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Abstract

Secure coprocessors enable secure distributed applications by providing safe havens where an applica-
tion program can execute (and accumulate state), free of observation and interference by an adversary with
direct physical access to the device. However, for these coprocessors to be effective, participants in such
applications must be able to verify that they are interacting with an authentic program on an authentic, un-
tampered device. Furthermore, secure coprocessors that support general-purpose computation and will be
manufactured and distributed as commercial products must provide these core sanctuary and authentication
properties while also meeting many additional challenges, including:

� the applications, operating system, and underlying security management may all come from different,
mutually suspicious authorities;

� configuration and maintenance must occur in a hostile environment, while minimizing disruption of
operations;

� the device must be able to recover from the vulnerabilities that inevitably emerge in complex software;

� hardware constraints dictate that support for advanced cryptography depends on reloadable software;
and

� physical security dictates that the device itself can never be opened and examined.

This paper summarizes the hardware, software, and cryptographic architecture we developed to address
these problems. Furthermore, with our colleagues, we have implemented this solution, now available as a
commercial product.
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1. Introduction

A tamper-protected device that offers a strong computational environment and good cryptographic perfor-
mance can form the cornerstone of many security applications (as our team has been investigating for over
15 years). However, building such a device as a mass-produced product—and not just as a laboratory
prototype—requires identifying, articulating, and addressing a host of research issues regarding security and
trust. This paper describes the hardware and software security architecture that we developed, and (with the
help of many colleagues) implemented as a commercial product. [11]

1.1. The Secure Coprocessing Model

Access to computing devices threatens many current and potential computer applications. If an adversary can
attack a device by altering or copying its algorithms or stored data, he or she can subvert an entire application.
Often, the mere potential of such attack may suffice.

Secure coprocessors—computational devices that can be trusted to execute their software correctly,despite
physical attack—can address these threats. Yee’s seminal examination of the secure coprocessing model [24]
built on our high-end Citadel hardware prototype[14, 22] that explored robust, general-purpose computational
environments in a secure tamper-responsive physical package. However, devices that accept much more
limited computational power and physical security in exchange for a vast decrease in cost—such as IC chip
cards, PCMCIA tokens, and “smart buttons”—might also be considered part of the secure coprocessing
family.

Secure coprocessors enable secure distributed applications by distributing trusted sanctuaries within a
hostile environment. Higher-end examples usually incorporate support for high-performance cryptography
(and, indeed, the need to physically protect the secrets used in a cryptographic module initially motivated the
Citadel design, as well as the Federal standard [13] used for secure coprocessors). However, much of the
exciting potential of the secure coprocessing model arises from the notion of putting computation as well as
cryptographic secrets inside the secure box.

Much previous work (e.g., [9, 12, 16], as well as Tygar and Yee’s followup work [19, 25]) explores the
potential applications and limits of the secure coprocessing model. However, widespread development and
practical deployment of such applications requires an infrastructure of secure devices, not just a few prototypes.
Recognizing this need, our team has recently completed a several-year research and development project to
design, develop, and distribute the necessary high-performance, programmable secure coprocessor—both as
a research tool and as a commercial product, which reached market August 1997. (A separate report [18]
discusses the practical implications of this work.)

1.2. Basic Design

Broadly defined, a secure coprocessor consists of a computational engine and memory (at least a portion
of which is designated as “secure”) contained in a physical package designed to render the contents of the
secure memory unavailable to an adversary who physically attacks the device. Refining this broad sketch to
a particular hardware implementation requires addressing a host of engineering and business decisions. How
powerful is the engine? How much memory? How is it secured? How effective are the tamper protections?

Hardware For our product [11], we answered these questions by building on the design philosophy that
evolved over several previous generations of hardware [14, 20, 21, 22]:

1



� maximize computational power (e.g., use as big a CPU as is reasonable, good cryptographic accelerators1)

� support it with ample RAM

� use a smaller amount of battery-backed RAM (BBRAM) as the non-volatile, secure memory

� assemble this on a circuit board with technology to actively sense tamper and near-instantly zeroize the
BBRAM

Figure 1 and Table 1 summarize this design.

Security Model Active tamper response gives a device a lifecycle shown in Figure 2: tamper destroys
the contents of secure memory—in our case, the BBRAM and DRAM. However, one can logically extend
the secure storage area beyond the BBRAM devices themselves by storing keys and fingerprints in BBRAM,
and ciphertext in FLASH—or even cryptopaging it onto the host file system. [24]

Application Design This philosophy leads to a notion of a high-end secure coprocessor that is substan-
tially more powerful and secure—albeit larger2 and more expensive—than the family’s weaker members,
such as chip cards. This hardware philosophy shapes the model for application software:

� protect the critical portion of the application software by having it execute inside the secure coprocessor

� exploit the computational power of the coprocessor by allowing this critical portion to be fairly complex

� structure this critical software to exploit the fact that tamper destroys only contents of volatile DRAM
and the smaller BBRAM—but not, for example, the contents of FLASH or ROM.

Software Making a commercial product support this software model requires giving the device a robust
programming environment, and making it easy for developers to exploit this environment. These goals led to
a multi-layer software architecture:

� a foundational Miniboot layer manages security and configuration;

� an operating system layer manages computational, storage, and cryptographic resources;

� an unprivileged application layer that uses these resources to provide services

Currently, Miniboot consists of two components: Miniboot 0, residing in ROM (boot-block FLASH), and
Miniboot 1, which resides, like the OS and the application, in rewritable non-volatile FLASH memory.
However, we are also considering the implications of potentially malicious sibling applications, as well as
dynamic applications loaded into DRAM at run-time.

Figure 3 sketches this architecture.

1Indeed, the ability to upgrade cryptographic algorithms while retaining the current generation hardware initially drove adding a CPU
to these devices.
2For example, our product is a PCI card, although we see no substantial engineering barriers to repackaging this technology as a PCMCIA
card.
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1.3. Issues for a Security Architecture

The typical lifecycle of high-end secure coprocessor–in a hostile environment, the device securely stores its
secrets and executes its software, but tamper attempts destroy the secrets—drives the principal security issues
we faced:

� How does the device end up in a hostile environment, with the the proper software and secrets?

� How do we distinguish between a properly configured, untampered device, and an evilly modified one
or a clone?

However, we also needed to address these concerns in the context of building an effective and usable
commercial security tool.

This paper discusses the security architecture we designed and (with our colleagues) implemented, in
order for our high-performance, programmable coprocessor to meet its goals.

� Section 2 presents the security goals and commercial constraints we faced.

� Section 3 introduces our approach to solving them.

� Section 4 through Section 8 presents the different interlocking pieces of our solution.

� Section 9 and Section 10 summarize how these pieces work together to satisfy the security goals.

Section 11 presents some thoughts for future directions.

Physical Security Boundary

Physical
Security
Sensing
and
Response

486
Processor
and
PC Support

FLASH,
ROMDRAM

Battery−
Backed
RAM

Hardware Locks

Routing
Control
and 
FIFOs
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Random
Number
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Real−
Time
Clock

PCI Bus Interface

Host PCI Bus

Figure 1 Hardware architecture of our high-end secure coprocessor.
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Physical
Security:

Tamper Resistance
Tamper Detection
Tamper Response
Hardware Memory Interlock

Designed to FIPS 140−1 Level 4 standards (in evaluation)

Features:

Crypto:

Card type: PCI 32−bit Bus Master

Internal processor: 486 DX2 66MHz

RAM: 4 megabytes

ROM/FLASH: 2 megabytes

Battery−backed RAM: 8.5 kilobytes

Hardware environment: PC−compatible, including all standard
interrupts, DMA, controls, 
real−time clock, etc.

DES: Proprietary hardware support

RSA, DSS: Software, with hardware support for
1024−bit modular math

Hashing: SHA−1 (software)

Additional algorithms: Programmable

Random numbers: Noise−based hardware RNG

Temperature Detection
Electromagnetic Shielding
Supply Voltage Testing
Radiation Detection

Table 1 Features of our PCI secure coprocessor.

Device
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to tamper

INITIALIZED,
UNTAMPERED
device

SECRETS

Secure Memory

ZEROIZED
UNTAMPERED
device

(nothing)

Secure Memory

ZEROIZED,
MODIFIED
device

(nothing)

Secure Memory

Figure 2 Sample lifecycle of a high-end secure
coprocessor with active tamper response.
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Application
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Figure 3 Software architecture for our high-end secure coprocessor. Our current
software only supports one application, not dynamically loaded.
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2. Requirements

The problem we face is not easily stated. The device must provide the core security properties necessary for
secure coprocessing applications. But the device must also be a practical, commercial product; this gives rise
to many additional constraints, which can interact with the security properties in subtle ways. In order to be
effective, our solution must simultaneously address all of these requirements.

2.1. Commercial Requirements

Our device must exist as a programmable, general-purpose, commercial product. This notion—and previous
experience with commercial security hardware (e.g., [1]) gives rise to many constraints.

Development. To begin with, the goal of supporting the widespread development and deployment of
applications introduces a host of requirements for software structure:

� The device must be easily programmable.

� The device must have a general-purpose operating system.

� There will (we hope!) be a large population of authorities developing and releasing application software
and even operating systems.

� The configuration of any particular device might be vertically partitioned: an application from one
vendor, an OS from another, bootstrap code from a third.

� The software authorities may not necessarily trust each other—hence, the architecture should permit
no “backdoors.”

Manufacturing. The process of manufacturing and distribution must be as simple as possible:

� We need to minimize the number of variations of the device, as manufactured or shipped.

� It must be possible to configure the software on the device after shipment, in what we must regard as a
hostile environment.

� We must reduce or eliminate the need to store a large database of records (secret or otherwise) pertaining
to individual devices.

� We must abide by U.S. export regulations.

Maintenance. The complexity of the proposed software—and the cost of a high-end device—mean that
it must be possible to update the software already installed in a device.

� These updates should be safe, easy, and minimize disruption of device operation.

– When possible, the updates should be performed remotely, in the “hostile” field, without requiring
the presence of a trusted security officer.

– When reasonable, internal application state should persist across updates.

� Particular versions of software may be so defective as to be non-functional or downright malicious.
Safe, easy updates must be possible even then.

� Due to its complexity and ever-evolving nature, the code supporting high-end cryptography (including
public-key3, hashing, and randomness) must itself be updatable. But repair should be possible even if
this software is non-functional.

3The hardware accelerator for RSA merely does modular arithmetic; hence, much software support is necessary.
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2.2. Security Requirements

The primary value of a secure coprocessor is its ability to provide a trusted sanctuary in a hostile environment.
This goal leads to two core security requirements:

� The device must really provide a safe haven for application software to execute and accumulate secrets.

� It must be possible to remotely distinguish between a message from a genuine application on an
untampered device, and a message from a clever adversary.

We consider these requirements in turn.

2.2.1. Safe Execution

The foundation of secure coprocessing applications is that the coprocessor really provides safe haven. For
example, suppose that, following [25], we are implementing decentralized electronic cash by having two
secure devices shake hands and then transactionally exchange money. Such a cash program may store two
critical parameters in BBRAM: the private key of this wallet, and the current balance of this wallet. Minimally,
it must be the case that physical attack really destroys the private key. However, it must also be the case that
the stored balance never change except through appropriate action of the cash program. (For example, the
balance should not change due to defective memory management or lack of fault-tolerance in updates.)

However, formalizing this requirement brings out many subtleties, especially in light of the flexible
shipment, loading, and update scenarios required by Section 2.1 above. For example:

� What if an adversary physically modifies the device before the cash program was installed?

� What if an adversary “updates” the cash program with an evil version?

� What if an adversary updates the operating system underneath the cash program with an evil version?

� What if the adversary already updated the operating system with an evil version before the cash program
was installed?

� What if the adversary replaced the public-key cryptography code with one that provides backdoors?

� What if a sibling application finds and exploits a flaw in the protections provided by the underlying
operating system?

It must be possible for the card, placed in a hostile environment, to distinguish between genuine software
updates from the appropriate trusted sources, and attacks from a clever adversary. After much consideration,
we developed safety criteria that address the authority in charge of a particular software layer, and the
execution environment—the code and hardware—that has accesses to the secrets belonging to that layer.

� Control of Software. Suppose Authority N has ownership of a particular software layer in a
particular device. Then only AuthorityN , or a designated superior, can load code into that layer in that
device.

� Access to Secrets. The secrets belonging to this layer are accessible only by code that Authority
N trusts, executing on hardware that AuthorityN trusts, in the appropriate context.

2.2.2. Authenticated Execution

Providing a safe haven for code to run does not do much good, if it is not possible to distinguish this safe
haven from an impostor. It must thus be possible to:

8



� authenticate an untampered device;

� authenticate its software configuration; and

� do this remotely, via computational means.

The first requirement is the most natural. Consider again example of decentralized cash. An adversary
who runs this application on an exposed computer but convinces the world it is really running on a secure
device has compromised the entire cash system.

The second requirement—authenticating the software configuration—is often overlooked but equally
important. In the cash example, running an evilly modified wallet application on a secure device also gives
an adversary the ability to counterfeit money. For another example, running a Certificate Authority on a
physically secure machine without knowing for certain what key generation software is really installed leaves
one open to attack [26].

The third requirement—remote verification—is driven by two main concerns. First, in the most general
distributed application scenarios, participants may be separated by great physical distance, and have no trusted
witnesses at each other’s site. Physical inspection is not possible.

Furthermore, we are reluctant to trust the effectiveness of commercially feasible tamper-evidence tech-
nology against the dedicated adversaries that might target a high-end device. (Tamper-evidence technology
only attempts to ensure that tampering leaves clear visual signs.) We are afraid that a device that is opened,
modified and reassembled may appear perfect enough to fool even trained analysts.

This potential for perfect reassembly raises the serious possibility of attack during distribution and con-
figuration. In many deployment scenarios, no one will have both the skills and the motivation to detect
physical tamper (since the user may be the attacker)—and those with both the skills and the motivation
(such as, perhaps, the manufacturer) may be reluctant to accept the potential liability of a “false negative”
tamper evaluation. (For all these reasons, our tamper-protection approach does not rely on tamper-evidence
alone—see Section 4.)
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3. Overview of Our Architecture

In order to meet the requirements of Section 2, our architecture must ensure secure loading and execution of
code, while also accommodating the flexibility and trust scenarios dictated by commercial constraints.

3.1. Secrets

Discussions of secure coprocessor technology usually begin with “physical attack zeroizes secrets.” Our
security architecture must begin by ensuring that tamper actually destroys secrets that actually meant some-
thing.

We do this with three main techniques:

� The secrets go away with physical attack. Section 4 presents our tamper-detection circuitry
and protocol techniques. These ensure that physical attack results in the actual zeroization of sensitive
memory.

� The secrets started out secret. Section 5 presents our factory initialization and regenera-
tion/recertification protocols. These ensure that the secrets, when first established, were neither known
nor predictable outside the card, and do not require assumptions of indefinite security of any given
keypair.

� The secrets stayed secret despite software attack. Section 6 presents our hardware ratchet lock
techniques. These ensure that secrets remain secret despite arbitrarily bad compromise of rewritable
software.

3.2. Code

Second, we must ensure that code is loaded and updated in a safe way. Discussions of code-downloading
usually begin with “just sign the code.” However, our security architecture must also address additional
subtleties, including:

� Against whose public key should we check the signature?

� What about the integrity of the code that checks the signature?

Furthermore, our security architecture must also handle the flexibility and suspicion scenarios forced by
commercial constraints. For example:

� Does code end up installed in the correct place?

� Can adversarial code rewrite other layers?

� What happens when another authority updates a layer on which one’s code depends?

Section 7 presents our techniques for code integrity, and Section 8 presents our protocols for code loading.
Together, these ensure that the code in a layer is changed and executed only in an environment trusted by the
appropriate code authority.

3.3. Achieving the Security Requirements

Our full architecture carefully combines the building blocks described in Section 4 through Section 8 to
achieve the required security properties.
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� Software executes in a secure environment. Section 9 presents how our secrecy management
and code integrity techniques interact to achieve the requirement of Section 2.2.1: software loaded
onto the card can execute and accumulate state in a continuously trusted environment, despite the risks
introduced by dependency on underlying software controlled by a potentially hostile authority.

� Participants can remotely authenticate real software on a real device. Section 10 presents
how our secrecy management and code integrity techniques interact to achieve the requirement of
Section 2.2.2: any third party can distinguish between a message from a particular program in a
particular configuration of an untampered device, and a message from a clever adversary.
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4. Defending against Physical Threats

The main goal of physical security is to ensure that the hardware can know if it remains in an unmolested
state—and if so, that it continues to work in the way it was intended to work. To achieve physical security,
we start with our basic computational/crypto device and add additional circuitry and components to detect
tampering or unusual operating conditions. If the circuit detects tampering, or a condition that would com-
promise correct operation, the circuit responds in a manner to prevent theft of secrets or misuse of the secure
coprocessor.

4.1. Overview

Traditionally, physical security design has taken several approaches:

� tamper evidence, where packaging forces tamper to leave indelible physical changes;

� tamper resistance, where the device packaging makes tamper difficult;

� tamper detection, where the device actually is aware of tamper; and

� tamper response, where the device actively takes countermeasures upon tamper.

We feel that commercially feasible tamper-evidence technology and tamper-resistance technology cannot
withstand the dedicated attacks that a high-performance, multi-chip coprocessor might face. Consequently,
our design incorporates an interleaving of resistance and detection/response techniques, so that penetrations
are sufficiently difficult to trigger device response. Section 4.2 will discuss these techniques. Section 4.3 will
discuss how our device responds once tamper is detected. Section 4.4 will discusses the additional steps we
take to ensure that tamper response is effective and meaningful.

Previously, the largest effort was placed on defending against physical penetration [8, 20, 21]. In recent
times, however, a significant amount of work examines defending against efforts to cause incorrect device
operation, allowing the security functions to be bypassed [2, 3]. Other recent work capitalizes on small
induced failures in cryptographic algorithms to make discovery of keys easier [6, 7].

The first step is to prevent an adversary from penetrating the secure processor and probing the circuit to
discover the contained secrets. Although some standards have emerged as groundwork and guidelines [13,
22, 23], exact techniques are still evolving.

However, feasible tampering attacks have become more sophisticated through time and practice (e.g., [3]).
Consequently, it has become necessary to improve all aspects of a physical security system. Over the years
many techniques have been developed, but they all face the same problem: no provable tamper-proof system
exists. Designs get better and better, but so do the adversary’s skill and tools. As a result, physical security
is, and will remain, a race between the defender and the attacker. The economic challenge of producing a
usable system at a reasonable cost is another difficulty.

To date, we have not been able to compromise our own security, which is also under evaluation by an
independent laboratory, as part of FIPS 140-1 Level 4 certification.

4.2. Detecting Penetration

In our device, we have taken the approach of making incremental improvements on well-known technology,
and layering these techniques. This way, the attacker has to repeat, at each layer, work that has a low
probability of success; furthermore, the attacker must work through the layers that have already been passed
(and may still be active). The basic element is a grid of conductors which is monitored by circuitry that can
detect changes in the properties (open, shorts, changes in conductivity) of the conductors. The conductors
themselves are non-metallic and closely resemble the material that they are embedded in—which makes
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discovery, isolation, and manipulation more difficult. These grids are arranged in several layers and the
sensing circuitry can detect accidental connection between layers as well as changes in an individual layer.

The sensing grids are made of flexible material and are wrapped around and attached to the secure
processor package as if it were being gift-wrapped. Connections to and from the secure processor are made
via a thin flexible cable which is brought out between the folds in the sensing grids so that no openings are
left in the package as would be the case if a standard connector was used.

After the package is wrapped, it is embedded in a potting material. As mentioned above, this material
closely resembles the material of the conductors in the sensing grids. Besides making it harder to find the
conductors, this physical and chemical resemblance makes it nearly impossible for an attacker to penetrate
the potting without also affecting the conductors. Then the entire package is enclosed in a grounded shield to
reduce susceptibility to electromagnetic interference, and to reduce detectable electromagnetic emanations.

4.3. Responding to Tamper

The most natural tamper response in a secure coprocessor is to erase secrets that are contained in the unit,
usually by erasing (zeroizing) an Static Random Access Memory (SRAM) that contains the secrets, then erasing
the operating memory and ceasing operation. An SRAM can be made persistent with a small battery, and
can, under many conditions, be easily erased.

This is what we do in our device: battery-backed SRAM (BBRAM) exists as storage for secrets. Upon
detection of tamper, we zeroize the BBRAM and disable the rest of the device by holding it in reset. The
tamper detection/response circuitry is active at all times whether the processor is powered or not—the
detection/response circuitry runs on the same battery that maintains the BBRAM when the unit is unpowered.

Tamper can happen quickly. In order to erase quickly, we crowbar the SRAM by switching its power
connection to ground. At the same time, we force all data, address and control lines to a high impedance
state, in order to prevent back-powering of the SRAM via those lines. This technique is employed because it
is simple, effective, and it does not depend on a processor being operational to overwrite the contents of the
SRAM on tamper.

4.4. Detecting other Physical Attacks

To prevent attacks based on manipulating the operating conditions, including those that would make it difficult
to respond to tamper and erase the secrets in SRAM, several additional sensors have been added to the security
circuitry to detect and respond to changes in operating conditions.

Attacks on Zeroization. For zeroization to be effective, certain environmental conditions must be met.
For example, low temperatures will allow an SRAM to retain its data even with the power connection shorted
to ground. To prevent this, a temperature sensor in our device will cause the protection circuit to erase the
SRAM if the temperature goes below a preset level.

High temperatures can cause improper operation of the device processor, and even damage it. So, high
temperatures cause the device to be held in reset from the operational limit to the storage limit. Detection of
temperature above the storage limit is treated as a tamper event.

Ionizing radiation will also cause an SRAM to retain its data, and may disrupt circuit operation. For this
reason, our device also detects significant amounts of ionizing radiation and triggers the tamper response if
detected.

Storing the same value in a bit in SRAM over long periods can also cause that value to imprint. Our
software protocols take this threat into account.

Other Attacks. Supply voltage also has to be monitored for several thresholds. For example, at each
power-down, the voltage will go from an acceptable level to a low voltage, then to no supply voltage. But the
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detection and response circuitry needs to be always active—so at some point, it has to switch over to battery
operation. A symmetric transition occurs at power-up.

Whenever the voltage goes below the acceptable operating level of the processor and its associated
circuitry, these components are all held in a reset state until the voltage reaches the operating point. When
the voltage reaches the operating point, the circuitry is allowed to run. If the voltage exceeds the specified
upper limit for guaranteed correct operation, it is considered a tamper, and the tamper circuitry is activated.

Another method by which correct operation can be compromised is by manipulating the clock signals that
go to the processor and its associated circuitry. To prevent these sorts of problems, Phase Locked Loops are
used to prevent clock signals with missing or extra pulses, or ones that are either too fast or slow.
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5. Device Initialization

Section 4 discussed how we erase device secrets upon tamper. One might deduce that a natural consequence
would be that “knowledge of secrets” implies “device is real and untampered.” But for this conclusion to
hold, we need more premises:

� the secrets were secret when they were first established;

� the device was real and untampered when its secrets were established;

� weakening of cryptography does not compromise the secrets;

� operation of the device has not caused the secrets to be exposed.

This section discusses how we provide the first three properties; Section 6 will discuss how we provide the
fourth.

5.1. Factory Initialization

As one might naturally suspect, an untampered device authenticates itself as such using cryptographic secrets
stored in secure memory. The primary secret is the private half of an RSA keypair. Section 10 elaborates
on the use of this private key. Some symmetric-key secrets are also necessary for some special cases, as
Section 5.2.3 and Section 8.3 discuss.

The device keypair is generated at device initialization. To minimize risk of exposure, a device generates
its own keypair internally, within the tamper-protected and using seeds produced from the internal hardware
random number generator. The device holds its private key in secure BBRAM, but exports its public key. An
external Certification Authority adds identifying information about the device and its software configuration,
signs a certificate for this device, and returns the certificate to the device. Figure 4 illustrates this certification.

(The device-specific symmetric keys are also generated internally at initialization—see Section 8.3.)

Clearly, the CA must have some reason to believe that the device in question really is an authentic,
untampered device. To address this question—and avoid the risks of undetectable physical modification
(Section 4.1)—we initialize the cards in the factory, immediately after manufacture.

Although factory initialization removes the risks associated with insecure shipping and storage, it does
introduce one substantial drawback: the device must remain within the safe storage temperature range
(Section 4.4). But when considering the point of initialization, a manufacturer faces a tradeoff between ease
of distribution and security; we have chosen security.

5.2. Field Operations

5.2.1. Regeneration

An initialized device has the ability to regenerate its keypair:

� create a new keypair from internal randomness

� use the old private key to sign a transition certificate for the new public key, including data such as the
reason for the change,

� atomically complete the change, by deleting the old private key and making the new pair and certificate
“official.”

The current list of transition certificates, combined with the initial device certificate, certifies the current
device private key. Figure 5 illustrates this process.
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"If it produces signatures
that verify against
DEVICE_PUBLIC_KEY_1
then it’s a real, 
untampered device"

Device Certificate

DEVICE_PRIVATE_KEY_1

Device’s Secure Memory

certifies

signs

CA_PRIVATE_KEY_1

Signing Tool at Factory

Figure 4 At factory initialization, the device generates an internal keypair, whose
public key is certified by a trusted Certificate Authority at the factory.

18



"If it produces signatures
that verify against
DEVICE_PUBLIC_KEY_1
then it’s a real, 
untampered device"

Device Certificate

DEVICE_PRIVATE_KEY_1

Device’s Secure Memory

certifies

"If it produces signatures
that verify against
DEVICE_PUBLIC_KEY_2
then it’s a real, 
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DEVICE_PRIVATE_KEY_2

Device’s Secure Memory

certifies
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REGENERATION
OF
DEVICE KEY

signs

CA_PRIVATE_KEY_1

Signing Tool at Factory

Figure 5 The device may regenerate its internal keypair, and atomically create a
transition certificate for the new public key signed with the old private key.
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Regeneration frees a device from depending forever on one keypair, or key length, or even cryptosystem.
Performing regeneration atomically with other actions, such as reloading the crypto code (Section 8), also
proves useful, as Section 10 discusses. For stronger forward integrity, implementations could combine this
technique with expiration dates.

5.2.2. Recertification

The CA for devices can also recertify the device, by atomically replacing the old certificate and (possibly
empty) chain of transition certificates with a single new certificate. Figure 6 illustrates this process. (Clearly,
it would be a good idea for the CA to verify that the claimed private key really is the current private key of
an untampered device.)

This technique frees the CA from depending forever on a single keypair, key length, or even cryptosystem.
Figure 7 illustrates this variation. Again, for stronger forward integrity, implementations could combine this
technique with expiration dates.

5.2.3. Revival

Scenarios arise where the tamper detection circuitry in a device has zeroized its secrets, but the device
is otherwise untampered. As Section 4 discusses, certain environmental changes—such as cold storage
or bungled battery removal—trigger tamper response in our design, since otherwise these changes would
provide an avenue for undetected tamper. Such scenarios are arguably inevitable in many tamper-response
designs—since a device cannot easily wait to see if a tamper attempt is successful before responding.

"If it produces signatures
that verify against
DEVICE_PUBLIC_KEY_1
then it’s a real, 
untampered device"

Device Certificate

DEVICE_PRIVATE_KEY_1

Device’s Secure Memory

signs

certifies

CA_PRIVATE_KEY_1

Signing Tool at Factory

"If it produces signatures
that verify against
DEVICE_PUBLIC_KEY_2
then it’s a real, 
untampered device"

Transition Certificate

DEVICE_PRIVATE_KEY_2

Device’s Secure Memory

certifies

signs

"If it produces signatures
that verify against
DEVICE_PUBLIC_KEY_2
then it’s a real, 
untampered device"

Device Certificate

RECERTIFICATION
OF DEVICE

signs

certifies

Figure 6 The CA can recertify a device, by replacing its current device certificate and
transition certificate sequence with a new device certificate, certifying the latest public key.
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"If it produces signatures
that verify against
DEVICE_PUBLIC_KEY_2
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untampered device"
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OF DEVICE

certifies

signs

CA_PRIVATE_KEY_2

Signing Tool at Factory

REPLACEMENT OF CA PRIVATE KEY

Figure 7 The CA can use device recertification in order to
avoid depending forever on the same keypair.
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Satisfying the commercial constraint of “save hardware whenever possible” requires a way of reviving
such a zeroized but otherwise untampered device.

However, such a revival procedure introduces a significant vulnerability: how do we distinguish between
zeroized but untampered device, and a tampered device? Figure 8 illustrates this problem.

How do we perform this authentication?

As discussed earlier, we cannot rely on physical evidence to determine whether a given card is untampered—
since we fear that a dedicated, well-funded adversary could modify a device (e.g., by changing the internal
FLASH components) and then re-assemble it sufficiently well that it passes direct physical inspection. Indeed,
the need for factory-initialization was driven by this concern:

We can only rely on secrets in tamper-protected secure memory to distinguish a real device from
a tampered device.

Indeed, the problem is basically unsolvable—how can we distinguish an untampered but zeroized card from
a tampered reconstruction, when, by definition, every aspect of the untampered card is visible to a dedicated
adversary?

To accommodate both the commercial and security constraints, our architecture compromises:

� Revival is Possible. We provide a way for a trusted authority to revive an allegedly untampered
but zeroized card, based on authentication via non-volatile, non-zeroizable “secrets” stored inside a
particular device component.

Clearly, this technique is risky, since a dedicated adversary can obtain a device’s revival secrets via
destructive analysis of the device, and then build a fake device that can spoof the revival authority.

� Revival is Safe. To accommodate this risk, we force revival to atomically destroy all secrets within
a device, and to leave it without a certified private key. A trusted CA must then re-initialize the device,
before the device can “prove” itself genuine. This initialization requires the creation of a new device

Device
RESPONDS
to tamper

INITIALIZED,
UNTAMPERED
device

SECRETS

Secure Memory

ZEROIZED
UNTAMPERED
device

(nothing)

Secure Memory

ZEROIZED,
MODIFIED
device

(nothing)

Secure Memory

CORRECT REVIVAL

INCORRECT REVIVAL

Figure 8 Tamper response zeroizes the secrets in an initialized device, and leaves
either an untampered but zeroized device, or a tampered device. A procedure to revive a

zeroized device must be able distinguish between the two, or else risk introducing
tampered devices back into the pool of allegedly untampered ones.
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certificate, which provides the CA with an avenue to explicitly indicate the card has been revived
(e.g., “if it produces signatures that verify against Device Public Key N , then it is allegedly a real,
untampered device that has undergone revival—so beware”).

Thus, we prevent a device that has undergone this risky procedure from impersonating an untampered
device that has never been zeroized and revived.

Furthermore, given the difficulty of effectively authenticating an untampered but zeroized card, and the
potential risks of a mistake, the support team for the commercial product has decided not to support this
option in practice.

5.3. Trusting the Manufacturer

A discussion of untamperedness leads to the question: why should the user trust the manufacturer of the
device? Considering this question gives rise to three sets of issues.

Contents. Does the black box really contain the advertised circuits and firmware? The paranoid user can
verify this probabilistically by physically opening and examining a number of devices. (The necessary design
criteria and object code listings could be made available to customers under special contract.)

CA Private Key. Does the factory CA ever certify bogus devices? Such abuse is a risk with any public-key
hierarchy. But, the paranoid user can always establish their own key hierarchy, and then design applications
that accept as genuine only those devices with a secondary certificate from this alternate authority.

Initialization. Was the device actually initialized in the advertised manner? Given the control a manufac-
turer might have, it is hard to see how we can conclusively establish that the initialization secrets in a card
are indeed relics of the execution of the correct code. However, the cut-and-examine approach above can
convince a paranoid user that the key creation and management software in an already initialized device is
genuine. This assurance, coupled with the regeneration technique of Section 5.2.1 above, provides a solution
for the paranoid user: causing their device to regenerate after shipment gives it a new private key that must
have been produced in the advertised safe fashion.
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6. Defending against Software Threats

6.1. Motivation

Section 4 discussed how we ensure that the core secrets are zeroized upon physical attack, and Section 5
discussed how we ensure that they were secret to begin with. However, these techniques still leave an
exposure: did the device secrets remain secret throughout operation?

For example, suppose a few months after release, some penetration specialists discover a hole in the OS
that allows untrusted user code to execute with full supervisor privilege. Our code loading protocol (Section 8)
allows us to ship out a patch, and a device installing this patch can sign a receipt with its private key.

One might suspect verifying this signature would imply the hole has been patched in that device.
Unfortunately, this conclusion would be wrong: a hole that allows untrusted code full privileges would
also grant it access to the private key—that is, without additional hardware countermeasures. This section
discusses the countermeasures we use.

6.2. Software Threat Model

This risk is particularly dire in light of the commercial constraints of complex, multi-level software, from
multiple authorities, remotely installed and updated in hostile environments. History shows that complex
systems are, quite often, permeable. Consequently, we address this risk by assuming that all rewritable
software in the device may behave arbitrarily badly.

Drawing our defense boundary here frees us from the quagmire4 of having low-level miniboot code
evaluate incoming code for safety. It also accommodates the wishes of system software designers who want
full access to “Ring 0” in the underlying x86 architecture.

Declaring this assumption often raises objections from systems programmers. We pro-actively raise
some counterarguments. First, although all code loaded into the device is somehow “controlled,” we need
to accommodate the pessimistic view that “controlled software” means, at best, good intentions. Second,
although an OS might provide two levels of privilege, history5 is full of examples where higher-level privileges
are usurped. Finally, as implementers ourselves, we need to acknowledge the very real possibility of error
and accommodate mistakes as well as malice.

6.3. Hardware Access Locks

In order to limit the abilities of rogue but privileged software, we use hardware locks: independent circuitry
that restricts the activities of code executing on the main CPU. We chose to use a simple hardware approach
for several reasons, including:

� We cannot rely on the device operating system, since we do not know what it will be—and a corrupt or
faulty OS might be what we need to defend against.

� We cannot rely on the protection rings of the 486 processor, because the OS and Miniboot layers require
maximal 486 privilege.

Figure 1 shows how the hardware locks fit into the overall design: the locks are independent devices that
can interact with the main CPU, but control access to the FLASH and to BBRAM.

4Essentially, our architecture responds to the Java challenge by allowing “applets” to do whatever they want—except they can neither
access critical authentication secrets, nor alter critical code (which includes the code that can access these secrets). Furthermore, these
restrictions are enforced by hardware, independent of the OS and CPU.
5For examples, consult the on-line archives of the Computer Emergency Response Team at Carnegie Mellon University.
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However, this approach raises a problem. Critical memory needs protection from bad code. How can our
simple hardware distinguish between good code and bad code?

We considered and discarded two options:

� False Start: Good code could write a password to the lock. Although this approach simplifies the
necessary circuitry, we had doubts about effectively hiding the passwords from rogue software.

� False Start: The lock determines when good code is executing by monitoring the address bus during
instruction fetches.

This approach greatly complicates the circuitry. We felt that correct implementation would be difficult,
given the complexities of instruction fetching in modern CPUs, and the subtleties involved in detecting
not just the address of an instruction, but the context in which it is executed. For example, it is not
sufficient merely to recognize that a sequence of instructions came from the address range for privileged
code; the locks would have to further distinguish between

– these instructions, executing as privileged code;

– these instructions, executing as a subroutine; called by unprivileged code;

– these instructions, executing as privileged code, but with a sabotaged interrupt table.

Solution: Time-based Ratchet. We finally developed a lock approach based on the observation that
reset (a hardware signal that causes all device circuitry return to a known state) forces the device CPU to begin
execution from a fixed address in ROM: known, trusted, permanent code. As execution proceeds, it passes
through a non-repeating sequence of code blocks with different levels of trust, permanence, and privilege
requirements. Figure 9 illustrates this sequence:

� Reset starts Miniboot 0, from ROM;

� Miniboot 0 passes control to Miniboot 1, and never executes again.

� Miniboot 1 passes control to the OS, and never executes again.

� The OS may perform some start-up code.

� While retaining supervisor control, the OS may then execute application code.

� The application (executing under control of the OS) may itself do some start-up work, then incur
dependence on less trusted code.

Our lock design models this sequence with a trust ratchet, currently represented as a nonnegative integer,.
A small microcontroller stores the the ratchet value in a register. Upon hardware reset, the microcontroller
resets the ratchet to 0; through interaction with the device CPU, the microcontroller can advance the ratchet—
but can never turn it back. As each block finishes its execution, it advances the ratchet to the next appropriate
value. (Our implementation also enforces a maximum ratchet value, and ensures that ratchet cannot be
advanced beyond this value.) Figure 10 illustrates how this trust ratchet models the execution sequence.

The microcontroller then grants or refuses memory accesses, depending on the current ratchet value.

Decreasing Trust The effectiveness of this trust ratchet critically depends on two facts:

� The code blocks can be organized into a hierarchy of decreasing privilege levels (e.g., like the classical
work in protection rings [15] or lattice models of information flow [5, 10])

� In our software architecture, these privilege levels strictly decrease in real time!
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Figure 9 Hardware reset forces the CPU to begin executing Miniboot 0 out of ROM;
execution then proceeds through a non-repeating sequence of phases, determined by

code and context.
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Figure 10 Hardware reset forces the trust ratchet to zero; code blocks advance the
ratchet before passing control to the next block in the sequence—but can never

decrement the ratchet.
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This time sequencing, coupled with the independence of the lock hardware from the CPU and the fact that
the hardware design (and its physical encapsulation) forces any reset of the locks to also reset the CPU, give
the ratchet its power:

� The only way to get the maximal privilege level (“Ratchet 0”) is to force a hardware reset of the entire
system, and begin executing Miniboot 0 from a hardwired address in ROM, in a known state.

� The only way to get a non-maximal privilege level (“Ratchet N ,” for N > 0) is to be passed control
by code executing at a an earlier, higher-privileged ratchet level.

� Neither rogue software (nor any other software) can turn the ratchet back to an earlier, higher-privileged
level—short of resetting the entire system.

The only avenue for rogue software at Ratchet N to steal the privileges of ratchet K < N would be to
somehow alter the software that executes at rachet K or earlier. (However, as Section 7.2 shows, we can use
the ratchet to prevent these attacks as well.)

Generalizations. Although this discussion used a simple total order on ratchet values, nothing prevents
using a partial order. Indeed, as Section 7.2 discusses, our initial implementation of the microcontroller
firmware does just that, in order to allow for some avenues for future expansion.

6.4. Privacy and Integrity of Secrets

The hardware locks enable us to address the challenge of Section 6.1: how do we keep rogue software from
stealing or modifying critical authentication secrets? We do this by establishing protected pages: regions of
battery-backed RAM which are locked once the ratchet advances beyond a certain level. The hardware locks
can then permit or deny write access to each of these pages—rogue code might still issue a read or write to
that address, but the memory device itself will never see it.

Table 2 illustrates the access policy we chose: each Ratchet levelR (for 0 � R � 3) has its own protected
page, with the property that Page P can only be read or written in ratchet level R � P .

We use lockable BBRAM (LBBRAM) to refer to the portion of BBRAM consisting of the protected pages.
(As with all BBRAM in the device, these regions preserve their contents across periods of no power, but
zeroize their contents upon tamper.) Currently, these pages are used for outgoing authentication (Section 10);
Page 0 also holds some secrets used for ROM-based loading (Section 8).

We partition the remainder of BBRAM into two regions: one belonging to the OS exclusively, and one
belonging to the application. Within this non-lockable BBRAM, we expect the OS to protect its own data
from the application’s.

28



Ratchet 0

(Miniboot 0)

Ratchet 1

(Miniboot 1)

Ratchet 2

(OS
start−up)

Ratchet 3

(Application
start−up)

Ratchet 4

(Application)

Protected Page 0
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Protected Page 3

READ, WRITE ALLOWED

NO ACCESS

Table 2 Hardware locks protect the privacy and integrity of critical secrets.
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7. Code Integrity

The previous sections presented how our architecture ensures that secrets remain accessible only to allegedly
trusted code, executing on an untampered device. To be effective, our architecture must integrate these
defenses with techniques to ensure that this executing code really is trusted.

This section presents how we address the problem of code integrity:

� Section 7.1 and Section 7.2 describe how we defend against code from being formally modified, except
through the official code loading procedure.

� Section 7.3 and Section 7.4 describes we defend against modifications due to other types of failures.

� Section 7.5 summarizes how we knit these techniques together to ensure the device securely boots.

Note that although our long-term vision of the software architecture (Figure 3) includes simultaneously
resident sibling applications and dynamically-loaded applications, this section confines itself to our current
implementation, of one application, resident in FLASH.

7.1. Loading and Cryptography

We confine the tasks of deciding and carrying out alteration of code layers to Miniboot. Although previous
work considered a hierarchical approach to loading, our commercial requirements led to trust scenarios that
were simplified by centralizing trust management.

Miniboot 1 (in rewritable FLASH) contains code to support public-key cryptography and hashing, and
carries out the primary code installation and update tasks—which include updating itself.

Miniboot 0 (in boot-block ROM) contains primitive code to perform DES using the DES-support hardware,
and uses secret-key authentication [17] to perform the emergency operations necessary to repair a device whose
Miniboot 1 does not function.

(Section 8 will discuss the protocols Miniboot uses.)

7.2. Protection against Malice

As experience in vulnerability analysis will amply demonstrate, practice often deviates from policy. Without
additional countermeasures, the policy of “Miniboot is in charge of installing and updating all code layers”
does not necessarily imply that “the contents of code layers are always changed in accordance with the design
of Miniboot, as installed.” For example:

� Without sufficient countermeasures, malicious code might itself rewrite code layers.

� Without sufficient countermeasures, malicious code might rewrite the Miniboot 1 code layer, and cause
Miniboot to incorrectly “maintain” other layers.

To ensure that practice meets policy, we use the trust ratchet (Section 6) to guard rewriting of the code
layers in rewritable FLASH. We group sets of FLASH sectors into protected segments, one for each rewritable
layer of code. The hardware locks can then permit or deny write access to each of these segments—rogue
code might still issue a write to that address, but the memory device itself will never see it.

Table 3 illustrates the write policy we chose for protected FLASH. We could have limited Ratchet 0
write-access to Segment 1 alone (since in practice, Miniboot 0 only writes Miniboot 1). However, it makes
little security sense to withhold privileges from earlier, higher-trust ratchet levels—since the earlier-level code
could always usurp these privileges by advancing the ratchet.
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As a consequence of applying hardware locks to FLASH, malicious code cannot rewrite code layers unless
it modifies Miniboot 1. But this is not possible—in order to modify Miniboot 1, an adversary has to either
alter ROM, or already have altered Miniboot 1. (Note these safeguards apply only in the realm of attacks that
do not result in zeroizing the device. An attacker could bypass all these defenses by opening the device and
replacing the FLASH components—but we assume that the defenses of Section 4 would ensure that such an
attack would trigger tamper detection and response.)

In order to permit changing to a hierarchical approach without changing the hardware design, the currently
implemented lock firmware permits Ratchet 1 to advance instead to a Ratchet 20, that acts like Ratchet 2,
but permits rewriting of Segment 3. Essentially, our trust ratchet, as implemented, is already ranging over a
non-total partial order.

7.3. Protection against Reburn Failure

In our current hardware implementation, multiple FLASH sectors make up one protected segment. Nevertheless,
we erase and rewrite each segment as a whole, in order to simplify data structures and to accommodate future
hardware with larger sectors.

This decision leaves us open to a significant risk: a failure or power-down might occur during the non-zero
time interval between the time Miniboot starts erasing a code layer to be rewritten, and the time that the rewrite
successfully completes. This risk gets even more interesting, in light of the fact that rewrite of a code layer
may also involve changes to other state variables and LBBRAM fields.

When crafting the design and implementation, we followed the rule that the system must remain in a safe
state no matter what interruptions occur during operations. This principle is especially relevant to the process
of erasing and reburning software resident in FLASH.

� Since Miniboot 1 carries out loading and contains the public-key crypto support, we allocate two
regions for it in FLASH Segment 1, so that the old copy exists and is usable up until the new copy has
been successfully installed. This permits public-key-based recovery from failures during Miniboot 1
updates.

� When reburning the OS or an application, we temporarily demote its state, so that on the next reset
after a failed reburn, Miniboot recognizes that the FLASH layer is now unreliable, and cleans up
appropriately.

For more complex transitions, we extend this approach: all changes atomically succeed together, or fail either
back to the original state, or to a safe intermediate failure state.

Ratchet 0

(Miniboot 0)

Ratchet 1

(Miniboot 1)

Ratchet 2

(OS
start−up)

Ratchet 3

(Application
start−up)

Ratchet 4

(Application)

Protected Segment 1

(Miniboot 1)

READ, WRITE ALLOWED READ ALLOWED,
WRITE PROHIBITED

Protected Segment 2

(Operating System)

Protected Segment 3

(Application)

Table 3 The hardware locks protect the integrity of critical FLASH segments.

32



7.4. Protection against Storage Errors

Hardware locks on FLASH protect the code layers from being rewritten maliciously. However, bits in FLASH
devices (even in boot block ROM) can change without being formally rewritten—due to the effects of random
hardware errors in these bits themselves.

To protect against spurious errors, we include a 64-bit DES-based MAC with each code layer (e.g., see
Figure 12). Miniboot 0 checks itself before proceeding; Miniboot 0 checks Miniboot 1 before passing control;
Miniboot 1 checks the remaining segments. The use of a 64-bit MAC from CBC-DES was chosen purely
for engineering reasons: it gave a better chance at detecting errors over datasets the size of the protected
segments than a single 32-bit CRC, and was easier to implement (even in ROM, given the presence of DES
hardware) than more complex CRC schemes.

We reiterate that we do not rely solely on single-DES to protect code integrity. Rather, our use of DES
as a checksum is solely to protect against random storage errors in a write-protected FLASH segment. An
adversary might exhaustively find other executables that also match the DES MAC of the correct code; but in
order to do anything with these executables, the adversary must get write-access to that FLASH segment—in
which case, the adversary also has write-access to the checksum, so his exhaustive search was unnecessary.

7.5. Secure Bootstrapping

To ensure secure bootstrapping, we use several techniques together:

� The hardware locks on FLASH keep rogue code from altering Miniboot or other code layers.

� The loading protocols (Section 8) keep Miniboot from burning adversary code into FLASH.

� The checksums keep the device from executing code that has randomly changed.

If an adversary can cause (e.g., through radiation) extensive, deliberate changes to a FLASH layer so that
it still satisfies the checksum it stores, then he can defeat these countermeasures. However, we believe that
the physical defenses of Section 4 would keep such an attack from being successful:

� The physical shielding in the device would make it nearly impossible to produce such carefully focused
radiation.

� Radiation sufficiently strong to alter bits should also trigger tamper response.

Consequently, securely bootstrapping a custom-designed, tamper-protected device is easier than the general
problem of securely bootstrapping a general-purpose, exposed machine (e.g., [4, 9, 24]).

Execution Sequence Our boot sequence follows from a common-sense assembly of our basic techniques.
Hardware reset forces execution to begin in Miniboot 0 in ROM. Miniboot 0 begins with Power-on Self Test
0 (POST0), which evaluates the hardware required for the rest of Miniboot 0 to execute. Miniboot 0 verifies
the MACs for itself and Miniboot 1. If an external party presents an alleged command for Miniboot 0 (e.g.,
to repair Miniboot 1 (Section 8), Miniboot 0 will evaluate and respond to the request, then halt. Otherwise
Miniboot 0 advances the trust ratchet to 1, and (if Layer 1 is reliable) jumps to Miniboot 1.

Except for some minor, non-secret device-driver parameters, no DRAM state is saved across the Miniboot 0
to Miniboot 1 transition. (In either Miniboot, any error or stateful change causes it to halt, in order to simplify
analysis. Interrupts are disabled.)

Miniboot 1 begins with POST1, which evaluates the remainder of the hardware. Miniboot 1 also verifies
MACs for Layers 2 and 3. If an external party presents an alleged command for Miniboot 1 (e.g., to reload
Layer 2), Miniboot 1 will evaluate and respond to the request, then halt. Otherwise Miniboot 1 advances the
trust ratchet to 2, and (if Layer 2 is reliable) jumps to the Layer 2, the OS.
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The OS then proceeds with its bootstrap. If the OS needs to protect data from an application that may
find holes in the OS, the OS can advance the trust ratchet to 3 before invoking Layer 3 code. Similarly, the
application can advance the ratchet further, if it needs to protect its private data.
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8. Code Loading

8.1. Overview

One of the last remaining pieces of our architecture is the secure installation and update of trusted code.

In order to accommodate our overall goal of enabling widespread development and deployment of secure
coprocessor applications, we need to consider the practical aspects of this process. We review the principal
constraints:

� Shipped empty. In order to minimize variations of the hardware and to accommodate U.S. export
regulations, it was decided that all devices would leave the factory with only the minimal software
configuration6 (Miniboot only). The manufacturer does not know at ship time (and may perhaps never
know later) where a particular device is going, and what OS and application software will be installed
on it.

� Impersonal broadcast. To simplify the process of distributing code, the code-loading protocol
should permit the process to be one-round (from authority to device), be impersonal (the authority
does not need to customize the load for each device), and have the ability to be carried out on a public
network.

� Updatable. As discussed in Section 2.1, we need to be able to update software already installed in
devices.

� Minimal disruption. An emphatic customer requirement was that, whenever reasonable, application
state be preserved across updates.

� Recoverable. We need to be able to recover an untampered device from failures in its rewritable
software—which may include malicious or accidental bugs in the code, as well as failures in the FLASH
storage of the code, or interruption of an update.

� Loss of Cryptography. The complexity of public-key cryptography and hashing code forced it to
reside in a rewritable FLASH layer—so the recoverability constraint also implies secure recoverability
without these abilities.

� Mutually Suspicious, Independent Authorities. In any particular device, the software layers
may be controlled by different authorities who may not trust each other, and may have different opinions
and strategies for software update.

� Hostile environments. We can make no assumptions about the user machine itself, or the existence
of trusted couriers or trusted security officers.

To address these constraints, we developed and followed some guidelines:

� We make sure that Miniboot keeps its integrity, and that only Miniboot can change the other layers.

� We ensure that the appropriate authorities can obtain and retain control over their layers—despite
changes to underlying, higher-trust layers.

� We use public-key cryptography whenever possible.

Section 8.2 below outlines who can be in charge of installing and changing code. Section 8.3 discusses
how a device can authenticate them. Section 8.4 discusses how an “empty” card in the hostile field can learn
who is in charge of its code layers. Section 8.5 and Section 8.6 discuss how the appropriate authorities can
authorize code installations and updates. Section 8.7 summarizes software configuration management for
devices.

6Our design and implementation actually accommodates any level of pre-shipment configuration, should this decision change.
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8.2. Authorities

As Figure 11 illustrates, we organize software authorities—parties who might authorize the loading of new
software—into a tree. The root is the sole owner of Miniboot; the next generation are the authorities of
different operating systems; the next are the authorities over the various applications that run on top of these
operating systems. We stress that these parties are external entities, and apply to the entire family of devices,
not just one.

Hierarchy in software architecture implies dependence of software. The correctness and security of the
application layer depends on the correctness and security of the operating system, which in turn depends on
Miniboot 1, which in turn depends on Miniboot 0. (This relation was implied by the decreasing privileges of
the trust ratchet.)

Similarly, hierarchy in the authority tree implies dominance: the authority over Miniboot dominates all
operating system authorities; the authority over a particular operating system dominates the authorities over
all applications for that operating system.

8.3. Authenticating the Authorities

Public-Key Authentication. Wherever possible, a device uses a public-key signature to authenticate a
message allegedly from one of its code authorities. The public key against which this message is verified is
stored in the FLASH segment for that code layer, along with the code and other parameters (see Figure 12).

Using public-key signatures makes it possible to accommodate the “impersonal broadcast” constraint.
Storing an authority’s public key along with the code, in the FLASH layer owned by that authority, enables
the authority to change its keypair over time, at its own discretion. (Adding expiration dates and revocation
lists would provide greater forward integrity.)

However, effectively verifying such a signature requires that the code layer already be loaded and still
have integrity (so the device actually knows the public key to use) and that Miniboot 1 still functions (so the
device knows what to do with this pubic key). These facts create the need for two styles of loading: ordinary
loading, when these conditions both hold; and emergency loading, when at least one fails.

Authority over
Layer 1:

Authority over
Layer 2:

Authority over
Layer 3:

IBM Miniboot 1 Officer

IBM OS Officer OEM1 OEM2

IBM  crypto API
officer

User Bank1 Bank2OEM3

IBM Miniboot 0 Officer
Authority over
Layer 0:

Figure 11 Authorities over software segments are organized into a tree.
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Public Key
of Authority
(e.g., who
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code?)

Code Other
identifying
parameters

DES−MAC of 
segment contents

Provided by external Code Authority Added by device, during
FLASH rewrite

Figure 12 Sketch of the contents of code layer.

Secret-Key Authentication. The lack of public-key cryptography forces the device to use a secret-key
handshake to authenticate communications from the Miniboot 0 authority. The shared secrets are stored in
Protected Page 0, in LBBRAM. Such a scheme requires that the authority share these secrets. Our scheme [17]
reconciles this need with the no-databases requirement by having the device itself store a signed, encrypted
message from the authority to itself. During factory initialization, the device itself generates the secrets and
encrypts this message; the authority signs the message and returns it to the device for safekeeping. During
authentication, the device returns the message to the authority.

8.4. Ownership

Clearly, our architecture has to accommodate the fact that each rewritable code layer may have contents that
are either reliable or unreliable. However, in order to provided the necessary configuration flexibility, the
OS and application layers each have additional parameters, reflecting which external authority is in charge of
them.

Our architecture addresses this need by giving each of these layers the state space sketched in Figure 13:

� The code layer may be owned or unowned.

� An owned code layer may have reliable contents, or unreliable contents.

� A reliable code layer may actually be runnable, or may be unrunnable for some reason.

This code state is stored in EEPROM fields in the hardware lock, write-protected beyond Ratchet 1.

For 0 < N < 3, the authority over LayerN in a device can issue a Miniboot command giving an unowned
Layer N + 1 to a particular authority. For 2 � N � 3, the authority over Layer N can issue a command
surrendering ownership—but the device can evaluate this command only if Layer N is currently reliable.
(Otherwise, the device does not know the necessary public key.)

UNOWNED OWNED

RELIABLE

RUNNABLE

Figure 13 State space of the OS and application code layers.
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8.5. Ordinary Loading

General Scheme. Code Layer N , for 1 � N � 3, is rewritable. Under ordinary circumstances, the
authority over layer N can update the code in that layer by issuing an update command signed by that
authority’s private key. This command includes the new code, a new public key for that authority (which
could be the same as the old one, per that authority’s key policy), and target information to identify the devices
for which this command is valid. The device (using Miniboot 1) then verifies this signature directly against
the public key currently stored in that layer.

Figure 14 sketches this structure.

Target. The target data included with all command signatures allows an authority to ensure that their
command applies only in an appropriate trusted environment. An untampered device will accept the signature
as valid only if the device is a member of this set. (The authority can verify that the load “took” via a signed
receipt from Miniboot—see Section 10.)

For example, suppose an application developer determines that version 2 of a particular OS has a serious
security vulnerability. Target data permits this developer to ensure that their application is loadable only on
devices with version 3 or greater of that operating system.

Underlying Updates. The OS has complete control over the application, and complete access to its
secrets; Miniboot has complete control over both the OS and the application. This control creates the
potential for serious backdoors. For example, can the OS authority trust that the Miniboot authority will
always ship updates that are both secure and compatible? Can the application authority trust that the OS
authority uses appropriate safeguards and policy to protect the OS authority private key?

To address these risks, we permit Authority N to include, when loading its code, trust parameters
expressing how it feels about future changes to each rewritable layer K < N . For now, these parameters
have three values: always trust, never trust, or trust only if the update command for K is countersigned by
N .

As a consequence, an ordinary load of Layer N can be accompanied by, for N < M � 3, a countersig-
nature from AuthorityM , expressing compatibility. Figure 15 sketches this structure.

Update Policy Trust parameters and countersignatures help us balance the requirements to support hot
updates, against the risks of dominant authorities replacing underlying code.

NEW
Public Key of 
Authority N

Code
For
1 <= K < N,
TRUST 
updates of K?

New Contents for Layer N

"Ordinary
Reload of N"

Targetting
data

Command packaging

Signature by
Authority N

Figure 14 An ordinary load command for Layer N consists of the new code, new public
key, and trust parameters, signed by the authority over that layer; this signature is

evaluated against the public key currently stored in that layer.
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"Counter−
signature
by M"

Targetting
data

Command packaging

Signature by
Authority M

Ordinary Reload Command for N

Command being countersigned

Figure 15 An ordinary load command for Layer N can include an optional
countersignature by the authority over a dependent Layer M . This countersignature is

evaluated against the public key currently stored in layerM .

An ordinary reload of Layer N , if successful, preserves the current secrets of Layer N , and leaves Layer
N runnable.

For N < M � 3, an ordinary reload of Layer N , if successful, preserves the current secrets of Layer M
if and only if Layer M had been reliable, and either:

� its trust parameter for N was always, or

� its trust parameter for N was countersigned, and a valid countersignature fromM was included.

Otherwise, the secrets of M are atomically destroyed with the update.

An ordinary load of a layer always preserves that layer’s secrets, because presumably an authority can
trust their own private key.

8.6. Emergency Loading

As Section 8.4 observes, evaluating AuthorityN ’s signature on a command to update Layer N requires that
Layer N have reliable contents. Many scenarios arise where Layer N will not be reliable—including the
initial load of the OS and application in newly shipped cards, and repair of these layers after an interruption
during reburn.

Consequently, we require an emergency method to load code into a layer without using the contents of
that layer. As Figure 16 shows, an emergency load command for Layer N must be authenticated by Layer
N � 1. (As discussed below, our architecture includes countermeasures to eliminate the potential backdoors
this indirection introduces.)

OS, Application Layers. To emergency load the OS or Application layers, the authority signs a command
similar to the ordinary load, but the authority underneath them signs a statement attesting to the public key.
Figure 17 illustrates this. The device evaluates the signature on this emergency certificate against the public
key in the underlying segment, then evaluates the main signature against the public key in the certificate.

This two-step process facilitates software distribution: the emergency authority can sign such a certificate
once, when the next-level authority first joins the tree. This process also isolates the code and activities of the
next-level authority from the underlying authority.
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Authority over Miniboot 0

Authority over Miniboot 1

Authority over the OS

Authority over the Application

Miniboot 1 code layer

OS code layer

Application code layer

Miniboot 0 code layer
(ROM: not updatable)

Figure 16 Ordinary loading of code into a layer is directly authenticated by the authority
over that layer (dashed arrows); emergency loading is directly authenticated by the

authority underlying that layer (solid arrows).
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New Contents for Layer N
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Command packaging

Signature by
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Authority N,
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Certificate 
for N"

Targetting
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Command packaging
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Figure 17 An emergency load command (for N = 2; 3) consists of the new code, new
public key, and trust parameters, signed by the authority over that layer; and an

emergency certificate signed by the authority over the underlying layer. The main
signature is evaluated against the public key in the certificate; the certificate signature is

evaluated against the public key stored in the underlying layer.
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Risks of Siblings. Burning a segment without using the contents of that segment introduces a problem:
keeping an emergency load of one authority’s software from overwriting installed software from a sibling
authority. We address this risk by giving each authority an ownerID, assigned by the N � 1 authority when
establishing ownership forN (Section 8.4), and stored outside the code layer. The public-key certificate later
used in the emergency load of N specifies the particular ownerID, which the device checks.

Emergency Reloading of Miniboot. Even though we mirror Miniboot 1, recoverability still required
that we have a way of burning it without using it, in order to recover from emergencies when the Miniboot 1
code layer does not function. Since we must use ROM only (and not Miniboot 1), we cannot use public-key
cryptography, but instead use mutual authentication between the device and the Miniboot 0 authority, based
on device-specific secret keys—see Section 8.3.

Backdoors. Emergency loading introduces the potential for backdoors, since reloading Layer N does not
require the participation of the authority over that segment. For example, an OS authority could, by malice
or error, put anyone’s public key in the emergency certificate for a particular application.

Closing the Backdoors. Since the device cannot really be sure that an emergency load for Layer N
really came from the genuine AuthorityN , Miniboot enforces two precautions:

� It erases the current Layer N secrets but leaves the segment runnable from this clean start (since the
alleged owner trusts it).

� It erases all secrets belonging to later layers, and leaves them unrunnable (since their owners cannot
directly express trust of this new load—see Section 9).

These actions take place atomically, as part of a successful emergency load.

8.7. Summary

This architecture establishes individual commands for AuthorityN to:

� establish owner of Layer N + 1

� attest to the public key of Layer N + 1

� install and update code in Layer N

� express opinions about the trustworthiness of future changes to Layer K < N .

Except for emergency repairs to Miniboot 1, all these commands are authenticated via public-key signatures,
can occur over a public network, and can be restricted to particular devices in particular configurations.

Depending on how an authority chooses to control its keypairs and target its commands, these commands
can be assembled into sequences that meet the criteria of Section 2.1. A separate report [18] explores some
of the scenarios this flexibility enables.
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9. Securing the Execution

This section summarizes how our architecture build on the above techniques to satisfy the security require-
ments of Section 2.2.1. (Formal proofs are beyond the scope of this paper.)

9.1. Control of Software

Loading software in code Layer N in a particular device requires the cooperation of at least one current
authority, over some 0 � K � N .

� From the code integrity protections of Section 8, the only way to change the software is through
Miniboot.

� From the authentication requirements for software loading and installation (which Table 4 summarizes),
any path to changing Layer N in the future requires an authenticated command from some K � N

now.

� From the hardware locks protecting Page 0 (and the intractability assumptions underlying cryptogra-
phy), the only way to produce this command is to access the private key store of that authority.

9.2. Access to Secrets

9.2.1. Policy

The multiple levels of software in the device are hierarchically dependent: the correct execution of the
application depends on the correct execution of the operating system, which in turn depends on the correct
execution of Miniboot. However, when considered along the fact that these levels of software might be
independently configured and updated by authoritieswho may not necessarily trust each other, this dependence
gives rise to many risks.

We addressed these risks by formulating and enforcing a policy for secure execution:

A program can run and accumulate state only while the device can continuously maintain a
trusted execution environment for that program.

Authentication
Required

Miniboot Command

Authority N−1

Authority N

Authority N−1

Authority K−1

Authority N

Authority K
(trust from
Authority N)

Ordinary Load

Trusted by Auth N

Untrusted by Auth N

of layer N

of layer K < N

Emergency Load
of layer N

of layer N

of layer K < N

Surrender Owner

Establish Owner of layer N

Table 4 Summary of authentication requirements
for Miniboot commands affecting Layer N .
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The execution environment includes both underlying untampered device, as well as the code in this and
underlying layers. The secrets of a code layer are the contents of its portion of BBRAM.

The authority responsible for a layer must do the trusting of that layer’s environment—but the device itself
has to verify that trust. To simplify implementation, we decided that changes to a layer’s environment must
be verified as trusted before the change takes effect, and that the device must be able to verify the expression
of trust directly against that authority’s public key.

9.2.2. Correctness

Induction establishes that our architecture meets the policy. Let us consider LayerN ; the inductive assumption
is the device can directly verify that AuthorityN trusts the execution environment for Layer N .

Initial State. A successful emergency load of layer N leaves N in a runnable state, with cleared secrets.
This load establishes a relationship between the device and a particular Authority N . The device can
subsequently directly authenticate commands from this authority, since it now knows the public key.

This load can only succeed if the execution environment is deemed trustworthy, as expressed by the target
information in AuthorityN ’s signature.

Run-time. During ordinary execution,secure bootstrapping (Section 7) and the hardware locks on LBBRAM
(Section 6) ensure that only code currently in the execution environment can directly access Layer N ’s
secrets—and by inductive assumption, AuthorityN trusts this software not to compromise these secrets.

Changes. The execution environment for Layer N can change due to reloads, to tamper, and to other
failure scenarios. Our architecture preserves the Layer N secrets if and only if the change preserves the trust
invariant. Table 5 summarizes how these changes affect the state of Layer N ; Table 6 summarize how the
new state of Layer N affects the secrets of Layer N .

A runnable Layer N stops being runnable if the change in execution environment causes the inductive
assumption to fail—unless this change was an emergency load of Layer N , in which case the LayerN secrets
are cleared back to an initial state.

� Layer N becomes unowned if the environment changes in way that makes it impossible for Authority
N to express trust again: the device is tampered, or if Layer 1 (the public key code) becomes untrusted,
or if Layer N � 1 becomes unowned (so the ownerID is no longer uniquely defined).

� Layer N also becomes unowned if AuthorityN has explicitly surrendered ownership.

� LayerN becomes unreliable if its integrity fails. (AuthorityN can still express trust, but only indirectly,
with the assistance of AuthorityN � 1.)

� Otherwise, Layer N stops being runnable if an untrusted change occurred.

Layer N stays runnable only for three changes:

� An emergency load of Layer N .

� An ordinary reload of Layer N .

� An ordinary reload of Layer K < N , for which AuthorityN directly expressed trust by either signing
an “always trustK” trust parameter at last load of LayerN , or by signing an “trustK if countersigned”
at last load of N , and signing a countersignature now.

Only the latter two changes preserve the trust invariant—and, as Table 6 shows, only these preserve the
Layer N secrets.
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Implementation. Code that is already part of the trusted environment carries out the erasure of secrets
and other state changes. In particular, the combined efforts of Miniboot 0 (permanently in ROM) and the
Miniboot 1 currently in Layer 1 (hence already trusted) take care of the clean-up required by an authority that
does not trust a new Miniboot 1—despite failures during the load process.

Transformation of 
Layer N stateAction

RELIABLE Layer N fails checksum NOT RELIABLE

Layer 2<N is UNOWNED

Layer 2<N is OWNED but NOT RUNNABLE

Device is ZEROIZED

NOT RUNNABLE

UNOWNED

UNOWNED

RUNNABLE

UNOWNED

RUNNABLE

UNOWNED

NOT RUNNABLE

NOT RUNNABLE

Ordinary Load

Trusted by Auth N

Untrusted by Auth N

of layer N

of layer K < N

Emergency Load
of layer N

of layer N

of layer K < N

Surrender Owner

K = 1

K = 2

K = 2

K = 1

no change

Layer 1 is NOT RELIABLE

Establish Owner of layer N OWNED

Table 5 Summary of how the state of Layer N changes
with changes to its execution environment.

Transformation of
Layer N secretsAction

Layer N is NOT RUNNABLE ZEROIZED

Emergency Load of Layer NLayer N is RUNNABLE

Otherwise

Cleared to
Initial State

PRESERVED

Table 6 Summary of how changes to the state of Layer N changes its secrets.
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10. Authenticating the Execution

10.1. The Problem

The final piece of our security strategy involves the requirement of Section 2.2.2: how to authenticate com-
putation allegedly occurring on an untampered device with a particular software configuration. (Section 8.3
explained how the device can authenticate the external world; this section explains how the external world
can authenticate the device.)

It must be possible for a remote participant to distinguish between a message from the real thing, and a
message from a clever adversary. This authentication is clearly required for distributed applications using
coprocessors. As noted earlier, the e-wallet example of Yee [24] only works if it’s the real wallet on a real
device. But this authentication is also required even for more pedestrian coprocessor applications, such as
physically secure high-end cryptographic modules. For example, a sloppy definition of “secure” software
update on crypto modules may require only that the appropriate authority be able to update the code in an
untampered device. If a security officer has two devices, one genuine and one evilly modified, but can never
distinguish between them, then it does not matter if the genuine one can be genuinely updated. This problem
gets even worse if updates all occur remotely, on devices deployed in hostile environments.

10.2. Risks

Perhaps the most natural solution to authentication is to sign messages with the device private key that is
established in initialization (Section 5) and erased upon tamper. However, this approach, on its own, does not
address the threats introduced by the multi-level, updated, software structure. For example:

� Application Threats. What prevents one application from signing messages claiming to be from a
different application, or from the operating system or Miniboot? What prevents an application from
requesting sufficiently many “legitimate” signatures to enable cryptanalysis? What if an Internet-
connected application has been compromised by a remote adversary?

� OS Threats. If use of the device private key is to be available to applications in real-time, then (given
the infeasibility of address-based hardware access control) protection of the key depends entirely on the
operating system. What if the operating system has holes? We are back to the scenario of Section 6.1.

� Miniboot Threats. An often-overlooked aspect of security in real distributed systems is the integrity
of the cryptographic code itself. How can one distinguish between a good and corrupted version of
Miniboot 1? Not only could a corrupt version misuse the device private key—it can also lie about who
it is.

This last item is instance of the more general versioning problem. As the software configuration supporting
a particular segment changes over time, its trustworthiness in the eyes of a remote participant may change. If
one does not consider the old version of the OS or the new version of an application to be trustworthy, then
one must be able to verify that one is not talking to them. The authentication scheme must accommodate
these scenarios.

10.3. Our Solution

These risks suggest the need for decoupling between software levels, and between software versions. Our
architecture carries out this strategy (although currently, we have only implemented the bottom level, for
Layer 1).

As Section 5 explained, we build an internal key hierarchy, starting with the keypair certified for Miniboot 1
in a device at device initialization. This private key is stored in Page 1 in LBBRAM—so it is visible only
to Miniboot 1. Our architecture has Miniboot 1 regenerate its keypair as an atomic part of each ordinary
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trust anyway.

reload of Miniboot 1. The transition certificate includes identification of the versions of Miniboot involved.
(As Section 8 discusses, each emergency reload of Miniboot 1 erases its private key—the authority who just
carried out mutual secret-key authentication must then re-initialize the device.)

Similarly, as an atomic part of loading any higher LayerN (forN > 1), our architecture has the underlying
Layer N � 1 generate a new keypair for Layer N , and then certify the new public key and deletes the old
private key. This certification includes identification of the version of the code. Although Miniboot could
handle the keys for everyone, our current plan is for Miniboot to certify the outgoing keypair for the operating
system, and for our operating system to certify the keypair for the application—because this scheme more
easily accommodates customer requirements for application options. The OS private key will be stored in
Page 2 in LBBRAM.

Our approach thus uses two factors:

� Certification binds a keypair to the layers and versions of code that could have had access to the private
key.

� The loading protocol along with the hardware-protected memory structure confines the private key to
exactly those versions.

This approach provides recoverability from compromise. Code deemed untrustworthy cannot spoof
without the assistance of code deemed trustworthy. An untampered device with a trusted Miniboot 1 can
always authenticate and repair itself with public-key techniques; an untampered device with trusted ROM
can always authenticate itself and repair Miniboot 1 with secret-key techniques.

This approach also arguably minimizes necessary trust. For example, in Figure 18, if ProgramF is going
to believe in the authenticity of the mystery message, then it arguably must trust everything inside the dotted
line—because if any of those items leaked secrets, then the message could not be authenticated anyway. But
our scheme does not force Program F to trust anything outside the dotted line (except the integrity of the
original CA).
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11. Conclusions and Future Work

We plan immediate work into extending the device. The reloadability of Miniboot 1 and the operating system
allows exploration of upgrading the cryptographicalgorithms (e.g., perhaps to include DSS and ellipticcurves,
as well as certificate blacklists and expiration) as well as additional trust parameters for policy enforcement.
Additionally, we are preparing for FIPS 140-1 certification by formalizing the correctness arguments in this
paper. Hardware work also remains. In the short run, we plan to finish addressing the engineering challenges
in moving this technology into PCMCIA format.

However, the main avenue for future work is to develop applications for this technology, and to enable
others to develop applications for it. We view this project not as an end-result, but rather as a tool, to finally
make possible widespread development and deployment of secure coprocessor solutions.
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