4758 CCA Services

 Cryptographic_Facility_Query

Figure 2-8 (Page 6 of 7). Cryptographic_Facility_Query Rule_Array Output
Keywords

Element
Number

Name Description

Output rule array for option STATEXPT

1 Base CCA services
availability

A numeric character string containing a
value to indicate whether base CCA
services are available.

� 0 means basic CCA services are not
available

� 1 means base CCA services are
available,

2 CDMF availability A numeric character string containing a
value to indicate whether CDMF encryption
is available.

� 0 means CDMF encryption is not
available

� 1 means CDMF encryption is available,

3 56-bit DES
availability

A numeric character string containing a
value to indicate whether 56-bit DES
encryption is available.

� 0 means 56-bit DES encryption is not
available

� 1 means 56-bit DES encryption is
available,

4 Triple-DES
availability

A numeric character string containing a
value to indicate whether Triple-DES
encryption is available.

� 0 means Triple-DES encryption is not
available

� 1 means Triple-DES encryption is
available,

5 SET services
availability

A numeric character string containing a
value to indicate whether SET (Secure
Electronic Transactions) services are
available.

� 0 means SET services are not available
� 1 means SET services are available,

6 Maximum modulus
for symmetric key
encryption

A numeric character string containing the
maximum modulus size that is enabled for
the encryption of symmetric keys. This
defines the longest public-key modulus that
can be used for key management of
symmetric-algorithm keys.

 Chapter 2. CCA Node Management and Access Control 2-33

 Cryptographic_Facility_Query

Figure 2-8 (Page 7 of 7). Cryptographic_Facility_Query Rule_Array Output
Keywords

Element
Number

Name Description

| Output rule array for option STATMOFN

| Elements 1 and 2, and elements 3 and 4, are each treated as a 16-byte string
| with the high-order 15 bytes having meaningful information and the sixteenth
| byte containing a space character. Each byte provides status information about
| the 'i'th share, 1≤i≤15, of master key information.

| 1, 2| Master key shares
| generation
| The 15 individual bytes are set to one of
| these character values:

| 0 Can not be generated
| 1 Can be generated
| 2 Has been generated but not
| distributed
| 3 Generated and distributed once
| 4 Generated and distributed more
| than once.

| 3, 4| Master key shares
| reception
| The 15 individual bytes are set to one of
| these character values:

| 0 Can not be received
| 1 Can be received
| 3 Has been received
| 4 Has been received more than
| once.

| 5| 'm'| The minimum number of shares required to
| instantiate a master key through the master
| key shares process. The value is returned
| in two characters, valued from 01 to 15,
| followed by six space characters.

| 6| 'n'| The maximum number of distinct shares
| involved in the master key shares process.
| The value is returned in two characters,
| valued from 01 to 15, followed by six space
| characters.

| Output rule array for option STATEID

| 1,2| EID, Environment
| Identifier
| The two elements when concatenated
| provide the 16-byte EID value.

Output rule array for option TIMEDATE

1 Date The current date is returned as a character
string of the form YYYYMMDD, where
YYYY represents the year, MM represents
the month (01-12), and DD represents the
day of the month (01-31).

2 Time The current GMT time of day is returned as
a character string of the form HHMMSS.

3 Day of the week The day of the week is returned as a
number between 1 (Sunday) and 7
(Saturday).

2-34 IBM 4758 CCA Services

 Cryptographic_Facility_Query

verb_data_length
The verb_data_length parameter is a pointer to an integer variable
containing the length (in bytes) of data in the verb_data field.

verb_data
The verb_data parameter is a pointer to a string variable containing data
sent to the coprocessor for this verb, or received from the coprocessor as a
result of the verb. Its use depends on the options specified by the host
application program.

The verb_data parameter is not currently used by this verb.

 Required Commands
Cryptographic_Facility_Query is a universally-authorized verb. There are no
access control restrictions on its use.

 Chapter 2. CCA Node Management and Access Control 2-35

 Key_Storage_Initialization

| Key_Storage_Initialization (CSNBKSI)

| Platform/
| Product
| OS/2| AIX| NT

| IBM-4758| X| X| X

| The Key_Storage_Initialization verb can initialize a key storage file using the
| current master key.

| Restrictions
| None

| Format
| CSNBKSI

| return_code| Output| Integer
| reason_code| Output| Integer
| exit_data_length| Input| Integer
| exit_data| Input| String| exit_data_length bytes
| rule_array_count| Input| Integer
| rule_array| Input| String array| rule_array_count * 8 bytes
| key_storage_file_name_length| Input| Integer
| key_storage_file_name| Input| String| key_storage_file_name_length
| bytes
| key_storage_description_length| Input| Integer| ≤64
| key_storage_description| Input| String| key_storage_description_length
| bytes
| clear_master_key| Input| String

| Parameters
| For the definitions of the return_code, reason_code, exit_data_length, and
| exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

| rule_array_count
| The rule_array_count parameter is a pointer to an integer containing the
| number of elements in the rule array. The value of the rule_array_count
| variable must be two for this verb.

| rule_array
| The rule_array parameter is a pointer to an array of keywords. The
| keywords are eight bytes in length, and must be uppercase, left-justified,
| and padded on the right with space characters. The rule_array keywords
| are shown below:

| Keyword| Meaning

| Specify a master key source (One required)

| CURRENT| Specifies that the current master key of the default
| cryptographic facility is to be used for the initialization.

| Key Storage Selection (One, required)

| DES| Initialize the DES key storage.

| PKA| Initialize the PKA key storage.

2-36 IBM 4758 CCA Services

 Key_Storage_Initialization

| key_storage_file_name_length
| The key_storage_file_name_length parameter is a pointer to an integer
| variable containing length of the key_storage_file_name variable. The
| length must be within the range of 1 to 64 bytes.

| key_storage_file_name
| The key_storage_file_name parameter is a pointer to a string variable
| containing the fully qualified file name of the key storage file to be initialized.
| If the file does not exist, it is created. If the file does exist, it is overwritten
| and all existing keys are lost.

| key_storage_description_length
| The key_storage_description_length parameter is a pointer to an integer
| containing the length of the key_storage_description variable.

| key_storage_description
| The key_storage_description parameter is a pointer to a string variable
| containing description string that is stored in the key storage file after it is
| initialized.

| clear_master_key
| The clear_master_keys parameter is unused, but it must be declared and
| point to data in application storage.

| Required Commands
| The Key_Storage_Initialization verb requires the Compute Verification Pattern
| command (offset X'001D') to be enabled in the hardware.

 Chapter 2. CCA Node Management and Access Control 2-37

 Logon_Control

 Logon_Control (CSUALCT)

Platform/
Product

OS/2 AIX NT

IBM-4758 X X X

Use the Logon_Control verb to perform the following services:

� Log on to the coprocessor, using your access control profile

� Log off of the coprocessor.

� Save or restore logon content information.

Select the service to perform by specifying the corresponding keyword in the
input rule array. Only one service is performed for each call to this verb.

If you log on to the adapter when you are already logged on, the existing logon
session is replaced with a new session.

 Restrictions
None.

 Format
CSUALCT

return_code Output Integer
reason_code Output Integer
exit_data_length Input Integer
exit_data Input String exit_data_length
rule_array_count Input Integer
rule_array Input String array rule_array_count * 8 bytes
user_id Input String 8 bytes
auth_parm_length Input Integer
auth_parm Input String auth_parm_length bytes
auth_data_length Input Integer
auth_data Input String auth_data_length bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

rule_array_count
The rule_array_count parameter is a pointer to an integer containing the
number of elements in the rule array. The value of the rule_array_count

| must be one or two for this verb.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords
are shown below:

On input, you put keywords into the rule array to specify the operation to
perform. The rule array keywords are shown below:

2-38 IBM 4758 CCA Services

 Logon_Control

user_id
The user_id parameter is a pointer to an eight-character string variable
containing the id string which identifies the user to the system. The user id
must be exactly eight characters in length; shorter user ids should be
padded on the right with space characters.

The user_id parameter is always used when logging on. It is also used
when the LOGOFF keyword used in conjunction with the FORCE keyword
to force a user off.

auth_parm_length
The auth_parm_length parameter is a pointer to an integer variable
containing the length (in bytes) of data in the auth_parm variable.

On input, this variable contains the length (in bytes) of the auth_parms
variable.. On output, this variable contains the number of bytes of data
returned in the auth_parms variable.

auth_parms
The auth_parms parameter is a pointer to a string variable containing data
used in the authentication process.

This field is used differently depending of the authentication method
specified in the rule array. Figure 2-10 shows the content of this field for
each of the authentication methods.

Figure 2-9. CSUALCT Rule_Array Input Keywords

Keyword Meaning

Keywords used to log on

LOGON| Tells the coprocessor that you want to log on. When you
| use the LOGON keyword, you must also use a second
| keyword, PPHRASE, to indicate how you will identify
| yourself to the coprocessor.

PPHRASE Specifies that you are going to identify yourself using a
passphrase.

Keywords used to log off

LOGOFF Tells the coprocessor you want to log off.

FORCE Tells the coprocessor that a specified user is to be logged
off. The user's profile ID is specified by the user_id
parameter.

Keywords used to save and restore logon context information

GET-CNTX Obtains a copy of the logon context information that is
currently active in your session. See “The use of Logon
Context information” on page 2-40

PUT-CNTX Restores the logon context information that was saved
using the GET_CNTX keyword. See “The use of Logon
Context information” on page 2-40

Figure 2-10. Contents of the authentication parameters field

Keyword Contents of auth_parms field

PPHRASE The authentication parameter field is empty. Its length is
zero.

 Chapter 2. CCA Node Management and Access Control 2-39

 Logon_Control

auth_data_Length
The auth_data_length parameter is a pointer to an integer variable
containing the length (in bytes) of the data in the auth_data variable

On input, this field contains the length (in bytes) of the auth_data variable.
On output, this field contains the number of bytes of data returned in the
auth_data variable.

auth_data
The auth_data parameter is a pointer to a string variable containing data
used in the authentication process.

This field is used differently depending on the keywords specified in the
rule_array. Figure 2-11 shows the content of this field for each of the
authentication methods.

Figure 2-11. Contents of the authentication data field

Keyword Contents of auth_data field

PPHRASE The authentication data field contains the user-provided
passphrase.

GET-CNTX The authentication data field receives the active logon
context information. The size of the buffer provided for the
auth_data field must be at least 256 bytes.

PUT-CNTX The authentication data field contains your active logon
context,

The use of Logon Context information
When logging on to the cryptographic coprocessor, a session is established
between your application program and the coprocessor's access control system.
The Security Application Program Interface (SAPI) holds the logon context
information, which contains the session information needed by the host
computer to protect and validate transactions sent to the coprocessor.

This logon context information resides in memory owned by your application and
is lost when the application ends. If your application is made up of multiple
programs which are separately executed, you must make this the logon context
information available to each program. The Logon Control verb offers this
capability through the GET-CNTX and PUT-CNTX keywords.

The GET-CNTX keyword is used to retrieve a copy of your logon context
information, which you can store until another program needs it. The
PUT-CNTX keyword is used to give the context information back to the API,
allowing it to continue with your logon session. If the context is not saved and
restored, the coprocessor thinks you are still logged on, but the API does not.

As an example, consider a simple application which contains two programs.

� The program LOGON logs you on to the coprocessor using your
passphrase.

� The program ENCRYPT encrypts some data. The roles defined for your
system require you to be logged on in order to use the ENCIPHER function.

These programs will must use the GET-CNTX and PUT-CNTX keywords in
order to work properly. They should work as follows.

2-40 IBM 4758 CCA Services

 Logon_Control

LOGON

1. Log the user on to the coprocessor using CSUALCT verb with
the PPHRASE keyword.

2. Retrieve the logon context information using CSUALCT with the
GET-CNTX keyword.

3. Save the logon context information in a place that will be
available to the ENCIPHER program. This could be as simple as
a disk file, or it could be something more complicated such as
shared memory or a background process.

ENCIPHER

1. Retrieve the logon context information saved by the LOGON
program.

2. Restore the logon context information to SAPI using the
CSUALCT verb with the PUT-CNTX keyword.

3. Encipher the data.

You only need to be concerned about the logon context information if you log
on to the coprocessor using one program, then make use of the coprocessor
with one or more additional programs.

CAUTION:
You should take care in storing the logon context information. Design
your software so that the saved context is protected from disclosure to
others who may be using the same computer. If someone is able to obtain
your logon context information, they may be able to impersonate you for
the duration of your logon session.

 Required Commands
The Logon_Control verb requires the Force User Logoff of a specified user
command (offset X'011B') to be enabled in the hardware for use with the
FORCE keyword.

 Chapter 2. CCA Node Management and Access Control 2-41

 Master_Key_Distribution

| Master_Key_Distribution (CSUAMKD)

| Platform/
| Product
| OS/2| AIX| NT

| IBM-4758| X| X| X

| The Master_Key_Distribution verb is used to perform these operations related to
| the distribution of shares of the master key:

| � Generate and distribute a share of the current master-key
| � Receive a master key share. When sufficient shares are received,
| reconstruct the master key in the new master-key register.

| OBTAIN and INSTALL rule array keywords control the operation of the verb.

| With the OBTAIN keyword...

| � You specify:

| – The share number, i; 1 ≤ i ≤ 15 and i ≤ the maximum number of shares
| to be distributed as defined with the SET-MOFN option in the
| Cryptographic_Facility_Control verb.
| – The private-key_name of the coprocessor-retained key used to sign a
| generated master key share
| – The certifying_key_name of the public key already registered in the
| Coprocessor used to validate the following certificate
| – The certificate and its length that provides the public key used to encrypt
| the clone_information_encrypting_key
| – The length and location of the clone_information field that will receive
| the encrypted cloning information (master key share).

| � The verb performs:

| – Generation of master key shares, as required, and formatting of the
| information to be cloned
| – Signing of the cloning_information
| – Generation of an encryption key and encryption of the cloning
| information
| – Recovery and validation of the public key used to encrypt the
| clone_information_encrypting_key
| – Encryption of the clone_information_encrypting_key.

| � The verb returns:

| – The encrypted cloning information
| – The encrypted clone_information_encrypting_key.

| With the INSTALL keyword...

| � You specify:

| – The share number, ‘i’, presented in this request
| – The private_key_name of the coprocessor-retained key used to decrypt
| the clone_information_encrypting_key
| – The certifying_key_name of the public key already registered in the
| Coprocessor used to validate the following certificate
| – The certificate and its length that provides the public key used to
| validate the signature on the cloning information

2-42 IBM 4758 CCA Services

 Master_Key_Distribution

| – The length and location of the clone_information field that provides the
| encrypted cloning information (master key share).

| � The verb performs:

| – Recovery of the clone_information_encrypting_key
| – Decryption of the cloning information
| – Recovery and validation of the public key used to validate the cloning
| information signature
| – Validation of the cloning information signature
| – Retention of a master-key share
| – Regeneration of a master key in the new master key register when
| sufficient shares have been received.

| � The verb returns:

| – A return code valued to 4 if the master key has been recovered into the
| new master key register. A return code of zero indicates that
| processing was normal, but a master key was not recovered into the
| new master key register. (Other return codes, and various reason
| codes can also occur in abnormal cases.)

| Restrictions
| When using the OBTAIN keyword, the current master key register must be full.

| When using the INSTALL keyword, the new master key register must be clear
| (empty).

| Format
| CSUAMKD

| return_code| Output| Integer
| reason_code| Output| Integer
| exit_data_length| Input| Integer
| exit_data| Input| String| exit_data_length bytes
| rule_array_count| Input| Integer
| rule_array| Input| String array| rule_array_count * 8 bytes
| share_index| Input| Integer
| private_key_name| Input| String| 64 bytes
| certifying_key_name| Input| String| 64 bytes
| certificate_length| Input| Integer
| certificate| Input| String
| clone_info_encrypting_key_length| Inp/Outp| Integer
| clone_info_encrypting_key| Inp/Outp| String
| clone_info_length| Inp/Outp| Integer
| clone_info| Inp/Outp| String

| Parameters
| For the definitions of the return_code, reason_code, exit_data_length, and
| exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

| rule_array_count
| The rule_array_count parameter is a pointer to an integer containing the
| number of elements in the rule_array variable.

| rule_array
| The rule_array parameter is a pointer to an array of keywords. The
| keywords are eight-bytes in length, and must be uppercase, left-justified,
| and padded on the right with space characters.

 Chapter 2. CCA Node Management and Access Control 2-43

 Master_Key_Distribution

| On input, the keywords in the rule array specify the operation being
| performed. The rule array keywords are shown below:

| share_index
| The share_index parameter points to an integer valued to the number of the
| share to be generated or received by the coprocessor.

| private_key_name
| The private_key_name parameter points to a 64-byte string variable that
| contains the name of the Coprocessor-retained private key used to sign the
| cloning information (OBTAIN mode), or recover the cloning information
| encrypting key (INSTALL mode).

| certifying_key_name
| The certifying_key_name parameter points to a 64-byte string variable that
| contains the name of the Coprocessor-retained public key used to verify the
| offered certificate.

| certificate_length
| The certificate_length parameter points to an integer variable set to the
| length of the public key certificate.

| certificate
| The certificate parameter points to a string variable containing the certificate
| that can be validated using the public key identified with the
| certifying_key_name variable.

| clone_info_encrypting_key_length
| The clone_info_encrypting_key_length parameter points to an integer
| variable containing the length of the clone_info_encrypting_key variable.

| clone_info_encrypting_key
| The clone_info_encrypting_key parameter points to a string variable
| containing the encrypted key used to recover the cloning information.

| clone_info_length
| The clone_info_length parameter points to an integer variable containing the
| length of the clone_info variable.

| clone_info
| The clone_info parameter points to a string variable containing the
| encrypted cloning information (master key share).

| Keyword| Meaning

| OBTAIN| Generate and output a master key share and other cloning
| information.

| INSTALL| Receive a master key share and other cloning information.

| Required Commands
| The Master_Key_Distribution verb requires the following commands to be
| enabled based on the requested share-number, 1≤i≤15, and the use of either
| the OBTAIN or the INSTALL rule array keyword:

| � Clone-info Obtain command (offset X'0210'+share_index, e.g. for share 10,
| X'021A')

2-44 IBM 4758 CCA Services

 Master_Key_Distribution

| � Clone-info Install command (offset X'0220'+share_index, e.g. for share 12,
| X'022C').

 Chapter 2. CCA Node Management and Access Control 2-45

 Master_Key_Process

 Master_Key_Process (CSNBMKP)

Platform/
Product

OS/2 AIX NT

IBM-4758 X X X

| The Master_Key_Process verb operates on the three master key registers:
| new, current, and old. Use the verb to:

| � Clear the new and clear the old master key registers

| � Generate a random master key value in the new master key register

| � Exclusive-OR a clear value as a key-part into the new master key register

| � SET the master key which transfers the current master key to the old master
| key register, the new master key to the current master key register, and
| clears the new master key register. SET also clears the master-key shares
| tables.

| For IBM 4758 Cryptographic Coprocessor implementations, the master key is a
| triple length, 168-bit, 24-byte value.

| Before starting to load new master key information, ensure that the new master
| key register is cleared, by using the CLEAR keyword in the rule_array.

| To form a master key from key_parts in the new master key register, use the
| verb several times to complete the following tasks:

| � Clear the register, if it is not already clear
| � Load the first key_part
| � Load any middle key_parts, calling the verb once for each middle key_part
| � Load the last key_part.

| You can remove a prior master key from the Coprocessor with the CLR-OLD
| keyword; the contents of the old master key register are removed AND
| subsequently only current-master-key encrypted keys will be usable. If there is
| a value in the old master key register, this master key can also be used to
| decrypt an enciphered working key.

| The low-order bit in each byte of the key is used as parity for the remaining bits
| in the byte. Each byte of the key_part should contain an odd number of one
| bits. If this is not the case, a warning is issued. The product maintains odd
| parity on the accumulated key value.

When the LAST master key part is entered, this additional processing is
performed:

� If any two of the eight-byte parts of the new master key have the same
value, a warning is issued. This warning should not be ignored and a key
with this property should not be used.

� The key-token master key verification pattern (MKVP) of the new master key
is compared against the key-token MKVP of the current and the old master
keys. If they are the same, the service is failed.

2-46 IBM 4758 CCA Services

 Master_Key_Process

� If any of the eight-byte parts of the new master key compares with one of
the weak DES keys, the service is failed. See page 2-48 for a list of these
“weak” keys.

As part of the SET process, if a DES and/or PKA key storage exists, the header
record of each key storage is updated with the verification pattern of the (new)
current master key.

 Restrictions
Only the IBM 4758 implementations support the SET keyword and treat the
ADAPTER keyword as a default.

 Format
CSNBMKP

return_code Output Integer
reason_code Output Integer
exit_data_length Input Integer
exit_data Input String exit_data_length bytes
rule_array_count Input Integer
rule_array Input String array rule_array_count * 8 bytes
key_part Input String

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

rule_array_count
The rule_array_count parameter is a pointer to an integer containing the
number of elements in the rule_array variable. The value of the
rule_array_count variable may be 1 or 2 for this verb.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be left-justified and padded on
the right with space characters. The rule_array keywords are shown below:

Keyword Meaning

Cryptographic Component (optional)

ADAPTER Specifies the coprocessor. This is the default for IBM
4758 implementations.

 Chapter 2. CCA Node Management and Access Control 2-47

 Master_Key_Process

key_part
The key_part parameter is a pointer to a string variable containing a 168-bit
(3x56-bit, 24-byte) clear key_part.

If you use the CLEAR or SET keywords, the information in the variable is
ignored, but you must declare the variable.

Keyword Meaning

Master Key Process (one required)

CLEAR Specifies to clear the new master key register.

| CLR-OLD| Specifies to clear the old master key register and set the
| status for this register to empty.

| You can use the CLR-OLD keyword to cause the old
| master key register to be cleared. The status response in
| the Cryptographic_Facility_Query verb, STATCCA, shows
| the condition of this register.

FIRST Specifies to load the first key_part.

MIDDLE Specifies to XOR the second, third, or other intermediate
key_part into the new master key register.

LAST Specifies to XOR the last key_part into the new master key
register.

| RANDOM| Causes generation of a random master key value in the
| new master key register.

SET Specifies to advance the current master key to the old
master key register, to advance the new master key to the
current master key register, and to clear the new master
key register. This keyword is valid only with IBM 4758
implementations.

 Required Commands
The Master_Key_Process verb requires the following commands to be enabled
in the hardware:

� Clear New Master Key Register command (offset X'0032') with the CLEAR
keyword

| � Clear Old Master Key Register command (offset X'0033') with the
| CLR-OLD keyword

� Load First Master Key Part command (offset X'0018') with the FIRST
keyword

� Combine Master Key Parts command (offset X'0019') with the MIDDLE or
LAST keywords

| � Generate Random Master Key command (offset X'0020') with the
| RANDOM keyword

� Set Master Key command (offset X'001A') with the SET keyword.

 Related Information
The following are considered questionable DES keys:

ð1 ð1 ð1 ð1 ð1 ð1 ð1 ð1

FE FE FE FE FE FE FE FE

1F 1F 1F 1F ðE ðE ðE ðE

Eð Eð Eð Eð F1 F1 F1 F1

2-48 IBM 4758 CCA Services

 Master_Key_Process

ð1 FE ð1 FE ð1 FE ð1 FE /\ semi-weak \/

FE ð1 FE ð1 FE ð1 FE ð1 /\ semi-weak \/

1F Eð 1F Eð ðE F1 ðE F1 /\ semi-weak \/

Eð 1F Eð 1F F1 ðE F1 ðE /\ semi-weak \/

ð1 Eð ð1 Eð ð1 F1 ð1 F1 /\ semi-weak \/

Eð ð1 Eð ð1 F1 ð1 F1 ð1 /\ semi-weak \/

1F FE 1F FE ðE FE ðE FE /\ semi-weak \/

FE 1F FE 1F FE ðE FE ðE /\ semi-weak \/

ð1 1F ð1 1F ð1 ðE ð1 ðE /\ semi-weak \/

1F ð1 1F ð1 ðE ð1 ðE ð1 /\ semi-weak \/

Eð FE Eð FE F1 FE F1 FE /\ semi-weak \/

FE Eð FE Eð FE F1 FE F1 /\ semi-weak \/

1F 1F ð1 ð1 ðE ðE ð1 ð1 /\ possibly semi-weak \/

ð1 1F 1F ð1 ð1 ðE ðE ð1 /\ possibly semi-weak \/

1F ð1 ð1 1F ðE ð1 ð1 ðE /\ possibly semi-weak \/

ð1 ð1 1F 1F ð1 ð1 ðE ðE /\ possibly semi-weak \/

Eð Eð ð1 ð1 F1 F1 ð1 ð1 /\ possibly semi-weak \/

FE FE ð1 ð1 FE FE ð1 ð1 /\ possibly semi-weak \/

FE Eð 1F ð1 FE F1 ðE ð1 /\ possibly semi-weak \/

Eð FE 1F ð1 F1 FE ðE ð1 /\ possibly semi-weak \/

FE Eð ð1 1F FE F1 ð1 ðE /\ possibly semi-weak \/

Eð FE ð1 1F F1 FE ð1 ðE /\ possibly semi-weak \/

Eð Eð 1F 1F F1 F1 ðE ðE /\ possibly semi-weak \/

FE FE 1F 1F FE FE ðE ðE /\ possibly semi-weak \/

FE 1F Eð ð1 FE ðE F1 ð1 /\ possibly semi-weak \/

Eð 1F FE ð1 F1 ðE FE ð1 /\ possibly semi-weak \/

FE ð1 Eð 1F FE ð1 F1 ðE /\ possibly semi-weak \/

Eð ð1 FE 1F F1 ð1 FE ðE /\ possibly semi-weak \/

ð1 Eð Eð ð1 ð1 F1 F1 ð1 /\ possibly semi-weak \/

1F FE Eð ð1 ðE FE Fð ð1 /\ possibly semi-weak \/

1F Eð FE ð1 ðE F1 FE ð1 /\ possibly semi-weak \/

ð1 FE FE ð1 ð1 FE FE ð1 /\ possibly semi-weak \/

1F Eð Eð 1F ðE F1 F1 ðE /\ possibly semi-weak \/

ð1 FE Eð 1F ð1 FE F1 ðE /\ possibly semi-weak \/

ð1 Eð FE 1F ð1 F1 FE ðE /\ possibly semi-weak \/

1F FE FE 1F ðE FE FE ðE /\ possibly semi-weak \/

Eð ð1 ð1 Eð F1 ð1 ð1 F1 /\ possibly semi-weak \/

FE 1F ð1 Eð FE ðE ð1 F1 /\ possibly semi-weak \/

FE ð1 1F Eð FE ð1 ðE F1 /\ possibly semi-weak \/

Eð 1F 1F Eð F1 ðE ðE F1 /\ possibly semi-weak \/

FE ð1 ð1 FE FE ð1 ð1 FE /\ possibly semi-weak \/

Eð 1F ð1 FE F1 ðE ð1 FE /\ possibly semi-weak \/

Eð ð1 1F FE F1 ð1 ðE FE /\ possibly semi-weak \/

FE 1F 1F FE FE ðE ðE FE /\ possibly semi-weak \/

1F FE ð1 Eð Eð FE ð1 F1 /\ possibly semi-weak \/

ð1 FE 1F Eð ð1 FE ðE F1 /\ possibly semi-weak \/

1F Eð ð1 FE ðE F1 ð1 FE /\ possibly semi-weak \/

ð1 Eð 1F FE ð1 F1 ðE FE /\ possibly semi-weak \/

ð1 ð1 Eð Eð ð1 ð1 F1 F1 /\ possibly semi-weak \/

1F 1F Eð Eð ðE ðE F1 F1 /\ possibly semi-weak \/

1F ð1 FE Eð ðE ð1 FE F1 /\ possibly semi-weak \/

ð1 1F FE Eð ð1 ðE FE F1 /\ possibly semi-weak \/

1F ð1 Eð FE ðE ð1 F1 FE /\ possibly semi-weak \/

ð1 1F Eð FE ð1 Eð F1 FE /\ possibly semi-weak \/

ð1 ð1 FE FE ð1 ð1 FE FE /\ possibly semi-weak \/

1F 1F FE FE ðE ðE FE FE /\ possibly semi-weak \/

FE FE Eð Eð FE FE F1 F1 /\ possibly semi-weak \/

Eð FE FE Eð F1 FE FE F1 /\ possibly semi-weak \/

 Chapter 2. CCA Node Management and Access Control 2-49

 Master_Key_Process

FE Eð Eð FE FE F1 F1 FE /\ possibly semi-weak \/

Eð Eð FE FE F1 F1 FE FE /\ possibly semi-weak \/

2-50 IBM 4758 CCA Services

Chapter 3. RSA Key Administration

Figure 3-1. Public-Key Key-Administration Services

Verb Page Service Entry
Point

Svc
Lcn

PKA_Key_Generate 3-6 Generates a public-private RSA key-pair. CSNDPKG E

PKA_Key_Import 3-10 Imports a public-private public key key-pair. CSNDPKI E

PKA_Key_Token_Build 3-12 Builds a public key key token. CSNDPKB S

PKA_Key_Token_Change 3-18 Re-encipher an RSA private key from the old master key
to the current master key.

CSNDKTC E

PKA_Public_Key_Extract 3-20 Extracts a public key from a public-private public key
token.

CSNDPKX S

| PKA_Public_Key_Hash_Register| 3-22| Register the hash of a public key used later to verify an
| offered public key, see PKA_Public_Key_Register.
| CSNDPKH| E

| PKA_Public_Key_Register| 3-24| Register a public key used later to verify an offered public
| key. Registration requires that a hash of the public key
| has previously been rigistered within the Coprocessor, see
| PKA_Public_Key_Hash_Register.

| CSNDPKR| E

Service location (Svc Lcn): E=Cryptographic Engine, S=Security API software

This chapter describes the management of RSA public and private keys and
how you can:

� Generate keys with various characteristics
� How you can receive keys from other systems
� How a private key can be protected and moved from one node to another

The verbs listed in Figure 3-1 are used to perform cryptographic functions and
assist you to obtain key_token structures.

RSA Key Management
This implementation of the CCA, and many others, support a set of public key
cryptographic services that are collectively designated PKA96. The PKA96
services support the RSA public key algorithm and related hashing methods
including MD5 and SHA-1. Figure 3-2 on page 3-2 shows the relationship
among the services, the public-private key_token, and other data involved with
supporting digital signatures and symmetric (DES) key exchange.

These topics are discussed in this section:

� How you can generate an RSA key pair
� How you can receive keys from other systems
� How you can update a private key when the master key that protects a

private key is changed
� How you can use the RSA keys and provide for their protection
� How you can use a private key at multiple nodes

| � How you can register and retain a public key.

 Copyright IBM Corp. 1997-98 3-1

 ────────────┬─────────────────

 ┌───────6───────────┐

 │PKA_Key_Token_Build├┐

 └┬──────────────────┘│

┌─────────┐ └──────┬───────┬────┘

│ │ │ │(Skeleton)

│ ┌──────6───────┐ │ ┌─────6──────────┐

│ │PKA_Key_Import├┐ │ │PKA_Key_Generate├┐

│ └┬─────────────┘│ │ └┬───────────────┘│

│ └─────┬────────┘ │ └────┬───────────┘

│ └────────────────┐ │ │

│ │ │ │

│ ┌───6──6───────6────────┐ Data

│ │ PKA96 PU─PR Key Token │ ──┬──

│ │ PU: Clear │ ┌──────6─────┐

│ │ PR: e\MK(PR) │ │One_Way_Hash├┐

│ │ or e\KEK(PR) │ └┬───────────┘│

│ │ or Clear │ └─────┬──────┘

│ └───────────┬───────────┘ │

│ │ │

│ 6 6

└────────────────────────────┬─────┴────────┬────────┐ ├────────────────┐

 │ │ ┌────6───────6─────────────┐ │

 ┌──────────6───────────┐ │ │Digital_Signature_Generate├┐ │

 │PKA_Public_Key_Extract├┐ │ └┬─────────────────────────┘│ │

 └┬─────────────────────┘│ │ └───────────┬──────────────┘ │

┌──────────┐ └─────────┬────────────┘ │ │ │

│e\MK.CV(K)│ │ │ ┌─────6─────┐ │

└─────┬────┘ ┌────────6───────┐ │ │ Digital │ │

(DES/CDMF│ │ PU Key Token │ │ │ Signature │ │

Key) │ └────────┬───────┘ │ └─────┬─────┘ │

 │ ┌───┴──────────────│──────┐ │ ┌────────────┘

 ┌─────6───────────────6────┐ │ ┌──6─────────6───6───────┐

│ PKA_Symmetric_Key_Export ├┐ │ │Digital_Signature_Verify├┐

 └┬─────────────────────────┘│ │ └┬───────────────────────┘│

 └─────────┬────────────────┘ │ └───────────┬────────────┘

 │ │ 6

 ┌────6────┐ │ yes/no

 │ePU(K),CV│ ┌─────────────────┘

 └────┬────┘ │(Private key)

 │ │

 │ │

 ┌──────────6───────────6─┐

 │PKA_Symmetric_Key_Import├┐ ┌───────────────┐

 └┬───────────────────────┘│ │Designates Verb├┐

 └─────────┬──────────────┘ └┬──────────────┘│

 │ └───────────────┘

 ┌─────6────┐

 │e\MK.CV(K)│ ┌───────────────┐

└──────────┘ │Data Structure │

 (DES/CDMF Key) └───────────────┘

Figure 3-2. PKA96 Verbs with Key Token Flow

 Key Generation
RSA public and private key-pairs can be generated with the PKA_Key_Generate
verb. When generating the key-pair you must determine:

 � The key-length
� The encryption of the private key (to control where the key can be used)
� An association with a key name that in some systems can limit key usage
� Whether the key should be usable in symmetric key-exchange operations
� The form of the private key: modular-exponent or Chinese Remainder

| � Where the private key can reside
| � How, or if, the private key should be encrypted.
| All but the last two items are determined by the skeleton_key_token that you

supply to the verb. A skeleton_key_token is prepared using the
PKA_Key_Token_Build verb.

3-2 IBM 4758 CCA Services

This PKA_Key_Generate verb outputs the generated secret key in one of three
forms so you can control where the private key is employed:

 � Cleartext

Both the RSA private and public keys are returned as clear text. This option
requires that you provide protection for the private key by means other than
encryption within the key-generating step. This option is provided so the
user can test, or interface with, other systems or applications that require
the private key to be in the clear.

� Enciphered by the local master key

You can request that the key-generating service return the private key
enciphered by the master key within the cryptographic engine. Since there
is no service available to re-encrypt the private key other than the current or
a replacement master key, the generated private key is effectively locked to
the generating node.

� Enciphered by a transport Key-Encrypting Key

You can request the service to encrypt the generated private key under
either an IMPORTER key or an EXPORTER key. An IMPORTER key will
permit the private key to be imported and used later at the generating node.

Or, the Key-Encrypting Key can be an EXPORTER transport key. An
EXPORTER key is shared with one or more nodes. This allows you to
distribute the key to another node(s). For example, you could obtain a
private key in this form for distribution to a S/390 large server's integrated
RSA cryptographic processor, as that processor can not generate private
keys in an encrypted form.

Note: EXPORTER and IMPORTER key-encrypting “transport” keys are
discussed in Chapter 5, “Basic CCA DES Key Management.”

| You can also request that the generated private key be retained within the
| secure cryptographic engine through the use of the RETAIN keyword on the
| PKA_Key_Generate verb. In this case, only the public key is returned. You use
| the retained private key by referring to it with a key label.

Because you can obtain the private key, it can be made functional on more than
one cryptographic engine and used for backup or additional throughput. Your
administration procedures control where the key can be used. The private key
can be transported securely between nodes in its encrypted form. You can set
up one-way key distribution channels between nodes and lock the private-key
receiving key to a particular node or nodes so that you can be certain where the
private key exists. This ability to replicate a key to multiple nodes is especially
important to high-throughput server systems and important for backup
processing purposes.

In systems with an access monitor like RACF on S/390 large servers, the
key_name that you associate with a private key gives you the ability to enforce
restricted key usage. These systems can determine if a requesting process has
the right to use the particular key-name that is cryptographically bound to the
private key. You specify such a key-name when you build the
skeleton_key_token in the PKA_Key_Token_Build verb.

 Chapter 3. RSA Key Administration 3-3

You decide if the key should be returned in modular-exponent form or as a
series of numbers for use in the Chinese-Remainder-Theorem (CRT) form which
generally yields faster performance in key-using services. This decision is
represented by the form of the private key that you indicate in the
skeleton_key_token. You can reuse an existing key_token having the desirable
properties, or you can build the skeleton_key_token with the
PKA_Key_Token_Build verb. Not all systems can employ a private key in the
CRT form generated by the PKA_Key_Generate verb. In particular the S/390
large server integrated cryptographic feature requires the private key in
modular-exponent form.

The characteristics of the generated key including key length are specified in a
skeleton_key_token. You specify the key-length (modulus length) and decide if
the public exponent should be valued to three, 216+1, or fully random. Also, in
the PKA_Key_Token_Build verb you can indicate that the key should be usable
for both digital signature signing and symmetric key exchange, or you can
indicate that the key should be usable only for digital signature signing.

The key can be generated as a random value, or the key can be generated
based on a seed derived from regeneration data provided by the application
program.

 Key Import
To be useful, an RSA private key must be enciphered by a master key on the
CCA node where it will be used to sign a digital signature or to receive a
symmetric key in a key-exchange scenario. You can use the PKA_Key_Import
verb to get a private key deciphered from a transport key and enciphered by the
master key. Also, you can get a clear (unenciphered) private key enciphered by
the master key using the PKA_Key_Import verb.

The public and private RSA keys must be presented in a PKA external
key-token (see “RSA Key Token Formats” on page B-5). You can use the
PKA_Key_Token_Build verb to structure the key into the proper token format.

You provide or identify the operational transport key (Key-Encrypting Key) and
the encrypted private key with its associated public key to the import service.
The service will return the private key encrypted under the master key along
with the public key.

Re-enciphering a Private Key Under an Updated Master Key
When the master key at a CCA node is changed, operational keys, such as
RSA private keys enciphered by the master key, must be securely decrypted
from under the preexisting master key and enciphered under the replacement
master key. You can accomplish this task using the PKA_Key_Token_Change
verb.

After the preexisting master key has become the old-master key and the
replacement master key has become the current-master key, you use the
PKA_Key_Token_Change verb to effect the re-encipherment of the private key.
(You use the Master_Key_Process verb to set the master key.)

3-4 IBM 4758 CCA Services

Using the RSA Keys
| The RSA keys that you create (generate) or import can be used in these
| services:

For Private keys, see:
 � Digital_Signature_Generate, 4-4
 � PKA_Symmetric_Key_Import, 5-52
For Public keys, see:
 � Digital_Signature_Verify, 4-7
 � PKA_Symmetric_Key_Export, 5-47

| � PKA_Symmetric_Key_Generate, 5-49

You must arrange appropriate protection for the RSA private key. A CCA node
can help ensure that the key will remain confidential. However, you must
ensure that the master key and any transport keys are protected, usually

| through split-knowledge, dual-control procedures. Or, you can choose to retain
| the private key in the secure cryptographic engine.

Besides the confidentiality of the private key, you must also ensure that only
authorized applications can use the private key. You can hold the private key in
application-managed storage and pass the key to the cryptographic services as
required. This will generally limit the access other applications might have to the
key. In systems with an access monitor, such as RACF on MVS systems, it is
possible to associate a key name with the private key and have use of the
key-name authorized by the access monitor.

Using the Private Key at Multiple Nodes
You can arrange to use a private key at multiple nodes if the nodes have the
same master key, or if you arrange to have the same transport key installed at
each of the target nodes. In the latter case, you need to arrange to have the
transport key under which the RSA private key is enciphered installed at each
target node.

Having the private key installed at multiple nodes enables you to provide
increased service levels for greater throughput, and to maintain operation when
a primary node goes out of service. Of course, having a private key installed at
more than one node increases the risk of someone misusing or compromising
the key. You have to weigh the advantages and disadvantages as you design
your system or systems.

| Registering and Retaining a Public Key
| You can use the PKA_Public_Key_Hash_Register and the
| PKA_Public_Key_Register verbs to “register” a public key in the secure
| cryptographic engine under dual control. Authorize the related commands in two
| different roles to enforce a dual control policy. Your applications can
| subsequently reference the public key logged within the engine with the
| confidence that the key has been entered under dual control. Note that the
| Master_Key_Distribution verb makes use of registered public keys in the
| master-key shares distribution scheme.

 Chapter 3. RSA Key Administration 3-5

 PKA_Key_Generate

 PKA_Key_Generate (CSNDPKG)

Platform/
Product

OS/2 AIX NT

IBM-4758 X X X

The PKA_Key_Generate verb is used to generate a public-private key-pair for
use with the RSA algorithm.

The skeleton_key_token specified by the verb determines the following
characteristics of the generated key-pair:

� The key type: RSA
� The RSA key length (modulus size)
� The RSA public key exponent, valued to 3, 216+1, or random
� Any RSA private key optimization (modulus-exponent vs “Chinese

Remainder” form)
| � Any signatures and signature-information that should be associated with the
| public key

The skeleton_key_token can be created using the PKA_Key_Token_Build verb.

The key is normally randomly generated. By providing “regeneration data,” a
seed can be derived so that the same value of the generated key can be
obtained in multiple instances. This may be useful in testing situations or where
the regeneration data can be securely held for key generation. The process for
generating a particular key-pair from regeneration data may vary between
product implementations, therefore you should not rely on obtaining the same
key-pair for a given regeneration data string between products.

The generated private key can be returned in one of three forms:

� In cleartext form
� Enciphered by the master key of the local node
� Enciphered by a transport key, either a DES IMPORTER or DES

EXPORTER Key-Encrypting Key. If the private key is enciphered by an
IMPORTER key, it can be imported to the generating node. If the private
key is enciphered by an EXPORTER key, it can be imported to a node
where the matching IMPORTER key is installed.

| Using the RETAIN rule array keyword you can cause the private key to be
| retained within the cryptographic engine. You place the name by which you
| will later reference the newly generated key in the “key name” section of the
| skeleton key token. Later, you use this key name to employ the key in
| verbs such as Digital_Signature_Generate, &vbnmski.,
| Master_Key_Distribution, and SET_Block_Decompose. The
| generated_key_identifier variable will not contain the private key key-token
| section.

| Rule array keyword CLONE marks a generated and retained private key to be
| flagged as usable in an engine “cloning” process. Cloning is a technique for
| copying sensitive adapter information from one adapter to another.

| If you include a public-key certificate section within the skeleton key token, you
| cause the cryptographic engine to sign a certificate with the key that is

3-6 IBM 4758 CCA Services

 PKA_Key_Generate

| designated in the public-key certificate signature subsection. Using this
| technique, you can cause the cryptographic engine to sign the newly generated
| public key using another key that has been retained within the engine, including
| the newly generated key (producing a “self-signature”). You can obtain more
| than one signature on the public key when yuou include multiple signature
| subsections in the skeleton key token.

 Restrictions
� Not all IBM implementations of PKA96 verbs may support an optimized form

of the RSA private key; check the product-specific literature. The Fortress
product family implementation of PKA96 supports an optimized RSA private
key (a key in “Chinese Remainder” form).

� When the private key is enciphered for use at another node, determine that
the control vector values used with the transport key are compatible with
permissible control vector values at the receiving node.

 Format
CSNDPKG

return_code Output Integer
reason_code Output Integer
exit_data_length Input Integer
exit_data Input String exit_data_length bytes
rule_array_count Input Integer
rule_array Input String array rule_array_count * 8 bytes
regeneration_data_length Input Integer
regeneration_data Input String regeneration_data_length bytes
skeleton_key_token_length Input Integer
skeleton_key_token Input String skeleton_key_token_length bytes
transport_key_identifier Input String
generated_key_identifier_length In/Output Integer
generated_key_identifier In/Output String generated_key_identifier_length

bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

rule_array_count
The rule_array_count parameter is a pointer to an integer containing the
number of elements in the rule array.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords
are shown below:

 Chapter 3. RSA Key Administration 3-7

 PKA_Key_Generate

regeneration_data_length
The regeneration_data_length parameter is a pointer to an integer variable
containing the length (in bytes) of the regeneration data. This must be a
value of zero, or in the range 8 to 256. If the value is zero, the generated
keys will be based on a random seed value. If this value is between 8 and
256, the regeneration data will be hashed to form a seed value used in the
key generation process to provide a means for recreating a public-private
key pair.

regeneration_data
The regeneration_data parameter is a pointer to a string variable containing
a string used as the basis for creating a particular public-private key pair in a
repeatable manner. The regeneration data will be hashed to form a seed
value used in the key generation process and provides a means for
recreating a public-private key pair.

skeleton_key_token_length
The skeleton_key_token_length parameter is a pointer to an integer variable
containing at least the length (in bytes) of the field containing the
skeleton_key_token. The maximum size is 2500 bytes.

skeleton_key_token
The skeleton_key_token parameter is a pointer to a string containing a
skeleton_key_token. This information provides the characteristics for the
PKA key-pair to be generated. A skeleton_key_token can be created using
the PKA_Key_Token_Build verb.

transport_key_identifier
The transport_key_identifier parameter is a pointer to a string containing an
internal Key-Encrypting Key token or a key label of an internal
Key-Encrypting Key token, or a null key token. If the rule_array keyword is
not XPORT, this parameter should point to a null key token. Otherwise, the
specified key enciphers the private key and can be an IMPORTER or an
EXPORTER key type. Use an IMPORTER key to encipher a private key to

Keyword Meaning

Private Key Encryption (One keyword required)

MASTER The private key should be enciphered under the master
key. The transport_key_token should specify a null
key_token.

XPORT The private key should be enciphered under the
| IMPORTER or EXPORTER key-encrypting key identified

by the transport_key_token parameter.

CLEAR The private key is returned in cleartext.

| RETAIN| The private key is retained within the cryptographic engine
| and the public key is returned in the
| generated_key_identifier variable. The name presented in
| the generated_key_identifier variable is used later to
| access the retained private key.

| Options (Optional Keywords)

| CLONE| A retained private key is flagged as usable in a
| cryptographic engine “cloning” operation.

3-8 IBM 4758 CCA Services

 PKA_Key_Generate

be used at this node. Use an EXPORTER key to encipher a private key to
be used at another node.

generated_key_identifier_length
The generated_key_identifier_length parameter is a pointer to an integer
variable containing at least the length (in bytes) of the field containing the
target private key token or key label. The maximum size is 2500 bytes. On
output, and if the field size is of sufficient length, the variable is updated with
the actual length of the generated_key_token.

Generated_key_identifier
The generated_key_identifier parameter is a pointer to a string variable
containing either a key label identifying a key storage record, or is other
information that will be overwritten. If the key label identifies a key record in
key storage, the generated key token will replace any key token associated
with the label. If the first byte of the identified string did not indicate a key
label (not in the range X'20' to X'FE'), and the field is of sufficient length
to receive the result, then the generated key token will be returned in the
identified field.

 Required Commands
| Enable one of these commands in the hardware depending on rule array
| keyword usage and the content of the skeleton key token:

| � With the CLONE rule-array keyword, the PKA Clone Key Generate
| command (offset X'0204')

| � With the CLEAR rule-array keyword, the PKA Clear Key Generate command
| (offset X'0204')

Otherwise the PKA Key Generate command (offset X'0103')

 Chapter 3. RSA Key Administration 3-9

 PKA_Key_Import

 PKA_Key_Import (CSNDPKI)

Platform/
Product

OS/2 AIX NT

IBM-4758 X X X

The PKA_Key_Import verb is used to import a public-private key-pair or a
public-only key. When a private key is present, the associated public key must
be present also. A source private key may be in the clear or it may be
enciphered.

Generally, the PKA_Key_Generate verb will be the source of the key token
imported with this verb. The PKA_Key_Token_Build verb may be helpful in
creating the source_key_token if the key originates in a non-CCA system.

If the source private key is enciphered, the verb will decipher the private key
using the DES IMPORTER key identified by the transport_key_identifier.

The imported keys are returned in the target_key_token. A public-private
key-pair is returned in an internal key_token with the private key enciphered by
the master key. If only a public key is imported, the key is returned in an
external key_token.

 Restrictions
� Not all IBM implementations of PKA96 verbs may support an optimized form

of the RSA private key; check the product-specific literature. The Fortress
product family implementation of PKA96 supports an optimized RSA private
key (a key in “Chinese Remainder” form).

� Not all IBM implementations of this verb support the use of a key label with
the target key identifier; check the product-specific literature.

 Format
CSNDPKI

return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data In/Output String exit_data_length bytes
rule_array_count Input Integer
rule_array Input String array rule_array_count * 8 bytes
source_key_token_length Input Integer
source_key_token Input String source_key_token_length bytes
transport_key_identifier Input String
target_key_identifier_length In/Out Integer
target_key_identifier In/Out String target_key_identifier_length

bytes

3-10 IBM 4758 CCA Services

 PKA_Key_Import

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

rule_array_count
The rule_array_count parameter is a pointer to an integer containing the
number of elements in the rule array. The value of the rule_array_count
must be zero for this verb.

rule_array
The rule_array parameter is not presently used in this service, but must be
specified.

source_key_token_length
The source_key_token_length parameter is a pointer to an integer variable
containing the length (in bytes) of the field that contains the source key
token. The maximum length is 2500 bytes.

source_key_token
The source_key_token parameter is a pointer to a string variable containing
a PKA96 key token. The key token must contain both public and private
RSA key information. The private key can be in cleartext or it can be
enciphered.

transport_key_identifier
The transport_key_identifier parameter is a pointer to a string variable
containing either a key encrypting key token or a key label of a key
encrypting key token, or a null key token. This key will be used to decipher
an encrypted private key; the designated DES key must be an IMPORTER
key type with IMPORT capability enabled in its control vector.

If the source key is not encrypted, a null key token must be specified (the
first byte of the key token must be X'00').

target_key_identifier_length
The target_key_identifier_length parameter is a pointer to an integer variable
containing the length (in bytes) of the field containing the target key token or
key label. The maximum length is 2500 bytes. On output, the identified
variable will be updated with the actual length of the token.

target_key_identifier
The target_key_identifier parameter is a pointer to a string variable
containing either a key label identifying a key storage record, is a null token
(the first byte is X'00'), or an existing key token. The key label, null key
token, or existing key token is overwritten with the imported key.

 Required Commands
The PKA_Key_Import verb requires the PKA key import command (offset
X'0104') to be enabled in the hardware.

 Chapter 3. RSA Key Administration 3-11

 PKA_Key_Token_Build

 PKA_Key_Token_Build (CSNDPKB)

Platform/
Product

OS/2 AIX NT

IBM-4758 X X X

The PKA_Key_Token_Build verb constructs an RSA PKA96 key token from the
information supplied.

This verb is used to create the following:

� A skeleton_key_token for use with the PKA_Key_Generate verb

� A key token with a public key that has been obtained from another node or
source

| � A key token with a clear private key and the associated public key.

| The verb builds key tokens that support private keys in these forms:

| – 512 to 1024-bit modular-exponentiation format
| – 512 to 2048-bit Chineese-remainder format.

“RSA Key Token Formats” on page B-5 provides the format and content of a
PKA96 token for both types of RSA keys. Other than a skeleton_key_token
prepared for use with the PKA_Key_Generate verb, every PKA96 token contains
public-key information. A PKA96 token can contain private-key information also.

Some implementations may provide special processing for RSA private keys that
can be used for distribution of symmetric keys. If an RSA private key will be
used to import a symmetric key, include the KEY-MGMT keyword in the
rule_array.

 Restrictions
� The RSA key length is limited to 512 to 2048-bits.

� A key_name can be provided only for a key token containing a private key.

3-12 IBM 4758 CCA Services

 PKA_Key_Token_Build

 Format
CSNDPKB

return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data In/Output String exit_data_length bytes
rule_array_count Input Integer
rule_array Input String array rule_array_count * 8 bytes
key_values_structure_length Input Integer
key_values_structure Input String key_values_structure_length

bytes
key_name_length Input Integer
key_name Input String null
reserved_1_length Input Integer
reserved_1 Input String null
reserved_2_length Input Integer
reserved_2 Input String null
reserved_3_length Input Integer
reserved_3 Input String null
reserved_4_length Input Integer
reserved_4 Input String null
reserved_5_length Input Integer
reserved_5 Input String null
token_length In/out Integer
token Output String token_length bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

rule_array_count
The rule_array_count parameter is a pointer to an integer containing the
number of elements in the rule array. The value of the rule_array_count
must be one or two for this verb.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords
are shown below:

Figure 3-3 (Page 1 of 2). PKA_Key_Token_Build Rule_Array Keywords

Keyword Meaning

Required Keyword (One Required)

RSA-PRIV Create a key token for an RSA public key and a private
key in modulus-exponent form.

RSA-PUBL Create a key token for an RSA public key in
modulus-exponent form.

RSA-OPT Create a key token for an RSA public key and a key in
optimized, Chinese-Remainder form.

 Chapter 3. RSA Key Administration 3-13

 PKA_Key_Token_Build

key_values_structure_length
The key_values_structure_length parameter is a pointer to an integer
variable containing the length (in bytes) of the structure that contains the key
values. The maximum size of the key_Values_structure variable is
2500-bytes.

key_values_structure
The key_values_structure parameter is a pointer to a string that is a
structure containing the lengths and data for the components of the key or
keys. The contents of this structure is shown in Figure 3-4, and sample
data is described on page 3-17.

Figure 3-3 (Page 2 of 2). PKA_Key_Token_Build Rule_Array Keywords

Keyword Meaning

RSA Key Usage Control (Select one, optional)

SIG-ONLY Indicates that an RSA private key can not be used in
symmetric key distribution. This is the default.

KEY-MGMT Indicates that an RSA private key can be used in
distribution of symmetric keys, and in digital signature
services.

Figure 3-4 (Page 1 of 3). PKA_Key_Token_Build Key Values Structures

Offset
(Bytes)

Length
(Bytes)

Description

RSA Key Values Structure, modulus-exponent form (RSA-PRIV or RSA-PUBL)

000 002 Length of the modulus in bits (512 to 2048)

002 002 Length of the modulus field, n, in bytes, “nnn.” This value must not
exceed 256 for a 2048-bit key.

This value should be zero when preparing a skeleton key token for
use with the PKA_Key_Generate verb.

004 002 Public exponent field length in bytes, “eee.”

This value should be zero when preparing a skeleton key token to
generate a random-exponent public key in the PKA_Key_Generate
verb. This value must not exceed 256.

006 002 Private exponent field length in bytes, “ddd.” This value can be zero
indicating that private key information is not provided. This value
must not exceed 256.

008 nnn Modulus, n, integer value, 1<n<22048; n=pq for prime p and prime q.

8+nnn eee Public exponent, e, integer value, 1<e<n, e must be odd. When you
are building a skeleton_key_token to control the generation of an
RSA key pair, the public key exponent can be one of three values:
3, 65537 (216+1), or to 0 (zero) to indicate that a full random
exponent should be generated. The exponent field can be a
null-length field in a skeleton_key_token.

8+nnn
+eee

ddd Private exponent, d, integer value, 1<d<n, d=e-1mod(p-1)(q-1).

Note:

� All length fields are in binary.
� All binary fields (exponents, lengths, etc.) are stored with the high order byte first (left,

low-address, S/390 format).

3-14 IBM 4758 CCA Services

 PKA_Key_Token_Build

Figure 3-4 (Page 2 of 3). PKA_Key_Token_Build Key Values Structures

Offset
(Bytes)

Length
(Bytes)

Description

Optimized RSA Key Values Structure, Chinese Remainder form (RSA-OPT)

000 002 Length of the modulus in bits (512 to 2048)

002 002 Length of the modulus field, n, in bytes, “nnn.”

This value can be zero if the key token will be used as a
skeleton_key_token in the PKA_Key_Generate verb.

This value must not exceed 256.

004 002 Length of the public exponent, e, in bytes: “eee.” (Can be zero in a
skeleton_key_token.)

006 002 Length of the prime number, p, in bytes: “ppp.” (Can be zero in a
skeleton_key_token.)

008 002 Length of the prime number, q, in bytes: “qqq.” (Can be zero in a
skeleton_key_token.)

010 002 Length of the dp, in bytes: “rrr.” (Can be zero in a
skeleton_key_token.)

012 002 Length of the dq, in bytes: “sss.” (Can be zero in a
skeleton_key_token.)

014 002 Length of the Ap, in bytes: “ttt.” (Can be zero in a
skeleton_key_token.)

016 002 Length of the Aq, in bytes: “uuu.” (Can be zero in a
skeleton_key_token.)

018 nnn Modulus, n

018
+nnn

eee Public exponent, e, integer value, 1<e<n, e must be odd.

When you are building a skeleton_key_token to control the
generation of an RSA key pair, the public key exponent can one of
the following values: 3, 65537 (216+1), or 0 (zero) to indicate that a
full random exponent should be generated. The exponent field can
be a null-length field if the exponent value is zero.

018
+nnn
+eee

ppp Prime number, p

018
+nnn
+eee
+ppp

qqq Prime number, q

018
+nnn
+eee
+ppp
+qqq

rrr dp = d mod(p-1)

Note:

� All length fields are in binary.
� All binary fields (exponents, lengths, etc.) are stored with the high order byte first (left,

low-address, S/390 format).

 Chapter 3. RSA Key Administration 3-15

 PKA_Key_Token_Build

key_name_length
The key_name_length parameter is a pointer to an integer variable
containing the length (in bytes) of the field containing the optional
key_name. If this variable contains zero, the key name section is not
included in the target token. If a key name is to be included, the variable
must contain 64. A key name is permissible only in a key token that
contains a private key.

key_name
The key_name parameter is a pointer to a string variable containing the
key_name. The key name can consist of the characters A...Z, 0...9, #, $,
@, or period (.), and must begin with an alphabetic character.

reserved_x_length(s)
The reserved_x_length parameter is a pointer to an integer variable
containing the length (in bytes) of a field that is reserved for future use; the
variable should contain zero.

reserved_x
The reserved_x parameter is a pointer to a string variable. At present, this
variable is reserved for future use and this parameter should contain a
pointer to a null string.

token_length
The token_length parameter is a pointer to an integer variable containing the
length (in bytes) of the token field. On output, the length is the length of
token returned in the token field. The maximum length is 2500 bytes.

Figure 3-4 (Page 3 of 3). PKA_Key_Token_Build Key Values Structures

Offset
(Bytes)

Length
(Bytes)

Description

018
+nnn
+eee
+ppp
+qqq
+rrr

sss dq = d mod(q-1)

018
+nnn
+eee
+ppp
+qqq
+rrr
+sss

ttt Ap = qp-1 mod(n)

018
+nnn
+eee
+ppp
+qqq
+rrr
+sss
+ttt

uuu Aq = (n+1-Ap)

Note:

� All length fields are in binary.
� All binary fields (exponents, lengths, etc.) are stored with the high order byte first (left,

low-address, S/390 format).

3-16 IBM 4758 CCA Services

 PKA_Key_Token_Build

Token
The token parameter is a pointer to a string variable to contain the
assembled token.

 Related Information
Three samples for the key_value structure are shown below:

1. The key_value structure for a 1024-bit RSA-PRIV skeleton key token with a
public exponent value of 216+1 for use with the PKA_Key_Generate verb:

� Expressed as a series of numbers: 1024, 0, 3, 0, [null], 65537, [null]
� Expressed as a hexadecimal string: X'0400 0000 0003 0000 010001'

2. The key_values structure for a 512-bit RSA-OPT skeleton key token with a
public exponent value of 216+1 for use with the PKA_Key_Generate verb:

� Expressed as a series of numbers:
512, 0, 3, 0, 0, 0, 0, 0, 0, [null], 65537, [null], [null], [null],
[null], [null], [null]

� Expressed as a hexadecimal string:
X'0200 0000 0003 0000 0000 0000 0000 0000 0000 010001'

3. The key_values structure to create a PKA96 RSA key token with a public
exponent value of 216+1 and a provided 1024-bit public key value:

� Expressed as a series of numbers: 1024, 128, 3, 0, n, 010001, [null]
� Expressed as a hexadecimal value:
� X'0400 0080 0003 0000 nnnn...nnnn 010001'

Where X'nnnn...nnnn' represents the 128-byte modulus bit-string
expressed in hexadecimal.

Note: All values in the key_values structure must be stored in “big endian”
format to ensure compatibility among different computing platforms. “big
endian” format specifies the high-order byte be stored at the low address
in the field.

Data stored by Intel architecture processors is normally stored in “little
endian” format. “Little endian” format specifies the low-order byte be
stored in the low address in the field.

 Required Commands
None.

 Chapter 3. RSA Key Administration 3-17

 PKA_Key_Token_Change

 PKA_Key_Token_Change (CSNDKTC)

Platform/
Product

OS/2 AIX NT

IBM-4758 X X X

The PKA_Key_Token_Change verb changes RSA keys from encipherment with
the old master key to encipherment with the current master key. You identify
the task with the rule array keyword, and the internal key token to change with
the key_identifier parameter.

Note: This verb is similar in function to the CSNBKTC Key_Token_Change
verb used with DES key tokens.

 Restrictions
Certain implementations of CCA may not support this verb.

 Format
CSNDKTC

return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data Inp/Outp String exit_data_length bytes
rule_array_count Input Integer
rule_array Input String array rule_array_count * 8 bytes
key_identifier_length In/Out Integer
key_identifier In/Out String key_identifier_length bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

rule_array_count
The rule_array_count parameter is a pointer to an integer containing the
number of elements in the rule array. The value of the rule_array_count
must be one for this verb.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords
are shown below:

key_identifier_length
The key_identifier_length parameter is a pointer to an integer containing the
length in bytes of the field that contains the key token or key label. On

Figure 3-5. PKA_Key_Token_Change Rule_Array Keywords

Keyword Meaning

Required Keyword

RTCMK| Changes an RSA key from encipherment with the old
| master key to encipherment with the current master key.

3-18 IBM 4758 CCA Services

 PKA_Key_Token_Change

output, the length is the length of token returned in the updated
key_identifier field a key token (not a key label) was specified. The
maximum size length is 2500 bytes.

Key_Identifier
The key_identifier parameter is a pointer to a string variable containing an
internal key token or a key label of an internal key token record in key
storage. The key within the token is securely re-enciphered under the
current master key.

 Required Commands
When you specify the re-encipher option, the PKA_Key_Token_Change verb
requires the Token Change command (offset X'0102') to be enabled in the
hardware.

 Chapter 3. RSA Key Administration 3-19

 PKA_Public_Key_Extract

 PKA_Public_Key_Extract (CSNDPKX)

Platform/
Product

OS/2 AIX NT

IBM-4758 X X X

The PKA_Public_Key_Extract verb is used to extract a public key from a
public-private key-pair. The public key is returned in a PKA public key token.

Both the public key and the related private key must be present in the source
key token. The source private key may be in the clear or may be enciphered.

 Restrictions
None

 Format
The entry point name and the parameters for this verb are shown in the
following table:

CSNDPKX

return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data Inp/Outp String exit_data_length bytes
rule_array_count Input Integer
rule_array Input String array rule_array_count * 8 bytes
source_key_identifier_length Input Integer
source_key_identifier Input String source_key_identifier_length

bytes
target_key_token_length In/out Integer
target_key_token Output String target_key_token_length bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

rule_array_count
The rule_array_count parameter is a pointer to an integer that contains the
number of elements in the rule array. The value of the rule_array_count
must be zero (no rule array is currently used in this verb).

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array parameter is
not presently used by this verb, but must be specified as a parameter.

source_key_identifier_length
The source_key_identifier_length parameter is a pointer to an integer
variable containing the length (in bytes) of the field that contains the source
key identifier. The maximum size that should be specified is 2500 bytes.

3-20 IBM 4758 CCA Services

 PKA_Public_Key_Extract

source_key_identifier
The source_key_identifier parameter is a pointer to a string variable
containing either a key label identifying a key storage record or is a PKA96
key token.

target_key_token
The target_key_identifier parameter is a pointer to a string variable to
receive the PKA96 public key token.

 Required Commands
None

 Chapter 3. RSA Key Administration 3-21

 PKA_Public_Key_Hash_Register

| PKA_Public_Key_Hash_Register (CSNDPKH)

| Platform/
| Product
| OS/2| AIX| NT| Verb Subset

| IBM-4758| X| X| X| PKA96

| The PKA_Public_Key_Hash_Register verb is used to register a hash value for a
| public key in anticipation of verifying the public key offered in a subsequent use
| of the PKA_Public_Key_Register verb.

| Restrictions
| None

| Format
| CSNDPKH

| return_code| Output| Integer
| reason_code| Output| Integer
| exit_data_length| Input| Integer
| exit_data| Input| String| exit_data_length bytes
| rule_array_count| Input| Integer
| rule_array| Input| String array| rule_array_count * 8 bytes
| public_key_name| String| 64 bytes
| hash_data_length| Input| Integer
| hash_data| Input| String| hash_data_length bytes

| Parameters
| For the definitions of the return_code, reason_code, exit_data_length, and
| exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

| rule_array_count
| The rule_array_count parameter is a pointer to an integer containing the
| number of elements in the rule array.

| rule_array
| The rule_array parameter is a pointer to an array of keywords. The
| keywords are eight bytes in length, and must be uppercase, left-justified,
| and padded on the right with space characters. The rule_array keywords
| are shown below:

| public_key_name
| The public_key_name parameter is a pointer to a string variable containing
| the name under which the registered key will be accessed.

| Keyword| Meaning

| Hash Type (One keyword required)

| SHA-1| The hash algorithm used to create the hash value.

| Special Usage (Optional)

| CLONE| Indicates that the public key associated with this hash
| value can be employed in a CCA node cloning process
| provided that this usage is confirmed when the public key
| is registered.

3-22 IBM 4758 CCA Services

 PKA_Public_Key_Hash_Register

| hash_data_length
| The hash_data_length parameter is a pointer to an integer variable
| containing the length (in bytes) of the hash data.

| hash_data
| The hash_data parameter is a pointer to a string variable valued to the
| SHA-1 hash of a public key certificate that will be offered with the use of the
| PKA_Public_Key_Register verb. The format of the public key certificate is
| defined in “RSA Public-key Certificate Section” on page B-10.

| Required Commands
| The PKA_Public_Key_Hash_Register verb requires the:

| � Register PKA Public Key Hash, with Cloning, command (offset X'0201')
| when using the CLONE keyword
| Otherwise,
| � Register PKA Public Key Hash command (offset X'0200')
| to be enabled in the hardware.

 Chapter 3. RSA Key Administration 3-23

 PKA_Public_Key_Register

| PKA_Public_Key_Register (CSNDPKR)

| Platform/
| Product
| OS/2| AIX| NT| Verb Subset

| IBM-4758| X| X| X| PKA96

| The PKA_Public_Key_Register verb is used to register a public key in the
| cryptographic engine. Keywords in the rule array designate the subsequent
| permissible uses of the registered public key.

| The public key offered for registration must be contained in a token that contains
| a certificate section. The public key value contained in the certificate will be the
| key that is registered. A pre-registered hash value over the certificate section,
| exclusive of the certificate signature bits, is used to independently validate the
| offered key; see the PKA_Public_Key_Hash_Register verb and “RSA Key Token
| Formats” on page B-5.

| Restrictions
| None

| Format
| CSNDPKR

| return_code| Output| Integer
| reason_code| Output| Integer
| exit_data_length| Input| Integer
| exit_data| Input| String| exit_data_length bytes
| rule_array_count| Input| Integer
| rule_array| Input| String array| rule_array_count * 8 bytes
| public_key_name| Input| String| 64 bytes
| public_key_certificate_length| Input| Integer
| public_key_certificate| Input| String| certificate length bytes

| Parameters
| For the definitions of the return_code, reason_code, exit_data_length, and
| exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

| rule_array_count
| The rule_array_count parameter is a pointer to an integer containing the
| number of elements in the rule array.

| rule_array
| The rule_array parameter is a pointer to an array of keywords. The
| keywords are eight bytes in length, and must be uppercase, left-justified,
| and padded on the right with space characters. The rule_array keywords
| are shown below:

| Keyword| Meaning

| Special Usage (Optional)

| CLONE| Indicates that the registered public key can be employed in
| a CCA node cloning process provided that this usage was
| also asserted when the hash value was registered.

3-24 IBM 4758 CCA Services

 PKA_Public_Key_Register

| public_key_name
| The public_key_name parameter is a pointer to a string variable containing
| the name under which the registered key will be accessed.

| public_key_certificate_length
| The public_key_certificate_length parameter is a pointer to an integer
| variable containing the length (in bytes) of the public key certificate.

| public_key_certificate
| The public_key_certificate parameter is a pointer to a string variable
| containing a public key to be registered. The public key must be presented
| in an RSA public-key certificate section; see “RSA Public-key Certificate
| Section” on page B-10.

| Required Commands
| The PKA_Public_Key_Register verb requires the PKA Public Key Register with
| Cloning command (offset X'0201') to be enabled in the hardware when the
| CLONE rule array keyword is employed, otherwise the PKA Public Key Register
| command (offset X'0202') must be enabled in the hardware.

 Chapter 3. RSA Key Administration 3-25

3-26 IBM 4758 CCA Services

Chapter 4. Hashing and Digital Signatures

Figure 4-1. Hashing and Digital Signature Services

Verb Page Service Entry
Point

Svc
Lcn

Digital_Signature_Generate 4-4 This verb generates a digital signature. CSNDDSG E

Digital_Signature_Verify 4-7 This verb verifies a digital signature. CSNDDSV E

One_Way_Hash 4-10 This verb generates a hash using either the SHA-1 or the
MD5 one-way hashing functions.

CSNBOWH S

Svc Lcn: Service location: E: Cryptographic engine, S: Security API software

This chapter discusses the data hashing and the digital signature techniques
you can use to determine data integrity. A digital signature may also be used to
establish the non-repudiation security property. (Another approach to data
integrity based on message authentication codes is discussed in Chapter 6,
“Data Confidentiality and Data Integrity.”)

� Data integrity and data authentication techniques enable you to determine
that a data object (a string of bytes) has not been altered from some known
state.

� Non-repudiation permits you to assert that the originator of a digital
signature may not later deny having created the digital signature.

This section explains how to determine the integrity of data. Determining data
integrity involves determining whether individual values of a string of bytes have
been altered. Two techniques are described:

 � Hashing
 � Digital signatures

Digital signatures uses both hashing and public-key cryptography.

 Hashing
Data hashing functions have long been used to determine the integrity of a block
of data. The application of a hash function to a data string produces a new
quantity called a hash value. Many different strings supplied to a given hashing
function will produce the same hash value, but because the hash value is a
large number, collisions (two stings that hash to the same value) are rare.

Hash functions for data integrity applications have a one-way property: given a
hash value, it is not likely that a second data string can be found that will hash
to the same value as the original. Consequently, if a hash value for a string is
known, you can compute the hash value for another string suspected to be the
same and compare the two. If both hash values are identical, there is a very
high probability that the strings producing them are identical.

The CAA products support the following hash functions:

 Copyright IBM Corp. 1997-98 4-1

Secure Hash Algorithm -1 (SHA-1) The SHA-1 is defined in FIPS 180-1 and
produces a 20-byte, 160-bit hash value. The algorithm performs best on
big-endian, general purpose computers. This algorithm is usually preferred
over MD5 if the application designers have a choice of algorithms. SHA-1 is
also specified for use with the DSS digital signature standard.

Message Digest -5 (MD5) MD5 is specified in the Internet Engineering Task
Force RFC 1321 and produces a 16-byte, 128-bit hash value. This algorithm
performs best on little-endian (e.g. Intel), general purpose computers.

There are many different approaches to data integrity verification. In some
cases, you can simply make known the hash value for a data string. Anyone
wishing to verify the integrity of the data would recompute the hash value and
compare the result to the known-to-be-correct hash value.

In other cases, you might want someone to prove to you that they possess a
specific data string. In this case, you could randomly generate a challenge
string, append the challenge string to the string in question, and hash the result.
You would then provide the other party with the challenge string, ask them to
perform the same hashing process, and return the hash value to you. This
method forces the other party to re-hash the data. When the two hash values
are the same you can be confidant that the strings are the same, and the other
party actually possesses the data string, and not merely a hash value.

The hashing services described in this chapter allow you to divide a string of
data into parts, and compute the hash value for the entire string in a series of
calls to the appropriate verb. This can be useful if it is inconvenient or
impossible to bring the entire string into memory at one time.

 Digital Signatures
You can protect data from undetected modification by including a
proof-of-data-integrity value. This proof of data integrity value is called a digital
signature, and relies on hashing (see “Hashing” above) and public-key
cryptography.

When you wish to sign some data you can produce a digital signature by
hashing the data and encrypting the results of the hash (the hash value) using
your private key. The encrypted hash value is called a digital signature.

Anyone with access to your public key can verify your information as follows:

1. Hash the data using the same hashing algorithm that you used to create the
digital signature.

2. Decrypt the digital signature using your public key.

3. Compare the decrypted results to the hash value obtained from hashing the
data.

An equal comparison confirms that the data they possess is the same as that
which you signed. The Digital_Signature_Generate and the
Digital_Signature_Verity verbs described in this chapter perform the hash
encrypting and decrypting operations. Their requirements are as follows:

4-2 IBM 4758 CCA Services

� No one else may have access to your private key, and the use of the key
must be controlled so that someone else can not sign data as though they
were you.

� The other party must have your public key. They assure themselves that
they do have your public key through the use of one-or-more certificates
from one-or-more Certification Authorities.

Note: The verification of public keys also involves the use of digital
signatures; however, this subject is outside the scope of this manual.

� The value that is encrypted and decrypted using RSA public-key technology
must be the same length in bits as the modulus of the keys. This bit-length
is normally 512, 768, 1024, or 2048. Since the hash value is either 128 or
160 bits in length, some process for formatting the hash into a structure for
RSA encrypting must be selected.

Unlike the DES algorithm, the strength of the RSA algorithm is sensitive to
the characteristics of the data being encrypted. The digital signature verbs
(Verify and Generate) support several different hash-value-formatting
approaches. The rule array keywords for the digital signature verbs contain
brief descriptions of these formatting approaches.

The receiver of data signed using digital signature techniques can, in some
cases, gain non-repudiation of the data. The use of digital signatures in
legally-binding situations is gaining favor as commerce is increasingly conducted
through networked communications. The techniques described in this chapter
support the most common methods of digital signing currently in use.

Note: Non-repudiation means that the originator of the digital signature can not
later deny having originated the signature, and therefore, the data.

 Chapter 4. Hashing and Digital Signatures 4-3

 Digital_Signature_Generate

 Digital_Signature_Generate (CSNDDSG)

Platform/
Product

OS/2 AIX NT Service
Group

IBM-4758 X X X PKA96

The Digital_Signature_Generate verb is used to generate a digital signature.
The hash quantity may be created by the One_Way_Hash or the
MDC_Generate verbs.

When an RSA private key is specified (using the PKA key token), the hash
formatting method is selected through keywords in the rule_array. The
formatted information is then ciphered to obtain the digital signature.

 Restrictions
� Not all IBM implementations of this verb may support an optimized form of

the RSA private key, however, the Fortress product family implementation of
this verb does support an optimized RSA private key (“Chinese Remainder”
form).

 Format
CSNDDSG

return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data Inp/Outp String exit_data_length bytes
rule_array_count Input Integer
rule_array Input String array rule_array_count * 8 bytes
PKA_private_key_identifier_length Input Integer
PKA_private_key_identifier Input String PKA_private_key_identifier_length

bytes
hash_length Input Integer
hash Input String hash_length bytes
signature_field_length Inp/Outp Integer
signature_bit_length Output Integer
signature_field Output String signature_field_length bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

rule_array_count
The rule_array_count parameter is a pointer to an integer containing the
number of elements in the rule_array variable. The value of the
rule_array_count must be zero or one for this verb.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords
are shown below:

4-4 IBM 4758 CCA Services

 Digital_Signature_Generate

Notes:

1. The hash for PKCS-1.0 and PKCS-1.1 should have been created using
MD5 or SHA-1 algorithms.

2. The hash for ZERO-PAD can be obtained by any hashing method.

PKA_private_key_identifier_length
The PKA_private_key_identifier_length parameter points to an integer
variable containing the length (in bytes) of the field containing the
public-private key token or key label. The maximum length is 2500 bytes.

PKA_private_key_identifier
The PKA_private_key_identifier is a pointer to a string variable containing
either a key label identifying a key storage record or an internal
public-private PKA96 key token.

hash_length
The hash_length parameter is a pointer to an integer variable containing the
length (in bytes) of the hash variable.

hash
The hash parameter is a pointer to a string variable containing the
information to be signed.

Notes:

1. For ISO-9796, the information identified by the hash parameter must be
less-than-or-equal-to one-half of the number of bytes required to contain
the modulus of the RSA key. Although ISO-9796 allows messages of
arbitrary bit length up to one-half of the modulus length, this verb
requires the input text to be a byte-multiple up to the described
maximum length.

Figure 4-2. Digital_Signature_Generate Rule_Array Keywords

Keyword Meaning

RSA-based Digital Signature Hash Formatting Controls

ISO-9796 Format the hash according to the ISO 9796 standard and
generate the digital signature. This is the default.

PKCS-1.0 Calculate the digital signature on the string supplied in the
hash variable as specified in the RSA Data Security, Inc.,
Public Key Cryptography Standards #1 block type 00

PKCS-1.1 Calculate the digital signature on the string supplied in the
hash variable as specified in the RSA Data Security, Inc.,
Public Key Cryptography Standards #1 block type 01

ZERO-PAD Extend the hash by padding on the left with binary zero
bits to obtain a bit field with the same length as that of the
modulus; cipher the result to obtain the digital signature

 Chapter 4. Hashing and Digital Signatures 4-5

 Digital_Signature_Generate

2. For PKCS-1.0 or PKCS-1.1, the information identified by the hash
parameter must be 11 bytes shorter than the number of bytes required
to contain the modulus of the RSA key, and should be the ANS.1 BER
encoding of the hash value.

You can create the BER encoding of an MD5 or SHA-1 value by
prepending these strings to the 16 or 20-byte hash values, respectively:

MD5 X'3020300C 06082A86 4886F70D 02050500 0410'
SHA-1 X'30213009 06052B0E 03021A05 000414'

3. For ZERO-PAD, the information identified by the hash parameter must
be shorter-than-or-equal-to the number of bytes required to contain the
modulus of the RSA key.

signature_field_length
The signature_field_length parameter is a pointer to an integer variable
containing the length (in bytes) of the field to contain the digital signature.
On output, the variable is the actual length of the digital signature. The
maximum length is 256 bytes.

signature_bit_length
The signature_bit_length is a pointer to an integer variable containing the
length (in bits) of the digital signature.

signature_field
The signature_field parameter is a pointer to the field where the digital
signature is to be stored. Unused bytes at the right of the field are
undefined and should be ignored. The digital signature bit field is in the
low-order bits of the byte string containing the digital signature.

 Required Commands
The Digital_Signature_Generate verb requires the Digital Signature Generate
command (offset X'0100') to be enabled in the hardware.

4-6 IBM 4758 CCA Services

 Digital_Signature_Verify

 Digital_Signature_Verify (CSNDDSV)

Platform/
Product

OS/2 AIX NT Service
Group

IBM-4758 X X X PKA96

The Digital_Signature_Verify verb is used to verify a digital signature.

Provide the digital signature, the public key (in a key token), and the hash of the
data to be validated. The hash quantity may be created through use of the
One_Way_Hash or the MDC_Generate verbs.

The supplied hash information is formatted and compared to the public-key
ciphered digital signature. The validation of the digital signature is returned as
return code and reason code values.

The hash formatting method is selected through keywords in the rule_array.

 Restrictions

 Format
CSNDDSV

return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data Inp/Outp String exit_data_length bytes
rule_array_count Input Integer
rule_array Input String array rule_array_count * 8 bytes
PKA_public_key_identifier_length Input Integer
PKA_public_key_identifier Input String PKA_public_key_identifier_length

bytes
hash_length Input Integer
hash Input String hash_length bytes
signature_field_length Input Integer
signature_field Input String signature_field_length bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

Rule_array_count
The rule_array_count is a pointer to an integer that contains the number of
elements in the rule array. The value of the rule_array_count must be zero
or one for this verb.

Rule_array
The rule_array is a pointer to an array of keywords. The keywords are eight
bytes in length, and must be uppercase, left-justified, and padded on the
right with space characters. The rule_array keywords are shown below:

 Chapter 4. Hashing and Digital Signatures 4-7

 Digital_Signature_Verify

Notes:

1. The hash for PKCS-1.0 and PKCS-1.1 should have been created using
MD5 or SHA-1 algorithms.

2. The hash for ZERO-PAD can be obtained by any hashing method.

PKA_public_key_identifier_length
The PKA_public_key_identifier_length parameter is a pointer to an integer
variable containing the length (in bytes) of the field containing the public key
token or key label. The maximum length is 2500 bytes.

PKA_public_key_identifier
The PKA_public_key_identifier parmaeter is a pointer to a string variable
containing either a key label identifying a key storage record, or a PKA96
key token.

hash_length
The hash_length is a pointer to an integer variable containing the length (in
bytes) of the hash variable.

hash
The hash parameter is a pointer to a string variable containing the hash
information to be verified.

Notes:

1. For ISO-9796, the information identified by the hash parameter must be
less-than-or-equal-to one-half of the number of bytes required to contain
the modulus of the RSA key. Though ISO-9796 allows messages of
arbitrary bit length up to one half of the modulus length, this verb
requires the input text to be a byte-multiple up to the correct maximum.

Figure 4-3. Digital_Signature_Verify Rule_Array Keywords

Keyword Meaning

RSA-based Digital Signature Hash Formatting Controls

ISO-9796 Format the hash according to the ISO 9796 standard and
generate the digital signature. This is the default.

PKCS-1.0 Calculate the digital signature on the string supplied in the
hash variable as specified in the RSA Data Security, Inc.,
Public Key Cryptography Standards #1 block type 00

PKCS-1.1 Calculate the digital signature on the string supplied in the
hash variable as specified in the RSA Data Security, Inc.,
Public Key Cryptography Standards #1 block type 01

ZERO-PAD Extend the hash by padding on the left with binary zero
bits to obtain a bit field with the same length as that of the
modulus; cipher the result to obtain the digital signature

4-8 IBM 4758 CCA Services

 Digital_Signature_Verify

2. For PKCS-1.0 or PKCS-1.1, the information identified by the hash
parameter must be 11 bytes shorter than the number of bytes required
to contain the modulus of the RSA key, and should be the ANS.1 BER
encoding of the hash value.

You can create the BER encoding of an MD5 or SHA-1 value by
prepending these strings to the 16 or 20-byte hash values, respectively:

MD5 X'3020300C 06082A86 4886F70D 02050500 0410'
SHA-1 X'30213009 06052B0E 03021A05 000414'

3. For ZERO-PAD, the information identified by the hash parameter must
be shorter-than-or-equal-to the number of bytes required to contain the
modulus of the RSA key.

signature_field_length
The signature_field_length parameter is a pointer to an integer variable
containing the length, (in bytes) of the field containing the digital signature.

signature_field
The signature_field parameter is a pointer to a string variable containing the
digital signature. The digital signature bit field is in the low-order bits of the
byte string containing the digital signature.

 Required Commands
The Digital_Signature_Verify verb requires the Digital Signature Verify command
(offset X'0101') to be enabled in the hardware.

 Chapter 4. Hashing and Digital Signatures 4-9

 One_Way_Hash

 One_Way_Hash (CSNBOWH)

Platform/
Product

OS/2 AIX NT Service
Group

IBM-4758 X X X PKA96

The One_Way_Hash verb obtains a hash value from a text string using the MD5
or SHA-1 hashing method, as specified in the rule_array.

You can provide all of the data to be hashed in a single call to the verb, or you
can provide the data to be hashed using multiple calls. Keywords that you
supply in the rule_array to inform the verb of your intention.

 Restrictions
If FIRST or MIDDLE calls are made, the text size must be a multiple of the
algorithm block size: 64 bytes for MD5 and SHA-1.

This verb requires that text to be hashed be a multiple of eight bits aligned in
bytes. Only data that is a byte multiple can be hashed. (These are not
requirements of the standards.)

 Format
CSNBOWH

return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data Inp/Outp String exit_data_length bytes
rule_array_count Input Integer
rule_array Input String array rule_array_count * 8 bytes
text_length Input Integer
text Input String text_length bytes
chaining_vector_length Input Integer
chaining_vector Inp/Outp String chaining_vector_length bytes
hash_length Input Integer
hash Inp/Outp String hash_length bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

rule_array_count
The rule_array_count parameter is a pointer to an integer containing the
number of elements in the rule_array variable. The value of the
rule_array_count must be one or two for this verb.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords
are shown below:

4-10 IBM 4758 CCA Services

 One_Way_Hash

text_length
The text_length parameter is a pointer to an integer variable containing the
length (in bytes) of the text field on which the hash is computed.

Note: If FIRST or MIDDLE calls are made, the text size must be a multiple
of the algorithm block size (64 bytes for MD5 or SHA-1).

text
The text parameter is a pointer to a string variable containing the data to be
hashed.

chaining_vector_length
The chaining_vector_length parameter is a pointer to an integer variable
containing the length (in bytes) of the chaining_vector field. The
chaining_vector field must be 128 bytes in length.

chaining_vector
The chaining_vector parameter is a pointer to a string variable used by the
verb as a work area. Application programs must not alter the contents of
this field between related FIRST, MIDDLE, and LAST calls.

hash_length
The hash_length parameter is a pointer to an integer variable containing the
length (in bytes) of the field where the hash is to be returned. This length
must be at least 16 bytes for MD5, and at least 20 bytes for SHA-1. The
maximum length is 128 bytes.

hash
The hash parameter is a pointer to a string variable that receives the hash
value. With use of the FIRST or MIDDLE keywords, the hash variable
receives intermediate results.

Figure 4-4. One_Way_Hash Rule_Array Keywords

Keyword Meaning

Hash Method (Required)

MD5 Specifies the use of the MD5 method

SHA-1 Specifies the use of the SHA-1 method.

Chaining Control (Optional)

FIRST Specifies the first in a series of calls to compute the hash;
intermediate results are stored in the hash variable.

MIDDLE Specifies this is not the first nor the last in a series of calls
to compute the hash; intermediate results are stored in the
hash variable.

LAST Specifies the last in a series of calls to compute the hash;
intermediate results are retrieved from the hash variable.

ONLY Specifies the only call made to compute the hash. This is
the default.

 Chapter 4. Hashing and Digital Signatures 4-11

 One_Way_Hash

 Required Commands
None.

4-12 IBM 4758 CCA Services

Chapter 5. Basic CCA DES Key Management

Figure 5-1. Basic CCA DES Key Management Verbs

Verb Page Service Entry
Point

Svc
Lcn

Clear_Key_Import 5-16 Enciphers a clear key under the master key, and updates
or creates an internal key token for a DATA key.

CSNBCKI E

Data_Key_Export 5-17 Exports a DES data key and creates an external key token
that contains a null control vector.

CSNBDKX E

Data_Key_Import 5-18 Imports a DES data key and creates an internal key token
for the key.

CSNBDKM E

| Diversified_Key_Generate| 5-20| Generates a DES key based on supplied information and a
| key-generating key. The verb often finds us in generating
| keys for use with smart card transactions.

| CSNBDKG| E

Key_Export 5-23 Exports a DES key and creates an external key token. CSNBKEX E

Key_Generate 5-25 Generates a random DES key or DES key pair, enciphers
the keys, and updates or creates internal or external key
tokens.

CSNBKGN E

Key_Import 5-31 Imports a DES key or a key token, and updates an internal
key token or creates an internal key token.

CSNBKIM E

Key_Part_Import 5-33 Combines clear key parts, enciphers the key, and updates
an internal key token.

CSNBKPI E

Key_Test 5-35 Generates or verifies a verification pattern for keys and key
parts.

CSNBKYT E

Key_Token_Build 5-38 Creates a DES key token from supplied information. CSNBKTB S

Key_Token_Change 5-41 Re-encipher a DES key from the old master key to the
current master key.

CSNBKTC E

Key_Translate 5-43 Changes the encipherment of a key from one
key-encrypting key to another key-encrypting key.

CSNBKTR E

Random_Number_Generate 5-45 Generates a random number. CSNBRNG E

PKA_Symmetric_Key_Export 5-47 Exports a symmetric key under an RSA public key. CSNDSYX E

| PKA_Symmetric_Key_Generate| 5-49| Generates a new DES key and returns one copy multiply
| enciphered under the master key and enciphers another
| copy under an RSA public key.

| CSNDSYG| E

PKA_Symmetric_Key_Import 5-52 Imports a symmetric key under an RSA private key. CSNDSYI E

Svc Lcn: Service location: E=Cryptographic Engine, S=Security API software

This chapter describes verbs to perform basic CCA DES key management
functions.

The material is presented under these topics:

� Understanding CCA DES Key Management
� Control vectors, key types, and key usage restrictions
� Key tokens, key labels, and key identifiers
� Using the key processing and key storage verbs

 � Security precautions
� Basic DES key management verbs in alphabetical order by verb name.

 Copyright IBM Corp. 1997-98 5-1

Understanding CCA DES Key Management
The DES algorithm operates on 64 data bits at a time (8 bytes of 8-bit-per-byte
data). The results produced by the algorithm are controlled by the value of a
key that you supply. Each byte of the key contains 7 bits of key information plus
a parity bit (the low-order bit in the byte). The parity bit is set so that there are
an odd number of one-bits for each key byte. The parity bits do not participate
in the DES algorithm.

The DES algorithm is not secret. However, by using a secret key, the algorithm
can produce ciphertext that is impossible (for all practical purposes) to decrypt
without knowing the secret key. The requirement to keep a key secret, and to
have the key available at specific place(s) and time(s), produces a set of
activities known collectively as key management.

Because the secrecy and reliability of DES-based cryptography is strongly
related to the secrecy, control, and use of DES keys, the following aspects of
key management are important:

� Securing a cryptographic facility or process. The hardware provides a
secure, tamper-resistant environment for performing cryptographic
operations and for storing cryptographic keys in the clear. The hardware
provides cryptographic functions as a set of commands that are selectively
enabled under different profiles. To activate a profile and enable different
hardware capabilities, users (programs or persons) must supply identification
and a password for verification. Using these hardware capabilities, you can
control the use of sensitive key management capabilities.

� Separating key types to restrict the use of each key. A user or a process
should be restricted to performing only the processes that are required to
accomplish a specific task; therefore, a key should be limited to a set of
functions in which it can be used. The cryptographic subsystem uses a
system of control vectors1 to separate the cryptographic keys into a set of
key types and restrict the use of a key. The subsystem enforces the use of
a particular key type in each part of a cryptographic command. To control
the use of a key, the control vector is combined with the key that is used to
encipher the control vector's associated key. For example, a key that is
designated a key-encrypting key can not be employed in the decipher verb
so that it can not be used to decrypt keys as though they were data.

� Securely installing and verifying keys. Capabilities are provided for installing
keys, either in whole or in parts, and to determine the integrity of the key or
the key part to ensure the accurate and secure entry of key information.
The hardware commands and profiles allow you to enforce a
split-knowledge, dual-control security policy in the installation of keys from
clear information.

� Generating keys. The system can generate random clear and enciphered
keys. The key generation service creates an extensive set of key types for
use in both CCA subsystems and other DES-based systems. Keys can be
generated for local use and for distribution to remote nodes.

1 A control vector is a logical extension of a key variant, which is a method of key separation that some other cryptographic systems
use.

5-2 IBM 4758 CCA Services

� Securely distributing keys manually and electronically. The system provides
for unidirectional key distribution channels and a key translation service.

Your application program(s) should provide procedures to perform the following
key management activities:

� Generating and periodically replacing keys. A key should be used for a very
limited period of time. This can minimize the possibility of an adversary
determining the value of a key.

 � Archiving keys.

� Destroying keys and media used to distribute keys.

� Auditing the key generation, distribution, installation, archiving, and
destruction processes.

� Reacting to unusual occurrences in the key management process.

� Creating management controls for key management.

Before a key is removed from a CCA cryptographic facility for storage in key
storage or in application data storage, the key is multiply-enciphered under a
master key or another key-encrypting key. The master key is a triple-length
DES key composed of three 56-bit DES keys. The key-encrypting keys are
double-length DES keys composed of two halves, each half being a 56-bit DES
key. While each part of a master key (each 56-bit component) is required to be
unique from the other parts, the halves of a key-encrypting key can be the same
value. In the latter case, the key-encrypting key operates as though it was a
single-length, 56-bit, DES key.

A key that is multiply-enciphered under the master key is an operational key
(OP). The key is operational because a cryptographic facility can use the
master key to multiply-decipher it to obtain original key value. A key that is
multiply-enciphered under a key-encrypting key other than the master key is
called an external key. Two types of external keys are used at a cryptographic
node:

� An importable key (IM) is enciphered under an operational key-encrypting
key (KEK) whose control vector provides key importing authority.

� An exportable key (EX) is enciphered under an operational key-encrypting
key whose control vector provides key exporting authority.

 Control Vectors
The CCA cryptographic commands form a complete, consistent, secure
command set that performs within tamper-resistant hardware. The cryptographic
commands use a set of distinct key types that provide a secure cryptographic
system that blocks many attacks that can be directed against it.

The products use a control vector to separate keys into distinct key types and to
further restrict the use of a key. A control vector is a non-secret value that is
contained in the key token for the key that is cryptographically associated with
the key.

A control vector is cryptographically associated with a key by being
exclusive-ORed with a master key or another key-encrypting key to form a key

 Chapter 5. Basic CCA DES Key Management 5-3

that is used to multiply-encipher or multiply-decipher the key being associated
with the control vector. This permanently binds the type and use of the key to
the key and ensures the original control vector can not be changed. If the
control vector used to decipher a key is different from the control vector that was
used to encipher the same key, the correct clear key cannot be recovered. The
key-encipherment process is described in detail at “CCA Key Encryption and
Decryption Process” on page C-8.

After a key is multiply-enciphered, the originator of the key can ensure that the
intended use of the key is preserved by giving the key-encrypting key only to a
system that implements the CCA control vector design and that is managed by
an audited organization.

Key-encrypting keys in CCA are double-length keys. A double-length DES key
consists of two (single-length) 56-bit DES keys that are used together as one
key. The first half (left half) of a double-length key, and a single length key are
multiply-enciphered using the exclusive-OR of the encrypting key and the control
vector. The second half of a double length key is multiply enciphered using the
exclusive-OR of the encrypting key and a modification of the control vector; the
modification consists of the reversal of control vector bits 41 and 42.

Appendix C, “CCA Control Vector Definitions and Key Encryption” provides
detailed information about the construction of a control vector value.

Checking a Control Vector Before Processing a Cryptographic
Command

Before a cryptographic facility processes a command that uses a
multiply-enciphered key, the facility’s logic checks the control vector associated
with the key. The control vector must indicate a valid key type for the requested
command and any control vector restriction bits must be set appropriately for the
command. If the command permits use of the control vector, the cryptographic
facility multiply-deciphers the key and uses the key to process the command.
(Alteration of the control vector value to permit use of the key in the command
would result in recovery of a different, unpredictable key value.)

Figure 5-2 on page 5-5 shows the flow of cryptographic command processing in
a cryptographic facility.

5-4 IBM 4758 CCA Services

At the CCA API...

 Verb-Call Key Token Data

 ──

Cryptographic Control Enciphered Data

 Command Vector Key │

 │ │ │ │

│ ┌──────────┐ │ │ │

 │ │Control │ │ │ │

 ├────5│Vector │%────┤ │ │

 │ │Checking, │ │ │ │

 │ │Software │ │ │ │

│ └──────────┘ │ │ │

 │ │ │ │

┌───────────────│──────────────────────│──────────────│─────────────│──────┐

│Tamper │ ┌──────────┐ │ │ │ │

│Resistant │ │Control │ │ │ │ │

│Cryptographic ├────5│Vector │%────┤ │ │ │

│Facility │ │Checking, │ │ │ │ │

│ │ │Hardware │ │ │ │ │

│ │ └──────────┘ 6 │ │ │

│ │ ┌─────────┐ │ │ │

│ │ Master Key────5│Exclusive│ │ │ │

│ │ (or KEK) │─OR │ 6 │ │

│ │ └────┬────┘ ┌─────────┐ │ │

│ │ └────────5│Multiply │ │ │

│ │ │Decipher │ │ │

│ │ └────┬────┘ │ │

│ │ 6 6 │

│ │ Clear Key ┌─────────┐ │

│ │ └───────5│ Process │ │

│ └───5│ │ │

│ └────┬────┘ │

└───│──────┘

 6

 Result

Figure 5-2. Flow of Cryptographic Command Processing in a Cryptographic Facility

 Key Types
The CCA implementation in this product defines generic DES key types as
shown in Figure 5-3 on page 5-6. The key type in a control vector determines
the use of the key, which verbs can use the key, and whether the cryptographic
facility processes a key as a symmetric or “asymmetric” DES key. By
differentiating keys with a control vector, a given key value can be
multiply-enciphered with different control vectors so as to impart different
capabilities to copies of the key. This technique creates DES keys having an
asymmetric property.

� Symmetric DES keys. A symmetric DES key can be used in two related
processes. The cryptographic facility can interpret the following key types
as symmetric:

– DATA. A key with this key type can be used to both encipher and
decipher data.

– MAC. A key with this key type can be used to create a MAC and to
verify a trial MAC.

� Asymmetric DES keys. An asymmetric DES key is a key in a key pair in
which the keys are used as opposites.

– MAC and MACVER
Generate and verify a MAC value versus only verify a MAC value.

The cryptographic facility also interprets key-encrypting keys with the
following key types as asymmetric keys that can be used to create one-way
key distribution channels:

 Chapter 5. Basic CCA DES Key Management 5-5

– EXPORTER or OKEYXLAT. A key with this key type can encipher a
key at a node that sends a key.

– IMPORTER or IKEYXLAT. A key with this key type can decipher a key
at a node that receives the key.

EXPORTER keys are paired with an IMPORTER or an IKEYXLAT key.
IMPORTER keys are paired with an EXPORTER or an OKEYXLAT key.
These key types permit the establishment of a uni-directional key distribution
channel which is important both to preserve the asymmetric capabilities
possible with CCA systems and to further secure a key distribution system
from unintended key distribution possibilities.

For information about generating key pairs, see “Generating Keys” on
page 5-12.

Depending on the key type, a key can be a single or double-length key. A
double-length key that has different values in its left and right halves greatly
increases the difficulty for an adversary to obtain the clear value of the
enciphered key. A double-length key that has the same values in its left and
right halves produces the same results as a single-length key and has the
strength of a single-length key.

Some verbs can create a default control vector for a generic key type. For
information about the values for these control vectors, see Appendix C, “CCA
Control Vector Definitions and Key Encryption.”

Figure 5-3. Generic Key Types and Verb Usage

Generic Key Type Usable with Verbs

MAC Class (Data Operation Key)

These keys are used to generate and verify a message authentication code (MAC).
They are single-length keys. In operational form and in external form, these keys are
associated with a control vector.

MAC MAC_Generate, MAC_Verify

MACVER MAC_Verify

DATA Class (Data Operation Keys)

These keys are used to cipher text and to produce and verify message authentication
codes. They are single-length keys. In operational form, these keys are always
associated with a control vector. In external form, the DATA key-type keys are not
usually associated with a control vector.

DATA Encipher, Decipher, MAC_Generate,
MAC_Verify

Key-Encrypting Key Class

These keys are used to cipher other keys. They are double-length keys. In
operational form and in external form, these key-encrypting keys are associated with
a control vector.

EXPORTER Data_Key_Export, Key_Export, Key_Generate,
Key_Translate

IMPORTER Data_Key_Import, Key_Import, Key_Generate,
Key_Translate

IKEYXLAT, OKEYXLAT Key_Translate

5-6 IBM 4758 CCA Services

Key Usage Restrictions
In addition to a key type, a control vector contains key-usage values that further
restrict the use of a key. The generic key types define a default set of
key-usage restrictions in a control vector. These restrictions can be varied by
using key-usage keywords when constructing control vector values using the
Key_Token_Build verb or by setting bits in the control vector.

Figure 5-4 shows the key type and key-usage keywords that can be combined
in the Key_Token_Build verb to create a control vector. The left column lists the
generic key types. To the right of the key type are the key-usage keywords that
further define a control vector. Default control-vector attributes are noted.
Figure 5-5 describes the control vector usage keywords.

For information about the control vector bits, see Appendix C, “CCA Control
Vector Definitions and Key Encryption.”

| Key_Type Key_Usage Notes:

| 55┬─DATA─────┐ 1) XPORT─OK is the default.

| ├─MAC ─────┤ 2) If IMPORTER and no mention

| ├─MACVER───┴──┐ of OPIM, IMEX, IMIM, or IMPORT,

| ├─IMPORTER──┬──────────────┐ │ then all are implied.

| │ │ ┌──────────┐ │Note 2 │ 3) If EXPORTER and no mention

| │ │ 6 │ │ │ of OPEX, IMEX, EXEX, or EXPORT

| │ └──┬─OPIM────┤ │ │ then all are implied.

| │ ├─IMEX────┤ │ │

| │ ├─IMIM────┤ │ │

| │ └─IMPORT ─┴─┤ │

| ├─EXPORTER──┬──────────────┤ │

| │ │ ┌──────────┐ │Note 3 │

| │ │ 6 │ │ │

| │ └──┬─OPEX────┤ │ │

| │ ├─IMEX────┤ │ │

| │ ├─EXEX────┤ │ │

| │ └─EXPORT──┴─┴─┬─────────┐ │

| ├─IKEYXLAT─┐ └─XLATE───┤ │

| └─OKEYXLAT─┴───────────────────────────┴──────────────────┤

| │

| │

| ├───────────┐

| ├──XPORT─OK─┤

| └──NO─XPORT─┴─┬──────────┐

| Note 1 └─KEY─PART─┴─55

| Figure 5-4. Key_Token_Build Keyword Combinations

Figure 5-5 (Page 1 of 2). Control Vector Key-Usage Keywords

Key-Usage
Keyword

Meaning

EXPORTER and IMPORTER Key-Encrypting Keys

OPIM IMPORTER keys that have a control vector with this attribute
can be used in the Key_Generate verb when the key form is
OPIM.

IMEX IMPORTER and EXPORTER keys that have a control vector
with this attribute can be used in the Key_Generate verb when
the key form is IMEX.

IMIM IMPORTER keys that have a control vector with this attribute
can be used in the Key_Generate verb when the key form is
IMIM.

IMPORT Key-encrypting keys that have a control vector with this
attribute can be used to import a key in the Key_Import verb

 Chapter 5. Basic CCA DES Key Management 5-7

Figure 5-5 (Page 2 of 2). Control Vector Key-Usage Keywords

Key-Usage
Keyword

Meaning

OPEX EXPORTER keys that have a control vector with this attribute
can be used in the Key_Generate verb when the key form is
OPEX.

EXEX EXPORTER keys that have a control vector with this attribute
can be used in the Key_Generate verb when the key form is
EXEX.

EXPORT Key-encrypting keys that have a control vector with this
attribute can be used to export a key in the Key_Export verb

XLATE Importer and Exporter key-encrypting keys that have a control
vector with this attribute can be used in the Key_Translate verb

Miscellaneous Attributes

XPORT-OK Permits the key to be exported by Key_Export or
Data_Key_Export.

NO-XPORT Prohibits the key from being exported by Key_Export or
Data_Key_Export.

KEY-PART Specifies the control vector is for a key part.

Key Tokens, Key Labels, and Key Identifiers
In CCA, a cryptographic key is generally contained within a data structure called
a key token. The key token can contain the key, a control vector, and other
information pertinent to the key. Key tokens can be null, internal or external.
Internal key tokens can be stored in key storage and are accessed using a key
label. The CCA API often permits an application to provide either a key token or
a key label, in which case the parameter description is designated as a key
identifier. Key tokens, labels, and identifiers are discussed in the following
sections.

 Key Tokens
The security API operates with a key token rather than operating simply with a
key. A key token is a 64-byte data structure that includes the key and other
information frequently needed when the key is needed.

Figure 5-6 shows the general format of a key token. For more information, see
Appendix B, “Data Structures.”

ð 8 16 32 63

┌─────────┬─────────┬──────────────┬──────────────┬──────────────┬───────────┬─────┐

│ │ │ │ │ │ │ │

│Key │Flags │Control Infor─│ internal key │Control Vector│ │ TVV │

│Token │ │mation for │ or │ │ │ │

│Type │ │Using the Key │ external key │ │ │ │

└─────────┴─────────┴──────────────┴──────────────┴──────────────┴───────────┴─────┘

Figure 5-6. Key_Token Contents. In this figure, TVV means token-validation value. See
“External Key Token” on page 5-10 and “Internal Key Token” on page 5-10 for information
on how the internal and external keys are generated.

A key token contains the following information:

5-8 IBM 4758 CCA Services

� The key value (multiply enciphered under a key formed by either the master
key or a key-encrypting key that is exclusive-ORed with the control vector).

� The control vector for the key. A control vector provides information about
the permitted uses of the key.

� Miscellaneous control information (token type, token version layout, and
other information).

� A token-validation value (TVV), which is a checksum that is used to validate
a token.

You can use the Key_Token_Build verb to assemble a key token. You can also
use application code to assemble or disassemble a key token. You should keep
in mind, however, the contents and format of key tokens are version and
implementation-sensitive. This key-token format is described in Appendix B,
“Data Structures” on page B-1.

 External Key_Token

 ð 63

 ┌──────────┬──────────────┬──────────────────────┐

 ┌────────5X'ð2' │ e\KEK.CV(KEY)│ │

 │ └──────────┴──────────────┴──────────────────────┘

 │

 │

 │ Internal Key_Token

 │ ð 63

 │ ┌──────────┬──────────────┬──────────────────────┐

OR ───────5X'ð1' │ e\KM.CV(KEY) │ │

 │ └──────────┴──────────────┴──────────────────────┘

 │

Key_Identifier───────5 │ Null Key_Token

 │ ð 63

 │ ┌──────────┬──────────────┬──────────────────────┐

 OR ───────5X'ðð' │

 │ └──────────┴──────────────┴──────────────────────┘

 │

 │

 │

 │

 │ Key_Label

 │ ð 63

 │ ┌──┐

└────────5Name_Token_1.Name_Token_2. -- .Name_Token_n │

 └───────────────────────┬────────────────────────┘

 ──┐ & │

The first byte is│ │ │

in the range of ├──┘ Key Storage ┌──6────────┐

X'2ð' to X'FE'. │ │ ─── ───── │

──┘ │ ─── ───── │

│ ─── ───── │

│ ─── ───── │

│ ─── ───── │

│ ─── ───── │

 └──&───&────┘

 Key_Label─┘ └─Key_Token

Figure 5-7. Key Identifier, Key Tokens, and Key Labels

 Chapter 5. Basic CCA DES Key Management 5-9

The cryptographic system uses external, internal, and null key tokens, as shown
in Figure 5-7 on page 5-9.

External Key Token: An external key token contains an external key that is
multiply enciphered under a key formed by the exclusive-OR of a key-encrypting
key and the control vector that was assigned when the key token was created or
updated.

An external key token is specified in a verb call, using a key_token parameter.
An external key token resides in application data storage. An application
program obtains an external key token by calling one of the following verbs:

 � Data_Key_Export
 � Key_Export
 � Key_Generate
 � Key_Token_Build

Internal Key Token: An internal key token contains an operational key that is
multiply enciphered under a key formed by the exclusive-OR of a master key
and the control vector that was used when the key token was created or
updated.

An internal key token is specified in a cryptographic verb call by using a
key_identifier parameter. These verbs produce an internal key token:

 � Clear_Key_Import
 � Data_Key_Import
 � Key_Import
 � Key_Generate
 � Key_Token_Build
 � Symmetric_Key_Import
 � Key_Record_Read.

Null Key Token: A null key token is a 64-byte string that begins with the
value X'00'. A null key token can reside in application data storage or in key
storage. Some verbs that create a key token with default values do so when
you identify a null key token.

 Key Labels
A key label serves as an indirect address for a key token record in key storage.
The security server uses a key label to access key storage to retrieve or to store
the key token. A key_identifier parameter can point to either a key-label or a
key-token. Key labels are discussed further at “Key Label Content” on
page 7-2.

 Key Identifiers
When a verb parameter is described as some form of a key_identifier, you can
present either a key token or a key label. The key label identifies a key token
record in key storage.

5-10 IBM 4758 CCA Services

Using the Key Processing and Key Storage Verbs
Figure 5-8 on page 5-12 shows key processing and key storage verbs and how
they relate to key parts, internal and external key tokens, and key storage. You
can create keys in your application programs by using the Key_Generate,
Key_Part_Import, Secure_Key_Import, Clear_Key_Import, and
Random_Number_Generate verbs.

CCA subsystems do not reveal enciphered keys, and do provide significant
control over encrypted keys. Simple key distribution is addressed by the
Cryptographic Node Management (CMN) utility’s capabilities to read and write
encrypted keys from and to key storage and to process key parts with support
for dual control of the key parts. Application programs can use the key
processing and storage verbs to implement a key distribution system of your
design.

The CNM utility, Key_Part_Import verb, Secure_Key_Import verb, and Key_Test
verb allow you to install keys securely and verify key installation.

Installing and Verifying Keys
To keep a key secret, it can be installed as a series of key parts. Different
individuals can use an application program that loads individual key parts into
the cryptographic facility using the Key_Part_Import verb, or the Node
Management Utility to enter a key part from a keyboard or diskette.

The key-parts are single-length or double-length, based on the type of key you
are accumulating. Key-parts are exclusive-ORed as they are accumulated.
Thus, knowledge of a key-part value provides no knowledge about the final key
when it is composed of more than one part. An already-entered key-part(s) is
stored outside the cryptographic facility enciphered under the master key. When
all the key parts are accumulated, the key-part control-vector bit is removed from
the key.

A master key key-part is loaded into the new master key register. The key-part
replaces the value in the new master key register, or is exclusive-ORed with the
existing contents of the register. In a separate command, you can copy the
contents of the current master key register to the old master key register and
write over the current master key register with the contents of the new master
key register.

The commands to load (master) key parts must be individually authorized by
appropriate bits being turned on in the active profile register for the Load First
(Master) Key Part command or the Load and Combine (Master) Key Part
command.

You can use the Key_Test verb to generate a verification pattern and an
associated random number. These two values are used together to verify a key
or a key part. An application program can use the Key_Test verb to verify the
contents of a key-register, an enciphered key, or an enciphered key-part. The
utilities also include services to generate and use key and key-part verification
patterns.

Though you do not know the value of the key or the key part, you can test a key
register, key, or key part to ensure it has a correct value. You can provide to

 Chapter 5. Basic CCA DES Key Management 5-11

 Random_Number_Generate

 │

 ┌─────────┴─────────┐

 │ Clear_Key_ │

 Key_Part_ Import Secure_

 Import Key_Import

 └────┐ │ │

┌─────────────────┐ │ │ ┌────┴────┐ ┌────┐

Symmetric_Key_ ┌─6──6────6────6────┐ │ Key_Record_Write │K │

Import │Internal Key Token ├────────────────────────5e S │

& │ %────────────────────────┤y t │

Symmetric_Key_ └─┬──&────┬────&────┘ │ Key_Record_Read │ o │

Export │ 6 │ │ │ │ │ r │

 └─────────────────┘ │ │ Key_ │ Key_Record_Create─5 a │

 Key_│ │ Import │ Key_Record_Delete─5 g │

 Generate │ │ │ Key_Record_List───5 e │

│ │ │ │ └────┘

 │ Key_ │ │

│ Export │ ┌──────┘

┌─────────────────┐ │ │ │ │

 │ ┌─6──6────6────┴──6─┐

Key_Translate │External Key Token │

 │ │ │

 │ └─┬─────────────────┘

 │ 6

 └─────────────────┘

Figure 5-8. Key Processing Verbs

the individual who loads the key parts the verification information for the parts
that should already be loaded. If the pattern does not verify, you can instruct
the individual or application not to load an additional key part or to set the
master key. This procedure can ensure that only valid key parts are used.

In addition to the utilities that are supplied with the hardware, you can use the
Key_Part_Import verb in an application program to load keys from individual key
parts.

 Generating Keys
A CCA cryptographic facility can generate the following keys:

� A clear key. Use a clear key with the Encode, Decode, and
Secure_Key_Import verbs. To generate a clear key, use the odd-parity
mode of the Random_Number_Generate verb.

� A key part. To generate a key part, use the odd-parity mode of the
Random_Number_Generate verb. You can use a key part with the
Key_Part_Import verb.

� A multiply-enciphered key or pair of keys. To generate a random,
multiply-enciphered key, use the Key_Generate verb. The Key_Generate
verb multiply-enciphers a random number using a control vector and either
the master key or a key-encrypting key. If you are generating a DES
asymmetric key type, the verb will multiply-encipher the random number a
second time with the “opposite” key type control vector. The verb restricts
the combination of control vectors used for the two encipherments and also
places restrictions on the use of master-key versus EXPORTER and
IMPORTER encryption key types. This is done to ensure a secure,
asymmetric key distribution system.

5-12 IBM 4758 CCA Services

The Key_Generate verb can also do the following:

– Generate one random number for a single-length key or one or two
random numbers for a double-length key.

– Update a key token or create a key token that contains the default
control vector values for the key type. If you update a key token, you
can use your own control vector to add additional restrictions.

Before generating a key, you should consider how the key will be archived and
recovered if unexpected events occur. Before using the Key_Generate verb,
you should also consider the following aspects of key processing:

� The use of the key determines the key type and can determine whether you
create a key-token with the default control vector or update the key-token
with your own control vector that contains additional restrictions.

If you update a key token, first use the Key_Token_Build verb to create the
control vector and the key token, then use the Key_Generate verb to
generate the key.

� Where and when the key will be used determines the form of the key,
whether the verb generates one key or a key-pair, and whether the verb
multiply-enciphers each key for operational, import, or export use. The verb
multiply-enciphers each key under a key that is formed by exclusive-ORing
the control vector in the new or updated key-token with one of the following
keys:

– The master key. This is the operational (OP) key form.

– An IMPORTER key-encrypting key. This is the external, importable (IM)
key form.

– An EXPORTER key-encrypting key. This is the external, exportable
(EX) key form.

If a key will be used locally, it should be enciphered in the OP key form or
IM key form. An IM key form can be saved on external media and imported
when its use is required. Saving a key locally in the IM key form ensures
that the key can be used if the master key is changed between the time the
key was generated and the time it is used. This allows you to maintain the
IMPORTER key-encrypting keys in operational form and to store keys that
are not needed immediately on external media.

If a key will be used remotely (sent to another node), it should be
enciphered in the EX key form under a local EXPORTER key. At the other
node, the key will be imported under the paired IMPORTER or IKEYXLAT
key.

� Use the SINGLE keyword for a key that should be single-length. Use the
SINGLE-R keyword for a double-length key that should perform as a
single-length key; this is often required when such a key will be
interchanged with a non-CCA system. Use the DOUBLE keyword for a
double-length key. Since the two halves are random numbers, it is unlikely
that the result of the DOUBLE keyword will produce two halves with the
same 64-bit value.

 Chapter 5. Basic CCA DES Key Management 5-13

Exporting and Importing Keys
To operate on data with the same key at two different nodes, you must transport
the key securely between the nodes. To do this, a transport-key or
key-encrypting key must be installed at both nodes.

A key that is enciphered under a key-encrypting key other than the master key
is called an external-key. Deciphering an operational key with the master key
and enciphering the key under a key-encrypting key is called a key-export
operation and changes an operational key to an external key. The key-export
operation is performed in the cryptographic facility so that the clear value of the
key to be exported is not revealed.

Deciphering an external key with a key-encrypting key and enciphering the key
under the local master key is called a key-import operation, and changes an
external key to an operational key.

The control vector for the transport key-encrypting key at the source node must
specify the key as an EXPORTER key. The control vector at the target node
must specify the transport key-encrypting key as an IMPORTER key. The key
to be transported must be multiply-enciphered under an EXPORTER
key-encrypting key at the source node and multiply-deciphered under an
IMPORTER key-encrypting key at the target node. Figure 5-9 shows both the
key-export and key-import operations. Data operation keys, and key-encrypting
keys can be transported in this manner. The control vector specifies what kind
of keys can be enciphered by a key-encrypting key. For more information, see
Appendix C, “CCA Control Vector Definitions and Key Encryption” on page C-1.

Use the Key_Export and the Key_Import verbs to export and import keys with
key types that the control vectors associated with the EXPORTER or
IMPORTER keys permit. Use can the Data_Key_Export verb and the
Data_Key_Import verb to export and import DATA keys; these verbs will not
import and export key-encrypting keys.

 ┌──────────────┐ ┌──────────────┐

Operational │ Key to Be │ │ Imported │ Operational

Form of Key │ Exported │ │ Key │ Form of Key

at Node A └──────┬───────┘ └───────&──────┘ at Node B

 │ │

 │ │

┌───────────────────────────│──────┐ ┌──────│───────────────────────────┐

│Key_Export ┌────6────┐ │ │ ┌────┴────┐ Key_Import │

│ │Multiply-│ │ │ │Multiply-│ │

│ Master Key ──────────5Decipher │ │ │ │Encipher %── Master Key │

│ └────┬────┘ │ │ └────&────┘ │

│ ┌────6────┐ │ │ ┌────┴────┐ │

│ Exporter │Multiply-│ │ │ │Multiply-│ Importer │

│ Key-Encrypting Key ──5Encipher │ │ │ │Decipher %── Key-Encrypting Key │

│ └────┬────┘ │ │ └────&────┘ │

└───────────────────────────│──────┘ └──────│───────────────────────────┘

 │ │

 │ │

│ ┌──────────────┐ │

└──5 External Key ├──┘

 └──────────────┘

Figure 5-9. Key Exporting and Importing

5-14 IBM 4758 CCA Services

Storing Keys in Key Storage
Only internal key tokens can be stored in key storage. Data operation keys and
key-encrypting keys can be stored in key storage.

The verbs that you use to create, write, read, delete, and list records in key
storage, and the format of the key label used to access these records, is
described in Chapter 7, “Key Storage Verbs.”

Note: To use key storage, the Compute_Verification_Pattern command must
first be authorized. This command is used to validate that the master key used
to encipher keys within the key storage file had the same value as the master
key in the cryptographic facility when the key storage file is opened.

 Security Precautions
In order to maintain a secure cryptographic environment, each cryptographic
node must be audited in a regular basis. This audit should be aimed at
preventing inadvertent and malicious breaches of security. Some of the things
that should be audited are listed below:

� The same transport-key should not be used as an EXPORTER key and
IMPORTER key on any given cryptographic node. This would destroy the
asymmetrical properties of the transport-key.

� Enablement of the Encipher Under Master Key command should be
avoided. The secure_key_import verb that employs this command can be
used to import any kind of key into the system including a key-encrypting
key.

� The Key_Part_Import verb should be used to enter new master keys,
key-encryption keys, and data keys into the system. This verb provides for
split-knowledge (dual control) of keys by ensuring that no one person knows
the true value of a key. Each person enters part of a key and the actual key
is not assembled until the last key part is used. Neither the key nor the
partial results of the key assembly appear in the clear outside of the secure
hardware.

 Chapter 5. Basic CCA DES Key Management 5-15

 Clear_Key_Import

 Clear_Key_Import (CSNBCKI)

Platform/
Product

OS/2 AIX NT Service
Group

IBM-4758 X X X Basic

The Clear_Key_Import verb enciphers a clear, single-length DES key under a
master key. The resulting key is a DATA key because the service requires that
the resulting internal key token have a DATA control vector. You can use this
verb to create an internal key token from a null key token, or you can update an
existing internal DATA key token with the enciphered value of the clear key.
(You can create other types of DES keys from clear key information using the
Key_Part_Import verb.)

If the clear-key value does not have odd parity in the low-order bit of each byte,
the reason_code parameter presents a warning.

 Restrictions
None

 Format
CSNBCKI

return_code Output Integer
reason_code Output Integer
exit_data_length Input Integer
exit_data In/Output String exit_data_length bytes
clear_key Input Integer 8 bytes
target_key_identifier In/Output String 64 bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

clear_key
The clear_key parameter is a pointer to a string variable containing the clear
value of the DES key being imported as a DATA key. The key is to be
enciphered under the master key. Although not required, the low-order bit in
each byte should provide odd parity for the other bits in the byte.

target_key_identifier
The Target_Key_Identifier parameter is a pointer to a 64-byte string variable.
If the key token in application storage or key storage is null, then a DATA
key token containing the encrypted clear key replaces the null token.
Otherwise, the pre-existing token must be a DATA key token and the
encrypted clear key replaces the existing key value.

 Required Commands
The Clear_Key_Import verb requires the Encipher Under Master Key command
(command offset X'00C3') to be enabled in the hardware.

5-16 IBM 4758 CCA Services

 Data_Key_Export

 Data_Key_Export (CSNBDKX)

Platform/
Product

OS/2 AIX NT Service
Group

IBM-4758 X X X Basic

The Data_Key_Export verb exports an internal DATA key. The verb can export
the key from an internal key token in key storage or application storage.

The verb overwrites the 64-byte target key token field with an external DES key
token that contains the source key now encrypted by the exporter key-encrypting
key. Only a DATA key can be exported. If the source key has a control vector
valued to the default DATA control vector, the target key will be enciphered
without any control vector (that is, an “all zero” control vector), otherwise the
source-key control vector will also be used with the target key.

 Restrictions
None

 Format
CSNBDKX

return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data In/Output String exit_data_length bytes
source_key_identifier Input String 64 bytes
exporter_key_identifier Input String 64 bytes
target_key_token Output String 64 bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

source_key_identifier
The Source_Key_Identifier parameter is a pointer to a 64 byte string variable
containing the internal key token to be exported. Only a DATA key can be
exported.

exporter_key_identifier
Exporter_Key_Identifier parameter is a pointer to a 64 byte string variable
containing the (EXPORTER) transport key used to encipher the target key.

target_key_token
Target_Key_Token parameter is a pointer to a 64 byte string variable
containing the re-encrypted source key token. The target key token will
overwrite existing information.

 Required Commands
If you export a key from an internal key token in application data storage or in
key storage, the Data_Key_Export verb requires the Data Key Export command
(command offset X'010A') to be enabled in the hardware.

 Chapter 5. Basic CCA DES Key Management 5-17

 Data_Key_Import

 Data_Key_Import (CSNBDKM)

Platform/
Product

OS/2 AIX NT Service
Group

IBM-4758 X X X Basic

The Data_Key_Import verb imports an encrypted source DES DATA key and
creates or updates a target internal key token with the master-key enciphered
source key. The verb can import the key into an internal key token in
application storage or in key storage.

Specify the following:

� An external key token containing the source key to be imported. The
external key token must indicate that a control vector is present; however,
the control vector is usually valued at zero.

| Alternatively, you can provide the encrypted data key at offset 16 in an
| otherwise all X'00' key token. The verb will process this token format as a
| DATA key encrypted by the importer key and a null (all zero) control vector.

� An IMPORTER key-encrypting key under which the source key is
deciphered.

� An internal or null key token. The internal key token can be located in
application data storage or in key storage.

The verb builds the internal key token by the following:

� Creates a default control vector for a DATA key type in the internal key
token, if the control vector in the external key token is zero. If the control
vector is not zero, the verb copies the control vector into the internal key
token from the external key token.

� Multiply-deciphers the key under the keys formed by the exclusive-OR of the
key-encrypting key (identified in the importer_key_identifier) and the control
vector in the external key token, then multiply-enciphers the key under keys
formed by the exclusive-OR of the master key and the control vector in the
internal key token. The verb places the key in the internal key token.

� Calculates a token-validation value and stores it in the internal key token.

This verb does not adjust the key parity of the source key.

 Restrictions
None

 Format
CSNBDKM

return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data In/Output String exit_data_length bytes
source_key_token Input String 64 bytes
importer_key_identifier Input String 64 bytes
importer_key_identifier In/Output String 64 bytes
target_key_identifier In/Output String 64 bytes

5-18 IBM 4758 CCA Services

 Data_Key_Import

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

source_key_token
The source_key_token parameter is a pointer to a 64-byte string variable
containing the source key to be imported. The source key must be an
external key.

importer_key_identifier
The importer_key_identifier parameter is a pointer to a 64-byte string
variable containing the (IMPORTER) transport key used to decipher the
source key.

target_key_identifier
The target_key_identifier parameter is a pointer to a 64-byte string variable
containing a null key token, an internal key token, or the key label of an
internal key token or null key token record in key storage. The key token
receives the imported key.

 Required Commands
If you import a key into an internal key token: The Data_Key_Import verb
requires the Data Key Import command (offset X'0109') to be enabled in the
hardware.

 Chapter 5. Basic CCA DES Key Management 5-19

 Diversified_Key_Generate

| Diversified_Key_Generate (CSNBDKG)

| Platform/
| Product
| OS/2| AIX| NT| Service
| Group

| IBM-4758| X| X| X| Basic

| Use the Diversified_Key_Generate verb to generate a key based on a function
| of a key-generating key and data that you supply. The key-generating key
| key-type enables you to restrict such keys from being used in other verbs that
| might reveal the value of a diversified key. The keys generated with this verb
| are required to have the export control vector bit (bit 17) set off thereby
| restricting their usage to the local environment.

| This verb is especially useful for creating “diversified keys” for operating with
| finance industry smart cards.

| To use the verb, specify the following:

| � A rule array keyword to select the diversification process.

| � The operational key-generating key from which the diversified keys are
| generated. The control vector associated with this key restricts the use of
| this key to key generation processes.

| � The data and its length used in the process.

| � The operational key used to recover the data or, for processes that employ
| clear data, a null key token.

| � The generated-key key-token with a suitable control vector for receiving the
| diversified key. The specified process can restrict the type of generated
| key.

| The verb generates the diversified key and updates the generated-key key-token
| with this value by the following procedure:

| � Determines that it can support the process as requested by the rule array
| keyword

| � Recovers the key-generating key and checks the control vector for the
| key-generating-key class and the specifed usage in this verb

| � Determines that the length of the generating key is appropriate to the
| specified process

| � Determines that the control vector in the generated-key key-token is
| permissible for the specified process including the prohibition of exporting
| the generated key

| � Recovers the data-encrypting key and checks the control vector for the key
| appropriately for the specified process

| � Decrypts the data as can be required by the specified process

| � Generates the key appropriate to the specified process

| � Returns the generated diversified key, multiply enciphered by the master
| key.

5-20 IBM 4758 CCA Services

 Diversified_Key_Generate

| Restrictions
| None

| Format
| CSNBDKG

| return_code| Input| Integer
| reason_code| Input| Integer
| exit_data_length| Input| Integer
| exit_data| In/Output| String| exit_data_length bytes
| rule_array_count| Input| Integer
| rule_array| Input| String array| 8 bytes * rule_array_count
| generating_key_identifier| Input| String| 64 bytes
| data_length| Input| Integer
| data| Input| String| data_length bytes
| data_decrypting_key_identifier| Input| String| 64 bytes
| generated_key_identifier| In/Output| String| 64 bytes

| Parameters
| For the definitions of the return_code, reason_code, exit_data_length, and
| exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

| rule_array_count
| The rule_array_count parameter is a pointer to an integer variable
| containing the number of elements in the rule array.

| rule_array
| The rule_array parameter is a pointer to an array of keywords. The
| keywords are eight-bytes in length, and must be left-justified and padded on
| the right with space characters. The rule_array keywords are shown below:

| generating_key_identifier
| The generating_key_identifier parameter is a pointer to a 64-byte string
| variable containing the key-generating key key-token or key label of a key
| token. The key must be of the class key-generating key and must have bit
| 19 set to one.

| data_length
| The data_length parameter is a pointer to an integer variable containing the
| length of the data variable. The data length can be one of 8, 16, 24, or 32
| as specified by the rule array keyword that you select.

| Process Rule (one required)

| CLR8-ENC| Specifies that 8 bytes of clear (not encrypted) data shall be
| multiply encrypted with the generating key and returned as
| the generated key. The encryption process is like that
| shown in Figure C-3 on page C-9 for a single-length key
| with a control vector valued to binary zero.

| The data_decrypting_key parameter must identify a null
| key token.

| The control vector in the generated-key token can specify
| either a DATA, a MAC, or a MACVER key type. The
| control vector must not permit the key to be exported (bit
| 17 is zero).

 Chapter 5. Basic CCA DES Key Management 5-21

 Diversified_Key_Generate

| data
| The data parameter is a pointer to a string variable containing the
| information used in the key generation process. This can be clear or
| encrypted information based on the process specified in the rule array.

| data_decrypting_key_identifier
| The data_decrypting_key_identifier parameter is a pointer to a 64-byte string
| variable containing the data decrypting key-token or key label of a key
| token. The specified process dictates the class of key. If the process does
| not support encrypted data, point to a null key token.

| generated_key_identifier
| The generated_key_identifier parameter is a pointer to a 64-byte string
| variable containing the key token or the key label of the target key token.
| The generated key will be multiply encrypted and returned in the specified
| token. The control vector in the specified token must be suitable for the
| specified process.

| Required Commands
| The Diversified_Key_Generate verb requires the Generate Diversified Key
| command (offset X'0040') to be enabled in the hardware.

5-22 IBM 4758 CCA Services

 Key_Export

 Key_Export (CSNBKEX)

Platform/
Product

OS/2 AIX NT Service
Group

IBM-4758 X X X Basic

The Key_Export verb exports a source key into a target external key token. The
target key token overwrites existing information. The target key is enciphered by
the exporter-key exclusive-ORed with the control vector of the source key.

Specify the following:

� A keyword for the key type. In General, use the TOKEN key word. To
remain compatible with older systems, you can explicitly name a key type, in
which case it must match the key type in the control vector of the source
key token.

� A source-key internal key token or the key label of an internal key token
record in key storage containing the source key to be exported.

� An EXPORTER key-encrypting key under which the target key is
enciphered.

� A 64-byte field to hold the target key token.

The verb builds the external key token by the following:

� Copies the control vector from the internal key token to the external key
token, except when the source key has a control vector valued to the default
DATA control vector; in this case the target control vector is set to zero.

� Multiply-deciphers the source key under keys formed by the exclusive-OR of
the master key and the control vector in the source key token, multiply
enciphers the key under keys formed by the exclusive-OR of the exporter
key-encrypting key and target-key control vector, and places the result in the
target key token.

� Calculates a token-validation value and stores it in the target key token.

� Places the external key token in the 64-byte field identified in the
target_key_token parameter ignoring any preexisting data.

 Restrictions
None

 Format
CSNBKEX

return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data In/Output String exit_data_length bytes
key_type Input String 8 bytes
source_key_identifier Input String 64 Bytes
exporter_key_identifier Input String 64 Bytes
target_key_token Output String 64 Bytes

 Chapter 5. Basic CCA DES Key Management 5-23

 Key_Export

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

key_type
key_type parameter is a pointer to an 8-byte string variable containing one
of the following keywords to indicate the key type. The TOKEN keyword is
the most commonly used.

TOKEN
DATA

EXPORTER
IKEYXLAT

IMPORTER
MAC

MACVER
OKEYXLAT

source_key_identifier
source_key_identifier parameter is a pointer to a 64-byte string variable
containing the source key token or key label.

exporter_key_identifier
exporter_key_identifier parameter is a pointer to a 64-byte string variable
containing the exporter key-encrypting key token or key label.

target_key_token
target_key_token parameter is a pointer to a 64-byte string variable
containing the target key token field.

 Required Commands
The Key_Export verb requires the Re-Encipher from Master Key command
(offset X'0013') to be enabled in the hardware.

5-24 IBM 4758 CCA Services

 Key_Generate

 Key_Generate (CSNBKGN)

Platform/
Product

OS/2 AIX NT Service
Group

IBM-4758 X X X Basic

The Key_Generate verb generates a random DES key and returns one or two
enciphered copies of the key, ready to use or distribute.

A control vector associated with each copy of the key defines the type of key
and any specific restrictions on the use of the key. Only certain combinations of
key types are permitted when you request two copies of a key. Specify the type
of key through a key-type keyword, or by providing a key token or tokens with a
control vector into which the verb can place the keys. If you specify TOKEN as
a key-type, the verb uses the pre-existing control vector from the key token.
Use of the TOKEN keyword allows you to associate other than default control
vectors with the generated keys.

Based on the key_form variable, the verb encrypts a copy or copies of the
generated key under one or two of the following:

� the master key

� an importer key-encrypting key

� an exporter key-encrypting key.

Request two copies of a key when you intend to distribute the key to more than
one node, or when you want a copy for immediate local use and the other copy
available for later local import.

Specify the key length of the generated key. A DES key can be either single or
double length. Certain types of CCA keys must be double length, for example
the EXPORTER and IMPORTER key-encrypting keys. In certain cases you
need such a key to perform as a single-length key. In these cases, specify
SINGLE-R, “single replicated.” A double-length key with equal halves performs
as though the key were a single-length key.

Specify where the generated key copies should be returned, either to your
program or key storage. In either case, a null key token can be overwritten by a
default key token taken from your specification of key-type. If you provide an
existing key token, the verb replaces the key value in the token.

 Restrictions
For PIN key support (PINGEN, PINVER, OPINENC, IPINENC), the CCA

| Support Program software must be at level 1.3 or higher. For key-generating
| key support or support of double length MAC or MACVER keys, the CCA
| Support Program software must be at level &pln7beta. or higher.

 Chapter 5. Basic CCA DES Key Management 5-25

 Key_Generate

 Format
CSNBKGN

return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data In/Output String exit_data_length bytes
key_form Input String 4 bytes
key_length Input String 8 bytes
key_type_1 Input String 8 bytes
key_type_2 Input String 8 bytes
KEK_key_identifier_1 Input String 64 bytes
KEK_key_identifier_2 Input String 64 bytes
generated_key_identifier_1 In/Output String 64 bytes
generated_key_identifier_2 In/Output String 64 bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

key_form
The key_form parameter is a pointer to a 4-byte string variable that defines
whether one or two copies of the key will be generated, and the type of
key-encrypting key used to encipher the key.

� When you want a copy of the new key to be immediately useful at the
local node, ask for an operational (OP) key. An OP key is enciphered
by the master key.

� When you want a copy of the new key to be imported to the local node
at a later time, specify an importable (IM) key. An IM key is enciphered
by an IMPORTER key type at the generating node.

� When you want to distribute the generated key to another node or
nodes, specify an exportable (EX) key. An EX key is enciphered by an
EXPORTER key type at the generating node and that is shared with the
final destination node.

Specify one of the following key forms:

OP One key for operational use.
IM One key to be imported later to this node.
EX One key for distribution to another node.
OPOP Two copies of the generated key, normally with different control

vector values.
OPIM Two copies of the generated key, normally with different control

vector values; one for use now, one for later importation.
OPEX Two copies of the generated key, normally with different control

vector values; one for local use and the other for use at a remote
node.

IMIM Two copies of the generated key, normally with different control
vector values; to be imported later to the local node.

IMEX Two copies of the generated key, normally with different control
vector values; one to be imported later to the local node and the
other for a remote node.

EXEX Two copies of the generated key, sometimes with different
control vector values; to be sent to two different remote nodes.
No copy of the generated key will be available to the local node.

5-26 IBM 4758 CCA Services

 Key_Generate

key_length
The key_length parameter is a pointer to an 8-byte string variable containing
the length of the new key. Depending on key type, you can specify a
single-length key or a double-length key. A double-length key consists of
two 8-byte values. Key length must contain one of the following:

| SINGLE or KEYLN8
For a single-length key.

SINGLE-R For a double-length key with equal-valued halves.
| DOUBLE or KEYLN16

For a double-length key. The key halves will be different
except when the same 56-bit key would be generated twice
in succession — a minuscule possibility.

8 spaces To allow the verb to determine key length based on the
key's control vector.

key_type_1 and key_type_2
The key_type_1 and key_type_2 parameters are pointers to 8-byte string
variables containing keywords that specify key type for the new keys being
generated.. You can also specify key type via the control vector in the
pre-existing key token by using the TOKEN keyword. Alternatively, you can
specify the key type using keywords shown in Figure 5-10 on page 5-28
and Figure 5-11 on page 5-29 This is useful when you want to create
default-value key tokens and control vectors.

� Figure 5-10 on page 5-28 lists the keywords allowed when generating a
single key copy (key_forms OP, IM, and EX). Key_type_2 must contain
a string of eight space characters.

� Figure 5-11 on page 5-29 lists the key_type_ keyword combinations
allowed when requesting two copies of a key value.

kek_key_identifier_1 and kek_key_identifier_2
The kek_key_identifier_1 and kek_key_identifier_2 parameters are pointers
to 64-byte string variables containing the key token or key label for the key
used to encipher the IM-form and EX-form keys. In general, if an OP-form
key is requested, the associated KEK identifier should point to a null key
token.

generated_key_identifier_1 and generated_key_identifier_2
The generated_key_identifier_1 and generated_key_identifier_2 parameters
are pointers to 64-byte string variables containing the key token or key label
of the generated keys. If the parameter identifies an internal or external key
token, the verb attempts to use the information in the existing key token,
and simply replaces the key value. Using the TOKEN keyword in the
key_type_ variables requires that key tokens already exist when the verb is
called, so the control vectors in those key tokens can be used. In general,
unless you are using the TOKEN keyword, you should identify a null key
token on input.

 Chapter 5. Basic CCA DES Key Management 5-27

 Key_Generate

 Required Commands
Depending on your specification of key form, key type, and use of the
SINGLE-R key length control, different commands are required to enable
operation of the Key_Generate verb.

� If you specify the key-form and key-type combinations shown with an X in
Figure 5-10, the Key_Generate verb requires the Generate Key command
(offset X'008E') to be enabled in the hardware.

� If you specify the key-form and key-type combinations shown with an X in
Figure 5-11 on page 5-29, the Key_Generate verb requires the Generate
Key Set command (offset X'008C') to be enabled in the hardware.

| � If you specify the key-form and key-type combinations shown with an E in
| Figure 5-11 on page 5-29, the Key_Generate verb requires the Generate
| Key Set Extended command (offset X'00D7') to be enabled in the
| hardware.

� If you specify the SINGLE-R key-length keyword, the Key_Generate verb
requires the Replicate Key command (offset X'00DB') to be enabled in the
hardware.

 Related Information
The following sections discuss the key_type and key_length parameters.

Key Type Specifications
Generated keys are returned multiply-enciphered by a key-encrypting key or by
a master key exclusive-ORed with the control vector associated with that copy of
the generated key.

Specify the key type of the generated key and its optional copy. If you encode
the key type of the key in the control vector of its key token, you can specify
TOKEN in the key_form variable. Or, you can provide a keyword for the key
type if you want the default control vector associated with that keyword. One or
two keywords are examined based on the key_form variable. Figure 5-10
shows the key types for which you can generate one copy of a key.

Figure 5-11 on page 5-29 shows the key types for which you can generate two
copies of a key. An ‘X’ indicates a permissible key type for a given key-form.

| An E indicates that a special (Extended) hardware command is required as
| those keys require special handling.

Figure 5-10. Key_Type and Key_Form Keywords for One Key

Key_Type_1 Key_Form OP Key_Form IM Key_Form EX

MAC X X X

DATA X X X

| PINGEN| X| X| X

| Generate*| X| X| X

| Note: The Generate key type (key-generating key) must be requested through the
| specification of a proper control vector in a key token and the use of the TOKEN
| keyword.

5-28 IBM 4758 CCA Services

 Key_Generate

If you use the TOKEN keyword, the lower portions of the tables indicate key
type combinations permitted by the CCA architecture but not supported through
keywords.

Figure 5-11. Key_Type and Key_Form Keywords for a Key Pair

Key_Type_1 Key_Type_2 Key_
Form
OPOP,
OPIM,
IMIM

Key_
Form
OPEX

Key_
Form
EXEX

Key_
Form
IMEX

MAC
MAC

MAC
MACVER

X
X

X
X

X
X

X
X

DATA DATA X X X X

EXPORTER
IMPORTER
EXPORTER
IKEYXLAT
IKEYXLAT
IMPORTER
OKEYXLAT
OKEYXLAT

IMPORTER
EXPORTER
IKEYXLAT
EXPORTER
OKEYXLAT
OKEYXLAT
IMPORTER
IKEYXLAT

 X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

X
X
X
X
X
X
X
X

| OPINENC
| IPINENC
| IPINENC
| OPINENC
| E
| E
| X
| X
| X
| X
| X
| X

| PINGEN
| PINVER
| PINVER
| PINGEN
| | X
| X
| X
| X
| X
| X

| OPINENC| OPINENC| X| | |

| Generate*| Generate*| X| X| X| X

| Note: The Generate key type (key-generating key) must be requested through the specification of
| a proper control vector in a key token and the use of the TOKEN keyword.

Key Length Specification
The key_length variable contains a keyword which specifies the length of a key,
single or double. The key length specified must be consistent with the key
length indicated by the control vectors associated with the generated keys. You

| can specify SINGLE, KEYLN8 , SINGLE-R, KEYLN16 , or DOUBLE . The
SINGLE-R keyword (single replicated) indicates that you want a double-length
key where both halves of the key are identical. Such a key performs as though
the key were single length.

Figure 5-12 shows the valid key lengths for each key type. An ‘X’ indicates that
a key length is permitted for a key type; a ‘D’ indicates the default key length the
verb uses when you supply 8 space characters with the key_length parameter.

 Chapter 5. Basic CCA DES Key Management 5-29

 Key_Generate

Figure 5-12. Key Lengths by Key Type

Key Type SINGLE
| KEYLN8

SINGLE-R DOUBLE
| KEYLN16

MAC
MACVER

X, D
X, D

| X
| X

DATA X, D

EXPORTER
IMPORTER

 X
X

X, D
X, D

IKEYXLAT
OKEYXLAT

 X
X

X, D
X, D

| IPINENC
| OPINENC
| PINGEN
| PINVER

| | X
| X
| X
| X

| X, D
| X, D
| X, D
| X, D

| Generate*| X| X| X

| Note: The Generate key type (key-generating key) must be requested through the specification of
| a proper control vector in a key token and the use of the TOKEN keyword.

5-30 IBM 4758 CCA Services

 Key_Import

 Key_Import (CSNBKIM)

Platform/
Product

OS/2 AIX NT Service
Group

IBM-4758 X X X Basic

The Key_Import verb imports a source DES key enciphered by the IMPORTER
key-encrypting key into a target internal key token. The imported target key is
returned enciphered using the master key.

Specify the following:

� A keyword for the key type. In general, use the TOKEN key word. For
compatibility with older systems, however, you can explicitly name a key
type in which case the key type must match the key type encoded in the
control vector of the source key token.

� An external key to be imported or an external key token that contains the
key to be imported. When you import an enciphered key that is not in an
external key token, the key must be located at offset 16 (X'10') of a
null-key-token with the first byte set to X'00'.

� The key-encrypting key under which the key is deciphered.

� An internal or null key token or the key label of an internal key token or null
key token in key storage.

The verb builds or updates the target key token as follows:

� If the source key is not in an external key token:

– You must specify an explicit key type (not TOKEN).
– The default CV for the key type is used when decrypting the source key.
– The default CV for the key type is used when encrypting the target key.
– The target key token must either be null or must contain valid,

non-conflicting information.

The key token is returned to the application or key storage with the imported
key.

� If the source key is in an external key token:

– When an explicit key type keyword is used, it must be consistent with
the key type encoded in the source-key control vector.

– The control vector in the source key token is used to decrypt the source
key.

– The control vector in the source key token is used to encrypt the source
key under the master key.

The key token is returned to the application or key storage with the imported
key.

The Fortress product family implementations do not adjust key parity.

 Chapter 5. Basic CCA DES Key Management 5-31

 Key_Import

 Restrictions
A SINGLE-R key-encrypting key (a KEK with equal clear-key halves) can not be
used to encipher a DOUBLE key (a double-length key with unequal clear-key
halves).

 Format
CSNBKIM

return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data In/Output String exit_data_length bytes
key_type Input String 8 bytes
source_key_token Input String 64 bytes
importer_key_identifier Input String 64 bytes
target_key_identifier In/Output String 64 bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

key_type
The key_type parameter is a pointer to an 8-byte string variable containing a
keyword specifying the key type of the key to be imported. In general you
should use the TOKEN keyword.

TOKEN
DATA

EXPORTER
IKEYXLAT

IMPORTER
MAC

MACVER
OKEYXLAT

source_key_token
The source_key_token parameter is a pointer to a 64-byte string variable
containing the source key token. Ordinarily the source key token is an
external DES key token (the first byte of the key token data structure
contains X'02'). However, if the first byte of the token is X'00', then the
encrypted source key is taken from the data at offset 16 (X'10') in the
source key token structure.

importer_key_identifier
The importer_key_identifier parameter is a pointer to a 64-byte string
variable containing the key-token or key label for the IMPORTER
key-encrypting key.

target_key_identifier
The target_key_identifier parameter is a pointer to a 64-byte string variable
containing the target key token or key label.

 Required Commands
� If you import a key into an internal key token, the key_import verb requires

the Re-encipher to Master Key command (offset X'0012') to be enabled in
the hardware.

5-32 IBM 4758 CCA Services

 Key_Part_Import

 Key_Part_Import (CSNBKPI)

Platform/
Product

OS/2 AIX NT Service
Group

IBM-4758 X X X Basic

The Key_Part_Import verb is used to accept parts of a key and store the result
as an encrypted partial key or as the final key. Before you use the
Key_Part_Import verb, use the Key_Token_Build verb to create the internal key
token into which the key will be imported. The control vector in the key token
must have the KEY-PART bit set to one.

The first key part is stored in the key token as an encrypted partial key.
Subsequent key parts are exclusive-ORed to the partial key. When the last key
part is completed, the result is returned as a complete enciphered key with the
KEY-PART bit in the control vector reset to zero.

If you use the Key_Part_Import verb to import a key without using key parts, you
must call the verb twice. In the first call, specify a key-part of all zeros with odd
parity (X'0101...') and specify the FIRST keyword in the rule array. In the
second call, specify a key part containing the clear key and specify the LAST
keyword in the rule array.

| The returned key is multiply-enciphered by the master key and the control vector
| in the token pointed to by the key_identifier parameter. When you use the
| LAST keyword, the key-part bit is turned off in the key token to reflect that the
| key is now complete.

 Restrictions
None

 Format
CSNBKPI

return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data In/Output String exit_data_length bytes
rule_array_count Input Integer
rule_array Input String array rule_array_count * 8 bytes
key_part Input String 16 bytes
key_identifier In/Output String 64 bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

rule_array_count
The rule_array_count parameter is a pointer to an integer containing the
number of elements in the rule_array variable. The value of the
rule_array_count must be one for this verb.

 Chapter 5. Basic CCA DES Key Management 5-33

 Key_Part_Import

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords
are shown below:

key_part
The key_part parameter is a pointer to a 16-byte string variable containing a
key part to be entered. The key part may be either 8 or 16-bytes in length;
however for 8-byte keys, you must place the key part in the high-order bytes
of the 16-byte key part field.

key_identifier
The key_identifier parameter is a pointer t o a 64-byte string variable
containing the internal DES key token or a key label for a DES key token.
The key token must not be null and does supply the control vector for the
partial key.

Figure 5-13. Key_Part_Import Rule_Array Keywords

Keyword Meaning

FIRST Specifies that an initial key part is provided.

MIDDLE Specifies that an intermediate key part, which is neither the
first key part nor the last key part, is provided.

LAST Specifies that the last key part is provided.

 Required Commands
The Key_Part_Import verb requires the following commands to be enabled in the
hardware:

� The Load First Keypart command (offset X'001B') with the FIRST keyword.

� The Combine Key Parts command (offset X'001C') with the MIDDLE and
LAST keywords.

5-34 IBM 4758 CCA Services

 Key_Test

 Key_Test (CSNBKYT)

Platform/
Product

OS/2 AIX NT Service
Group

IBM-4758 X X X Basic

The Key_Test verb generates or verifies a verification pattern for keys and key
parts. Use this verb to verify that a clear or enciphered key or key part was
entered correctly without exposing the value of the key.

Specify in the rule array whether the verb generates or verifies a verification
pattern and whether it performs the task on a key or on a key part.

When the verb generates a verification pattern, the verb uses the key or key
part to create and cryptographically process a random number; then the verb
returns the random number and the verification pattern.

When the verb tests a verification pattern against a key or a key part, you must
| supply the verification data from a previous procedure call to the Key_Test verb.

The verb returns the verification results in the form of a reason code.

The verb returns a return code of 4 and reason code of 1 if verification fails.

| You can specify an alternative key test method with the ENC-ZERO keyword in
| the rule array.

For more information about the verification methods used with DES keys, see
“Cryptographic Key Verification Techniques” on page D-1.

 Restrictions
None

 Format
CSNBKYT

return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data In/Output String exit_data_length bytes
rule_array_count Input Integer
rule_array Input String array rule_array_count * 8 bytes
key_identifier Input String 64 bytes
random_number In/Output String 8 bytes
verification_pattern In/Output String 8 bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable
containing the number of elements in the rule array.

 Chapter 5. Basic CCA DES Key Management 5-35

 Key_Test

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be left-justified and padded on
the right with space characters. The rule_array keywords are shown below:

key_identifier
The key_identifier parameter is a pointer to a 64-byte string variable
containing an internal key token, a key label that identifies an internal key
token record in key storage, or a clear key.

The key token contains the key or the key part used to generate or verify
the verification pattern.

When you specify the KEY-CLR keyword, the clear key or key part must be
stored in bytes 0 to 7 of the key identifier. When you specify the
KEY-CLRD keyword, the clear key or key part must be stored in bytes 0 to
15 of the key identifier. When you specify the KEY-ENC or the KEY-ENCD
keyword, the key or key part must be in a key token in the key identifier.

Key or Key-Part Rule (one required)

KEY-CLR Requests processing for a single-length clear key or key
part.

KEY-CLRD Requests processing for a double-length clear key or key
part.

KEY-ENC Requests processing for a single-length enciphered key or
key part supplied in a key token.

KEY-ENCD Requests processing for a double-length enciphered key or
key part supplied in a key token.

KEY-KM Identifies the master key register.

KEY-NKM Identifies the new master key register.

KEY-OKM Identifies the old master key register.

Process Rule (one required)

GENERATE Generates a verification pattern.

VERIFY Verifies a verification pattern.

| Verification Process Rule (optional)

| ENC-ZERO| Specifies use of the “encrypt zeros” method. Use only with
| KEY-CLR , KEY-CLRD , KEY-ENC, or KEY-ENCD.

Cryptographic Hardware Rule (optional)

ADAPTER Specifies the Cryptographic Adapter.

DFLT-CF Specifies the default cryptographic device or process. In a
configuration with more than one cryptographic device or
process, the implementation defines which device is the
default device or process. This is the default keyword.

5-36 IBM 4758 CCA Services

 Key_Test

random_number
The random_number parameter is a pointer to an 8-byte string variable
containing the binary random number the verb uses in the verification
process. When you specify the GENERATE keyword, the verb returns the
random number; when you specify the VERIFY keyword, you must supply

| the random number. With the ENC-ZERO method, the data in the
| random_number variable is not used.

verification_pattern
The verification_pattern parameter is a pointer to an 8-byte string variable
containing the binary verification pattern. When you specify the GENERATE
keyword, the verb returns the verification pattern. When you specify the
VERIFY keyword, you must supply the verification pattern.

| With the ENC-ZERO method, the verification data occupies the high-order
| four bytes while the low-order four bytes are unspecified (the data is passed
| between your application and the cryptographic engine but is otherwise
| unused). See “Cryptographic Key Verification Techniques” on page D-1.

 Required Commands
The Key_Test verb requires the Compute Verification Pattern command (offset
X'001D') to be enabled in the hardware.

 Chapter 5. Basic CCA DES Key Management 5-37

 Key_Token_Build

 Key_Token_Build (CSNBKTB)

Platform/
Product

OS/2 AIX NT Service
Group

IBM-4758 X X X Basic

The Key_Token_Build verb assembles an external or internal key token in
application storage from information you supply.

The verb can include a control vector you supply or can build a control vector
based on the key type and the control vector related keywords in the rule array.

The Key_Token_Build verb does not perform cryptographic services. You
cannot use this verb to change a key or to change the control vector related to a
key.

 Restrictions
None

 Format
CSNBKTB

return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data In/Output String exit_data_length bytes
key_token Output String 64 bytes
key_type Input String 8 bytes
rule_array_count Input Integer
rule_array Input String array rule_array_count * 8 bytes
key_value Input String 16 bytes
master_key_verification_pattern Input String 4 bytes
reserved Input Integer value ignored
reserved Input String 8 bytes, value ignored
control_vector Input String 16 bytes
reserved Input String 8 bytes
reserved Input Integer
reserved Input String 8 bytes
reserved Input String 8 bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

key_token
The key_token parameter is a pointer to a 64-byte string variable where the
verb returns a key token.

Note: You cannot use a key label for a key token record in key storage.

key_type
The key_type parameter is a pointer to an eight-byte string variable
containing a keyword that defines the key type. The keyword must be 8
bytes in length, uppercase, left-justified, and padded on the right with space
characters. Valid key type keywords are shown in the following list:

5-38 IBM 4758 CCA Services

 Key_Token_Build

DATA
EXPORTER

IKEYXLAT
IMPORTER

MAC
MACVER

OKEYXLAT
USE-CV

For information about key types, see Appendix C, “CCA Control Vector
Definitions and Key Encryption” on page C-1.

Specify the USE-CV keyword to indicate the key type should be obtained
from the control vector variable.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable

| containing the number of elements in the rule array. The value of the
| rule_array_count must be one for this verb.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords
are shown below:

Figure 5-14. Key_Token_Build Rule_Array Keywords

Keyword Meaning

Token Type Specify one of the following (required).

INTERNAL Specifies an internal key token.

EXTERNAL Specifies an external key token.

Key Status Specify one of the following (optional)

KEY Indicates the key token is to contain a key. The key_value
variable contains the key.

NO-KEY Indicates the key token is not to contain a key. This is the
default key status.

Control Vector (CV) Status Specify one of the following (optional).

CV Obtain the control vector from the variable identified by the
control_vector parameter.

NO-CV This keyword indicates that a control vector is to be
supplied based on the key type and control vector related
keywords. This is the default.

Note: If you specify the USE-CV keyword in the key_type
parameter, use the CV keyword here.

Control Vector Keywords Specify one of the following (Optional)

KEY-PART
XLATE

Note: See Appendix C, “CCA Control Vector Definitions
and Key Encryption” on page C-1 for a discussion of
control vectors and the keywords you can specify to create
a control vector value.

 Chapter 5. Basic CCA DES Key Management 5-39

 Key_Token_Build

key_value
The key_value parameter is a pointer to a 16-byte string variable. If you
use the KEY keyword, the string variable is incorporated into the
encrypted-key portion of the key token. Single-length keys must be
left-justified in the variable and padded on the right (low-order) with
eight-bytes of X'00'.

master_key_verification_pattern
The master_key_verification_pattern parameter is a pointer to a four-byte
string variable. If you use the KEY keyword, the two-byte master key
verification pattern is taken from the third and fourth bytes of the source
string. The first two bytes must be X'0000'.

control_vector
The control_vector parameter is a pointer to a 16-byte string variable. If you
use the CV keyword, the variable is used as the control vector.

Reserved
Reserved parameters may contain a null address, or may point to an
address in application data storage. When an address pointer is not null,
you must identify data consistent with the parameter description in the
Format section above.

 Required Commands
The Key_Token_Build verb has no required hardware commands because it is
not a cryptographic verb.

5-40 IBM 4758 CCA Services

 Key_Token_Change

 Key_Token_Change (CSNBKTC)

Platform/
Product

OS/2 AIX NT Service
Group

IBM-4758 X X X Basic

Use the Key_Token_Change verb to re-encipher a DES key from encryption
under the old master key to encryption under the current master key and to
update the keys in internal DES key tokens.

Note: An application system is responsible for keeping all of its keys in a
useable form. When the master key is changed, the Fortress product family
implementations can use an internal key that is enciphered by either the current
or the old master key. Before the master key is changed a second time, it is
important to have a key reenciphered under the current master key for continued
use of the key. Use the Key_Token_Change verb to reencipher such a key(s).

Note: Previous implementations of IBM CCA products had additional
capabilities with this verb such as deleting key records and key tokens in key
storage. Also, use of a wild card (*) was supported in those implementations

 Restrictions
None.

 Format
CSNBKTC

return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data In/Output String exit_data_length bytes
rule_array_count Input Integer
rule_array Input String array rule_array_count * 8 bytes
key_identifier In/Output String 64 bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable
containing the number of elements in the rule array. The value of the
rule_array_count must be one for this verb.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords
are shown below:

 Chapter 5. Basic CCA DES Key Management 5-41

 Key_Token_Change

Key_Identifier
The key_identifier parameter is a pointer to a 64-byte string variable
containing the DES internal key token or the key label of an internal key
token record in key storage.

Figure 5-15. Key_Token_Change Rule_Array Keywords

Keyword Meaning

RTCMK Re-enciphers a DES key to the current master key in an
internal key token in application data storage or in key
storage If the supplied key is already enciphered under the
current master key the verb returns a positive response
(return code, reason code — 0, 0). If the supplied key is
enciphered under the old master key, the key will be
updated to encipherment by the current master key and
the verb returns a positive response (return code, reason
code — 0, 0). Other cases return some form of abnormal
response.

 Required Commands
If you specify RTCMK keyword, the Key_Token_Change verb requires the
Re-Encipher to Current Master Key command (offset X'0090') to be enabled in
the hardware.

5-42 IBM 4758 CCA Services

 Key_Translate

 Key_Translate (CSNBKTR)

Platform/
Product

OS/2 AIX NT Service
Subset

IBM-4758 X X X Basic

The Key_Translate verb uses one key-encrypting key to decipher an input key
and then enciphers this key using another key-encrypting key within the secure
environment.

Specify the following key tokens to use this verb:

� The external (input) key token containing the key to be re-enciphered.

� The internal key token containing the IMPORTER or IKEYXLAT
key-encrypting key. (The control vector for the IMPORTER key must have
the XLATE bit set to 1.)

� The internal key token containing the EXPORTER or OKEYXLAT
key-encrypting key. (The control vector for the EXPORTER key must have
the XLATE bit set to 1.)

� A 64-byte field for the external (output) key token.

The verb builds the output key token as follows:

� Copies the control vector from the input key token.

� Verifies that the XLATE bit is set to 1 if an IMPORTER or EXPORTER
key-encrypting key is used.

� Multiply deciphers the key under a key formed by the exclusive-OR of the
key-encrypting key and the control vector in the input key token, multiply
enciphers the key under a key formed by the exclusive-OR of the
key-encrypting key and the control vector in the output key token; then
places the key in the output key token.

� Copies other information from the input key token.

� Calculates a token-validation value and stores it in the output key token.

 Restrictions
None.

 Format
CSNBKTR

return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data In/Output String exit_data_length bytes
input_key_token In/Output String 64 bytes
input_KEK_key_identifier Input String 64 bytes
output_KEK_key_identifier Input String 64 bytes
output_key_token Output String 64 bytes

 Chapter 5. Basic CCA DES Key Management 5-43

 Key_Translate

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

input_key_token
The input_key_token parameter is a pointer to a 64-byte string variable
containing an external key token The external key token contains the key to
be re-enciphered (translated).

input_KEK_key_identifier
The input_KEK_key_identifier parameter is a pointer to a 64-byte string
variable containing the internal key token or the key label of an internal key
token record in key storage. The internal key token contains the
key-encrypting key used to decipher the key. The internal key token must
contain a control vector that specifies an IMPORTER or IKEYXLAT key
type. The control vector for an IMPORTER key must have the XLATE bit
set to 1.

output_KEK_key_identifier
The output_KEK_key_identifier parameter is a pointer to a 64-byte string
variable containing the internal key token or the key label of an internal key
token record in key storage. The internal key token contains the
key-encrypting key used to encipher the key. The internal key token must
contain a control vector that specifies an EXPORTER or OKEYXLAT key
type. The control vector for an EXPORTER key must have the XLATE bit
set to 1.

output_key_token
The output_key_token parameter is a pointer to a 64-byte string variable
containing an external key token. The external key token contains the
re-enciphered key.

 Required Commands
The Key_Translate verb requires the Translate Key command (offset X'001F')
to be enabled in the hardware.

5-44 IBM 4758 CCA Services

 Random_Number_Generate

 Random_Number_Generate (CSNBRNG)

Platform/
Product

OS/2 AIX NT Service
Subset

IBM-4758 X X X Basic

The Random_Number_Generate verb generates a random number for use as
an initialization vector, clear key, or clear key part.

You specify whether the random number is 64-bits or 56-bits with the low-order
bit in each byte adjusted for even or odd parity. The verb returns the random
number in an eight-byte binary field.

Because the Random_Number_Generate verb uses cryptographic processes,
the quality of the output is better than that which higher-level language compilers
typically supply.

 Restrictions
None

 Format
CSNBRNG

return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data In/Output String exit_data_length bytes
form Input String 8 bytes
random_number Output String 8 bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

form
The form parameter is a pointer to an eight-byte string variable containing a
keyword to select the characteristic of the random number. The keyword
must be 8 bytes in length, left-justified, and padded on the right with space
characters. The keywords are shown in the table below.

random_number
The random_number parameter is a pointer to an eight-byte string variable
containing the random number.

Figure 5-16. Key_Token_Build Form Keywords

Keyword Meaning

RANDOM Requests the generation of a 64-bit random number.

ODD Requests the generation of a 56-bit, odd parity, random
number.

EVEN Requests the generation of a 56-bit, even parity, random
number.

 Chapter 5. Basic CCA DES Key Management 5-45

 Random_Number_Generate

 Required Commands
The Random_Number_Generate verb requires the Generate Key command
(offset X'008E') to be enabled in the hardware.

5-46 IBM 4758 CCA Services

 PKA_Symmetric_Key_Export

 PKA_Symmetric_Key_Export (CSNDSYX)

Platform/
Product

OS/2 AIX NT Verb Subset

IBM-4758 X X X PKA96

The PKA_Symmetric_Key_Export verb enciphers a symmetric DES or CDMF
key using an RSA public key.

Specify the symmetric key to be exported, the exporting RSA public key, and a
rule array keyword to define the key-formatting method. The control vector for
the DES or CDMF key must permit the key to be exported.

PKCS-1.2 Single length DATA keys (and CDMF keys) are enciphered according
to the method described in the RSA DSI PKCS #1 documentation.

 Restrictions
| The RSA public key modulus size (key size) is limited by the Function Control
| Vector to accommodate governmental export and import regulations. The verb
| enforces this restriction. Generally the key size is limited to 512, 768, or 1024
| bits.

| You can not export a key-encrypting key with this verb.

 Format
CSNDSYX

return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data In/Output String exit_data_length bytes
rule_array_count Input Integer
rule_array Input String array rule_array_count * 8 bytes
source_key_identifier_length Input Integer
source_key_identifier Input String source_key_identifier_length

bytes
| RSA_public_key_token_length| Input| Integer
| RSA_public_key_token| Input| String| RSA_public_key_identifier_length
| bytes

RSA_enciphered_key_length In/Output Integer
RSA_enciphered_key Output String RSA_enciphered_key_length

bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable
containing the number of elements in the rule array. The value of the
rule_array_count must be one for this verb.

 Chapter 5. Basic CCA DES Key Management 5-47

 PKA_Symmetric_Key_Export

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be left-justified and padded on
the right with space characters. The rule_array keywords are shown below:

source_key_identifier_length
The source_key_identifier_length parameter is a pointer to an integer
variable containing the length (in bytes) of the field containing the key label
or key token of the key to be exported. The maximum size specified is
2500 bytes.

source_key_identifier
The source_key_identifier parameter is a pointer to a string variable
containing either an operational key token or the key label of an operational
key token to be exported. The associated control vector must permit the
key to be exported.

| RSA_public_key_token_length
| The RSA_public_key_token_length parameter is a pointer to an integer
| variable containing the length (in bytes) of the variable containing the key
| token or the key label of the RSA public key used to encipher the exported
| DES key. The maximum size specified is 2500 bytes.

| RSA_public_key_token
| The RSA_public_key_token parameter is a pointer to a string variable

containing a PKA96 RSA key token with the RSA public key of the remote
node that will import the exported key.

RSA_enciphered_key_length
The RSA_enciphered_key_length parameter is a pointer to an integer
variable containing the length (in bytes) of the field that to receive the
exported RSA-enciphered key. On output, the variable is updated with the
actual length of the key field. The maximum size specified is 2500 bytes.

RSA_enciphered_key
The RSA_enciphered_key parameter is a pointer to a string variable to
receive the exported RSA-enciphered key.

Keyword Meaning

Key Formatting Method (one required)

PKCS-1.2 Specifies the method found in RSA DSI PKCS #1 block
type 02 documentation. Only single-length DES or CDMF
DATA keys can be enciphered using this method.

 Required Commands
The PKA_Symmetric_Key_Export verb requires these commands to be enabled
in the hardware for exporting various key types:

� Symmetric Key Export command (offset X'0105') for DATA keys using the
PKCS-1.2 method.

5-48 IBM 4758 CCA Services

 PKA_Symmetric_Key_Generate

| PKA_Symmetric_Key_Generate (CSNDSYG)

| Platform/
| Product
| OS/2| AIX| NT| Verb Subset

| IBM-4758| X| X| X| PKA96

| The PKA_Symmetric_Key_Generate verb generates a random DES
| key-encrypting key and enciphers the key value. The key value is multiply
| enciphered under the master key with a control vector. The key value is also
| enciphered under an RSA public key for distribution to a remote node (that has
| the associated private key).

| The control vector for the local key is taken from an internal (operational) DES
| key token that must be present on input in the local_enciphered_key_identifier
| variable or in the key token identified by the key label in that variable.

| The rule array defines how the RSA-enciphered key shall be enciphered:

| PKA92 Use the key encipherment technique employed in the IBM
| Transaction Security System (TSS) 4753 and 4755 product PKA92
| implementations. See “PKA92 Key Format and Encryption Process”
| on page D-8. A node-identification (EID) value must have been
| established prior to use of this verb (use the
| Cryptographic_Facility_Control verb to set the EID).

| The control vector for the RSA-enciphered copy of the key is taken
| from an internal (operational) DES key token that must be present
| on input in the RSA_enciphered_key_token variable. Only a
| key-encrypting keys that conform to the rules for an OPEX case
| under the Key_Generate verb are permitted.

| NL-EPP-5 Use the key encipherment technique defined by certain OEM
| equipment. See “Encrypting a Key_Encrypting Key in the NL-EPP-5
| Format” on page D-10.

| Restrictions
| This verb only generates key-encrypting keys.

| Format
| CSNDSYG

| return_code| Input| Integer
| reason_code| Input| Integer
| exit_data_length| Input| Integer
| exit_data| In/Output| String| exit_data_length bytes
| rule_array_count| Input| Integer
| rule_array| Input| String array| rule_array_count * 8 bytes
| key_encrypting_key_identifier| Input| String| 64 bytes
| RSA_public_key_identifier_length| Input| Integer
| RSA_public_key_identifier| Input| String| RSA_public_key_identifier_length
| bytes
| local_enciphered_key_identifier_length| In/Output| Integer| 64
| local_enciphered_key_identifier| In/Output| String
| RSA_enciphered_key_token_length| In/Output| Integer
| RSA_enciphered_key_token| In/Output| String| RSA_enciphered_key_length
| bytes

 Chapter 5. Basic CCA DES Key Management 5-49

 PKA_Symmetric_Key_Generate

| Parameters
| For the definitions of the return_code, reason_code, exit_data_length, and
| exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

| rule_array_count
| The rule_array_count parameter is a pointer to an integer variable
| containing the number of elements in the rule array. The value of the
| rule_array_count must be one for this verb.

| rule_array
| The rule_array parameter is a pointer to an array of keywords. The
| keywords are eight bytes in length, and must be left-justified and padded on
| the right with space characters. The rule_array keywords are shown below:

| key_encrypting_key_identifier
| The key_encrypting_key_identifier parameter must point to a DES null key
| token.

| RSA_public_key_identifier_length
| The RSA_public_key_identifier_length parameter is a pointer to an integer
| variable containing the length (in bytes) of the variable containing the key
| token or the key label of the RSA public key used to encipher the exported
| DES key. The maximum size specified is 2500 bytes.

| RSA_public_key_identifier
| The RSA_public_key_identifier parameter is a pointer to a string variable
| containing a PKA96 RSA key token with the RSA public key of the remote
| node that will import the exported key.

| local_enciphered_key_identifier_length
| The local_enciphered_key_identifier_length parameter is a pointer to an
| integer variable containing the length (in bytes) of the field containing the
| key label or key token of the local key to be generated. The maximum size
| permitted is 2500; however, this value should be 64 as in current CCA
| practice a DES key token or a key label is always a 64-byte structure.

| local_enciphered_key_identifier
| The local_enciphered_key_identifier parameter is a pointer to a string
| variable containing either a key name or an internal DES key token. The
| control vector for the local key is taken from the identified key token. On
| output, the generated key is inserted into the identified key token.

| Keyword| Meaning

| Key Formatting Method (one required)

| PKA92| Specifies the PKA92 method of key encipherment.

| NL-EPP-5| Specifies the NL-EPP-5 process of key encipherment. See
| “Encrypting a Key_Encrypting Key in the NL-EPP-5
| Format” on page D-10.

| Key Length (optional)

| SINGLE-R| Specifies that the generated key-encrypting key is to have
| equal left and right halves and thus perform as a single
| length key.

5-50 IBM 4758 CCA Services

 PKA_Symmetric_Key_Generate

| RSA_enciphered_key_length
| The RSA_enciphered_key_length parameter is a pointer to an integer
| variable containing the length (in bytes) of the field that to receive the
| exported RSA-enciphered key. On output, the variable is updated with the
| actual length of the key field. The maximum size specified is 2500 bytes.

| RSA_enciphered_key
| The RSA_enciphered_key parameter is a pointer to a string variable to
| receive the generated RSA-enciphered key. An internal (operational) DES
| key token that must be present on input in the RSA_enciphered_key_token
| variable.

| Required Commands
| The PKA_Symmetric_Key_Generate verb requires these command(s) to be
| enabled in the hardware:

| � PKA92 Symmetric Key Generate command (command offset X'010D')

| � NL-EPP-5 Symmetric Key Generate command (command offset X'010E')

 Chapter 5. Basic CCA DES Key Management 5-51

 PKA_Symmetric_Key_Import

 PKA_Symmetric_Key_Import (CSNDSYI)

Platform/
Product

OS/2 AIX NT Verb Subset

IBM-4758 X X X PKA96

The PKA_Symmetric_Key_Import verb recovers a symmetric (DES or CDMF)
key that is enciphered by an RSA public key. The verb decipheres the
RSA-enciphered symmetric key to be imported by using an RSA private key,
then multiply encipheres the symmetric key DES key using the master key and a
control vector.

You specify the operational importing RSA private key, the RSA-enciphered
symmetric key to be imported, and a rule array keyword to define the
key-formatting method.

| Several methods for recovering DES (and CDMF) keys are available. You
| select a method through the use of a rule array keyword:

PKCS-1.2 Single-length DATA keys (and CDMF keys) are recovered according
to the method described in the RSA DSI PKCS #1 documentation. The
result is enciphered as a single-length DATA key.

| PKA92 Single- and double-length keys and their control vectors are deciphered
| using the method employed in the Transaction Security System PKA92
| implementation. A node-identification (EID) value must have been
| established prior to use of this verb.

| Note: A key-encrypting key RSA-enciphered at this node (EID) cannot be
| imported at this same node.

 Restrictions
| The RSA public key modulus size (key size) is limited by the Function Control
| Vector to accommodate governmental export and import regulations. The verb
| enforces this restriction. Generally the key size is limited to 512, 768, or 1024
| bits.

| The EID enciphered with a key-encrypting key can not be the same as the EID
| of the importing cryptographic engine.

| Other IBM implementations of this verb may not support:

| � Key types other than a default DATA control vector
| � Use of a key label with the target key identifier.

| Check the product-specific literature for restrictions.

5-52 IBM 4758 CCA Services

 PKA_Symmetric_Key_Import

 Format
CSNDSYI

return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data In/Output String exit_data_length bytes
rule_array_count Input Integer
rule_array Input String array rule_array_count * 8 bytes
RSA_enciphered_key_length Input Integer
RSA_enciphered_key Input String RSA_enciphered_key_length

bytes
RSA_private_key_identifier_length Input Integer
RSA_private_key_identifier Input String RSA_private_key_identifier_length

bytes
target_key_identifier_length In/Output Integer
target_key_identifier In/Output String target_key_identifier_length

bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable
containing the number of elements in the rule array. The value of the
rule_array_count must be one for this verb.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords
are shown below:

RSA_enciphered_key_length
The RSA_enciphered_key_length parameter is a pointer to integer
containing the length (in bytes) of the field containing the key being
imported. The maximum size specified is 2500 bytes.

RSA_enciphered_key
The RSA_enciphered_key parameter is a pointer to a string variable
containing the key being imported.

RSA_private_key_identifier_length
The RSA_private_key_identifier_length parameter is a pointer to an integer
variable containing the length (in bytes) of the field containing the RSA key
used to decipher the RSA-enciphered key, or the key label of such a key.
The maximum size specified is 2500 bytes.

Keyword Meaning

RSA Key Encipherment Method (one required)

PKCS-1.2 Specifies the method found in RSA DSI PKCS #1 block
type 02 documentation. Only a DATA key can be
deciphered using this method.

| PKA92| Specifies the PKA92 method of key encipherment. Single-
| and double-length DES (and single-length CDMF) keys
| can be imported.

 Chapter 5. Basic CCA DES Key Management 5-53

 PKA_Symmetric_Key_Import

RSA_private_key_identifier
The RSA_private_key_identifier parameter is a pointer to a string variable
containing a key label or a PKA96 key token with the internal RSA private
key to be used to decipher the RSA-enciphered key.

target_key_identifier_length
The target_key_identifier_length parameter is a pointer to an integer variable
containing the length (in bytes) of the field containing the
target_key_identifier. On output, the variable is updated with the actual
length of the key field. The maximum size specified is 2500 bytes.

target_key_identifier
The target_key_identifier parameter is a pointer to a string variable
containing either a key label, an internal key token, or a null key token.
Any identified internal key token must contain a control vector that conforms
to the requirements of the key that is imported. For example, if the
PKCS-1.2 keyword is used in the rule array, the key token must contain a
default-value, DATA control vector. The imported key is returned in a key
token identified through this parameter.

 Required Commands
The PKA_Symmetric_Key_Import verb requires these commands to be enabled
in the hardware for importing various key types:

� Symmetric Key Import command (offset X'0106') for DATA keys using
PKCS-1.2 method.

| � PKA92 Symmetric Key Import command (offset X'0235') when importing
| DATA, MAC, MACVER, or key-generating keys using the PKA92 method.

| � PKA92 PIN Key Import command (offset X'0236') when importing PINGEN,
| PINVER, IPINENC, or OPINENC keys using the PKA92 method.

5-54 IBM 4758 CCA Services

Chapter 6. Data Confidentiality and Data Integrity

Figure 6-1. Data Confidentiality and Data Integrity Verbs

Verb Page Service Entry
Point

Svc
Lcn

Decipher 6-4 Deciphers data. CSNBDEC E

Encipher 6-7 Enciphers data. CSNBENC E

MAC_Generate 6-10 Generates a message authentication code (MAC). CSNBMGN E

MAC_Verify 6-13 Verifies a MAC. CSNBMVR E

Svc Lcn: Service location: E=Engine, S=Security API software

This chapter describes the verbs that use the Data Encryption Standard (DES)
algorithm to encrypt and decrypt data and to generate and verify a message
authentication code (MAC).

Encryption and Message Authentication Codes
This section explains how to use the services described in this chapter to ensure
the confidentiality of data through encryption, and to ensure the integrity of data
through the use of Message Authentication Codes (MAC).

Note: See Chapter 4, “Hashing and Digital Signatures” on page 4-1 for
information about other ways to ensure data integrity.

Ensuring Data Confidentiality
You can use the Encipher verb to convert plaintext to ciphertext, and the
Decipher verb to reverse the process to convert ciphertext back to plaintext.
These services use the DES data encryption algorithm. DES operates on
blocks of 64 bits (8 bytes).

If you know that your data will always be a multiple of 8 bytes, you can request
the use of the cipher block chaining mode of encryption, designated CBC. In
this mode of encryption, the enciphered result of encrypting one block of
plaintext is exclusive-ORed with the subsequent block of plaintext prior to
enciphering the second block. This process is repeated through the processing
of your plaintext. The process is reversed in decryption; see “Ciphering
Methods” on page D-3.

Note that if some portion of the ciphertext is altered, the CBC decryption of that
block and the subsequent block will not recover the original plaintext; other
blocks of plaintext will be correctly recovered. CBC encryption is used to
disguise patterns in your data that could be seen if each data block was
encrypted by itself.

In general, data to be ciphered is not a multiple of 8 bytes. In this case you
need to adopt a strategy for the last block of data. The Encipher and Decipher
verbs also support the ANSI X9.23 mode of encryption. In X9.23 encryption, at
least one byte, and up to eight bytes, of data are always added to the end of
your plaintext. The last of the added bytes is a binary value equal to the

 Copyright IBM Corp. 1997-98 6-1

number of added bytes. In X9.23 decryption, the padding is removed from the
decrypted plaintext.

Whenever the first block of plaintext has a predictable value, it is important to
modify the first block of data prior to encryption to deny an adversary a known
plaintext-ciphertext pair. There are two common approaches:

� Use an initialization vector
� Prepend your data with 8 bytes of random data, an initial text sequence.

An initialization vector is exclusive-ORed with the first block of plaintext prior to
encrypting the result. The initialization vector is exclusive-ORed with the
decryption of the first block of ciphertext to correctly recover the original
plaintext. You must of course have a means of passing the value of the
initialization vector from the encryption process to the decryption process; a
common solution to the problem is to pass the initialization vector as an
encrypted quantity during key agreement between the encrypting and decrypting
processes. You specify the value of an initialization vector when you invoke the
Encipher and the Decipher verbs.

If the procedure for agreeing on a key does not readily result in passing of an
encrypted quantity that can serve as the initialization vector, then you can add 8
bytes of random data to the start of your plaintext. Of course the decrypting
process must remove this initial text sequence as it recovers your plaintext. An
initialization vector valued to binary zero is used in this case.

The key used to encrypt or decrypt your data is specified in a key token. The
control vector for the key must be of the general class DATA1.

If an invocation of the Encipher or the Decipher verb should include use of the
initialization vector value, use the keyword INITIAL . If there is more data that is
a logical extension of preceding data, you can use the keyword CONTINUE. In
this case, the initialization vector value is not used, but the enciphered value of
the last block of data from a prior ciphering verb is taken from the
chaining_vector save area that you must provide with each use of the ciphering
verbs. Each portion of your data must be a multiple of eight bytes and you must
use the CBC encryption mode. You can use X9.23 keyword with the final
invocation of the ciphering verbs if your processes use this method to
accommodate data that can be other than a multiple of eight bytes.

Ensuring Data Integrity
CCA offers three classes of services for ensuring data integrity:

� Message authentication code (MAC) techniques based on the DES
algorithm

 � Hashing techniques
� Digital signature techniques.

1 Uppercase letters are used for DATA to distinguish the meaning from a more general sense in which the term data keys means
keys used for ciphering and MACing. In this publication, DATA means the control-vector specified class of keys that can
participate in Encipher and Decipher verbs. Note that the default value of the DATA control vector also permits DATA keys to
participate in MAC_Generate and MAC_Verify operations. This is not true for all implementations of CCA.

6-2 IBM 4758 CCA Services

For information on using hashing or digital signatures to ensure the integrity of
data, see Chapter 4, “Hashing and Digital Signatures.” This chapter describes
the MAC verbs.

The MAC_Generate and the MAC_Verify verbs support message authentication
code generation and verification consistent with ANSI standard X9.9,

| ISO DP 8731, Part I, and ANSI X9.19 Optional Procedure 1. These methods
| together support both single- and double-length keys. For additional information
| about MAC calculation methods, see “MAC Calculation Method” on page D-7.

You can employ MAC values with four, six, or eight-byte lengths (32, 48, or 64
bits) by using the MACLEN4 , MACLEN6 , or MACLEN8 keywords in the rule
array. MACLEN4 is the default.

When generating or verifying a 32-bit MAC, exchange the MAC in one of these
ways:

� Binary, in four bytes (the default method)

� Eight hexadecimal characters, invoked using the HEX-8 keyword

� Eight hexadecimal characters with a space character between the fourth and
fifth hex characters invoked using the HEX-9 keyword.

For details about MAC services, see the MAC_Generate verb on page 6-10 and
the MAC_Verify verb on page 6-13.

MACing Segmented Data
The MAC services described in this chapter allow you to divide a string of data
into parts, and generate or verify a MAC in a series of calls to the appropriate
verb. This can be useful when it is inconvenient or impossible to bring the entire
string into memory. For example, you might wish to MAC the entire contents of
a data set tens or hundreds of mega-bytes in length. The length of the data in
each procedure-call is restricted only by the operating environment and the
particular verb. For restrictions to a verb, see the “Restriction” section of the
verb descriptions later in this chapter.

In each procedure-call, a segmenting-control keyword indicates whether the call
contains the first, middle, or last unit of segmented data; the chaining_vector
parameter specifies the work area that the verb uses. (The default
segmenting-control keyword ONLY specifies that segmenting is not used.)

 Chapter 6. Data Confidentiality and Data Integrity 6-3

 Decipher

 Decipher (CSNBDEC)

Platform/
Product

OS/2 AIX NT Service
Subset

IBM-4758 X X X Basic

The Decipher verb uses the Data Encryption Standard (DES) or the Commercial
Data Masking Facility (CDMF) algorithm and a cipher key to decipher data
(ciphertext). This verb results in data called plaintext.

Performance can be enhanced if you align the start of the plaintext and
ciphertext variables on a four-byte boundary.

For information about the ciphering verbs, see “Ensuring Data Confidentiality” on
page 6-1.

 Restrictions
The maximum text_length is restricted to 32 megabytes.

 Format
CSNBDEC

return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data Inp/Outp String exit_data_length bytes
key_identifier Input String 64 bytes
text_length In/Out Integer
ciphertext Input String text_length bytes
initialization_vector Input String 8 bytes
rule_array_count Input Integer
rule_array Input String array rule_array_count * 8 bytes
chaining_vector In/Out String 18 bytes
plaintext Output String text_length bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

key_identifier
The key_identifier parameter is a pointer to a string variable containing a
64-byte internal key token or a key label of an internal key token record in
key storage.

text_length
The text_length parameter is a pointer to an integer variable containing the
length of the ciphertext. If the plaintext returned is a different length
because the padding was removed, the verb updates the input value to the
length of the plaintext.

ciphertext
The ciphertext parameter is a pointer to a string variable containing the text
to be deciphered.

6-4 IBM 4758 CCA Services

 Decipher

initialization_vector
The initialization_vector parameter is a pointer to an eight-byte string
variable containing the initialization_vector the verb uses with the input data.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable
containing the number of elements in the rule array.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. If the rule array does not
specify a ciphering method, the default ciphering method is CBC.

For an adapter that supports both DES and CDMF, you can choose the
encryption process. The rule_array keywords are shown below:

chaining_vector
The chaining_vector parameter is a pointer to an 18-byte string variable
containing the segmented data between calls by the security server. The
output chaining vector is contained in bytes zero through seven.

Note: The application program must not change the data in this string.

plaintext
The plaintext parameter is a pointer to a string variable to contain the
plaintext the verb returns. The starting address of plaintext cannot begin
within ciphertext.

Figure 6-2. Decipher Rule_Array Keywords

Keyword Meaning

Ciphering Method Selection

CBC Specifies cipher-block chaining. The data must be a
multiple of eight bytes.

X9.23 Specifies cipher-block chaining with one to eight bytes of
padding. This is compatible with the requirements in ANSI
Standard X9.23.

ICV Selection

INITIAL Specifies use of the initialization-vector from the key token
or the initialization-vector to which the initialization_vector
parameter points. This is the default.

CONTINUE Specifies use of the initialization-vector to which the
chaining_vector parameter points. The CONTINUE
keyword is not valid with with the X9.23 keyword.

Cipher Algorithm

DES Specifies use of the DES ciphering algorithm. If an
adapter does not support DES general data-decipherment,
the verb is rejected. This is the default on an adapter that
supports both DES and CDMF.

CDMF Specifies use of the CDMF ciphering algorithm.

 Chapter 6. Data Confidentiality and Data Integrity 6-5

 Decipher

 Required Commands
The Decipher verb requires the Decipher command (offset X'000F') to be
enabled in the hardware.

6-6 IBM 4758 CCA Services

 Encipher

 Encipher (CSNBENC)

Platform/
Product

OS/2 AIX NT Service
Subset

IBM-4758 X X X Basic

The Encipher verb uses the DES algorithm and a secret key to encipher data.
This verb returns data called ciphertext.

Ciphertext can be as many as eight bytes longer than the plaintext due to
padding. Ensure the ciphertext buffer is large enough.

Performance can be enhanced by aligning the start of the plaintext and
ciphertext variables on four-byte boundaries.

For general information about the ciphering verbs, see “Ensuring Data
Confidentiality” on page 6-1.

 Restrictions
The maximum text_length is restricted to 32 megabytes.

 Format
CSNBENC

return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data Inp/Outp String exit_data_length bytes
key_identifier In/Out String 64 bytes
text_length In/Out Integer
plaintext Input String text_length bytes
initialization_vector Input String 8 bytes
rule_array_count Input Integer
rule_array Input String array rule_array_count * 8 bytes
pad_character Input Integer
chaining_vector In/Out String 18 bytes
ciphertext Output String text_length bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

key_identifier
The key_identifier parameter is a pointer to a 64-byte string variable
containing an internal key token or the key label of an internal key token
record in key storage.

text_length
The text_length parameter is a pointer to an integer variable containing the
length of the plaintext and ciphertext. If ciphertext is longer because
padding bytes were added, the verb updates the input value to be the length
of the ciphertext.

plaintext
The plaintext parameter is a pointer to a string variable containing the text to
be enciphered.

 Chapter 6. Data Confidentiality and Data Integrity 6-7

 Encipher

initialization_vector
The initialization_vector parameter is a pointer to an eight-byte string
variable containing the initialization_vector the verb uses with the input data.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable
containing the number of elements in the rule array.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. If the rule array does not
specify a ciphering method, the default method is CBC. The rule_array
keywords are shown below:

pad_character
The pad_character parameter is a pointer to an integer containing a value
used as a padding character. The value must be in the range from 0 to
255. When you use the X9.23 ciphering method, the security server
extends the plaintext with a count byte and padding bytes as required.

chaining_vector
The chaining_vector parameter is a pointer to an 18-byte string variable that
the security server uses as a work area to carry segmented data between
procedure-calls.

Note: The application program must not change the data in this string.

Figure 6-3. Encipher Rule_Array Keywords

Keyword Meaning

Ciphering Method Selection

CBC Specifies cipher-block chaining. The data must be a
multiple of eight bytes.

X9.23 Specifies cipher block chaining with one to eight bytes of
padding. This is compatible with the requirements in ANSI
Standard X9.23.

ICV Selection

INITIAL Specifies use of the initialization-vector from the key token
or the initialization-vector to which the initialization_vector
parameter points. This is the default.

CONTINUE Specifies use of the initialization-vector to which the
chaining_vector parameter points. The CONTINUE
keyword is not valid with the X9.23 keyword.

Cipher Algorithm

DES Specifies use of the DES ciphering algorithm. If an
adapter does not support DES general data encipherment,
the verb is rejected. This is the default on an adapter that
supports both DES and CDMF.

CDMF Specifies use of the CDMF ciphering algorithm.

6-8 IBM 4758 CCA Services

 Encipher

ciphertext
The ciphertext parameter is a pointer to a string variable that receives the
enciphered text. The ciphertext field might be eight bytes longer than the
plaintext because padding. The starting address of ciphertext cannot begin
within plaintext.

 Required Commands
The Encipher verb requires the Encipher command (offset X'000E') to be
enabled in the hardware.

 Chapter 6. Data Confidentiality and Data Integrity 6-9

 MAC_Generate

 MAC_Generate (CSNBMGN)

Platform/
Product

OS/2 AIX NT Service
Subset

IBM-4758 X X X Basic

The MAC_Generate verb generates a message authentication code (MAC) for a
| text string supplied by the application program. Both single- and double-length
| keys are supported.

Performance can be enhanced by aligning the start of the text variable on a
four-byte boundary.

For information about using the MAC generation and verification verbs, see
“Ensuring Data Integrity” on page 6-2.

 Restrictions
Text length must be at least 8 bytes and less than 32 megabytes.

 Format
CSNBMGN

return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data Input String exit_data_length bytes
key_identifier Input String 64 bytes
text_length Input Integer
text Input String text_length bytes
rule_array_count Input Integer
rule_array Input String array rule_array_count * 8 bytes
chaining_vector In/Output String 18 bytes
MAC Output String 8 or 9 bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

key_identifier
The key_identifier parameter is a pointer to a 64-byte string variable
containing an internal key token or the key label of an internal key token

| record in key storage. Use either MAC or DATA key types. MAC keys can
| be either single- or double-length.

text_length
The text_length parameter is a pointer to an integer containing the length of
the text.

text
The text parameter is a pointer to a string variable containing the text the
hardware uses to calculate the MAC.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable
containing the number of elements in the rule array.

6-10 IBM 4758 CCA Services

 MAC_Generate

| If the rule array count value is zero, the default segmenting-control is ONLY
| and the default MAC-length is MACLEN4 .

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be left-justified and padded on
the right with space characters. The rule_array keywords are shown below:

chaining_vector
The chaining_vector parameter is a pointer to an 18-byte string variable the
security server uses as a work area to carry segmented data between
procedure calls.

Note: The application program must not change the data in this string.

MAC
The MAC parameter is a pointer to a string variable that receives the
resulting MAC. The value is left-justified in the field. Allocate a field large
enough to receive the resulting MAC value.

Keyword Meaning

MAC Ciphering Methods (one, optional)

X9.9-1 Specifies the ANSI X9.9-1 and X9.19 Basic Procedure.
This is the default for a single length key.

| X9.19OPT| Specifies the ANSI X9.19 Optional Procedure. This is the
| default for a double length key.

Segmenting Control (one, optional)

ONLY Specifies the application program does not use
segmenting. This is the default.

FIRST Specifies this is the first segment of data from the
application program.

MIDDLE Specifies this is an intermediate segment of data from the
application program.

LAST Specifies this is the last segment of data from the
application program.

MAC Length and Presentation (one, optional)

MACLEN4 Specifies a four-byte MAC. This is the default.

MACLEN6 Specifies a six-byte MAC.

MACLEN8 Specifies an eight-byte MAC.

HEX-8 Specifies a four-byte MAC and presents it as eight
hexadecimal characters.

HEX-9 Specifies a four-byte MAC and presents it as two groups of
four hexadecimal characters separated by a space
character.

 Chapter 6. Data Confidentiality and Data Integrity 6-11

 MAC_Generate

 Required Commands
The MAC_Generate verb requires the Generate MAC command (offset
X'0010') to be enabled in the hardware.

6-12 IBM 4758 CCA Services

 MAC_Verify

 MAC_Verify (CSNBMVR)

Platform/
Product

OS/2 AIX NT Service
Subset

IBM-4758 X X X Basic

The MAC_Verify verb verifies a message authentication code (MAC) for a text
| string supplies by the application program. Both single- and double-length keys
| are supported.

Performance can be enhanced by aligning the start of the text variable on a
four-byte boundary.

For information about using the MAC generation and verification verbs, see
“Ensuring Data Integrity” on page 6-2.

 Restrictions
Text length must be at least eight bytes and less than 32 megabytes.

 Format
CSNBMVR

return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data Input String exit_data_length bytes
key_identifier Input String 64 bytes
text_length Input Integer
text Input String text_length bytes
rule_array_count Input Integer
rule_array Input String array rule_array_count * 8 bytes
chaining_vector In/Output String 18 bytes
MAC Input String 9 bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

key_identifier
The key_identifier parameter is a pointer to a 64-byte string variable
containing an internal key token or the key label of an internal key token

| record in key storage. Use either MAC, MACVER, or DATA key types.
| MAC and MACVER keys can be either single- or double-length.

text_length
The text_length parameter is a pointer to an integer containing the length of
the text the hardware uses to calculate the MAC.

text
The text parameter is a pointer to a string variable containing the text the
hardware uses to calculate the MAC.

rule_array_count
The rule_array_count parameter is a pointer to an integer variable
containing the number of elements in the rule array.

 Chapter 6. Data Confidentiality and Data Integrity 6-13

 MAC_Verify

| If the rule array count value is zero, the default segmenting-control is ONLY
| and the default MAC-length is MACLEN4 .

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords
are shown below: If the rule array does not specifies a MAC-length, the
default method is MACLEN4 .

chaining_vector
The chaining_vector parameter is a pointer to an 18-byte string variable the
security server uses as a work area to carry segmented data between
procedure-calls.

Note: The application program must not change the data in this string.

MAC
The MAC parameter is a pointer to a string variable containing the trial
MAC. The value must be left-justified in the field. Nine bytes are sent to
the security server. The verb verifies the MAC if you specify the ONLY or
LAST keyword for the segmenting control. Ensure that this parameter is a
pointer to a 9-byte variable in application data storage.

Keyword Meaning

MAC Ciphering Methods (Optional)

X9.9-1 Specifies the ANSI X9.9-1 and X9.19 Basic Procedure.
This is the default for a single length key.

| X9.19OPT| Specifies the ANSI X9.19 Optional Procedure. This is the
| default for a double length key.

Segmenting Control (One, optional)

Segmenting Control (One, optional)

ONLY Specifies the application program does not use
segmenting. This is the default.

FIRST Specifies this is the first segment of data from the
application program.

MIDDLE Specifies this is an intermediate segment of data from the
application program.

LAST Specifies this is the last segment of data from the
application program.

MAC Length and Presentation (One, optional)

MACLEN4 Specifies a four-byte MAC. This is the default.

MACLEN6 Specifies a six-byte MAC.

MACLEN8 Specifies an eight-byte MAC.

HEX-8 Specifies a four-byte MAC and presents it as eight
hexadecimal characters.

HEX-9 Specifies a four-byte MAC and presents it as two groups of
four hexadecimal characters separated by a space
character.

6-14 IBM 4758 CCA Services

 MAC_Verify

 Required Commands
The MAC_Verify verb requires the Verify MAC command (offset X'0011') to be
enabled in the hardware.

 Chapter 6. Data Confidentiality and Data Integrity 6-15

6-16 IBM 4758 CCA Services

Chapter 7. Key Storage Verbs

Figure 7-1. Key Storage Record Services

Verb Page Service Entry
Point

Svc
Lcn

DES_Key_Record_Create 7-4 Creates a key record in DES key storage. CSNBKRC S

DES_Key_Record_Delete 7-5 Deletes a key record or deletes the key token from a key
record in DES key storage.

CSNBKRD S

DES_Key_Record_List 7-7 Lists the key-names of the key records in DES key
storage.

CSNBKRL S

DES_Key_Record_Read 7-9 Reads a key token from DES key storage. CSNBKRR S

DES_Key_Record_Write 7-10 Writes a key token into DES key storage. CSNBKRW S

PKA_Key_Record_Create 7-11 Creates a record in the public-key key-storage. CSNDKRC S

PKA_Key_Record_Delete 7-13 Deletes a record or deletes the key token from a record in
public-key key-storage.

CSNDKRD S

PKA_Key_Record_List 7-15 Lists the key-names of the records in public-key
key-storage.

CSNDKRL S

PKA_Key_Record_Read 7-17 Reads a key token from public-key key-storage. CSNDKRR S

PKA_Key_Record_Write 7-19 Writes a key token in public-key key-storage. CSNDKRW S

| Retained_Key_Delete| 7-21| Delete a key retained within the cryptographic engine.| CSNDRKD| E

| Retained_Key_List| 7-22| List the public and private RSA keys retained within the
| cryptographic engine.
| CSNDRKL| E

Svc Lcn: Service location: E=Cryptographic Engine, S=Security API software

This chapter describes how you can use key-storage mechanisms and the
associated verbs for creating, writing, reading, listing, and deleting records in
key storage.

Key Labels and Key Storage Management
Use the verbs described in this chapter to manage key storage. The CCA
support software manages key storage as an indexed repository of key records.
Access key storage through the use of a key label.

| There are several independent key storage systems to manage records for DES
| key records and for PKA key records. DES key storage holds internal DES key
| tokens. PKA key storage holds both internal and external public and private
| RSA key tokens.

| Also, public and private RSA keys can be retained within the Coprocessor.
| Public RSA keys are loaded into the Coprocessor through use of the
| PKA_Public_Key_Hash_Register and PKA_Public_Key_Register verbs. Private
| RSA keys are generated and optionally retained within the Coprocessor using
| the PKA_Key_Generate verb. Depending on the other uses for Coprocessor
| storage, between 75 and 150 keys can usually be retained within the
| Coprocessor.

 Copyright IBM Corp. 1997-98 7-1

Key-storage must be initialized before any records are created. Before a key
token can be stored in key storage, a key-storage record must be created using
the Key_Record_Create verb.

Use the Key_Record_Delete verb to delete a key token from a key record, or to
delete both the key token and the key record.

Use the Key_Record_List verb to determine the existence of key records in key
storage. The Key_Record_List verb creates a key record list data set with
information about select key records. The wild card character (*) is used to
obtain information about multiple key records. The data set can be read using
conventional workstation-data-management services.

Individual key tokens can be read or written using the Key_Record_Read or
Key_Record_Write verbs.

Key Label Content
Use a key label to identify a record or records in key storage managed by a
CCA implementation. The key label must be left-justified in the 64-byte string
variable used as input to the verb. Some verbs specify use of a key label while
others specify use of a key identifier; calls that use a key identifier accept either
a key token or a key label.

A key label character string has the following properties:

� If the first character is within the range X'20' through X'FE', the input is be
treated as a key label, even if it is otherwise not valid. (Inputs beginning
with a byte valued in the range X'00' through X'1F' are considered to be
some form of key token. A first-byte valued to X'FF' is not valid.)

� The label is terminated by a space character on the right (ASCII X'20',
EBCDIC X'40'). The remainder of the 64-byte field is padded with space
characters.

� Construct a label with one to seven name_tokens, each separated by a
period (“.”). The key label must not end with a period.

� A name_token consists of one-to-eight characters in the character set A...Z,
0...9, and three additional characters relating to different character symbols
in the various national language character sets as listed below:

The alphabetic and numeric characters and the period should be encoded in
the normal character set for the computing platform that is in use, either
ASCII or EBCDIC.

The first character of the key label can not be numeric (0, ..., 9).

ASCII
Systems

EBCDIC
Systems

USA Graphic
(for reference)

X'23' X'7B' #
X'24' X'5B' $
X'40' X'7C' @

7-2 IBM 4758 CCA Services

Notes:

1. Some CCA implementations accept the characters a...z and fold these
to their upper case equivalents A...Z. Only use the uppercase
alphabetic characters.

2. Some implementations internally transform the EBCDIC encoding of a
key label to an ASCII string. Also, the label may be “tokenized” by
dropping the periods and formatting it into eight-byte groups padded with
space characters.

Some verbs accept a key label containing a “wild card”; an asterisk (“*”)
represents the wild card (X'2A' in ASCII; X'5C' in EBCDIC). When a verb
permits the use of a wild card, the wild card can appear as the first character, as
the last character, or as the only character in a name token. Any of the name
tokens can contain a wild card.

Examples of valid key labels include the following:

 A

 ABCD.2.3.4.5555

 ABCDEFGH

 BANKSYS.XXXXX.43\.\PDQ

Examples of not valid key labels include the following:

A/.B (includes an unacceptable character, “/”)

ABCDEFGH9 (name token too long)

11111111.2.3.4.55555 (first character numeric)

A1111111.2.3.4.55555.6.7.8 (too many name tokens)

BANKSYS.XXXXX.\43\.D (more than one wild card in a name token).

 Chapter 7. Key Storage Verbs 7-3

 DES_Key_Record_Create

DES_Key_Record_Create (CSNBKRC)

Platform/
Product

OS/2 AIX NT Verb Subset

IBM-4758 X X X Basic

The DES_Key_Record_Create verb adds a key record to DES key storage. It is
identified by the key label specified using the key_label parameter.

After creating a key record, you can use any of the following verbs to add or
update a key token in the key record:

 � DES_Key_Record_Write
 � Data_Key_Import
 � Key_Import
 � Key_Part_Import
 � Key_Generate

To delete a key record, you must use the DES_Key_Record_Delete verb.

 Restrictions
None.

 Format
CSNBKRC

return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data In/Output String exit_data_length bytes
key_label Input String 64 bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

key_label
The key_label parameter is a pointer to a 64-byte string variable containing
key label of the key record to be created.

 Required Commands
| The DES_Key_Record_Create verb requires the Compute Verification Pattern
| command (offset X'001D') to be enabled in the access control system.

7-4 IBM 4758 CCA Services

 DES_Key_Record_Delete

DES_Key_Record_Delete (CSNBKRD)

Platform/
Product

OS/2 AIX NT Verb Subset

IBM-4758 X X X Basic

The DES_Key_Record_Delete verb does the following:

� Replaces the token in key record with a null token.
� Deletes an entire key record, including the key label, from key storage.

Identify the task with the rule_array keyword, and the key record with the
key_label. To identify multiple records, use a wild card (*) in the key label.

 Restrictions
None.

 Format
CSNBKRD

return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data In/Output String exit_data_length bytes
rule_array_count Input Integer
rule_array Input String array rule_array_count * 8 bytes
key_label Input String 64 bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

rule_array_count
The rule_array_count parameter is a pointer to an integer containing the
number of elements in the rule array. The value of the rule_array_count
must be zero or one for this verb.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords
are shown below:

Figure 7-2. Key_Token_BuildRule_Array Keywords

Keyword Meaning

TOKEN-DL Deletes a key token from a key record in key storage. This
is the default.

LABEL-DL Deletes an entire key record, including the key label, from
key storage.

 Chapter 7. Key Storage Verbs 7-5

 DES_Key_Record_Delete

key_label
The key_label parameter is a pointer to a 64-byte string variable containing
the key label of a key token record in key storage. In a key label, use a wild
card (*) to identify multiple records in key storage.

 Required Commands
| The DES_Key_Record_Delete verb requires the Compute Verification Pattern
| command (offset X'001D') to be enabled in the access control system.

7-6 IBM 4758 CCA Services

 DES_Key_Record_List

DES_Key_Record_List (CSNBKRL)

Platform/
Product

OS/2 AIX NT Verb Subset

IBM-4758 X X X Basic

The DES_Key_Record_List verb creates a Key Record List data set containing
information about specified key records in key storage. Information includes
whether record validation is correct, the type of key, and the date and time the
record was created and last updated.

Specify the key records to be listed using the key label variable; to identify
multiple key records, use the wild card (*) in the key label.

Note: To list all the labels in key storage, specify a key_label of
*, *.*, *.*.*, etc.

The verb creates the list data set and returns the name of the data set and and
the length of the data set name to the calling application. This data set has a
header record, followed by 0 to n detail records, where n is the number of key
records with matching key labels. For information about the header and detail
records, see “Key Record List Data Set” on page B-16.

 Restrictions
None.

 Format
CSNBKRL

return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data In/Output String exit_data_length bytes
key_label Input String 64 bytes
data_set_name_length Output Integer
data_set_name Output String data_set_name_length bytes
security_server_name Output String 8 bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

key_label
The key_label parameter is a pointer to a 64-byte string variable containing
the key label of a key token record in key storage. In a key label, you can
use a wild card (*) to identify multiple records in key storage.

data_set_name_length
The data_set_name_length parameter is a pointer to an integer variable
containing the length of the name returned in the data_set_name variable.

 Chapter 7. Key Storage Verbs 7-7

 DES_Key_Record_List

data_set_name
The data_set_name parameter is a pointer to a 64-byte string variable
where the verb returns the name of the data set containing the key record
information. The data_set_name is left justified in the field.

The verb returns the data_set_name as a fully qualified file specification (for
example, C:\PKADIR\KYRLTnnn.LST in the OS/2 environment), where nnn
is the numeric portion of the name. This value increases by one every time
you use this verb; when it reaches 999, the value is reset to 001.

Note: When the verb stores a key_Record_List data set, it overlays any
older data set ith the same nnn value in its name.

security_server_name
The security_server_name parameter is a pointer to an eight-byte string
variable. The information in this variable will not be used, but you must
identify the variable.

 Required Commands
| The DES_Key_Record_List verb requires the Compute Verification Pattern
| command (offset X'001D') to be enabled in the access control system.

7-8 IBM 4758 CCA Services

 DES_Key_Record_Read

DES_Key_Record_Read (CSNBKRR)

Platform/
Product

OS/2 AIX NT Verb Subset

IBM-4758 X X X Basic

The DES_Key_Record_Read verb copies a key token from key storage to
application data storage. The returned key token can be null.

 Restrictions
This service does not have any restrictions.

 Format
CSNBKRR

return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data In/Output String exit_data_length bytes
key_label Input String 64 bytes
key_token Output String 64 bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

key_label
The key_label parameter is a pointer to a 64-byte string variable containing
the key label of the record to be read from key storage.

key_token
The key_token parameter is a pointer to a 64-byte string variable to contain
the token read from key storage.

 Required Commands
| The DES_Key_Record_Read verb requires the Compute Verification Pattern
| command (offset X'001D') to be enabled in the access control system.

 Chapter 7. Key Storage Verbs 7-9

 DES_Key_Record_Write

DES_Key_Record_Write (CSNBKRW)

Platform/
Product

OS/2 AIX NT Verb Subset

IBM-4758 X X X Basic

The DES_Key_Record_Write verb copies an internal DES key token from
application data storage into DES key storage.

Before you use the DES_Key_Record_Write verb, use
DES_Key_Record_Create to create a key record.

 Restrictions
None.

 Format
CSNBKRW

return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data In/Output String exit_data_length bytes
key_token Output String
key_label Input String 64 bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

key_token
The key_token parameter is a pointer to a string variable containing the
DES internal key token to be written into key storage.

key_label
The key_label parameter is a pointer to a 64-byte string variable containing
the key label that identifies the record in key storage where the key token is
to be written.

 Required Commands
| The DES_Key_Record_Write verb requires the Compute Verification Pattern
| command (offset X'001D') to be enabled in the access control system.

7-10 IBM 4758 CCA Services

 PKA_Key_Record_Create

PKA_Key_Record_Create (CSNDKRC)

Platform/
Product

OS/2 AIX NT Verb Subset

IBM-4758 X X X PKA96

The PKA_Key_Record_Create service adds a key record to PKA key storage.
The new key record may be a null key token or a valid PKA internal or external
token. It is identified by the key label specified with the key_label parameter.

After creating a key record, you can use any of the following verbs to add or
update a key token in the record:

 � PKA_Key_Import
 � PKA_Key_Generate

To delete a key record, you must use the PKA_Key_Record_Delete verb.

 Restrictions
None.

 Format
CSNDKRC

return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data In/Output String exit_data_length bytes
rule_array_count Input Integer
rule_array Input String array rule_array_count * 8 bytes
key_label Input String 64 bytes
key_token_length Input Integer
key_token Input String key_token_length bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

rule_array_count
The rule_array_count parameter is a pointer to an integer containing the
number of elements in the rule array. The value of the rule_array_count
must be zero for this verb.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. Currently this verb does not
require keywords and this field is ignored.

key_label
The key_label parameter is a pointer to a 64-byte string variable containing
the key label of the key record to be created.

 Chapter 7. Key Storage Verbs 7-11

 PKA_Key_Record_Create

key_token_length
The key_token_length parameter is a pointer to an integer variable
containing the length (in bytes) of the key_token to be written to key
storage. If key_token_length contains zero, a record with a null PKA key
token is created.

key_token
The key_token parameter is a pointer to a 64-byte string variable containing
the the key token being written to key storage.

 Required Commands
| The PKA_Key_Record_Create verb requires the Compute Verification Pattern
| command (offset X'001D') to be enabled in the access control system.

7-12 IBM 4758 CCA Services

 PKA_Key_Record_Delete

PKA_Key_Record_Delete (CSNDKRD)

Platform/
Product

OS/2 AIX NT Verb Subset

IBM-4758 X X X PKA96

The PKA_Key_Record_Delete verb does the following:

� Replaces the token in key record with a null token.
� Deletes an entire key record, including the key label, from key storage.

Identify the task with the rule_array, and the key record with the key_label. To
identify multiple records, use a wild card (*) in a key label.

 Restrictions
None.

 Format
CSNDKRD

return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data In/Output String exit_data_length bytes
rule_array_count Input Integer
rule_array Input String array rule_array_count * 8 bytes
key_label Input String

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

rule_array_count
The rule_array_count parameter is a pointer to an integer containing the
number of elements in the rule array. The value of the rule_array_count
may be zero or one for this verb.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords
are shown below:

Figure 7-3. Key_Token_BuildRule_Array Keywords

Keyword Meaning

TOKEN-DL Deletes a key token from a key record in key storage.
This is the default.

LABEL-DL Deletes an entire key record, including the key label, from
key storage.

 Chapter 7. Key Storage Verbs 7-13

 PKA_Key_Record_Delete

key_label
The key_label parameter is a pointer to a string variable containing the key
label of a key token record in key storage. In a key label, use a wild card (*)
to identify multiple records in key storage.

 Required Commands
| The PKA_Key_Record_Delete verb requires the Compute Verification Pattern
| command (offset X'001D') to be enabled in the access control system.

7-14 IBM 4758 CCA Services

 PKA_Key_Record_List

PKA_Key_Record_List (CSNDKRL)

Platform/
Product

OS/2 AIX NT Verb Subset

IBM-4758 X X X PKA96

The PKA_Key_Record_List verb creates a Key Record List data set containing
information about specified key records in key storage. Information includes
whether record validation is correct, the type of key, and the date and time when
the record was created and last updated.

Specify the key records to be listed using the key_label variable; to identify
multiple key records, use the wild card (*) in a key label.

Note: To list all the labels in key storage, speicfy a key_label of
*, *.*, *.*.*, etc.

The verb creates the list data set and returns the name of the data set and the
length of the data set name to the calling application. The verb also returns the
name of the security server where the data set is stored. The
PKA_Key_Record_List data set has a header record, followed by 0 to n detail
records, where n is the number of key records with matching key labels. For
information about the header and detail records, see “Key Record List Data Set”
on page B-16.

 Restrictions
None.

 Format
CSNDKRL

return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data In/Output String exit_data_length bytes
rule_array_count Input Integer
rule_array Input String array rule_array_count * 8 bytes
key_label Input String 64 bytes
data_set_name_length Output Integer
data_set_name Output String data_set_name_length bytes
security_server_name Output String 8 bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

rule_array_count
The rule_array_count parameter is a pointer to an integer containing the
number of elements in the rule array. The value of the rule_array_count
must be zero for this verb.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,

 Chapter 7. Key Storage Verbs 7-15

 PKA_Key_Record_List

and padded on the right with space characters. Currently this verb does not
require keywords and this field is ignored.

key_label
The key_label parameter is a pointer to a 64-byte string variable containing
a key record in key storage. You can use a wild card (*) to identify multiple
records in key storage.

data_set_name_length
The data_set_name_length parameter is a pointer to an integer variable
containing the length of the name returned in the data_set_name variable.

data_set_name
The data_set_name parameter is a pointer to 64-byte string variable where
the verb returns the name of the data set containing the key record
information. The data_set_name is left justified in the field.

The verb returns the data_set_name as a fully qualified file specification (for
example, C:\PKADIR\KYRLTnnn.LST in the OS/2 environment), where nnn
is the numeric portion of the name. This value increases by one every time
you use this verb; when it reaches 999, the value is reset to 001.

Note: When the verb stores a key_Record_List data set, it overlays any
older data set ith the same nnn value in its name.

security_server_name
The security_server_name parameter is a pointer to an eight-byte string
variable. The information in this variable is not used, but it must be
identified.

 Required Commands
| The PKA_Key_Record_List verb requires the Compute Verification Pattern
| command (offset X'001D') to be enabled in the access control system.

7-16 IBM 4758 CCA Services

 PKA_Key_Record_Read

PKA_Key_Record_Read (CSNDKRR)

Platform/
Product

OS/2 AIX NT Verb Subset

IBM-4758 X X X PKA96

The PKA_Key_Record_Read verb copies a key token from key storage to
application data storage.

The returned key token may be null. In this event, the key_length variable
contains a value of eight and the key token variable contains eight bytes of
X'00' beginning at offset zero (see “Null Key Token” on page B-2).

 Restrictions
None.

 Format
CSNDKRR

return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data In/Output String exit_data_length bytes
rule_array_count Input Integer
rule_array Input String array rule_array_count * 8 bytes
key_label Input String 64 bytes
key_token_length In/Out Integer
key_token Output String key_token_length bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

rule_array_count
The rule_array_count parameter is a pointer to an integer containing the
number of elements in the rule array. The value of the rule_array_count
must be zero for this verb.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. Currently this verb does not
require keywords and this field is ignored.

key_label
The key_label parameter is a pointer to a 64-byte string variable containing
the key label of the the record to be read from key storage.

key_token_length
The key_token_length parameter is a pointer to an integer variable
containing the length (in bytes) of the key_token variable. This variable
must be large enough to hold the key token beinf read. On successful
completion, key_token_length contains the actual length of the token being
returned. The maximum size is 2500 bytes.

 Chapter 7. Key Storage Verbs 7-17

 PKA_Key_Record_Read

key_token
The key_token parameter is a pointer to a string variable where the PKA
token being read from key storage is to be returned.

 Required Commands
None.

| The PKA_Key_Record_Read verb requires the Compute Verification Pattern
| command (offset X'001D') to be enabled in the access control system.

7-18 IBM 4758 CCA Services

 PKA_Key_Record_Write

PKA_Key_Record_Write (CSNDKRW)

Platform/
Product

OS/2 AIX NT Verb Subset

IBM-4758 X X X PKA96

The PKA_Key_Record_Write verb copies an internal or external PKA key token
from application data storage into key storage.

There are two processing options:

� Write the new token only if the old token was null.
� Write the new token regardless of content of the old token.

Before you use the PKA_Key_Record_Write verb, use the
PKA_Key_Record_Create to create a key record.

 Restrictions
None.

 Format
CSNDKRW

return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data In/Output String exit_data_length bytes
rule_array_count Input Integer
rule_array Input String array rule_array_count * 8 bytes
key_label Input String 6a4 bytes
key_token_length Input Integer
key_token Input String key_token_length bytes

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

rule_array_count
The rule_array_count parameter is a pointer to an integer containing the
number of elements in the rule array. The value of the rule_array_count
must be zero or one for this verb.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords
are shown below:

 Chapter 7. Key Storage Verbs 7-19

 PKA_Key_Record_Write

key_label
The key_label parameter is a pointer to a 64-byte string variable containing
the ley label that identifies the key record in key storage where the key
token is to be written.

key_token_length
The key_token_length parameter is a pointer to an integer variable
containing the size (in bytes) of the key_token.

key_token
The key_token parameter is a pointer to a string variable containing the the
PKA key token to be written into key storage.

Figure 7-4. Key_Token_BuildRule_Array Keywords

Keyword Meaning

CHECK Specifies that the record will be written only if a record of
the same label in key storage contains a null token. This
is the default.

OVERLAY Specifies that the record will be overwritten regardless of
the current content of the record.

 Required Commands
| The PKA_Key_Record_Write verb requires the Compute Verification Pattern
| command (offset X'001D') to be enabled in the access control system.

7-20 IBM 4758 CCA Services

 Retained_Key_Delete

|
| Retained_Key_Delete (CSNDRKD)

| Platform/
| Product
| OS/2| AIX| NT| Verb Subset

| IBM-4758| X| X| X| PKA96

| The Retained_Key_Delete verb deletes a key that has been retained within the
| Coprocessor.

| You can retain both public and private keys within the Coprocessor through the
| use of verbs such as PKA_Key_Generate and PKA_Public_Key_Register. A list
| of retained keys can be obtained with the use of the Retained_Key_List verb.

| Restrictions
| None.

| Format
| CSNDRKD

| return_code| Input| Integer
| reason_code| Input| Integer
| exit_data_length| Input| Integer
| exit_data| In/Output| String| exit_data_length bytes
| rule_array_count| Input| Integer| 0
| rule_array| Input| String array| rule_array_count * 8 bytes
| key_label| Input| String

| Parameters
| For the definitions of the return_code, reason_code, exit_data_length, and
| exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

| rule_array_count
| The rule_array_count parameter is a pointer to an integer containing the
| number of elements in the rule array. The value of the rule_array_count
| must be zero for this verb.

| rule_array
| The rule_array parameter should be a null address pointer.

| key_label
| The key_label parameter points to a 64-byte string variable containing the
| key label of a key that has been retained within the Coprocessor.

| Required Commands
| The Retained_Key_Delete verb requires the Delete Retained Key command
| (offset X'0203') to be enabled in the hardware.

 Chapter 7. Key Storage Verbs 7-21

 Retained_Key_List

|
| Retained_Key_List (CSNDRKL)

| Platform/
| Product
| OS/2| AIX| NT| Verb Subset

| IBM-4758| X| X| X| PKA96

| The Retained_Key_List verb lists the key labels of those keys that have been
| retained within the Coprocessor.

| You can filter the set of key labels returned to your application through the use
| of the key label mask input variable. Specify the keys to be listed using the
| key_label_mask variable; to identify multiple keys, use the wild card (*) in a
| mask. To list all retained key labels, specify a mask of *, *.*, *.*.*, etc. (see
| restriction below).

| You can retain both public and private keys within the Coprocessor through the
| use of verbs such as PKA_Key_Generate and PKA_Public_Key_Register. You
| can delete retained keys with the use of the Retained_Key_Delete verb.

| Restrictions
| With the initial implementation of this verb, the key_name_mask variable must
| be a single asterisk (*) followed by 63 space characters. Filtering of returned
| key labels is not supported at this time.

| Format
| CSNDRKL

| return_code| Input| Integer
| reason_code| Input| Integer
| exit_data_length| Input| Integer
| exit_data| In/Output| String| exit_data_length bytes
| rule_array_count| Input| Integer| 0
| rule_array| Input| String array| rule_array_count * 8 bytes
| key_label_mask| Input| String| 64 bytes, null pointer
| retained_keys_count| Output| Integer
| key_labels_count| In/Output| Integer
| key_labels| Output| String| key_labels_count * 64 bytes

| Parameters
| For the definitions of the return_code, reason_code, exit_data_length, and
| exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

| rule_array_count
| The rule_array_count parameter is a pointer to an integer containing the
| number of elements in the rule array. The value of the rule_array_count
| must be zero for this verb.

| rule_array
| The rule_array parameter should be a null address pointer.

| key_label_mask
| The key_label_mask parameter points to a 64-byte string variable containing
| a key label mask that is used to filter the list of key names returned by the

7-22 IBM 4758 CCA Services

 Retained_Key_List

| verb. You can use a wild card (*) to identify multiple keys retained within
| the Coprocessor.

| Note: The initial implementation requires this variable to be a single
| asterisk (*) followed by 63 space characters.

| retained_keys_count
| The retained_keys_count parameter points to an integer variable to receive
| the number of retained keys stored within the Coprocessor.

| key_labels_count
| The key_labels_count parameter points to an integer variable which on input
| defines the maximum number of key labels to be returned, and which on
| output defines the number of key labels returned by the Coprocessor. The
| value returned in the registered_keys_count variable can be larger if you
| have not provided for the return of a sufficiently large number number of
| key_labels.

| key_labels
| The key_labels parameter points to a string array variable. The
| Coprocessor returns zero or more 64-byte entries that each contain a key
| label of a key retained within the Coprocessor.

| Required Commands
| The Retained_Key_List verb requires the List Retained Key command (offset
| X'0230') to be enabled in the hardware.

 Chapter 7. Key Storage Verbs 7-23

7-24 IBM 4758 CCA Services

Chapter 8. Financial Services Support Verbs

Figure 8-1. Financial Services Support Verbs

Verb Page Service Entry
Point

Svc
Lcn

| Clear_PIN_Encrypt| 8-12| This verb formats a PIN into a PIN-block and outputs the
| PIN-block as an encrypted quantity.

| The keyword RANDOM represents an extension to the
| support available with other CCA implementations. to
| generate random PINs that are output in encrypted PIN
| blocks.

| CSNBCPE| E

| Clear_PIN_Generate| 8-15| This verb generates a clear PIN, or a PIN offset.| CSNBPGN| E

| Clear_PIN_Generate_Alternate| 8-18| This verb extracts a customer-selected PIN or
| instution-assigned PIN from an encrypted PIN-block and
| generates a PIN offset.

| CSNBCPA| E

| Encrypted_PIN_Generate| 8-24| This verb generates a PIN from an account number and
| other information and returns the result in an encrypted
| PIN block.

| CSNBEPG| E

| Encrypted_PIN_Translate| 8-29| This verb operates in two modes.

| Translate mode re-encrypts a PIN block under a different
| key.

| Reformat mode does one or more of the following:

| � Reformats a PIN from one PIN block format into
| another PIN block format

| � Changes selected non-PIN digits in a PIN block

| � Re-encrypts a PIN block.

| CSNBPTR| E

| Encrypted_PIN_Verify| 8-34| This verb extracts and verifies a PIN by using the specified
| PIN calculation method.
| CSNBPVR| E

SET_Block_Compose 8-40 Creates a SET-protocol RSA-OAEP block and DES
encrypts the data block in support of the SET protocols.

CSNDSBC

SET_Block_Decompose 8-44 Decomposes the RSA-OAEP block and DES decrypts the
data block in support of the SET protocols.

CSNDSBD

Svc Lcn: Service location: E=Cryptographic Engine, S=Security API software

There are two classes of verbs described in this chapter:

� Finance industry PIN processing verbs. Information common to those verbs
is described in the next section.

� SET-related verbs; these verbs support cryptographic operations as defined
in the Secure Electronic Transaction (SET) protocol as defined by VISA
International and Mastercard; see their Web pages for a reference to the
SET protocol.

| Processing Financial PINs

 Copyright IBM Corp. 1997-98 8-1

| This section describes how the financial personal identification number (PIN)
| verbs allow you to process financial PINs. A financial PIN is used to authorize
| personal financial transactions for a customer who uses an automated teller
| machine.1 A financial PIN is similar to a password except that a financial PIN
| consists of decimal digits and is normally a cryptographic function of an
| associated account number. The financial PIN verbs support PINs that range
| from 4 to 16 digits in length. (A financial PIN is usually 4 to 6 digits in length.)

| The financial PIN verbs form a complete set of verbs that you can use in various
| combinations to process financial PINs. You use these verbs, whose
| relationships and primary inputs and outputs are depicted in Figure 8-2 on
| page 8-3, to do the following:

| � Provide security for the PINs by supporting encrypted PIN-blocks with these
| capabilities:

| – Encryption of a clear PIN in various PIN-block formats
| – Generation of random PIN values and encryption of these in various
| PIN-block formats
| – Verification of a PIN, the PIN-block is decrypted as part of the
| verification service
| – Re-encrypting of a PIN-block under another key with optional, integral
| changing of the PIN-block format.

| � Support multiple PIN calculation methods

| � Support multiple PIN-block formats and PIN extraction methods

| � Provide the following services:

| – Create encrypted PIN blocks for transmission
| – Generate institution-assigned PINs
| – Generate an offset or a VISA PIN-validation value (PVV)
| – Create encrypted PIN blocks for a PIN-verification database
| – Change the PIN block encrypting key or the PIN-block format
| – Verify PINs.

| Normally, a customer inserts a magnetic-stripe card and enters a PIN (a trial
| PIN) into an automated teller machine to identify himself. The automated teller
| machine does the following:

| � Obtains account information and other information from the magnetic stripe
| on the card.

| � Formats the trial PIN into a PIN block and encrypts the PIN block.

| � Sends the information from the card, the encrypted PIN block, and other
| data in a message to a host program for verification.

| To verify a PIN, a program normally uses one of the following two methods:

| � PIN calculation method. In this method, the program calls the PIN
| verification verb that decrypts the trial PIN block, extracts the trial PIN from
| the PIN block, re-calculates the account-number based PIN, adjusts this

| 1 In this chapter, automated teller machine (ATM) can also mean a point-of-sale device, an enhanced teller terminal, or a
| programmable workstation, unless noted otherwise.

8-2 IBM 4758 CCA Services

| Account Customer─Selected PIN

| Number ──────────┬──────────

| │ 6

| │ Clear

| ┌───6────────────────────┐ C─PIN

| PINGEN──5Clear_PIN_Generate │ ├───────────────────────────┐

| │ │ │ Account │

| │ │ │ Number │

| │ CSNBPGN│ │ │ │

| └───────────┬────────────┘ │ ┌───6─────────────6──────┐

| 6 │ PINGEN──5Clear_PIN_Generate │

| A─PIN │ │(Offset─generation Mode)│

| │ │ │ │

| └──────────────────────────────────────┐ │ │ CSNBPGN│

| Account 6 6 └───────────┬────────────┘

| Number Clear PIN 6

| │ │ │ O─PIN

| │ │ │ │

| ┌───6────────────────────┐ ┌──────────6─6───────────┐ │

| PINGEN──5Encrypted_PIN_Generate │ OPINENC──5Clear_PIN_Encrypt │ │

| │ │ │ │ │

| │ │ │(Also RANDOM PIN │ │

| OPINENC─5 CSNBEPG│ │generate option) CSNBCPE│ │

| └───────────┬────────────┘ └───────────┬────────────┘ │

| └───────────────┐ ┌─────────────────────┤ │

| 6 6 6 │

| Encrypted Encrypted │

| PIN_Block PIN_Block │

| ┬ (Typically C-PIN) │

| │ │ │

| │ Account │ │

| ┌────────────────┤ Number │ │

| │ │ │ │ │

| ┌───────────6────────────┐ │ ┌───6───────6────────────┐ │

| IPINENC─5Encrypted_PIN_Translate │ │ IPINENC─5Clear_PIN_Generate │ │

| │ │ │ │_Alternate │ │

| │ │ │ │ │ │

| OPINENC─5 CSNBPTR│ │ PINGEN──5 CSNBCPA│ │

| └───────────┬────────────┘ │ └───────────┬────────────┘ │

| 6 │ 6 │

| Encrypted │ O─PIN │

| PIN_Block │ │ │

| │%───────────────┘ │ │

| Account │ │ │

| Number T─PIN ┌─────────────────────────────┴──────────────────────┘

| │ │ │

| ┌──6────────6─────────6──┐

| IPINENC─5Encrypted_PIN_Verify │

| │ │

| │ │

| PINVER──5 CSNBPVR│

| └───────────┬────────────┘

| 6

| Y/N

| Figure 8-2. Financial PIN Verbs

| value with any offset, compares the resulting value to the trial PIN, and
| returns the results of the comparison.

| � PIN database method. In this method, the encrypted PIN block that
| contains the correct customer-PIN is stored in a PIN-verification database.
| Upon receipt of an encrypted trial-PIN block, the program calls a verb to
| translate (decipher, then encipher) the trial PIN block to the format and key
| used for the encrypted PIN block in the PIN-verification database. The two
| encrypted PIN blocks can then be compared for equality.

| In general, a PIN can be assigned by an institution or selected by a customer.
| Some PIN calculation methods use the institution-assigned or customer-selected
| PIN to calculate another value that is stored on the magnetic stripe of the
| account-holder's card or in a data base and that is used in the PIN-verification
| process.

 Chapter 8. Financial Services Support Verbs 8-3

| The following terms are used for the various “PIN” values:

| A-PIN The quantity derived from a function of the account number, and
| PIN-generating key, and other inputs such as a decimalization table.

| C-PIN The quantity that a customer should use to identify himself; in
| general, this can be a customer-selected or institution-assigned
| quantity.

| O-PIN A quantity, sometimes called an offset, that relates the A-PIN to the
| C-PIN as permitted by certain calculation methods.

| T-PIN The trial PIN presented for verification.

| PIN Verb Summary
| The Clear_PIN_Generate verb (CSNBPGN) uses a PIN-generating key and an
| account number to create an A-PIN according to the calculation method selected
| through a rule-array keyword. See “PIN Calculation Methods” on page E-1.
| Certain calculation methods also accept a C-PIN value and return an O-PIN
| calculated from the Coprocessor generated and retained A-PIN value.

| The Encrypted_PIN_Generate verb (CSNBEPG) uses a PIN-generating key and
| an account number to create an A-PIN according to the calculation method
| selected through a rule-array keyword. The verb formats the A-PIN value into a
| PIN block as specified in the input control information. The PIN block is
| returned encrypted by the supplied OPINENC-type key.

| The Clear_PIN_Encrypt verb (CSNBCPE) accepts a PIN value and formats the
| input into a PIN block. The result is encrypted and returned. This verb can also
| randomly generate PIN values and return these as encrypted PIN blocks; this
| function is useful when an institution wishes to distribute (initial) PIN values to its
| customers.

| The Clear_PIN_Generate_Alternate verb (CSNBCPA) accepts an encrypted PIN
| block that would normally contain a customer-selected C-PIN value. The verb
| calculates the A-PIN from the account number and PIN-generating key and then
| derives the O-PIN as a function of the A-PIN and the C-PIN; the O-PIN is
| returned in the clear.

| The Encrypted_PIN_Verify verb (CSNBPVR) accepts an account number and
| PIN-verifying or PIN-generating key to internally produce an A-PIN. For certain
| methods, the verb also accepts an O-PIN so that it can produce the correct
| value that a customer should enter to access his account. The final input, an
| encrypted T-PIN block, is decrypted, the customer-entered trial PIN is extracted
| from the block and compared to the calculated value; equality or inequality is
| indicated by the return code values (and reason code values). Return code 0
| indicates the PIN is validated while code 4 indicates that the trial PIN failed
| validation.

| The Encrypted_PIN_Translate verb (CSNBPTR) is used to change the key used
| later to decrypt or compare the PIN block. The verb can also extract the PIN
| from one PIN block format and insert the PIN into another PIN block format
| before re-encryption. This service is useful when transferring PIN blocks from
| one domain to another.

8-4 IBM 4758 CCA Services

| PIN Calculation Method and PIN Block Format Summary
| As described in the following sections, you can use a variety of PIN calcualtion
| methods and a variety of PIN block formats with the various PIN processing
| verbs. Figure 8-3 provides a summary of the supported combinations.

| Figure 8-3. PIN Verb, PIN Calculation Method, and PIN-block Format Support Summary

| Verb / Calcualtion Method, PIN
| Block

| Entry Point

| IBM-
| PIN,
| IBM-
| PINO

| VISA-
| PVV
| GBP-
| PIN
| INBK-
| PIN
| NL-
| PIN-1
| 3624| ISO-0| ISO-1| ISO-2

| Clear_PIN_Encrypt| CSNBCPE| √| √| √| √

| Clear_PIN_Generate| CSNBPGN| √

| Clear_PIN_Generate_Alternate| CSNBCPA| √| √| √| √| √| √

| Encrypted_PIN_Generate| CSNBEPG| √| √| √| √| √| √| √

| Encrypted_PIN_Translate| CSNBPTR| √| √| √| √

| Encrypted_PIN_Verify| CSNBPVR| √| √| √| √| √| √| √| √

| Providing Security for PINs
| It is important to maintain the security of PINs. Unauthorized knowledge of a
| PIN and its associated account number can result in fraudulent transactions.
| One method of maintaining the security of a PIN is to store the PIN in a PIN
| block, encrypt the PIN block, and only send or store a PIN in this form. A PIN
| block is 64 bits in length, which is the length of data on which the DES algorithm
| operates. A PIN block consists of both PIN digits and non-PIN digits. The
| non-PIN digits pad the PIN digits to a length of 64 bits. When discussing PINs,
| the term digit refers to a 4-bit quantity that can be valued to the decimal values
| 0...9 and in some cases also to the hexadecimal values A...F. Several different
| PIN block formats are supported. See “PIN Block Formats” on page E-8.

| The non-PIN digits can also add variability to a PIN block. Varying the value of
| the non-PIN digits in a PIN block is a security measure used to create a large
| number of different encrypted PIN blocks, even though there are typically only
| 10,000 PIN values in use. To enhance the security of a clear PIN during PIN
| processing, the verbs generally operate with encrypted PIN blocks. The PIN
| verbs provide high-level services that typically insert or extract PIN values to or
| from a PIN block internal to the verb.

| The following verbs receive clear PINs from your application program or return
| clear PINs to your program; none of the other PIN verbs reveal a clear PIN:

| � Clear_PIN_Generate
| � Clear_PIN_Encrypt.

| When your application program supplies a clear PIN to a verb or receives a
| clear PIN from a verb, ensure that adequate access controls and auditing are
| provided to protect this sensitive data. Also recognize that exhaustive use of
| certain verbs such as Encrypted_PIN_Verify and Clear_PIN_Generate_Alternate
| can reveal the value of a PIN; therefore if production level keys are available in
| a system, be sure that you have usage controls and auditing in effect to detect
| inappropriate usage of these verbs.

 Chapter 8. Financial Services Support Verbs 8-5

| Using Specific Key Types and Key-Usage Bits to Help Ensure
| PIN Security
| The control vectors (see Appendix C, “CCA Control Vector Definitions and Key
| Encryption” on page C-1) associated with obtaining and verifying PINs enable
| you to minimize certain security exposures. The class of keys designated
| PINGEN operates in the verbs that create and validate PIN values, whereas the
| PINVER class operates only in those verbs that validate a trial PIN. Reduce
| your exposure to fraud by limiting the availability of the PINGEN keys to those
| applications and times when it is legitimate to create new PIN values. Use the
| PINVER key class to validate trial PINs. You can also further restrict those
| verbs in which a PINGEN key will perform by selectively turning off bits in the
| default PINGEN control vector.

| Those verbs that encrypt a PIN block require the encrypting key to be of the
| class OPINENC, output PIN (block) encrypting key. Those verbs that decrypt a
| PIN block require the encrypting key to be of the class IPINENC, input PIN
| (block) encrypting key. The actual input and output key values are the same,
| but the use of two different types of control vectors aids in defeating certain
| insider attacks that might enable redirection of encrypted PIN values to an
| unintended service to the attacker's benefit. You can also turn off selected bits
| in the default OPINENC and IPINENC control vectors to limit those verbs in
| which a given key can operate to further reduce exposure to insider fraud.

| In summary, the PIN verbs use these key types:

| PINGEN (PIN-generating) key type
| The PIN verbs that generate and verify a PIN require the
| PIN-generating key to have a control vector that specifies a PINGEN
| key type.

| The Encrypted_PIN_Verify verb can also use a key with a PINGEN
| key type if bit 22 is set to 1 to specify that the key can be used to
| verify a PIN.

| PINVER (PIN-verifying) key type
| The Encrypted_PIN_Verify verb, which verifies an encrypted PIN by
| using the PIN calculation method, requires the PIN-generating key to
| have a control vector that specifies the PINVER key type, or a control
| vector that specifies the PINGEN key type and has bit 22 set to 1.
| Note that the PINVER key type can not be used to create a PIN
| value, and therefore is the preferred key type in a system that only
| needs to validate PINs.

| IPINENC (input PIN-block encrypting) key type
| The PIN verbs that decrypt a PIN block require the decrypting key to
| have a control vector that specifies an IPINENC key type.

| OPINENC (output PIN-block encrypting) key type
| The PIN verbs that encrypt a PIN block require the encrypting key to
| have a control vector that specifies an OPINENC key type.

8-6 IBM 4758 CCA Services

| Supporting Multiple PIN Calculation Methods
| The PIN verbs support multiple PIN calculation methods. You use a data_array
| variable to supply information that a PIN calculation method requires.

| PIN Calculation Methods
| A PIN calculation method determines the value of an A-PIN in relationship to an
| account number; the methods are described in “PIN Calculation Methods” on
| page E-1. The PIN verbs support the following PIN calculation methods, which
| you specify with a keyword in the rule_array variable for a verb:

| PIN Calculation Method| Keyword

| IBM 3624 PIN| IBM-PIN

| IBM 3624 PIN Offset| IBM-PINO

| Netherlands PIN-1| NL-PIN-1

| IBM German Bank Pool Institution PIN| GBP-PIN

| VISA PIN-Validation Value (PVV)| VISA-PVV

| Interbank PIN| INBK-PIN

| Data_Array
| To supply the information that a PIN calculation method requires, the PIN verbs
| use a data_array variable. Depending on the calculation method and the verb,
| the data array elements can include a decimalization table, validation data, an
| offset or clear PIN, or transaction security data.

| The data array is a 48-byte string made up of three consecutive 16-byte
| character strings. Each element must be 16 bytes in length, uppercase,
| left-justified, and padded on the right with space characters. Some PIN
| calculation methods and verbs do not require all three elements; however, all
| three elements must be declared.

| Data Array with IBM-PIN, IBM-PINO, NL-PIN-1, GBP-PIN: When using the
| IBM-PIN, the IBM-PINO, the NL-PIN-1, or the IBM German Bank Pool PIN
| method, the data array contains elements for a decimalization table, validation
| data, and for certain verbs, a clear PIN or an offset.

| � Decimalization_Table

| The first element in the data array for a PIN calculation method points to the
| decimalization table of 16 characters that are used to map the hexadecimal
| digits (X'0' to X'F') of the encrypted validation data to decimal digits (X'0'
| to X'9').

| Note: To avoid errors when using the IBM 3624 PIN block format, you
| should not include in the decimalization table a decimal digit that is also
| used as a pad digit. For information about a pad digit, see “PIN Profile” on
| page 8-9.

 Chapter 8. Financial Services Support Verbs 8-7

| � Validation_Data

| The second element in the data array for a PIN calculation method points to
| 1 to 16 characters of account data, which can be the customer’s account
| number or other identifying number. If necessary, the application program
| must left-justify the validation data and pad on the right with space
| characters to a length of 16 bytes.

| � Clear_PIN , Offset_Data , or Reserved

| The third element in the data array contains an O-PIN value. If an O-PIN is
| not used in the verb or method, then 16 space characters.

| Data Array with the VISA PVV Calculation Method: When using the VISA
| PVV calculation method, the data array consists of the
| transaction_security_parameter, the PVV, and one reserved element.

| � Transaction_Security_Parameter

| The first element in the data array for the VISA PVV calculation method
| points to transaction security data. Specify 16 characters that include the
| following:

| – Eleven (rightmost) digits of personal account number (PAN) data,
| excluding the check digit. For information about a PAN, see “Personal
| Account Number (PAN)” on page 8-11.
| – One digit of key index from 1 to 6.
| – Four space characters.

| � Referenced PVV

| When using the Encrypted_PIN_Verify verb, the second element in the data
| array for the VISA PVV calculation method contains 4 numeric characters,
| which are the PVV value for the account and derived from a
| customer-selected PIN value. This value is followed by 12 space
| characters.

| � Reserved

| The second element (when not using the Encrypted_PIN_Verify verb) and
| the third element in the data array for the VISA PVV calculation method are
| reserved. These elements point to 16-byte variables in application data
| storage. The information in these elements will be ignored, but the
| elements must be declared.

| Data Array for the Interbank Calculation Method: When using the Interbank
| PIN calculation method with certain verbs, the data array consists of one
| element, the transaction_security_parameter, for transaction security data. The
| other two elements are reserved.

| � Transaction_Security_Parameter

| The first element in the data array for the Interbank calculation method
| points to transaction security data. Specify 16 numeric characters that
| include the following:

| – Eleven (rightmost) digits of PAN data, excluding the check digit. For
| information about a PAN, see “Personal Account Number (PAN)” on
| page 8-11.
| – A constant, 6.
| – A 1-digit key index selector from 1 to 6.

8-8 IBM 4758 CCA Services

| – Three numeric characters of validation data.

| � Reserved

| The second and third elements in the data array for the Interbank calculation
| method are reserved. The elements point to 16-byte variables in application
| data storage. The information in these elements will be ignored, but the
| elements must be declared.

| Supporting Multiple PIN-Block Formats and PIN Extraction Methods
| The PIN verbs support multiple PIN-block formats, which you specify in a
| PIN_profile variable. The supported PIN block formats are described in “PIN
| Block Formats” on page E-8. Multiple methods for extracting the PIN value
| from the PIN block exist for certain PIN block formats. Depending on the
| PIN-block format, the verbs also require a pad digit, a personal account number
| (PAN), and/or a sequence number.

| This section describes the following:

| � The PIN profile variable
| � The PIN extraction methods
| � The Personal Account Number (PAN).

| PIN Profile
| A PIN profile variable consists of three elements. The elements identify the
| PIN-block format, the level of format control, and any pad digit. Generally you
| can code a PIN profile as a constant in your application. Each element is an
| 8-byte character string in an array, which is the equivalent of a single 24-byte
| string that is organized as three 8-byte fields. The elements must be 8 bytes in
| length, uppercase, and, depending on the element, either left- or right-justified
| and padded with space characters. Depending on the verb and the PIN-block
| format, all three elements might not be used; however, you must declare all
| three elements (24 bytes).

| PIN-Block Format: The PIN-block format is the first element in a PIN profile
| variable. You specify the format through the use of one of these keywords:

| Format Control Enforcement: The format-control level is the second element
| in a PIN profile. For the IBM 4758 implementation, this element must be set to
| NONE followed by four space characters.

| Pad Digit: The pad digit is the third element in a PIN profile. Certain PIN-block
| formats require a pad digit when a PIN is formatted or extracted, or both, as
| shown in Figure 8-4. The PIN Formatting column indicates the values that the
| verb uses when it creates a PIN block. The PIN Extraction column indicates the
| values that the verb uses when it extracts a PIN from a PIN block.

| PIN-Block Format| Keyword

| IBM 3624| 3624

| ISO-0 (equivalent to ANSI X9.8, VISA format 1, and ECI-1 formats)| ISO-0

| ISO-1 (same as the ECI-4 format)| ISO-1

| ISO-2| ISO-2

 Chapter 8. Financial Services Support Verbs 8-9

| When required, specify the pad digit as a character from the character set 0
| through 9 and A through F. The pad digit must be uppercase, right-justified in
| the 8-byte element, with 7 preceding space characters. When a pad digit is not
| required, specify eight space characters.

| Note: For the IBM 3624 PIN-block format, the pad digit should be a
| non-decimal character (in the range from C'A' to C'F'). The 3624 PIN-block
| format depends on the fact that the pad digit is not the same as a PIN digit. If
| they are the same, unpredictable results can occur. For this reason, it is
| strongly recommended that you do not use a decimal digit for the pad digit. (If
| you use a decimal digit for the pad digit, you also limit the range of possible
| PINs.)

| If you use a decimal digit for the pad digit, ensure that you do not include the
| decimal digit in the decimalization table. For information about the
| decimalization table, see “Data_Array” on page 8-7.

| Figure 8-4. Pad-Digit Specification by PIN-Block Format

| PIN-Block Format
| Keyword
| Pad Digit for PIN
| Formatting
| Pad Digit for PIN Extraction

| 3624| 0 through F| 0 through F

| ISO-0| F| The pad-digit specification will
| be ignored.

| ISO-1| The pad-digit specification will
| be ignored.
| The pad-digit specification will
| be ignored.

| ISO-2| The pad-digit specification will
| be ignored.
| The pad-digit specification will
| be ignored.

| PIN Extraction Methods
| Before a verb can process a formatted and encrypted PIN, the verb must
| decrypt the PIN block and extract the PIN from the PIN block. The PIN verbs
| support multiple PIN extraction methods. The valid PIN extraction methods
| depend on the PIN-block format.

| You can specify a PIN extraction method or use the default method for the
| PIN-block format. To specify a PIN extraction method, you use a keyword in the
| rule_array parameter for the verb.

| Figure 8-5 on page 8-11 shows the keywords for the PIN extraction methods
| that are valid for each PIN-block format. When only one PIN extraction method
| is valid, the keyword is the default value. When more than one method is valid,
| the first keyword is the default value.

8-10 IBM 4758 CCA Services

| The PIN extraction methods operate as described:

| PINBLOCK Depending on the contents of the PIN block, this keyword
| specifies that the verb use one of the following items to identify
| the PIN:

| � The PIN length, if the PIN block contains a PIN length field

| � The PIN delimiter character, if the PIN block contains a PIN
| delimiter character.

| PADDIGIT This keyword specifies that the verb use the pad value in the
| PIN profile to identify the end of the PIN.

| HEXDIGIT This keyword specifies that the verb use the first occurrence of
| a digit in the range from X'A' to X'F' as the pad value to
| determine the PIN length.

| PINLENxx This keyword specifies that the verb use the length specified in
| the keyword, where xx can range from 04 to 16 digits, to identify
| the PIN.

| PADEXIST This keyword specifies that the verb use the character in the
| 16th position of the PIN block as the value of the pad value.

| Figure 8-5. PIN Extraction Method Keywords by PIN-Block Format

| PIN-Block
| Format| PIN Extraction Method Keywords (Used in the Rule Array)

| 3624| PADDIGIT, HEXDIGIT, PINLEN04 to PINLEN16, PADEXIST

| ISO-0| PINBLOCK

| ISO-1| PINBLOCK

| ISO-2| PINBLOCK

| Personal Account Number (PAN)
| A personal account number (PAN) identifies an individual and relates that
| individual to an account at the financial institution. The PAN consists of the
| following:

| � Issuer identification number
| � Customer account number
| � One check digit.

| For the ISO-0 PIN-block format, the PIN verbs use a PAN to format and extract
| a PIN. You specify the PAN with a PAN_data parameter for the verb. You
| must specify the PAN in character format in a 12-byte field. Each digit in the
| PAN must be in the range from 0 to 9. The actual PAN might be more than 12
| digits, but the PIN verbs use only 12 digits for the PAN. Depending on the
| PIN-block format, the verbs use the rightmost 12 digits or the leftmost 12 digits.

| � When using the ISO-0 PIN-block format, use the rightmost 12 digits of the
| PAN, excluding the check digit.

 Chapter 8. Financial Services Support Verbs 8-11

 Clear_PIN_Encrypt

| Clear_PIN_Encrypt (CSNBCPE)

| Platform/
| Product
| OS/2| AIX| NT| Verb Subset

| IBM-4758| X| X| X| PINS

| The Clear_PIN_Encrypt verb formats a PIN into one of the following PIN block
| formats and encrypts the results (see “PIN Block Formats” on page E-8):

| � IBM 3624 format
| � ISO-0 format (same as the ANSI X9.8, VISA-1, and ECI formats)
| � ISO-1 format (same as the ECI-4 format)
| � ISO-2 format

| You can use the Clear_PIN_Encrypt verb to create an encrypted PIN block for
| transmission. With the RANDOM keyword, you can also have the verb generate
| random PIN numbers. This can be useful when you supply PIN numbers to a
| bank-card manufacturer.

| Note: A clear PIN is a sensitive piece of information. Ensure that your
| application program and system design provide adequate protection for any
| clear PIN value.

| To use this verb, specify the following:

| � A key used to encrypt the PIN block

| � A clear PIN. When you generate random PINs, the clear PIN variable
| specifies the length of the generated PIN value by the number of numeral
| zero characters; the remainder of the variable must be padded with space
| characters.

| � A PIN profile that specifies the format of the PIN block to be created, and
| any pad digit; see “PIN Profile” on page 8-9.

| � When using the ISO-0 PIN block format, the PAN_data variable provides
| the account number that is exclusive-ORed with the PIN information.

| � The sequence number for use in certain PIN block formats; for those PIN
| block formats that do not employ a sequence number, specify a value of
| 99999 in the integer variable.

| The verb does the following:

| � Formats the PIN into the specified PIN block format.

| � Checks the control vector for the OPINENC key by doing the following:

| – Verifies that the CPINENC bit is 1.

| � Encrypts the PIN block in ECB mode.

| � Returns the encrypted PIN block in the encrypted_PIN_block variable.

8-12 IBM 4758 CCA Services

 Clear_PIN_Encrypt

| Restrictions
| The software must include support for the PINS function set.

| Format
| CSNBCPE

| return_code| Output| Integer
| reason_code| Output| Integer
| exit_data_length| Input| Integer
| exit_data| Input| String| exit_data_length bytes
| PIN_encrypting_key_identifier| Input| String| 64 bytes
| rule_array_count| Input| Integer
| rule_array| Input| String array| rule_array_count * 8 bytes
| clear_PIN| Input| String| 16 bytes
| PIN_profile| Input| String array| 3 * 8 bytes
| PAN_data| Input| String| 12 bytes
| sequence_number| Input| Integer
| encrypted_PIN_block| Output| String| 8 bytes

| Parameters
| For the definitions of the return_code, reason_code, exit_data_length, and
| exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

| PIN_encrypting_key_identifier
| The PIN_encrypting_key_identifier parameter points to an internal key token
| or a key label of an internal key token. The internal key token contains the
| key that encrypts the PIN block. The control vector in the internal key token
| must specify an OPINENC key type and have the CPINENC bit set to 1.

| rule_array_count
| The rule_array_count parameter points to an integer containing the number
| of elements in the rule array.

| rule_array
| The rule_array parameter is a pointer to an array of keywords. The
| keywords are eight bytes in length, and must be uppercase, left-justified,
| and padded on the right with space characters. The rule_array keywords
| are shown below:

| clear_PIN
| The clear_PIN parameter points to a 16-byte character string with the clear
| PIN. The values in this variable must be left-justified and padded on the
| right with space characters.

| Keyword| Meaning

| ENCRYPT| This is the default operation of the verb, use of the
| keyword is optional.

| RANDOM| Causes the verb to generate a random PIN value. The
| length of the PIN is based on the value in the clear_PIN
| variable. Value the clear PIN to zero and use as many
| digits as the desired random PIN; pad the remainder of the
| clear PIN variable with space characters.

 Chapter 8. Financial Services Support Verbs 8-13

 Clear_PIN_Encrypt

| PIN_profile
| The PIN_profile parameter points to a 24-byte string containing three 8-byte
| elements with: a PIN block format keyword, a format control keyword
| (NONE), and a pad digit as required by certain formats. See “PIN Profile”
| on page 8-9.

| PAN_data
| The PAN_data parameter points to a 12-byte PAN in character format. The
| verb uses this parameter if the PIN profile specifies the ISO-0 keyword for
| the PIN block format. Otherwise, ensure that this parameter points to a
| 12-byte variable in application data storage. The information in this variable
| will be ignored, but the variable must be declared.

| sequence_number
| The sequence_number parameter points to a 4-byte character integer. The
| verb currently ignores the value in this variable. For future compatibility, the
| suggested value is '99999'.

| encrypted_PIN_block
| The encrypted_PIN_block parameter points to the variable to receive the
| 8-byte encrypted PIN block.

| Required Commands
| The Clear_PIN_Encrypt verb requires the Format and Encrypt PIN command
| (command offset X'00AF') to be enabled in the hardware.

8-14 IBM 4758 CCA Services

 Clear_PIN_Generate

| Clear_PIN_Generate (CSNBPGN)

| Platform/
| Product
| OS/2| AIX| NT| Verb Subset

| IBM-4758| X| X| X| PINS

| The Clear_PIN_Generate verb verb generates an A-PIN or an O-PIN by using
| one of the following calculation methods that you specify with a rule array
| keyword (see “PIN Calculation Methods” on page E-1):

| � IBM 3624 PIN (IBM-PIN)
| � IBM 3624 PIN Offset (IBM-PINO).

| You can use this verb to do the following:

| � Generate a clear PIN for immediate use; for example, generate a clear
| A-PIN as part of PIN mailer processing

| � Generate an offset (O-PIN) for use on a customer account magnetic stripe
| card.

| Notes:

| 1. A clear PIN is a sensitive piece of information. Ensure that your application
| program and system design provide adequate protection for the clear PIN.

| 2. To format and encrypt a PIN, use the Clear_PIN_Encrypt verb.

| To use this verb, specify:

| � A PIN-generating key

| � The number of rule array elements

| � The PIN calculation method

| � The length of the PIN

| � For certain PIN calculation methods, an additional PIN length value with the
| PIN_check_length variable to determine the length of the O-PIN value

| � A decimalization table, validation data (e.g. account number information)
| and, based on the PIN calculation method, the C-PIN value, in a character
| array

| � A 16-byte variable to receive the clear PIN.

| The verb does the following:

| � Verifies that the CPINGEN bits are set to 1 in the control vector for the
| PINGEN key.

| � Calculates the A-PIN, and optionally uses the C-PIN and the A-PIN to
| compute the O-PIN value. See “PIN Calculation Methods” on page E-1.

| � Uses the specified PIN length to determine the length of the PIN.

| � Returns the clear A-PIN or O-PIN in the variable identified by the
| returned_result parameter.

 Chapter 8. Financial Services Support Verbs 8-15

 Clear_PIN_Generate

| Restrictions
| The software must include support for the PINS function set.

| Format
| CSNBPGN

| return_code| Output| Integer
| reason_code| Output| Integer
| exit_data_length| Input| Integer
| exit_data| Input| String| exit_data_length bytes
| PIN_generating_key_identifier| Input| String| 64 bytes
| rule_array_count| Input| Integer
| rule_array| Input| String| 8 bytes
| PIN_length| Input| Integer
| PIN_check_length| Input| Integer
| data_array| Input| String array| 16 bytes * 3
| returned_result| Output| String| 16 bytes

| Parameters
| For the definitions of the return_code, reason_code, exit_data_length, and
| exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

| PIN_generating_key_identifier
| The PIN_generating_key_identifier parameter points to a 64-byte internal
| key token or a key label of an internal key token record in key storage. The
| internal key token contains the PIN-generation key and must contain a
| control vector that specifies the PINGEN key type and has the CPINGEN
| bits set to 1.

| rule_array_count
| The rule_array_count parameter points to an integer for the number of the
| rule array elements. This value must be 1.

| rule_array
| The rule_array parameter points to a keyword that defines the PIN
| calculation method to use to generate the A-PIN or the O-PIN.

| The keyword in the rule array must be 8 bytes in length, uppercase,
| left-justified, and padded on the right with space characters.

| PIN_length
| The PIN_length parameter points to an integer in the range from 4 to 16 for
| the length of the PIN. The verb uses the PIN length if you specify the
| IBM-PIN or the IBM-PINO keyword for the calculation method. Otherwise,
| ensure that this parameter points to a 4-byte variable in application data
| storage.

| Keyword| Meaning

| IBM-PIN| This keyword specifies the IBM 3624 PIN calculation
| method to be used to generate a PIN.

| IBM-PINO| This keyword specifies the IBM 3624 PIN offset calculation
| method to be used to generate a PIN offset.

8-16 IBM 4758 CCA Services

 Clear_PIN_Generate

| PIN_check_length
| The PIN_check_length parameter points to an integer in the range from 4 to
| 16 for the length of the PIN offset. The verb uses the PIN check length if
| you specify the IBM-PINO keyword for the calculation method. Otherwise,
| ensure that this parameter points to a 4-byte variable in application data
| storage. The information in this variable will be ignored, but this variable
| must be declared.

| Note: The PIN check length must be less than or equal to the PIN length.

| data_array
| The data_array parameter points to three 16-byte numeric character strings,
| which are equivalent to a single 48-byte string. The values in the data array
| depend on the keyword for the PIN calculation method. Each element is not
| always used, but you must always declare a complete data array.

| The numeric characters in each 16-byte string must be from 1 to 16 bytes in
| length, uppercase, left-justified, and padded on the right with space
| characters. The verb converts the space characters to zeroes.

| When using the IBM-PIN or the IBM-PINO keyword, identify the following
| elements in the data array.

| returned_result
| The returned_result parameter points to the generated output 16-byte
| character string variable. The result will be left-justified and padded with
| space characters.

| Element| Description

| decimalization_table| This element contains the decimalization table of 16
| characters (0 to 9) that are used to convert the
| hexadecimal digits (X'0' to X'F') of the encrypted
| validation data to decimal digits (X'0' to X'9').

| validation_data| This element contains 1 to 16 characters of account
| data. The data must be left-justified and padded on
| the right with spaces.

| clear_PIN| When using the IBM-PINO keyword, this element
| contains the clear customer-selected PIN. This
| value must be left-justified and padded with spaces.

| When using the IBM-PIN keyword, this element is
| ignored but must be declared.

| Required Commands
| The Clear_PIN_Generate verb requires the following commands to be enabled
| in the hardware based on the keyword specified for the PIN calculation method.

| PIN Calculation
| Method
| Command
| Offset
| Command

| IBM-PIN
| IBM-PINO
| X'00A0'| Generate Clear 3624 PIN

 Chapter 8. Financial Services Support Verbs 8-17

 Clear_PIN_Generate_Alternate

| Clear_PIN_Generate_Alternate (CSNBCPA)

| Platform/
| Product
| OS/2| AIX| NT| Verb Subset

| IBM-4758| X| X| X| PINS

| The Clear_PIN_Generate_Alternate verb is used to obtain a value,the “O-PIN”
| (offset or VISA-PVV) that will relate the institution-assigned PIN to the
| customer-known PIN. You supply the “customer PIN” (C-PIN) as an encrypted
| PIN block. The verb:

| � Decrypts a PIN block
| � Extracts a customer-selected or institution-assigned PIN (C-PIN)
| � Generates an A-PIN from the input account number, PIN-generating key,
| etc.
| � Computes an O-PIN from the C-PIN and the A-PIN; the O-PIN is returned in
| the clear.

| Note: To generate an O-PIN from a clear C-PIN, see the Clear_PIN_Generate
| verb.

| To use this verb, specify:

| � An input PIN block encrypting key used to decrypt the PIN block

| � A PIN-generating key used to calculate the A-PIN

| � A PIN profile that describes the PIN block that contains the C-PIN

| � When using the ISO-0 PIN block format, personal account number (PAN)
| data to be used in extracting the PIN

| � The encrypted PIN block that contains the C-PIN

| � A calculation method and optionally a PIN extraction method

| � The length of the O-PIN offset. (The verb determines the length of the
| C-PIN from the length of the extracted PIN.)

| � A decimalization table and account validation data

| � A 16-byte variable for the O-PIN.

| The verb does the following:

| � Checks the control vector of the IPINENC key to ensure that the CPINGENA
| bit is 1.

| � Decrypts the PIN block in ECB mode.

| � Extracts the PIN. The verb uses the PIN extraction method specified with
| the rule_array parameter or the default extraction method for the PIN block
| format. The verb also uses the PIN_check_length variable. Depending on
| the PIN block format specified in the PIN profile, the verb also uses the pad
| digit specified in the PIN_profile variable or the PAN specified in the
| PAN_data variable.

| � Verifies that the CPINGENA bit is 1 in the control vector for the PINGEN
| key.

| � Calculates the A-PIN; the verb uses the specified calculation method, the
| data_array variable, and the PIN_check_length variable to calculate the PIN.

8-18 IBM 4758 CCA Services

 Clear_PIN_Generate_Alternate

| � Calculates the O-PIN.

| � Returns the clear O-PIN in the variable identified by the returned_result
| parameter.

| Restrictions
| The software must include support for the PINS function set.

| Format
| CSNBCPA

| return_code| Output| Integer
| reason_code| Output| Integer
| exit_data_length| Input| Integer
| exit_data| Input| Integer| exit_data_length bytes
| inbound_PIN_encrypting_key_identifier| Input| String| 64 bytes
| PIN_generating_key_identifier| Input| String| 64 bytes
| input_PIN_profile| Input| String array| 8 bytes * 3
| PAN_data| Input| String| 12 bytes
| encrypted_PIN_block| Input| String| 8 bytes
| rule_array_count| Input| Integer
| rule_array| Input| String| 8 bytes * rule_array_count
| PIN_check_length| Input| Integer
| data_array| Input| String array| 16 bytes * 3
| returned_result| Output| String| 16 bytes

| Parameters
| For the definitions of the return_code, reason_code, exit_data_length, and
| exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

| inbound_PIN_encrypting_key_identifier
| The inbound_PIN_encrypting_key_identifier parameter points to a 64-byte
| internal key token or a key label of an internal key token record in key
| storage. The internal key token contains the key that decrypts the PIN block
| C-PIN. The control vector in the key token must specify the IPINENC key
| type and have the CPINGENA bit set to 1.

| PIN_generating_key_identifier
| The PIN_generating_key_identifier parameter points to a 64-byte internal
| key token or a key label of an internal key token record in key storage. The
| internal key token contains the PIN-generation key and must contain a
| control vector that specifies the PINGEN key type and has the CPINGENA
| bit set to 1.

| input_PIN_profile
| The input_PIN_profile parameter points to a character array with: the PIN
| block format keyword, the format control (NONE), a pad digit (if needed);
| see “PIN Profile” on page 8-9.

| PAN_data
| The PAN_data parameter points to a 12-byte field of PAN data. If the PIN
| profile specifies the ISO-0, the verb uses the PAN data to recover the C-PIN
| from the PIN block.

| Note: When using the ISO-0 format, use the 12 rightmost PAN digits,
| excluding the check digit.

 Chapter 8. Financial Services Support Verbs 8-19

 Clear_PIN_Generate_Alternate

| encrypted_PIN_block
| The encrypted_PIN_block parameter points the 8-byte, encrypted PIN block
| that contains the (customer-selected) C-PIN value.

| rule_array_count
| The rule_array_count parameter points to an integer for the number of rule
| array elements. The rule array count value must be 1 or 2. If you use the
| default extraction method for the PIN block format, the rule array count
| value is 1.

| rule_array
| The rule_array parameter points to an array of one or two 8-byte elements.
| Each keyword must be uppercase, left-justified, and padded on the right with
| space characters.

| The first element in the rule array must specify one of the keywords that
| indicate the PIN calculation method, as shown in Figure 8-6.

| The second element in the rule array must specify one of the keywords that
| indicate a PIN extraction method, as shown in Figure 8-7. For more
| information about extraction methods, see “PIN Extraction Methods.”

| Notes:

| 1. In the table, the PIN block format keyword is the keyword that you
| specify in the input_PIN_profile parameter.

| 2. If the PIN block format allows you to choose the PIN extraction method,
| and if you specify a rule array count of 1, the keyword that is listed first
| in the following table is the default keyword.

| Element
| Number
|
| Function of Keyword

| 1| PIN calculation method

| 2| PIN extraction method

| Figure 8-6. Clear_PIN_Generate_Alternate Rule_Array Keywords (First
| Element)

| PIN Calculation
| Method
| Keyword

|

| Meaning

| IBM-PINO| This keyword specifies use of the IBM 3624 PIN Offset
| calculation method.

| NL-PIN-1| This keyword specifies use of the Netherlands PIN-1
| calculation method.

| VISA-PVV| This keyword specifies that the VISA PVV calculation
| method is to be used.

8-20 IBM 4758 CCA Services

 Clear_PIN_Generate_Alternate

| PIN_check_length
| The PIN_check_length parameter points to an integer in the range from 4 to
| 16 for the number of digits of PIN information that the verb should check.
| The verb uses the PIN_check_length parameter if you specify the IBM-PINO
| keyword for the calculation method. Otherwise, ensure that this parameter
| points to a 4-byte variable in application data storage. The information in
| this variable will be ignored, but this variable must be declared.

| Note: The PIN check length must be less than or equal to the PIN length.

| The length of the PIN offset in the returned result will be determined by the
| value that the PIN_check_length parameter identifies. The security server
| shortens the PIN offset.

| data_array
| The data_array parameter points to three 16-byte character strings, which
| are equivalent to a single 48-byte string. The values in the data array
| depend on the PIN calculation method. Each element is not always used,
| but you must always declare a complete data array.

| When using the IBM-PINO keyword, identify the following elements in the
| data array:

| Figure 8-7. Clear_PIN_Generate_Alternate Rule_Array Keywords (Second
| Element)

| PIN Block
| Format
| Keyword

| PIN Extraction
| Method
| Keyword

|
|
| Meaning

| 3624| PADDIGIT,
| HEXDIGIT,
| PINLEN04 to
| PINLEN16,
| PADEXIST

| The PIN extraction method keywords
| specify a PIN extraction method for an
| IBM 3624 PIN block format. The first
| keyword, PADDIGIT, is the default PIN
| extraction method for the PIN block
| format.

| ISO-0| PINBLOCK| This keyword specifies the default PIN
| extraction method for an ISO-0 PIN
| block format.

| ISO-1| PINBLOCK| This keyword specifies the default PIN
| extraction method for an ISO-1 PIN
| block format.

 Chapter 8. Financial Services Support Verbs 8-21

 Clear_PIN_Generate_Alternate

| When using the NL-PIN-1 keyword, identify the following elements in the
| data array:

| When using the VISA-PVV keyword, identify the following elements in the
| data array. For more information about transaction security data for the
| VISA PVV calculation method in the IBM 4758 CCA Basic Services,
| SC31-8609..

| Element| Description

| decimalization_table| This element contains the decimalization
| table of 16 characters (0 to 9) that are
| used to convert the hexadecimal digits
| (X'0' to X'F') of the enciphered
| validation data to decimal digits (X'0' to
| X'9').

| validation_data| This element contains one to 16
| characters of account data. The data
| must be left-justified and padded on the
| right with space characters.

| reserved_3| The information in this element will be
| ignored, but the element must be
| declared.

| Element| Description

| decimalization_table| This 16-character string should contain
| the characters 0, 1, ...9, A, ...F.

| validation_data| This element contains one to 16
| characters of account data. The data
| must be left-justified and padded on the
| right with space characters.

| reserved_3| The information in this element will be
| ignored, but the element must be
| declared.

| Element| Description

| transaction_security_parameter| This element contains 16 numeric
| characters that include the following:

| � Eleven (rightmost) digits of PAN data
| � One digit of key index from 1 to 6
| � Four space characters for padding.

| reserved_2| The information in this element will be
| ignored, but the element must be
| declared.

| reserved_3| The information in this element will be
| ignored, but the element must be
| declared.

8-22 IBM 4758 CCA Services

 Clear_PIN_Generate_Alternate

| returned_result
| The returned_result parameter points to the clear O-PIN as a 16-byte
| character string. The result will be left-justified and padded with space
| characters.

| The length of the PIN offset in the returned result will be determined by the
| value that the PIN_check_length parameter specifies.

| Required Commands
| The Clear_PIN_Generate_Alternate verb requires the following commands to be
| enabled in the hardware based on the keyword specified for the PIN calculation
| methods.

| PIN Calculation
| Method
| Command
| Offset
| Command

| IBM-PINO| X'00A4'| Generate Clear 3624 PIN Offset
| NL-PIN-1| X'0231'| Generate Clear NL-PIN-1 Offset
| VISA-PVV| X'00BB'| Generate Clear VISA PVV Alternate

 Chapter 8. Financial Services Support Verbs 8-23

 Encrypted_PIN_Generate

| Encrypted_PIN_Generate (CSNBEPG)

| Platform/
| Product
| OS/2| AIX| NT| Verb Subset

| IBM-4758| X| X| X| PINS

| The Encrypted_PIN_Generate verb generates and formats a PIN and encrypts
| the PIN block. To generate the PIN, the verb uses one of the following PIN
| calculation methods:

| � IBM German Bank Pool Instution PIN
| � Interbank PIN.

| To format the PIN, the verb uses one of the following PIN block formats:

| � IBM 3624 format
| � ISO-0 format (same as ANSI X9.8, VISA-1, and ECI-1 formats)
| � ISO-1 format (same as the ECI-4 format)
| � ISO-2

| You can use the Encrypted_PIN_Generate verb to generate a PIN and create
| an encrypted PIN block for transmission or for later use in a PIN verification
| database.

| Note: To generate a clear PIN, use the Clear_PIN_Generate verb.

| To generate and format a PIN and encrypt the PIN block, specify the following:

| � An internal key token or a key label of an internal key token record that
| contains the PIN-generating key with the PIN_generating_key_identifier
| parameter. The control vector in the key token must specify the PINGEN
| key type and have the EPINGEN bit set to 1.

| � An internal key token or a key label of an internal key token record that
| contains the key to be used to encrypt the PIN block with the
| outbound_PIN_encrypting_key_identifier parameter. The control vector in
| the key token must specify the OPINENC key type and have the EPINGEN
| bit set to 1.

| � One for the number of rule_array elements with the rule_array_count
| variable.

| � The PIN calculation method with a keyword in the rule_array variable.

| � Zero for the PIN_length variable as the supported methods have a
| pre-defined PIN length.

| � A decimalization table and account validation data with the data_array
| parameter. For information about a decimalization table and calculation
| methods, see “PIN Calculation Methods” on page E-1. For information
| about the data array variable, see “Data_Array” on page 8-7.

| � A PIN profile that specifies the format of the PIN block to be created, the
| level of format control, and any pad digit with the output_PIN_profile
| parameter. For more information about the PIN profile, see “PIN Block
| Formats” on page E-8.

| � One of the following with the PAN_data parameter:

8-24 IBM 4758 CCA Services

 Encrypted_PIN_Generate

| – When using the ISO-0 PIN block format, specify a PAN. For information
| about a personal account number (PAN), see “Personal Account
| Number (PAN)” on page 8-11.

| – When using another PIN block format, specify a 12-byte variable in
| application data storage. The information in the variable will not be
| used, but the variable must be declared.

| � With the sequence_number variable specify a 4-byte integer variable valued
| to 99999.

| � An 8-byte variable for the encrypted PIN with the encrypted_PIN_block
| parameter.

| The verb does the following:

| � Verifies that the EPINGEN bit is 1 in the control vector for the
| PIN-generating key.

| � Uses the specified PIN calculation method and account validation data to
| calculate the PIN.

| � Optionally uses the specified PIN length to determine the length of the PIN.

| � Formats the PIN into the specified PIN block format. The verb includes the
| clear PIN and, depending on the PIN block format, the pad digit, the PAN,
| and the sequence number. For a description of the formats, see “PIN Block
| Formats” on page E-8.

| � Checks the control vector for the OPINENC key by verifying that the
| EPINGEN bit is 1.

| � Encrypts the PIN block in ECB mode according to the format-control
| keyword specified in the PIN profile.

| Restrictions
| The software must include the support for the PINS function set.

| Format
| CSNBEPG

| return_code| Output| Integer
| reason_code| Output| Integer
| exit_data_length| Input| Integer
| exit_data| Input| String| exit_data_length bytes
| PIN_generating_key_identifier| Input| String| 64 bytes
| outbound_PIN_encrypting_key_identifier| Input| String| 64 bytes
| rule_array_count| Input| Integer
| rule_array| Input| String| 8 bytes
| PIN_length| Input| Integer
| data_array| Input| String| 16 bytes * 3
| PIN_profile| Input| String array| 8 bytes * 3
| PAN_data| Input| String| ?? bytes
| sequence_number| Input| Integer
| encrypted_PIN_block| Output| String| 8 bytes

 Chapter 8. Financial Services Support Verbs 8-25

 Encrypted_PIN_Generate

| Parameters
| For the definitions of the first four parameters, see “Parameters Common to All
| Verbs.”

| PIN_generating_key_identifier
| The PIN_generating_key_identifier parameter points to the place in
| application data storage that contains a 64-byte internal key token or a key
| label of an internal key token record in key storage. The internal key token
| contains the PIN-generating key and must contain a control vector that
| specifies a PINGEN key type and has the EPINGEN bit set to 1.

| outbound_PIN_encrypting_key_identifier
| The outbound_PIN_encrypting_key_identifier parameter points to the place
| in application data storage that contains a 64-byte internal key token or a
| key label of an internal key token record in key storage. The internal key
| token contains the key to be used to encrypt the formatted PIN and must
| contain a control vector that specifies the OPINENC key type and has the
| EPINGEN bit set to 1.

| rule_array_count
| The rule_array_count parameter points to the place in application data
| storage that contains an integer for the number of the rule array elements.
| This value must be 1.

| rule_array
| The rule_array parameter points to the place in application data storage that
| contains a keyword that defines the calculation method to be used.

| The keywords in the rule array must be 8 bytes in length, uppercase,
| left-justified, and padded on the right with space characters, as shown in
| Figure 8-8.

| PIN_length
| The PIN_length parameter points to the place in application data storage
| that contains an integer to define the PIN length for those PIN calculation
| methods with variable length PINs, otherwise the variable should be valued
| to zero.

| data_array
| The data_array parameter points to the place in application data storage
| that contains three 16-byte character strings, which are equivalent to a
| single 48-byte string. The values in the data array depend on the keyword
| for the PIN calculation method. Each element is not always used, but you
| must always declare a complete data array.

| Figure 8-8. Encrypted_PIN_Generate Rule_Array Keywords

| Keyword| Meaning

| GBP-PIN| This keyword specifies the IBM German Bank Pool
| Instution PIN calculation method to be used to generate a
| PIN.

| INBK-PIN| This keyword specifies the Interbank PIN calculation
| method to be used to generate a PIN.

8-26 IBM 4758 CCA Services

 Encrypted_PIN_Generate

| The numeric characters in each 16-byte string must be from 1 to 16 bytes in
| length, uppercase, left-justified, and padded on the right with space
| characters. The verb converts the space characters to zeros.

| When using the INBK-PIN keyword, identify the following elements in the
| data array. For more information about these elements and transaction
| security data for the Interbank calculation method, see “Data_Array” on
| page 8-7.

| PIN_profile
| The PIN_profile parameter points to the place in application data storage
| that contains the PIN profile including the PIN block format, see “PIN Profile”
| on page 8-9.

| PAN_data
| The PAN_data parameter points to the place in application data storage that
| contains 12 digits of Personal Account Number (PAN) data. The verb uses
| this parameter if the PIN profile specifies the ISO-0 for the PIN block format.
| Otherwise, ensure that this parameter points to a 4-byte variable in
| application data storage. The information in this variable is ignored, but this
| variable must be declared.

| Note: When using the ISO-0 keyword, use the 12 rightmost digits of the
| PAN data, excluding the check digit.

| sequence_number
| The sequence_number parameter points to the place in application data
| storage that contains the sequence number used by certain PIN block
| formats. Ensure that this parameter points to a 4-byte variable in application
| data storage.

| encrypted_PIN_nlock
| The encrypted_PIN_block parameter points to the place in application data
| storage where the verb will return the 8-byte encrypted PIN.

| Element| Description

| transaction_security_parameter| This element contains 16 numeric
| characters that include the following:

| � Eleven (rightmost) digits of PAN data
| � A constant of 6
| � A 1-digit key index selector from
| 1 to 6
| � Three numeric characters of
| validation data.

| reserved_2| The information in this element will be
| ignored, but the element must be
| declared.

| reserved_3| The information in this element will be
| ignored, but the element must be
| declared.

 Chapter 8. Financial Services Support Verbs 8-27

 Encrypted_PIN_Generate

| Required Commands
| The Encrypted_PIN_Generate verb requires the following commands to be
| enabled in the cryptographic engine based on the keyword specified for the PIN
| calculation methods.

| PIN Calculation Method| Command Offset| Command

| GBP-PIN| X'00B1'| Generate Formatted and
| Encrypted Clear German Bank
| Pool PIN

| INBK-PIN| X'00B2'| Generate Formatted and
| Encrypted Interbank PIN

8-28 IBM 4758 CCA Services

 Encrypted_PIN_Translate

| Encrypted_PIN_Translate (CSNBPTR)

| Platform/
| Product
| OS/2| AIX| NT| Verb Subset

| IBM-4758| X| X| X| PINS

| The Encrypted_PIN_Translate verb can re-encipher a PIN block, and optionally
| format a PIN into a different PIN block format.

| This verb can be used to convert the encryption and format of a PIN block in an
| interchange network, or to have the PIN block conform to the format and
| encryption key used in a PIN verification database. You can also use this verb
| to change the PAN and/or the pad digit.

| The input and output PIN blocks can be in the following formats:

| � IBM 3624
| � ISO-0 (equivalent to ANSI X9.8, VISA-1, and ECI-1 formats).
| � ISO-1 (same as the ECI-4 format)
| � ISO-2

| The verb can operate in one of two modes based on a keyword in the rule
| array:

| � Translate mode. You specify this mode with the TRANSLAT keyword. In
| this mode, the verb re-encrypts a PIN block from encryption under one
| PIN-block encrypting key to encryption under another PIN-block encrypting
| key.

| � Reformat mode. You specify this mode with the REFORMAT keyword. In
| this mode, the verb decrypts the input PIN block, extracts the PIN, formats
| the PIN into the output PIN block, and encrypts the output PIN block.

| To use this verb, specify:

| � The mode of operation, translation or translation-and-reformatting with a rule
| array keyword

| � Optionally specify the method of PIN extraction from the input PIN block with
| another rule array keyword

| � Input and output PIN-block encrypting keys

| � Input and output PIN profiles, see “PIN Profile” on page 8-9

| � Input and output PAN data as required by the selected PIN block format

| � An output PIN block sequence number as required by the selected PIN
| block format, or specify a value of 99999.

| The verb does the following:

| � Decrypts the input PIN block in ECB mode using a key with an IPINENC
| control vector; the control vector must have the TRANSLAT bit set to 1, and
| if reformatting is selected, the REFORMAT bit must also be set to 1.

| � In reformat mode these additional steps are performed:

| Extracts the PIN from the specified PIN block format using either the
| default extraction method associated with the declared PIN block format

 Chapter 8. Financial Services Support Verbs 8-29

 Encrypted_PIN_Translate

| or the method specified by a the rule array keyword. As required by the
| PIN block format, PAN data will be used in the extraction process.

| – Formats the extracted-PIN into the format declared for the output PIN
| block. As required by the PIN block format, the verb incorporates PAN
| data, sequence number, and pad character information in formatting the
| output.

| � The PIN block is encrypted using the outbound key provided the OPINENC
| control vector has the TRANSLAT bit set to 1, and if reformatting is
| selected, the REFORMAT bit also set to 1.

| Restrictions
| The software must include support for the PINS function set.

| Format
| CSNBPTR

| return_code| Output| Integer
| reason_code| Output| Integer
| exit_data_length| Input| Integer
| exit_data| Input| String| exit_data_length bytes
| input_PIN_encrypting_key_identifier| Input| String| 64 bytes
| output_PIN_encrypting_key_identifier| Input| String| 64 bytes
| input_PIN_profile| Input| String array| 8 bytes * 3
| input_PAN_data| Input| String| 12 bytes
| input_PIN_block| Input| String| 8 bytes
| rule_array_count| Input| Integer
| rule_array| Input| String| 8 bytes * rule_array_count
| output_PIN_profile| Input| String array| 8 bytes * 3
| output_PAN_data| Input| String| 12 bytes
| sequence_number| Input| Integer
| output_PIN_block| Output| String| 8 bytes

| Parameters
| For the definitions of the return_code, reason_code, exit_data_length, and
| exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

| input_PIN_encrypting_key_identifier
| The input_PIN_encrypting_key_identifier parameter points to a 64-byte
| internal key token or a key label of an internal key token record in key
| storage.

| The internal key token must contain the input PIN-block encrypting key to be
| used to decrypt the input PIN block. The control vector in the key token
| must specify the IPINENC key type with the TRANSLAT bit set to 1. If the
| REFORMAT keyword is used, both the TRANSLAT bit and the REFORMAT
| bit must be 1 in the control vector.

| output_PIN_encrypting_kKey_identifier
| The output_PIN_encrypting_key_identifier parameter points to the place in
| application data storage that contains a 64-byte internal key token or a key
| label of an internal key token record in key storage. The internal key token
| contains the output PIN-block encrypting key to be used to encrypt the
| output PIN block. The control vector in the key token must specify the
| IPINENC key type with the TRANSLAT bit set to 1. If the REFORMAT
| keyword is used, both the TRANSLAT bit and the REFORMAT bit must be 1
| in the control vector.

8-30 IBM 4758 CCA Services

 Encrypted_PIN_Translate

| input_PIN_profile
| The input_PIN_profile parameter points to three 8-byte character strings,
| which are equivalent to a 24-byte string. For more information about a PIN
| profile, see “PIN Profile” on page 8-9. Be sure to specify the second
| element as “NONE.”

| input_PAN_data
| The input_PAN_data parameter points to a 12-byte field of PAN data. The
| verb uses this data to recover the PIN from the PIN block if you specify the
| REFORMAT keyword and the input PIN profile specifies the ISO-0 keyword
| for the PIN block format.

| Note: When using the ISO-0 format, use the 12 rightmost digits of PAN,
| excluding the check digit.

| input_PIN_block
| The PIN_block_in parameter points to the 8-byte input encrypted PIN block.

| rule_array_count
| The rule_array_count parameter points to an integer for the number of rule
| array elements.

| rule_array
| The rule_array parameter points to an array of one or two 8-byte elements
| each holding a keyword. Each keyword must be uppercase, left-justified,
| and padded on the right with space characters; in this verb the order of the
| keywords is important.

| The first element in the rule array must specify the mode, as shown in
| Figure 8-9.

| If you use the reformat mode, the second element in the rule array must
| specify one of the keywords that indicate a PIN extraction method, as shown

| Element
| Number
|
| Function of Keyword

| 1| Mode

| 2| PIN extraction method

| Figure 8-9. Encrypted_PIN_Translate Rule_Array Keywords (First Element)

| Mode Keyword| Meaning

| TRANSLAT| This keyword specifies that only the PIN encrypting key is
| to be changed. The PIN block format and the contents of
| the PIN block are not changed. The format control
| specifications in the input PIN profile and in the output PIN
| profile are used.

| Note: The PIN block can have a PIN of any length (in the
| range from 4 to 16 bytes).

| REFORMAT| This keyword specifies that one or more of the following
| are to be changed: the PIN block format, the contents of
| the PIN block, or the PIN encrypting key.

 Chapter 8. Financial Services Support Verbs 8-31

 Encrypted_PIN_Translate

| in Figure 8-10. For more information about extraction methods, see “PIN
| Extraction Methods.”

| Notes:

| 1. In the table, the PIN block format keyword is the keyword that you
| specify in the input_PIN_profile parameter or in the output_PIN_profile
| parameter.

| 2. If the PIN block format allows you to choose the PIN extraction method,
| and if you specify a rule array count value of 1, the keyword that is
| listed first in the following table is the default keyword.

| output_PIN_profile
| The output_PIN_profile parameter points to three 8-byte character strings,
| which are equivalent to a 24-byte string; see “PIN Profile” on page 8-9. Be
| sure to specify the second element as “NONE.”

| output_PAN_data
| The output_PAN_data parameter points to a 12-byte field of PAN data. If
| you specify the REFORMAT keyword, and if the output PIN profile specifies
| the ISO-0 keyword for the PIN block format, the verb uses this data to
| format the output PIN block. In any case, ensure that this parameter points
| to a 12-byte variable in application data storage.

| Note: When using the ISO-0 format, use the 12 rightmost digits of PAN,
| excluding the check digit.

| sequence_number
| The sequence_number parameter points to the sequence number integer
| variable. Ensure that this parameter points to an integer variable valued to
| 99999 in application data storage.

| output_PIN_block
| The PIN_block_out parameter points to the re-encrypted output PIN block.

| Figure 8-10. Encrypted_PIN_Translate Rule_Array Keywords (Second
| Element)

| PIN Block
| Format
| Keyword

| PIN Extraction
| Method
| Keyword

|

| Meaning

| 3624| PADDIGIT,
| HEXDIGIT,
| PINLEN04 to
| PINLEN16,
| PADEXIST

| The PIN extraction method keywords
| specify a PIN extraction method for an
| IBM 3624 PIN block format. The first
| keyword, PADDIGIT, is the default PIN
| extraction method for the 3624 PIN
| block format.

| ISO-0| PINBLOCK| This keyword specifies the default PIN
| extraction method for an ISO-0 PIN
| block format.

| ISO-1| PINBLOCK| This keyword specifies the default PIN
| extraction method for an ISO-1 PIN
| block format.

| ISO-2| PINBLOCK| This keyword specifies the default PIN
| extraction method for an ISO-2 PIN
| block format.

8-32 IBM 4758 CCA Services

 Encrypted_PIN_Translate

| Required Commands
| The Encrypted_PIN_Translate verb requires the commands shown in
| Figure 8-11 to be enabled in the active hardware based on the keyword
| specified for translation or reformatting and the format control in the PIN profile.
| You should enable only those commands that are required.

| Figure 8-11. Encrypted_PIN_Translate Required Hardware Commands

|
| TRANSLAT or
| REFORMAT
| Keyword

| Input
| Profile
| Format
| Control
| Keyword

| Output
| Profile
| Format
| Control
| Keyword

|

| Command
| Offset

|

| Command

| TRANSLAT| NONE| NONE| X'00B3'| Translate PIN with No
| Format-Control to No
| Format-Control

| REFORMAT| NONE| NONE| X'00B7'| Reformat PIN with No
| Format-Control to No
| Format-Control

 Chapter 8. Financial Services Support Verbs 8-33

 Encrypted_PIN_Verify

| Encrypted_PIN_Verify (CSNBPVR)

| Platform/
| Product
| OS/2| AIX| NT| Verb Subset

| IBM-4758| X| X| X| PINS

| The Encrypted_PIN_Verify verb extracts a trial PIN (T-PIN) from an encrypted
| PIN block and verifies this value by comparing it to an A-PIN calculated by using
| the specified PIN calculation method. Certain PIN calculation methods modify
| the value of the A-PIN with the clear O-PIN (offset) value prior to the
| comparison.

| The verb can extract a T-PIN from one of the following PIN block formats:

| � IBM 3624
| � ISO-0 (equivalent to ANSI X9.8, VISA-1, and ECI-1 formats).
| � ISO-1 (same as the ECI-4 format)
| � ISO-2

| To calculate the PIN, the verb can use one of the following PIN calculation
| methods:

| � IBM 3624 PIN
| � IBM 3624 PIN Offset
| � NL-PIN-1.
| � IBM German Bank Pool Instution PIN
| � VISA PVV
| � Interbank PIN.

| The input PIN block is deciphered by an IPINENC key.

| To use the verb, specify the following:

| � An input PIN-block encrypting key to decrypt the input PIN block

| � A PIN-verifying key to be used to calculate the PIN

| � A PIN profile for the input PIN block. The profile specifies the format of the
| PIN block, any format control, and any pad digit; see “PIN Profile” on
| page 8-9.

| � When using the ISO-0 block format, a PAN to be used in extracting the PIN;
| see “Personal Account Number (PAN)” on page 8-11.

| � The PIN block that contains the PIN to be verified

| � A rule array keyword to select the PIN calculation method, and optionally a
| PIN extraction method keyword

| � The length of the PIN

| � A decimalization table, account validation data, and for certain calculation
| methods (e.g. IBM-PINO and NL-PIN-1) with the data_array parameter. You
| must also supply the offset data (O-PIN) in the third element for certain
| calculation methods (e.g. IBM-PINO, NL-PIN-1).

8-34 IBM 4758 CCA Services

 Encrypted_PIN_Verify

| The verb does the following:

| � Checks the control vector for the IPINENC key to ensure that the EPINVER
| bit is 1.

| � Decrypts the PIN block in ECB mode.

| � Extracts the T-PIN according to the format-control keyword in the PIN
| profile. The verb uses the PIN extraction method specified with the
| rule_array variable or the default extraction method for the PIN block format.
| Depending on the PIN block format, the verb also uses the pad digit
| specified in the input_PIN_profile variable and/or the PAN specified in the
| PAN_data variable.

| � For a PINVER key, verifies that the EPINVER bit is 1 in the control vector.
| For a PINGEN key, verifies that both the EPINVER bit and bit 22 are 1 in
| the control vector.

| � Calculates the A-PIN.

| � For methods that employ an offset, modifies the A-PIN value with the O-PIN
| value entered in the third element of the data_array variable.

| � Compares the extracted T-PIN with the (modified) A-PIN and reports the
| results in the return_code variable.

| Restrictions
| The software must include support for the PINS function set.

| Format
| CSNBPVR

| return_code| Output| Integer
| reason_code| Output| Integer
| exit_data_length| Input| Integer
| exit_data| Input| String| exit_data_length bytes
| PIN_encrypting_key_identifier| Input| String| 64 bytes
| PIN_verifying_key_identifier| Input| String| 64 bytes
| PIN_profile| Input| String array| 8 bytes * 3
| PAN_data| Input| String| 12 bytes
| encrypted_PIN_block| Input| String| 8 bytes
| rule_array_count| Input| Integer
| rule_array| Input| String| 8 bytes * rule_array_count
| PIN_check_length| Input| Integer
| data_array| Input| String array| 8 Bytes * 3

| Parameters
| For the definitions of the return_code, reason_code, exit_data_length, and
| exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

| PIN_encrypting_key_identifier
| The PIN_encrypting_key_identifier parameter points to a 64-byte internal key
| token or a key label of an internal key token record in key storage. The
| internal key token must contain the input PIN-block encrypting key to be
| used to decrypt the encrypted PIN block. The control vector in the internal
| key token must specify an IPINENC key type and have the EPINVER bit set
| to 1.

 Chapter 8. Financial Services Support Verbs 8-35

 Encrypted_PIN_Verify

| PIN_verifying_key_identifier
| The PIN_verifying_key_identifier parameter points to a 64-byte internal key
| token or a key label of an internal key token record in key storage. The
| internal key token contains the key that verifies the PIN. The control vector
| in the internal key token must specify a PINVER or PINGEN key type. For a
| PINVER key, the EPINVER bit must be 1. For a PINGEN key, both the
| EPINVER bit and bit 22 must be 1.

| PIN_profile
| The PIN_profile parameter points to three 8-byte character strings, which are
| equivalent to a 24-byte string. These character strings contain the following
| information about a formatted PIN:

| � PIN block format
| � Format control
| � Pad digit (if needed).

| For more information about this parameter, see “PIN Profile” on page 8-9.

| PAN_data
| The PAN_data parameter specifies an address that points to the place in
| application data storage that contains a 12-byte field of PAN data. The verb
| uses the PAN data to recover the PIN from the PIN block if the PIN profile
| specifies the ISO-0 keyword for the PIN block format. Otherwise, ensure
| that this parameter points to a 12-byte variable in application data storage.

| Note: When using the ISO-0 format, use the 12 rightmost PAN digits,
| excluding the check digit.

| encrypted_PIN_block
| The encrypted_PIN_block parameter specifies an address that points to the
| place in application data storage that contains the 8-byte encrypted PIN
| block.

| rule_array_count
| The rule_array_count parameter points to an integer for the number of rule
| array elements. The rule array count value must be 1 or 2. If you use the
| default extraction method for the PIN block format, the rule array count
| value is 1.

| rule_array
| The rule_array parameter points to an array of 8-byte elements that contain
| a keyword. Each keyword must be uppercase, left-justified, and padded on
| the right with space characters.

| The first element in the rule array must specify one of the keywords that
| indicate the PIN calculation method, as shown in Figure 8-12.

| Element
| Number
|
| Function of Keyword

| 1| PIN calculation method

| 2| PIN extraction method

8-36 IBM 4758 CCA Services

 Encrypted_PIN_Verify

| The second element in the rule array must specify one of the keywords that
| indicate a PIN extraction method, as shown in Figure 8-13 on page 8-37.

| Notes:

| 1. In the table, the PIN block format keyword is the keyword that you
| specify in the input_PIN_profile parameter.

| 2. If the PIN block format allows you to choose the PIN extraction method,
| and if you specify a rule array count value of 1, the keyword that is
| listed first in the following table is the default keyword.

| PIN_check_length
| The PIN_check_length parameter points to an integer in the range from 4 to
| 16 for the number of digits of PIN information that the verb should verify.

| The verb uses the value in the variable if you specify the IBM-PIN or
| IBM-PINO keyword for the calculation method. The specified number of

| Figure 8-12. Encrypted_PIN_Verify Rule_Array Keywords (First Element)

| PIN Calculation
| Method
| Keyword

|
|
| Meaning

| IBM-PIN| This keyword specifies that the IBM 3624 PIN calculation
| method is to be used.

| IBM-PINO| This keyword specifies that the IBM 3624 PIN Offset
| calculation method is to be used.

| GBP-PIN| This keyword specifies that the IBM German Bank Pool
| Institution PIN calculation method is to be used.

| VISA-PVV| This keyword specifies that the VISA PVV calculation
| method is to be used.

| INBK-PIN| This keyword specifies that the Interbank calculation
| method is to be used.

| Figure 8-13. Encrypted_PIN_Verify Rule_Array Keywords (Second Element)

| PIN Block
| Format
| Keyword

| PIN Extraction
| Method
| Keyword

|
|
| Meaning

| 3624| PADDIGIT,
| HEXDIGIT,
| PINLEN04 to
| PINLEN16,
| PADEXIST

| The PIN extraction method keywords
| specify a PIN extraction method for an
| IBM 3624 PIN block format. The first
| keyword, PADDIGIT, is the default PIN
| extraction method for the 3624 PIN
| block format.

| ISO-0| PINBLOCK| This keyword specifies the default PIN
| extraction method for an ISO-0 PIN
| block format.

| ISO-1| PINBLOCK| This keyword specifies the default PIN
| extraction method for an ISO-1 PIN
| block format.

| ISO-2| PINBLOCK| This keyword specifies the default PIN
| extraction method for an ISO-2 PIN
| block format.

 Chapter 8. Financial Services Support Verbs 8-37

 Encrypted_PIN_Verify

| digits is selected from the low order (right side) of the PIN. Ensure that this
| parameter always points to an integer variable in application data storage.

| Note: The PIN check length must be less than or equal to the PIN length.

| data_array
| The data_array parameter points to three 16-byte character strings, which
| are equivalent to a single 48-byte string. The values in the data array
| depend on the keyword for the PIN calculation method. Each element is not
| always used, but you must always declare a complete data array.

| When using the IBM-PIN, IBM-PINO or GBP-PIN keyword, identify the
| following elements in the data array.

| When using the VISA-PVV keyword, identify the following elements in the
| data array. For more information about these elements, and transaction
| security data for the VISA PVV calculation method, see “VISA PIN
| Validation Value (PVV) Calculation Method” on page E-6.

| Element| Description

| decimalization_table| This element contains the decimalization
| table of 16 characters (0 to 9) that are
| used to convert the hexadecimal digits
| (X'0' to X'F') of the encrypted
| validation data to decimal digits (X'0' to
| X'9').

| validation_data| This element contains one to 16
| characters of account data. The data
| must be left-justified and padded on the
| right with space characters.

| offset data| When using the IBM-PINO keyword, this
| element contains the offset data which
| must be left-justified and padded with
| space characters. The PIN length
| specifies the number of digits that are
| processed for the IBM-PINO PIN
| calculation method.

| When using the IBM-PIN or GBP-PIN
| keyword, this element is ignored, but
| must be declared.

| Element| Description

| transaction_security_parameter| This element contains 16 characters that
| include the following:

| � Eleven (rightmost) digits of PAN data
| � One digit of key index from 1 to 6
| � Four space characters.

| PVV (O-PIN)| This element contains 4 numeric
| characters, which are the referenced
| PVV value. This value is followed by 12
| space characters.

| reserved_3| The information in this element will be
| ignored, but the element must be
| declared.

8-38 IBM 4758 CCA Services

 Encrypted_PIN_Verify

| When using the INBK-PIN keyword, identify the following elements in the
| data array. For more information about these elements and transaction
| security data for the Interbank calculation method, see “Interbank PIN
| Calculation Method” on page E-7.

| Element| Description

| transaction_security_parameter| This element contains 16 numeric
| characters that include the following:

| � Eleven (rightmost) digits of PAN data
| � A constant of 6
| � A 1-digit key index selector from 1 to
| 6
| � Three numeric characters of
| validation data.

| reserved_2| The information in this element will be
| ignored, but the element must be
| declared.

| reserved_3| The information in this element will be
| ignored, but the element must be
| declared.

| Required Commands
| The Encrypted_PIN_Verify verb requires the following commands to be enabled
| in the hardware, based on the keyword specified for the PIN calculation
| methods.

| PIN Calculation
| Method
| Command
| Offset
| Command

| IBM-PIN
| IBM-PINO
| X'00AB'| Verify Encrypted 3624 PIN

| GBP-PIN| X'00AC'| Verify Encrypted German Bank Pool PIN
| VISA-PVV| X'00AD'| Verify Encrypted VISA PVV
| INBK-PIN| X'00AE'| Verify Encrypted Interbank PIN
| NL-PIN-1| X'0232'| Verify Encrypted NL-PIN-1

 Chapter 8. Financial Services Support Verbs 8-39

 SET_Block_Compose

 SET_Block_Compose (CSNDSBC)

Platform/
Product

OS/2 AIX NT Verb Subset

IBM-4758 X X X SET

The SET_Block_Compose verb creates a SET-protocol RSA-OAEP block and
DES encrypts the data block in support of the SET protocols. Optionally the
verb will compute the SHA-1 hash of the supplied data block and include this in
the OAEP block.

 Restrictions
The data block length variable is restricted to 32 mega-bytes.

The DES_key_block_length parameter must point to an integer valued to zero.
The DES_key_block parameter should be a null address pointer, or point to an
unused 64-byte application variable.

| The chaining_key_vector parameter must be a null address pointer, or point to
| an unused 18-byte application variable. This parameter is included to support a
| possible future extension to enable segmented data encryption.

| Note: The API for this verb has been modified from that originally published in
| August, 1997.

 Format
CSNDSBC

return_code Output Integer
reason_code Output Integer
exit_data_length Input Integer
exit_data In/Output String exit_data_length bytes
rule_array_count Input Integer
rule_array Input String rule_array_count * 8 byte
block_contents_identifier Input String 1 byte
XData_string_length Input Integer
XData_string Input String XData_string_length bytes

| data_to_encrypt_length| In/Output| Integer
| data_to_encrypt| Input| String| data_to_encrypt_length bytes
| data_to_hash_length| Input| Integer
| data_to_hash| Input| String| data_to_hash_length bytes
| initialization__vector| Input| String| 8 bytes

RSA_public_key_identifier_length Input Integer
RSA_public_key_identifier Input String RSA_public_key_identifier_length

bytes
DES_key_block_length In/Output Integer
DES_key_block In/Output String DES_key_block_length bytes
RSA-OAEP_block_length In/Output Integer
RSA-OAEP_block In/Output String RSA-OAEP_block_length bytes

| chaining_vector| In/Output| String| 18 bytes
DES_encrypted_block Output String data_block_length bytes

8-40 IBM 4758 CCA Services

 SET_Block_Compose

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

rule_array_count
The rule_array_count parameter is a pointer to an integer containing the
number of elements in the rule_array variable. The value of the
rule_array_count must be one for this verb.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords
are shown below:

Block_contents_identifier
The block_contents_identifier parameter is a pointer to a one-byte string
variable containing a binary value that will be copied into the Block Contents
(BC) field of the SET DB data block. The BC field indicates what data is
carried in the Actual Data Block, ADB, and the format of any extra data
(XData_string).

XData_string_length
The XData_string_length parameter is a pointer to an integer variable
containing the length (in bytes) of the XData_string. The maximum length is
94 bytes.

XData_string
The XData_string parameter is a pointer to the string containing
extra-encrypted data within the OAEP-processed and RSA-encrypted block.
If Xdata_string_length is zero, this parameter is ignored, but it must still be
specified.

| data_to_encrypt_length
| The data_to_encrypt_length parameter is a pointer to an integer variable
| containing the length (in bytes) of the data block that is to be encrypted.
| The maximum length is the same limit as on the Encipher service. On
| output, and if the field is of sufficient length, the variable is updated with the
| actual length of the DES-encrypted data block.

| data_to_encrypt
| The data_to_encrypt parameter is a pointer to a string variable containing
| the data to be DES-encrypted with a single-use 64-bit DES key (generated
| by this service). The data will first be padded by this service according to
| the PKCS #5 padding rule before encryption.

| data_to_hash_length
| The data_to_hash_length parameter is a pointer to an integer variable
| containing the length (in bytes) of the data block that is to be hashed.

Keyword Meaning

Block Type (Required)

| SET1.00 | Specifies structure of the RSA-OAEP encrypted block is
| defined by the SET protocol.

 Chapter 8. Financial Services Support Verbs 8-41

 SET_Block_Compose

| The hash is an optional part of the OAEP block. If the data_to_hash_length
| is zero, no hash will be included in the OAEP block. If the length is not
| zero, a SHA-1 hash of the data_to_hash will be included in the OAEP block.

| data_to_hash
| The data_to_hash parameter is a pointer to a string variable containing the
| data that is to be hashed and included in the OAEP block.

| No hash is computed or inserted into the OAEP block if the
| data_to_hash_length is zero.

| initialization_vector
| The initialization_vector parameter is a pointer to an eight-byte string
| variable containing the initialization_vector the verb uses with the input data.

RSA_public_key_identifier_length
The RSA_public_key_identifier_length parameter is a pointer to an integer
variable containing the length (in bytes) of the variable that contains the key
token or the key label of the PKA96 RSA public key used to encipher the
OAEP block. The maximum size that should be specified is 2500 bytes.

RSA_public_key_identifier
The RSA_public_key_identifier parameter is a pointer to a string variable
containing the PKA96 RSA key token with the RSA public key used to
perform the RSA encryption of the OAEP block.

DES_key_block_length
The DES_key_block_length parameter is a pointer to an integer variable
containing the length (in bytes) of the variable identified by the
DES_key_block parameter. The variable must be set to zero.

DES_key_block
The DES_key_block parameter must be a null pointer, or a pointer to an
unused 64-byte application variable.

RSA-OAEP_block_length
The RSA-OAEP_block_length parameter is a pointer to an integer variable
containing the length (in bytes) of the RSA-OAEP block variable used to
hold the RSA-OAEP block. The length must be at least 128 bytes. On
output, and if the field is of sufficient length, the variable is updated with the
actual length of the RSA-OAEP block.

RSA-OAEP_block
The RSA-OAEP_block parameter is a pointer to a string variable to contain
the RSA-OAEP block.

| chaining_vector
| The chaining_vector parameter is a pointer to an 18-byte string variable that
| the security server uses as a work area to carry segmented data between
| calls. The parameter must contain a null pointer or a pointer to an unused
| 18-byte application variable.

DES_enciphered_data_block
The DES_enciphered_data_block parameter is a pointer to a string variable
to receive the DES-encrypted data block (clear text was identified with the

| data_to_encrypt variable). The starting address must not fall inside the
| data_to_encrypt area.

8-42 IBM 4758 CCA Services

 SET_Block_Compose

 Required Commands
The SET_Block_Compose verb requires the x'010B' command to be enabled in
the hardware.

 Chapter 8. Financial Services Support Verbs 8-43

 SET_Block_Decompose

 SET_Block_Decompose (CSNDSBD)

Platform/
Product

OS/2 AIX NT Verb Subset

IBM-4758 X X X SET

The SET_Block_Decompose verb decomposes the RSA-OAEP block and DES
decrypts the data block in support of the SET protocols.

 Restrictions
The maximum data block that can be supplied for DES decryption is the limit on
the Decipher service.

The DES_key_block_length parameter must point to an integer valued to zero.
The DES_key_block parameter should be a null address pointer, or point to an
unused 64-byte application variable.

| The chaining_Key_vector parameter must be a null address pointer, or point to
| an unused 18-byte application variable. This parameter is included to support a
| possible future extension to enable segmented data encryption.

| Note: The API for this verb has been modified from that originally published in
| August, 1997.

 Format
CSNDSBD

return_code Output Integer
reason_code Output Integer
exit_data_length Input Integer
exit_data In/Output String exit_data_length bytes
rule_array_count Input Integer
rule_array Input String 8 bytes
RSA-OAEP_block_length Input Integer
RSA-OAEP_block Input String RSA-OAEP_block_length bytes
DES_encrypted_data_block_length In/Output Integer
DES_encrypted_data_block Input String DES_encrypted_data_block_length

bytes
| initialization__vector| Input| String| 8 bytes

RSA_private_key_identifier_length Input Integer
RSA_private_key_identifier Input String RSA_private_key_identifier_length

bytes
DES_key_block_length In/Output Integer
DES_key_block In/Output String DES_key_block_length bytes
block_contents_identifier Output String 1 byte
XData_string_length In/Output Integer
XData_string Output String XData_string_length bytes

| chaining__vector| In/Output| String| 18 bytes
data_block Output String DES_encrypted_data_block_length

bytes
| data_to_hash_length| In/Output| Integer
| data_to_hash| Output| String| hash_block_length bytes

8-44 IBM 4758 CCA Services

 SET_Block_Decompose

 Parameters
For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-10.

rule_array_count
The rule_array_count parameter is a pointer to an integer containing the
number of elements in the rule_array variable. The value of the
rule_array_count must be one for this verb.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords
are shown below:

RSA-OAEP_block_length
The RSA-OAEP_block_length parameter is a pointer to an integer that is the
length in bytes of the RSA-OAEP block field. This length must be 128
bytes.

RSA-OAEP_block
The RSA-OAEP_block parameter is a pointer to the string that contains
RSA-OAEP block. When the OAEP is returned, it is left justified within the
RSA-OAEP block field.

DES_encrypted_data_block_length
The DES_encrypted_data_block_length parameter is a pointer to an integer
variable containing the length (in bytes) of the DES_encrypted_data_block.
On output, the variable is updated with the actual length of the decrypted
data with padding removed.

DES_encrypted_data_block
The DES_encrypted_data_block parameter is a pointer to a string variable
containing the DES-encrypted data block.

| initialization_vector
| The initialization_vector parameter is a pointer to an eight-byte string
| variable containing the initialization_vector the verb uses with the input data.

RSA_private_key_identifier_length
The RSA_private_key_identifier_length parameter is a pointer to an integer
variable containing the length (in bytes) of the variable that contains the key
token or the key label of the PKA96 RSA private key used to decipher the
OAEP block. The maximum size that should be specified is 2500 bytes.

RSA_private_key_identifier
The RSA_private_key_identifier parameter is a pointer to a string variable
containing the PKA96 RSA key token with the RSA private key used to
perform the RSA decryption of the OAEP block.

Keyword Meaning

Block Type (Required)

SET1.00 Specifies structure of the RSA-OAEP encrypted block is
defined by SET protocol.

 Chapter 8. Financial Services Support Verbs 8-45

 SET_Block_Decompose

DES_key_block_length
The DES_key_block_length parameter is a pointer to an integer variable
containing the length (in bytes) of the field DES key block. The length must
be 64 bytes.

DES_key_block
The DES_key_block parameter is a pointer to a string variable to contain the
generated internal token of a DES DATA key. Your application must not
change the data in this string.

block_contents_identifier
The block_contents_identifier parameter is a pointer to a one-byte string
variable to contain the the Block Contents (BC) field of the SET DB data
block. The BC field indicates what data is carried in the Actual Data Block,
ADB, and the format of any extra data (XData string).

XData_string_length
The XData_string_length parameter is a pointer to an integer variable
containing the length (in bytes) of the XData_string field. The minimum
length is 94 bytes. On output, and if the field is of sufficient length, the
variable is updated with the actual length of the XData_string returned.

XData_string
The XData_string parameter is a pointer to the string variable containing the
extra-encrypted data within the OAEP-processed and RSA-decrypted block.

| chaining_vector
| The chaining_vector parameter is a pointer to an 18-byte string variable that
| the security server uses as a work area to carry segmented data between
| calls. The parameter must contain a null pointer or a pointer to an unused
| 18-byte application variable.

data_block
The data_block parameter is a pointer to a string variable to contain the
decrypted DES encrypted data block. The starting address must not fall
inside the DES encrypted data block area. Padding characters are
removed.

| data_to_hash_length
| The hash_block_length parameter is a pointer to an integer variable that is
| set to the length of the SHA-1 hash returned in the hash_block parameter.

| On input, this parameter must be set to the size of the buffer pointed to by
| parameter hash_block. An error will be returned if the buffer is not large
| enough to hold the 20 byte SHA-1 hash.

| On output, this field is updated to reflect the length of the hash data
| returned in hash_block, either 0 or 20 bytes.

| data_to_hash
| The hash_block parameter is a pointer to a string variable which will receive
| the SHA-1 hash extracted from the OAEP block.

8-46 IBM 4758 CCA Services

 SET_Block_Decompose

 Required Commands
The SET_Block_Decompose verb requires the x'010C' command to be enabled
in the hardware.

 Chapter 8. Financial Services Support Verbs 8-47

8-48 IBM 4758 CCA Services

Appendix A. Return Codes and Reason Codes

This appendix describes the return codes and the reason codes that a verb uses to
report the results of processing.

Each return code is associated with a reason code that supplies details about the
result of verb processing. A successful result can include return code 0 and reason
code 0 or another combination of a return code and a reason code. Generally, you
should be able to base your application program design on the return codes; the
reason codes amplify the meaning supplied by the return codes.

A verb supplies a return code and a reason code in the return_code parameter and
in the reason_code parameter.

 Return Codes
A return code provides a summary of the results of verb processing. A return code
can have the values shown in Figure A-1.

Figure A-1. Return Code Values

Hex
Value

Decimal
Value

Meaning

00 00 This return code indicates a normal completion of verb processing. To provide additional
information, a few nonzero reason codes are associated with this return code.

04 04 This return code is a warning that indicates that the verb completed processing; however, an
unusual event occurred. The event is most likely related to a problem created by the user, or
it is a normal occurrence based on the data supplied to the verb.

08 08 This return code indicates that the verb stopped processing. Either an error occurred in the
application program or a possible recoverable error occurred in a Transaction Security
System product.

0C 12 This return code indicates that the verb stopped processing. Either a Transaction Security
System product is not available or a processing error occurred in a Transaction Security
System product. The reason is most likely related to a problem in the setup of the hardware
or in the configuration of the software.

10 16 This return code indicates that the verb stopped processing. A processing error occurred in
a Transaction Security System product. If these errors persist, a repair of the Transaction
Security System hardware or a correction to the Transaction Security System software may
be required.

 Reason Codes
A reason code details the results of verb processing. Every reason code is
associated with a single return code. A nonzero reason code can be associated
with a zero return code.

Figure A-2 on page A-2 shows the reason codes, listed in numeric sequence and
grouped by their corresponding return code. The return codes appear in decimal
form, and the reason codes appear in decimal and hexadecimal (hex) form.

 Copyright IBM Corp. 1997-98 A-1

Return Code 0
Figure A-2. Reason Codes for Return Code 0

Return
Code
Dec

Reason
Code
Dec (Hex) Meaning

0 000 (000) The verb completed processing successfully.
0 002 (002) One or more bytes of a key do not have odd parity.
0 008 (008) No value is present to be processed.
0 151 (097) The key token supplies the MAC length or MACLEN4 is the

default for key tokens that contain MAC or MACVER keys.
0 1000 (3E8) The key value in an internal key token was dynamically

re-enciphered.
0 701 (2BD) A new master key value was found to have duplicate thirds.
0 702 (2BE) A provided master key part did not have odd parity.
0 10000 (2710) The verb dynamically updated and returned one or more keys

that the application program provided.
0 10001 (2711) A key encrypted under the old master key was used.

A-2 IBM 4758 CCA Services

Return Code 4
Figure A-3 (Page 1 of 2). Reason Codes for Return Code 4

Return
Code
Dec

Reason
Code
Dec (Hex) Meaning

4 001 (001) The verification test failed.
4 013 (00D) The key token has an initialization vector, and the

initialization_vector parameter value is nonzero. The verb
uses the value in the key token.

4 016 (010) The rule array and the rule array count are too small to
contain the complete result.

4 017 (011) The requested ID is not present in any profile in the specified
cryptographic hardware component.

4 018 (012) The time that was specified by the time-out value expired.
4 019 (013) The financial PIN in a PIN block is not verified, or the

password in a Cryptographic Adapter or the PIN in a Personal
Security Card is not verified.

4 020 (014) If you provided text with an odd length for the
Character/Nibble_Translate verb, the right nibble of the last
byte is padded with X'00'.

4 021 (015) The key is marked inactive in flag byte 1 of the key token.
4 052 (034) A request for END-EX is issued while the server is already in

non-exclusive control mode.
4 053 (035) A request for BEGIN-EX is issued while the server is already

in exclusive control mode.
4 123 (07B) A key-encrypting key count value is zero, and the key

notarization or offset process is requested.
4 158 (09E) The Key_Token_Change or Key_Record_Delete verb did not

process any records.
4 166 (0A6) The control vector is not valid because of parity bits,

anti-variant bits, or inconsistent KEK bits, or because bits 59 to
62 are not zero.

4 179 (0B3) The control-vector keywords that are in the rule array are
ignored.

4 182 (0B6) The actual size of the allocated Personal Security card block is
not a multiple of 8 bytes.

4 260 (104) The plaintext is not a multiple of eight bytes. The security
server padded the plaintext to a multiple of 8 bytes for the
SNA-SLE ciphering method.

4 282 (11A) The coprocessor intrusion latch is set.
4 283 (11B) The coprocessor battery is low.
4 284 (11C) The requested command completed, but the device is in the

initialization state.
4 285 (11D) The Personal Security card detected an EEPROM checksum

error while reading a data block. Data was returned, but some
part of the data is incorrect.

4 286 (11E) The signature verification overlay file was not found.
4 287 (11F) The PIN block format is not consistent.
4 296 (128) Signature enrollment completed, but the signature was of

marginal length.
4 316 (13C) The signature was not verified successfully.
4 348 (15C) A probable operator error occurred. Signature verification or

re-enrollment was attempted; however, no signature reference
information is stored on the Personal Security Card.

4 349 (15D) A probable operator error occurred. Signature enrollment was
attempted; however, signature reference information already
exists on the Personal Security card.

 Appendix A. Return Codes and Reason Codes A-3

Figure A-3 (Page 2 of 2). Reason Codes for Return Code 4

Return
Code
Dec

Reason
Code
Dec (Hex) Meaning

4 350 (15E) A probable operator error occurred; the verb stopped
processing because no data was received from the signature
verification pen.

4 356 (164) A probable operator error occurred; the verb stopped
processing because the signature verification pen touched the
paper before the beep sounded.

4 358 (166) A probable operator error occurred; the enrollment signatures
were too short or the signatures were too inconsistent.

4 421 (1A5) The PCF-KEY-PREFIX parameter card was not found. The
default value of $$CUSP$$ will be used.

4 429 (1AD) The digital signature is not verified. The verb completed its
processing normally.

A-4 IBM 4758 CCA Services

Return Code 8
Figure A-4 (Page 1 of 8). Reason Codes for Return Code 8

Return
Code
Dec

Reason
Code
Dec (Hex) Meaning

8 010 (00A) The value that the p_origin parameter specifies is not valid.
8 011 (00B) The value that the d_origin parameter specifies is not valid.
8 012 (00C) The token-validation value in an external key token is not

valid.
8 022 (016) The ID number in the request field is not valid.
8 023 (017) An access to the data area was outside the data-area

boundary.
8 024 (018) The master key verification pattern is not valid .
8 025 (019) The value that the text_length parameter specifies is not valid.
8 026 (01A) The value of the PIN is not valid.
8 027 (01B) The card in the security interface unit is not a supported type

of card.
8 028 (01C) The object name is not valid.
8 029 (01D) The token-validation value in an internal key token is not valid.
8 030 (01E) No record with a matching key label is in key storage.
8 031 (01F) The control vector did not specify a DATA key.
8 032 (020) A key label format is not valid.
8 033 (021) A rule array or other parameter specifies a keyword that is not

valid.
8 034 (022) A rule array keyword combination is not valid.
8 035 (023) A rule array count is not valid.
8 036 (024) The action command must be specified in the rule array.
8 037 (025) The object type must be specified in the rule array.
8 038 (026) No record in key storage exists for a key label in a

cross-domain key record.
8 039 (027) A control vector violation occurred.
8 040 (028) The service code does not contain numerical character data.
8 041 (029) The keyword supplied with the key_form parameter is not

valid.
8 042 (02A) The expiration date is not valid.
8 043 (02B) The keyword supplied with the key_length or the

key_token_length parameter is not valid.
8 044 (02C) A record with a matching key label already exists in key

storage.
8 045 (02D) The input character string cannot be found in the code table.
8 046 (02E) The card-validation value (CVV) is not valid.
8 047 (02F) A source key token is unusable because it contains data that

is not valid or undefined.
8 048 (030) One or more keys has a master key verification pattern that is

not valid.
8 049 (031) A key-token-version-number found in a key token is not

supported.
8 050 (032) The key-serial-number specified in the rule array is not valid.
8 051 (033) The value that the text_length parameter specifies is not a

multiple of eight bytes.
8 054 (036) The value that the pad_character parameter specifies is not

valid.
8 055 (037) The initialization vector in the key token is enciphered.
8 056 (038) The master key verification pattern in the OCV is not valid.
8 058 (03A) The parity of the operating key is not valid.
8 059 (03B) Control information (for example, the processing method or the

pad character) in the key token conflicts with that in the rule
array.

 Appendix A. Return Codes and Reason Codes A-5

Figure A-4 (Page 2 of 8). Reason Codes for Return Code 8

Return
Code
Dec

Reason
Code
Dec (Hex) Meaning

8 060 (03C) A cryptographic request with the FIRST or MIDDLE keywords
and a text length less than 8 bytes is not valid.

8 061 (03D) The keyword supplied with the key_type parameter is not
valid.

8 062 (03E) The source key was not found.
8 063 (03F) A key token had an invalid token header (for example, no t an

internal token).
8 064 (040) The RSA key is not permitted to perform the requested

operation. Likely causes are key distribution usage is not
enabled for the key.

8 065 (041) The key token failed consistency checking.
8 066 (042) The recovered PKCS encryption block failed validation

checking.
8 067 (043) RSA encryption failed.
8 068 (044) RSA decryption failed.
8 070 (046) The block name that the block_ID parameter specifies is not

valid.
8 071 (047) The block name was not found on the card.
8 072 (048) The value that the size parameter specifies is not valid (too

large, negative, or zero).
8 078 (04E) The block name that the block_ID parameter specifies already

exists on the card.
8 079 (04F) The key token does not have a key-register number, the

key-register number specifies an unavailable key register, or
the same key-encrypted key was specified for both export
keys.

8 080 (050) The keyword supplied with the control parameter is not valid.
8 081 (051) The modulus length (key size) exceeds the allowable

maximum.
8 084 (054) The time-out value is not valid.
8 085 (055) The date or the time value is not valid.
8 086 (056) The cryptographic period specification is not valid.
8 087 (057) The key-reference number is not valid.
8 090 (05A) Access is denied for this verb; the authorization level is too

low, or the authorization level is not identical.
| 8| 091 (05B)| The time sent in your logon request was more than five
| minutes different from the clock in the secure module.
| 8| 092 (05C)| Your user profile has expired.
| 8| 093 (05D)| Your user profile has not yet reached its activation date.
| 8| 094 (05E)| Your authentication data (for example, passphrase) has
| expired.

8 095 (05F) Access to the data is not authorized.
| 8| 096 (05F)| An error occurred reading the secure clock.

8 100 (064) The PIN length is not valid.
8 101 (065) The PIN check length is not valid. It must be in the range

from 4 to the PIN length inclusive.
8 102 (066) The value of the decimalization table is not valid.
8 103 (067) The value of the validation data is not valid.
8 104 (068) The value of the customer-selected PIN is not valid, or the PIN

length does not match the value supplied with the PIN_length
parameter or defined by the PIN block format specified in the
PIN profile.

8 105 (069) The cryptographic hardware component reported that the user
ID or role ID is not valid.

A-6 IBM 4758 CCA Services

Figure A-4 (Page 3 of 8). Reason Codes for Return Code 8

Return
Code
Dec

Reason
Code
Dec (Hex) Meaning

8 106 (06A) The PIN block format keyword is not valid.
8 107 (06B) The format control keyword is not valid.
8 108 (06C) The value of the PAD data is not valid.
8 109 (06D) The extraction method keyword is not valid.
8 110 (06E) The value of the PAN data is not numeric character data.
8 111 (06F) The sequence number is not valid.
8 112 (070) The PIN offset is not valid.
8 114 (072) The PVV value is not valid.
8 116 (074) The clear PIN value is not valid.
8 120 (078) An origin or destination identifier is not valid.
8 121 (079) The value of the inbound_key or source_key parameter is not

valid.
8 122 (07A) The value of the inbound_KEK_count or outbound_count

parameter is not valid.
8 124 (07C) An ANSI key-encrypting key is not notarized.
8 125 (07D) The control vector for an ANSI key-encrypting key does not

allow notarization, and the notarization process is requested.
8 152 (098) The security interface unit and the Personal Security card do

not provide the requested cipering method.
8 153 (099) The text length exceeds the system limits, or you attempted

data chaining with the Security Interface Unit and the Personal
Security card.

8 154 (09A) The key token that the key_identifier parameter specifies is not
an internal key token or a key label.

8 155 (09B) The value that the generated_key_identifier parameter
specifies is not valid, or it is not consistent with the value that
the key_form parameter specifies.

8 156 (09C) A keyword is not valid with the specified parameters.
8 157 (09D) The key-token type is not specified in the rule array.
8 159 (09F) The keyword supplied with the option parameter is not valid.
8 160 (0A0) The key type and the key length are not consistent.
8 161 (0A1) The value that the data_set_name_length parameter specifies

is not valid.
8 162 (0A2) The offset value is not valid.
8 163 (0A3) The value that the data_set_name parameter specifies is not

valid.
8 164 (0A4) The starting address of the output area falls inside the input

area.
8 165 (0A5) The carry_over_character_count that is specified in the

chaining vector is not valid.
| 8| 168 (0A8)| A hexadecimal MAC value contains characters that are not
| valid, or the MAC on a request or reply failed because the
| user session key in the host and the adapter card do not
| match.

8 169 (0A9) An MDC_Generate text length error occurred.
8 170 (0AA) The minimum authorization level value is not valid. The valid

range is from 0 to 255.
8 171 (0AB) The control_array_count value is not valid.
8 172 (0AC) The device_type field of the key token is not valid.
8 173 (0AD) The key tokens specify different cryptographic hardware

components.
8 175 (0AF) The key token cannot be parsed because no control vector is

present.
8 176 (0B0) The binary_time_stamp value is not valid.

 Appendix A. Return Codes and Reason Codes A-7

Figure A-4 (Page 4 of 8). Reason Codes for Return Code 8

Return
Code
Dec

Reason
Code
Dec (Hex) Meaning

8 177 (0B1) The time_stamp value is not valid.
8 178 (0B2) The device type must be specified in the rule array.
8 180 (0B4) A null key token was presented for parsing.
8 181 (0B5) The key token is not valid. The first byte is not valid, or an

incorrect token type was presented.
8 183 (0B7) The key type is not consistent with the key type of the control

vector.
8 184 (0B8) An input pointer is null (workstation security API only).
8 185 (0B9) The data-set file does not exist or a disk I/O error occurred.
8 186 (0BA) The key-type field in the control vector is not valid.
8 187 (0BB) The requested MAC length (MACLEN4, MACLEN6,

MACLEN8) is not consistent with the control vector (key-a,
key-b).

8 189 (0BD) The key cannot be stored in the key register.
8 190 (0BE) This function cannot operate on a key stored in a key register.
8 191 (0BF) The requested MAC length (MACLEN6, MACLEN8) is not

consistent with the control vector (MAC-LN-4).
8 192 (0C0) A key-storage record contains a record validation value that is

not valid.
8 193 (0C1) The specified cryptographic hardware component is the

Personal Security card; therefore, you must use a key-register
number.

8 198 (0C6) The user can be identified only through signature verification.
The signature verification pen is not installed.

8 203 (0CB) The name_list_array_count value is too small or not valid.
The value must be equal to or greater than the number of
block names. The maximum value is 255.

8 204 (0CC) A memory allocation failed (workstation security API only).
8 205 (0CD) The X9.23 ciphering method is not consistent with the use of

the CONTINUE keyword.
8 304 (130) The secure session between the components cannot be

established.
8 323 (143) The ciphering method that the Decipher verb used does not

match the ciphering method that the Encipher verb used.
8 335 (14F) Either the specified cryptographic hardware component or the

environment does not implement this function.
8 340 (154) One of the input control vectors has odd parity.
8 343 (157) Either the data block or the buffer for the block is too small.
8 345 (159) Insufficient storage space exists for data in the data block

area.
8 346 (15A) The requested command is not valid in the current state of the

cryptographic hardware component.
8 358 (166) The PPV enroll or re-enroll function was attempted, but the

signatures were too inconsistent.
8 360 (168) A PPV function was attempted, but the signature that the

signature verification pen gathered was too short.
8 362 (16A) An enroll or a re-enroll was attempted, but not enough space

exists on the Personal Security card to hold the signature
reference.

8 364 (16C) The download code table was full when a Load MDC
command was attempted.

8 365 (16D) The download code name already existed in the download
code table when a Load MDC command was attempted.

A-8 IBM 4758 CCA Services

Figure A-4 (Page 5 of 8). Reason Codes for Return Code 8

Return
Code
Dec

Reason
Code
Dec (Hex) Meaning

8 366 (16E) The download code name did not exist when a Load Code
command was attempted.

8 367 (16F) The program was not loaded when the EXEC program option
of the Load Code command was attempted.

8 368 (170) The requested command is not valid when the device is in the
initialization state.

8 370 (172) The requested option is not valid under the current
circumstances (for example, when you issue a Read Block
command with the option for reading a secured block, but the
requested block is defined as non-secured).

8 371 (173) You are not authorized to use this key. This might be due to
an incorrect security token.

8 372 (174) The cryptographic hardware component reported an unknown
command. This might be caused by the Command
Unavailable bit being turned on for this command in the
Command Configuration Table.

8 373 (175) The security token is not correct. (A security token is a
password to a key register.)

8 374 (176) Less data was supplied than expected or less data exists than
was requested.

8 377 (179) A key storage error occurred.
8 379 (17B) This verb requires a secure session to be established.
8 382 (17E) A time limit violation occurred.
8 383 (17F) The user re-inserted the card or a card-eject failure occurred.

A manual eject is required.
8 385 (181) The cryptographic hardware component reported that the data

passed as part of a command is not valid for that command.
8 387 (183)
8 388 (184) A control vector with an extension was received; however, no

control-vector extension table was loaded.
8 389 (185) The first byte of a control-vector extension was not X'00'.
8 390 (186) A control vector extension is not valid for this key type.
8 391 (187) The index byte of the extension (for example, the second byte)

was X'00', or the index byte of the extension was greater than
the number of entries in the currently loaded control-vector
extension table.

8 392 (188) One or more bits were turned on in the control-vector
extension for which the corresponding bit was turned off in the
selected control-vector extension table entry.

8 393 (189) The command was not processed because the profile cannot
be used.

8 394 (18A) The command was not processed because the expiration date
was exceeded.

8 395 (18B) The command was not processed because processing on a
holiday was attempted.

8 397 (18D) The command was not processed because the active profile
requires the user to be pre-verified.

8 398 (18E) The command was not processed because the maximum
PIN/password failure limit is exceeded.

8 401 (191) The data key conversion user exit, CSUDMGR9, returned a
return code of 4. The data key conversion is rejected.

8 402 (192) The data key conversion user exit, CSUDMGR9, returned a
return code of 8. The data key conversion is terminated.

 Appendix A. Return Codes and Reason Codes A-9

Figure A-4 (Page 6 of 8). Reason Codes for Return Code 8

Return
Code
Dec

Reason
Code
Dec (Hex) Meaning

8 403 (193) The data key conversion user exit, CSUDMGR9, returned an
invalid reason code. The process is terminated.

8 406 (196) A PIN formatting error occurred.
8 407 (197) A PIN block consistency check error occurred.
8 412 (19C) The signature has more than 25 segments.
8 420 (1A4) One or more key records are temporarily locked by an

in-process key-storage synchronization operation. Please try
again (MVS host security API only).

8 421 (1A5) The request cannot be processed because the key-storage
synchronization server is dumping key storage or changing the
master key (MVS host security API only).

8 601 (259) The object name that is being registered already exists in the
table.

8 602 (25A) The object that is being loaded is not registered.
8 603 (25B) The object that is being managed is not known. It probably is

not registered.
8 604 (25C) The user-defined function facility does not recognize the

requested user-defined function.
8 605 (25D) The number of output bytes is greater than the number that is

permitted.
8 606 (25E) A stack operation of a user-defined function addressed an

entry that is beyond the limits of the stack.
8 608 (260) The first specified Save Area for this DIVISA instruction in a

user-defined function contains a zero.
8 609 (261) The target of a JUMP instruction is outside the user-defined

function Set Code area.
8 610 (262) The target of a UCALL instruction is outside the user-defined

function Set Code area.
8 611 (263) The user-defined function attempted to use a control vector

that has non-even parity bytes.
8 612 (264) The user-defined function attempted to use a key that has

non-odd parity bytes.
8 613 (265) The user-defined function’s access to the I/O buffer is outside

the I/O buffer boundary.
8 614 (266) The user-defined function attempted a POP instruction, but the

stack was empty. The top-of-stack pointer indicated the initial
stack address.

8 615 (267) The user-defined function attempted a PUSH instruction, but
the stack was full. The top-of-stack pointer indicated the last
stack address.

8 616 (268) The system attempted to register an object, but the internal
object table was full.

8 617 (269) The system attempted to load an external object, but external
objects cannot be loaded into the coprocessor.

8 618 (26A) The system attempted to load a user-defined program, but the
MCS storage did not contain enough space to hold the
program.

8 619 (26B) The calculated MDC did not match the MDC that is registered
for the object.

8 620 (26C) The requested object is not loaded into the coprocessor.
8 621 (26D) The level of the UDF_MACS.INC file that this user-defined

function used is not compatible with the level of microcode.
8 622 (26E) The user-defined function nesting level is greater than 16.

A-10 IBM 4758 CCA Services

Figure A-4 (Page 7 of 8). Reason Codes for Return Code 8

Return
Code
Dec

Reason
Code
Dec (Hex) Meaning

8 623 (26F) The user-defined function UCALL nesting level is greater than
16.

8 624 (270) The user-defined program attempted to call the user-defined
function, but the user-defined function’s name or extension
was not valid.

8 625 (271) The total object size is too large.
8 626 (272) The code-only of the external object cannot be deleted.
8 627 (273) The object is already loaded.
8 628 (274) The format of the user-defined program is not valid.
8 630 (276) A user-defined program attempted to access memory outside

the memory that is allocated to the user-defined program.
8 703 (2BF) A new master key value was found to be one of the weak

DES keys.
8 704 (2C0) The new master key would have the same master key

verification pattern as current the current master key.
8 705 (2C1) The same key-encrypting key was specified for both exporter

keys.
8 706 (2C2) Pad count in deciphered data is not valid.
8 707 (2C3) The Master Key registers are not in the state required for the

requested function.
8 713 (2C9) The algorithm or function is not available on current hardware

(DES on a CDMF-only system).
8 714 (2CA) A reserved parameter was not a null pointer or an expected

value.
8 718 (2CE) The hash of the data block in the decrypted RSA-OAEP block

does not match the hash of the decrypted data block.
8 719 (2CF) The block format (BT) field in the decrypted RSA-OAEP block

does not have the correct value.
8 720 (2D0) The initial byte (I) in the decrypted RSA-OAEP block does not

have a valid value.
8 721 (2D1) The V field in the decrypted RSA-OAEP does not have the

correct value.
8 752 (2F0) The key-storage file path is not usable.
8 753 (2F1) Opening the key-storage file failed.
8 754 (2F2) An internal call to the key_test command failed.
8 756 (2F4) Creation of the key-storage file failed.
8 760 (2F8) An RSA-key modulus length in bits or in bytes is not valid.
8 761 (2F9) An RSA-key exponent length is not valid.
8 762 (2FA) A length in the key value structure is not valid.
8 763 (2FB) The section identification number within a key token is invalid.
8 770 (302) The PKA key token has an invalid field.
8 771 (303) The user is not logged on.
8 772 (304) The requested role was not found.
8 773 (305) The requested profile was not found.
8 774 (306) The profile already exists.
8 775 (307) The supplied data is not replaceable.
8 776 (308) The requested Id is already logged on.
8 777 (309) The authentication data is invalid.
8 778 (30A) The checksum for the role is in error.
8 779 (30B) The checksum for the profile is in error.
8 780 (30C) There is an error in the profile data.
8 781 (30D) There is an error in the role data.
8 782 (30E) The Function-Control-Vector header is invalid.

 Appendix A. Return Codes and Reason Codes A-11

Figure A-4 (Page 8 of 8). Reason Codes for Return Code 8

Return
Code
Dec

Reason
Code
Dec (Hex) Meaning

8 783 (30F) The command is not permitted by the Function-Control-Vector
value.

8 784 (310) The operation you requested cannot be performed because
the user profile is in use.

8 785 (311) The operation you requested cannot be performed because
the role is presently in use.

| 8| 1025 (401)| Registered Public Key or Retained Private Key Name already
| exists.
| 8| 1026 (402)| Key name (Registered Public Key or Retained Private Key)
| does not exist.
| 8| 1027 (403)| Environment Identification Data is already set.
| 8| 1028 (404)| Master Key Share Data is already set.
| 8| 1029 (405)| There is an error in the Environment Identification Data.
| 8| 1030 (406)| There is an error in using the Master Key Share Data.
| 8| 1031 (407)| There is an error in using Registered Public Key or Retained
| Private Key data.
| 8| 1032 (408)| There is an error in using Registered Public Key Hash data.
| 8| 1033 (409)| The Public Key Hash was not registered.
| 8| 1034 (40A)| The Public Key was not registered.
| 8| 1035 (40B)| The Public Key Certificate Signature was not verified.
| 8| 1037 (40D)| There is a Master Key Shares distribution error.
| 8| 1038 (40E)| The Public Key Hash is not marked for cloning.
| 8| 1039 (40F)| The Registered Public Key Hash does not match the
| Registered Hash.
| 8| 1040 (410)| The Master Key Share Enciphering Key failed encipher.
| 8| 1041 (411)| The Master Key Share Enciphering Key failed decipher.
| 8| 1042 (412)| The Master Key Share Digital Signature Generate failed.
| 8| 1043 (413)| The Master Key Share Digital Signature Verify failed.
| 8| 1044 (414)| There is an error in reading VPD data from the adapter.
| 8| 1045 (415)| Encrypting the Cloning Information failed.
| 8| 1046 (416)| Decrypting the Cloning Information failed.
| 8| 1047 (417)| There is an error loading New Master Key from Master Key
| Shares.
| 8| 1048 (418)| The Clone Information has one or more invalid sections.
| 8| 1049 (419)| The Master Key Share Index is not valid.
| 8| 1100 (44C)| General hardware device driver execution error.
| 8| 1101 (44D)| Hardware device driver invalid parameter.
| 8| 1102 (44E)| Hardware device driver invalid buffer length.
| 8| 1103 (44F)| Hardware device driver too many opens. Cannot open device
| now.
| 8| 1104 (450)| Hardware device driver access denied. Cannot access device.
| 8| 1105 (451)| Hardware device driver device is busy and cannot perform
| request now.
| 8| 1106 (452)| Hardware device driver buffer too small. Received data
| truncated.
| 8| 1107 (453)| Hardware device driver request interrupted. Request aborted.
| 8| 1108 (454)| Hardware device driver security tamper. Hardware intrusion
| detected.

A-12 IBM 4758 CCA Services

Return Code 12
Figure A-5. Reason Codes for Return Code 12

Return
Code
Dec

Reason
Code
Dec (Hex) Meaning

12 093 (05D) The security server is not available or not loaded.
12 097 (061) File space in key storage is insufficient to complete the

operation.
12 194 (0C2) No internal working storage is available in the Network

Security Processor.
12 195 (0C3) The Network Security Processor group is not valid (MVS host

security API only).
12 196 (0C4) The device driver, the security server, or the directory server is

not installed, or is not active, or in AIX, file permissions are not
valid for your application.

12 197 (0C5) A key-storage file I/O error occurred, or a file was not found
(workstation security API only).

12 199 (0C7) A Network Security Processor is not available (MVS host
security API only).

12 201 (0C9) The Network Security Processor subsystem is not active (MVS
host security API only).

12 202 (0CA) The Network Security Processor subsystem was not loaded
(MVS host security API only).

12 206 (0CE) The key-storage file is not valid, or the master-key verification
failed.

12 207 (0CF) The verification method flags in the profile are not valid.
12 324 (144) The device driver attempted to allocate memory, but no

memory is available.
12 338 (152) This cryptographic hardware component is not installed.
12 339 (153) A system error occured in interprocess communication routine.
12 428 (1AC) The BWK parameter file (DDNAME=BWKPARM) did not open

properly.
12 607 (25F) A microcode service that the user-defined function microcode

called returned an unexpected error.
12 629 (275) The user-defined program overlay file has not loaded yet.
12 764 (2FC) The master key(s) are not loaded and therefore a key could

not be recovered or enciphered.
12 768 (300) One or more paths for key storage directory operations is

improperly specified.

 Appendix A. Return Codes and Reason Codes A-13

Return Code 16
Figure A-6 (Page 1 of 2). Reason Codes for Return Code 16

Return
Code
Dec

Reason
Code
Dec (Hex) Meaning

16 099 (063) An unrecoverable error occurred in the security server; contact
your IBM service representative.

16 099 (063) A software error occurred (OS/400 security API only).
16 150 (096) An error occurred in the Network Security Processor MVS

support program.
16 167 (0A7) An error occurred in the security server, possibly due to

inconsistent device-driver and security-server logic.
16 200 (0C8) The cross-memory server or request manager abended (MVS

host security API only).
16 298 (12A) The MDC of the signature verification overlay file did not

verify, or the format of the signature verification overlay file is
not valid.

16 326 (146) An error occurred when reading the signature verification
overlay file.

16 327 (147) An error occurred when opening the signature verification
overlay file.

16 336 (150) An error occurred in a cryptographic hardware component.
16 337 (151) A device software error occurred.
16 347 (15B) A communications error occurred.
16 351 (15F) An unknown signature verification error occurred.
16 352 (160) A signature data acquisition error occurred.
16 353 (161) An unknown error occurred during a card-read function.
16 354 (162) An unknown error occurred during a card-write function.
16 355 (163) An unknown error occurred during a create-block function.
16 357 (165) A signature verification function was attempted, but the

signature reference information that the signature verification
pen sent was not valid.

16 359 (167) The signature verification function completed, but a failure
occurred when notifying the security interface unit or the
Personal Security card.

16 361 (169) A signature verification function was attempted, but the
security interface unit pen buffer had an overrun error.

16 363 (16B) The signature verification option is not valid.
16 375 (177) The Personal Security Card processor indicated that an error

occurred while writing to the EEPROM.
16 376 (178) Data that was read from the Personal Security card’s

EEPROM did not match the data that was written there.
16 399 (18F) The cryptographic adapter intrusion latch reset failed.
16 413 (19D) A signature verification communication error occurred.
16 414 (19E) A signature verification file-length error occurred.
16 415 (19F) A signature verification tone-generation error occurred.
16 416 (1A0) A signature verification enroll-authorization communication

error occurred.
16 444 (1BC) The verb-unique-data had an invalid length.
16 556 (22C) The request parameter block failed consistency checking.
16 708 (2C4) Inconsistent data was returned from the cryptographic engine.
16 709 (2C5) Cryptographic engine internal error, could not access the

master key data.
16 710 (2C6) An unrecoverable error occurred while attempting to update

master key data items.
16 712 (2C8) An unexpected error occured in the master key manager.
16 712 (2C8) An unexpected error occured in the master key manager.

A-14 IBM 4758 CCA Services

Figure A-6 (Page 2 of 2). Reason Codes for Return Code 16

Return
Code
Dec

Reason
Code
Dec (Hex) Meaning

16 769 (301) The host system code or the CCA application in the
&retc.769b.

Return Code 24
Figure A-7. Reason Codes for Return Code 24

Return
Code
Dec

Reason
Code
Dec (Hex) Meaning

24 057 (039) The verb processing is rejected because the server is in
exclusive control mode with another application program.

24 057 (039) The verb processing is rejected because the server is in
exclusive control mode with another application program.

 Appendix A. Return Codes and Reason Codes A-15

A-16 IBM 4758 CCA Services

 Appendix B. Data Structures

This appendix describes the following data structures:

 � Key tokens
� Chaining vector records
� Key storage records
� Key record list data set
� Access control data structures

| � Master key shares
| � Distributed function control vector.

 Key Tokens
This section describes the DES and RSA key tokens used with the product. A “key
token” is a data structure that contains information about a key and usually contains
a key or keys.

in general, keys available to an application program, or keys held in key storage,
are enciphered by some other key. When a key is enciphered by the CCA-node's
master key, the key is designated an “internal” key and is held in an internal key
token structure. Therefore, an internal key token is used to hold a key and its
related information for use at a specific node.

An external key token is used to communicate a key between nodes, or to hold a
key in a form not enciphered by a CCA master key. DES keys and RSA private
keys in an external key token are multiply-enciphered by a transport key. In a
CCA-node, a transport key is a double-length DES Key-Encrypting-Key.

The remainder of this section describes the structures used with the Fortress
product family:

� Token master key verification pattern
 � Token-validation value
 � Record-validation value
� Null key token
� DES key tokens

– Internal DES key token
– External DES key token
– DES key token flag bytes

� RSA key tokens
� Chaining Vector Records
� Key Storage Records
� Key Record List Data Set

Master Key Verification Pattern
A Master Key Verification Pattern (MKVP) within an internal key token permits the
cryptographic engine to detect if the key within the token is enciphered by an
available master key. These steps produce the master key verification pattern:

� Prefix the 24-byte master key with a header byte of X'01'
� Calculate a SHA-1 hash on the 25-byte string

 Copyright IBM Corp. 1997-98 B-1

� Return the high-order two bytes of the 20-byte SHA-1 hash as the master key
verification pattern.

A CCA node will not permit the introduction of a new master key value that has the
same two-byte verification pattern as either the current-master-key verification
pattern or as the old-master-key verification pattern.

Token-Validation Value and Record-Validation Value
The Token-Validation Value (TVV) is a checksum that helps ensure that an
application program-provided key token is valid. A Token-Validation Value is the
sum (two’s complement ADD), ignoring carries and overflow, on the key token by
operating on four bytes at a time, starting with bytes zero to three and ending with
bytes 56 to 59. The four-byte strings are treated as big-endian binary numbers with
the high-order byte stored in the lower address. DES key token bytes 60 to 63
contain the Token-Validation Value.

When an application program supplies a key token, the CCA node checks the
Token-Validation Value. When a CCA verb generates a DES key token, it
generates a Token-Validation Value in the key token.

The record-validation value (RVV) used in DES key storage records uses the same
algorithm as the Token-Validation Value. The RVV is the sum of the bytes in
positions 0 to 123 except for bytes 60 to 63.

Null Key Token
Figure B-1 shows the null key token format. With some CCA verbs, a null key
token can be used instead of an internal or an external key token. A verb generally
accepts a null key token as a signal to use a key token with default values in lieu of
the null key token.

A null key token is indicated by the value X'00' at offset zero in a key token, a key
token variable, or a key identifier variable.

PKA key storage uses an 8-byte structure, shown below, to represent a null key
token. The PKA_Key_Record_Read verb will return this structure if a key record
with a null key token is read. Also, if you examine PKA key storage, you should
expect key records without a key token containing specific key values to be
represented by a “null key token.” In the case of key storage records, the record
length (offset 2 and 3) can be greater than 8.

The key_import verb accepts input with offset zero valued to X'00'. In this special
case, the verb treats information starting at offset 16 as an enciphered, single
length key. In a very limited sense, this special case can be considered a “null key
token.”

Figure B-1. PKA Null Key Token Format

Offset Length Meaning

00 01 X'00' This indicates that this is a null key token

01 X'00' Version zero

02 02 X'0008' Indicates a PKA null key token.

04 04 Reserved

B-2 IBM 4758 CCA Services

Internal DES Key Token
Figure B-2. Internal Key Token Format

Offset Length Meaning

00 1 X'01' (a flag that indicates an internal key token)

01 1 Reserved, binary zero

02 2 Master key verification pattern

04 1 The version number (X'03')

05 1 Reserved, binary zero

06 1 Flag byte 1; for more information, see Figure B-4 on page B-4

07 1 Reserved, binary zero

08-15 8 Reserved, binary zero

16-23 8 The single-length encrypted key or the left half of a double-length encrypted
key.

24-31 8 Null, or the right half of a double-length operational key

32-39 8 The control-vector base

40-47 8 Null, or the control vector base for the second eight-byte portion of a 16-byte
key

48-59 12 Reserved, binary zero

60-63 4 The token-validation value

 Appendix B. Data Structures B-3

External DES Key Token
Figure B-3. External Key Token Format

Offset Length Meaning

00 1 X'02' (a flag that indicates an external key token)

01 3 Reserved, binary zero

04 1 The version number (X'00')

05 1 Reserved, binary zero

06 1 Flag byte 1; for more information, see Figure B-4

07 1 Flag byte 2; for more information, see Figure B-5

Reserved, generally X'00', except X'02' will be tolerated.

08-15 8 Reserved, binary zero

16-23 8 The single-length encrypted key or the left half of a double-length encrypted
key.

24-31 8 Null, or the right half of a double-length encrypted key

32-39 8 The control-vector base

40-47 8 Null, or the control vector base for the second 8-byte portion of a 16-byte key

48-59 12 Reserved, binary zero

60-63 4 The token-validation value

DES Key Token Flag Byte 1
Figure B-4. Key Token Flag Byte 1

Bits (MSB...LSB) 1 Meaning

1xxx xxxx The encrypted key value, and as used in an implementation, the Master
Key Version Number or verification pattern are present

0xxx xxxx An encrypted key is not present
x0xx xxxx The control-vector value is not present
x1xx xxxx The control-vector value is present

All other bit combinations are reserved; undefined bits should be zero.

DES Key Token Flag Byte 2
Figure B-5. Key Token Flag Byte 2

Bits (MSB...LSB) Meaning

 For Key-Encrypting Keys
0000 0010 This Key-Encrypting key will import and export external key tokens using

the Transaction Security System key token format.

1 MSB is the most significant bit; LSB is the least significant bit.

B-4 IBM 4758 CCA Services

RSA Key Token Formats
An RSA key token contains various items, some of which are optional, and some of
which can be present in different forms. The token is composed of concatenated
sections that must occur in the prescribed order.

As with other CCA key tokens, both internal and external forms are defined.

� An RSA internal key token contains a private key that is protected by
encrypting the information using the CCA-node master key. The internal key
token will also contain private key blinding information, the modulus and the
public-key exponent. A master key verification pattern is also included to
enable determination that the proper master key is available to process the
protected private key. The format and content of an internal key token is local
to a specific node and product implementation, and does not represent an
interchange format.

� An RSA external key token contains the modulus and the public-key exponent.
Also, the external key token optionally contains the private key. If present, the
private key may be in the clear or may be protected by encryption using a
double-length DES transport key. An external key token is an inter-product
interchange data structure.

The private key can be represented in one of two forms:

� By a modulus and the private-key exponent
� By a set of numbers used in the Chinese-remainder-theorem.

Protection of the private key is provided by encrypting a confounder (a random
number) and the private key information. The private key in an external key token
is protected by a double-length transport key and the EDE2 algorithm, see “CCA
RSA Private Key Encryption and Decryption Process” on page C-10. The private
key and the blinding values in an internal key token are protected by the
triple-length master key and the EDE3 algorithm, see “CCA RSA Private Key
Encryption and Decryption Process” on page C-10.

An RSA key token is the concatenation of this ordered set of sections:

� A token header:

– An internal header (first-byte X'1F')
– An external header (first-byte X'1E')

� An optional private-key section in one of these formats:

– 1024-bit modular-exponentiation format, fixed length (section identifier
X'02')

– 2048-bit Chineese-remainder format, variable length (section identifier
X'05')

� A public-key section (section identifier X'04')

� An optional key-name section (section identifier X'10')

| � An optional certificate(s) section (section identifier X'40')

� A private-key blinding section on an internal key token (section identifier is
X'FF').

| The key tokens can be built with the PKA_Key_Token_Build verb.

 Appendix B. Data Structures B-5

RSA Key Token Integrity: If the token contains private key information, then the
integrity of the information within the token can be verified by computing the SHA-1
hash values that are found in the private-key sections (portions of the key token).
The SHA-1 hash value at offset four within the private-key section requires access
to the cleartext values of the private-key components. The cryptographic engine
will verify this hash quantity whenever it retrieves the secret key for productive use.

A second SHA-1 hash value is located at offset 30 within the private key section.
This hash value is computed on the remainder of the key token following the
private-key section. The value of this SHA-1 hash is included in the computation of
the hash at offset four. As with the offset-four hash value, the hash at offset 30 is
validated whenever a private key is recovered from the token for productive use.

In addition to the hash checks, various token format and content checks are
performed to validate the key values.

The optional private-key name section can be used by access monitor systems
(e.g. RACF) to ensure that the application program is entitled to employ the
particular private key.

RSA Key Token Sections
These key-token-section data structures are described in the following tables:

� Figure B-6 on page B-7, RSA Token Header
� Figure B-7 on page B-7, RSA Private Key, 1024-Bit Modular-Exponentiation

Format
� Figure B-8 on page B-8, RSA Private Key, 2048-Bit Chineese-Remainder

Format
� Figure B-9 on page B-9, RSA Public Key
� Figure B-10 on page B-9, RSA Private-key Name

| � Figure B-11 on page B-10, RSA Public-key Certificate(s)
� Figure B-18 on page B-13, RSA Private-key Blinding Information

Notes:

1. All length fields are in binary.

2. All binary fields (exponents, lengths, etc.) are stored with the high-order byte
first (left, low-address, S/390 format); thus the significant bits are to the right
and preceded with zero-bits to the width of a field.

3. In variable length binary fields that have an associated field-length value,
leading bytes that would contain X'00' can be dropped and the field shortened
to contain the significant bits.

B-6 IBM 4758 CCA Services

Figure B-6. RSA Token Header

Offset
(Bytes)

Length
(Bytes)

Description

000 001 Token identifier

X'1E' External token; the optional private key is either in cleartext or
enciphered by a transport key-encrypting key.

X'1F' Internal token; the private key is enciphered by the master key.

001 001 Version, X'00'

002 002 Length of the key token structure

004 004 Reserved, binary zero

Figure B-7. RSA Private Key, 1024-Bit Modular-Exponentiation Format

Offset
(Bytes)

Length
(Bytes)

Description

000 001 X'02', Section identifier, RSA private key, modular-exponent format
(RSA-PRIV)

001 001 X'00', Version

002 002 Length of the RSA private-key section X'016C' (364 decimal)

004 020 SHA-1 hash value of the private-key subsection cleartext, offset 28 to the
section end

024 002 Reserved, binary zero

026 002 Master key verification pattern in an internal key token, else X'0000'

028 001 Key format and security

X'00' Unencrypted RSA private-key subsection identifier
X'82' Encrypted RSA private-key subsection identifier

029 001 Reserved, binary zero

030 020| SHA-1 hash of the optional key-name, etc. sections; if there is no name
| section or other optional section, then 20 bytes of X'00'.

050 001 Key usage flag

X'00' Signature usage only
X'80' Signature and symmetric key management usage permitted

051 009 Reserved, binary zero

060 024 Reserved, binary zero

052 Start of the optionally-encrypted secure subsection

084 024 Random number, confounder

108 128 Private-key exponent, d. d=e-1mod((p-1)(q-1)), and 1<d<n where e is the
public exponent.

End of the optionally encrypted subsection; all of the fields starting with the confounder
field and ending with the variable length pad field are enciphered for key confidentiality
when the key format and security flags (offset 28) indicate that the private key is
enciphered.

236 128 Modulus, n. n=pq where p and q are prime and 2512<n<21024

 Appendix B. Data Structures B-7

Figure B-8 (Page 1 of 2). Private Key, 2048-Bit Chineese-Remainder Format

Offset
(Bytes)

Length
(Bytes)

Description

000 001 X'05', Section identifier, RSA private key, CRT (RSA-OPT) format

001 001 X'00', Version

002 002 Length of the RSA private-key section, 76 +ppp +qqq +rrr +sss +ttt +uuu
+xxx +nnn

004 020 SHA-1 hash value of the private-key subsection cleartext, offset 28 to the
end of the modulus.

024 002 Length in bytes of the optionally-encrypted secure subsection, or X'0000' if
the subsection is not encrypted

026 002 Master key verification pattern in an internal key token, else X'0000'

028 001 Key format and security

X'40' Unencrypted RSA private-key subsection identifier, Chinese remainder
form

X'42' Encrypted RSA private-key subsection identifier, Chinese remainder
form

029 001 Reserved, binary zero

030 020| SHA-1 hash of the optional key-name, etc. sections; if there is no name
| section or other optional section, then 20 bytes of X'00'.

050 001 Key usage flag

X'00' Signature usage only
X'80' Signature and symmetric-key-management usage permitted

051 001 Reserved, binary zero

052 Start of the optionally-encrypted secure subsection

052 008 Random number, confounder

060 002 Length of the prime number, p, in bytes: ppp

062 002 Length of the prime number, q, in bytes: qqq

064 002 Length of the dp, in bytes: rrr

066 002 Length of the dq, in bytes: sss

068 002 Length of the Ap, in bytes: ttt

070 002 Length of the Aq, in bytes: uuu

072 002 Length of the modulus, n., in bytes: nnn

074 002 Length of the padding field, in bytes: xxx

076 ppp Prime number, p

076
+ppp

qqq Prime number, q

076
+ppp
+qqq

rrr dp = d mod(p-1)

076
+ppp
+qqq
+rrr

sss dq = d mod(q-1)

B-8 IBM 4758 CCA Services

Figure B-8 (Page 2 of 2). Private Key, 2048-Bit Chineese-Remainder Format

Offset
(Bytes)

Length
(Bytes)

Description

076
+ppp
+qqq
+rrr

+sss

ttt Ap = qp-1 mod(n)

076
+ppp
+qqq
+rrr

+sss
+ttt

uuu Aq = (n+1-Ap)

076
+ppp
+qqq
+rrr

+sss
+ttt

+uuu

xxx X'00' padding of length xxx bytes such that the length from the start of the
random number above to the end of the padding field is a multiple of eight
bytes

End of the optionally-encrypted subsection; all of the fields starting with the confounder
field and ending with the variable length pad field are enciphered for key confidentiality
when the key format-and-security flags (offset 28) indicate that the private key is
enciphered.

076
+ppp
+qqq
+rrr

+sss
+ttt

+uuu
+xxx

nnn Modulus, n. n=pq where p and q are prime and 2512<n<22048

Figure B-9. RSA Public Key

Offset
(Bytes)

Length
(Bytes)

Description

000 001 X'04', Section identifier, RSA public key

001 001 X'00', Version

002 002 Section length, 12+xxx+yyy

004 002 Reserved, binary zero

006 002 RSA public-key exponent field length in bytes, “xxx”

008 002 Public-key modulus length in bits.

010 002 RSA public-key modulus field length in bytes, “yyy”

Note: If the token contains an RSA private-key section, this field length, yyy,
should be zero. The RSA private-key section will contain the modulus.

012 xxx| Public-key exponent, e (this field length will generally be 1, 3, or 64 to 256
| bytes). e must be odd and 1<e<n. (e is frequently valued to 3 or 216+1

(=65 537), otherwise e is of the same order of magnitude as the modulus)

Note: You can import an RSA public key having an exponent valued to two
(2). Such a public key can correctly validate an ISO 9796-1 digital signature.
However, the current product implementation will not generate an “RSA” key
with a public exponent valued to two (a “Rabin” key).

012
+xxx

yyy Modulus, n. n=pq where p and q are prime and 2512<n<22048. This field
will be absent when the modulus is contained in the private-key-section. If
present, the field length will be 64 to 256 bytes

 Appendix B. Data Structures B-9

| RSA Public-key Certificate Section: An optional public key certificate(s) section
| can be included in an RSA key token. The section consists of:

| � The section header (identifier X'40')
| � A public key subsection
| � An optional certificate information subsection with any or all of these elements:
| – User data
| – EID
| – Serial number
| � A self-signature subsection.

| The section (as with the rest of the key token) is composed of a series of
| “tag-length-variable” (TLV) items to form a self-defining data structure. One or
| more TLV items can be included in the variable portion of a higher level TLV item.

| The section header is described followed by descriptions of the TLV items that can
| be included in the section.

Figure B-10. RSA Private-key Name

Offset
(Bytes)

Length
(Bytes)

Description

000 001 X'10', Section identifier, private-key name

001 001 X'00', Version

002 002 Section length, X'0044' (68 decimal)

004 064 Private-key name, left-justified, padded with space characters (X'20'). The
private-key name can be used by an access control system to validate the
calling application's entitlement to employ the key

| Figure B-11. RSA Public-key Certificate(s) Section Header

| Offset
| (Bytes)
| Length
| (Bytes)
| Description

| 000| 001| X'40', Section identifier, certificate

| 001| 001| X'00', Version

| 002| 002| Section length; includes:

| � Section header
| � Public key subsection (except for a signature usage in
| Access_Control_Maintenance and Cryptographic_Facility_Query verbs)
| � Information subsection (optional)
| � Signature subsection(s).

B-10 IBM 4758 CCA Services

Figure B-12. RSA Public-key Certificate(s) Public Key Subsection

Offset
(Bytes)

Length
(Bytes)

Description

| 000| 001| X'41', Public Key Subsection identifier

| 001| 001| X'00', Version

| 002| 002| Subsection length, 12+xxx+yyy

| 004| 002| RSA public-key exponent field length in bytes,

| 006| 002| RSA public-key exponent field length in bytes, “xxx”

| 008| 002| Public-key modulus length in bits

| 010| 002| RSA public-key modulus field length in bytes, “yyy”

| 012| xxx| Public-key exponent, e (this field length will generally be 1, 3, or 64 to 256
| bytes). e must be odd and 1<e<n. (e is frequently valued to 3 or 216+1
| (=65 537), otherwise e is of the same order of magnitude as the modulus)

| Note: You can import an RSA public key having an exponent valued to two
| (2). Such a public key can correctly validate an ISO 9796-1 digital signature.
| However, the current product implementation will not generate an “RSA” key
| with a public exponent valued to two (a “Rabin” key).

| 012+xxx| yyy| Modulus, n. n=pq where p and q are prime and 2512<n<22048. This field
| will be absent when the modulus is contained in the private-key-section. If
| present, the field length will be 64 to 256 bytes

Figure B-13. RSA Public-key Certificate(s) Optional Information Subsection Header

Offset
(Bytes)

Length
(Bytes)

Description

| 000| 001| X'42', Information Subsection Header

| 001| 001| X'00', Version

| 002| 002| Subsection length, 4+iii

| 004| iii| The information field that will contain any of the includable TLV entities:

| � User data (Id = 50)
| � EID (Id = 51)
| � Serial number (Id = 52)

Figure B-14. RSA Public-key Certificate(s) User Data TLV

Offset
(Bytes)

Length
(Bytes)

Description

| 000| 001| X'50', User Data TLV Header

| 001| 001| X'00', Version

| 002| 002| TLV length, 4+uuu

| 004| uuu| User provided data. 0 ≤ uuu ≤ 64

Figure B-15. RSA Public-key Certificate(s) Environment Identifier (EID) TLV

Offset
(Bytes)

Length
(Bytes)

Description

| 000| 001| X'51', Private Key Environment Identifier TLV Header

| 001| 001| X'00', Version

| 002| 002| X'0014', TLV length, 20

| 004| 016| EID string of the CCA node that generated the public (and private) key.
| (This TLV must be provided in a skeleton key token with usage of the
| PKA_Key_Generate verb. The verb will fill in the EID string prior to certifying
| the public key.)

 Appendix B. Data Structures B-11

| Figure B-16. RSA Public-key Certificate(s) Serial Number TLV

| Offset
| (Bytes)
| Length
| (Bytes)
| Description

| 000| 001| X'52', Serial Number TLV Header

| 001| 001| X'00', Version

| 002| 002| X'000C', TLV length, 12

| 004| 008| Serial number of the Coprocessor that generated the public (and private) key.
| (This TLV must be provided in a skeleton key token with usage of the
| PKA_Key_Generate verb. The verb will fill in the serial number prior to
| certifying the public key.)

Figure B-17. RSA Public-key Certificate(s) Signature Subsection

Offset
(Bytes)

Length
(Bytes)

Description

| 000| 001| X'45', Signature Subsection Header

| 001| 001| X'00', Version

| 002| 002| Subsection length, 70+sss

| 004| 001| Hashing algorithm identifier; X'01' signifies use of the SHA-1 hashing
| algorithm.

| 005| 001| Signature formatting identifier; X'01' signifies use of the ISO-9796 process.

| 006| 064| Signature-key identifier; the key label of the key used to generate the
| signature.

| 070| sss| The signature field.

| The signature is calculated on data that begins with the Signature Section
| Identifier (X'40') through the byte immediately preceding this signature field.

| Note: Note that more than one Signature Subsection can be included in a Signature Section; this
| accommodates the possibility of a self-signature as well as a device-key signature.

B-12 IBM 4758 CCA Services

RSA Private-key Blinding Information:

Figure B-18. RSA Private-key Blinding Information

Offset
(Bytes)

Length
(Bytes)

Description

000 001 X'FF', Section identifier, private-key blinding information

001 001 X'00', Version

002 002 Section length, 34 + rrr + iii

004 020 SHA-1 hash value of the internal information subsection cleartext, offset 28 to
the section end. This hash value is checked after an enciphered private key
is deciphered for use.

024 002 Length in bytes of the encrypted secure subsection

026 002 Reserved, binary zero

028 Start of the encrypted secure subsection

028 002 Length of the random number r, in bytes: rrr

030 002 Length of the random number inverse r-1, in bytes: iii

032 002 Length of the padding field, in bytes xxx

034 rrr Random number r (used in blinding)

034
+rrr

iii Random number r-1 (used in blinding)

034
+rrr
+iii

xxx 0x00 padding of length xxx bytes such that the length from the start of the
encrypted subsection to the end of the padding field is a multiple of eight
bytes.

End of the encrypted subsection.

Chaining Vector Records
The chaining_vector parameter specifies an address that points to the place in
main storage that contains an 18-byte work area that is required with the Cipher,
MAC_Generate and MAC_Verify, verbs. The application program should not
change the chaining vector information. The verb uses the chaining vector to carry
information between procedure calls.

Figure B-19. Cipher, MAC_Generate, and MAC_Verify Chaining Vector Format

Offset Length Meaning

00-07 8 The cryptographic Output Chaining Vector (OCV) of the service. When used
with the MAC_Generate and MAC_Verify verbs, the OCV is enciphered as a
cryptographic variable

08 1 The count of the bytes that are carried over and not processed (from 0 to 7)

09-15 7 The bytes that are carried over and left-justified

16 2 The token master-key verification pattern

 Appendix B. Data Structures B-13

Key Storage Records
Key storage exists as an online, Direct Access Storage Device (DASD)-resident
data set for the storage of key records. Key records contain a key label, space for
a key token, and control information. The first two records in key storage contain
key-storage control information that includes the key verification information for the
master key that is used to multiply-encipher the keys that are held in key storage.

Figure B-20 shows the format of the first record in the file header of the key
storage file. This record contains the default master-key verification pattern, and
part of the file description.

Figure B-21 on page B-15 shows the format of the second record in the file header
of the key storage file. This record contains the rest of the file description for key
storage.

Figure B-22 on page B-15 shows the format of the records that contain key tokens.

Figure B-20. Key Storage File Header, Record 1

Offset Length Meaning

00 04 The total length of this key record.

04 04 The record validation value.

08 64 The key label without separators.
$$FORTRESS$REL01$MASTERKEYVERIFY$PATTERN .

72 15 The date and time of when this record was created. The date string consists
of an 8 digit date and a 6 digit time (ccyymmddhhmmssz) where:

� cc - century
� yy - year
� mm - month
� dd - day
� hh - Hour in 24 hour format (00-24).
� mm - Minutes.
� ss - Seconds.
� z - String terminator (0x00)

87 15 The date and time of when this record was last updated. This field has the
same format as the created date.

102 26 Reserved

128 01 An indicator that this is either an internal DES or PKA key token.

129 01 Reserved

130 02 Token length which is a value of 64.

132 04 Reserved

136 16 The master key verification pattern of the current master key in the
cryptographic facility when this file was initialized.

152 24 The first 24 bytes of the file description (the remaining 40 bytes are stored in
the second record).

176 12 Reserved

188 04 The token validation value. Bytes 128 through 191 are considered to be the
64 byte token.

B-14 IBM 4758 CCA Services

Figure B-21. Key Storage File Header, Record 2

Offset Length Meaning

00 04 The total length of this key record.

04 04 The record validation value.

08 64 The key label without separators.

For the DES key storage file the key label is
$$FORTRESSDESREL01KEYSTORAGE$FILE$HEADER .

For the PKA key storage file the key label is
$$FORTRESSPKAREL01KEYSTORAGE$FILE$HEADER .

72 15 The date and time of when this record was created. This field has the same
format as the created date in Figure B-20.

87 15 The date and time of when this record was last updated. This field has the
same format as the created date in Figure B-20.

102 26 Reserved

128 01 An indicator that this is either an internal DES or PKA key token.

129 01 Reserved

130 02 Token length which is a value of 64.

132 04 Reserved

136 40 The last 40 bytes of the file description (the first 24 bytes were stored in the
first record).

176 12 Reserved

188 04 The token validation value. Bytes 128 through 191 are considered to be the
64 byte token.

Figure B-22. Key Record Format in Key Storage

Offset Length Meaning

00 04 The total length of this key record.

04 04 The record validation value.

08 64 The key label without separators.

72 15 The date and time of when this record was created. This field has the same
format as the created date in Figure B-20 on page B-14.

87 15 The date and time of when this record was last updated. This field has the
same format as the created date in Figure B-20 on page B-14.

102 26 Reserved

128 ?? A DES or PKA key token.

 Appendix B. Data Structures B-15

Key Record List Data Set
There are two Key_Record_List verbs, one for the DES key store and one for the
PKA key store. Each creates an internal data set that contains information about
specified key records in key storage. Both verbs return the list in a data set,
KYRLTnnn.LST, where nnn is the numeric portion of the name and nnn starts at
001 and increments to 999 and then wraps back to 001. For the DES key store,
the data set is stored in the subdirectory specified by the optional environmental
variable, CSUDESLD. If CSUDESLD is not set, x:\KEYDIR is used where x is the
current disk. For the PKA key store, the data set is stored in the subdirectory
specified by the optional environmental variable, CSUPKALD. If CSUPKALD is not
set, x:\PKADIR is used where x is the current disk. For information about the
Key_Record_List verbs, see “Key_Record_List” 7-7.

The data set has a header record, followed by zero to n detail records, where n is
the number of key records with matching key labels.

Figure B-23 (Page 1 of 2). Key Record List Data Set Format

Offset Length Meaning

Header Record (Part 1)

 0 24 This field contains the installation-configured listing header (the default value
for the DES key store is DES KEY RECORD LIST and for the PKA key store
is PKA KEY RECORD LIST).

 24 2 This field contains spaces for separation.

 26 19 This field contains the date and the time when the list was generated. The
format is ccyy-mm-dd hh:tt:ss, where:

cc Is the century
yy Is the year
mm Is the month
dd Is the day
hh Is the hour
tt Is the minute
ss Is the second.

A space character separates the day and the hour.

 45 5 This field contains spaces for separation.

 50 6 This field contains the number of detail records.

 56 2 This field contains spaces for separation.

 58 4 This field contains the length of each detail record, in character form, and
left-justified. (The length is 154.)

 62 4 This field contains the offset to the first detail record, in character form, and
left-justified. (The offset is 154.)

 66 9 This field is reserved filled wilth space characters.

 75 2 This field contains carriage return/line feed (CR/LF).

Header Record (Part 2)

 77 64 This field contains the key-label pattern that you used to request the list.

141 11 This field is reserved filled wilth space characters.

152 2 This field contains a carriage return or line feeds (CR/LF).

B-16 IBM 4758 CCA Services

Figure B-23 (Page 2 of 2). Key Record List Data Set Format

Offset Length Meaning

Detail Record (Part 1)

 0 1 This field contains an asterisk (*) if the key-storage record did not have a
correct record validation value; this record should be considered to be a
potential error.

 1 2 This field contains spaces for separation.

 3 64 This field contains the key label.

 67 8 This field contains the key type. If a null key token exists in the record or if
the key token does not contain the key value, this field is set to NO-KEY.
For the DES key storage, if the key token does not contain a control vector,
this field is set to NO-CV. If the control vector cannot be decoded to a
recognized key type, this field is set to ERROR, and an asterisk (*) is set into
the record at offset 0. For PKA key storage, the possible key types are:
RSA-PRIV, RSA-PUBL, or RSA-OPT.

 75 2 This field contains a carriage return or line feeds (CR/LF).

Detail Record (Part 2)

77/0 4 For an internal token, this field will contain the Master key verification pattern
in the token, else it is filled with space characters.

81/4 1 This field contains spaces for separation

82/5 8 Reserved, filled with space characters.

90/13 2 This field contains spaces for separation.

92/15 19 This field contains the date and time when the record was created. The
format is ccyy-mm-dd hh:tt:ss, where:

cc Is the century
yy Is the year
mm Is the month
dd Is the day
hh Is the hour
tt Is the minute
ss Is the second.

A space character separates the day and the hour.

111/34 2 This field contains spaces for separation.

113/36 19 This field contains the last time and date when the record was updated. The
format is ccyy-mm-dd hh:tt:ss, where:

cc Is the century
yy Is the year
mm Is the month
dd Is the day
hh Is the hour
tt Is the minute
ss Is the second.

A space character separates the day and the hour.

132/55 1 This field contains a space character for separation.

133/56 8 This field contains type of token, INTERNAL, EXTERNAL or NO-KEY (null
token). Anything else, this field is set of ERROR and an asterisk (*) is set
into the record offset 0 field.

141/64 11 Reserved, filled with space characters.

152/75 2 This field contains a carriage return (CR) or line feeds (LF).

 Appendix B. Data Structures B-17

Access Control Data Structures
The following sections define the data structures that are used in the access control
system.

Unless otherwise noted, all two-byte and four-byte integers are in big-endian
format; the high order byte of the value is in the lowest numbered address in
memory.

 Role Structure
This section describes the data structures used with roles.

Basic Structure of a Role
The following figure describes how the Role data is structured. This is the format
used when role data is transferred to or from the coprocessor, using verbs
CSUAACI or CSUAACM.

Bytes Field

 ┌───────┐

2 │ │ Role structure version (X'ð1', X'ðð')

 ├───────┤

2 │ │ Role structure length (bytes)

├───────┴─────────────────────────────────── ─ ────────────┐

 2ð │ │ Comment

├───────┬─────────────────────────────────── ─ ────────────┘

 2 │ │ Checksum

 ├───────┤

 2 │ │ Reserved

 ├───────┴───────────────────────┐

 8 │ │ Role ID

 ├───────┬───────────────────────┘

2 │ │ Required Authentication Strength

 ├───────┤

2 │ │ Lower time limit

 ├───────┤

2 │ │ Upper time limit

 ├───┬───┘

 1 │ │ Valid DOW

 ├───┤

 1 │ │ Reserved

├───┴─────────────────────────────────────── ─ ────────────┐

variable │ │ Permitted Operations

└─── ─ ────────────┘

Figure B-24. Role layout

The checksum is defined as the exclusive-OR (XOR) of each byte in the role
structure. The high-order byte of the checksum field is set to zero (X'00'), and the
exclusive-OR result is put in the low-order byte.

| Note: The checksum value is not used in the current role structure. It may be
| verified by the Cryptographic Coprocessor with a future version of the role
| structure.

The Permitted Operations are defined by the Access Control Point list, described in
“The Access Control Point List” on page B-19 below.

The lower time limit and upper time limit fields are two-byte structures with each
byte containing a binary value. The first byte contains the hour (0-23) and the
second byte contains the minute (0-59). For example, 8:45 AM is represented by
X'08' in the first byte, and X'2D' in the second.

B-18 IBM 4758 CCA Services

| If the lower time limit and upper time limit are identical, the role is valid for use at
| any time of the day.

The valid days-of-the-week are represented in a single byte with each bit
representing a single day. Set the appropriate bit to one to validate a specific day.
The first, or Most Significant Bit (MSB) represents Sunday, the second bit
represents Monday, and so on. The last or Least Significant Bit (LSB) is reserved
and must be set to zero.

Aggregate Role Structure
A set of one or more role definitions are sent in a single data structure. This
structure consists of a header, followed by one or more role structures as defined in
“Basic Structure of a Role” on page B-18.

The header defines the number of roles which follow in the rest of the structure. Its
layout is shown in Figure B-25, with three concatenated role structures shown for
illustration.

Bytes Field

 ┌───────┐

4 │ │ Number of roles in aggregate structure

 ├───────┤

 4 │ │ Reserved

 ├───────┴───────────────────────────────────┐

variable│ │ First role

 ├───┴─────────────┐

variable│ │ Second role

 ├───────────────────────────────────────┬─────────────────┘

variable│ │ Third role

 └───────────────────────────────────────┘

Figure B-25. Aggregate role structure with header

The Access Control Point List
The user's permissions are attached to each Role in the form of an Access Control
Point list. This list is a map of bits, with one bit for each primitive function that can
be independently controlled. If a bit is True (1), the user has the authority to use
the corresponding function, if all other access conditions are also satisfied. If the
bit is False (0), the user is not permitted to make use of the function that bit
represents.

The access control point identifiers are two byte integers. This provides a total
space of 64K possible bits. Only a small fraction of these are used, so storing the
entire 64K bit (8K byte) table in each role would be an unnecessary waste of
memory space. Instead, the table is stored as a sparse matrix, where only the
necessary bits are included.

To accomplish this, each bitmap is stored as a series of one or more bitmap
segments, where each can hold a variable number of bits. Each segment must
start with a bit that is the high order bit in a byte, and each must end with a bit that
is the low order bit in a byte. This restriction results in segments that have no
partial bytes at the beginning or end. Any bits that do not represent defined access
control points must be set to zero, indicating that the corresponding function is not
permitted.

 Appendix B. Data Structures B-19

The bitmap portion of each segment is preceded by a header, providing information
about the segment. The header contains the following fields.

Starting bit number The index of the first bit contained in the segment. The index
of the first access control point in the table is zero (X'0000').

Ending bit number The index of the last bit contained in the segment.

Number of bytes in segment The number of bytes of bitmap data contained in
this segment.

The entire access control point structure is comprised of a header, followed by one
or more access control point segments. The header indicates how many segments
are contained in the entire structure.

The layout of this structure is illustrated in Figure B-26.

Bytes Field

 ┌───────┐ ──┐

2 │ │ Number of segments │

 ├───────┤ ├─ Header

 2 │ │ Reserved │

 ├───────┤ ──┘ ──┐

2 │ │ Start bit number │

 ├───────┤ │

2 │ │ End bit number │

 ├───────┤ │ First

2 │ │ Number of bytes ├─ bitmap

 ├───────┤ │ segment

 2 │ │ Reserved │

├───────┴──────────────────────────── ─ ─────────────┐ │

variable│ │ Bitmap data │

├───────┬──────────────────────────── ─ ─────────────┘ ─┘

 . .

 . .

 . .

 ├───────┤ ──┐

2 │ │ Start bit number │

 ├───────┤ │

2 │ │ End bit number │

 ├───────┤ │ Last

2 │ │ Number of bytes ├─ bitmap

 ├───────┤ │ segment

 2 │ │ Reserved │

├───────┴──────────────────────────── ─ ─────────────┐ │

variable│ │ Bitmap data │

└──────────────────────────────────── ─ ─────────────┘ ─┘

Figure B-26. Access control point structure

Contents of the Default Role
The default role will have the following characteristics.

� The role ID will be DEFAULT .

� The required authentication strength level will be zero.

� The role will be valid at all times and on all days of the week.

� The only functions that will be permitted are those related to access control
initialization. This will guarantee that the owner will initialize the coprocessor
before any useful cryptographic work can be done. This requirement prevents
security “accidents” in which unrestricted default authority might accidentally be
left intact when the system is put into service.

The access control points that are enabled in the default role are shown in
Figure B-27.

B-20 IBM 4758 CCA Services

Figure B-27. Functions permitted in Default Role

Code Function Name

X'0107' PKA96 One Way Hash

X'0110' Set Clock

X'0111' Reinitialize Device

X'0112' Initialize access control system roles and profiles

X'0113' Change the expiration date in a user profile

X'0114' Change the authentication data (e.g. passphrase) in a user profile

X'0115' Reset the logon failure count in a user profile

X'0116' Read public access control information

X'0117' Delete a user profile

X'0118' Delete a role

 Profile Structure
This section describes the data structures related to user profiles.

Basic Structure of a Profile
The following figures describe how the Profile data is structured. This is the format
used when profile data is transferred to or from the coprocessor, using verbs
Access_Control_Initialization or Access_Control_Maintenance.

Bytes Field

 ┌───────┐

2 │ │ Profile structure version (X'ð1', X'ðð')

 ├───────┤

 2 │ │ Profile length

├───────┴──────────────────────────── ─ ───────────┐

 2ð │ │ Comment

├───────┬──────────────────────────── ─ ───────────┘

 2 │ │ Checksum

 ├───┬───┘

1 │ │ Logon failure count

 ├───┤

 1 │ │ Reserved

 ├───┴───────────────────────────┐

 8 │ │ User ID

 ├───────────────────────────────┤

 8 │ │ Role ID

 ├───────┬───┬───┬───────────────┘

4 │ │ │ │ Activation date (see format below)

 ├───────┼───┼───┤

4 │ │ │ │ Expiration date (see format below)

├───────┴───┴───┴──────────────────── ─ ───────────┐

variable │ │ Authentication data

└──────────────────────────────────── ─ ───────────┘

Figure B-28. Profile layout

Bytes Field

 ┌───────┐

2 │ │ Year (big-endian format)

 ├───┬───┘

 1 │ │ Month (1-12)

 ├───┤

 1 │ │ Day (1-31)

 └───┘

Figure B-29. Layout of profile Activation and Expiration dates

 Appendix B. Data Structures B-21

When a new profile is loaded, the host application does not provide the Logon
failure count value. This field is automatically set to zero when the profile is stored
in the coprocessor. The failure count field should have a value of zero in the
initialization data you send with Access_Control_Initialization.

The checksum is defined as the exclusive-OR (XOR) of each byte in the profile
structure. The high-order byte of the checksum field is set to zero (X'00'), and the
exclusive-OR result is put in the low-order byte.

| Note: The checksum value is not used in the current profile structure. It may be
| verified by the Cryptographic Coprocessor with a future version of the profile
| structure.

Aggregate Profile Structure
For initialization, a set of one or more profile definitions are sent to the coprocessor
together, in a single data structure. This structure consists of a header, followed by
one or more profile structures as defined in “Profile Structure” on page B-21.

The header defines the number of profiles which follow in the rest of the structure.
Its layout is shown in Figure B-30, with three concatenated profile structures shown
for illustration.

Bytes Field

 ┌───────┐

4 │ │ Number of profiles in aggregate structure

 ├───────┤

 4 │ │ Reserved

 ├───────┴───────────────────────────────────────┐

variable│ │ First profile

 ├─────────────────────────────────┬─────────────┘

variable│ │ Second profile

 ├─────────────────────────────────┴──────┐

variable│ │ Third profile

 └──┘

Figure B-30. Aggregate profile structure with header

The Authentication Data Structure
This section describes the authentication data, which is part of each user profile.
Authentication data is the information the coprocessor uses to verify your identity
when you log on.

| There are two versions of the authentication data structure, corresponding to
| profiles versions 1.0 and 1.1. The only difference is in the meaning of the length
| field, as described below.

General Structure of Authentication Data: The Authentication Data field is a
series of one or more Authentication Data structures, each containing the data and
parameters for a single authentication method. The field begins with a header,
which contains two data elements.

Length A two-byte integer value defining how many bytes of authentication
| information are in the strucure. For profile structure version 1.0, the
| Length includes all bytes after the Length field itself. For profile
| structure version 1.1, the Length includes all bytes after the header,
| where the header includes both the Length field and the Field Type
| Identifier field.

B-22 IBM 4758 CCA Services

Field Type Identifier A two-byte integer value which identifies the type of data
following the header. The identifier must be set to the integer value
X'0001', which indicates that the data is of type “Authentication Data.”

The header is followed by individual sets of authentication data, each containing the
data for one authentication mechanism. This layout is shown pictorially in
Figure B-31.

Figure B-31. Layout of the Authentication Data field

The content of the individual Authentication Data structures is shown in
Figure B-32 below.

 Appendix B. Data Structures B-23

Figure B-32 (Page 1 of 2). Authentication Data for each authentication mechanism

Field name Length
(bytes)

Description

Length 2 The size of this set of authentication mechanism data, in
| bytes. See page B-22 for a description of this value, which
| differs for profile structure versions 1.0 and 1.1.

Mechanism ID 2 An identifier which describes the authentication mechanism
associated with this set of data. For example, there might be
identifiers for passphrase, PIN, fingerprint, public-key based
identification, and others. This is an integer value.

For passphrase authentication, the mechanism ID is the
integer value X'0001'.

Mechanism
strength

2 An integer value which defines the strength of this
identification mechanism, relative to all others. Higher values
reflect greater strength. A value of zero is reserved for users
who have not been authenticated in any way.

Expiration
date

4 The last date on which this authentication data may be used
to identify the user. The field contains the month, day, and
year of expiration. All four digits of the year are stored, so
that no problems occur at the turn of the century.

The expiration date is a four-byte structure, as shown in the
C type definition below.

typedef struct {

unsigned char exp_year[2];

unsigned char exp_month;

unsigned char exp_day;

} expiration_date_t;

The two-byte exp_year is in big-endian format. The
high-order byte is at the lower numbered address.

Mechanism
attributes

4 This field contains flags and attributes needed to fully
describe the operation and use of of the authentication
mechanism. One flag is defined for all methods:

Renewable A Boolean value which indicates whether the
user is permitted to renew the authentication
data. If this value is True (1), the user can
renew the data by authenticating, and then

| providing new authentication data. For example,
| to replace a passphrase, the user would first log
| on using his or her passphrase. Then, the
| passphrase would be changed by providing the
| new passphrase authentication data using the
| Access_Control_Initialization verb with the
| CHG-AD rule-array keyword. The format of the
| passphrase authentication data is described
| immediately below under ‘mechanism data’.

| The Renewable bit is the most-significant bit (MSB) in the
| four-byte attributes field. The other 31 bits are unused, and

must be set to zero.

B-24 IBM 4758 CCA Services

Authentication Data for Passphrase Authentication: For passphrase
authentication, the mechanism data field contains the 20-byte SHA-1 hash of the
user's passphrase. The hash is computed in the host, where it is used to construct
the profile that is downloaded to the Leeds card.

Figure B-32 (Page 2 of 2). Authentication Data for each authentication mechanism

Field name Length
(bytes)

Description

Mechanism
data

variable This field contains the data needed to perform the
authentication. The size, content, and complexity of this data
will vary according to the authentication mechanism. For
example, the content could be as simple as a password that
is compared to one entered by the user, or it could be as
complex as a set of sophisticated biometric reference data,
or a public key certificate.

| Examples of the data structures

| Passphrase authentication data
| Figure B-33 shows the contents of a sample authentication mechanism data
| structure for a passphrase.

| ðð 2ð ðð ð1 ð1 8ð ð7 ce ð6 ð1 8ð ðð ðð ðð fb f5

| c4 84 75 5f ba 59 6b ca 4a 9d ca ð8 fb 52 9e e2 ..u_.Yk.J....R..

| 45 41 EA

| Figure B-33. Passphrase authentication data structure

| This data breaks down into the following fields.

| 00 20 The length of the authentication mechanism data, excluding the length
| field itself. (32 bytes)

| Note: The example is for a version 1.0 profile structure. For version
| 1.1, the length would be X'1E', or decimal 30.

| 00 01 The mechanism identifier, for Passphrase Authentication Data.

| 01 80 The mechanism strength. Hex 0180, or decimal 384.

| 07 CE The year of the passphrase expiration date. Hex 07CE, or decimal
| 1998.

| 06 01 The month and year of the passphrase expiration date. This represents
| June 1.

| 80 00 00 00 The mechanism attributes. The Renewable bit is set.

| FB F5 C4 84 75 5F BA 59 6B CA 4A 9D CA 08 FB 52 9E E2 45 41 The
| authentication data. This 20-byte value is the SHA-1 hash of the user's
| passphrase. In this case, the passphrase is “This is my passphrase..”

 Appendix B. Data Structures B-25

| User profile
| Figure B-34 shows the contents of an entire user profile, containing the passphrase
| data shown above.

| ð1 ðð ðð 5a 2d 2ð 53 61 6d 7ð 6c 65 2ð 5ð 72 6f ...Z- Sample Pro

| 66 69 6c 65 2ð 31 2ð 2d ab cd ðð ðð 4a 5f 53 6d file 1 -....J_Sm

| 69 74 68 2ð 41 44 4d 49 4e 31 2ð 2ð ð7 cd ð6 ð1 ith ADMIN1

| ð7 cd ðc 1f ðð 22 ðð ð1 ðð 2ð ðð ð1 ð1 8ð ð7 ce"...

| ð6 ð1 8ð ðð ðð ðð fb f5 c4 84 75 5f ba 59 6b cau_.Yk.

| 4a 9d ca ð8 fb 52 9e e2 45 41 J....R..EA

| Figure B-34. User profile data structure

| This user profile contains the following fields.

| 01 00 The profile structure version number. For a version 1.1 profile structure,
| this would have the value 01 01.

| 00 5A The length of the profile, including the length field itself. Hex 5A is
| equal to decimal 90.

| “- Sample Profile 1 -” The 20 character comment for this user profile.

| AB CD The checksum for the user profile.

| Note: The checksum value is not used. In future versions of the profile
| structure, the checksum may be verified in the Cryptographic
| Coprocessor.

| 00 The logon failure count.

| 00 Reserved field, which must be zero.

| “J_Smith ” The user ID for this profile.

| “ADMIN1 ” The role that will define the authority associated with this profile.

| 07 CD The year of the profile's activation date. Hex 07CD is equal to decimal
| 1997.

| 06 01 The month and day of the profile's activation date. This represents June
| 1.

| 07 CD The year of the profile's expiration date. Hex 07CD is equal to decimal
| 1997.

| 0C 1F the month and day of the profile's expiration date. Hex 0C is equal to
| decimal 12, and hex 1F is equal to decimal 31, so the profile expires on
| December 31.

| 00 22 The total length of all the authentication data for this profile, not
| including the length of this field itself.

| 00 01 The field type identifier, indicating that the following data is
| Authentication Data.

| Passphrase data The remainder of the field is the passphrase data structure, as
| described above.

B-26 IBM 4758 CCA Services

| Aggregate profile structure
| Figure B-35 shows the aggregate profile structure, containing one user profile.
| This is the structure that is passed to the CSUAACI verb in order to load one or
| more user profiles.

| ðð ðð ðð ð1 ðð ðð ðð ðð ð1 ðð ðð 5a 2d 2ð 53 61Z- Sa

| 6d 7ð 6c 65 2ð 5ð 72 6f 66 69 6c 65 2ð 31 2ð 2d mple Profile 1 -

| ab cd ðð ðð 4a 5f 53 6d 69 74 68 2ð 41 44 4d 49J_Smith ADMI

| 4e 31 2ð 2ð ð7 cd ð6 ð1 ð7 cd ðc 1f ðð 22 ðð ð1 N1"..

| ðð 2ð ðð ð1 ð1 8ð ð7 ce ð6 ð1 8ð ðð ðð ðð fb f5

| c4 84 75 5f ba 59 6b ca 4a 9d ca ð8 fb 52 9e e2 ..u_.Yk.J....R..

| 45 41 EA

| Figure B-35. Aggregate profile structure

| This structure contains the following data fields.

| 00 00 00 01 The number of profiles that are in the aggregate structure. This
| example contains only one user profile, but any number can be included
| in the same aggregate structure.

| 00 00 00 00 A reserved field, which must contain zeroes.

| User profile The remainder of this structure contains the single user profile that
| was described earlier in this section.

| Access control point list
| Figure B-36 shows the contents of a sample Access Control Point List.

| ðð ð2 ðð ðð ðð ðð ð1 17 ðð 23 ðð ðð fð ff ff ff#......

| ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

| ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ð2

| ðð ð2 17 ðð ð3 ðð ðð 8f 99 fe

| Figure B-36. Access Control Point List

| The Access Control Point list contains the following data fields.

| 00 02 The number of segments of data in the access control point list. In this
| list, there are two discontiguous segments of access control points. One
| starts at access control point 0, and the other starts at access control
| point X'200'.

| 00 00 A reserved field, which must be filled with zeroes.

| 00 00 The number of the first access control point in this segment.

| 01 17 The number of the last access control point in this segment. The
| segment starts at access control point 0, and ends with access control
| point X'117', which is decimal 279.

| 00 23 The number of bytes of data in the access control points for this
| segment. There are X'23' bytes, which is 35 decimal.

| 00 00 A reserved field, which must be filled with zeroes.

| F0 FF FF FF ... FF FF (35 bytes) This is the first set of access control points, with
| one bit corresponding to each point. Thus, the first byte contains bits
| 0-7, the next byte contains 8-15, and so on.

 Appendix B. Data Structures B-27

| 02 00 The number of the first access control point in the second segment.

| 02 17 The number of the last access control point in this segment. The
| segment starts at access control point X'200' (decimal 512), and ends
| with access control point X'217' (decimal 535).

| 00 03 The number of bytes of data in the access control points for this
| segment. There are 3 bytes, for the access control points from 512
| through 535.

| 00 00 A reserved field, which must be filled with zeroes.

| 8F 99 FE This is the second set of access control points, with one bit
| corresponding to each point. Thus, the first byte contains bits 512-519,
| the second byte contains 520-527, and the third byte contains 528-535.

| Role data structure
| Figure B-37 shows the contents of a role data structure.

| ð1 ðð ðð 62 2a 4e 65 77 2ð 64 65 66 61 75 6c 74\New default

| 2ð 72 6f 6c 65 2ð 31 2a ab cd ðð ðð 44 45 46 41 role 1\....DEFA

| 55 4c 54 2ð 23 45 ð1 ðf 17 1e 7c ðð ðð ð2 ðð ðð ULT #E....|.....

| ðð ðð ð1 17 ðð 23 ðð ðð fð ff ff ff ff ff ff ff#..........

| ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

| ff ff ff ff ff ff ff ff ff ff ff ð2 ðð ð2 17 8f

| 99 fe ..

| Figure B-37. Role data structure

| This structure contains the following data fields.

| 00 01 The role structure version number.

| 00 62 The length of the role structure, including the length field itself.

| “*New default role 1*” The 20 character comment describing this role.

| AB CD The checksum for the role.

| Note: The checksum value is not used. In future versions of the role
| structure, the checksum may be verified in the Cryptographic
| Coprocessor.

| 00 00 A reserved field, which must be filled with zeroes.

| “DEFAULT ” The Role ID for this role. The role in this example will replace the
| DEFAULT role.

| 23 45 The Required Authentication Strength field

| 01 0F The lower time limit. X'01' is the hour, and X'0F' is the minute
| (decimal 15), so the lower time limit is 1:15 AM, GMT.

| 17 1E The upper time limit. X'17' is the hour (decimal 23), and X'1E' is the
| minute (30), so the upper time limit is 23:30 GMT.

| 7C This byte maps the valid days of the week for the role. The first bit
| represents Sunday, the second represents Monday, and so on. Hex 7C
| is binary 01111100, and enables the weekdays Monday through Friday.

| 00 This byte is a reserved field, and must be zero.

B-28 IBM 4758 CCA Services

| Access control point list The remainder of the role structure contains the Access
| Control Point list described above.

| Aggregate role data structure
| Figure B-38 shows the an aggregate role data structure, like you would load using
| the CSUAACI verb.

| ðð ðð ðð ð1 ðð ðð ðð ðð ð1 ðð ðð 62 2a 4e 65 77\New

| 2ð 64 65 66 61 75 6c 74 2ð 72 6f 6c 65 2ð 31 2a default role 1\

| ab cd ðð ðð 44 45 46 41 55 4c 54 2ð 23 45 ð1 ðfDEFAULT #E..

| 17 1e 7c ðð ðð ð2 ðð ðð ðð ðð ð1 17 ðð 23 ðð ðð ..|..........#..

| fð ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

| ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff

| ff ff ff ð2 ðð ð2 17 8f 99 fe

| Figure B-38. Aggregate role data structure

| This structure contains the following data fields.

| 00 00 00 01 The number of roles that are in the aggregate structure. This example
| contains only one role, but any number can be included in the same
| aggregate structure.

| 00 00 00 00 A reserved field, which must contain zeroes.

| Role data structure The remainder of the aggregate structure contains the role
| structure, which was described above.

 Appendix B. Data Structures B-29

| Master Key Shares Data Formats
| Master key shares, and potentially other information to be “cloned” from one
| coprocessor to another coprocessor are packed into a data structure as described
| in Figure B-39.

| Figure B-39. Cloning Information Token Data Structure

| Offset
| (Bytes)
| Length
| (Bytes)
| Description

| 000| 001| X'1D', token identifier

| 001| 001| X'00', Version

| 002| 002| Length of the cloning information token

| 004| 004| Reserved, binary zero

| 008| 004| Cloning-share index number, i; 1≤i≤15

| 012| 016| Origin-node Environment Identifier, EID

| 028| 008| Origin-coprocessor serial number

| 036| xxx| Cloning information TLV's:

| � Master key share
| � Signature
| And one to seven bytes of padding to ensure that length 'xxx' is a multiple
| of eight bytes.

| Note: The information from offset 036 through 035+xxx is triple encrypted with a triple-length DES
| key using the EDE3 encryption process, see “Triple-DES Ciphering Algorithms” on page D-11.

Figure B-40. Master Key Share TLV

Offset
(Bytes)

Length
(Bytes)

Description

| 000| 001| X'01', master key share identifier

| 001| 001| X'00', Version

| 002| 002| X'001D', length of the TLV

| 004| 001| Index value, i, binary

| 005| 024| Master-key share

Figure B-41. Cloning Information Signature TLV

Offset
(Bytes)

Length
(Bytes)

Description

| 000| 001| X'45', Signature Subsection Header

| 001| 001| X'00', Version

| 002| 002| Subsection length, 70+sss

| 004| 001| Hashing algorithm identifier; X'01' signifies use of the SHA-1 hashing
| algorithm.

| 005| 001| Signature formatting identifier; X'01' signifies use of the ISO-9796 process.

| 006| 064| Signature-key identifier; the key label of the key used to generate the
| signature.

| 070| sss| The signature field.

| The signature is calculated on data that begins with the Cloning Information
| Token Data Structure identifier (X'1D') through the byte immediately
| preceding this signature field.

B-30 IBM 4758 CCA Services

| Function Control Vector
| The export (distribution) of cryptographic implementations by USA companies is
| controlled under USA Government export regulations. An IBM 4758 becomes a
| practical cryptographic engine when it accepts and validates digitally signed
| software. IBM has chosen to export the IBM 4758 as a non-cryptographic product,
| and to control and report the export of the cryptography-enabling software.

| The CCA software that can be loaded into the Coprocessor limits the functionality
| of the Coprocessor based on the values in a function control vector (FCV). At the
| present time, two capabilities are controlled:

| � Use of 56-bit keys with the DES algorithm for general data encryption
| � The length of an RSA key used to encipher DES keys.

| Notes:

| 1. Government policies and the FCV do not limit the key-length of keys used in
| digital signature operations.

| 2. The SET services can employ 56-bit DES for data encryption, and 1024-bit
| RSA key-lengths when distributing DES keys.

| IBM distributes the FCV in a digitally signed data structure. Figure B-42 displays
| the format of the data structure that contains the function control vector as
| distributed by IBM.

| Figure B-42. FCV Distribution Structure

| Offset
| Decimal
| (Hex)

| Length
| Decimal
| Meaning

| 000
| (000)
| 390| Package header and validating-key certificate

| 390
| (186)
| 080| Descriptive text coded in ASCII

| 470
| (1D6)
| 204| Function control vector (FCV)

| This is the information that can be supplied to the Coprocessor using the
| Cryptographic_Facility_Control verb.

| 674
| (2A2)
| 128| Digital signature on the complete structure (excepting this signature itself).

 Appendix B. Data Structures B-31

B-32 IBM 4758 CCA Services

Appendix C. CCA Control Vector Definitions and Key
Encryption

This appendix describes the following:

� DES control vector values1

� Specifying a control vector base value

� CCA key encryption and decryption processes.

In the Common Cryptographic Architecture (CCA), a control vector is a non-secret
quantity that expresses permissible usages for an associated key. When a CCA
DES key is encrypted, the key-encrypting key is exclusive-ORed with the control
vector to form the actual key used in the DES key-encrypting process. This
technique allows the generator or introducer of a key to specify how the key is to
be distributed and used. Attacks can be mounted against a cryptographic system
when it is possible to use a key for other than its intended purpose. The CCA
control vector key-typing scheme and the command authorization and control vector

| checking performed by a CCA node together provide an important defense against
| misuse of keys and related attacks.

DES Control Vector Values
| The CCA key token includes the control vector and the key that the control vector
| describes. The control vector is as long as the key, either 64 or 128-bits in length.
| The control vector is “coupled” to the key because it modifies the key-encrypting
| key value used to encrypt the key found in the key token. See “CCA DES Key
| Encryption and Decryption Process” on page C-8.

Although the CCA architecture permits several advanced techniques, the product
implementations described in this book use the same control vector value for the
second half of a double length key as for the first half...except for the reversal of
two bits. Therefore this discussion of control vector values focuses on a 64-bit
vector with the understanding that, for a double-length key, the control vector value
associated with each key half is essentially the same.

Most of the first 16 bits of a control vector define the key as belonging to one of
several general (generic) classes of keys as shown in the following list:

Key-Encrypting Keys:

IMPORTER Used to decrypt a key brought to this local node

EXPORTER Used to encrypt a key taken from this local node

IKEYXLAT Used to decrypt an input key in the Key_Translate service

OKEYXLAT Used to encrypt an output key in the Key_Translate service.

1 In this appendix, control vector means DES control vector base unless noted otherwise. This document does not include
information about encoding a control vector extension.

 Copyright IBM Corp. 1997-98 C-1

Data keys:

DATA Used to encrypt or decrypt data, or to generate or verify a MAC

MAC Used to generate or verify a MAC

MACVER Used to verify a MAC code (cannot be used in MAC-generation).

| PIN-processing keys:

| PINGEN Used to generate and verify PIN values

| PINVER Used to verify PIN values (can not be used in PIN-generation)

| OPINENC Used to encrypt a PIN-block

| IPINENC Used to decrypt a PIN-block.

| Key-generating keys:

| Generate 2 Used to generate or derive other keys

There is a default control vector associated with each of the generic key types just
listed; see Figure C-1 on page C-3. The bits in positions 16-22 and 33-37
generally have different meanings for every generic key class. Many of the
remaining bits in a control vector have a common meaning. Most of the DES
key-management services permit you to use the default control vector value by

| naming the generic key class in the service's key-type variable; this does not apply
| to all generic key-type classes.3

You can use the default control vector for a generic key type, or you can create a
more restrictive control vector. The default control vector for a generic key type
provides basic key-separation functions. The cryptographic subsystem creates a
default control vector for a generic key type when you use the Key_Generate verb
and specify a null key token and a generic key-type in the key_type parameter.
When you import or export a key, you can also specify a key type to obtain a
default control vector instead of supplying a control vector in a key token. If you
specify a key type with the Key_import verb, ensure that the default control vector
is the same as the control vector that was used to encrypt the key.

The additional control vector bits that you can turn on (beyond those already on in
the generic control vector value) permit you to further restrict the use of a key. This
gives you the ability to implement the general security policy of permitting only
those capabilities actually required in a system. The additional bits are designed to
block specific attacks although these attacks are almost always very obscure.

You can obtain the value for a control vector in one of several ways:

� Use a generic control vector and obtain the value from Figure C-1 on
page C-3.

� See “Specifying a Control Vector Base Value” on page C-5. The material
presents an ordered set of questions to enable you to create the value for a
control vector.

2 When generating, importing, or exporting the Generate key-type, this key-type must be requested through the specification of a
proper control vector in a key token and the use of the TOKEN keyword.

| 3 The Key_Token_Build verb has not been extended to support some key-type classes, for example: PINGEN, PINVER, IPINENC,
| OPINENC, etc.

C-2 IBM 4758 CCA Services

| � For some of the key types, you can use the Key_Token_Build verb and
keywords to construct a control vector and incorporate this control vector into a
key token.

Figure C-1. Control Vector Default Values for Generic Key Types

Key Type

Control Vector
Hexadecimal Value for
Single-length Key or Left Half
of Double-Length Key

Control Vector
Hexadecimal Value for Right
Half of Double-Length Key

| DATA (Internal)
| DATA (External)
| 00 00 7D 00 03 00 00 00
| 00 00 00 00 00 00 00 00

EXPORTER 00 41 7D 00 03 41 00 00 00 41 7D 00 03 21 00 00

IKEYXLAT 00 42 42 00 03 41 00 00 00 42 42 00 03 21 00 00

IMPORTER 00 42 7D 00 03 41 00 00 00 42 7D 00 03 21 00 00

| IPINENC| 00 21 5F 00 03 41 00 00| 00 21 5F 00 03 21 00 00

MAC 00 05 4D 00 03 00 00 00

MACVER 00 05 44 00 03 00 00 00

OKEYXLAT 00 41 42 00 03 41 00 00 00 41 42 00 03 21 00 00

| OPINENC| 00 24 77 00 03 41 00 00| 00 24 77 00 03 21 00 00

| PINGEN| 00 22 7E 00 03 41 00 00| 00 22 7E 00 03 21 00 00

| PINVER| 00 22 42 00 03 41 00 00| 00 22 42 00 03 21 00 00

| Generate2| 00 53 50 00 03 41 00 00| 00 53 50 00 03 21 00 00

 Appendix C. CCA Control Vector Definitions and Key Encryption C-3

 Control Vector Base Bits

│ð ð ð ð │ð 1 1 1 │1 1 2 2 │2 2 2 3 │3 3 3 3 │4 4 4 4 │4 5 5 5 │5 5 6 6 │

│ð 2 4 6 │8 ð 2 4 │6 8 ð 2 │4 6 8 ð │2 4 6 8 │ð 2 4 6 │8 ð 2 4 │6 8 ð 2 │

│& │ │ │ │ │ │ │ &│

│└─Most Significant Bit │ │ │ Least Significant Bit─┘│

│ │ │ │ │ │ │ │ │

│Common Bits │ │ │ │ │ │ │

│ │ │ │ ┌────────┬────Anti─Variant Bits │

│ │ │ │ │ │ │ │ │ │ │

│.......P│.......P│.E.....P│......ðP│......1P│....K..P│.......P│.......P│

│ ││ │ │ │ │ │ │ │ │ │

│ ││ │ └E=Export │ │ └K=Key─Part │ │

│ └P=Even Parity │ │ │ │ │ │

│ │ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │ │

│Key─Encrypting Keys │ │ │ │ │ │

│ │ │ ┌g=IMEX │ │ │ │ │

│ │ │ │┌k=OPEX │ │ │ │ │

│ │ │ ││┌s=EXEX │ │ │ │ │

│ │ │ │││┌i=EXPORT │ │ │ │ │

│ │ │ ││││┌x=XLATE │ │ │ │ │

│EXPORTER│ │ │││││ │ │ │ │ │ │

│ðððððððð│ð1ððððð1│ðEgksixP│ðððððððð│ðððððð11│fffðKððP│ðððððððð│ðððððððð│

│OKEYXLAT│ │ │ │ │ │ │ │

│ðððððððð│ð1ððððð1│ðEðððð1P│ðððððððð│ðððððð11│fffðKððP│ðððððððð│ðððððððð│

│IKEYXLAT│ │ │ │ │ │ │ │

│ðððððððð│ð1ðððð1ð│ðEðððð1P│ðððððððð│ðððððð11│fffðKððP│ðððððððð│ðððððððð│

│IMPORTER│ │ │ │ │ │ │ │

│ðððððððð│ð1ðððð1ð│ðEgksixP│ðððððððð│ðððððð11│fffðKððP│ðððððððð│ðððððððð│

│ │ │ │││││ │ │ ││ │ │ │ │

│ │ │ │││││ │ │ │└┬┘ │ │ │

│ │ │ ││││└x=XLATE │ │ └─Key─Form │ │

│ │ │ │││└i=IMPORT │ │ │ │ │

│ │ │ ││└s=IMIM │ │ │ │ │

│ │ │ │└k=OPIM │ │ │ │ │

│ │ │ └g=IMEX │ │ │ │ │

│ │ │ │ │ │ │ │ │

│ │ │ │ │ │ │ │ │

│DATA │ │ │ │ │ │ │ │

│ðððððððð│ðððððððð│ðE1111ðP│ðððððððð│Sððððð11│ððððKððP│ðððððððð│ðððððððð│

│ │ │ │ │ │ │ │ │

| │MAC │ │ │ │ │ │ │ │

| │ðððððððð│ððððð1ð1│ðEðð11ðP│ðððððððð│ðððððð11│fffðKððP│ðððððððð│ðððððððð│

| │MACVER │ │ \ │ │ │ │ │ │

| │ðððððððð│ððððð1ð1│ðEððð1ðP│ðððððððð│ðððððð11│fffðKððP│ðððððððð│ðððððððð│

| │ │ │ │ │ ││ │ │ │ │

| │ │ │ │ │ │└┬┘ │ │ │

| │ │ │ │ │ │ └─Key─Form │ │

│ │ │ │ │ │ │ │ │

| Figure C-2 (Part 1 of 2). Control Vector Base Bit Map

C-4 IBM 4758 CCA Services

| Control Vector Base Bits

| │ð ð ð ð │ð 1 1 1 │1 1 2 2 │2 2 2 3 │3 3 3 3 │4 4 4 4 │4 5 5 5 │5 5 6 6 │

| │ð 2 4 6 │8 ð 2 4 │6 8 ð 2 │4 6 8 ð │2 4 6 8 │ð 2 4 6 │8 ð 2 4 │6 8 ð 2 │

| │ │ │ │ │ │ │ │ │

| │PIN Keys│ │ │ │ │ │ │ │

| │ │ │ │ │ │ │ │ │

| │ðððð NO─SPEC │ │ Prohibit offsets: │ │ │

| │ððð1 IBM─PIN/IBM─PINO │ NOOFFSET───┐ │ │ │ │

| │ð1ð1 NL-PIN-1 │ │ │ │ │ │ │ │

| ││ │ │ │ │ │ │ │ │ │ │

| ││ │ PINGEN │ │ │ │ │ │ │ │

| │└┬─┘ │ │ │ │ │ │ │ │ │

| │ 6 │ │ │ │ │ │ │ │ │

| │aaaaðððP│ðð1ððð1ð│ðE.....P│ðððððððP│Sððððo1P│fffðKððP│ðððððððð│ðððððððP│

| │─┬── │CPINGEN────┘││││ │ │ │ │ │ │ │

| │ │ │CPINGENA──────┘│ │ │ │ │ │ │

| │ │ │EPINVER────────┘ │ │ │ │ │ │ │

| │ │ │ │ │ │ │ │ │ │

| │ 6 PINVER │ │ │ │ │ │ │ │

| │aaaaðððP│ðð1ððð1ð│ðEðððð1P│ðððððððP│Sððððo1P│fffðKððP│ðððððððð│ðððððððP│

| │ │ │ │ │ │ │ │ │

| │ │ │ ┌─────EPINVER │ │ │ │ │

| │ │ │ │┌────CPINGENA│ │ │ │ │

| │IPINENC │ │ ││ │ │ │ │ │ │

| │ðððððððP│ðð1ðððð1│ðEð..trP│ðððððððð│Sððððð1P│fffðKððP│ðððððððP│ðððððððP│

| │ │ │ ││ │ │ │ │ │ │

| │ │ │ │ │ │ │ │ │

| │OPINENC │ │ ││ │ │ │ │ │ │

| │ðððððððP│ðð1ðð1ðð│ðE..ðtrP│ðððððððð│Sððððð1P│fffðKððP│ðððððððP│ðððððððP│

| │ │ │ ││ ││ │ │ │ │ │ │

| │ │ │ ││ │└──REFORMAT│ │ │ │ │

| │ │ │ ││ └───TRANSLAT│ │ │ │ │

| │ │ │ │└─────EPINGEN │ │ │ │ │

| │ │ │ └──────CPINENC │ │ │ │ │

| │ │ │ │ │ │ │ │ │

| │ │ │ │ │ │ │ │ │

| │Key-Generating Key (for generating diversified keys in CSNBGDK) │

| │ðððððððð│ð1ð1ðð11│ðEð1ðððP│ðððððððð│ðððððð11│ð1ððKððP│ðððððððð│ðððððððð│

| │ │ │ │ │ │ │ │ │

Figure C-2 (Part 2 of 2). Control Vector Base Bit Map

| Key Form Bits, 'fff '
| The key form bits, 40-42 ...and for a double-length key, bits 104-106... are
| designated 'fff' in the preceding diagram. These bits can have these values:

| 000 Single length key
| 010 Double length key, left half
| 001 Double length key, right half
| And these values in some CCA implementations although not created in the IBM
| 4758 implementation:
| 110 Double length key, left half, halves guarenteed unique
| 101 Double length key, right half, halves guarenteed unique

Specifying a Control Vector Base Value
You can determine the value of a control vector by working through the following
series of questions:

1. Begin with a field of 64 bits (eight bytes) set to 0. The most significant bit is
referred to as bit 0. Define the key type and subtype (bits 8 to 14), as follows:

� The main key type bits (bits 8 to 11). Set bits 8 to 11 to one of the
following values:

 Appendix C. CCA Control Vector Definitions and Key Encryption C-5

� The key subtype bits (bits 12 to 14). Set bits 12 to 14 to one of the
following values:

2. For key-encrypting keys, set the following bits:

� The key-generating usage bits (gks, bits 18 to 20). Set the gks bits to
B'111' to indicate that the Key_Generate verb can use the associated
key-encrypting key to encipher generated keys when the Key_Generate
verb is generating various key-pair key-form combinations (see the
Key-Encrypting Keys section of Figure C-2 on page C-4). Without any of
the gks bits set to 1, the Key_Generate verb cannot use the associated
key-encrypting key. (The Key_Token_Build verb can set the gks bits to 1
when you supply the OPIM, IMEX, IMIM, OPEX, and EXEX keywords.)

� The IMPORT and EXPORT bit and the XLATE bit (ix, bits 21 and 22). If
the ‘i’ bit is set to 1, the associated key-encrypting key can be used in the
Data_Key_Import, Key_Import, Data_Key_Export, and Key_Export verbs. If
the ‘x’ bit is set to 1, the associated key-encrypting key can be used in the
Key_Translate verb.

� The key-form bits (fff, bits 40 to 42). The key-form bits indicate how the
key was generated and how the control vector participates in
multiple-enciphering. To indicate that the parts can be the same value, set
these bits to B'010'. For information about the value of the key-form bits
in the right half of a control vector, see step 8 on page C-8.

3. For MAC and MACVER keys, set the following bits:

� The MAC control bits (bits 20 and 21). For a MAC-generate key, set bits
20 and 21 to 11. For a MAC-verify key, set bits 20 and 21 to B'01'.

Bits 8 to 11 Main Key Type

0000 Data operation keys

0010 PIN keys

0100 Key-encrypting keys

| 0101| Key-generating keys

Bits 12 to 14 Key Subtype

Data Operation Keys

010 MAC key (MAC or MACVER)

000 Compatibility key (DATA)

Key-Encrypting Keys

000 Transport-sending keys (EXPORTER and OKEYXLAT)

001 Transport-receiving keys (IMPORTER and IKEYXLAT)

| PIN Keys

| 001| PIN-generating key (PINGEN, PINVER)

| 000| Inbound PIN-block decrypting key (IPINENC)

| 010| Outbound PIN-block encrypting key (OPINENC)

| Key-Generating Keys

| 001| Key-generating keys

C-6 IBM 4758 CCA Services

| � The key-form bits (fff, bits 40 to 42). For a single-length key, set the bits to
| B'000'. For a double-length key, set the bits to B'010'.

| 4. For PINGEN and PINVER keys, set the following bits:

| � The PIN calculation method bits (aaaa, bits 0 to 3). Set these bits to one
| of the following values:

| � The prohibit-offset bit (o, bit 37) to restrict operations to the PIN value.
| If set to 1, this bit prevents operation with the IBM 3624 PIN Offset
| calculation method and the IBM German Bank Pool PIN Offset calculation
| method.

| 5. For PINGEN, IPINENC, and OPINENC keys, set bits 18 to 22 to indicate
| whether the key can be used with the following verbs; for the bit numbers, see
| Figure C-2 on page C-4:

| 6. For the IPINENC (inbound) and OPINENC (outbound) PIN-block ciphering
| keys, do the following:

| � Set the TRANSLAT bit (t, bit 21) to 1 to permit the key to be used in the
| PIN_Translate verb.

| � Set the REFORMAT bit (r, bit 22) to 1 to permit the key to be used in the
| PIN_Translate verb.

| � Set PIN-block format bits (bbbbbb, bits 49 to 54) to one of the values in the
| following table. For more information about these bits, see “Processing
| Financial PINs” on page 8-1.

| Bits 0
| to 3
| Calculation Method
| Keyword| Description

| 0000| NO-SPEC| A key with this control vector can be used with any
| PIN calculation method.

| 0001| IBM-PIN or
| IBM-PINO
| A key with this control vector can be used only
| with the IBM PIN or PIN Offset calculation method.

| 0101| NL-PIN-1| A key with this control vector can be used only
| with the NL-PIN-1, Netherlands PIN calculation
| method.

| Verb Allowed| Bit Name| Bit

| Clear_PIN_Generate| CPINGEN

| Clear_PIN_Generate_Alternate| CPINGENA| 21 for PINGEN
| 20 for IPINENC

| Encrypted_Pin_Verify| EPINVER| 19

| Clear_PIN_Encrypt| CPINENC| 18

| Bits 49 to 54
| Control_Vector_
| Generate Keyword| PIN Block Format

| 000000| | Any format

| 000001| 3624| IBM 3624

| 000100| ISO-0| ISO 0 (equivalent to ANSI X9.8, VISA format
| 1, and ECI 1 formats)

 Appendix C. CCA Control Vector Definitions and Key Encryption C-7

| 7. For key-generating keys, set the following bits:

| � Set bit 19 to 1 if the key will be used in the Diversified_Key_Generate
| (CSNBDKG) verb to generate a diversified key.

8. For all keys, set the following bits:

� The export bit (E, bit 17). If set to 0, the export bit prevents a key from
being exported. By setting this bit to 0, you can prevent the receiver of a
key from exporting or translating the key for use in another cryptographic
subsystem.

� The key-part bit (K, bit 44). Set the key-part bit to 1 in a control vector
associated with a key part. When the final key part is combined with
previously accumulated key parts, the key-part bit in the control vector for
the final key part is set to 0.

� The anti-variant bits (bit 30 and bit 38). Set bit 30 to 0 and bit 38 to 1.
Many cryptographic systems have implemented a system of variants where
a 7-bit value is exclusive-ORed with each 7-bit group of a key-encrypting
key before enciphering the target key. By setting bits 30 and 38 to
opposite values, control vectors do not produce patterns that can occur in
variant-based systems.

� Control vector bits 64 to 127. If bits 40 to 42 are B'000' (single-length
key), set bits 64 to 127 to 0. Otherwise, copy bits 0 to 63 into bits 64 to
127 and set bits 105 and 106 to B'01'.

� Set the parity bits (low-order bit of each byte, bits 7, 15, ..., 127). These
bits contain the parity bits (P) of the control vector. Set the parity bit of
each byte so the number of zero-value bits in the byte is an even number.

CCA Key Encryption and Decryption Process
This section describes the CCA key encryption processes:

� CCA DES key encryption
� CCA RSA private key encryption.

| CCA DES Key Encryption and Decryption Process
| With the CCA, multiply-enciphering or deciphering a key is a two-step process.
| The implementation first exclusive-ORs the subject key’s control vector with the
| master key or with a key-encrypting key to form keys K1 through K6. The resulting
| keys (Kn) are used in the multiple-encipherment of a clear key, or the
| multiple-decipherment of an encrypted key; see Figure C-3 on page C-9 for the
| formation of K1 through K6 and their use with DES DEA encoding and decoding.

C-8 IBM 4758 CCA Services

| ┌──────────────┬──────────────┬──────────────┐ ┌──────────────┬──────────────┐

| │ Master Key │ │ Control Vector │

| └────│─────────┴────│─────────┴────│─────────┘ └────│─────────┴─────────│────┘

| ð │ 7 8 │ 15 16 │ 23 ð │ 7 8 │ 15

| │ ┌─────────│────┬─────────│────┬──────────────┤ │

| ├──┐ │ ├──┐ │ ├──┐ │ │ │

| │ 6 6 │ 6 6 │ 6 6 │ │

| │ ┌───┐ │ ┌───┐ │ ┌───┐ │ │

| │ │XOR│ │ │XOR│ │ │XOR│ │ │

| │ └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ │

| │ 6 │ 6 │ 6 │ │

| │ K1 │ K2 │ K3 │ │

| │ ┌─────────│────┬─────────│────┬──────────────│───────────────────┤

| └──┐ │ └──┐ │ └──┐ │ │ │

| 6 6 6 6 6 6 │ │

| ┌───┐ ┌───┐ ┌───┐ │ │

| │XOR│ │XOR│ │XOR│ │ │

| └─┬─┘ └─┬─┘ └─┬─┘ │ │

| 6 6 6 │ │

| K4 K5 K6 │ │

| │ │

| ┌──────────────┬──────────────┐ │ │

| │ Key-Encrypting Key │ │ │

| └────│─────────┴────│─────────┘ │ │

| ð │ 7 8 │ 15 │ │

| │ ┌─────────│────┬─────────────────────────────┘ │

| ├──┐ │ ├──┐ │ │

| │ 6 6 │ 6 6 │

| │ ┌───┐ │ ┌───┐ │

| │ │XOR│ │ │XOR│ │

| │ └─┬─┘ │ └─┬─┘ │

| │ 6 │ 6 │

| │ K1,K3 │ K2 │

| │ ┌─────────│────┬───┘

| └──┐ │ └──┐ │

| 6 6 6 6

| ┌───┐ ┌───┐

| │XOR│ │XOR│

| └─┬─┘ └─┬─┘

| 6 6

| K4,K6 K5

| Multiple Multiple

| Encipherment Decipherment

| 6 6

| ┌───────────┬───────────┐ ┌───────────┬───────────┐

| │ Clear Key │ │Multiply─Enciphered Key│

| └────┬──────┴──────┬────┘ └────┬──────┴──────┬────┘

| ð │ 7 8 │ 15 ð │ 7 8 │ 15

| ┌──6───┐ ┌───6──┐ ┌──6───┐ ┌───6──┐

| K1──5│Encode│ │Encode│%──K4 K1──5│Decode│ │Decode│%──K4

| └──┬───┘ └───┬──┘ └──┬───┘ └───┬──┘

| ┌──6───┐ ┌───6──┐ ┌──6───┐ ┌───6──┐

| K2──5│Decode│ │Decode│%──K5 K2──5│Encode│ │Encode│%──K5

| └──┬───┘ └───┬──┘ └──┬───┘ └───┬──┘

| ┌──6───┐ ┌───6──┐ ┌──6───┐ ┌───6──┐

| K3──5│Encode│ │Encode│%──K6 K3──5│Decode│ │Decode│%──K6

| └──┬───┘ └───┬──┘ └──┬───┘ └───┬──┘

| ┌────6──────┬──────6────┐ ┌────6──────┬──────6────┐

| │Multiply─Enciphered Key│ │ Clear Key │

| └───────────┴───────────┘ └───────────┴───────────┘

| Figure C-3. Multiply-Enciphering and Multiply-Deciphering CCA Keys

| Notes:

| 1. The encode and decode processes are the DES Electronic Code Book (ECB)
| processes for ciphering 64 data bits using a single-length key, Kn.

| 2. A CCA cryptographic implementation processes a single-length key in the same
| way as it processes the left half of a double-length key.

| 3. If the left and right halves of a double-length key-encrypting key have the same
| value, using the key in multiple-encipherment or multiple-decipherment of a key
| is equal to single-encipherment or single-decipherment of a key.

| 4. The control vector for a double-length key consists of two halves. The second
| half is the same as the first half except for bits 41 and 42, which are reversed
| in value.

 Appendix C. CCA Control Vector Definitions and Key Encryption C-9

CCA RSA Private Key Encryption and Decryption Process
Private keys in PKA96 implementations use the EDE2 process to encipher the
secret portion of an RSA private key in an external key token encrypted by a
transport key-encrypting key. See Figure D-8 on page D-11. A private key in an
internal key token encrypted by the master key is encrypted using the EDE3
process. See Figure D-10 on page D-13. The secret key is deciphered using the
DED2 and DED3 processes. See Figure D-9 on page D-12 and Figure D-11 on
page D-14.

The EDE2 algorithm uses a 112-bit key to encrypt any number of 64-bit blocks of
information. The DED2 algorithm is used to decrypt this information. The
key-encrypting key is a transport key-encrypting key for an external key.

The EDE3 algorithm uses a 168-bit key to encrypt any number of 64-bit blocks of
information. The DED3 algorithm is used to decrypt this information. The
key-encrypting key is the master key for an internal key.

C-10 IBM 4758 CCA Services

Changing Control Vectors
Use the pre-exclusive-OR technique to change a key's control vector when
exporting or importing the key from or to a cryptographic node. By exclusive-ORing
information with the KEK used to import or export the key, you can effectively
change the control vector associated with the key.

The pre-exclusive-OR technique requires exclusive-ORing additional information
into the value of the importer or exporter KEK by one of the following methods:

� Exchange the KEK in the form of a plaintext value or in the form of key parts.
For example, if you use the Key_Part_Import verb to enter the KEK key parts,
you can enter another part that is set to the value of the pre-exclusive-OR
quantity.

� Use the Key_Generate verb to generate an IMPORTER/EXPORTER pair of
KEKs, with the key-part control vector bit set on. Then use the
Key_Part_Import verb to enter an additional key part that is set to the value of
the pre-exclusive-OR quantity.

To understand how you can change a key’s control vector when importing or
exporting keys, you must first understand the importing and exporting process. For
example, when exporting key K, the cryptogram e*Km⊕CVk(K) is changed to the
cryptogram e*KEK⊕CVk1(K).

Notes:

1. The first cryptogram is read as “the multiple-encipherment of key K by the key
formed from the exclusive-OR of the master key and the control vector, CVk, of
key K.”

2. The second cryptogram is read as “the multiple-encipherment of key K by the
key formed from the exclusive-OR of the KEK and the control vector, CVk1, of
key K.” KEK represents the value of the exporter key.

3. A control vector of value binary zero is equivalent to not having a control
vector.

The CCA specifies that in all but one case, CVk is the same as CVk1. The
exception is that a DATA key whose CVk contains the value of a default CV for that
key type, has a CVk1 equal to binary zero. (Key importing and exporting performed
by the Personal Security Card does not obey this exception; for the card, CVk is
always equal to CVk1.)

To change the control vector on key K, the KEK must be set to the value:

KEK ⊕ CVk1 ⊕ CVk2

where:

� KEK is the value of the shared exporter key.

� ⊕ represents exclusive-OR.

� CVk1 is the control vector value used with the operational key K at the local
node.

� CVk2 is the desired control vector value for the exported key K.

 Appendix C. CCA Control Vector Definitions and Key Encryption C-11

This process works because the value CVk1 is specified in the key token for the
exported key. The Key_Export verb provides this control-vector value to the
hardware, which exclusive-ORs it with the exporter KEK. However, you have set
the exporter KEK to the value KEK⊕CVk1.... When CVk1 is exclusive-ORed with
CVk1, the effect is that CVk1 is removed. Because you also set the KEK to include
the desired control vector, CVk2, the exported key will have a changed control
vector.

 ┌──────────────────────────────┐

│PIN─Block-Enciphering Key (Kp)│

 └──────────────┬───────────────┘

 │

 ┌─────────────────────────────┐ │

 │ Other─System Variant ├────┐ │

 └─────────────────────────────┘ │ │

 ┌─6─┐ ┌─────────6──────────┐

 │XOR├───────5Encipher─Key Process│

 └─&─┘ └─────────┬──────────┘

 ┌─────────────────────────────┐ │ │

 │ Key─Encrypting Key ├────┘ │

 └──────────────┬──────────────┘ │

 │ │

 │ │

 │ │

 │ │

 │ │

┌────────────────6─────────────────┐ │

│ Key-Encrypting Key XOR │ │

│ Other-System Variant XOR │ │

│ Control Vector to Obtain │ ┌──────────────6──────────────┐

│ KEK'─Left and KEK'─Right │ │ e\KEK.Variant(Kp) │

└────────┬───────────────┬─────────┘ └──────────────┬──────────────┘

 │ │ │

 │ │ │

 ┌──────6───────────────6──────┐ │

 │ Double─Length KEK' ├────┐ │

 └─────────────────────────────┘ │ │

 ┌─6─┐ ┌─────────┴──────────┐

 │XOR├───────5Decipher─Key Process│

 ┌─────────────────────────────┐ └─&─┘ └─────────┬──────────┘

│ Transaction Security System │ │ │

│ Control Vector for the │ │ │

│ PIN─Block─Enciphering Key, │ │ │

│ Control Vector Left and │────┘ ┌──────────────6───────────────┐

│ Control Vector Right │ │PIN─Block-Enciphering Key (Kp)│

 └─────────────────────────────┘ └──────────────────────────────┘

Figure C-4. Exchanging a Key with a Non-Control-Vector System

C-12 IBM 4758 CCA Services

Appendix D. Algorithms and Processes

This appendix provides processing details for the following aspects of the CCA
design:

� Cryptographic key-verification techniques
 � Ciphering methods
� MAC calculation methods
� Multiple encipherment of DES keys with a control vector
� Triple-DES algorithms, EDE2 and EDE3
� Access control algorithms

| � Encipherment of DES keys under RSA in “PKA92” format
| � Encipherment of a DES key-encrypting key under RSA in “NL-EPP-5” format
| � Master key splitting algorithm
| � RSA key-pair generation.

Cryptographic Key Verification Techniques
The CCA implementations described in this book employ mechanisms for assuring
the integrity and/or value of the key. These subjects are discussed:

� Master key verification algorithm
� DES key and key-part verification algorithm

| � Encrypt zeros algorithm.

Master Key Verification Algorithm
The Fortress product family implementations employ a “triple-length” master key (3
DES keys) that is internally represented in 24 bytes. Verification patterns on the
contents of the new, current, and old master key registers can be generated and
verified when the selected register is not in the empty state.

A SHA-1 hash is calculated on the quantity X'01' prepended to the 24-byte
register contents. Then the high-order 8 bytes (0...7) of the 20-byte SHA-1 hash
are returned in the random_number variable from a Key_Test verb call. The next
eight-bytes of the SHA-1 hash (8...15) are returned in the verification_pattern
variable.

The master key verification pattern used in an internal DES key record is calculated
in a similar manner with the high-order two bytes of the SHA-1 used as the
verification pattern (MKVP).

DES Key Verification Algorithm
The cryptographic engines provide a method for verifying the value of a DES
cryptographic key or key part without revealing information about the value of the
key or key part.

The CCA verification method first creates a random number. A one-way
cryptographic function combines the random number with the key or key part. The
verification method returns the result of this one-way cryptographic function (the
verification pattern) and the random number.

 Copyright IBM Corp. 1997-98 D-1

Note: A one-way cryptographic function is a function in which it is easy to
compute the output from a given input, but it is computationally infeasible to
compute the input given an output.

For information about how you can use an application program to invoke this
verification method, see page 5-35.

The CCA DES key verification algorithm does the following:

1. Sets KKR′ = KKR exclusive-OR RN
2. Sets K1 = X'4545454545454545'
3. Sets X1 = DES encoding of KKL using key K1
4. Sets K2 = X1 exclusive-OR KKL
5. Sets X2 = DES encoding of KKR′ using key K2
6. Sets VP = X2 exclusive-OR KKR′.

where:

RN Is the random number generated or provided

KKL Is the value of the single-length key, or is the left half of the
double-length key

KKR Is XL8'00' if the key is a single-length key, or is the value of the right
half of the double-length key

VP Is the verification pattern.

| Encrypt Zeros DES Key Verification Algorithm
| The cryptographic engine provides a method for verifying the value of a DES
| cryptographic key or key part without revealing information about the value of the
| key or key part. In this method the single-length or double-length key DEA
| encodes a 64-bit value that is all zero bits.

| A double-length key is split in halves. The left half (high-order half) DEA encodes
| the zero-bit value, this result is DEA decoded by the right key half, and that result is
| DEA encoded by the left key half.

| The leftmost 32 bits of the result are compared to the trial input value or returned
| from the verb.

D-2 IBM 4758 CCA Services

 Ciphering Methods
The Data Encryption Standard (DES) algorithm defines operations on eight-byte
data strings. Although the fundamental concepts of ciphering (enciphering and
deciphering) and data verification are simple, different methods exist to process
data strings that are not a multiple of eight bytes in length. The standards and IBM
products that define these methods are as follows:

� ANSI X3.106 (CBC)
 � ANSI X9.23.

Note: These methods also differ in how they define the initial chaining value (ICV).

This section describes how the verbs implement these methods.

ANSI X3.106 Cipher Block Chaining (CBC) Method
ANSI standard X3.106 defines four modes of operation for ciphering. One of these
modes, Cipher Block Chaining (CBC), defines the basic method for ciphering
multiple eight-byte data strings. Figure D-1 and Figure D-2 on page D-4 show
Cipher Block Chaining using the Encipher and the Decipher verbs. A plaintext data
string that must be a multiple of eight bytes, is processed as a series of eight-byte
blocks. The ciphered result from processing an eight-byte block is exclusive-ORd
with the next block of eight input bytes. The last eight-byte ciphered result is
defined as an output chaining value (OCV). The security server stores the OCV in
bytes 0 through 7 of the chaining_vector variable.

An ICV is exclusive-ORd with the first block of eight bytes. When you call the
Encipher verb or the Decipher verb, specify the INITIAL or CONTINUE keywords.
If you specify the INITIAL keyword (the default), the initialization vector from the
verb parameter or the key token is exclusive-ORd with the first eight bytes of data.
If you specify the CONTINUE keyword, the OCV identified by the chaining_vector
parameter is exclusive-ORd with the first eight bytes of data.

 Appendix D. Algorithms and Processes D-3

┌──────────────┐

│Verb Parameter│

│ or Key Token │

└──────┬───────┘

 │

┌──────6───────┐ %────── Plaintext from Application Program ────────────5

│Initialization│ ┌────────────────┐ ┌────────────────┐ ┌────────────────┐

│ Vector │ │ Data (1,8) │ │ Data (9,16) │ │Data (N\8─7,N\8)│

└──────┬───────┘ └───────┬────────┘ └───────┬────────┘ └───────┬────────┘

│INITIAL │ │ │

│Keyword │ │ │

6 ┌───┐ ┌─6─┐ ┌─6─┐ ┌─6─┐

 or───5ICV├──────5XOR│ ┌──────5XOR│ ┌ ─ ───5XOR│

 & └───┘ └─┬─┘ │ └─┬─┘ └─┬─┘

│CONTINUE │ │ │ │

 │Keyword ┌─────6─────┐ │ ┌─────6─────┐ │ ┌─────6─────┐

 │ │ Encipher │ │ │ Encipher │ │ Encipher │

 │ └─────┬─────┘ │ └─────┬─────┘ │ └─────┬─────┘

 │ │ │ │ │ ┌───┐

│ ├─────────┘ ├────── ─ ┘ ├─────────────5OCV│

│ │ │ │ └─┬─┘

│ ┌───────6────────┐ ┌───────6────────┐ ┌───────6────────┐ │

│ │ Data (1,8) │ │ Data (9,16) │ │Data (N\8─7,N\8)│ │

│ └────────────────┘ └────────────────┘ └────────────────┘ │

│ %───────── Ciphertext to Application Program ──────────5 │

 │ ┌────────6──────┐

 └──┤Chaining Vector│

 └───────────────┘

Figure D-1. Enciphering Using the CBC Method

┌──────────────┐

│Verb Parameter│

│ or Key Token │

└──────┬───────┘

 │

┌──────6───────┐ %──────── Ciphertext from Application Program ─────────5

│Initialization│ ┌────────────────┐ ┌────────────────┐ ┌────────────────┐

│ Vector │ │ Data (1,8) │ │ Data (9,16) │ │Data (N\8─7,N\8)│

└──────┬───────┘ └───────┬────────┘ └───────┬────────┘ └───────┬────────┘

│ │ │ │ ┌───┐

│ ├─────────┐ ├────── ─ ┐ ├─────────────5OCV│

 │ │ │ │ │ └─┬─┘

 │ ┌─────6─────┐ │ ┌─────6─────┐ │ ┌─────6─────┐ │

 │ │ Decipher │ │ │ Decipher │ │ Decipher │ │

 │INITIAL └─────┬─────┘ │ └─────┬─────┘ │ └─────┬─────┘ │

 │Keyword │ │ │ │ │

 6 ┌───┐ ┌─6─┐ │ ┌─6─┐ ┌─6─┐ │

 or───5ICV├──────5XOR│ └──────5XOR│ └ ─ ───5XOR│ │

& └───┘ └─┬─┘ └─┬─┘ └─┬─┘ │

│CONTINUE │ │ │ │

│Keyword │ │ │ │

│ ┌───────6────────┐ ┌───────6────────┐ ┌───────6────────┐ │

│ │ Data (1,8) │ │ Data (9,16) │ │Data (N\8─7,N\8)│ │

│ └────────────────┘ └────────────────┘ └────────────────┘ │

│ %──────── Plaintext to Application Program ────────────5 │

 │ ┌────────6──────┐

 └──┤Chaining Vector│

 └───────────────┘

Figure D-2. Deciphering Using the CBC Method

D-4 IBM 4758 CCA Services

 ANSI X9.23
An enhancement to the basic Cipher Block Chaining mode of X3.106 is defined so
that the system can process data lengths that are not exact multiples of eight bytes.

The ANSI X9.23 method always adds from one byte to eight bytes to the plaintext
before encipherment. With these methods, the last added byte is the count of the
added bytes and is within the range of X'01' to X'08'. The other added padding
bytes are set to X'00'.

For other than the CBC method, when the security server deciphers the ciphertext,
the security server uses the last byte of the deciphered data as the number of
bytes to be removed (the pad bytes and the count byte). The resulting plaintext is
the same length as the original plaintext.

 Appendix D. Algorithms and Processes D-5

┌──────────────┐

│Verb Parameter│

│ or Key Token │

└──────┬───────┘

 │

┌──────6───────┐ %── Plaintext from Application Program ───5

│Initialization│ ┌────────────────┐ ┌────────────────┐ ┌────┬─────┬─────┐

│ Vector │ │ Data (1,8) │ │Data (N\8─7,N\8)│ │Data│ Pad │Count│

└──────┬───────┘ └───────┬────────┘ └───────┬────────┘ └────┴──┬──┴─────┘

│ │ │ │

│ ┌─6─┐ ┌─6─┐ ┌─6─┐

 └───────────────5XOR│ ┌ ─ ───5XOR│ ┌──────5XOR│

 └─┬─┘ └─┬─┘ │ └─┬─┘

 │ │ │ │ │

 │ │ │ │

 ┌─────6─────┐ │ ┌─────6─────┐ │ ┌─────6─────┐

 │ Encipher │ │ Encipher │ │ │ Encipher │

 └─────┬─────┘ │ └─────┬─────┘ │ └─────┬─────┘

 │ │ │ │

├────── ─ ┘ ├─────────┘ │

│ │ │

┌───────6────────┐ ┌───────6────────┐ ┌───────6────────┐

│ Data (1,8) │ │Data (N\8─7,N\8)│ │ Last Block │

└────────────────┘ └────────────────┘ └────────────────┘

%─────── Ciphertext to Application Program ────────────5

Figure D-3. Enciphering Using the ANSI X9.23 Method

┌──────────────┐

│Verb Parameter│

│ or Key Token │

└──────┬───────┘

 │

┌──────6───────┐ %──────── Ciphertext from Application Program ─────────5

│Initialization│ ┌────────────────┐ ┌────────────────┐ ┌────────────────┐

│ Vector │ │ Data (1,8) │ │Data (N\8─7,N\8)│ │ Last Block │

└──────┬───────┘ └───────┬────────┘ └───────┬────────┘ └───────┬────────┘

│ │ │ │

│ ├────── ─ ┐ ├─────────┐ │

 │ │ │ │ │

 │ ┌─────6─────┐ │ ┌─────6─────┐ │ ┌─────6─────┐

 │ │ Decipher │ │ Decipher │ │ │ Decipher │

 │ └─────┬─────┘ │ └─────┬─────┘ │ └─────┬─────┘

 │ │ │ │ │

 │ ┌─6─┐ │ ┌─6─┐ │ ┌─6─┐

 └───────────────5XOR│ └ ─ ───5XOR│ └──────5XOR│

└─┬─┘ └─┬─┘ └─┬─┘

│ │ │

┌───────6────────┐ ┌───────6────────┐ ┌────┬──6──┬─────┐

│ Data (1,8) │ │Data (N\8─7,N\8)│ │Data│ Pad │Count│

└────────────────┘ └────────────────┘ └────┴─────┴─────┘

%─── Plaintext to Application Program ────5

Figure D-4. Deciphering Using the ANSI X9.23 Method

D-6 IBM 4758 CCA Services

MAC Calculation Method
The Financial Institution (Wholesale) Message Authentication Standard (ANSI
X9.9-1986) defines a process for the authentication of messages from originator to
recipient. This process is called the Message Authentication Code (MAC)
calculation method.

Figure D-5 shows the MAC calculation for binary data. KEY is a 64-bit key, and T1
through Tn are 64-bit data blocks of text. In the standard, the Initial Chaining Value
is binary zeros. If Tn is less than 64 bits long, binary zeros are appended (padded)
to the right of Tn. The leftmost 32 bits of (On) are taken as the MAC.

| The Financial Institution (Retail) Message Authentication Standard, ANSI X9.19
| Optional Procedure 1, specifies additional processing of the 64-bit MAC value as
| calculated above. The “X9.19OPT” process employs a double-length DES key.
| After calculating the 64-bit MAC as above with the left half of the double-length key,
| the result is decrypted using the right half of the double-length key. This result is
| then encrypted with the left half of the double-length key. The resulting MAC value
| is returned according to other specifications supplied to the verb call.

 T1 T2 Tn-1 Tn

 │ │ │ │

 ð 6 6 6 6

 │ │ │ │ │

 6 ┌──┴──┐ ┌──┴──┐ ┌──┴──┐ ┌──┴──┐

 │ │ │ │ │ │ │ │ │

 └─┤ XOR │ ┌─5─┤ XOR │ ┌─5─┤ XOR │ ┌─5─┤ XOR │

 │ │ │ │ │ │ │ │ │ │ │

 └──┬──┘ │ └──┬──┘ │ └──┬──┘ │ └──┬──┘

 │ │ │ │ │ │ │

 │ │ │ │ │ │ │

 6 │ 6 │ 6 │ 6

 │ │ │ │ │ │ │

 │ │ │ │ │ │ │

 ┌──┴──┐ │ ┌──┴──┐ │ ┌──┴──┐ │ ┌──┴──┐

 │ │ │ │ │ │ │ │ │ │ │

KEY│ e │ │KEY│ e │ │KEY│ e │ │KEY│ e │

 │ │ │ │ │ │ │ │ │ │ │

 └──┬──┘ │ └──┬──┘ │ └──┬──┘ │ └──┬──┘

 │O1 │ │O2 │ │On-1 │ │On

 └───────┘ └───────────┘ └───────┘ ├───5(OCV)

 │

 6

 MAC

Figure D-5. MAC Calculation Method

Notes:

1. A footnote in the ANSI X9.9 standard suggests the future use of a 48-bit or
64-bit MAC. For these cases, the left-most 48 bits or the entire final output
(On) is taken as the MAC.

2. The ANSI X9.9 standard defines five options. The MAC_Generate and
MAC_Verify verbs implement option 1, binary data. The X9.9_Data_Editing
verb is supplied as a subroutine to perform data fitting as required for options 2
and 4.

 Appendix D. Algorithms and Processes D-7

| PKA92 Key Format and Encryption Process
| The PKA_Symmetric_Key_Export, PKA_Symmetric_Key_Generate, and the
| PKA_Symmetric_Key_Import verbs optionally support a PKA92 method of
| encrypting a DES or CDMF key with an RSA public key. This format is adapted
| from the IBM Transaction Security System (TSS) 4753 and 4755 product's
| implementation of “PKA92.” The verbs do not create or accept the complete PKA92
| AS key token as defined for the TSS products. Rather, the verbs only support the
| actual RSA-encrypted portion of a TSS PKA92 key token, the AS External Key
| Block.

| Forming an External Key Block: The PKA96 implementation forms an AS
| External Key Block by RSA-encrypting a key block using a public key. The key
| block is formed by padding the key record detailed in Figure D-6 with zero bits on
| the left, high-order end of the key record. The process completes the key block
| with three sub-processes: masking, overwriting, and RSA encrypting.

| Masking Sub-process: Create a mask by CBC encrypting a multiple of 8 bytes of
| binary zeros using K as the key and IV as the initialization vector as defined in the
| key record at offsets 45 and 53. Exclusive-OR the mask with the key record and
| call the result PKR.

| Overwriting Sub-process: Set the high order bits of PKR to B'01', and set the low
| order bits to B'0110'.

| Exclusive-OR K and IV and write the result at offset 45 in PKR.

| Write IV at offset 53 in PKR. This causes the masked and overwritten PKR to have
| IV at its original position.

| Encrypting Sub-process: RSA encrypt the overwritten PKR masked key record
| using the public key of the receiving node.

| Recovering a Key from an External Key Block: Recover the encrypted DES key
| from an AS External Key Block by performing decrypting, validating, unmasking,
| and extraction sub-processes.

| Figure D-6. PKA96 Clear DES Key Record

| Offset
| (Bytes)
| Length
| (Bytes)
| Description

| Zero-bit padding to form a structure as long as the length of the public key modulus. The
| implementation constrains the public key modulus to a multiple of 64 bits in the range of 512 to
| 1024 bits. Note that governmental export or import regulations can impose limits on the modulus
| length. The maximum length is validated by a check against a value in the Function Control Vector.

| 000| 005| Header and flags: X'01 0000 0000'

| 005| 016| Environment Identifier (EID), encoded in ASCII

| 021| 008| Control vector base for the DES key

| 029| 008| Repeat of the CV data at offset 021

| 037| 008| The single-length DES key or the left half of a double-length DES key

| 045| 008| The right half of a double-length DES key or a random number. This value is
| locally designated “K.”

| 053| 008| Random number, “IV”

| 061| 001| Ending byte, X'00'

D-8 IBM 4758 CCA Services

| Decrypting Sub-process: RSA decrypt the AS External Key Block using an RSA
| private key and call the result of the decryption PKR. The private key must be
| usable for key management purposes.

| Validating Sub-process: Verify that the high-order two bits of the PKR record are
| valued to B'01'. and that the low-order four bits ot the PKR record are valued to
| B'0110'.

| Unmasking Sub-process: Set IV to the value of the 8 bytes at offset 53 of the PKR
| record. Note that there is a variable quantity of padding prior to offset 0. See
| Figure D-6 on page D-8.

| Set K to the exclusive-OR of IV and the value of the 8 bytes at offset 45 of the
| PKR record.

| Create a mask that is equal in length to the PKR record by CBC encrypting a
| multiple of 8 bytes of binary zeros using K as the key and IV as the initialization
| vector. Exclusive-OR the mask with PKR and call the result the key record.

| Extraction Sub-process: Confirm that:

| � The five bytes at offset 0 in the key record are valued to X'01 0000 0000'
| � The two control vector fields at offsets 21 and 29 are identical
| � If the control vector is an IMPORTER or EXPORTER key class, that the EID in
| the key record is not the same as the EID stored in the cryptographic engine.

| The control vector base of the recovered key is the value at offset 21. If the control
| vector base bits 40 to 42 are valued to B'010', the key is double length. Set the
| right half of the received key's control vector equal to the left half and reverse bits
| 41 and 42 in the right half.

| The recovered key is at offset 37 and is either 8 or 16 bytes long based on the
| control vector base bits 40 to 42. If these bits are valued to B'000', the key is
| single length. If these bits are valued to B'010', the key is double length.

 Appendix D. Algorithms and Processes D-9

| Encrypting a Key_Encrypting Key in the NL-EPP-5 Format
| The PKA_Symmetric_Key_Generate verb supports a NL-EPP-5 method of
| encrypting a DES key-encrypting key with an RSA public key. The verb returns an
| encrypted key block by RSA encrypting a key record formed in the following
| manner:

| 1. Format the key and other data per Figure D-7

| 2. Insert random padding data into the record

| 3. Insert the count of pad bytes plus one.

| Figure D-7. NL-EPP-5 Key Record Format

| Offset
| (Bytes)
| Length
| (Bytes)
| Description

| 000| 02| Header and Null Cancelation bytes, X'0B00'

| 002| 08| Single length key-encrypting key

| 002| 16| Double length key-encrypting key

| 010 or
| 018
| Random padding data

| 063| 01| Padding count byte, X'36' for a single length key-encrypting key, or X'2E'
| for a double length key-encrypting key.

D-10 IBM 4758 CCA Services

Triple-DES Ciphering Algorithms
| For the IBM 4758-001, Triple-DES is used to encrypt keys. DES keys, when triple

encrypted under a double length DES key, are ciphered using an e-d-e scheme
without feedback. RSA private keys are also enciphered with triple DES
techniques, and the techniques may also be used for additional purposes. Two
techniques are employed depending on the length of the enciphering DES key,
double or triple length: EDE2/DED2 and EDE3/DED3.

The EDE2 algorithm uses a 112-bit key to encrypt any number of 64-bit blocks of
information. The DED2 algorithm is used to decrypt this information. The
Key-Encrypting Key is a transport Key-Encrypting Key for an external key.

 ┌─────────────┬─────────────┐

 │ K1<64> │ K2<64> │

 └─────────────┴─────────────┘

 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐

 │ T1<64> │ T2<64> │ T3<64> │ │ Tn<64> │

 └──────┬──────┴──────┬──────┴──────┬──────┴/┴──────┬──────┘

6 6 6 6

┌───┐ ┌───┐ ┌───┐ ┌───┐

ð─5│ + │ ┌─────5│ + │ ┌─────5│ + │ ┌──//───5│ + │

 └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘

 6 │ 6 │ 6 │ 6

 ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐

K1─5│ e │ │ K1─5│ e │ │ K1─5│ e │ │ K1─5│ e │

 └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘

├────┘ ├────┘ ├────┘ │

├────┐ ├────┐ ├────┐ │

 6 │ 6 │ 6 │ 6

 ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐

K2─5│ d │ │ K2─5│ d │ │ K2─5│ d │ │ K2─5│ d │

 └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘

 6 │ 6 │ 6 │ 6

 ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐

ð─5│ + │ └─────5│ + │ └─────5│ + │ └──//───5│ + │

└─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘

6 6 6 6

┌───┐ ┌───┐ ┌───┐ ┌───┐

ð─5│ + │ ┌─────5│ + │ ┌─────5│ + │ ┌──//───5│ + │

 └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘

 6 │ 6 │ 6 │ 6

 ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐

K1─5│ e │ │ K1─5│ e │ │ K1─5│ e │ │ K1─5│ e │

 └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘

├────┘ ├────┘ ├────┘ │

6 6 6 6

 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐

 │ S1<64> │ S2<64> │ S3<64> │ │ Sn<64> │

 └─────────────┴─────────────┴─────────────┴/┴─────────────┘

S = ede2(K,T)

 or

S = e2\K(T)

Figure D-8. EDE2 Algorithm

 Appendix D. Algorithms and Processes D-11

 ┌─────────────┬─────────────┐

 │ K1<64> │ K2<64> │

 └─────────────┴─────────────┘

 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐

 │ S1<64> │ S2<64> │ S3<64> │ │ Sn<64> │

 └──────┬──────┴──────┬──────┴──────┬──────┴/┴──────┬──────┘

├────┐ ├────┐ ├────┐ │

 6 │ 6 │ 6 │ 6

 ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐

K1─5│ d │ │ K1─5│ d │ │ K1─5│ d │ │ K1─5│ d │

 └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘

 6 │ 6 │ 6 │ 6

 ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐

ð─5│ + │ └─────5│ + │ └─────5│ + │ └──//───5│ + │

└─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘

6 6 6 6

┌───┐ ┌───┐ ┌───┐ ┌───┐

ð─5│ + │ ┌─────5│ + │ ┌─────5│ + │ ┌──//───5│ + │

 └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘

 6 │ 6 │ 6 │ 6

 ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐

K2─5│ e │ │ K2─5│ e │ │ K2─5│ e │ │ K2─5│ e │

 └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘

├────┘ ├────┘ ├────┘ │

├────┐ ├────┐ ├────┐ │

 6 │ 6 │ 6 │ 6

 ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐

K1─5│ d │ │ K1─5│ d │ │ K1─5│ d │ │ K1─5│ d │

 └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘

 6 │ 6 │ 6 │ 6

 ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐

ð─5│ + │ └─────5│ + │ └─────5│ + │ └──//───5│ + │

└─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘

6 6 6 6

 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐

 │ T1<64> │ T2<64> │ T3<64> │ │ Tn<64> │

 └─────────────┴─────────────┴─────────────┴/┴─────────────┘

T = ded2(K,S)

Figure D-9. DED2 Algorithm

The EDE3 algorithm uses a 168-bit key to encrypt any number of 64-bit blocks of
information. The DED3 algorithm is used to decrypt this information. The
Key-Encrypting Key is the master key for an internal key.

D-12 IBM 4758 CCA Services

 ┌─────────────┬─────────────┬/┬─────────────┐

 │ K1<64> │ K2<64> │ │ K3<64> │

 └─────────────┴─────────────┴/┴─────────────┘

 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐

 │ T1<64> │ T2<64> │ T3<64> │ │ Tn<64> │

 └──────┬──────┴──────┬──────┴──────┬──────┴/┴──────┬──────┘

6 6 6 6

┌───┐ ┌───┐ ┌───┐ ┌───┐

ð─5│ + │ ┌─────5│ + │ ┌─────5│ + │ ┌──//───5│ + │

 └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘

 6 │ 6 │ 6 │ 6

 ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐

K1─5│ e │ │ K1─5│ e │ │ K1─5│ e │ │ K1─5│ e │

 └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘

├────┘ ├────┘ ├────┘ │

├────┐ ├────┐ ├────┐ │

 6 │ 6 │ 6 │ 6

 ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐

K2─5│ d │ │ K2─5│ d │ │ K2─5│ d │ │ K2─5│ d │

 └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘

 6 │ 6 │ 6 │ 6

 ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐

ð─5│ + │ └─────5│ + │ └─────5│ + │ └──//───5│ + │

└─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘

6 6 6 6

┌───┐ ┌───┐ ┌───┐ ┌───┐

ð─5│ + │ ┌─────5│ + │ ┌─────5│ + │ ┌──//───5│ + │

 └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘

 6 │ 6 │ 6 │ 6

 ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐

| K3─5│ e │ │ K3─5│ e │ │ K3─5│ e │ │ K3─5│ e │

 └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘

├────┘ ├────┘ ├────┘ │

6 6 6 6

 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐

 │ S1<64> │ S2<64> │ S3<64> │ │ Sn<64> │

 └─────────────┴─────────────┴─────────────┴/┴─────────────┘

S = ede3(K,T)

 or

S = e3\K(T)

Figure D-10. EDE3 Algorithm

 Appendix D. Algorithms and Processes D-13

 ┌─────────────┬─────────────┬/┬─────────────┐

 │ K1<64> │ K2<64> │ │ K3<64> │

 └─────────────┴─────────────┴/┴─────────────┘

 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐

 │ S1<64> │ S2<64> │ S3<64> │ │ Sn<64> │

 └──────┬──────┴──────┬──────┴──────┬──────┴/┴──────┬──────┘

├────┐ ├────┐ ├────┐ │

 6 │ 6 │ 6 │ 6

 ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐

K3─5│ d │ │ K3─5│ d │ │ K3─5│ d │ │ K3─5│ d │

 └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘

 6 │ 6 │ 6 │ 6

 ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐

ð─5│ + │ └─────5│ + │ └─────5│ + │ └──//───5│ + │

└─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘

6 6 6 6

┌───┐ ┌───┐ ┌───┐ ┌───┐

ð─5│ + │ ┌─────5│ + │ ┌─────5│ + │ ┌──//───5│ + │

 └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘

 6 │ 6 │ 6 │ 6

 ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐

K2─5│ e │ │ K2─5│ e │ │ K2─5│ e │ │ K2─5│ e │

 └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘

├────┘ ├────┘ ├────┘ │

├────┐ ├────┐ ├────┐ │

 6 │ 6 │ 6 │ 6

 ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐

K1─5│ d │ │ K1─5│ d │ │ K1─5│ d │ │ K1─5│ d │

 └─┬─┘ │ └─┬─┘ │ └─┬─┘ │ └─┬─┘

 6 │ 6 │ 6 │ 6

 ┌───┐ │ ┌───┐ │ ┌───┐ │ ┌───┐

ð─5│ + │ └─────5│ + │ └─────5│ + │ └──//───5│ + │

└─┬─┘ └─┬─┘ └─┬─┘ └─┬─┘

6 6 6 6

 ┌─────────────┬─────────────┬─────────────┬/┬─────────────┐

 │ T1<64> │ T2<64> │ T3<64> │ │ Tn<64> │

 └─────────────┴─────────────┴─────────────┴/┴─────────────┘

T = ded3(K,S)

Figure D-11. DED3 Algorithm

D-14 IBM 4758 CCA Services

| RSA Key-Pair Generation
| This section describes RSA Key Generation in the IBM 4755. The conditions on
| the RSA key elements for the 4755 are as follows.

| 1. p and q must be randomly chosen prime numbers
| 2. p and q must be somewhat different in length
| 3. (p-1) must contain a large prime factor, denoted p1, and likewise (q-1) must
| contain a large prime factor, q1
| 4. (p1-1) must contain a large prime factor, p2, and (q1-1) must contain a large
| prime factor, q2
| 5. (p+1) must not factor entirely small factors; ditto for (q+1)
| 6. the greatest common divisor of (p-1) and (q-1) must be small
| 7. the ratio p/q must not be close to the ratio of two small integers
| 8. let phi = (p-1) * (q-1); then phi and e must be relatively prime
| 9. let phi' = phi/GCD(p-1,q-1); then d must satisfy the equation e*d mod phi' = 1

| The length requirements are:

| 1. len(n) = desired length of the modulus in bits
| 2. len(p) = 0.5 * len(n)
| 3. 16
| 4. len(q) = len(n)
| 5. len(p)
| 6. len(p1) = len(q1) = 0.8 * len(p)
| 7. len(p2) = len(q2) = 0.8 * len(p1)

 Appendix D. Algorithms and Processes D-15

Access Control Algorithms
The following sections describe algorithms and protocols used by the access
control system.

Passphrase Verification Protocol
This section describes the process used to log a user on to the Cryptographic
Coprocessor.

 Design Criteria
The passphrase verification protocol is designed to meet the following criteria.

1. The use of cryptographic algorithms is permitted in the client logon software,
but there must be no storage of any long-term cryptographic keys. This is
because secure key storage is generally not available in the client workstation.

2. Replay attacks must not be feasible. This means that the logon request
message must be protected so that it cannot be captured by an adversary, and
later replayed to gain access to the genuine user's privileges.

3. An attacker should not be able to guess the cleartext content of the logon
request message.

4. No special hardware should be required on the client workstation.

5. The logon process must result in the establishment of a session key known
only to the Cryptographic Coprocessor and the client. This key will be used on
subsequent transactions to prove the identity of the sender, and to secure
transmitted data.

6. The session key will be generated in the coprocessor. Its hardware-based
random number generator is of higher quality than software-based random
number sources generally available.

Description of the Protocol
The protocol is comprised of the following steps.

1. The user provides his User ID (UID) and passphrase.

2. The passphrase is hashed in the client workstation, using SHA-1. The resulting
hash is used to construct a logon key, denoted KL.

KL is a triple-length DES key. The three components of the triple-length key
are denoted K1L, K2L, and K3L. K1L is comprised of the first eight bytes of the
hash, K2L is comprised of the second eight bytes, and K3L is comprised of the
last four bytes, concatenated with four bytes of X'00'. Figure D-12 shows an
example to clarify this.

Passphrase is "This is my passphrase!"

SHA-1 hash of the passphrase is hex 42BED1CD 1DB68934 6319E315 F3Cð96A8 B2Eð8DB2

└───────┬───────┘ └────────┬──────┘ └───┬──┘

 │ │ │

K1 is 42BED1CD 1DB68934 %───────────────────┘ │ │

K2 is 6319E315 F3Cð96A8 %──────────────────────────────────────┘ │

K3 is B2Eð8DB2 ðððððððð %───┘

Figure D-12. Example of logon key computation

D-16 IBM 4758 CCA Services

3. The client workstation generates a random number, RN (64 bits).

Note: Note: The random number RN is not used inside the Cryptographic
Coprocessor. It is only included in the protocol to guarantee that the cleartext
of the logon request is different every time.

4. The client workstation sends a logon request to the Cryptographic Coprocessor,
including the following information:

{ UID, eKL(RN, UID, Timestamp) }

Encryption uses DES EDE31 mode, performed in software in the client
workstation. The timestamp includes both the time and the date, in GMT. It is

| used to prevent replay of the logon request. The timestamp is formed from the
| concatenation of binary encoded values of the year, month, day , hour, minute,
| and second. Each value is held in one byte except for the year which is held in
| a two-byte value.

5. The Cryptographic Coprocessor retrieves the user profile, which it has in secure
internal memory. It uses the received userid value UID to locate the right
profile. If the user's profile is not found, the logon request is rejected.

6. The coprocessor reads the hash of the user's passphrase from the profile, thus
obtaining KL.

7. The coprocessor uses KL to decrypt the user's logon data, thus recovering the
UID, Timestamp, and RN. It compares the recovered UID with the cleartext
UID it received, and aborts if the two are not equal. Inequality is an indication
that the passphrase was incorrect, or that someone tried to splice another
user's captured logon data into their own request.

8. The coprocessor verifies that the recovered Timestamp is within 5 minutes of
the current time, according to the Coprocessor's secure clock. If the
Timestamp falls outside this window, it indicates a probable replay attack, and
the logon request is rejected.

9. If everything in the preceding steps was acceptable, the user is logged on to
the coprocessor. It generates a DES session key KS, and returns this key to
the client in the form eKL(KS). The session key is a triple-length DES key.

10. In a secure internal table, the coprocessor stores the userid UID, the value of
KS, and the user's Role, which is extracted from the profile. This table is used
on later requests to verify that the user is logged on, and to find the role
defining the user's privileges. The table entry is destroyed when the user logs
off.

11. The client workstation software (SAPI) saves KS for use in subsequent
transactions.

1 For a description of the EDE3 encryption process, see Figure D-10 on page D-13.

 Appendix D. Algorithms and Processes D-17

| Master Key Splitting Algorithm
| This section describes the mathematical and cryptographic basis for the m-of-n key
| shares scheme.

| The key-splitting is based on Shamir's secret sharing algorithm:

| The value to be shared is the master key, Km, which is a triple-DES key and thus
| 168 bits long. Let P be the first prime number larger than 2168. All operations are
| carried out modulo P.

| Shamir's secret sharing allows the sharing of Km among n trustees in a way that
| no set of t or less of trustees will have ANY information about Km, while t+1
| trustees (or more) will be able to reconstruct Km.

| Sharing phase:

| 1. Randomly choose a_t,...,a_1 in [0..P-1]

| 2. Consider the polynomial f(x) = a_t xt + ... + a_1 x + a_0, where a_0=Km.

| Compute mk_i = f(i) mod P for all i=1,...n

| 3. Proceed to distribute the values mk_i as described above.

| Reconstruction phase:

| 1. After generating the set of authentic values (above sharing pahse) proceed as
| follows:

| 2. Take t+1 such values and interpolate the polynomial f(x) of degree t passing
| through these values using Lagrange interpolation. This will define a
| polynomial f(x) such that: f(i)=mk_i, and further more f(0) = MK. As we are
| only interested in Km, we present the mathematical formula to reconstruct the
| free term of the polynomial f(x). Let k_1,...,k_{t+1} be the indices of the mk_i's
| used for reconstruction. Then

| a_0=SUM_j(b_{k_j} PROD_h (x_{k_h} / (x_{k_h}- x_{k_j}))) mod P

| 3. Proceed to install Km = a_0 = f(0) mod P.

D-18 IBM 4758 CCA Services

| Appendix E. Financial PIN Calculation Methods and PIN
| Blocks

| This appendix describes the following:

| � PIN calculation methods

| � PIN block formats.

| The PIN calculation methods are independent from PIN block formats. A PIN can
| be calculated by any method and used in any PIN format. For example, a PIN can
| be calculated by the IBM 3624 PIN calculation method and used either in the IBM
| 3624 PIN block format or in another PIN block format.

| PIN Calculation Methods
| The financial PIN verbs support the following PIN calculation methods:

| � IBM 3624 PIN (IBM-PIN)
| � IBM 3624 PIN Offset (IBM-PINO)
| � Netherlands PIN-1 (NL-PIN-1).
| � IBM German Bank Pool Institution PIN
| � VISA PIN Validation Value (PVV)
| � Interbank PIN

| In the description of the financial PIN verbs, these terms are employed:

| A-PIN The quantity derived from a function of the account number,
| PIN-generating key (PINGEN or PINVER), and other inputs such as a
| decimalization table.

| C-PIN The quantity that a customer should use to identify himself; in general,
| this can be a customer-selected or institution-assigned quantity.

| O-PIN A quantity, sometimes called an offset, that relates the A-PIN to the
| C-PIN as permitted by certain methods.

| T-PIN The trial PIN presented for verification.

 Copyright IBM Corp. 1997-98 E-1

| IBM 3624 PIN Calculation Method
| The IBM 3624 PIN calculation method calculates a PIN that is from 4 to 16 digits in
| length.

| The IBM 3624 PIN calculation method consists of the following steps to create the
| A-PIN:

| 1. Encrypt the hexadecimal validation data with a key that has a control vector
| that specifies the PINGEN (or PINVER) key type to produce a 64-bit quantity.

| 2. Convert the character format decimalization table to an equivalent array of
| sixteen 4-bit hexadecimal digits, and use the decimalization table to convert the
| hexadecimal digits (X'0' to X'F') of the encrypted validation data to decimal
| digits (X'0' to X'9'). Call this result newpin.

| Let newpin(i), decimalization_table(i), and encrypted_validation_data(i) each
| represent the (i)th hexadecimal digit in each quantity.

| The digits of newpin are obtained by the following procedure:

| For i = 1 to 16 do:

| j := encrypted_validation_data(i)

| newpin(i) := decimalization_table(j)

| end do

| 3. Select the n leftmost decimal digits of newpin, where n is the PIN length. The
| result is an n-digit calculated A-PIN. The PIN must be from 4 to 16 digits in
| length.

| Example:

| Encrypted validation data = E5C1BD67B66AE7C6

| Decimalization table index = ð123456789ABCDEF

| Decimalization table = 8351296477461538

| Newpin = 3913656466643416

| PIN length = 6

| Calculated A-PIN = 391365 (leftmost 6 digits of newpin)

E-2 IBM 4758 CCA Services

| IBM 3624 PIN Offset Calculation Method
| The IBM 3624 PIN Offset calculation method is the same as the IBM 3624 PIN
| calculation method except that a step is added after the A-PIN is calculated to
| calculate or use an offset, O-PIN:

| � To calculate an O-PIN, the additional step subtracts (digit-wise, modulo 10, with
| no carry) the calculated A-PIN from the customer-selected C-PIN.

| The result is an O-PIN (offset) of n decimal digits, where n is the PIN length
| and must be in the range from 4 to 16. The PIN_check_length parameter
| specifies n as the low-order (rightmost) digits of the n-digit PIN offset. The
| O-PIN (offset) is not encrypted.

| � To use an offset to verify a trial PIN, the additional step adds (digit-wise,
| modulo 10, with no carry) the offset to the calculated A-PIN. The result is
| compared to the customer-entered trial PIN (T-PIN).

| Notes:

| 1. The digit-wise subtraction is defined only for digits in the range from
| X'0' to X'9'. Any other value is not valid and causes processing to fail.

| 2. The length of the offset depends on the length of the PIN and must be less
| than or equal to the length of the PIN. The financial institution that issues the
| magnetic-stripe card determines the length of the PIN offset, which you specify
| with the PIN_check_length parameter.

| 3. When the length of the PIN offset is less than the length of the calculated PIN,
| the subtraction or addition begins with the low order PIN digit.

 Appendix E. Financial PIN Calculation Methods and PIN Blocks E-3

| Netherlands PIN-1 Calculation Method
| The Netherlands PIN-1 (NL-PIN-1) calculation method calculates a PIN that is 4
| digits in length.

| The method consists of the following steps to create the A-PIN:

| 1. Encrypt the hexadecimal validation data with a key that has a control vector
| that specifies the PINGEN (or PINVER) key type to produce a 64-bit quantity.

| 2. Convert the character format decimalization table to an equivalent array of
| sixteen 4-bit hexadecimal digits, and use the decimalization table to convert the
| third through sixth hexadecimal digits (X'0' to X'F') of the encrypted validation
| data to decimal digits (X'0' to X'9'). Call this result newpin.

| Note: The application must specify a decimalization table of 0, 1, ...9, 0, ...5.

| Let A-PIN(i), decimalization_table(i), and encrypted_validation_data(i) each
| represent the (i)th hexadecimal digit in each quantity.

| The digits of A-PIN are obtained by the following procedure:

| For i = 3 to 6 do:

| j := encrypted_validation_data(i)

| A-PIN(i-2) := decimalization_table(j)

| end do

| 3. The O-PIN offset, also a 4 digit quantity, when added digit-wise modulo 10 to
| the A-PIN results in the C-PIN, customer-used-PIN value.

| Example:

| Encrypted validation data = 8325A637B66EA7A8

| Decimalization table index = ð123456789ABCEDF

| Decimalization table = ð123456789ð12345

| A-PIN = 25ð6

| O-PIN = 9957

| C-PIN, Customer PIN = 1453

E-4 IBM 4758 CCA Services

| IBM German Bank Pool Institution PIN Calculation Method
| The IBM German Bank Pool Institution PIN calculation method calculates an
| institution PIN that is 4 digits in length.

| The German Bank Pool Institution PIN calculation method consists of the following
| steps:

| 1. Encrypt the hexadecimal validation data with an &instk. that has a control
| vector that specifies the PINGEN (or PINVER) key type to get a 64-bit quantity.

| 2. Convert the character format decimalization table to an equivalent array of
| sixteen 4-bit hexadecimal digits, and use the decimalization table to convert the
| first 6 hexadecimal digits (X'0' to X'F') of the encrypted validation data to
| decimal digits (X'0' to X'9'). Call this result newpin.

| The digits of newpin are obtained by the following procedure:

| For i = 1 to 6 do:

| j := encrypted_validation_data(i)

| newpin(i) := decimalization_table(j)

| end do

| 3. Select the 4 rightmost digits of newpin. The result is a 4-digit intermediate PIN.

| 4. If the first digit of the intermediate PIN is 0, assign 1 to the first digit of the
| institution PIN, and assign the remaining 3 digits of the intermediate PIN to the
| institution PIN.

| If the first digit of the intermediate PIN is not 0, assign the value of the
| intermediate PIN to the institution PIN.

| The PIN is not encrypted.

| Example:

| Encrypted validation data = E5A4FD67B66AE7C6

| Decimalization table index = ð123456789ABCDEF

| Decimalization table = ð123456789ð12345

| Newpin = 45ð453

| Intermediate PIN = ð453 (4 rightmost digits of newpin)

| Institution PIN = 1453 (first digit is changed to 1

| because the intermediate PIN had a

| first digit of ð)

 Appendix E. Financial PIN Calculation Methods and PIN Blocks E-5

| VISA PIN Validation Value (PVV) Calculation Method
| The VISA PVV calculation method calculates a VISA PVV that is 4 digits in length.

| The VISA PIN Validation Value (PVV) calculation method consists of the following
| steps:

| 1. Let X denote the transaction_security_parameter element. This parameter is
| the result of concatenating the 12-numeric-digit generating data with the
| 4-numeric-digit customer-entered PIN.

| 2. Encrypt X with the double-length key that has a control vector that specifies the
| PINGEN (or PINVER) key type to get 16 hexadecimal digits (64 bits).

| 3. Perform decimalization on the result of the previous step by scanning the 16
| hexadecimal digits from left to right, skipping any digit greater than X'9', until 4
| decimal digits (for example, digits that have values from X'0' to X'9') are
| found.

| If all digits are scanned but 4 decimal digits are not found, repeat the scanning
| process, skipping all digits that are X'9' or less and selecting the digits that
| are greater than X'9'. Subtract 10 (X'A') from each digit selected in this
| scan.

| 4. Concatenate and use the resulting digits for the PVV. The PVV is not
| encrypted.

E-6 IBM 4758 CCA Services

| Interbank PIN Calculation Method
| The Interbank PIN calculation method consists of the following steps:

| 1. Let X denote the transaction_security_parameter element converted to an array
| of sixteen 4-bit numeric values. This parameter consists of (in the following
| sequence) the 11 rightmost digits of the customer PAN (excluding the check
| digit), a constant of 6, a 1-digit key indicator, and a 3-digit validation field.

| 2. Encrypt X with the double-length PINGEN (or PINVER) key to get 16
| hexadecimal digits (64 bits).

| 3. Perform decimalization on the result of the previous step by scanning the 16
| hexadecimal digits from left to right, skipping any digit greater than X'9', until 4
| decimal digits (for example, digits that have values from X'0' to X'9') are
| found.

| If all digits are scanned but 4 decimal digits are not found, repeat the scanning
| process, skipping all digits that are X'9' or less and selecting the digits that
| are greater than X'9'. Subtract 10 (X'A') from each digit selected in this
| scan.

| If the 4 digits that were found are all zeros, replace the 4 digits with 0100.

| 4. Concatenate and use the resulting digits for the Interbank PIN. The 4-digit PIN
| consists of the decimal digits in the sequence in which they are found. The
| PIN is not encrypted.

 Appendix E. Financial PIN Calculation Methods and PIN Blocks E-7

| PIN Block Formats
| The PIN verbs support one or more of the following PIN block formats:

| � IBM 3624 format
| � ISO-0 format (same as the ANSI X9.8, VISA-1, and ECI formats).
| � ISO-1 format (same as the ECI-4 format)
| � ISO-2 format

| 3624 PIN Block Format
| The 3624 PIN block format supports a PIN from 1 to 16 digits in length. A PIN that
| is longer than 16 digits is truncated on the right.

| The following is the 3624 PIN block format:

| 1 2 3 4 5 6 7 8 9 1ð 11 12 13 14 15 16

| ┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐

| │ P │P/X│P/X│P/X│P/X│P/X│P/X│P/X│P/X│P/X│P/X│P/X│P/X│P/X│P/X│P/X│

| └───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘

| Figure E-1. 3624 PIN Block Format

| where:

| P Is a PIN digit, which is a 4-bit value from X'0' to X'9'. The values of
| the PIN digits are independent.

| P/X Is a PIN digit or a pad value. A PIN digit has a 4-bit value from
| X'0' to X'9'. A pad value has a 4-bit value from X'0' to X'F' and
| must be different from any PIN digit. The number of pad values for this
| format is in the range from 0 to 15, and all the pad values must have
| the same value.

| Example:

| PIN = ð123456, Pad = X'E'.

| PIN block = X'ð123456EEEEEEEEE'.

E-8 IBM 4758 CCA Services

| ISO-0 PIN Block Format
| An ISO-0 PIN block format is equivalent to the ANSI X9.8, VISA-1, and ECI-1 PIN
| block formats. The ISO-0 PIN block format supports a PIN from 4 to 12 digits in
| length. A PIN that is longer than 12 digits is truncated on the right.

| The following are the formats of the intermediate PIN block, the PAN block, and the
| ISO-0 PIN block:

| 1 2 3 4 5 6 7 8 9 1ð 11 12 13 14 15 16

| ┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐

| │ ð │ L │ P │ P │ P │ P │P/F│P/F│P/F│P/F│P/F│P/F│P/F│P/F│ F │ F │

| └───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘

| Intermediate PIN Block = IPB

| ┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐

| │ ð │ ð │ ð │ ð │PAN│PAN│PAN│PAN│PAN│PAN│PAN│PAN│PAN│PAN│PAN│PAN│

| └───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘

| PAN Block

| ┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐

| │ │ │ │ │ P │ P │P/F│P/F│P/F│P/F│P/F│P/F│P/F│P/F│ F │ F │

| │ ð │ L │ P │ P │XOR│XOR│XOR│XOR│XOR│XOR│XOR│XOR│XOR│XOR│XOR│XOR│

| │ │ │ │ │PAN│PAN│PAN│PAN│PAN│PAN│PAN│PAN│PAN│PAN│PAN│PAN│

| └───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘

| PIN Block = IPB XOR PAN Block

| Figure E-2. ISO-0 PIN Block Format

| where:

| 0 Is the value X'0'.

| L Is the length of the PIN, which is a 4-bit value from X'4' to X'C'.

| P Is a PIN digit, which is a 4-bit value from X'0' to X'9'. The values of
| the PIN digits are independent.

| P/F Is a PIN digit or pad value. A PIN digit has a 4-bit value from
| X'0' to X'9'. A pad value has a 4-bit value of X'F'. The number of
| pad values in the intermediate PIN block (IPB) is from 2 to 10.

| F Is the value X'F' for the pad value.

| PAN Is twelve 4-bit digits that represent one of the following:

| � The rightmost 12 digits of the primary account number (excluding
| the check digit) if the format of the PIN block is ISO-0, ANSI X9.8,
| VISA-1, or ECI-1

| Each PAN digit has a value from X'0' to X'9'.

| The PIN block is the result of exclusive-ORing the 64-bit IPB with the 64-bit PAN
| block.

| Example:

| L= 6, PIN = 123456, Personal Account Number = 111222333444555

| ð6123456FFFFFFFF : IPB

| ðððð222333444555 : PAN block for ISO-ð (ANSI X9.8, VISA-1, ECI-1) format

| ð6121675CCBBBAAA : PIN block for ISO-ð (ANSI X9.8, VISA-1, ECI-1) format.

 Appendix E. Financial PIN Calculation Methods and PIN Blocks E-9

| ISO-1 PIN Block Format
| The ISO-1 PIN block format is equivalent to an ECI-4 PIN block format. The ISO-1
| PIN block format supports a PIN from 4 to 12 digits in length. A PIN that is longer
| than 12 digits is truncated on the right.

| The following is the ISO-1 PIN block format:

| 1 2 3 4 5 6 7 8 9 1ð 11 12 13 14 15 16

| ┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐

| │ 1 │ L │ P │ P │ P │ P │P/R│P/R│P/R│P/R│P/R│P/R│P/R│P/R│ R │ R │

| └───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘

| Figure E-3. ISO-1 PIN Block Format

| where:

| 1 Is the value X'1'.

| L Is the length of the PIN, which is a 4-bit value from X'4' to X'C'.

| P Is the PIN digit, which is a 4-bit value from X'0' to X'9'. The values
| of the PIN digits are independent.

| R Is a random digit, which is a value from X'0' to X'F'. Typically, this
| should be used for predetermined transaction unique data such as a
| sequence number.

| P/R Is a PIN digit or a random digit, depending on the value of PIN length
| L. The number of random digits is in the range from 2 to 10, and the
| random digits can be different.

| Example:

| L=6, PIN = 123456, L = X'6'.

| PIN block = X'161234566ABCFDE1', where X'6', X'A', X'B', X'C', X'F',

| X'D', X'E', and X'1' are the random fillers.

E-10 IBM 4758 CCA Services

| ISO-2 PIN Block Format
| The ISO-2 PIN block format supports a PIN from 4 to 12 digits in length. A PIN
| that is longer than 12 digits is truncated on the right.

| The following is the ISO-2 PIN block format:

| 1 2 3 4 5 6 7 8 9 1ð 11 12 13 14 15 16

| ┌───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┬───┐

| │ 2 │ L │ P │ P │ P │ P │P/F│P/F│P/F│P/F│P/F│P/F│P/F│P/F│ F │ F │

| └───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┴───┘

| Figure E-4. ISO-2 PIN Block Format

| where:

| 1 Is the value X'1'.

| L Is the length of the PIN, which is a 4-bit value from X'4' to X'C'.

| P Is the PIN digit, which is a 4-bit value from X'0' to X'9'. The values
| of the PIN digits are independent.

| F Is a fill digit valued to X'F'.

| P/F Is a PIN digit or a fill digit.

| Example:

| L=6, PIN = 123456, L = X'6'.

| PIN block = X'26123456FFFFFFFF'.

 Appendix E. Financial PIN Calculation Methods and PIN Blocks E-11

E-12 IBM 4758 CCA Services

 Appendix F. Verb List

This appendix lists the verbs supported by the CCA Support Program feature for
the IBM 4758 PCI Cryptographic Coprocessor.

Figure F-1 lists each verb by the verb’s pseudonym and entry-point name and
shows the operating environment under which the verb is supported. A check (√) in
the operating environment column means that the verb is available for use in that
operating environment1.

Figure F-1 (Page 1 of 2). Security API Verbs in Supported Environments

Pseudonym
Entry-Point
Name OS/2 AIX NT

Page/
Book

DES Key Processing and Key Storage Verbs

Clear_Key_Import CSNBCKI √ √ √ 5-16

Data_Key_Export CSNBDKX √ √ √ 5-17

Data_Key_Import CSNBDKM √ √ √ 5-18

Diversified_Key_Generate CSNBDKG √ √ √ 5-20

Key_Export CSNBKEX √ √ √ 5-23

Key_Generate CSNBKGN √ √ √ 5-25

Key_Import CSNBKIM √ √ √ 5-31

Key_Part_Import CSNBKPI √ √ √ 5-33

DES_Key_Record_Create CSNBKRC √ √ √ 7-4

DES_Key_Record_Delete CSNBKRD √ √ √ 7-5

DES_Key_Record_List CSNBKRL √ √ √ 7-7

DES_Key_Record_Read CSNBKRR √ √ √ 7-9

Key_Record_Write CSNBKRW √ √ √ 7-10

Key_Test CSNBKYT √ √ √ 5-35

Key_Token_Build CSNBKTB √ √ √ 5-38

Key_Token_Change CSNBKTC √ √ √ 5-41

Key_Translate CSNBKTR √ √ √ 5-43

Random_Number_Generate CSNBRNG √ √ √ 5-45

PKA_Symmetric_Key_Export CSNDSYX √ √ √ 5-47

PKA_Symmetric_Key_Generate CSNDSYG √ √ √ 5-49

PKA_Symmetric_Key_Import CSNDSYI √ √ √ 5-52

1 Figure F-1 lists the verbs that are used with DES and PKA96 processing; for information about the verbs that are used with
PKA92 public-key processing, see the TSS Programming Reference: Volume II, Public-Key Cryptography SC31-2888.

 Copyright IBM Corp. 1997-98 F-1

Figure F-1 (Page 2 of 2). Security API Verbs in Supported Environments

Pseudonym
Entry-Point
Name OS/2 AIX NT

Page/
Book

Data Confidentiality and Data Integrity Verbs

Decipher CSNBDEC √ √ √ 6-4

Digital_Signature_Generate CSNDDSG √ √ √ 4-4

Digital_Signature_Verify CSNDDSV √ √ √ 4-7

Encipher CSNBENC √ √ √ 6-7

MAC_Generate CSNBMGN √ √ √ 6-10

MAC_Verify CSNBMVR √ √ √ 6-13

One_Way_Hash CSNBQWH √ √ √ 4-10

Hardware Access-Control Verbs

Access_Control_Initialization CSUAACI √ √ √ 2-13

Access_Control_Maintenance CSUAACM √ √ √ 2-16

Cryptographic_Facility_Control CSUSCFC √ √ √ 2-22

Cryptographic_Facility_Query CSUSCFQ √ √ √ 2-26

Key_Storage_Initialization CSNBKSI √ √ √ 2-36

Logon_Control CSUSLCT √ √ √ 2-38

Master_Key_Distribution CSUAMKD √ √ √ 2-42

Master_Key_Process CSNBMKP √ √ √ 2-46

RSA Key Administration and Key Storage Verbs

PKA_Key_Generate CSNDPKG √ √ √ 3-6

PKA_Key_Import CSNDPKI √ √ √ 3-10

PKA_Key_Token_Build CSNDPKB √ √ √ 3-12

PKA_Key_Token_Change CSNDKTC √ √ √ 3-18

PKA_Key_Record_Create CSNDKRC √ √ √ 7-11

PKA_Key_Record_Delete CSNDKRD √ √ √ 7-13

PKA_Key_Record_List CSNDKRL √ √ √ 7-15

PKA_Key_Record_Read CSNDKRR √ √ √ 7-17

PKA_Key_Record_Write CSNDKRW √ √ √ 7-19

PKA_Public_Key_Extract CSNDPKX √ √ √ 3-20

PKA_Public_Key_Hash_Register CSNDPKH √ √ √ 3-22

PKA_Public_Key_Register CSNDPKR √ √ √ 3-24

Retained_Key_Delete CSNDRKD √ √ √ 7-21

Retained_Key_List CSNDRKL √ √ √ 7-22

Financial Services Support Verbs

Clear_PIN_Encrypt CSNBCPE √ √ √ 8-12

Clear_PIN_Generate CSNBPGN √ √ √ 8-15

Clear_PIN_Generate_Alternate CSNBCPA √ √ √ 8-18

Encrypted_PIN_Generate CSNBEPG √ √ √ 8-24

Encrypted_PIN_Translate CSNBPTR √ √ √ 8-29

Encrypted_PIN_Verify CSNBPVR √ √ √ 8-34

SET_Block_Compose CSNDSBC √ √ √ 8-40

SET_Block_Decompose CSNDSBD √ √ √ 8-44

F-2 IBM 4758 CCA Services

Appendix G. Access Control Request Function Codes

The following table lists all of the access control points for the functions in the
Cryptographic Coprocessor. Each access control point corresponds to one
primitive function, which can be enabled or disabled in a role.

Each code is two bytes in length, for a maximum of 65,536 possible codes. Any
codes not listed in the table are reserved for future use.

Figure G-1 (Page 1 of 3). Access control point codes

Code Function Name

X'000E' Encipher

X'000F' Decipher

X'0010' Generate MAC

X'0011' Verify MAC

X'0012' Re-encipher To Master Key

X'0013' Re-encipher From Master Key

X'0018' Load First Master Key Part

X'0019' Combine Master Key Parts

X'001A' Set Master Key

X'001B' Load First Key Part

X'001C' Combine Key Parts

X'001D' Compute Verification Pattern

X'001F' Translate Key

X'0020' Generate Random Master Key

X'0032' Clear New Master Key Register

X'0033' Clear Old Master Key Register

X'0040' Generate Diversified Key

X'008C' Generate Key Set

X'008E' Generate Key

X'0090' Re-encipher To Current Master Key

X'00A0' Generate Clear 3624 PIN

X'00A4' Generate Clear 3624 PIN Offset

X'00AB' Verify Encrypted 3624 PIN

X'00AC' Verify Encrypted GBP PIN

X'00AD' Verify Encrypted VISA PVV

X'00AE' Verify Encrypted InterBank PIN

X'00AF' Format and Encrypt PIN

X'00B1' Generate Formatted and Encrypted GBP PIN

X'00B2' Generate Formatted and Encrypted InterBank PIN

X'00B3' Translate PIN with No Format-Control to No Format-Control

X'00B7' Reformat PIN with No Format-Control to No Format-Control

 Copyright IBM Corp. 1997-98 G-1

Figure G-1 (Page 2 of 3). Access control point codes

Code Function Name

X'00BB' Generate Clear VISA PVV Alternate

X'00C3' Encipher Under Master Key

X'00D7' Generate Key Set Extended

X'00DB' Replicate Key

X'0100' Digital Signature Generate

X'0101' Digital Signature Verify

X'0102' Key Token Change

X'0103' PKA Key Generate

X'0104' PKA Key Import

X'0105' Symmetric Key Export

X'0106' Symmetric Key Import

X'0109' Data Key Import

X'010A' Data Key Export

X'010B' Compose SET Block

X'010C' Decompose SET Block

X'010D' PKA92 Symmetric Key Generate

X'010E' NL-EPP-5 Symmetric Key Generate

X'010F' Reset Intrusion Latch

X'0110' Set Clock

X'0111' Reinitialize Device

X'0112' Initialize access control system roles and profiles

X'0113' Change the expiration date in a user profile

X'0114' Change the authentication data (e.g. passphrase) in a user profile

X'0115' Reset the logon failure count in a user profile

X'0116' Load Roles and Profiles

X'0117' Delete a User Profile

X'0118' Delete a Role

X'0119' Load Function Control Vector

X'011A' Clear Function Control Vector

X'011B' Force User Logoff

X'011C' Set EID (Environment Identifier)

X'011D' Initialize Km Cloning Control

X'0200' Register PKA Public Key Hash

X'0201' Register PKA Public Key, with Cloning

X'0202' Register PKA Public Key

X'0204' PKA Clone Key Generate

X'0211 to
21F'

Clone-information Obtain, 1-15

G-2 IBM 4758 CCA Services

Figure G-1 (Page 3 of 3). Access control point codes

Code Function Name

X'0221 to
21F'

Clone-information Install, 1-15

X'0203' Delete Retained Key

X'0230' List Retained Key

X'0231' Generate Clear NL-PIN-1 Offset

X'0232' Verify Encrypted NL-PIN-1

X'0235' PKA92 Symmetric Key Import

X'0236' PKA92 PIN Key Import

 Appendix G. Access Control Request Function Codes G-3

G-4 IBM 4758 CCA Services

List of Abbreviations

ac alternating current

ANSI American National Standards Institute

ACF/VTAM Advanced Communications Function
for the Virtual Telecommunications
Access Method

AIX Advanced Interactive Executive
operating system

APF Authorized Program Facility

API Application Programming Interface

ASCII American National Standard Code for
Information Interchange

AS/400 Application System/400

BCD Binary Coded Decimal

BTU British Thermal Unit

C Celsius

CBC Cipher-Block Chaining

CCA Common Cryptographic Architecture

CDMF Commercial Data Masking Facility

cfm cubic feet per minute

CICS Customer Information Control System

CKDS Cryptographic Key Data Set

cm centimeter

COBOL Common Business-Oriented
Language

CTC Channel To Channel

CPRB Connectivity Programming Request
Block

CUSP Cryptographic Unit Support Program

CV Control Vector.

CVC Card-Verification Code.

CVV Card-Verification Value

DCI Data Channel Interlock

DEA Data Encryption Algorithm

DES Data Encryption Standard

DMA Direct Memory Access

DOS Disk Operating System

EBCDIC Extended Binary Coded Decimal
Interchange Code

EC Engineering Change

ECB Electronic Code Book

EEPROM Electrically Erasable, Programmable
Read-Only Memory

EIA Electronics Industries Association

EMS Expanded Memory Specification.

EPO Emergency Power Off

ESCON Enterprise Systems Connection

ESS Establish Secure Session

F Fahrenheit

FBSS Financial Branch System Services

FCC Federal Communications
Commission

FEPROM Flash Erasable, Programmable
Read-Only Memory

FIPS Federal Information Processing
Standard

ft foot

GTF Generalized Trace Facility

HCD Hardware Configuration Definition

Hz Hertz

IBM International Business Machines

ICRF Integrated Cryptographic Facility

ICSF Integrated Cryptographic Service
Facility

ICSF/MVS Integrated Cryptographic Service
Facility/Multiple Virtual Storage

IMS Information Management System

in. inch

I/O Input/Output

IOCP Input/Output Control Program

IPL Initial Program Load

ISO International Standards Organization

KB Kilobyte

KEK Key-Encrypting Key

KM Master key

kPa kilopascal

KSS Key Storage Synchronization

kVA kilovolt ampere

LAN Local Area Network

LANDP LAN Distributed Platform

LED Light-Emitting Diode

 Copyright IBM Corp. 1997-98 X-1

LU Logical Unit

MAU Multistation Access Unit

MB Megabyte

MCS Multiple Console Support

m meter

MAC Message Authentication Code

MBps Megabytes per second

MD5 Message Digest 5 Hashing Algorithm

MDC Modification Detection Code

MKVN Master Key Version Number

MVS Multiple Virtual Storage

MVS/DFP MVS/Data Facility Product

MVS/ESA MVS/Enterprise Systems Architecture

MVS/SP MVStorage/System Product

MVS/XA MVS/Extended Architecture

NEMA National Electrical Manufacturers
Association

NIST National Institute of Science and
Technology (USA).

OEM Original Equipment Manufacturer

OLTS Online Test System

OS/VS Operating System/Virtual Storage

OS/2 Operating System/2

OS/400 Operating System/400

Pa Pascal

PC Personal Computer

PC DOS Personal Computer Disk Operating
System

PCF Programmed Cryptographic Facility

pH A measure of acidity or alkalinity

PIN Personal Identification Number

PKA Public Key Algorithm

POS Point Of Sale

POST Power-On Self Test

PROM Programmable Read-Only Memory.
(A)

PRPQ Program Request for Price Quotation

PS/2 Personal System/2

RACF Resource Access Control Facility

RAM Random Access Memory

RISC Reduced Instruction-Set Computer

ROM Read-Only Memory

RPQ Request for Price Quotation

RSA Rivest, Shamir, and Adleman

RU Request Unit

SAA Systems Application Architecture

SAF System Authorization Facility

SHA Secure Hashing Algorithm

SM Service Memorandum

SNA Systems Network Architecture

SRIU Service request/reply interchange unit

SRPI Server-Requester Programming
Interface

TSO Time Sharing Option

TSR Terminate and Stay Resident

TSS Transaction Security System

UCW Unit Control Word

UKPT Unique-Key-Per-Transaction

UL/CSA Underwriters Laboratory/Canadian
Standards Association

V Volt

VGA Video Graphics Adapter

WCS Workstation Cryptographic Services

VM Virtual Machine

WSSP Workstation Security Services
Program

X-2 IBM 4758 CCA Services

 Glossary

This glossary includes some terms and definitions from
the IBM Dictionary of Computing, New York: McGraw
Hill, 1994. This glossary also includes some terms and
definitions from:

� The American National Standard Dictionary for
Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standards Institute
(ANSI). Copies may be purchased from the
American National Standards Institute, 11 West 42
Street, New York, New York 10036. Definitions are
identified by the symbol (A) after the definition.

� The Information Technology Vocabulary, developed
by Subcommittee 1, Joint Technical Committee 1, of
the International Organization for Standardization
and the International Electrotechnical Commission
(ISO/IEC JTC1/SC1). Definitions of published parts
of this vocabulary are identified by the symbol (I)
after the definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) after the
definition, indicating that final agreement has not yet
been reached among the participating National
Bodies of SC1.

A
access . A specific type of interaction between a
subject and an object that results in the flow of
information from one to the other.

access control . Ensuring that the resources of a
computer system can be accessed only by authorized
users in authorized ways.

access method . (1) A technique for moving data
between main storage and input/output devices. (2) In
the Transaction Security System products, the part of
the IBM Network Security Processor MVS Support
Program that supports the Application Program
Interfaces, the cross-memory server, the request
manager, and that sends cryptographic requests to the
appropriate Network Security Processor.

adapter . A printed circuit card that modifies the system
unit to allow it to operate in a particular way.

address . (1) In data communication, the unique code
assigned to each device or workstation connected to a
network. (2) A character or group of characters that

identifies a register, a particular part of storage, or some
other data source or data destination. (A) (3) To refer
to a device or an item of data by its address. (A) (I)

Advanced Communications Function for the Virtual
Telecommunications Access Method . ACF/VTAM is
an IBM-licensed program that controls communication
and the flow of data in an SNA network.

Advanced Interactive Executive (AIX) operating
system . IBM’s implementation of the UNIX** operating
system.

alternating current (ac) . An electric current that
reverses its direction at regularly recurring intervals.

American National Standard Code for Information
Interchange (ASCII) . The standard code (8 bits
including parity a bit), used for information interchange
among data processing systems, data communication
systems, and associated equipment. The ASCII set
consists of control characters and graphic characters.

American National Standards Institute (ANSI) . An
organization, consisting of producers, consumers, and
general interest groups that establishes the procedures
by which accredited organizations create and maintain
voluntary industry standards in the United States. (A)

Application System/400 system (AS/400) . AS/400 is
one of a family of general purpose midrange systems
with a single operating system, Operating System/400,
that provides application portability across all models.

assembler language . A source language that includes
symbolic machine language statements in which there
is a one-to-one correspondence between the instruction
formats and the data formats of the computer.

authentication . (1) A process used to verify the
integrity of transmitted data, especially a message. (T)
(2) In computer security, a process used to verify the
user of an information system or protected resources.

authorization . (1) The right granted to a user to
communicate with or make use of a computer
system. (T) (2) The process of granting a user either
complete or restricted access to an object, resource, or
function.

authorize . To permit or give authority to a user to
communicate with or make use of an object, resource,
or function.

** UNIX is a trademark of UNIX Systems Laboratories, Incorporated.

 Copyright IBM Corp. 1997-98 X-3

Authorized Program Facility (APF) . APF is a facility
that permits identification of programs authorized to use
restricted functions.

B
batch file . A file that contains multiple DOS
commands that are processed sequentially whenever
you type the name of the batch file and press the Enter
key.

batch initialization utility . In the Transaction Security
System, one of the utility programs supplied with the
Workstation Security Services Program. It enables you
to initialize the hardware access controls and the
cryptographic key registers in the Cryptographic
Adapter, the Security Interface Unit, and the Personal
Security Card.

Binary-Coded Decimal (BCD) . BCD notation is
asystem of binary coding where which each decimal
digit is represented by a binary numeral; for example, in
BCD notation, the number “twenty-three” is represented
by the binary digits 0010 0011 (compare its
representation 10111 in the pure binary numeration
system).

bus . In a processor, a physical facility along which
data is transferred.

bus in . A unidirectional data bus that is part of the
System/360 or System/370 Parallel Channel Interface.
This bus passes data from the control unit to the host.

bus out . A unidirectional data bus that is part of the
System/360 or System/370 Parallel Channel Interface.
This bus passes data from the host to the control unit.

byte . (1) A binary character operated on as a unit and
usually shorter than a computer word. (A) (2) A string
that consists of a number of bits, treated as a unit, and
representing a character. (3) A group of eight adjacent
binary digits that represents one EBCDIC character.

C
Card-Verification Code (CVC) . See Card-Verification
Value.

Card-Verification Value (CVV) . CVV is a
cryptographic method, defined by VISA, for detecting
forged magnetic-striped cards. This method
cryptographically checks the contents of a magnetic
stripe. This process is functionally the same as
MASTERCARD’s Card-Verification Code (CVC)
process.

Commercial Data Masking Facility (CDMF) . CMDF is
an alternate algorithm for data confidentiality

applications, based on the DES algorithm with an
effective 40 bit key strength.

channel . A path along which signals can be sent; for
example, a data channel or an output channel. (A)

channel adapter . A communication controller
hardware unit used to attach the controller to a
System/370 data channel.

channel-attached . (1) Pertaining to attachment of
devices directly by data channels (I/O channels) to a
computer. (2) Pertaining to devices attached to a
controlling unit by cables rather than by
telecommunication lines.

channel-interface assembly . An assembly that
attaches to the Network Security Processor with a
flat-ribbon cable so that a channel attachment can be
made. The channel-interface assembly includes bus
and tag sockets.

channel speed . The rate at which data is transferred
between a host computer and a channel-attached
device. Channel speed is dependent on the type of
sub-channel defined by the channel-attached device.

ciphertext . Text that results from the encipherment of
plaintext. See also plaintext.

Cipher Block Chaining (CBC) . CBC is a mode of
operation that cryptographically connects one block of
ciphertext to the next plaintext block.

clear data . (1) Data that is not enciphered.

cleartext . Text that has not been altered by a
cryptographic process. Synonym for plaintext. See
also ciphertext.

Common Cryptographic Architecture (CAA) API .
The CCA API is the programming interface described in
the Common Cryptographic Architecture: Cryptographic
Application Programming Interface Reference.

Common Cryptographic Architecture Services/400 .
This IBM PRPQ runs in an AS/400 system under the
OS/400 operating system to support a xryptographic
co-processor. PRPQ 5700 XBI also enables the use of
a Security Interface Unit and Personal Security Card on
an AS/400 system.

concatenation . An operation that joins two characters
or strings in the order specified, forming one string
whose length is equal to the sum of the lengths of its
parts.

configuration . (1) The manner in which the hardware
and software of an information processing system are
organized and interconnected. (T) (2) The physical and

X-4 IBM 4758 CCA Services

logical arrangement of devices and programs that
consitiutes a data processing system.

configuration vector . In the Transaction Security
System, a public-key hardware data structure that
specifies the security levels under which the user
requires the system to operate, and the
key-management protocol that determines the use of
each type of public key. The configuration vector is
stored in the security module on the cryptographic
adapter.

Connectivity Programming Request Block (CPRB) .
The CPRB is an interface control block used by
requesters and servers to communicate information
over the Server-Requester Programming INterface
(SRPI).

controller . A device that coordinates and controls the
operation of one or more input/output devices, such as
workstations, and synchronizes the operation of such
devices with the operation of the system as a whole.

control program . (1) A computer program designed
to schedule and to supervise the programs running in a
computer system. (A) (I) (2) In the Transaction
Security System, the IBM 4753 Network Security
Processor Control Program.

control vector (CV) . In the Transaction Security
System, a 16-byte string that is exclusive-ORd with a
master key or a Key-Encrypting Key to create another
key that is used to encipher and decipher data or data
keys. A control vector determines the type of key and
the restrictions on the use of that key.

cross-memory server . The part of the access method
that receives the request from the security API and exits
to the System Authorization Facility interface.

cryptographic adapter . The 4755 is an expansion
board that provides a comprehensive set of
cryptographic functions for the Network Security
Processor and the workstation.

Cryptographic Key Data Set (CKDS) . CKDS is a
data set containing the encrypting keys used by an
installation.

Cryptographic Key Data Set Conversion Utility . The
CKDS Conversion utility is that part of the IBM Network
Security Processor MVS Support Program that converts
PCF/CUSP cryptographic key data sets to Network
Security Processor key data sets.

cryptographic processor . An AS/400 I/O processor
that uses the Cryptographic Adapter and &CCAS4. to
provide a comprehensive set of DES and RSA-based
cryptographic services for an AS/400 system.

cryptographic services . In the Transaction Security
System, the part of the security server that processes
requests from an application program or the HIKM utility
and sends the requests to the cryptographic hardware
for processing.

Cryptographic Unit Support Program (CUSP) .
CUSP is an IBM licensed program (program number
5740-XY6) that supports the creation and management
of cryptographic keys. This program interacts with the
IBM 3848 Cryptographic Unit to encipher and decipher
data.

cryptography . The transformation of data to conceal
its meaning.

CUSP/PCF. An interface between the ACF/VTAM
program and the Network Security Processor MVS
Support Program.

CUSP/PCF transform . That part of the access method
that contains the code to transform the CUSP/PCF
cryptographic requests to a format that the security API
stub can use.

Customer Information Control System (CICS) . CICS
is an IBM licensed program that enables transactions
entered at remote terminals to be processed
concurrently by user-written application programs. It
includes facilities for building, using, and maintaining
databases.

D
data . (1) A representation of facts or instructions in a
form suitable for communication, interpretation, or
processing by human or automatic means. Data
includes constants, variables, arrays, and character
strings. (2) Any representations such as characters or
analog quantities to which meaning is or might be
assigned. (A)

Data Channel Interlock (DCI) . DCI is a protocol for
transmitting data on a channel. In this protocol, the
sender raises and maintains a signal on the channel
until the receiver acknowledges receipt of the signal.

data-encrypting key . (1) A key used to encipher,
decipher, or authenticate data. (2) Contrast with
Key-Encrypting Key.

Data Encryption Algorithm (DEA) . DEA is a 64-bit
block cipher that uses a 64-bit key, of which 56 bits are
used to control the cryptographic process and 8 bits are

 Glossary X-5

used for parity checking to ensure that the key is
transmitted properly.

Data Encryption Standard (DES) . DES is the
National Institute of Standards and Technology Data
Encryption Standard, adopted by the U.S. government
as Federal Information Processing Standard (FIPS)
Publication 46. which allows only hardware
implementations of the data-encryption algorithm.

data set . The major unit of data storage and retrieval,
consisting of a collection of data in one of several
prescribed arrangements and described by control
information to which the system has access.

data streaming . An uninterrupted transfer of
information over an interface in order to achieve high
data transfer rates. (A)

decipher . (1) To convert enciphered data into clear
data. (2) Synonym for decrypt. (3) Contrast with
encipher.

decode . (1) To convert data by reversing the effect of
some previous encoding. (A) (I) (2) In the Transaction
Security System products, decode and encode relate to
the Electronic Code Book mode of the Data Encryption
Standard (DES). (3) Contrast with encode.

decrypt . (1) To decipher or decode. (2) Synonym for
decipher. (3) Contrast with encrypt.

device ID . In the Transaction Security System
products, a user-defined field in the global
configuration-data that can be used for any purpose the
user specifies. For example, it can be used to identify a
particular device, by using a unique ID similar to a serial
number.

diagnostic . Pertaining to the detection and isolation of
errors in programs, and faults in equipment.

directory server . A server that manages key records
in key storage by using an Indexed Sequential Access
Method.

Disk Operating System (DOS) . DOS is an operating
system for computers that use disks and diskettes for
the auxiliary storage of programs and data.

driver . A program that contains the code needed to
attach and use a device.

dump file . In the IBM 4753, a file that contains a
record of dump information for the selected servers.

E
Electronic Code Book (ECB) . ECB is a mode of
operation used with block cipher cryptographic
algorithms in which plaintext or ciphertext is placed in
the input to the algorithm and the result is contained in
the output of the algorithm.

Electronics Industries Association (EIA) . EIA is an
organization of electronics manufacturers that advances
the technological growth of the industry, represents the
views of its members, and develops industry standards.

encipher . (1) To scramble data or to convert data to a
secret code that masks the meaning of the data to
unauthorized recipients. (2) Synonym for encrypt.
(3) Contrast with decipher. (4) See also encode.

enciphered data . Data whose meaning is concealed
from unauthorized users or observers. See also
ciphertext.

encode . (1) To convert data by the use of a code in
such a manner that reconversion to the original form is
possible. (T) (2) In the Transaction Security System
products, decode and encode relate to the Electronic
Code Book mode of the Data Encryption Standard.
(3) Contrast with decode. (4) See also encipher.

encrypt . (1) Synonym for encipher. (T) (2) To
convert clear text into ciphertext. (3) Contrast with
decrypt.

engineering change (EC) level . A number that
indicates the hardware version.

Erasable Programmable Read-Only Memory
(EPROM). EPROM is a PROM that can be erased by
a special process and reused. (T)

ESCON. The data processing environment having an
Enterprise Systems Connection channel-to-control-unit
I/O interface that uses optical cables as the
transmission medium.

Establish Secure Session (ESS) . ESS describes the
way by which the hardware components establish
authenticity with each other.

exit routine . In the Transaction Security System
products, a user-provided routine that acts as an
extension of the cross-memory server in the IBM
Network Security Processor MVS Support Program.

Expanded Memory Specification (EMS) . EMS is a
software interface for accessing additional memory in
personal computers that use the disk operating system
(DOS).

X-6 IBM 4758 CCA Services

expansion board . In an IBM personal computer, a
panel the user can install in an expansion slot to add
memory or special features.

EXPORTER key . (1) In the Transaction Security
System, a type of DES Key-Encrypting Key that can
encipher a key at a sending node. (2) Contrast with
IMPORTER key.

F
facility . (1) An operational capability, or the means for
providing such a capability. (T) (2) A service provided
by an operating system for a particular purpose; for
example, the checkpoint/restart facility.

feature . A part of an IBM product that can be ordered
separately.

Federal Communications Commission (FCC) . The
FCC is a board of commissioners, appointed by the
President under the Communications Act of 1934, and
having the power to regulate all interstate and foreign
communications by wire and radio originating in the
United States.

Federal Information Processing Standard (FIPS) .
FIPS is a standard published by the US National
Institute of Science and Technology.

Financial Branch System Services (FBSS) . FBSS is
an IBM licensed program that provides extended
services for application programs, communication,
token-ring interconnection, and device support.

financial PIN . (1) A Personal Identification Number
used to identify an individual in some financial
transactions. To maintain the security of the PIN,
processes and data structures have been adopted for
creating, communicating, and verifying PINs used in
financial transactions. (2) See also Personal
Identification Number.

Flash-Erasable Programmable Read-Only Memory
(FEPROM). FEPROM is a PROM that has to be
erased before it can be changed.

frequency . The rate of signal oscillation, expressed in
hertz (cycles per second).

G
Generalized Trace Facility (GTF) . GTF is an optional
Operating System/Virtual Storage (OS/VS) service
program that records significant system events, such as
supervisor calls and start I/O operations, for the
purpose of problem determination.

global configuration data . Information that specifies
general configuration characteristics of the
cryptographic hardware components, such as the
number of Key-Encrypting Keys, number of data keys,
log size, and so forth.

guest profile . (1) In the Transaction Security System
products, profile data that is downloaded from the
Personal Security Card into the other hardware
components. The guest profile temporarily redefines
the user’s capabilities for that component. (2) See also
Profile.

H
hardware . The equipment, as opposed to the
programming, of a system.

Hardware Initialization and Key Management
Utilities . The part of the Workstation Security Services
Program that enables you to customize the system,
display the status of components, reinitialize the
components, manage the command configuration data,
manage the profiles, manage the clear cryptographic
keys, manage the keys and key storage, manage the
signatures, manage the initialization batch file, and
perform miscellaneous functions.

hertz (Hz) . A unit of frequency equal to one cycle per
second.

Note: In the United States, line frequency is 60 Hz or
a change in voltage polarity 120 times per second; in
Europe, line frequency is 50 Hz or a change in voltage
polarity 100 times per second.

holiday table . Information that specifies up to 16
dates on which the cryptographic hardware components
cannot be fully used.

host . (1) In this publication, same as host computer or
host processor. (2) In a computer network, the
computer that usually performs network-control
functions and provides end-users with services such as
computation and database access. (T) (3) The primary
or controlling computer in a multiple-computer
installation. (4) A processor that controls all or part of a
user-application network. (T) (5) In a network, the
processing unit where the access method resides.

host-communication interface . The part of the IBM
4753 control program that permits communication
between the 4753 and the System/370 host through the
channel adapter.

host-connection data . In the Transaction Security
System products, information about the channel
between the &BUulwarknm. and the MVS host. For the
4753 Model 1, this data includes the channel address,
the number of channel pairs, the channel speed, and

 Glossary X-7

the data transfer mode. For the IBM 4753 Models 2
and 12, this data includes the data transfer mode,
channel transfer speed, and the subchannel starting
address.

I
IMPORTER key . (1) In the Transaction Security
System, a type of DES Key-Encrypting Key that can
decipher a key at a receiving mode. (2) Contrast with
EXPORTER key.

Information Management System . IMS is an IBM
licensed program that is an operation on the operating
system; this operation provides information
management services.

initialize . (1) In programming languages, to give a
value to a data object at the beginning of its lifetime. (I)
(2) To set counters, switches, addresses, or contents of
storage to zero or other starting values at the beginning
of, or at prescribed points in, the operation of a
computer routine. (A)

Initial Program Load (IPL) . (1) IPL is the initialization
procedure that causes an operating system to
commence operation. (2) The process by which a
configuration image is loaded into storage at the
beginning of a work day or after a system malfunction.
(3) The process of loading system programs and
preparing a system to run jobs.

Input/Output (I/O) . (1) I/O Pertains to a device whose
parts can perform an input process and an output
process at the same time. (I) (2) Pertaining to a
functional unit or channel involved in an input process,
output process, or both, concurrently or not, and to the
data involved in such a process.

Integrated Cryptographic Service Facility (ICSF) .
ICSF is an IBM licensed program that supports the
cryptographic hardware feature for the high-end
System/390 processor running in an MVS environment.

Interconnect Control Program (ICP) . ICP is a
communication control program that the 3172 uses.

interface . (1) A shared boundary between two
functional units, defined by functional characteristics,
signal characteristics, or other characteristics, as
appropriate. The concept includes the specification of
the connection of two devices having different
functions. (T) (2) Hardware, software, or both, that links
systems, programs, or devices.

International Organization for Standardization
(ISO). ISO is an organization of national standards
bodies established to promote the development of
standards to facilitate the international exchange of
goods and services, and develop cooperation in
intellectual, scientific, technological, and economic
activity.

ISA bus . A Personal computer industry standard
architecture. The expansion board bus introduced with
the IBM Personal Computer and subsequently extended
to a 16-bit data bus. See also Micro Channel bus.

J
jumper . A wire that joins two unconnected circuits on
a printed circuit board.

K
key . In computer security, a sequence of symbols
used with a cryptographic algorithm to encrypt or
decrypt data.

Key-Encrypting Key (KEK) . (1) A KEK is a key used
for the encryption and decryption of other keys.
(2) Contrast with data-encrypting key.

key storage . In the Transaction Security System
products, a data file that contains cryptographic keys.

key-storage synchronization . A process that ensures
that every Network Security Processor accessed by the
application program contains the same key-storage
records.

key-synchronization server . The part of the Network
Security Processor control program that maintains
current and compatible cryptographic keys to be used
by multiple network security processors connected on a
token-ring network.

key token . In the Transaction Security System security
API, a data structure that can contain a cryptographic
key, a control vector, and other information related to
the key.

Kilobyte (KB) . a Kkilobyte is equal to 1024 bytes.
See byte.

Kilopascals (kPa) . Is equal to one thousand pascals.
See pascal.

Kilovolt ampere (kVA) . Kilovolt is a unit of power.

L
LAN/Distributed Processing (LAN/DP) . An
IBM-licensed program product.

X-8 IBM 4758 CCA Services

Light-Emitting Diode (LED) . A semiconductor chip
that gives off visible or infrared light when activated.

link . (1) The logical connection between nodes
including the end-to-end control procedures. (2) The
combination of physical media, protocols, and
programming that connects devices on a network.
(3) In computer programming, the part of a program, in
some cases a single instruction or an address, that
passes control and parameters between separate
portions of the computer program. (A) (I) (4) To
interconnect items of data or portions of one or more
computer programs. (T) (5) In SNA, the combination of
the link connection and link stations joining network
nodes.

local area network (LAN) . A LAN is a computer
network located on the user’s premises within a limited
geographical area. Communication within a Local Area
Network is not subject to external regulations; however,
communication across the LAN boundary may be
subject to some form of regulation.

logical unit (LU) . An LU is a port through which an
end user accesses the SNA network in order to
communicate with another end user, and through which
the end user accesses the functions provided by
System Services Control Points (SSCPs). An LU can
support at least two sessions, one with an SSCP and
one with another LU; it can be capable of supporting
many sessions with other logical units.

M
make file . A composite file that contains either device
configuration data or individual user profiles.

master key (KM) . In computer security, the top-level
key in a hierarchy of key-encrypting keys.

megabyte (MB) . A megabyte is equal to 1 048 576
bytes.

merge file . A file containing information for each of
several Personal Security Cards that the Batch
Initialization utility initializes.

Message Authentication Code (MAC) . (1) A number
or value derived by processing data with an
authentication algorithm, (2) The cryptographic result of
block cipher operations on text or data using a cipher
block chaining (CBC) mode of operation, (3) A digital
signature code.

Micro Channel bus . A type of bus is used in IBM
PS/2 computer Models 50 and higher. This term is
used to distinguish these computers from personal
computers using a PC I/O channel.

migrate . (1) To move data from one hierarchy of
storage to another. (2) To move to a changed
operating environment, usually to a new release or a
new version of a system.

Modification Detection Code (MDC) . In cryptography,
the MDC is a number or value that interrelates all bits of
a data stream so that, when enciphered, modification of
any bit in the data stream results in a new MDC.

Multiple Virtual Storage (MVS) . MVS implies
MVS/370, the MVS/XA product, and the MVS/ESA
product.

Multiple Virtual Storage/Extended Architecture
(MVS/XA). The MVS/XA product, consists of
MVS/System Product Version 2 and the MVS/XA Data
Facility Product, operating on a System/370 processor
in the System/370 extended-architecture mode. The
MVS/XA product allows virtual storage addressing up to
two gigabytes.

multiplexer . (1) A device that takes several input
signals and combines them into a single output signal;
the output signal allows each of the input signals to be
recovered. (T) (2) A device capable of interleaving the
events of two-or-more activities, or capable of
distributing the events of an interleaved sequence to
their respective activities. (A)

Multi-station Access Unit (MAU) . An MAU is an IBM
token-ring unit that can be used to connect as many as
16 Network Security Processors on a single token ring.

multi-tasking supervisor . The part of the Network
Security Processor that manages the system functions
and system states, and schedules the software tasks for
the network security processor.

multi-user environment . A computer system that
provides terminals and keyboards for more than one
user at the same time.

N
National Institute of Science and Technology
(NIST). This is the current name for the US National
Bureau of Standards.

network . (1) A configuration of data-processing
devices and software programs connected for
information interchange. (2) An arrangement of nodes
and connecting branches. (T)

Network Security Processor (IBM 4753) . The IBM
4753 is a processor that uses the Data Encryption
Algorithm to provide cryptographic support for systems
requiring secure transaction processing (and other
cryptographic services) at the host computer.

 Glossary X-9

Network Security Processor Control Program . A
program that runs in the IBM 4753 Network Security
Processor to enable it to process cryptographic
commands from the host computer.

IBM Network Security Processor MVS Support
Program . An IBM-licensed program that runs in the
System/370 host under the MVS/370, MVS/XA, or
MVS/ESA operating systems to enable host applications
to request cryptographic services in the Network
Security Processor.

Network Security Processor Support Utility .
Network Security Processor Support Utility is the part of
the workstation security services program to support
functions relating directly to the Network Security
Processor.

Network Security Processor Utilities . The Network
Security Processor Utilities are the parts of the Network
Security Processor Control Program that enable you to
do the following: install the program, customize the
system, manage key storage, manage the signon list,
and vary the host adapter offline and online.

node . In a network, a point at which one-or-more
functional units connect channels or data circuits. (I)

node address . The address of an adapter on a LAN.

O
Online Test System (OLTS) . OLTS is a system that
allows the user to test I/O devices concurrently with
program execution. Tests can be run to diagnose I/O
errors, and verify repairs and engineering changes, or
run to check devices periodically.

Operating System/2 (OS/2) . OS/2 is an operating
system for the IBM Personal System/2 computers.

Operating System/400 (OS/400) . OS/400 is an
operating system for the IBM Application System/400
computers.

Operating System/Virtual Storage (OS/VS) . OS/VS
is a family of operating systems that controls IBM
System/360* and System/370 computing systems.
OS/VS includes VS1, VS2, MVS/370, and MVS/XA.

operations log . In the IBM 4753, a file that contains a
record of operator activitiesperformed on the 4753.

P
panel . The complete set of information shown in a
single image on a display station screen.

parameter . In the security API, one of the values
passed to a verb to address a variable exchanged
between an application program and the verb.

Pascal (Pa) . The stress resulting when a force of one
Newton is applied evenly and perpendicularly to an area
of one square meter.

password . (1) In computer security, a string of
characters known to the computer system and a user;
the user must specify it to gain full or limited access to
a system and to the data stored within it. (2) In the
Transaction Security System products, a string of
characters that a user must enter when signing on to a
system that uses the Cryptographic Adapter.

path . (1) In a network, any route between any two
nodes. A path may include more than one branch. (T)
(2) The route traversed by the information exchanged
between two attaching devices in a network. (3) A
command in IBM Personal Computer Disk Operating
System (PC DOS) and IBM Operating System/2 (OS/2)
environments that specifies directories to be searched
for commands or batch files that are not found by a
search of the current directory.

PC-bus . A type of bus that is used in the following
IBM Personal Computers: PC/XT, AT, PS/2 Model 25,
PS/2 Model 30, and PS/2 Model 30 286.

Personal Identification Number (PIN) . (1) In the
Transaction Security System, the PIN is the secret
number that is used to authenticate the user to the
Personal Security Card and the Cryptographic Adapter.
(2) In some financial-transaction-authentication
systems, the PIN is the secret number given to a
consumer with an identification card. This number is
selected by the consumer, or it is assigned by the
financial institution.

Personal Security Card . An ISO-standard “smart
card” with a microprocessor that enables it to perform a
variety of DES-based cryptographic functions, such as
identifying and verifying users and determining which
functions the users can perform. The Security Interface
Unit reads and writes information on the Personal
Security Card.

physical device ID . In a Transaction Security System
public-key implementation, a 16-byte, user-defined field
that is stored in and identifies the public-key hardware.

* Trademark of IBM

X-10 IBM 4758 CCA Services

profile ID . In the Transaction Security System
products, one of the four profiles that the Personal
Security card contains.

plaintext . (1) Data that has nor been altered by a
cryptographic process. (2) Synonym for cleartext. See
also ciphertext.

plug . (1) A connector designed to insert into a
receptacle or socket. (2) To insert a connector into a
receptacle or socket.

Point-Of-Sale (POS) device . A POS records sales
data on machine-readable media at the time a sale is
made. (A)

Power-On Self Test (POST) . POST is a series of
diagnostic tests run automatically by a device when the
power is turned on.

private key . (1) In computer security, a key that is
known only to the owner and used together with a
public-key algorithm to decipher data. The data is
enciphered using the related public key. (2) Contrast
with public key. (3) See also public-key algorithm.

procedure call . In programming languages, a
language construct for invoking execution of a
procedure. (I) A procedure call usually includes an
entry name and possible parameters.

profile . Data that describes the significant
characteristics of a user, a group of users, or
one-or-more computer resources.

profile ID . In the Transaction Security System
products, one of the four profiles that the Personal
Security Card contains.

profile vector . Transaction Security System public-key
implementation, a software data structure that contains
default values and configuration information used by
various public-key verbs.

profile 0, profile 1, profile 2, profile 3 . (1) In the
Transaction Security System products, profile data that
identifies one of the users of the Cryptographic Adapter
or the Security Interface Unit. (2) See also Profile.

Programmed Cryptographic Facility (PCF) . PCF is
an IBM licensed program that provides facilities for
enciphering and deciphering data and for creating,
maintaining, and managing cryptographic keys.

protocol . (1) A set of semantic and syntactic rules
that determines the behavior of functional units in
achieving communication. (I) (2) In SNA, the meanings
of and the sequencing rules for requests and responses
used to manage the network, transfer data, and
synchronize the states of network components. (3) A

specification for the format and relative timing of
information exchanged between communicating parties.

public key . (1) In computer security, a key that is
widely known, and used with a public-key algorithm to
encrypt data. The encrypted data can be decrypted
only with the related private key. (2) Contrast with
private key. (3) See also public-key algorithm.

Public-Key Algorithm (PKA) . (1) In computer
security, PKA is an asymmetric cryptographic process
that uses a public key to encrypt data and a related
private key to decrypt data. (2) Contrast with Data
Encryption Algorithm and Data Encryption Standard
algorithm. (3) See also Rivest-Shamir-Adleman
algorithm.

public-key hardware . That portion of the security
module in a Cryptographic Adapter containing the
microcode and registers for the public-key functions.
Depending on the adapter, the hardware can be
installed in a workstation or in a Network Security
Processor.

public profile . (1) In the Transaction Security System
products, profile data that contains the default
characteristics for the Cryptographic Adapter and for the
Security Interface Unit; the defaults are available when
a specific profile is not active. (2) See also profile.

R
rack . A free-standing framework that holds equipment.

Random Access Memory (RAM) . RAM is a storage
device into which data are entered and from which data
are retrieved in a non-sequential manner.

Read-Only Memory (ROM) . ROM is memory in which
stored data cannot be modified by the user except
under special conditions.

reason code . (1) A value that provides a specific
result as opposed to a general result. (2) Contrast with
return code.

receptacle . Electrically, a fitting equipped to receive a
plug and used to complete an electrical path.

Reduced Instruction-Set Computer (RISC) . A RISC
computer uses a small, simplified set of frequently used
instructions for rapid processing.

request manager . The part of the Access Method that
sends cryptographic requests to one or more Network
Security Processors.

Request Unit (RU) . In SNA, the RU is a message unit
containing control information such as a request code or

 Glossary X-11

function management headers, or end-user data, or
both.

Resource Access Control Facility (RACF) . RACFis
an IBM licensed program that enables access control by
identifying and verifying the users to the system,
authorizing access to protected resources, logging
detected unauthorized attempts to enter the system,
and logging detected accesses to protected resources.

return code . (1) A code used to influence the
execution of succeeding instructions. (A) (2) A value
returned to a program to indicate the results of an
operation requested by that program. (3) In the
Transaction Security System products, a value that
provides a general result as opposed to a specific
result. (4) Contrast with reason code.

Rivest-Shamir-Adleman (RSA) algorithm . RSA is a
public-key cryptography process developed by R.
Rivest, A. Shamir, and L. Adleman.

RS-232. A specification that defines the interface
between data terminal equipment and data
circuit-terminating equipment, using serial binary data
interchange.

RS-232C. A standard that defines the specific physical,
electronic, and functional characteristics of an interface
line that uses a 25-pin connector to connect a
workstation to a communication device.

RSA algorithm . Rivest-Shamir-Adleman encryption
algorithm.

S
security . The protection of data, system operations,
and devices from accidental or intentional ruin, damage,
or exposure.

security API stub . The part of the access method that
contains a set of code for each security API verb.

security application programming interface . In
Transaction Security System, the security API is the
interface through which an application program interacts
with an access method or with a workstation interface
between an application program and the security server.
The interface consists of procedure calls for services
(verbs).

Security Interface Unit (IBM 4754) . The IBM 4754 is
a free-standing device that controls data communication
between the Network Security Processor and the
Personal Security Card or between the workstation and
the Personal Security Card. The Security Interface Unit
reads and writes data on the Personal Security Card.

security server . In the Transaction Security System,
the part of the Network Security Facility Control
Program and the Workstation Security Services
Program that provides cryptographic services and
key-storage services.

server . On a Local Area Network, a data station that
provides facilities to other data stations; for example, a
file server, a print server, a mail server. (A)

Server-Requester Programming Interface (SRPI) .
The SRPI is an Application Programming Interface (API)
used by requester and server programs to communicate
with the personal computer or host routers.

service clearance . The minimum space required to
allow working room for the person installing or servicing
a unit.

session . (1) In network architecture, for the purpose
of data communication between functional units, all the
activities that take place during the establishment,
maintenance, and release of the connection. (T)
(2) The period of time during which a user of a terminal
can communicate with an interactive system (usually,
the elapsed time between logon and logoff).

Session-Level Encryption (SLE) . SLE is a Systems
Network Architecture (SNA) protocol that provides a
method for establishing a session with a unique key for
that session. This protocol establishes a cryptographic
key and the rules for deciphering and enciphering
information in a session.

signature verification module . An optional module on
the Cryptographic Adapter that provides support for
signature verification.

signature verification pen . A pen attached by a cable
to the Security Interface Unit for the purpose of
identifying and verifying users.

signon list . In the Transaction Security System
products, a list that contains the profile IDs and the card
IDs of the only users allowed to log onto the IBM 4753.
You can create this list with the IBM 4753 support
utility.

software configuration utility . One of the utilities
supplied with the Workstation Security Services
Program that enables you to configure security servers
and device drivers by specifying combinations of verbs
and functions. By using this utility, you can minimize
memory requirements.

string . A sequence of elements of the same nature,
such as characters, considered as a whole. (T)

subsystem . A secondary or subordinate system,
usually capable of operating independently of, or
asynchronously with, a controlling system. (T)

X-12 IBM 4758 CCA Services

supervisor router . The part of the Workstation
Security Services Program that schedules each task for
the program.

system . In data processing, a collection of people,
machines, and methods organized to accomplish a set
of specific functions. (A) (I)

system administrator . The person at a computer
installation who designs, controls, and manages the use
of the computer system.

System Authorization Facility (SAF) . SAF is a
program that provides access to the resource access
control facility or its equivalent.

system error log . In the IBM 4753, a file containing a
record of error messages that have been displayed.

Systems Network Architecture (SNA) . SNA
describes logical structure, formats, protocols, and
operational sequences for transmitting information units
through, and controlling the configuration and operation
of, networks. Note: The layered structure of SNA
allows the ultimate origins and destinations of
information, that is, the end users, to be independent of
and unaffected by the specific SNA network services
and facilities used for information exchange.

T
tag in . A unidirectional control line bus that is part of
the System/360 or System/370 Parallel Channel
Interface. This bus passes control signals from the
control unit to the host.

tag out . A unidirectional control line bus that is part of
the System/360 or System/370 Parallel Channel
Interface. This bus passes control signals from the host
to the control unit.

Terminate and Stay Resident (TSR) . A TSR is a
program that remains in memory after it has run and
returned control to the operating system. A TSR
program can be started and stopped by another
program without disturbing that program’s processing.

throughput . (1) A measure of the amount of work
performed by a computer system over a given period of
time; for example, number of jobs per day. (A) (I) (2) A
measure of the amount of information transmitted over
a network in a given period of time; for example, a
network’s data-transfer-rate is usually measured in bits
per second.

Time Sharing Option (TSO) . TSO is an IBM licensed
program that is an option on the operating system; for a
System/370 processor, the option provides interactive
time sharing from remote terminals.

token . (1) In a Local Area Network, the symbol of
authority passed successively from one data station to
another to indicate the station is temporarily in control of
the transmission medium. (T) (2) A string of characters
treated as a single entity.

token-ring adapter . The circuit card and its
associated software that enables a communicating
device to communicate over a local area network.

token-ring network . (1) A ring network that allows
unidirectional data transmission between data stations,
by a token passing-procedure, such that the transmitted
data return to the transmitting station. (T) (2) A
network that uses a ring technology, in which tokens
are passed in a circuit from node to node. A node that
is ready to send can capture the token and insert data
for transmission.

trace file . In the IBM 4753, a file that contains a
record of trace information for the selected servers.

U
Unique Key Per Transaction (UKPT) . UKPT is a
cryptographic process that can be used to decipher PIN
blocks in a transaction.

user exit . That point in an IBM supplied program at
which a user-exit routine can be given control.

user-authorization table . In the Transaction Security
System products, information that specifies the options
the operator is permitted to access.

user-exit routine . A user-written routine that receives
control at predefined user-exit points.

user ID . User identification.

userid . A string of characters that uniquely identifies a
user to the system.

utility program . A computer program in general
support of computer processes. (T)

V
verb . A function that has an entry-point-name and a
fixed-length parameter list. The procedure call for a
verb uses the standard syntax of a programming
language.

virtual machine (VM) . A functional simulation of a
computer and its associated devices. Each virtual
machine is controlled by a suitable operating system.
VM controls concurrent execution of multiple virtual
machines on one host computer.

 Glossary X-13

VISA. A financial institution consortium which defines
four PIN block formats and a method of PIN verification.

W
workstation . A terminal or microcomputer, usually one
that is connected to a mainframe or to a network, at
which a user can perform applications.

Workstation Cryptographic Services Program . An
IBM-licensed program that runs in the workstation under
OS/2, AIX, or an equivalent product to support the
Cryptographic Adapter, the Security Interface Unit, and
the Personal Security Card.

Numerics
3172. IBM 3172 Interconnect Controller. The 4753 is
based on the 3172.

4707 display . (1) A monochrome display. (2) In an
IBM 4753 environment, the 4707 display shows the
4753 messages and codes, including the diagnostic and
control program messages and codes.

4753. IBM 4753 Network Security Processor.

4754. IBM 4754 Security Interface Unit.

4755. IBM 4755 Cryptographic Adapter.

X-14 IBM 4758 CCA Services

 Index

Special Characters
(CSNBMKP) Master_Key_Process 2-46
(PKA_Key_Record_Delete) CSNDKRD 7-13
(Retained_Key_Delete) CSNDRKD 7-21
(Retained_Key_List) CSNDRKL 7-22

A
Access Control Initialization (CSUAACI) 2-13
Access Control Maintenance (CSUAACM) 2-16
Access Control, CCA 2-2
Access_Control_Initialization (CSUAACI) 2-13
Access_Control_Maintenance (CSUAACM) 2-16
American National Standards Institute (ANSI)

X3.106 (CBC) method D-3
X9.19 method D-7
X9.23 method D-5
X9.9 method D-7

asymmetric keys 5-5
attributes 5-7
automated teller machine 8-2

C
calculation methods, PIN 8-7
carriage return (CR) B-16
chaining vector 6-3
chaining vector record format B-13
ciphering

DES key verification algorithm D-1
keys 5-7
methods

3624 PIN E-2, E-4
3624 PIN offset E-3
ANSI X3.106 (CBC) D-3
German Bank Pool Institution PIN E-5
Interbank PIN E-7
message authentication code (MAC) D-7
NL-PIN-1 E-4
VISA PIN validation value (PVV) E-6

clear keys 5-12
coding procedure calls 1-7
common parameters 1-10
confidentiality, data 6-1
control vectors (CVs)

bit map
EXPORT bit C-6
format C-4
gks bits C-6
IMPORT bit C-6
Key-part bit C-8
parity bits C-8
PIN-block format bits C-7

control vectors (CVs) (continued)
bit map (continued)

XLATE bit C-6
Changing

pre-exclusive-OR technique C-11
checking 5-4
default values 5-6
description 5-3
determining values C-5
key form bits, fff C-5
key separation 5-3
keywords 5-7
multiply deciphering keys C-8
multiply enciphering keys C-8
specifying values C-5

CR (carriage return) B-16
cryptographic engine 1-3
Cryptographic_Facility_Control (CSUACFC) 2-22
Cryptographic_Facility_Query (CSUACFQ) 2-26
CSNBCKI (Clear_Key_Import) 5-16
CSNBCPA (Clear_PIN_Generate_Alternate) 8-18
CSNBCPE (Clear_PIN_Encrypt) 8-12
CSNBDEC (Decipher) 6-4
CSNBDKG (Diversified_Key_Generate) 5-20
CSNBDKM (Data_Key_Import) 5-18
CSNBDKX (Data_Key_Export) 5-17
CSNBENC (Encipher) 6-7
CSNBEPG (Encrypted_PIN_Generate) 8-24
CSNBKEX (Key_Export) 5-23
CSNBKGN 5-13
CSNBKGN (Key_Generate) 5-25
CSNBKIM (Key_Import) 5-31
CSNBKPI (Key_Part_Import) 5-33
CSNBKRC (DES_Key_Record_Create) 7-4
CSNBKRL (Key_Record_List) 7-7
CSNBKRR (Key_Record_Read) 7-9
CSNBKRW (Key_Record_Write) 7-10
CSNBKTB (Key_Token_Build) 5-38
CSNBKTC (Key_Token_Change) 5-41
CSNBKTR (Key_Translate) 5-43
CSNBKYT (Key_Test) 5-35
CSNBMGN (MAC_Generate) 6-10
CSNBMVR (MAC_Verify) 6-13
CSNBOWH (One_Way_Hash) 4-10
CSNBPGN (Clear_PIN_Generate) 8-15
CSNBPTR (Encrypted_PIN_Translate) 8-29
CSNBPVR (Encrypted_PIN_Verify) 8-34
CSNBRNG (Random_Number_Generate) 5-45
CSNDDSG (Digital_Signature_Generate) 4-4
CSNDDSV (Digital_Signature_Verify) 4-7
CSNDKRC (PKA_Key_Record_Create) 7-11

 Copyright IBM Corp. 1997-98 X-15

CSNDKRL (PKA_Key_Record_List) 7-15
CSNDKRR (PKA_Key_Record_Read) 7-17
CSNDKRW (PKA_Key_Record_Write) 7-19
CSNDKTC (PKA_Key_Token_Change) 3-18
CSNDPKB (PKA_Key_Token_Build) 3-12
CSNDPKG (PKA_Key_Generate) 3-6
CSNDPKH (PKA_Public_Key_Hash_Register) 3-22
CSNDPKI (PKA_Key_Import) 3-10
CSNDPKR (PKA_Public_Key_Register) 3-24
CSNDPKX (PKA_Public_Key_Extract) 3-20
CSNDSBC (SET_Block_Compose) 8-40
CSNDSBD (SET_Block_Decompose) 8-44
CSNDSYG (PKA_Symmetric_Key_Generate) 5-49
CSNDSYI (PKA_Symmetric_Key_Import) 5-52
CSNDSYX (PKA_Symmetric_Key_Export) 5-47
CSUAACI 2-13
CSUAACI (Access_Control_Initialization) 2-13
CSUAACM 2-16
CSUAACM (Access_Control_Maintenance) 2-16
CSUACFC (Cryptographic_Facility_Control) 2-22
CSUACFQ (Cryptographic_Facility_Query) 2-26
CSUALCT 2-38
CSUALCT (Logon_Control) 2-38
CSUAMKD 2-42
CSUAMKD (Master_Key_Distribution) 2-42

D
DASD (direct access storage device) B-14
data

confidentiality 6-1
ensuring 6-1

integrity 6-1, 6-2
segmented 6-3
validation 8-7

DATA-class keys 5-6
deactivating keys 3-18, 7-5, 7-13, 7-21
decimalization table 8-7
defaults, control vectors 5-6
DES key storage initialization 2-36
DES_Key_Record_Delete (CSNBKRD) 7-5
DES_Key_Record_List(CSNBKRL) 7-7
DES_Key_Record_Read (CSNBKRR) 7-9
DES_Key_Record_Write (CSNBKRW) 7-10
device key 1-4
direct access storage device (DASD) B-14

E
entry-point names 1-7
environment identifier 2-10
EX (exportable) keys 5-3
exit_data parameter 1-10
exit_data_length parameter 1-10
exportable (EX) keys 5-3

exporting, description 5-14, C-11
external

key tokens
building 5-38
format B-4
Key_Token_Build verb 5-38

key tokens, description 5-10
keys 5-3, 5-14

extraction methods, financial PIN 8-10

F
financial personal identification number (PIN)

3624 PIN (CSNBPVR) 8-34
blocks

3624 8-9, E-8
and PIN calculation methods E-1
description 8-5, 8-9, E-8
format control 8-9
ISO-0 8-9, E-9
ISO-1 8-9, E-10
ISO-2 8-9, E-11
multiple 8-9
profile 8-9
reformatting 8-29

calculation
3624 PIN E-2, E-4
3624 PIN Offset E-3
descriptions 8-7, E-1
German Bank Pool Institution PIN E-5
Interbank PIN E-7
supporting multiple PIN calculation methods 8-7
VISA PVV E-6

data array
decimalization table 8-7
transaction security data 8-8
validation data 8-8

description 8-2
extraction methods 8-10
format control 8-9
generating clear PIN 8-15
institution-assigned 8-34
key types 8-6
key-usage bits 8-6
personal account number (PAN) 8-11
PIN profile

format control element 8-9
pad digit element 8-9
PIN-block format element 8-9

processing
description 8-2
extraction methods 8-9
security 8-5
supporting multiple PIN calculation methods 8-7
verbs 8-2

reformatting 8-29

X-16 IBM 4758 CCA Services

financial personal identification number (PIN)
(continued)

security 8-5
verbs

CSNBCPA
(Clear_PIN_Generate_Alternate) 8-18

CSNBCPE (Clear_PIN_Encrypt) 8-12
CSNBEPG (Encrypted_PIN_Generate) 8-24
CSNBPGN (Clear_PIN_Generate) 8-15
CSNBPTR (Encrypted_PIN_Translate) 8-29
CSNBPVR (Encrypted_PIN_Verify) 8-34

flag bytes B-4
format

chaining_vector record B-13
control, financial PIN 8-9
key record list data set B-16
key storage record B-14
key tokens

external B-4
internal B-3
null B-2

I
IM (importable) keys 5-3
importable (IM) keys 5-3
importing, description 5-14, C-11
initializing key storage 2-36
input/output (I/O) parameters 1-8
installing keys 5-11
intermediate PIN block (IPB) E-9
internal 5-10

key tokens
building 5-38
copying into application data storage 7-9
copying into key storage 7-10, 7-19
format B-3
Key_Token_Build verb 5-38

Introduction of master key parts 2-8
IPB (intermediate PIN block) E-9
ISO-0 PIN block format E-9
ISO-1 PIN block format E-10
ISO-2 PIN block format E-11

K
key shares 2-9
key storage

description 5-15
key-record-list data set

creating 7-7, 7-15
format B-16

verbs 5-11
key storage initialization 2-36
key tokens

assembling 5-38

key tokens (continued)
changing 3-18
contents 5-8
deleting 3-18, 7-13, 7-21
description 5-8
external 5-10

Key_Token_Build verb 5-38
PKA_Key_Record_Delete service 7-13
PKA_Key_Token_Change verb 3-18

flag byte 1 B-4
flag byte 2 B-4
format 5-8, B-1
internal 5-10

Key_Token_Build verb 5-38
PKA_Key_Record_Delete service 7-13
PKA_Key_Token_Change verb 3-18

Key_Token_Build verb 5-38
listing 7-22
null 5-10
Record-Validation Value (RVV) B-2
token-validation value (TVV) B-2

key-encrypting-key-class keys 5-6
key-export operation 5-14
key-import operation 5-14
key-management keys

Common Cryptographic Architecture
support 5-1

key-processing and key-storage verbs 5-11
DES_Key_Record_Delete (CSNBKRD) 7-5
Key_Record_List (CSNBKRL) 7-7
Key_Record_Read (CSNBKRR) 7-9
Key_Record_Write (CSNBKRW) 7-10
PKA_Key_Record_Delete (CSNDKRD) 7-13
PKA_Key_Record_List (CSNDKRL) 7-15
PKA_Key_Record_Read (CSNDKRR) 7-17
PKA_Key_Record_Write (CSNDKRW) 7-19
Retained_Key_Delete (CSNDRKD) 7-21
Retained_Key_List (CSNDRKL) 7-22

Key_DES_Key_Record_Delete (CSNBKRD) 7-5
Key_Generate (CSNBKGN) 5-13
Key_Record_List (CSNBKRL) 7-7
Key_Record_List (CSNDKRL) 7-15
Key_Record_Read (CSNBKRR) 7-9
Key_Record_Write (CSNBKRW) 7-10
Key_Storage_Initialization (&vblcksi.) 2-36
Key_Token_Build (CSNBKTB) 5-38
keys

activating 3-18
asymmetric 5-5
ciphering 5-7
clear 5-12
control vectors 5-3
deactivating 3-18
deleting 3-18, 7-13, 7-21
double-length 5-6
exportable (EX) 5-3

 Index X-17

keys (continued)
exporting 5-14
external 5-3
generating 5-12
identifiers 5-10
importable (IM) 5-3
importing 5-14
installing 5-11
key management 5-1, 5-2
key storage initialization 2-36
key-usage keywords 5-7
labels

definition 5-10
length 5-27
listing 7-22
managing 5-1, 5-2
master key loading 2-46
multiply-deciphered 5-14
multiply-deciphered the 5-3
multiply-enciphered 5-3, 5-12
operational (OP) 5-3
parity 5-3
parts

generating 5-12
secure 5-11

processing
verbs 5-11

re-enciphering 3-18
records

deleting 7-5, 7-13, 7-21
DES_Key_Record_Deleteservice 7-5
Key_Record_List service 7-7
Key_Record_Read service 7-9
Key_Record_Write service 7-10
listing 7-7, 7-15, 7-22
PKA_Key_Record_Delete service 7-13
PKA_Key_Record_List service 7-15
PKA_Key_Record_Read service 7-17
PKA_Key_Record_Write service 7-19
reading 7-9, 7-17
Retained_Key_Delete service 7-21
Retained_Key_List service 7-22
writing 7-10, 7-19

separation 5-3
storing 5-15
symmetric 5-5
types

and verbs 5-6
asymmetric 5-5
DATA 5-6
DATA-class keys 5-6
description 5-5
EXPORTER 5-6
IKEYXLAT 5-6
IMPORTER 5-6
IPINENC 8-6
key-encrypting-key-class keys 5-6

keys (continued)
types (continued)

key-usage keywords 5-7
MAC 5-6
MAC-class keys 5-6
MACVER 5-6
OKEYXLAT 5-6
one-way key distribution channels 5-5
OPINENC 8-6
PIN security 8-6
PINGEN 8-6
PINVER 8-6
symmetric 5-5

usage
bits 8-6
key form 5-13
key type 5-13
keywords 5-7

verification pattern 5-11
verifying 5-11

keywords, key-usage 5-7

L
LF (line feed) B-16
line feed (LF) B-16
listing keys 7-22
loading a master key 2-46
Logging on and logging off 2-7
Logon Control (CSUALCT) 2-38
Logon_Control (CSUALCT) 2-38

M
m-of-n master key shares 2-9
MAC_Generate (CSNBMGN) 6-3
MAC_Verify (CSNBMVR) 6-3
MACVER key type, MAC_Verify verb 5-6
managing

DES keys
Common Cryptographic Architecture 5-1

master key 1-4
current master key 2-8
environment identifier 2-10
Introduction of master key parts 2-8
m-of-n 2-9
master key cloning 2-9
new master key 2-8
old master key 2-8
Random generation of a new master key 2-9
shares 2-9
Understanding and managing master keys 2-8

master key cloning 2-9
master key loading 2-36, 2-46
master key verification pattern 2-8

X-18 IBM 4758 CCA Services

Master_Key_Distribution (CSUAMKD) 2-42
Master_Key_Process (CSNBMKP) 2-46
multiple PIN calculation methods 8-7
multiply-deciphered keys 5-3, 5-14
multiply-enciphered keys 5-3, 5-12

N
null key token 5-10, B-2

O
OCV (output chaining value) D-3
OP (operational) keys 5-3, 5-14
operating environments 1-7
operational (OP) keys 5-14
operational keys (OP) 5-3
output chaining value (OCV) D-3

P
pad digit 8-9
PAN (personal account number) 8-11
parity, key 5-3
personal account number (PAN) 8-11
PIN block-encrypting key 8-6
PKA_Key_Record_Delete (CSNDKRD) 7-13
PKA_Key_Record_List(CSNDKRL) 7-15
PKA_Key_Record_Read (CSNDKRR) 7-17
PKA_Key_Record_Write (CSNDKRW) 7-19
PKA_Key_Token_Change (CSNDKTC) 3-18
PKA_PKA_Key_Record_Delete (CSNDKRD) 7-13
PKA_Retained_Key_Delete (CSNDRKD) 7-21
PKA_Retained_Key_List (CSNDRKL) 7-22
pre-exclusive-OR technique C-11
procedure calls 1-7
processing a master key 2-46
profiles

activating
Header 2-4
Overview 2-3
Passphrase verification protocol D-16
Passphrases 2-7
personal identification number (PIN)

PIN profile 8-9
Profile data structures B-21
Verbs for initialization and management 2-5

pseudonyms 1-7, F-1

R
Random generation of a new master key 2-9
re-enciphering keys 3-18
reason codes A-1
reason_code parameter 1-10
record-validation value (RVV) B-2

Required Commands
Description B-19
List of access control point codes G-1
Overview 2-3

Retained_Key_Delete (CSNDRKD) 7-21
Retained_Key_List (CSNDRKL) 7-22
return_code parameter 1-10
Roles, access control

Default role 2-3
Overview 2-2
Role data structures B-18
Verbs for initialization and management 2-5

rule_array parameter description 1-11
RVV (record-validation value) B-2

S
segmented data 6-3
symmetric keys 5-5

T
token-validation value (TVV) 5-9, B-2
trial pin 8-2
TVV (token-validation value) 5-9, B-2

U
Understanding and managing master keys 2-8

current master key 2-8
new master key 2-8
old master key 2-8

V
validation data 8-7
verbs

common parameters
exit_data 1-10
exit_data_length 1-10
reason_code 1-10
return_code 1-10
rule_array 1-11

data confidentiality 6-1
data integrity 6-1
descriptions 1-7
direction 1-9
entry-point names 1-7
list of 1-7
parameters 1-9
procedure calls 1-7
processing A-1
pseudonyms 1-7, F-1
reason codes A-1
return codes A-1
supported environments 1-7
type 1-10

 Index X-19

verbs (continued)
variables 1-9

verification pattern 5-11

X
X3.106 (CBC) method D-3

X-20 IBM 4758 CCA Services

IBM

Printed in U.S.A.

SC31-86ð9-ð1

