
IBM SecureWay Cryptographic Products
IBM 4758 PCI Cryptographic Coprocessor

Custom Software Developer’s Toolkit Guide

July 30, 1998

Security Solutions and Technology Department

IBM Corporation
8501 IBM Drive

Charlotte, North Carolina 28262-8563

30-JUL-98, 09:17

 30-JUL-98, 09:17

 Note!

Before using this information and the products it supports, be sure to read the general information under Appendix F, “Notices”
on page F-1.

First Edition (June, 1998)

Changes are made periodically to the information herein; before using this publication in connection with the operation of IBM
systems, consult your IBM representative to be sure you have the latest edition and any Technical Newsletter.

IBM does not stock publications at the address given below; requests for IBM publications should be made to your IBM
representative or to the IBM branch office that serves your location.

Reader’s comments can be communicated by e-mail to George Dolan, gmdolan@us.ibm.com, or the comments can be addressed to
IBM Corporation, Department VM9A, MG81/204, 8501 IBM Drive, Charlotte, NC 28262-8563, U.S.A. IBM may use or distribute
whatever information you supply in any way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1998. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 30-JUL-98, 09:17

Table of Contents

About This Book . vii
Prerequisite Knowledge . vii
Organization of This Book . vii
Typographic Conventions . viii
Syntax Diagrams . viii
Related Publications . ix

General Interest . ix
CCA Support Program Publications . ix
Custom Software Publications . ix
Cryptography Publications . x

Summary of Changes . xi

Chapter 1. Introduction . 1-1
Available Documentation . 1-1
Prerequisites . 1-2
Development Overview . 1-3
Development Environment Components . 1-4
Release Components . 1-5

Chapter 2. Installation and Setup . 2-1
Installing the Toolkit . 2-1

Directories and Files . 2-1
Preparing the Development Platform . 2-5

Chapter 3. Developing and Debugging an SCC Application 3-1
Development Process Road Map . 3-1
Special Coding Requirements During Development 3-3

Developer Identifiers . 3-3
Attaching with the Debugger . 3-3

Compiling, Assembling, and Linking . 3-3
CP/Q Base Operating System Function Support 3-4
C Run-Time Library Support . 3-4

Supported Functions and Global Variables 3-4
Unsupported Functions and Global Variables 3-5

Compiler Options . 3-6
VisualAge C++ (VACPP) Options . 3-6
Microsoft Visual C++ (MSVC++) Options . 3-7

Assembler Options . 3-8
Linker Options . 3-9

ILINK (VACPP Linker) . 3-9
LINK (MSVC++ Linker) . 3-9

Librarian Options . 3-10
Translating . 3-10
Building Read-Only Disk Images . 3-10
Downloading and Debugging . 3-11

Chapter 4. Testing an SCC Application in a Production Environment . . 4-1

Chapter 5. Packaging and Releasing an SCC Application 5-1

 Copyright IBM Corp. 1998 iii

 30-JUL-98, 09:17

Appendix A. An Overview of the Development Process A-1

Appendix B. Using CLU . B-1

Appendix C. How to Reboot the IBM 4758 C-1

Appendix D. Building SCC Applications with Microsoft Developer Studio
97 . D-1

Required Settings for the Host-Side Portion of an SCC Application D-1
Required Settings for the Coprocessor-Side Portion of an SCC Application . D-1

Appendix E. Using Signer and Packager E-1
Coprocessor Memory Segments and Security E-1
The Signer Utility (TKNSGNR.EXE) . E-4

Signer Operations . E-5
Signer Cryptographic Functions . E-5
Signer Miniboot Command Functions . E-5
Signer Miscellaneous Functions . E-5
Signer IBM-Specific Functions . E-5

EMBURN2 - Load Software into Segment 2 E-6
EMBURN3 - Load Software into Segment 3 E-7
ESIG3 - Build Emergency Signature for Segment 3 E-8
ESTOWN3 - Establish Ownership of Segment 3 E-9
HASH_GEN - Generate Hash for File . E-10
HASH_VER - Verify Hash of File . E-10
KEYGEN - Generate RSA Key Pair . E-10
REMBURN2 - Replace Software in Segment 2 E-11
REMBURN3 - Replace Software in Segment 3 E-12
SUROWN2 - Surrender Ownership of Segment 2 E-13
SUROWN3 - Surrender Ownership of Segment 3 E-14
File Description Arguments . E-15
Signature Key Arguments . E-15
Image File Arguments . E-16
Trust and Countersignature Arguments . E-16
Targeting Arguments . E-17

The Packager Utility (TKNPKGR.EXE) . E-21

Appendix F. Notices . F-1
Copying and Distributing Softcopy Files . F-1
Trademarks . F-2

List of Abbreviations and Acronyms . X-1

Glossary . X-3

Index . X-9

iv IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

 Figures

1-1. Development Process Overview . 1-3
2-1. Toolkit Directory Structure . 2-2
3-1. Development Process Road Map . 3-2
E-1. State Transitions for Segment 2 . E-3
E-2. State Transitions for Segment 3 . E-4

 Figures v

 30-JUL-98, 09:17

vi IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

About This Book

The IBM 4758 PCI Cryptographic Coprocessor Custom Software Developer’s
Toolkit Guide describes the Developer’s Toolkit and its components, including the
tools that enable developers to:

� Build applications for the IBM 4758 PCI Cryptographic Coprocessor
� Load applications under development into a coprocessor
� Debug applications under development running within a coprocessor

The primary audience for this book are developers who are creating applications to
use with the coprocessor. People who are interested in packaging, distribution, and
security issues for custom software should also read this book.

 Prerequisite Knowledge
The reader of this book should understand how to perform basic tasks (including
editing, system configuration, file system navigation, and creating application
programs) on the host machine. Familiarity with the coprocessor hardware (as
described in the IBM 4758 PCI Cryptographic Coprocessor Technical Overview for
Original Equipment Manufacturers), the CP/Q++ operating system that runs within
the coprocessor (as described in the IBM 4758 PCI Cryptographic Coprocessor
CP/Q Operating System Overview), and the use of the IBM’s Common
Cryptographic Architecture (CCA) application and support program (as described in
the IBM 4758 PCI Cryptographic Coprocessor CCA Support Program, SC31-8610)
may also be helpful.

People who are interested in packaging, distribution, and security issues for custom
software will need to understand the use of the CCA Support Program and should
be familiar with the coprocessor’s security architecture as described in IBM
Research Report RC21102, “Building a High-Performance, Programmable Secure
Coprocessor.” See “Cryptography Publications” on page x for information on how to
obtain this research report.

Organization of This Book
This book is organized as follows:

Chapter 1, “Introduction” describes the documentation available to a developer of
an SCC application, lists the prerequisites for development, describes the
development process, and lists the tools used during development.

Chapter 2, “Installation and Setup” describes how to install the Developer’s Toolkit
and how to prepare an IBM 4758 PCI cryptographic coprocessor for use as a
development platform.

Chapter 3, “Developing and Debugging an SCC Application” discusses in detail the
use of each of the tools used during development of an SCC application.

Chapter 4, “Testing an SCC Application in a Production Environment” describes
how to load production-level software into the coprocessor used as a development
platform.

 Copyright IBM Corp. 1998 vii

 30-JUL-98, 09:17

Chapter 5, “Packaging and Releasing an SCC Application” describes how to
prepare an SCC application to be distributed to end users.

Appendix A, “An Overview of the Development Process” lists the steps a developer
needs to perform during development and testing of an SCC application.

Appendix B, “Using CLU” briefly describes the use of the Coprocessor Load Utility.

Appendix C, “How to Reboot the IBM 4758” describes several ways to reboot a
cryptographic coprocessor. If an application has been loaded into the coprocessor,
it starts to run after the reboot is complete.

Appendix D, “Building SCC Applications with Microsoft Developer Studio 97”
describes how to configure Microsoft Developer Studio 97** to ensure the proper
compiler and linker options are used to build an SCC application.

Appendix E, “Using Signer and Packager” describes the use of the signer and
packager utilities and explains why the design of the coprocessor makes these
utilities necessary.

Appendix F, “Notices” includes product and publication notices.

A list of abbreviations, a glossary, and an index complete the manual.

 Typographic Conventions
This publication uses the following typographic conventions:

� Commands that you enter verbatim onto the command line are presented in
bold type.

� Variable information and parameters, such as file names, are presented in italic
type.

� The names of items that are displayed in graphical user interface (GUI)
applications—such as pull-down menus, checkboxes, radio buttons, and
fields—are presented in bold type.

� Items displayed within pull-down menus are presented in bold italic type.

� System responses in a non-GUI environment are presented in monospace type.

� Web addresses and directory paths are presented in italic type.

 Syntax Diagrams
The syntax diagrams in this section follow the typographic conventions listed in
“Typographic Conventions” described previously. Optional items appear in
brackets. Lists from which a selection must be made appear in braces with vertical
bars separating the choices. See the following example.

COMMAND firstarg [secondarg] {a | b}

A value for firstarg must be specified. secondarg may be omitted. Either a or b
must be specified.

viii IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

 Related Publications
Many of the publications listed below under “General Interest,” “CCA Support
Program Publications,” and “Custom Software Publications” are available in Adobe
Acrobat** portable document format (PDF) at
http://www.ibm.com/security/cryptocards.

 General Interest
The following publications may be of interest to anyone who needs to install, use,
or write applications for a PCI Cryptographic Coprocessor:

� IBM 4758 PCI Cryptographic Coprocessor General Information Manual,
GC31-8608 (version -01 or later)

� IBM 4758 PCI Cryptographic Coprocessor Installation Manual, SC31-8623

� IBM 4758 PCI Cryptographic Coprocessor Custom Software Installation Manual

CCA Support Program Publications
The following publications may be of interest to readers who intend to use a PCI
Cryptographic Coprocessor to run IBM’s Common Cryptographic Architecture
(CCA) Support Program:

� IBM 4758 PCI Cryptographic Coprocessor CCA Support Program, SC31-8610

� IBM 4758 CCA Basic Services Reference and Guide, SC31-8609

Custom Software Publications
The following publications may be of interest to persons who intend to write
applications or operating systems that will run on a PCI Cryptographic Coprocessor:

� IBM 4758 PCI Cryptographic Coprocessor CP/Q Operating System Overview

� IBM 4758 PCI Cryptographic Coprocessor Custom Software Interface
Reference

� IBM 4758 PCI Cryptographic Coprocessor CP/Q Operating System Application
Programming Reference

� IBM 4758 PCI Cryptographic Coprocessor CP/Q Operating System C Runtime
Library Reference

� IBM 4758 PCI Cryptographic Coprocessor CCA User Defined Extensions
Programming Reference

� IBM 4758 PCI Cryptographic Coprocessor Interactive Code Analysis Tool
(ICAT) User’s Guide

� AMCC S5933 PCI Controller Data Book, available from Applied Micro Circuits
Corporation, 6290 Sequence Drive, San Diego, CA 92121-4358. Phone
1-800-755-2622 or 1-619-450-9333. The manual is available online as an
Adobe Acrobat** PDF file at http://www.amcc.com/pdfs/5933db.pdf.

 About This Book ix

 30-JUL-98, 09:17

 Cryptography Publications
The following publications describe cryptographic standards, research, and
practices applicable to the PCI Cryptographic Coprocessor:

� “Building a High-Performance, Programmable Secure Coprocessor,” S.W. Smith
and S.H. Weingart, Research Report RC21102, IBM T.J. Watson Research
Center, February 1998.

� “Using a High-Performance, Programmable Secure Coprocessor, S.W. Smith,
E.R. Palmer, and S.H. Weingart, in FC98: Proceedings of the Second
International Conference on Financial Cryptography, Anguilla, February 1998.
To appear, Springer-Verlag LNCS, 1998.

� “Secure Coprocessing Research and Application Issues,” S.W. Smith, Los
Alamos Unclassified Release LA-UR-96-2805, Los Alamos National Laboratory,
August 1996.

� “Secure Coprocessing in Electronic Commerce Applications,” B.S. Yee and J.D.
Tygar, in Proceedings of the First USENIX Workshop on Electronic Commerce,
New York, July 1995.

� “Transaction Security Systems,” D.G. Abraham, G.M. Dolan, G.P. Double, and
J.V. Stevens, in IBM Systems Journal Vol. 30 No. 2, 1991, G321-0103.

� “Trusting Trusted Hardware: Towards a Formal Model for Programmable
Secure Coprocessors,” S.W. Smith and V. Austel, in Proceedings of the Third
USENIX Workshop on Electronic Commerce,” Boston, August 1998.

� “Using Secure Coprocessors,” B.S. Yee (Ph.D. thesis), Computer Science
Technical Report CMU-CS-94-149, Carnegie-Mellon University, May 1994.

� IBM Systems Journal Vol. 32 No. 3, 1993, G321-5521

� IBM Journal of Research and Development Vol. 38 No. 2, 1994, G322-0191

� Applied Cryptography: Protocols, Algorithms, and Source Code in C, Second
Edition, Bruce Schneier, John Wiley & Sons, Inc. ISBN 0-471-12845-7 or ISBN
0-471-11709-9

� ANSI X9.31 Public Key Cryptography Using Reversible Algorithms for the
Financial Services Industry

� Internet Engineering Taskforce RFC 1321, April 1992, MD5

� ISO 9796 Digital Signal Standard

� Secure Electronic Transaction Protocol Version 1.0, May 31, 1997

� USA Federal Information Processing Standard (FIPS):

– Data Encryption Standard, 46-1-1988

– Secure Hash Algorithm, 180-1, May 31, 1994

– Cryptographic Module Security, 140-1

� Derived Test Requirements for FIPS PUB 140-1, W. Havener, R. Medlock, L.
Mitchell, and R. Walcott. MITRE Corporation, March 1995.

IBM Research Reports can be obtained from:

x IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

IBM T.J. Watson Research Center
Publications Office, 16-220
P.O. Box 218
Yorktown Heights, NY 10598

Back issues of the IBM Systems Journal and the IBM Journal of Research and
Development may be ordered by calling (914) 945-3836.

Summary of Changes
This first edition of the IBM 4758 PCI Cryptographic Coprocessor Custom Software
Developer’s Toolkit Guide contains product information that is current with the IBM
4758 PCI Cryptographic Coprocessor announcements made through May, 1998.

 About This Book xi

 30-JUL-98, 09:17

xii IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

 Chapter 1. Introduction

The Developer’s Toolkit is a set of libraries, include files, and utility programs that
help a developer build, load, and debug applications written in C or assembler for
the IBM 4758 PCI Cryptographic Coprocessor. An application that runs within the
coprocessor is known as an “agent” or an “SCC application”.1

The Developer’s Toolkit, a commercial compiler and linker, and a PC running
Windows NT constitute a complete development environment for the IBM 4758.
IBM’s CCA Support Program feature is required in order to create a version of an
application suitable for distribution. This chapter includes:

� A description of the documentation available to a developer of an SCC
application and suggestions on the order in which the introductory material
should be read

� A list of hardware and software necessary to develop and release SCC
applications

� An overview of the development process
� A description of the software that constitutes the development environment
� A description of the software used to prepare an SCC application for release

 Available Documentation
“Related Publications” on page ix lists over twenty publications, many of which are
of particular interest to the developer of an SCC application. It may be helpful to
read the following manuals in the order listed prior to starting development:

1. IBM 4758 PCI Cryptographic Coprocessor Technical Overview for Original
Equipment Manufacturers, which contains background information a reader of
this book is assumed to understand.

2. IBM 4758 PCI Cryptographic Coprocessor CP/Q Operating System Overview,
which describes the features of the coprocessor operating system.

3. IBM 4758 PCI Cryptographic Coprocessor General Information Manual,
GC31-8608 which provides a basic understanding of IBM’s Common
Cryptographic Architecture for the IBM 4758.2

4. This book, which describes the overall development process and the tools used
in the development process.

During development, the following manuals will be of use:

� The IBM 4758 PCI Cryptographic Coprocessor CP/Q Operating System
Application Programming Reference, which describes the function calls
supplied by the coprocessor operating system.

� The IBM 4758 PCI Cryptographic Coprocessor Custom Software Interface
Reference, which describes the function calls supplied by the coprocessor
device drivers that manage communication, encryption and decryption, random
number generation, nonvolatile memory, and other coprocessor services.

� The IBM 4758 PCI Cryptographic Coprocessor CP/Q Operating System C
Runtime Library Reference, which describes the function calls supported by the

1 Secure cryptographic coprocessor (SCC) is an alternate name for the IBM 4758 PCI Cryptographic Coprocessor.

2 This document will be of particular interest to developers writing user-developed extensions for CCA.

 Copyright IBM Corp. 1998 1-1

 30-JUL-98, 09:17

full C run-time library supplied by the general version of CP/Q. The customized
version of CP/Q that runs in an IBM 4758 does not support the full C run-time
library. See “C Run-Time Library Support” on page 3-4 for details.

� Developers writing extensions for IBM’s CCA application will also need the IBM
4758 PCI Cryptographic Coprocessor CCA User Defined Extensions
Programming Reference.

� IBM 4758 PCI Cryptographic Coprocessor CCA Support Program, SC31-8610
which describes how to configure IBM’s CCA application, which in turn is used
by some of the tools in the Developer’s Toolkit.

 Prerequisites
Prior to the start of development a developer must obtain and install the following:

1. An IBM 4758 model 001 PCI cryptographic coprocessor. Refer to
http://www.ibm.com/security/cryptocards for ordering information.

 The IBM 4758 should be installed in a host following the instructions in the
IBM 4758 PCI Cryptographic Coprocessor Installation Manual, SC31-8623,
which also lists the hardware and software requirements for the host. For
application development, the host must be a PC running Windows NT.

2. One of the supported compilers (IBM VisualAge C++3 or Microsoft Visual C++)
and the associated tools, which should be installed following the instructions
provided with the compiler. Only the compiler and linker need be installed;
other components (visual build environments, and so on) are not required.

3. The IBM 4758 Application Program Development Toolkit (the Developer’s
Toolkit), available from IBM (order PRPQ 5799-RHB), which should be installed
on the same host as the compiler following the instructions in chapter 2 of this
manual.

The Developer’s Toolkit includes a device driver for the IBM 4758 which should
be installed on the host following the instructions in chapter 2 of the IBM 4758
PCI Cryptographic Coprocessor Custom Software Installation Manual.

4. Developers writing extensions to IBM’s CCA application will also need the IBM
4758 CCA UDX Application Program Development Toolkit Extension (the UDX
Toolkit), available from IBM (order PRPQ 5799-RHA), which should be installed
on the same host as the Developer’s Toolkit following the instructions in
chapter 2 of this manual.

The developer must obtain and install the following to prepare an application for
release:

1. IBM’s CCA Support Program for Windows NT (feature 4376) and a function
control vector permitted by the applicable import or export regulations (feature
5200, 5201, or 5202). Information on ordering these items can be obtained
from http://www.ibm.com/security/cryptocards.

The CCA Support Program should be installed following the instructions in
chapter 3 of the IBM 4758 PCI Cryptographic Coprocessor CCA Support
Program, SC31-8610.

3 IBM offers VisualAge C++ in several packages. Part number 33H4979 is version 3.5 on CD; part number 33H4980 includes
documentation. Upgrades are also available.

1-2 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

 Development Overview
As illustrated in Figure 1-1, an SCC application is compiled and linked in the same
manner as a host application, using include and library files customized for the
coprocessor environment. The executable is then translated to the format
understood by CP/Q++ and is downloaded to the coprocessor.

Developer Input Step
Developer’s
Toolkit Input

.Obj file or files

.exe file

.xld file

List of files
stack sizes and

arguments

.xld

Additional
files

(optional)
.xld

CompileSource Code Include Files

Object libraries
created by developer

(optional)

Library FilesLink

Translate

Build
Read-Only
Disk Image

Debug, Test,
or Run

Load into
Coprocessor

Files provided by
developer

Files provided by
IBM

.rod file

Figure 1-1. Development Process Overview

 Chapter 1. Introduction 1-3

 30-JUL-98, 09:17

The following steps are required to build and load SCC applications:

1. Compile the program.
2. Link the program.
3. Translate the executable file into the format required by CP/Q++.
4. Build a read-only disk image.
5. Load the disk image into the coprocessor.

The Developer’s Toolkit includes the tools needed to perform steps 3 through 5.

Development Environment Components
The development environment software consists of the following items, most of
which are contained in the Developer’s Toolkit:

Compiler and Linker
Use either IBM VisualAge* C++, Microsoft Visual C++**, or—for assembler
language code—Microsoft Assembler**. The linker must be compatible with
the compiler; for example, use ILINK with VisualAge C++. These are not
shipped with the Developer’s Toolkit.4 Part numbers for IBM VisualAge C++
appear in “Prerequisites” on page 1-2.

Libraries and Include Files
Use the Developer’s Toolkit libraries (.lib) and include files (.h/.inc) in place of
the libraries and include files shipped with the compiler and assembler.
These files furnish the library entry points and routines that SCC applications
use to interface with the CP/Q operating system and the CP/Q++ extensions.

Utilities
Use the following utilities to prepare and load SCC applications:

� Translator: A program (CPQXLT.EXE) that translates executable (.exe)
files into the format (.xld) required by CP/Q.

� Disk Builder: A program (SCCRODSK.EXE) that packages one or more
applications into a read-only disk image.

� Development Reload Utility (DRUID): A program (DRUID.EXE5) that
loads an application into a coprocessor configured as a development
platform.

� Coprocessor Load Utility (CLU): A program (TKNCLU.EXE) that verifies
and loads digitally signed system software and coprocessor commands
into a coprocessor.

CLU Input Files
The Developer’s Toolkit includes several files used as input to CLU during the
development process.

Debugger
The IBM Interactive Code Analysis Tool (ICAT) debugger (ICATCPW.EXE) is
a Windows NT program that controls and debugs SCC applications.

4 Developers writing extensions for IBM’s CCA application must use IBM VisualAge C++.

5 Development Reload Utility for Insecure Development (DRUID)

1-4 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

Coprocessor Operating System
The Developer’s Toolkit includes two versions of the CP/Q++ embedded
operating system:

� A debug version (TPRrrrss.CLU) used when coding and debugging an
application. It contains a debug probe that runs within the coprocessor
and services requests from the ICAT debugger.

� A production version (TNPrrrss.CLU) used to test an application in a
production level environment. It does not include the debug probe.

Both versions are supplied as signed disk images that can be loaded into the
coprocessor by CLU. They include the CP/Q++ extensions needed to manage
the coprocessor hardware, and can include custom extensions specified by
the contract between the developer and IBM.

 Release Components
The software required to prepare an application for release to end users, most of
which is contained in the Developer’s Toolkit, is listed below.

Utilities
Use the following utilities to prepare an SCC application for release:

� Signer: A program (TKNSGNR.EXE) that generates RSA keypairs and
performs other cryptographic operations and that incorporates a read-only
disk image into a coprocessor command and digitally signs the command
using a developer’s private key.

� Packager: A program (TKNPKGR.EXE) that combines one or more
signed commands into a single file for download to the coprocessor.

CCA Application and Support Program

Signer and Packager use IBM’s Common Cryptographic Architecture (CCA)
application to generate digital signatures. The CCA application and support
program are not shipped with the Developer’s Toolkit. See “Prerequisites” on
page 1-2 for more information.

 Chapter 1. Introduction 1-5

 30-JUL-98, 09:17

1-6 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

Chapter 2. Installation and Setup

The Developer’s Toolkit includes utilities used to build an SCC application and
prepare it to be loaded into an IBM 4758 PCI cryptographic coprocessor. This
chapter describes how to install the Developer’s Toolkit and the UDX Toolkit (if
used), discusses the toolkit’s directory structure and lists many of the files used
during development, and explains how to prepare the coprocessor for use as a
development platform.

Installing the Toolkit
The Developer’s Toolkit is shipped or made available for download as ZIP files. To
install the Developer’s Toolkit, unzip each file. Specify the appropriate options to
preserve the directory structure in each file and specify the same directory as the
target of each unzip command, for example:

pkunzip -d scctk1.zip c:
pkunzip -d scctk2.zip c:

The UDX Toolkit is also shipped or made available for download as one or more
ZIP files. The UDX Toolkit should be installed in the same manner and into the
same target directory as the Developer’s Toolkit, for example:

pkunzip -d udxtk1.zip c:
pkunzip -d ukxtk2.zip c:

Directories and Files
The Developer’s Toolkit is contained in the directory structure depicted in
Figure 2-1 on page 2-2.

 Copyright IBM Corp. 1998 2-1

 30-JUL-98, 09:17

Figure 2-1. Toolkit Directory Structure

� The scctk\nt\bin directory contains the following:

– The NT device driver for the IBM 4758 (CRYPTONT.SYS)
– The DLL applications on the host use to communicate with applications on

the coprocessor (CRYPTONT.DLL)
– A sample host application that interacts with a “reverse-then-echo”

application on the coprocessor (HRE.EXE)
– The translator utility (CPQXLT.EXE)
– The read-only disk image builder (SCCRODSK.EXE)
– The device reload utility (DRUID.EXE)
– The coprocessor load utility (TKNCLU.EXE)
– The debugger (ICATCPW.EXE)
– The signer utility (TKNSGNR.EXE)
– The packager utility (TKNPKGR.EXE)
– A utility to display the contents of a read-only disk image file

(FMTRODSK.EXE)
– A utility to display the contents of a CLU file (FMTTKCLU.EXE)
– DLLs and command files used by the tools in the directory

� The scctk\cpqenv\nt directories contain include files (.h and .inc) that define
macro variables to customize the include files in the scctk\include\scc directory
for use with Microsoft Visual C++ (MSVC++) and Microsoft Assembler (MASM)

2-2 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

(the scctk\cpqenv\nt\msvcmasm directory) or with IBM VisualAge C++ (VACPP)
and MASM (the scctk\cpqenv\nt\vacppmsm directory).

� The scctk\etc directory contains files to be used as input to CLU (as described
in “Preparing the Development Platform” on page 2-5 and “Downloading and
Debugging” on page 3-11), including those listed below. Many files in this
directory have names of the form Txxrrrss, where rrr indicates the release of
the CCA application the file contains or with which the file is associated, ss
indicates the revision level of the CCA application, and xx distinguishes the file
from all others.

– CFCrrrss.CLU, which loads release rrr revision ss of IBM’s system software
into a coprocessor.1

CFCrrrss.CLU can only be loaded into an IBM 4758 in the factory-shipped
state.2

– TDVrrrss.CLU, which prepares a coprocessor for use as a development
platform. TDVrrrss.CLU also loads a “reverse-then-echo” application into
the coprocessor so that the developer can verify the development platform
is properly configured.3

TDVrrrss.CLU can only be loaded into an IBM 4758 that contains release
rrr revision ss of IBM’s system software.4

Export regulations may dictate that the version of TDVrrrss.CLU shipped to
a particular developer be customized so that the file can only be loaded
into a specific coprocessor or a specific set of coprocessors.

– TPRrrrss.CLU, which loads into a coprocessor a copy of the operating
system (CP/Q++) that allows a coprocessor application to be debugged.

TPRrrrss.CLU can only be loaded into an IBM 4758 that has been prepared
for use as a development platform using TDVrrrss.CLU.5

– TNPrrrss.CLU, which replaces the “debug-enabled” version of CP/Q++ with
a production-level copy of CP/Q++ release rrr revision ss. This allows a
developer to test a coprocessor application in a production-level
environment.

TNPrrrss.CLU can only be loaded into an IBM 4758 that has been prepared
for use as a development platform using TDVrrrss.CLU.5

– TL3rrrss.CLU, which clears any state an application under development has
saved in nonvolatile memory (so that the application will start next time with
a clean slate). TL3rrrss.CLU also loads the “reverse-then-echo” application
into the coprocessor.

TL3rrrss.CLU can only be loaded into an IBM 4758 that has been prepared
for use as a development platform using TDVrrrss.CLU.5

1 CFCrrrss.CLU also sets the public key associated with segment 1.

2 In particular, the public key associated with segment 1 must be the key installed during manufacture.

3 TDVrrrss.CLU sets the public keys and owner identifiers associated with segments 2 and 3 and loads the reverse-then-echo
application into segment 3. Currently, the owner identifier assigned to segment 2 is 3 and the owner identifier assigned to
segment 3 is 6.

4 In particular, segment 2 must be empty and the public key associated with segment 1 must be the key loaded by CFCrrrss.CLU.
Loading CCA also causes the key associated with segment 1 to be set to the proper value.

5 In particular, the public key and owner identifier associated with segment 2 and the image names associated with segments 1 and
2 must have the values CFCrrrss.CLU and TDVrrrss.CLU assign them.

 Chapter 2. Installation and Setup 2-3

 30-JUL-98, 09:17

– TR3rrrss.CLU, which reloads the “reverse-then-echo” application into the
coprocessor.

TR3rrrss.CLU can only be loaded into an IBM 4758 that has been prepared
for use as a development platform using TDVrrrss.CLU.6

– S3KCLRPP.DRK and S3KCLRPU.DRK, which contain an RSA keypair and
the public key of the keypair, respectively. These files are provided as
input to DRUID.

– One or more RSA key token files (file extension .TKN). The developer
uses these files with TKNSGNR to generate RSA keys prior to releasing an
application.

– TRSrrrss.CLU, which prepares an IBM 4758 that has been used for
development to be used in a production setting. TRSrrrss.CLU essentially
restores the coprocessor to the state it is in immediately after
CFCrrrss.CLU has been loaded.

TRSrrrss.CLU can only be loaded into an IBM 4758 that has been prepared
for use as a development platform using TDVrrrss.CLU.7

– C2Frrrss.CLU, which restores a coprocessor that has been used for
development to the factory-shipped state.

 Warning

C2Frrrss.CLU updates the public key associated with segment 1. This
key can only be updated a few times before the coprocessor runs out of
memory in which to store the certificate chain connecting the segment 1
public key to the original key installed at the factory. Users should
restore a coprocessor to its factory-shipped state only if absolutely
necessary. Note that once the public key associated with segment 1
has been set using CFCrrrss.CLU or by loading IBM’s CCA application,
it should not be necessary to restore the coprocessor to its
factory-shipped state.

� The scctk\include directories contain include files (.h and .inc) that replace the
standard include files that ship with MSVCC++, VACPP, and MASM.

– scctk\include\common contains include files that are used to build both
SCC applications and host applications that interact with SCC applications.

– scctk\include\host contains include files that are used only to build host
applications.

– scctk\include\scc contains include files that are used only to build SCC
applications.

� The scctk\lib directories contain library (.lib) files that augment or replace the
standard library files that ship with MSVC++ or VACPP. The scctk\lib\host
directories contain library files that are used to build host applications and the
scctk\lib\scc directories contain library files that are used to build SCC
applications. The msvcmasm subdirectories are used when building
applications with MSVC++ and the vacppmsm subdirectories are used when
building applications with VACPP.

6 In particular, the public keys and owner identifiers associated with segments 2 and 3 and the image names associated with
segments 1 and 2 must have the values CFCrrrss.CLU and TDVrrrss.CLU assign them.

7 In particular, the public key and owner identifier associated with segment 2 must have the values TDVrrrss.CLU assigns them.

2-4 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

� The scctk\obj directories are empty. The makefiles in the scctk\src\ directories
place object and executable files in this subtree.

� The scctk\src\samples directories contain the source for some sample host and
SCC applications.

� The scctk\src\udx directory contains files used to create extensions to IBM’s
CCA application. This directory is not created unless the UDX Toolkit is
installed.

The appropriate compiler options should be used when building an SCC application
to ensure the directories listed below are searched for include files in the order
shown:

1. scctk\cpqenv\nt\vacppmsm (if building with VACPP) or
scctk\cpqenv\nt\msvcmasm (if building with MSVC++)

 2. scctk\include\scc
 3. scctk\include\common

For example, the compiler options below might be specified to build an SCC
application with VACPP:

/Ic:\scctk\cpqenv\nt\vacppmsm /Ic:\scctk\include\scc /Ic:\scctk\include\common

Similiarly, the appropriate compiler options should be used when building a host
application to ensure the directories listed below are searched for include files in
the order shown:

 1. scctk\include\host
 2. scctk\include\common

For example, the compiler options below might be specified to build a host
application with MSVC++:

/Ic:\scctk\include\host /Ic:\scctk\include\common

Preparing the Development Platform
After the Developer’s Toolkit (and the UDX Toolkit, if appropriate) and all
prerequisites (see “Prerequisites” on page 1-2) have been installed, the developer
must prepare the coprocessor for use as a development platform. The specific
procedure depends on whether or not software has already been installed in the
coprocessor and, if so, what software has been installed.

CLU’s ST command can be used to determine what software, if any, is loaded in
the coprocessor. For example:

TKNCLU CLU.LOG ST

An excerpt from a typical response to this command is as follows:

 Chapter 2. Installation and Setup 2-5

 30-JUL-98, 09:17

\\\ ROM Status; INIT: INITIALIZED

\\\ ROM Status; SEG2: RUNNABLE , OWNER2: ð3

\\\ ROM Status; SEG3: RUNNABLE , OWNER3: ð6

\\\ Page 1 Certified: YES

\\\ Segment 1 Image: CCA 1.2.2 SEGMENT-1 ...

\\\ Segment 1 Revision: 122

\\\ Segment 2 Image: CP/Q++ 1.22 ...

\\\ Segment 2 Revision: 122

\\\ Segment 3 Image: ...

\\\ Segment 3 Revision: 1

The First ROM Status Line

If the first “ROM Status” line does not indicate segment 1 is in the INIT state or if
page 1 is not certified, the coprocessor cannot be used as a development platform
without additional assistance from IBM.

Segments 2 and 3 UNOWNED

If the “ROM Status” line indicate segments 2 and 3 are UNOWNED, the contents of
segment 1 (as specified in the “Segment 1 Image” line) dictate how to proceed:

� Coprocessor in Factory-Default State - If software has never been loaded
into the coprocessor (for example, if the coprocessor has just been removed
from a factory-sealed package), the segment 1 image name will likely be rather
cryptic. In this case, the developer updates the coprocessor’s system software
by loading CFCrrrss.CLU into the coprocessor, for example:

TKNCLU CLU.LOG PL CFCrrrss.CLU

If this command fails, further assistance from IBM is required. (The failure may
indicate the public key associated with segment 1 has not been set to the
expected factory default.)

If this command succeeds, the developer proceeds to load TDVrrrss.CLU as
indicated in “Segment 1 Current” below.

� Segment 1 Downlevel - If segment 1 contains a downlevel version or revision
of CCA segment 1, the developer must first reset the coprocessor to its
factory-default state by loading the copy of C2Frrrss.CLU that corresponds to
the version and revision of the CCA segment 1 loaded on the card8, for
example:

TKNCLU CLU.LOG PL C2Fxxxyy.CLU

where xxx is the downlevel version of CCA and yy is the downlevel revision.
The developer then proceeds to load CFCrrrss.CLU as indicated in
“Coprocessor in Factory-Default State” above.

� Segment 1 Current - If segment 1 contains the appropriate version and
revision of CCA segment 1, the developer prepares the coprocessor for use as
a development platform by loading TDVrrrss.CLU into the coprocessor, for
example:

TKNCLU CLU.LOG PL TDVrrrss.CLU

8 If the downlevel CCA segment 1 is version 1.22 or earlier, additional assistance from IBM is required to update the system
software.

2-6 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

If desired, the developer can confirm the software has been properly loaded by
resetting the coprocessor to start the “reverse-then-echo” application loaded by
TDVrrrss.CLU (see Appendix C, “How to Reboot the IBM 4758” on page C-1
for details) and then running the host reverse-then-echo driver, for example:

 HRE text

The driver sends text to the reverse-then-echo application on the coprocessor,
which reverses it and returns it to the driver. The driver prints the text received.

The developer then proceeds to load TPRrrrss.CLU as indicated in “Segment 2
Owner ID = 3 and Segment 3 Owner ID = 6” below.

Segments 2 and 3 RUNNABLE

If the “ROM Status” lines indicate segments 2 and 3 are RUNNABLE, the owner
identifiers specified on those lines for segments 2 and 3 dictate how to proceed:

� Segment 2 Owner ID = 2 - If the owner identifier associated with segment 2 is
2, the developer relinquishes ownership of segment 2 by loading CRSrrrss.CLU
into the coprocessor,9 for example:

TKNCLU CLU.LOG PL CRSrrrss.CLU

If this command fails, further assistance from IBM is required. (The failure may
indicate the public key associated with segment 2 has not been set to the
expected value.)

If this command succeeds, segments 2 and 3 become UNOWNED and the
developer proceeds according to the instructions given in “Segments 2 and 3
UNOWNED” above.10

� Segment 2 Owner ID = 3 and Segment 3 Owner ID = 6 - If the owner
identifier associated with segment 2 is 3 and the owner identifier associated
with segment 3 is 6, the developer loads into the coprocessor TPRrrrss.CLU,
which contains a version of CP/Q++ that supports the debugging of
applications, for example:

TKNCLU CLU.LOG PL TPRrrrss.CLU

This completes preparation of the coprocessor for use as a development
platform.

� Other Owner IDs - If the owner identifiers associated with segment 2 and/or 3
differ from those previously listed, it may not be possible to use the
coprocessor for development. To do so requires the assistance of the owner of
segment 2, who must supply a CLU file to surrender that ownership.

Segments 2 and 3 Neither UNOWNED nor RUNNABLE

If the “ROM Status” lines indicate segments 2 and 3 are
OWNED_BUT_UNRELIABLE or RELIABLE_BUT_UNRUNNABLE, the coprocessor
cannot be used as a development platform without additional assistance from IBM.

9 CRSrrrss.CLU ships with the IBM CCA Support Program.

10 If CRS12200.CLU is used to relinquish ownership of segment 2, the developer must load CFCrrrss.CLU as indicated in “Segments
2 and 3 UNOWNED.” The contents of segment 1 cannot be used as a guide in this case.

 Chapter 2. Installation and Setup 2-7

 30-JUL-98, 09:17

2-8 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

Chapter 3. Developing and Debugging an SCC Application

This chapter describes how to use the software in the development environment to
create an SCC application on Windows NT and prepare it to be loaded into an IBM
4758 coprocessor and debugged.

This chapter describes:

� Each step in the development process
� Special coding requirements for development
� Unsupported CP/Q base operating system function calls
� Supported and unsupported C run-time library function calls and global

variables
� Required option and switch settings for the compiler, assembler, linker, and

librarian
� How to convert a compiled SCC application into a version that CP/Q++ can

load and execute
� How to build a read-only disk image containing the SCC application
� How to load the disk image into the coprocessor
� How to start the debugger

Development Process Road Map
As introduced in Chapter 1, “Introduction,” the procedure to build an SCC
application and load it into the development coprocessor consists of the following
steps:

1. Compile, assemble, and link
 2. Translate

3. Build disk image
4. Load image into the coprocessor

Figure 3-1 on page 3-2 illustrates the development process, and indicates the
name of the tool and input needed to perform each step. The process is identical
to that shown in Figure 1-1 on page 1-3; this flowchart simply provides more detail.

 Copyright IBM Corp. 1998 3-1

 30-JUL-98, 09:17

Developer Provides Tool Used

Other Input
(from Developer’s

Toolkit)

.Obj file or files

.exe file

.xld file

List of files
stack sizes and

arguments

.xld

Additional
files

(optional)
.xld

C Compiler (VACPP or
MSVC++) and/or
MASM assembler

Application written
in C and/or assembler

(.c/ .h, .asm/ .inc)

Include files (.h/.inc)
from cpq/include,

cpq/cpqenv, and others

Object libraries
created by developer

()
(optional)

.lib

Library files
()

from
.lib
cpq/lib

Linker
(ILINK/Link)

.exe .xldto Translator
(CPQXLT)

R/O Disk Builder
(SCCRODSK)

Load
(DRUID)

Debug, Test,
or Run

Files provided by
developer

Files provided by
IBM

.rod file

Figure 3-1. Development Process Road Map

The following sections detail how to use the Developer’s Toolkit to perform these
steps.

3-2 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

Special Coding Requirements During Development

 Developer Identifiers
An SCC application must register with a CP/Q++ device manager before the
application can receive requests from the host. The application must supply a
“developer identifier” that uniquely identifies the developer as part of the registration
process.1 During development, a developer may use an arbitrary nonzero value for
the developer identifier. Before an application can be released, the developer must
obtain a unique identifier from IBM and must rebuild the application and any host
application that interacts with it to use the true identifier.

Attaching with the Debugger
An application that has been downloaded to the coprocessor will be loaded and
start to run as soon as the coprocessor is rebooted and may run for some time
before the debugger places the application under debug and quiesces it. To
ensure the application does not make too much progress before the debugger
takes control, the developer must code an infinite loop early in the application and
use the debugger to move the execution point past the loop after the application is
quiesced. To ensure the loop does not starve other agents in the system, the loop
should be coded along the following lines:

 QMSGHDR msg;

unsigned long count;

i = ð;

 memset (&msg,ð,sizeof(msg));

 for (;;)

 {

 CPRecvMsg(&msg,&count,ð,1ðððððð);

 i++;

 }

The timeout in the call to CPRecvMsg should be large enough to allow other
agents in the system to run most of the time but not so large that the call seldom
returns.

After attaching to the application with the debugger, set a breakpoint on the i++
statement and allow the application to run. When the breakpoint is hit, use the
debugger's Jump to location function to move the execution point out of the loop.

Compiling, Assembling, and Linking
The commercial compiler used in development of an SCC application is designed
to create applications to run on a workstation under Windows NT rather than on a
cryptographic coprocessor under CP/Q++. Consequently, the include files and
libraries shipped with the compiler and the defaults for several options are not
always appropriate for SCC applications.

1 Refer to the description of sccSignOn in IBM 4758 PCI Cryptographic Coprocessor CP/Q Operating System Application
Programming Reference for details.

 Chapter 3. Developing and Debugging an SCC Application 3-3

 30-JUL-98, 09:17

This section lists the base operating system and C run-time library function calls
that an SCC application may use and those that are not supported.2 It also lists
options that must be specified when compiling, assembling, or linking to ensure that
an SCC application will run properly. Other options may also be specified as long
as they do not conflict with the options listed in this section.

The Developer’s Toolkit includes makefiles that specify the proper options for each
tool. Refer to cpqenv.mak in \scctk\cpqenv\nt\vacppmsm (when compiling with
VACPP) or in \scctk\cpqenv\nt\msvcmasm (when compiling with MSVC) for details
on their use.

CP/Q Base Operating System Function Support
The Developer’s Toolkit supports most of the functions described in IBM 4758 PCI
Cryptographic Coprocessor CP/Q Operating System Application Programming
Reference. Exceptions are noted in Table 3-1. Furthermore, an SCC application
has no special privileges and consequently cannot invoke certain restricted
functions (for example, CPPTrace).

Table 3-1. Unsupported CP/Q Functions

CPSetPreempt
CPSigInt
CPSigMask

CPSigReturn
CPSigSend
CPSigStack

CPSigVec

C Run-Time Library Support
The Developer’s Toolkit supports most of the library functions and global variables
described in the IBM 4758 PCI Cryptographic Coprocessor CP/Q Operating System
C Runtime Library Reference.3 However, several functions have been modified and
others are not supported at all. Furthermore, there are restrictions on the use of
certain intrinsic functions. See “Compiler Options” on page 3-6 for details.

Supported Functions and Global Variables
Table 3-2 on page 3-5 lists the C run-time functions and global variables the
Developer’s Toolkit supports. Numbers after names refer to the notes following the
table.

2 Most unsupported functions are declared in an include file but are not implemented. That is, a program that invokes an
unsupported function may compile, but it will not link.

3 The C run-time library shipped with the Developer’s Toolkit includes the cinitnon and exitnon versions of the initialization and exit
code.

3-4 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

Notes

1. This function takes as an argument the address of a comparison function. The
comparison function must use the __cdecl linkage convention.

2. gmtime always sets the tm_isdst field of the output structure to 0.

3. localtime assumes local standard time is 300 minutes behind (west) of
Greenwich Mean Time and makes an appropriate adjustment for daylight
savings time.

4. The debug version of CP/Q++ forwards output generated by printf to the
debugger, which displays the output in the Messages Window. The production
version of CP/Q++ treats printf as a (relatively expensive) NOP.

5. rand and srand are ANSI-standard pseudo-random functions. Developers
writing SCC applications should use sccGetRandomNumber instead.

6. time assumes the coprocessor time-of-day clock is set to local time (i.e., local
standard time with an appropriate adjustment for daylight savings time) and that
local standard time is 300 minutes behind (west) of Greenwich Mean Time.

Table 3-2. Supported C Run-time Functions and Global Variables

_cdapage
_exit
_fullname
_isalnum
_isalpha
_isascii
_iscntrl
_isdigit
_isgraph
_islower
_isprint
_ispunct
_isspace
_isupper
_isxdigit
_mons
_tolower
_toupper
_wdays
abort

abs
asctime
atexit
atof
atoi
atol
bcmp
bcopy
binsort (1)
bsearch (1)
bzero
calloc
cjlvsn
clock
copyenv
ctime
difftime
div
errno
exit

ffs
free
getenv
getenvall
getenvall2
getopt
gmtime (2)
hsort (1)
index
inssort (1)
isalnum
isalpha
isascii
iscntrl
isdigit
isgraph
islower
isprint
ispunct
isspace

issupv
isupper
isxdigit
itoa
labs
ldiv
localtime (3)
longjmp
malloc
memccpy
memchr
memcmp
memcpy
memicmp
memmove
memset
mktime
msort (1)
printf (4)
putenv

qsort (1)
rand (5)
realloc
rindex
setjmp
sprintf
srand (5)
sscanf
strcat
strchr
strcmp
strcpy
strcspn
strdup
strerror
strftime
stricmp
strlen
strlwr
strncat

strncmp
strncpy
strnicmp
strpbrk
strrchr
strrev
strspn
strstr
strtok
strtol
strtoul
strupr
swab
time (6)
tolower
toupper
va_arg
va_end
va_start
vsprintf

Unsupported Functions and Global Variables
Table 3-3 lists the C run-time functions and global variables the Developer’s Toolkit
does not support. Numbers after names refer to the notes following the table.

Table 3-3. Unsupported C Functions and Global Variables

_iob
assert
brkpt
close
clearerr (1)
feof (1)
ferror (1)
fileno (1)
fclose

fflush
fgetc
fgetpos
fgets
fopen
fprintf
fputc
fputs
fread

freopen
fscanf
fseek
fsetpos
ftell
fwrite
getc (2)
getchar
gets

getsessid
lseek
open
paws
perror
putc (3)
putchar
puts
raise

read
remove
rename
rewind
scanf
setattr
setbuf
setsessid
setvbuf

signal
system
tell
tmpfile
tmpnam
ungetc
vfprintf
vprintf
write

 Chapter 3. Developing and Debugging an SCC Application 3-5

 30-JUL-98, 09:17

Notes

1. This function is implemented as a macro and consequently programs that
invoke it will compile and link. However, the C run-time library does not define
any FILE structures that the function could take as an argument.

2. Use of getc will cause the link to fail with getctext and __fillbuf undefined.

3. Use of putc will cause the link to fail with putctext and __flushbu undefined.

 Compiler Options
The Developer’s Toolkit supports two compilers: IBM VisualAge C++ (VACPP) and
Microsoft Visual C++ (MSVC++).4

Reminder: Although you use a C++ compiler to compile SCC applications, the
applications must be written in C.

VisualAge C ++ (VACPP) Options
When using VACPP to compile executable files, use the following switches with the
icc command to control the process:

Switch Function

/Gn+ Do not put default library information into the object file.

/Gs+ Do not generate stack probes.

/I Use Developer’s Toolkit customized settings to search for include files
when compiling. See “Directories and Files” on page 2-1 for a
description of the default file locations.

/O Compile without optimization (/O-) when creating an executable
suitable for debugging. Optimization may be enabled (/O+) when
creating a production version.

/Rn Do not incorporate the VACPP run-time environment into the compiled
module.

/Ti Generate debug information (/Ti+) when creating an executable
suitable for debugging. Debug information may be omitted (/Ti-) when
creating a production version.

/Xi Do not search the path specified by the include environment variable.

Note: Developers writing extensions for IBM’s CCA application must ensure CCA
services are invoked using the __stdcall calling convention. One way to
accomplish this is to specify the /Mt option with the icc command.

Notes on Intrinsic Functions: The Developer’s Toolkit supports most VACPP
intrinsic (automatically inlined) functions; the only unsupported intrinsic function is
_getTIBvalue .

The following string and memory functions have intrinsic forms:

4 Developers writing extensions for IBM’s CCA application must use IBM VisualAge C++.

3-6 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

To use the intrinsic forms of these functions, compile with optimization (/O+) and
define _STRING_INTRINSICS_ before including <string.h>; define
_STRING_INTRINSICS_ in your code with the following syntax:

 #define _STRING_INTRINSICS_

As an alternative, define _STRING_INTRINSICS_ when compiling by using the
/D_STRING_INTRINSICS_ compiler option.

Note: Do not define _STRING_INTRINSICS_ unless optimization is enabled.

The nonintrinsic forms of the following functions are not supported:

The following functions are not supported:

Note: Routines that invoke setjmp must be compiled without optimization.

Table 3-4. VACPP String and Memory Functions with Intrinsic Forms

memcpy
memchr
memcmp
memset
memmove

strcat
strchr
strcmp
strcopy
strlen

strncat
strncmp
strncpy
strrchr

Table 3-5. VACPP Functions Whose Nonintrinsic Form Is Not Supported

_clear87 _control87 _status87

Table 3-6. Unsupported VACPP Functions

wcscat
wcschr
wcscmp

wcscpy
wcslen
wcsncat

wcsncmp
wcsncpy
wcsrchr

Microsoft Visual C ++ (MSVC++) Options
When using MSVC++ to compile executable files, use the following switches with the
cl command to control the process:

Switch Function

/Gs1000000000 Do not generate stack probes. While the value entered does not
need to be ‘1000000000’, it does need to exceed the size of any
stack frame possible.

/I Use Developer’s Toolkit customized settings to search for include
files when compiling. See “Directories and Files” on page 2-1 for
a description of the default file locations.

/O Compile without optimization (/Od) when creating an executable
suitable for debugging. Optimization may be enabled (/Ox) when
creating a production version.

/X Do not search the path specified by the include environment
variable.

/Z7 Generate debug information (/Z7) when creating an executable
suitable for debugging. Debug information must be incorporated
into the executable, not placed in a program database (that is, do
not specify /Zi). Debug information may be omitted when creating
a production version.

 Chapter 3. Developing and Debugging an SCC Application 3-7

 30-JUL-98, 09:17

/Zl Do not put default library information into the object file.

Notes on Intrinsic Functions: The following MSVC++ intrinsic functions are
always generated inline:

Code the appropriate intrinsic compiler directive #pragma or enable optimization to
use the inline forms of the following intrinsic functions:

The following intrinsic functions are inlined if the appropriate optimization level is in
effect:

Notes:

1. While each function listed in Table 3-9 has a non-intrinsic form, the Developer’s
Toolkit supports only the non-intrinsic forms of log and log10 .

2. The _alloca function is not supported.

3. Routines that invoke setjmp must be compiled without optimization.

Table 3-7. MSVC++ Intrinisc Functions (Always Inlined)

_disable
_enable
_inp
_inpd
_inpw

_lrotl
_lrotr
_outp
_outpd
_outpw

_rotl
_rotr
_strset

Table 3-8. MSVC++ Intrinsic Functions (Inlined by Directive or Optimization)

abs
fabs
labs
memcmp

memcpy
memset
strcat
strcmp

strcpy
strlen

Table 3-9. MSVC++ Intrinsic Functions (Inlined by Optimization)

atan
atan2
cos

exp
log
log10

sin
sqrt
tan

 Assembler Options
The Developer’s Toolkit supports the Microsoft** MASM assembler. Use the
following switches with the ml command to control the process:

Switch Function

/coff Generate output as Common Object File Format (COFF), rather than
Object Module Format (OMF). This switch should only be used when
using the Microsoft Visual C++ compiler and the LINK linker.

/Cp Preserve case of identifiers.

/I Set the include path. See “Directories and Files” on page 2-1 for a
discussion of how to set these options.

/X Do not search the path specified by the include environment variable.

/Zd /Zi Generate debug information (/Zd and /Zi) when creating an executable
suitable for debugging.5 Debug information may be omitted when
creating a production version.

3-8 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

 Linker Options
The compiler used determines which linker must be used to create an executable
file from the resulting object (.obj) files.

ILINK (VACPP Linker)
ILINK links object files created by the VACPP compiler. Use the switch below with
the ilink command to control the process:

Switch Function

/debug Preserve debug information in the object files (/DEBUG) when
creating an executable suitable for debugging. Debug information
may be omitted (/NODEBUG) when creating a production version.

/nod Do not search default libraries listed in the object files.

/noe Do not search libary extended directories.

/pm:vio Specify a .EXE type. The type specified (PM, VIO, or NOVIO) does
not matter, but if this switch is not provided the linker issues a warning
message.

The libraries supplied in scctk\lib\scc\nt\vacppmsm were compiled with the /Gl+
option. Use the /OPTFUNC linker option to remove unreferenced functions and
generate a smaller executable file.

LINK (MSVC ++ Linker)
LINK links object files created by the MSVC++ compiler. Use the switches below
with the link command to control the process:

Switch Function

/debug Preserve debug information in the object files (/DEBUG)
when creating an executable suitable for debugging. If this
option is specified, /DEBUGTYPE:CV and /PDB:none must
also be specified. Debug information may be omitted
when creating a production version.

/entry:startup Specify the program entry point.

/fixed:no Preserve relocation information in the executable file.

/nodefaultlib Do not search the default libraries.

/stack:0x1000000 Set the initial stack size.

The libraries supplied in scctk\lib\scc\nt\msvcmasm were compiled with the /Gy
option. Use the /OPT:REF linker option to remove unreferenced functions and
generate a smaller executable file.

5 Debug information generated by MASM is not compatible with the format expected by the linker that ships with VisualAge C++. Do
not use the /Zd or /Zi switches when assembling files that will be linked using that linker.

 Chapter 3. Developing and Debugging an SCC Application 3-9

 30-JUL-98, 09:17

 Librarian Options
The compiler type used determines which librarian must be used to create a library
(.lib) file from one or more object (.obj) files. ILIB creates libraries from files
generated by VACPP, and LIB creates libraries from files generated by MSVC++.

There are no required option settings for either librarian.

 Translating
The Translator Utility (CPQXLT.EXE) translates a fully-compiled executable file into
executable file able to run on the CP/Q++ operating system embedded within the
coprocessor. The utility supports pure 32-bit executable files built from C or
assembler source code; it does not support dynamic link libraries or C++ programs.

Debug information is translated for Windows NT executables built with the
compilers described above, and for executables built with Microsoft-compatible
debug information. The compiler, assembler, and linker must have been invoked
with the proper options in order to generate debug information (for example, VACPP

/Ti+ or MSVC++ /Z7).

Because the entire executable (including any debug information, if present) is
incorporated into the read-only disk image that is loaded into the coprocessor, it is
recommended that the translation be performed twice, once to create a version of
the executable containing debug information for the debugger's use, and a second
time to create a version without debug information to be downloaded to the
coprocessor.

Syntax

cpqxlt [input-filename] [output-filename] {optional switches}

The optional switches are as follows:

Switch Function

/base:address Sets the address for the first loaded section. (The default is 0).

/nodebug Suppresses translation of debug information.

/align:factor Sets the alignment boundary for loaded sections. (The default
is a 512-byte boundary).

Building Read-Only Disk Images
The Disk Builder Utility (SCCRODSK.EXE) creates a read-only disk image that can
be loaded into the coprocessor using DRUID or can be signed using TKNSGNR
and placed into a CLU file by TKNPKGR for subsequent download by CLU.

To build a disk image, create an ASCII text file (inputfile.txt) that lists the files to
incorporate into the disk image.6 Each line in the file has the form:

6 At present, only one .xld file can be loaded into the coprocessor. Any others listed are incorporated into the disk image but are
not loaded.

3-10 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

filename [stacksize] [arg1 [arg2 [...]]]

where filename is the name (or full pathname if desired) of the file to incorporate
into the disk image, stacksize is the number of bytes to allocate for the stack when
the application the file contains is loaded and run. (The default is 4096 bytes.)
Any additional tokens on the line (arg1, arg2, and so on) are passed to the
application as invocation arguments. Blank lines are ignored and lines containing
an asterisk in the first column are treated as comments.

For example, the following line in the input file

rte.xld 8192 a b cde "space " 'quote' " " 1 2 3 4

causes rte.xld to be run with an 8K stack. On entry to main (), argc and argv
have the following values:

 argc 11

 argv[ð] "rte.xld"

 argv[1] "a"

 argv[2] "b"

 argv[3] "cde"

 argv[4] "space"

 argv[5] "\'quote\'"

 argv[6] " "

 argv[7] "1"

 argv[8] "2"

 argv[9] "3"

 argv[1ð] "4"

After the ASCII text file has been created, invoke the disk builder utility as follows:

sccrodsk inputfile.txt outputfile.rod

The utility creates the disk image.

Downloading and Debugging
Once a file containing the read-only disk image of the application has been
generated by SCCRODSK, the file may be downloaded to the coprocessor using
DRUID.

DRUID does not affect any data in the nonvolatile memory (battery-backed RAM
and flash) associated with the application. If the developer wishes to clear state
that has accumulated during prior debug sessions so that the application will start
with a clean slate, the developer should first download TL3rrrss.CLU to the
coprocessor using CLU:

TKNCLU CLU.LOG PL TL3rrrss.CLU

Syntax

druid [image_fn pubkey_fn privkey_fn[coprocessor_number]]

where

� image_fn is the name of the file containing the read-only disk image to
download to the coprocessor.

 Chapter 3. Developing and Debugging an SCC Application 3-11

 30-JUL-98, 09:17

� pubkey_fn is the name of a file containing the public key to be associated with
the application7 (for example, S3KCLRPU.DRK).

� privkey_fn is the name of a file containing an RSA keypair (for example,
S3KCLRPP.DRK). The public key must match the public key currently
associated with the application in the coprocessor.8.

� More than one coprocessor may be installed in a host. coprocessor_number
identifies the coprocessor to which the read-only disk image is downloaded.
The default is 0.

The number assigned to a particular coprocessor depends on the order in
which information about devices in the system is presented to the device driver
by the host operating system. At the present time there is no way to tell a
priori which coprocessor will be assigned a given number.

If DRUID is invoked without arguments, it prompts for them.

DRUID displays a summary of the status of the coprocessor before it downloads
the application. The summary includes

� The coprocessor’s serial number9

� The current left and right bootcounts (see “Targeting Arguments” on page E-17
for details)

� The name, creation date, and size of the image file last downloaded to the
coprocessor

� The name of the file containing the public key associated with the application
currently loaded in the coprocessor10

CP/Q++ will load and run the application after the coprocessor is rebooted. See
Appendix C, “How to Reboot the IBM 4758” on page C-1 for a description of how
to reboot the coprocessor.

Details on the use of CLU can be found in the IBM 4758 PCI Cryptographic
Coprocessor Custom Software Installation Manual.

After the application is running, it can be debugged using the ICAT debugger.
Refer to the IBM 4758 PCI Cryptographic Coprocessor Interactive Code Analysis
Tool (ICAT) User’s Guide for details.

7 That is, the public key to be associated with segment 3.

8 That is, the public key currently associated with segment 3.

9 That is, the value sccGetConfig returns in pInfo->VPD.AdapterID. Refer to the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for details.

10 That is, the value of pubkey_fn supplied when DRUID last downloaded an application to the coprocessor.

3-12 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

Chapter 4. Testing an SCC Application in a Production
Environment

The version of CP/Q++ that allows an application to be debugged includes certain
components that are not present in the production version of CP/Q++. A developer
may find it prudent to test the application running under a production version of
CP/Q++ before releasing the application. The TNPrrrss.CLU file shipped with the
Developer’s Toolkit can be used to replace the debug version of CP/Q++ with a
production version:

TKNCLU CLU.LOG PL TNPrrrss.CLU

The developer should then rebuild the application (without debug information or
any code added for debugging purposes, including any infinite loop added to
allow the debugger to attach), create a read-only disk image, and download it to
the coprocessor in the same manner as described in chapter 3.

If further debugging proves necessary, the debug version of CP/Q++ can be
reloaded into the coprocessor as follows:

TKNCLU CLU.LOG PL TPRrrrss.CLU

Use of TNPrrrss.CLU and TPRrrrss.CLU in this manner preserves any state
information the application has saved in battery-backed RAM and flash.
“Downloading and Debugging” on page 3-11 describes how to clear such state
information (if desired) before downloading an application.

 Copyright IBM Corp. 1998 4-1

 30-JUL-98, 09:17

4-2 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

Chapter 5. Packaging and Releasing an SCC Application

The design for the IBM 4758 PCI Cryptographic Coprocessor was motivated by the
need to simultaneously satisfy the following requirements1:

1. Code must not be loaded into the coprocessor unless IBM or an agent IBM
trusts has authorized the operation.

2. Once loaded into the coprocessor, code must not run or accumulate state
unless the environment in which it runs is trustworthy.

3. Agents outside the coprocessor that interact with code running on the
coprocessor must be able to verify that the code is legitimate and that the
coprocessor is authentic and has not been tampered with.

4. Shipment and configuration of coprocessors and maintenance on and upgrades
to code inside a coprocessor must not require trusted couriers or security
officers.

5. IBM must not need to examine a developer's code or have any knowledge of a
developer's private cryptographic keys in order to make it possible for
customers to load the developer's code into a coprocessor and run it.

To meet these requirements, the design defines four “segments”:

� Segment 0 is ROM and contains one portion of “Miniboot”. Miniboot is the
most privileged software in the coprocessor and among other things
implements the security protocols described in this section.

� Segment 1 is flash and contains the other portion of “Miniboot”. The division of
Miniboot into a ROM portion and a flash portion preserves flexibility (the flash
portion can be changed if necessary) while guaranteeing a basic level of
security (implemented in the ROM portion).

� Segment 2 is flash and usually contains the coprocessor operating system.
� Segment 3 is flash and usually contains one or more coprocessor applications.

The security protocols that enforce these design goals are based on RSA keypairs
and a notion of who owns the code in each segment. IBM owns segments 1 and 2
and issues an owner identifier to any party that is developing code to be loaded
into segment 3. The coprocessor saves the identity of the owner of each segment
and an RSA public key for each segment. The key is provided by the segment's
owner.

The coprocessor will not accept a command that changes the contents of a
segment unless the command is digitally signed with the private key that
corresponds to the public key associated with the segment. The command must
also correctly identify the owner of the segment. Commands that must change the
contents of a segment that does not yet have a public key must be signed with the
private key that corresponds to the public key associated with the segment's
parent. For example, the command that initially sets the contents, owner, and
public key for segment 3 must be signed with the private key for segment 2.

1 For a thorough overview of the coprocessor’s security goals and a description of the security architecture, refer to Building a
High-Performance, Programmable Secure Coprocessor, Research Report RC21102 published by the IBM T.J. Watson Research
Center in February 1998.

 Copyright IBM Corp. 1998 5-1

 30-JUL-98, 09:17

The files shipped in the Developer’s Toolkit are designed to make it very easy for a
developer to start work immediately but are also constructed in a way that does not
threaten the security or integrity of an application deployed in the field or one that
may be deployed in the future. During development, the developer uses a default
RSA keypair (which makes development easy) that is tied to a generic owner
identifier (which makes the generic keypair “harmless”). When the developer is
ready to deploy an application in the field, the developer must obtain a unique
developer identifier from IBM and must generate a new, unique RSA keypair. This
is summarized in the table below.

Prior to deployment, a developer must restore the coprocessor used for
development to a state suitable for use in production2 using TRSrrrss.CLU:

TKNCLU CLU.LOG PL TRSrrrss.CLU

The developer must then install the CCA Support Program on the host, install the
CCA application on the coprocessor, and configure a CCA test node. Instructions
on how to complete these steps appear in chapters 3, 4, and 5, respectively, of the
IBM 4758 PCI Cryptographic Coprocessor CCA Support Program. This prepares
the coprocessor for use by TKNSGNR and TKNPKGR.

The developer generates three RSA keypairs using TKNSGNR’s KEYGEN function,
for example:

TKNSGNR KEYGEN 2 S3KDEVPP.KEY S3KDEVPU.KEY DFT_SKEL.TKN
TKNSGNR KEYGEN 2 DEVSGNPP.KEY DEVSGNPU.KEY DFT_SKEL.TKN
TKNSGNR KEYGEN 2 DEVPKGPP.KEY DEVPKGPU.KEY DFT_SKEL.TKN

The first keypair supplies the key to be saved with the developer's application in
segment 3. The second and third keypairs are used by TKNSGNR and TKNPKGR,
respectively, to generate digital signatures that CLU uses to verify that IBM has
authorized its use.

The KEYGEN function creates two KEY files, one containing both the private and
public keys (for example, S3KDEVPP.KEY) and the other containing just the public
key (for example, S3KDEVPU.KEY). The KEYGEN function also creates a file
containing the hash of the public key. The file has the same name as the file
containing the public key and an extension of HSH (for example, S3KDEVPU.HSH).
The developer forwards each public key file to IBM. The developer should also
communicate the hash value of each public key to IBM (by way of a separate
channel) to ensure an adversary has not replaced the developer’s public key file
with another.

After an appropriate contract has been signed, IBM supplies a file (DEV3.TXT)
containing a unique owner identifier for the developer and a file (IBMCLT2.TXT)
containing the owner identifier associated with segment 2. IBM also creates

Attribute Development Production

Owner “Generic developer” Developer-unique identifier

Public Key Generic (common) key Developer-generated key

2 Its factory default state or obtain a second IBM 4758.

5-2 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

� an emergency signature file (ESIGDEV.SIG) incorporating the developer’s
owner identifier and segment public key and

� a TKNSGNR input file (DEVrrrss.TSK) that loads CP/Q++ into an IBM 4758
shipped from the factory and sets the owner identifier associated with segment
3 to the developer’s owner identifier.

Finally, IBM supplies certificates for the TKNSGNR and TKNPKGR public files
(DEVSGNPU.CRT and DEVPKGPU.CRT, respectively).

IBM generates a hash of each file (DEV3.HSH, IBMCLT2.HSH, ESIGDEV.HSH,
DEVrrrss.HSH, DEVSGNPU.HSH, and DEVPKGPU.HSH) and forwards the files
and the hashes (by way of a separate channel) to the developer, who should verify
that the hashes match the files they cover using TKNSGNR’s HASH_VER function,
for example:

TKNSGNR HASH_VER DEV3.HSH DEV3.TXT
TKNSGNR HASH_VER IBMCLT2.HSH IBMCLT2.TXT
TKNSGNR HASH_VER ESIGDEV.HSH ESIGDEV.SIG
TKNSGNR HASH_VER DEVrrrss.HSH DEVrrrss.TSK
TKNSGNR HASH_VER DEVSGNPU.HSH DEVSGNPU.CRT
TKNSGNR HASH_VER DEVPKGPU.HSH DEVPKGPU.CRT

The developer then builds a version of the application for release (for example,
builds without debugging information or debug code and changes the value of
pAgentID->DeveloperID in any calls to sccSignOn and the value of
pRequestBlock->AgentID.DeveloperID in any calls to sccRequest to the number
supplied in DEV3.TXT) and uses TKNSGNR to create an EMBURN3 command that
incorporates the application, IBM’s segment 2 owner ID, the developer’s owner ID,
and the developer’s unique keys, for example:

TKNSGNR EMBURN3 MYAPP.TSK
part version description

 DEVSGNPU.CRT DEVSGNPP.KEY
APP.ROD title revision

 S3KDEVPP.KEY ESIGDEV.SIG
 ibmclt2 dev3
 1 1

a 0 b 0 c 0 d 0 e 0 0
x 0 0 65535 0 0
x 0 0 65535 0 0

where part, version, and description supply information that is incorporated into the
output file, title and revision supply information that is downloaded to the
coprocessor and stored with the application in segment 3, ibmclt2 is the number
supplied in IBMCLT2.TXT, and dev3 is the number supplied in DEV3.TXT. See
Appendix E, “Using Signer and Packager” on page E-1 for details.

The developer uses TKNPKGR to combine the task file IBM supplies with the file
containing the EMBURN3 command, for example:

TKNPKGR DEVPKGPU.CRT DEVPKGPP.KEY
2 DEVrrrss.TSK MYAPP.TSK MYAPP.CLU
part version description

 Chapter 5. Packaging and Releasing an SCC Application 5-3

 30-JUL-98, 09:17

where part, version, and description supply information that is incorporated into the
output file. See Appendix E, “Using Signer and Packager” on page E-1 for details.

The file generated by TKNPKGR can be shipped to end users, who can use CLU
to load the application into the coprocessor and start execution, for example:

TKNCLU CLU.LOG PL MYAPP.CLU
TKNCLU CLU.LOG RS

5-4 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

Appendix A. An Overview of the Development Process

This appendix describes the entire process from initial preparation of the
coprocessor to the creation of a file containing a developer application that can be
shipped to the developer’s customers or end users.

Each step in this overview is listed under a heading that notes where in the body of
the manual the step or tools it uses is described.

Preparing the Development Platform

1. Determine whether or not the coprocessor is empty:

TKNCLU CLU.LOG ST

If coprocessor segment 1 is not in the INIT state or if page 1 is not certified, the
coprocessor cannot be used as a development platform without additional
assistance from IBM.

If coprocessor segment 2 is UNOWNED, continue with step 2.

If coprocessor segment 2 is RUNNABLE and the owner identifier associated
with segment 2 is 2, continue with step 3.

If coprocessor segment 2 is RUNNABLE and the owner identifier associated
with segment 2 is 3, continue with step 4.

If coprocessor segment 2 is RUNNABLE but the owner identifier associated
with segment 2 is neither 2 nor 3, it may be possible to use the coprocessor for
development. To do so requires the assistance of the owner of segment 2,
who must supply a CLU file to surrender that ownership.

2. If coprocessor segment 2 is UNOWNED, the contents of segment 1 dictate how
to proceed:

� Coprocessor in Factory-Default State - If software has never been
loaded into the coprocessor (for example, if the coprocessor has just been
removed from a factory-sealed package), the segment 1 image name will
likely be rather cryptic. In this case, update the coprocessor’s system
software by loading CFCrrrss.CLU into the coprocessor, for example:

TKNCLU CLU.LOG PL CFCrrrss.CLU

If this command fails, further assistance from IBM is required. (The failure
may indicate the public key associated with segment 1 has not been set to
the expected factory default.)

If this command succeeds, load TDVrrrss.CLU as indicated in “Segment 1
Current” on page A-2.

� Segment 1 Downlevel - If segment 1 contains a downlevel version or
revision of CCA segment 1, reset the coprocessor to its factory-default
state by loading the copy of C2Frrrss.CLU that corresponds to the version
and revision of the CCA segment 1 loaded on the card1, for example:

TKNCLU CLU.LOG PL C2Fxxxyy.CLU

1 If the downlevel CCA segment 1 is version 1.22 or earlier, additional assistance from IBM is required to update the system
software.

 Copyright IBM Corp. 1998 A-1

 30-JUL-98, 09:17

where xxx is the downlevel version of CCA and yy is the downlevel
revision. Then load CFCrrrss.CLU as indicated in “Coprocessor in
Factory-Default State” on page A-1.

� Segment 1 Current - If segment 1 contains the appropriate version and
revision of CCA segment 1, prepare the coprocessor for use as a
development platform by loading TDVrrrss.CLU into the coprocessor, for
example:

TKNCLU CLU.LOG PL TDVrrrss.CLU

If desired, confirm the software has been properly loaded by resetting the
coprocessor to start the “reverse-then-echo” application loaded by
TDVrrrss.CLU (see Appendix C, “How to Reboot the IBM 4758” on
page C-1 for details) and then running the host reverse-then-echo, for
example:

 HRE text

The driver sends text to the reverse-then-echo application on the
coprocessor, which reverses it and returns it to the driver. The driver prints
the text received.

Continue with step 4.

3. If the owner identifier associated with coprocessor segment 2 is 2, relinquish
ownership of segment 2 by loading CRSrrrss.CLU into the coprocessor, for
example:

TKNCLU CLU.LOG PL CRSrrrss.CLU

If this command fails, further assistance from IBM is required. (The failure may
indicate the public key associated with segment 2 has not been set to the
expected value.)

If this command succeeds, segments 2 and 3 become UNOWNED. Continue
with step 2.2

4. If the owner identifier associated with coprocessor segment 2 is 3 and the
owner identifier associated with segment 3 is 6, load into the coprocessor
TPRrrrss.CLU, which contains a version of CP/Q++ that supports the
debugging of applications, for example:

TKNCLU CLU.LOG PL TPRrrrss.CLU

This completes preparation of the coprocessor for use as a development
platform. Continue with step 5.

If the owner identifier associated with segment 2 is 3 but the owner identifier
associated with segment 3 is not 6, relinquish ownership of segment 2 by
loading TRSrrrss.CLU into the coprocessor, for example:

TKNCLU CLU.LOG PL TPRrrrss.CLU

Continue with step 2.

Compiling, Assembling, and Linking

2 If CRS12200.CLU is used to relinquish ownership of segment 2, the developer must load CFCrrrss.CLU as indicated in step 2.
The contents of segment 1 cannot be used as a guide in this case.

A-2 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

5. Compile and link the application under development. Specify the appropriate
options to ensure debugging information is incorporated into the .EXE file
produced (APP.EXE3).

Translating

6. Translate the application to the CP/Q++ executable format:4

CPQXLT APP.EXE APP.XLD

Translate the application a second time, omitting any debug information:4

CPQXLT APP.EXE DOWNLOAD\APP.XLD /NODEBUG

The output files generated in the two translations must have the same name
(for example, APP.XLD) and so must be placed in separate directories.

Building Read-Only Disk Images

7. Create or modify the text file (RODISKIN.TXT5) that lists the names of the
executable files to be loaded and run. In our example, if the developer wanted
an 8K stack, the contents of RODISKIN.TXT might be:

 c:\scctk\obj\app\nt\msvcmasm\download\app.xld 8192

8. Build a read-only disk image that incorporates the application:6

SCCRODSK RODISKIN.TXT APP.ROD

Downloading and Debugging

9. If desired, clear any state the application saved in nonvolatile memory during
previous debug sessions:

TKNCLU CLU.LOG PL TL3rrrss.CLU

10. Download the file generated in step 8 to the coprocessor:7

DRUID APP.ROD C:\SCCTK\ETC\S3KCLRPU.DRK C:\SCCTK\ETC\S3KCLRPP.DRK

11. Wait for the coprocessor to reboot and start the application.

12. Start the debugger and attach to the application:

 ICATCPW

Refer to the IBM 4758 PCI Cryptographic Coprocessor Interactive Code
Analysis Tool (ICAT) User’s Guide for more information.

If changes to the application prove necessary, make them and continue with
step 5.

Testing an SCC Application in a Production Environment

13. At some point it will be necessary to test the application in a production
environment. To do so, remove any debugging code from the application, then
rebuild the application by performing steps 5 through 8 of this procedure. In

3 The developer is free to choose a different file name.

4 The developer is free to choose a different file name for the output file. The first argument is the name of the .EXE file created in
step 5.

5 The developer is free to choose a different file name.

6 The developer is free to choose a different name for the output file. The first argument is the name of the text file mentioned in
the previous footnote.

7 The first argument is the name of the file created in step 8.

 Appendix A. An Overview of the Development Process A-3

 30-JUL-98, 09:17

step 5 do not specify the options that incorporate debugging information in the
.EXE file. In step 6, only one translation need be performed.

14. Load a production-level copy of CP/Q++ (one that lacks the components that
support the debugging of applications) into the development coprocessor using
TNPrrrss.CLU:

TKNCLU CLU.LOG PL TNPrrrss.CLU

15. Clear any state saved in nonvolatile memory using the procedure described in
step 9.

16. Download the file generated in step 8 to the coprocessor using the procedure
described in step 10.

17. Wait for the coprocessor to reboot and start the application.

If changes to the application prove necessary, make them and continue with
step 13. If additional debugging is required, reload TPRrrrss.CLU as indicated
in step 4 and continue with step 5.

Packaging and Releasing an SCC Application

18. Reset the development coprocessor using TRSrrrss.CLU:

TKNCLU CLU.LOG PL TRSrrrss.CLU

If it again becomes necessary to use the coprocessor for development, begin
with step 2 of this procedure.

19. Install the CCA Support Program on the host, install the CCA application in the
coprocessor, and configure the coprocessor as a CCA test node following the
instructions in chapters 3, 4, and 5 of the IBM 4758 PCI Cryptographic
Coprocessor CCA Support Program.

20. Generate three RSA keypairs using TKNSGNR’s KEYGEN function:

TKNSGNR KEYGEN 2 S3KDEVPP.KEY S3KDEVPU.KEY DFT_SKEL.TKN
TKNSGNR KEYGEN 2 DEVSGNPP.KEY DEVSGNPU.KEY DFT_SKEL.TKN
TKNSGNR KEYGEN 2 DEVPKGPP.KEY DEVPKGPU.KEY DFT_SKEL.TKN

The first keypair supplies the key to be saved with the developer's application
in segment 3. The second and third keypairs are used by TKNSGNR and
TKNPKGR, respectively, to generate digital signatures that CLU uses to verify
that IBM has authorized its use.

21. Forward each public key generated in step 20 to IBM. Communicate the hash
value of each public key (the hash value is also generated by the commands in
step 20) to IBM by way of a separate channel to ensure an adversary has not
replaced the developer’s public key file with another.

After an appropriate contract has been signed, IBM supplies a file (DEV3.TXT)
containing a unique owner identifier for the developer and a file (IBMCLT2.TXT)
containing the owner identifier associated with segment 2. IBM also creates

� an emergency signature file (ESIGDEV.SIG) incorporating the developer’s
owner identifier and segment public key and

� a TKNSGNR input file (DEVrrrss.TSK) that loads CP/Q++ into an IBM 4758
shipped from the factory and sets the owner identifier associated with
segment 3 to the developer’s owner identifier.

Finally, IBM supplies certificates for the TKNSGNR and TKNPKGR public files
(DEVSGNPU.CRT and DEVPKGPU.CRT, respectively).

A-4 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

IBM generates a hash of each file (DEV3.HSH, IBMCLT2.HSH, ESIGDEV.HSH,
DEVrrrss.HSH, DEVSGNPU.HSH, and DEVPKGPU.HSH) and forwards the
files and the hashes (by way of a separate channel) to the developer.

22. Verify that the hashes supplied by IBM in step 21 match the files they cover
using TKNSGNR’s HASH_VER function:

TKNSGNR HASH_VER DEV3.HSH DEV3.TXT
TKNSGNR HASH_VER IBMCLT2.HSH IBMCLT2.TXT
TKNSGNR HASH_VER ESIGDEV.HSH ESIGDEV.SIG
TKNSGNR HASH_VER DEVrrrss.HSH DEVrrrss.TSK
TKNSGNR HASH_VER DEVSGNPU.HSH DEVSGNPU.CRT
TKNSGNR HASH_VER DEVPKGPU.HSH DEVPKGPU.CRT

23. Build a version of the application for release (for example, build without
debugging information or debug code and change the value of
pAgentID->DeveloperID in any calls to sccSignOn and the value of
pRequestBlock->AgentID.DeveloperID in any calls to sccRequest to the number
supplied in DEV3.TXT).

24. Create an EMBURN3 command that incorporates the application, IBM’s
segment 2 owner ID, the developer’s owner ID, and the developer’s unique
keys:

TKNSGNR EMBURN3 MYAPP.TSK
part version description

 DEVSGNPU.CRT DEVSGNPP.KEY
APP.ROD title revision

 S3KDEVPP.KEY ESIGDEV.SIG
 ibmclt2 dev3
 1 1

a 0 b 0 c 0 d 0 e 0 0
x 0 0 65535 0 0
x 0 0 65535 0 0

where part, version, and description supply information that is incorporated into
the output file, title and revision supply information that is downloaded to the
coprocessor and stored with the application in segment 3, ibmclt2 is the
number supplied in IBMCLT2.TXT, and dev3 is the number supplied in
DEV3.TXT. See Appendix E, “Using Signer and Packager” on page E-1 for
details.

25. Combine the task file IBM supplies with the file containing the EMBURN3
command:

TKNPKGR DEVPKGPU.CRT DEVPKGPP.KEY
2 DEVrrrss.TSK MYAPP.TSK MYAPP.CLU
part version description

where part, version, and description supply information that is incorporated into
the output file. See Appendix E, “Using Signer and Packager” on page E-1 for
details.

The file generated in this step can be loaded into an empty IBM 4758 or
shipped directly to an end user.

 Appendix A. An Overview of the Development Process A-5

 30-JUL-98, 09:17

A-6 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

 Appendix B. Using CLU

The Coprocessor Load Utility (TKNCLU.EXE) interacts with the coprocessor’s
ROM-based system software to update software in flash. The Coprocessor Load
Utility can also obtain information about the coprocessor or reset the coprocessor.

Syntax

TKNCLU logfilename {PL | RS | ST} [coprocessornumber] [clufilename]

where

� logfilename is the name of a file to which CLU writes information about the
operation and its results.

� The second argument specifies the operation CLU is to perform. Recognized
values are as follows:

– PL - Download a file containing software and/or commands to the
coprocessor.

– RS - Reset the coprocessor.
– ST - Print information about the coprocessor and the software it contains.

� More than one coprocessor may be installed in a host. coprocessornumber
identifies the coprocessor with which CLU is to interact. The default is 0.

The number assigned to a particular coprocessor depends on the order in
which information about devices in the system is presented to the device driver
by the host operating system. At the present time there is no way to tell a
priori which coprocessor will be assigned a given number.

� clufilename is the name of the file containing software and commands to
download to the coprocessor. This name appears only if the PL operation is
specified.

 Copyright IBM Corp. 1998 B-1

 30-JUL-98, 09:17

B-2 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

Appendix C. How to Reboot the IBM 4758

An IBM 4758 can be rebooted in any of several ways:

1. Using CLU’s RS command, for example:

TKNCLU CLU.LOG RS

2. By stopping the device driver and restarting it, for example:

net stop cryptont
net start cryptont

This has the additional benefit of resynchronizing the device driver.

3. The coprocessor reboots at the conclusion of a CLU command or after DRUID
downloads an application.

4. If an application on the host calls sccOpenAdapter and the card needs to be
rebooted, the device driver will do so.

 Copyright IBM Corp. 1998 C-1

 30-JUL-98, 09:17

C-2 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

Appendix D. Building SCC Applications with Microsoft
Developer Studio 97

This appendix describes how to configure Microsoft Developer Studio 97** to
ensure the proper compiler and linker options are used to build an SCC application.
These instructions apply to Microsoft Developer Studio 97** with Microsoft Visual
C++ 5.0.

Required Settings for the Host-Side Portion of an SCC Application
Open the Project Settings dialog (Project/Settings...). The required settings under
each tab are as follows:

 � C/C++

– Precompiled Headers Category -

- Check “Not using precompiled headers”

– Add the paths listed below (adjusted as necessary to account for where the
Developer’s Toolkit directory tree is located) to “Additional include
directories”. The paths must be added in the order shown:

 - ...\scctk\cpqenv\nt\msvcmasm
 - ...\scctk\include\host
 - ...\scctk\include\common

 � Link

 – Object/library modules: Add cryptont.lib

– Add the path listed below (adjusted as necessary to account for where the
Developer’s Toolkit directory tree is located) to “Additional library path”.

 - ...\scctk\lib\host\nt\msvcmasm

Required Settings for the Coprocessor-Side Portion of an SCC
Application

Open the Project Settings dialog (Project/Settings...). The required settings under
each tab are as follows:

 � C/C++ -

– General Category -
- Debug info: Select “C7 Compatible”

– Precompiled Headers Category -
- Check “Not using precompiled headers”

– Preprocessor Category -
- Check “Ignore standard include paths”

Add the paths listed below (adjusted as necessary to account for where
the Developer’s Toolkit directory tree is located) to “Additional include
directories”. The paths must be added in the order shown:
 � ...\scctk\cpqenv\nt\msvcmasm
 � ...\scctk\include\scc
 � ...\scctk\include\common

 Copyright IBM Corp. 1998 D-1

 30-JUL-98, 09:17

– Project Options -
 - Add “/Gs1000000”

 � Link

– General Category -
- Object/library modules: Remove all libraries listed (for example,

kernel32.lib). Add clib.lib, cpqlib.lib, scclib.lib, and smlib.lib
- Check “Generate debug info” and “Ignore all default libraries”
- Uncheck “Link incrementally”

– Customize Category -
- Uncheck “Link incrementally”
- Uncheck “ Use program database”

– Debug Category -
- Check “Debug info” and select “Microsoft format”

– Input Category -
- Check “Ignore all default libraries”
- Object/library modules: Specify clib.lib, cpqlib.lib, scclib.lib, and smlib.lib
- Add the path listed below (adjusted as necessary to account for where

the Developer’s Toolkit directory tree is located) to “Additional library
path”.
 � ...\scctk\lib\scc\nt\msvcmasm

– Output Category -
 - Entry-point symbol: Specify “startup”

– Project Options -
 - Add “/fixed:no”

D-2 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

Appendix E. Using Signer and Packager

This appendix describes the use of the signer and packager utilities and explains
why the design of the coprocessor makes these utilities necessary.1

Coprocessor Memory Segments and Security
The design for the IBM 4758 PCI Cryptographic Coprocessor was motivated by the
need to simultaneously satisfy the following requirements:

1. Code must not be loaded into the coprocessor unless IBM or an agent IBM
trusts has authorized the operation.

2. Once loaded into the coprocessor, code must not run or accumulate state
unless the environment in which it runs is trustworthy.

3. Agents outside the coprocessor that interact with code running on the
coprocessor must be able to verify that the code is legitimate and that the
coprocessor is authentic and has not been tampered with.

4. Shipment and configuration of coprocessors and maintenance on and upgrades
to code inside a coprocessor must not require trusted couriers or security
officers.

5. IBM must not need to examine a developer's code or have any knowledge of a
developer's private cryptographic keys in order to make it possible for
customers to load the developer's code into a coprocessor and run it.2

Toward these ends, the design defines four “segments”:

� Segment 0 is ROM and contains one portion of “Miniboot”. Miniboot is the
most privileged software in the coprocessor and among other things
implements the protocols described in this section.

� Segment 1 is flash and contains the other portion of “Miniboot”. The division of
Miniboot into a ROM portion and a Flash portion preserves flexibility (the Flash
portion can be changed if necessary) while guaranteeing a basic level of
security (implemented in the ROM portion).

� Segment 2 is flash and usually contains the coprocessor operating system.
� Segment 3 is flash and usually contains one or more coprocessor applications.

Segment 0 obviously cannot be changed. Segment 1 can be changed, but should
this prove necessary IBM will provide a file that can be downloaded using CLU to
effect the change. A developer need not use commands that affect segment 1.
The remainder of this chapter therefore deals with changes to segments 2 and 3.

There are seven pieces of information associated with each segment:

1. The identity of the owner of the segment, that is, the party responsible for the
software that is to be loaded into the segment. Owner identifiers are two bytes

1 For a thorough overview of the coprocessor’s security goals and a description of the security architecture, refer to Building a
High-Performance, Programmable Secure Coprocessor, Research Report RC21102 published by the IBM T.J. Watson Research
Center in February 1998.

2 Notice in particular that neither the EMBURN3 nor the REMBURN3 command requires IBM to have a copy of the code in segment
3 or the private key corresponding to the public key associated with segment 3.

 Copyright IBM Corp. 1998 E-1

 30-JUL-98, 09:17

long.3 IBM owns segment 1 and issues an owner identifier to any party that is
developing code to be loaded into segment 2. An owner of segment 2 issues
an owner identifier to any party that is developing code that is to be loaded into
segment 3 under the segment 2 owner’s authority (that is, while the segment 2
owner owns segment 2).

2. The public key for the owner of the segment.
3. The contents of the segment (that is, the operating system or coprocessor

application).
4. Data stored in battery-backed RAM by the code in the segment.
5. The name of the segment (for example, the name of the coprocessor

application).
6. The revision level of the contents of the segment (for example, the version

number of the coprocessor application).
7. A flag indicating whether or not data stored in BBRAM by the code in the

segment is to be cleared if the contents of a more privileged segment change.

Segment 2 and segment 3 can be in one of the following states, depending on how
much of the information associated with the segment has been verified:

� UNOWNED - None of the information associated with the segment has been
set (that is, it is all unreliable).

� OWNED_BUT_UNRELIABLE - The segment has an owner but the rest of the
information associated with the segment is unreliable.

� RELIABLE_BUT_UNRUNNABLE - All of the information associated with the
segment is reliable but the code in the segment should not be allowed to run.

� RUNNABLE - All of the information associated with the segment is reliable and
the code in the segment may be allowed to run.

Miniboot enforces the following rules:4

� If segment 2’s state changes to UNOWNED for any reason, segment 3’s state
is also changed to UNOWNED.

� If segment 2’s state is not RUNNABLE, segment 3’s state cannot be
RUNNABLE. If segment 2’s state changes from RUNNABLE to
OWNED_BUT_UNRELIABLE or to RELIABLE_BUT_UNRUNNABLE, segment
3’s state is changed to RELIABLE_BUT_UNRUNNABLE. If segment 2’s state
changes from RUNNABLE to UNOWNED, segment 3’s state is also changed to
UNOWNED in accordance with the first rule.

� If a segment is not RUNNABLE, the areas of BBRAM controlled by the
segment are cleared (that is, any information an application in the segment
may have saved in BBRAM is lost).

If the coprocessor’s tamper-detection circuitry detects an attempt to compromise
the physical security of the coprocessor, all data in BBRAM is cleared and Miniboot
changes segment 2’s state to UNOWNED. Certain unusual errors affecting
segment 1 or segment 2 can also cause segment 2’s state to change to
UNOWNED, OWNED_BUT_UNRELIABLE, or RELIABLE_BUT_UNRUNNABLE.

3 An owner identifier of all zeros is reserved and means “no owner”. A developer’s owner identifier is not necessarily the same as
the “Developer Identifier” the developer uses when registering coprocessor applications as described in the IBM 4758 PCI
Cryptographic Coprocessor Custom Software Interface Reference.

4 The rules can be expressed in the following manner: 1) a segment can’t be owned if its “parent” isn’t owned and 2) a segment
can’t be RUNNABLE if its parent isn’t RUNNABLE.

E-2 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

Miniboot will not transfer control to segment 2 after the coprocessor is rebooted
unless segment 2’s state is RUNNABLE. The code in segment 2 should not
transfer control to an application in segment 3 unless segment 3’s state is
RUNNABLE.5

Miniboot changes the state of a segment in response to certain commands
Miniboot receives from the host. Figure E-1 shows the state transitions for
segment 2 and Figure E-2 on page E-4 shows the state transitions for segment 3.
A file that is downloaded to the coprocessor using CLU essentially contains one or
more of the pieces of information associated with a segment and one or more
Miniboot commands. The Signer utility generates a file containing a single Miniboot
command and the corresponding segment information and digitally signs it so CLU
can verify the command was produced by an authorized agent. The Packager
utility combines signed commands into a single file so that a single download can
perform several Miniboot commands. A developer who makes a change to an
application during development must use the Signer and the Packager to create a
file that contains the revised application and the necessary commands to load it
into segment 36 and make that segment RUNNABLE. This may entail replacing an
existing copy of the application or loading the application into an empty segment.
In like manner, prior to shipment of the completed application one or more files
must be created to allow the end user to load the application and run it no matter
what state segment 3 is in to begin with.

REMBURN1*
SUROWN2 ESTOWN2UNOWNED

RELIABLE
BUT

UNRUNNABLE

OWNED
BUT

UNRELIABLE

RUNNABLE

REMBURN1*REMBURN1*
SUROWN2

EMBURN2EMBURN2
REMBURN2

EMBURN2
REMBURN2

* This transition occurs if the trust arguments associated with segment 2 indicate the new
segment 1 is not trusted. See “Trust and Countersignature Arguments” on page E-16 for details.

Figure E-1. State Transitions for Segment 2

5 Segment 3’s state is maintained in BBRAM. Information on how to access segment 3’s state will appear in the forthcoming
Miniboot interface document.

6 Or segment 2 if the developer is writing an operating system for the coprocessor.

 Appendix E. Using Signer and Packager E-3

 30-JUL-98, 09:17

REMBURN1
SUROWN2
SUROWN3

1

ESTOWN3UNOWNED

RELIABLE
BUT

UNRUNNABLE

OWNED
BUT

UNRELIABLE

RUNNABLE

REMBURN1
SUROWN2

1

REMBURN1
SUROWN2
SUROWN3

1

EMBURN3
REMBURN3

EMBURN3
REMBURN3

REMBURN2
EMBURN2

2

REMBURN2
EMBURN2

2

EMBURN3

1 This transition occurs if the trust arguments associated with segment 3 indicated the
new segment 1 is not trusted. See “Trust and Countersignature Arguments” on page E-16 for
details.

2 This transition occurs if the trust arguments associated with segment 3 indicated the
new segment 2 is not trusted. See “Trust and Countersignature Arguments” on page E-16 for
details.

Figure E-2. State Transitions for Segment 3

The Signer Utility (TKNSGNR.EXE)
The Signer utility (TKNSGNR.EXE) generates a file containing a single Miniboot
command and digitally signs it so CLU can verify the command was produced by
an authorized agent. The Signer utility also performs certain cryptographic
functions. This section describes the syntax of the TKNSGNR command and
explains the function of the various TKNSGNR options.

Syntax

TKNSGNR [function[arguments]] [-F parm_file_name] [-Q]

The -Q option suppresses all prompts and messages (including error messages). If
-Q is specified and TKNSGNR finds it necessary to issue a prompt, the program
ends in failure. If the -F option is specified, messages are written to a file named
$SIGNER.RSP.

TKNSGNR reads any arguments that appear on the command line. If no
arguments appear on the command line or if the requested function requires more
arguments than are specified on the command line, TKNSGNR reads arguments
from the file named parm_file_name if the -F option is specified. Each argument in

E-4 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

the file appears on a separate line. Once the command line and the file specified
by the -F option, if present, are exhausted, TKNSGNR issues a prompt for each
additional argument required and reads the argument from stdin.

If TKNSGNR reads an argument from stdin, you may select the default for the
argument (if there is one) by entering a null line (that is, by pressing the enter key
when prompted for the argument), and you must enclose the argument in double
quotes if it contains an embedded blank (for example, “This is the description”).

 Signer Operations
The first argument to TKNSGNR specifies the Miniboot command TKNSGNR is to
generate or the cryptographic function TKNSGNR is to perform and may be one of
the following:7

Signer Cryptographic Functions
KEYGEN Generate an RSA key pair.
KEYCERT Create a certificate for a file containing an RSA public key.
HASH_GEN Generate the hash for a file using the SHA1 algorithm.
HASH_VER Verify the hash of a file using the SHA1 algorithm.

Signer Miniboot Command Functions
EMBURN2 Load software into segment 2.
REMBURN2 Replace the software in segment 2.
SUROWN2 Surrender ownership of segment 2.
ESIG3 Generate emergency signature for segment 3.
ESTOWN3 Establish ownership of segment 3.
EMBURN3 Load software into segment 3.
REMBURN3 Replace the software in segment 3.
SUROWN3 Surrender ownership of segment 3.

Signer Miscellaneous Functions
HELP Display instructions about how to use the program.

Signer IBM-Specific Functions
The following functions are used by IBM to initialize and configure the coprocessor
and prepare specific CLU files for developers. Developers writing operating
systems or applications for the coprocessor should not need to use these functions
(although developers may need to supply as input to the packager files supplied by
IBM that direct Miniboot to perform certain of these commands) and they are not
otherwise described.

DATACERT
ESIG2
ESTOWN2
FCVCERT
IBM_INIT
KEYCERT
RECERT

7 Numbers may be used in place of the words listed, as follows: 0 (HELP), 1 (KEYGEN), 2 (HASH_GEN), 3 (HASH_VER), 4
(IBM_INIT), 5 (SIGNFILE), 6 (KEYCERT), 7 (DATACERT), 8 (FCVCERT), 9 (REMBURN1), 10 (REMBURN2), 11 (REMBURN3),
12 (EMBURN2), 13 (EMBURN3), 14 (ESTOWN2), 15 (ESTOWN3), 16 (SUROWN2), 17 (SUROWN3), 18 (ESIG2), 19 (ESIG3),
and 20 (RECERT).

 Appendix E. Using Signer and Packager E-5

 30-JUL-98, 09:17

REMBURN1
SIGNFILE

TKNSGNR ignores the case of its first argument (for example, KEYGEN, keygen,
and KeyGen are equivalent).

The remainder of this section describes each Signer function, including the
arguments it takes, and briefly discusses how it is used during the development
process.

EMBURN2 - Load Software into Segment 2
Syntax

EMBURN2 out_fn filedesc_args sigkey_args image_args privkey_fn esig_fn
ownid trust1_fl type1_target_args

EMBURN2 creates a file that can be downloaded into coprocessor segment 2,
which normally contains the coprocessor operating system. The file includes the
public key to be associated with segment 2 and the code to load into segment 2. A
developer only needs to use this command if the developer is writing an operating
system for the coprocessor.

Segment 2 must be owned before an EMBURN2 command can be issued. The file
this command causes TKNSGNR to create will often be packaged with commands
to ensure the proper agent owns segment 2 (for example, SUROWN2 followed by
ESTOWN2). The EMBURN2 command causes the coprocessor to clear data
previously stored in BBRAM by code in segment 2 or segment 3.

This command takes the following arguments:

� out_fn is the name of the file TKNSGNR generates to hold the EMBURN2
command. By convention, the file extension is TSK.

� filedesc_args provides certain descriptive information that is incorporated into
the output file. See “File Description Arguments” on page E-15 for details.

� sigkey_args specifies the RSA private key that TKNSGNR will use to sign the
output file and the certificate provided by IBM for the corresponding RSA public
key. See “Signature Key Arguments” on page E-15 for details.

� image_args specifies the name of the file that contains the code to be loaded
into segment 2 and provides certain descriptive information about the code that
is also downloaded to the coprocessor. See “Image File Arguments” on
page E-16 for details.

� privkey_fn is the name of a file that contains an RSA keypair. The public key
in this file is the new public key to be associated with segment 2.8 This key is
downloaded to the coprocessor and is used to authenticate subsequent
commands that affect segment 2. The key must be the same as the public key
contained in the emergency signature information in the esig_fn file.

TKNSGNR includes in the output file a hash of the file enciphered using the
private key in the privkey_fn file. The coprocessor uses the public key in the
emergency signature information in the esig_fn file to validate the hash and
rejects the EMBURN2 command if the validation fails.

8 If desired, the new public key may be the same as the public key currently associated with segment 2, if there is one.

E-6 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

� esig_fn is the name of the file that contains emergency signature information
provided by IBM. It includes the public key from the privkey_fn file and
includes a hash of the emergency signature information enciphered using the
private key corresponding to the public key associated with segment 1. The
coprocessor uses the public key associated with segment 1 to validate the
hash and rejects the EMBURN2 command if the validation fails.

� ownid is the owner identifier currently associated with segment 2. The
coprocessor compares this value to the owner identifier stored in the
coprocessor and rejects the EMBURN2 command if the two identifiers are not
equal.

� trust1_fl indicates whether or not segment 2s state is to be changed to
UNOWNED if the contents of segment 1 change. This flag is downloaded to
the coprocessor. See “Trust and Countersignature Arguments” on page E-16
for details.

� type1_target_args specifies certain conditions that the coprocessor checks
before it accepts the new segment 2 information. See “Targeting Arguments”
on page E-17 for details.

EMBURN3 - Load Software into Segment 3
Syntax

EMBURN3 out_fn filedesc_args sigkey_args image_args privkey_fn esig_fn
seg2_ownid seg3_ownid trust1_fl trust2_fl type2_target_args

EMBURN3 creates a file that can be downloaded into coprocessor segment 3,
which normally contains a read-only disk image of a coprocessor application. The
file includes the public key to be associated with segment 3 and the disk image to
load into segment 3.

Segment 3 must be owned before an EMBURN3 command can be issued. The file
this command causes TKNSGNR to create will often be packaged with commands
to ensure the proper agent owns segment 3 (for example, SUROWN3 followed by
ESTOWN3). The EMBURN3 command causes the coprocessor to clear data
previously stored in BBRAM by code in segment 3.

This command takes the following arguments:

� out_fn is the name of the file TKNSGNR generates to hold the EMBURN3
command. By convention, the file extension is TSK.

� filedesc_args provides certain descriptive information that is incorporated into
the output file. See “File Description Arguments” on page E-15 for details.

� sigkey_args specifies the RSA private key that TKNSGNR will use to sign the
output file and the certificate provided by IBM for the corresponding RSA public
key. See “Signature Key Arguments” on page E-15 for details.

� image_args specifies the name of the file that is to be loaded into segment 3
(for example, the file that contains the read-only disk image) and provides
certain descriptive information about the image that is also downloaded to the
coprocessor. See “Image File Arguments” on page E-16 for details.

� privkey_fn is the name of a file that contains an RSA keypair. The public key
in this file is the new public key to be associated with segment 3.9 This key is
downloaded to the coprocessor and is used to authenticate subsequent

9 If desired, the new public key may be the same as the public key currently associated with segment 3, if there is one.

 Appendix E. Using Signer and Packager E-7

 30-JUL-98, 09:17

commands that affect segment 3. The key must be the same as the public key
contained in the emergency signature information in the esig_fn file.

TKNSGNR includes in the output file a hash of the file enciphered using the
private key in the privkey_fn file. The coprocessor uses the public key in the
emergency signature information in the esig_fn file to validate the hash and
rejects the EMBURN3 command if the validation fails.

� esig_fn is the name of the file that contains emergency signature information
provided by IBM. It includes the public key from the privkey_fn file and
includes a hash of the emergency signature information enciphered using the
private key corresponding to the public key associated with segment 2. The
coprocessor uses the public key associated with segment 2 to validate the
hash and rejects the EMBURN3 command if the validation fails.

� seg2_ownid is the owner identifier associated with segment 2. The
coprocessor compares this value to the owner identifier stored in the
coprocessor and rejects the EMBURN3 command if the two identifiers are not
equal.

� seg3_ownid is the owner identifier associated with segment 3. The
coprocessor compares this value to the owner identifier stored in the
coprocessor and rejects the EMBURN3 command if the two identifiers are not
equal.

� trust1_fl indicates whether or not segment 3’s state is to be changed to
UNOWNED if the contents of segment 1 change. This flag is downloaded to
the coprocessor. See “Trust and Countersignature Arguments” on page E-16
for details.

� trust2_fl indicates whether or not segment 3’s state is to be changed to
UNOWNED if the contents of segment 2 change. This flag is downloaded to
the coprocessor. See “Trust and Countersignature Arguments” on page E-16
for details.

� type2_target_args specifies certain conditions that the coprocessor checks
before it accepts the new segment 3 information. See “Targeting Arguments”
on page E-17 for details.

ESIG3 - Build Emergency Signature for Segment 3
Syntax

ESIG3 out_fn pubkey_fn privkey_fn seg2_ownid seg3_ownid type2_target_args

ESIG3 creates a file containing an “emergency signature” that can be provided as
an argument to the EMBURN3 command. A developer will only need to use this
command if the developer is writing an operating system for the coprocessor: the
developer owns segment 2 and uses the ESIG3 command to certify a public key
supplied by an agent developing a segment 3 application to run on top of the
operating system.

This command takes the following arguments:

� out_fn is the name of the file TKNSGNR generates to hold the emergency
signature. By convention, the file extension is BIN.

� pubkey_fn is the name of the file that contains the public key to be associated
with segment 3.

� privkey_fn is the name of a file that contains an RSA keypair. The public key
in this file must be the public key associated with segment 2. TKNSGNR
includes in the output file a hash of the file enciphered using the private key

E-8 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

from the privkey_fn file. The coprocessor uses the public key associated with
segment 2 to validate the hash and rejects the EMBURN3 command that
contains the emergency signature if the validation fails.

� seg2_ownid is the owner identifier associated with segment 2. The
coprocessor compares this value to the owner identifier stored in the
coprocessor and rejects the EMBURN3 command that contains the emergency
signature if the two identifiers are not equal.

� seg3_ownid is the owner identifier associated with segment 3. This identifier is
assigned by the developer (that is, the segment 2 owner).

� type2_target_args specifies certain conditions that the coprocessor checks
before it accepts the new segment 3 information provided by the EMBURN3
command that contains the emergency signature. See “Targeting Arguments”
on page E-17 for details.

ESTOWN3 - Establish Ownership of Segment 3
Syntax

ESTOWN3 out_fn filedesc_args sigkey_args privkey_fn seg2_ownid seg3_ownid
 type2_target_args

ESTOWN3 creates a file that directs Miniboot to establish ownership of segment 3,
that is, to change segment 3’s state from UNOWNED to
OWNED_BUT_UNRELIABLE. The file includes the owner identifier of the new
owner, which is saved in the coprocessor. A developer will only need to use this
command if the developer is writing an operating system for the coprocessor: the
developer owns segment 2 and uses the ESTOWN3 command to assign ownership
of segment 3 to an agent developing a segment 3 application to run on top of the
operating system.

Segment 3 must be unowned before an ESTOWN3 command can be issued. The
file this command causes TKNSGNR to create will often be packaged with
commands to surrender ownership of segment 3 and load software into segment 3
after the new owner is established (for example, SUROWN3 and EMBURN3).

This command takes the following arguments:

� out_fn is the name of the file TKNSGNR generates to hold the ESTOWN3
command. By convention, the file extension is TSK.

� filedesc_args provides certain descriptive information that is incorporated into
the output file. See “File Description Arguments” on page E-15 for details.

� sigkey_args specifies the RSA private key that TKNSGNR will use to sign the
output file and the certificate provided by IBM for the corresponding RSA public
key. See “Signature Key Arguments” on page E-15 for details.

� privkey_fn is the name of a file that contains an RSA keypair. The public key
in this file must be the public key associated with segment 2. TKNSGNR
includes in the output file a hash of the file enciphered using the private key
from the privkey_fn file. The coprocessor uses the public key associated with
segment 2 to validate the hash and rejects the ESTOWN3 command if the
validation fails.

� seg2_ownid is the owner identifier currently associated with segment 2. The
coprocessor compares this value to the owner identifier stored in the
coprocessor and rejects the ESTOWN3 command if the two identifiers are not
equal.

 Appendix E. Using Signer and Packager E-9

 30-JUL-98, 09:17

� seg3_ownid is the owner identifier to be associated with segment 3. This
identifier is assigned by the developer (that is, the segment 2 owner).

� type2_target_args specifies certain conditions that the coprocessor checks
before it accepts the ESTOWN3 command. See “Targeting Arguments” on
page E-17 for details.

HASH_GEN - Generate Hash for File
Syntax

HASH_GEN in_fn out_fn

HASH_GEN uses the SHA1 algorithm to generate a hash for the file in_fn and
writes the result to the file out_fn. The output file consists of groups of five
characters representing hexadecimal digits separated by blanks (for example, 03A2
8989 BD90 FFED 0078).

HASH_VER - Verify Hash of File
Syntax

HASH_VER data_fn hash_fn

HASH_VER verifies that the hash in the file hash_fn matches the hash the
HASH_GEN function would generate given data_fn as input and issues a message
indicating the result (unless the -Q option is specified when TKNSGNR is invoked).
The hash_fn file has the same format as the out_fn file generated by the
HASH_GEN function.

KEYGEN - Generate RSA Key Pair
Syntax

KEYGEN {0 | 2} keypair_fn pubkey_fn skeleton_fn

KEYGEN 1 keypair_fn pubkey_fn skeleton_fn transkey_fn

KEYGEN 3 pubkey_fn skeleton_fn {0 | 1}

KEYGEN generates an RSA keypair and saves it in the file keypair_fn. The public
key is also saved in the file pubkey_fn and the hash of the public key10 is saved in
a file with the same name as pubkey_fn and extension HSH. The file skeleton_fn
determines certain characteristics of the keypair, including the key length (that is,
the number of bits in the modulus) and the public key exponent. One or more
standard skeletons are provided with the Developer’s Toolkit. A developer can also
generate customized skeleton files. The file transkey_fn contains an RSA public
key.

TKNSGNR uses the PKA_Key_Generate CCA verb to generate the keypair. The
first argument to KEYGEN determines the rule_array parameter passed with the
PKA_Key_Generate verb, as follows:

10 The KEYGEN command computes the hash in the same manner and stores it in the same format as the HASH_GEN command.

E-10 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

� 0 - Use MASTER for the rule_array parameter. This causes the coprocessor to
encrypt the RSA keypair in keypair_fn with the coprocessor CCA master key
before returning the keypair.

� 1 - Use XPORT for the rule_array parameter. This causes the coprocessor to
encrypt the RSA keypair in keypair_fn with the RSA public key in transkey_fn
before returning the keypair.

� 2 - Use CLEAR for the rule_array parameter. This causes the coprocessor to
return the RSA keypair in keypair_fn “in the clear” (that is, the file is not
encrypted).

� 3 - Use RETAIN for the rule_array parameter. This causes the coprocessor to
retain the RSA keypair and not write it to the host. Specify 1 as the last
argument if the retained key may be cloned and specify 0 if it may not.

Refer to the IBM 4758 CCA Basic Services Reference and Guide, SC31-8609 for
details on the format of skeleton files and the PKA_Key_Generate CCA verb.

REMBURN2 - Replace Software in Segment 2
Syntax

REMBURN2 out_fn filedesc_args sigkey_args image_args pubkey_fn privkey_fn
ownid trust1_fl type2_target_args type3_csign_args

REMBURN2 creates a file that can be downloaded into coprocessor segment 2,
which normally contains the coprocessor operating system. The file includes the
public key to be associated with segment 2 and the code to load into segment 2. A
developer will only need to use this command if the developer is writing an
operating system for the coprocessor.

Segment 2 must already be occupied (that is, segment 2’s state must be
RUNNABLE or RUNNABLE_BUT_UNRELIABLE) before a REMBURN2 command
can be issued.

This command takes the following arguments:

� out_fn is the name of the file TKNSGNR generates to hold the REMBURN2
command. By convention, the file extension is TSK.

� filedesc_args provides certain descriptive information that is incorporated into
the output file. See “File Description Arguments” on page E-15 for details.

� sigkey_args specifies the RSA private key that TKNSGNR will use to sign the
output file and the certificate provided by IBM for the corresponding RSA public
key. See “Signature Key Arguments” on page E-15 for details.

� image_args specifies the name of the file that contains the code to be loaded
into segment 2 and provides certain descriptive information about the code that
is also downloaded to the coprocessor. See “Image File Arguments” on
page E-16 for details.

� pubkey_fn is the name of the file that contains the public key to be associated
with segment 2.11 This key is downloaded to the coprocessor (replacing the key
that is already there) and is used to authenticate subsequent commands that
affect segment 2.

� privkey_fn is the name of a file that contains an RSA keypair. The public key
in this file must be the public key associated with segment 2. TKNSGNR

11 If desired, the new public key may be the same as the public key currently associated with the segment.

 Appendix E. Using Signer and Packager E-11

 30-JUL-98, 09:17

includes in the output file a hash of the file enciphered using the private key
from the privkey_fn file. The coprocessor uses the public key associated with
segment 2 to validate the hash and rejects the REMBURN2 command if the
validation fails.

� ownid is the owner identifier associated with segment 2. The coprocessor
compares this value to the owner identifier stored in the coprocessor and
rejects the REMBURN2 command if the two identifiers are not equal.

� trust1_fl indicates whether or not segment 2's state is to be changed to
UNOWNED if the contents of segment 1 change. See “Trust and
Countersignature Arguments” on page E-16 for details.

� type2_target_args specifies certain conditions that the coprocessor checks
before it accepts the new segment 2 information. See “Targeting Arguments”
on page E-17 for details.

� type3_csign_args specifies certain conditions that determine whether or not
Miniboot changes segment 3's state to RELIABLE_BUT_UNRUNNABLE while
updating segment 2.12 See “Trust and Countersignature Arguments” on
page E-16 for details.

REMBURN3 - Replace Software in Segment 3
Syntax

REMBURN3 out_fn filedesc_args sigkey_args image_args pubkey_fn privkey_fn
seg2_ownid seg3_ownid trust1_fl trust2_fl type3_target_args

REMBURN3 creates a file that can be downloaded into coprocessor segment 3,
which normally contains a read-only disk image of a coprocessor application. The
file includes the public key to be associated with segment 3 and the disk image to
load into segment 3.

Segment 3 must already be occupied (that is, segment 3’s state must be
RUNNABLE or RUNNABLE_BUT_UNRELIABLE) before a REMBURN3 command
can be issued.

This command takes the following arguments:

� out_fn is the name of the file TKNSGNR generates to hold the REMBURN3
command. By convention, the file extension is TSK.

� filedesc_args provides certain descriptive information that is incorporated into
the output file. See “File Description Arguments” on page E-15 for details.

� sigkey_args specifies the RSA private key that TKNSGNR will use to sign the
output file and the certificate provided by IBM for the corresponding RSA public
key. See “Signature Key Arguments” on page E-15 for details.

� image_args specifies the name of the file that is to be loaded into segment 3
and provides certain descriptive information about the code that is also
downloaded to the coprocessor. See “Image File Arguments” on page E-16 for
details.

� pubkey_fn is the name of the file that contains the public key to be associated
with segment 3.13 This key is downloaded to the coprocessor (replacing the key
that is already there) and is used to authenticate subsequent commands that
affect segment 3.

12 The change to segment 3’s state and the updates of segment 2 are performed automatically.

13 If desired, the new public key may be the same as the public key currently associated with the segment.

E-12 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

� privkey_fn is the name of a file that contains an RSA keypair. The public key
in this file must be the public key associated with segment 3. TKNSGNR
includes in the output file a hash of the file enciphered using the private key
from the privkey_fn file. The coprocessor uses the public key associated with
segment 3 to validate the hash and rejects the REMBURN3 command if the
validation fails.

� seg2_ownid is the owner identifier associated with segment 2. The
coprocessor compares this value to the owner identifier stored in the
coprocessor and rejects the REMBURN3 command if the two identifiers are not
equal.

� seg3_ownid is the owner identifier associated with segment 3. The
coprocessor compares this value to the owner identifier stored in the
coprocessor and rejects the REMBURN3 command if the two identifiers are not
equal.

� trust1_fl indicates whether or not segment 3’s state is to be changed to
UNOWNED if the contents of segment 1 change. See “Trust and
Countersignature Arguments” on page E-16 for details.

� trust2_fl indicates whether or not segment 3’s state is to be changed to
UNOWNED if the contents of segment 2 change. See “Trust and
Countersignature Arguments” on page E-16 for details.

� type3_target_args specifies certain conditions that the coprocessor checks
before it accepts the new segment 3 information. See “Targeting Arguments”
on page E-17 for details.

SUROWN2 - Surrender Ownership of Segment 2
Syntax

SUROWN2 out_fn filedesc_args sigkey_args privkey_fn ownid type2_target_args

SUROWN2 creates a file that directs Miniboot to surrender ownership of segment
2, that is, to change segment 2’s state to UNOWNED.14 A developer will only need
to use this command if the developer is writing an operating system for the
coprocessor.

Segment 2 must be owned before a SUROWN2 command can be issued. The file
this command causes TKNSGNR to create will often be packaged with commands
to grant ownership of segment 2 to another agent and load software into segment 2
(for example, ESTOWN2 followed by EMBURN2).

This command takes the following arguments:

� out_fn is the name of the file TKNSGNR generates to hold the SUROWN2
command. By convention, the file extension is TSK.

� filedesc_args provides certain descriptive information that is incorporated into
the output file. See “File Description Arguments” on page E-15 for details.

� sigkey_args specifies the RSA private key that TKNSGNR will use to sign the
output file and the certificate provided by IBM for the corresponding RSA public
key. See “Signature Key Arguments” on page E-15 for details.

� privkey_fn is the name of a file that contains an RSA keypair. The public key
in this file must be the public key associated with segment 2. TKNSGNR
includes in the output file a hash of the file enciphered using the private key

14 This also changes segment 3’s state to UNOWNED.

 Appendix E. Using Signer and Packager E-13

 30-JUL-98, 09:17

from the privkey_fn file. The coprocessor uses the public key associated with
segment 2 to validate the hash and rejects the SUROWN2 command if the
validation fails.

� ownid is the owner identifier associated with segment 2. The coprocessor
compares this value to the owner identifier stored in the coprocessor and
rejects the SUROWN2 command if the two identifiers are not equal.

� type2_target_args specifies certain conditions that the coprocessor checks
before it accepts the SUROWN2 command. See “Targeting Arguments” on
page E-17 for details.

SUROWN3 - Surrender Ownership of Segment 3
Syntax

SUROWN3 out_fn filedesc_args sigkey_args image_args privkey_fn seg2_ownid seg3_ownid
 type3_target_args

SUROWN3 creates a file that directs Miniboot to surrender ownership of segment
3, that is, to change segment 3’s state to UNOWNED.

Segment 3 must be owned before a SUROWN3 command can be issued. The file
this command causes TKNSGNR to create will often be packaged with commands
to grant ownership of segment 3 to another agent and load software into segment 3
(for example, ESTOWN3 followed by EMBURN3).

This command takes the following arguments:

� out_fn is the name of the file TKNSGNR generates to hold the SUROWN3
command. By convention, the file extension is TSK.

� filedesc_args provides certain descriptive information that is incorporated into
the output file. See “File Description Arguments” on page E-15 for details.

� sigkey_args specifies the RSA private key that TKNSGNR will use to sign the
output file and the certificate provided by IBM for the corresponding RSA public
key. See “Signature Key Arguments” on page E-15 for details.

� privkey_fn is the name of a file that contains an RSA keypair. The public key
in this file must be the public key associated with segment 3. TKNSGNR
includes in the output file a hash of the file enciphered using the private key
from the privkey_fn file. The coprocessor uses the public key associated with
segment 3 to validate the hash and rejects the SUROWN3 command if the
validation fails.

� seg2_ownid is the contains the owner identifier. The coprocessor compares
this value to the owner identifier stored in the coprocessor and rejects the
REMBURN3 command if the two identifiers are not equal.

� seg3_ownid is the owner identifier associated with segment 3. The
coprocessor compares this value to the owner identifier stored in the
coprocessor and rejects the REMBURN3 command if the two identifiers are not
equal.

� type3_target_args specifies certain conditions that the coprocessor checks
before it accepts the SUROWN3 command. See “Targeting Arguments” on
page E-17 for details.

E-14 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

File Description Arguments
TKNPKGR and many TKNSGNR functions take as arguments certain descriptive
information that is incorporated into the files TKNPKGR and TKNSGNR generate.
The format of these arguments is as follows:

partnumber ECnumber description

where

� partnumber is a string containing up to eight characters. The string is padded
with blanks to the full eight characters before it is incorporated into the output
file.

� ECnumber is a string containing up to eight characters. The string is padded
with blanks to the full eight characters before it is incorporated into the output
file.

� description is a string containing up to 80 characters. The string is padded with
blanks to the full 80 characters before it is incorporated into the output file.

partnumber is intended to uniquely identify a particular component of a software
package (for example, a particular application in a suite). ECnumber is intended to
identify the revision level of the component.

Signature Key Arguments
TKNSGNR and TKNPKGR incorporate a digital signature in files they generate that
are destined to be input to CLU. This allows CLU to verify that the file was
generated by an agent authorized to do so by IBM (or by an authority IBM has so
authorized).15 The format of these arguments is

sigkey_cert_fn sigkey_fn

where

� sigkey_cert_fn is the name of the certificate file for the key to be used to sign
the output file.

� sigkey_fn is the name of the file containing the RSA private key to be used to
sign the output file.

When TKNSGNR creates an output file containing a Miniboot command,
TKNSGNR incorporates the certificate from the sigkey_cert_fn file, computes a
hash of the output file, encrypts the hash with the private key in the sigkey_fn file,
and appends the encrypted hash to the output file. When CLU processes the file,
CLU computes the hash of the relevant portions of the file, extracts the public key
from the certificate using the public key corresponding to the private key used to
create the certificate16, uses the extracted key to decrypt the hash, and verifies that
the two hash values match.

15 The signature key arguments are for the purposes of administrative control. Core security is provided by verification of other
signatures and is performed inside the coprocessor.

16 The public key is compiled into CLU.

 Appendix E. Using Signer and Packager E-15

 30-JUL-98, 09:17

Image File Arguments
Many TKNSGNR functions incorporate an image file (for example, the code that is
to be loaded into a segment) into the file TKNSGNR generates. The format of the
arguments that apply to an image file is as follows:

image_fn title revision

where

� image_fn is the name of the file to incorporate in the output file.
� title is a string containing up to 80 characters. The string is padded with blanks

to the full 80 characters before it is incorporated into the output file.
� revision is a number between 0 and 65535, inclusive.

revision and the last 32 bytes of title can be referenced in targeting information.
See “Targeting Arguments” on page E-17 for details.

Trust and Countersignature Arguments
Recall that one of the primary design goals for the IBM 4758 PCI Cryptographic
Coprocessor was to ensure that software in the coprocessor must not run or
accumulate state unless the environment in which it runs is trustworthy. The use of
digital signatures ensures that changes to a segment are authorized (hence trusted)
by segments with greater privilege (for example, the initial load of segment 3 must
be authorized by the owner of segment 2). But trust operates both ways: changes
to a segment that are not trusted by a segment with lesser privilege cause the state
of the segment with lesser privilege to become unrunnable (for example, untrusted
changes to segment 1 make segment 3 unrunnable).

The TKNSGNR functions that replace the contents of a segment (EMBURN2,
EMBURN3, REMBURN2, and REMBURN3) include a flag that indicates how the
coprocessor is to change the state of the segment if the contents of a more
privileged segment change as a result of a REMBURN command. (Changes
caused by an EMBURN command are always untrusted.) See “Coprocessor
Memory Segments and Security” on page E-1 for details on segment states. The
flag may be 1 (always trust the new more privileged segment), 2 (never trust the
new more privileged segment), or 3 (trust the new more privileged segment only if it
is countersigned).

If a segment S specifies a trust flag of 1 with respect to a more privileged segment
S', S always trusts changes to S'. A REMBURN command that changes the
contents of S' does not affect the state of S.

If a segment S specifies a trust flag of 2 with respect to a more privileged segment
S', S never trusts changes to S'. A REMBURN command that changes the
contents of S' changes the state of S to RELIABLE_BUT_UNRUNNABLE or to
UNOWNED.17 Note that an EMBURN command that changes the contents of S'
causes S's state to change in this manner regardless of the value of the trust flag.

If a segment S specifies a trust flag of 3 with respect to a more privileged segment
S', S trusts changes to S' only if the new image of S' is countersigned with the
private key corresponding to the public key associated with S. The coprocessor

17 See Figure E-1 on page E-3 and Figure E-2 on page E-4.

E-16 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

validates the countersignature and changes the state of S to
RELIABLE_BUT_UNRUNNABLE or to UNOWNED18 if the countersignature is
incorrect.

REMBURN commands that affect segments other than segment 3 (for example,
REMBURN2) must therefore include arguments to supply a countersignature. The
format of the countersignature arguments is

{NoCSig2 | privkey_fn type2_target_args} {NoCSig3 | privkey_fn type3_target_args}

where

� NoCSig2 indicates there is no countersignature provided by segment 2. This
option is only applicable to the REMBURN1 command and must be specified
exactly as shown (that is, case is important)

� NoCSig3 indicates there is no countersignature provided by segment 3. This
option applies to the REMBURN1 and REMBURN2 commands and must be
specified exactly as shown (that is, case is important).

� privkey_fn is the name of a file that contains an RSA keypair. The public key
in this file must be the public key associated with the segment that requires the
countersignature (for example, the public key for segment 3 if privkey_fn
appears instead of NoCSig3). If privkey_fn appears, the segment providing the
key can also provide a set of targeting arguments for the segment providing the
key and each more privileged segment. See “Targeting Arguments” or details.

 Targeting Arguments
The TKNSGNR functions that generate Miniboot commands (EMBURN2,
EMBURN3, ESIG3, ESTOWN3, REMBURN2, REMBURN3, SUROWN2, and
SUROWN3) incorporate information that specifies certain conditions that must be
met before the coprocessor will accept and process the command. Because this
information can be used to restrict a command so that it can only be used with
coprocessors that already contain certain software or even with a specific individual
coprocessor, it is called "targeting information". The format of the arguments that
specify targeting information is

RTCid RTCid_mask VPDserno VPDserno_mask VPDpartno VPDpartno_mask VPDecno
VPDecno_mask VPDflags VPDflags_mask bootcount_fl [bootcount_left[bootcount_right]]
seg1_info [seg2_info[seg3_info]]

where

� RTCid and RTCid_mask specify a range of permitted values for the serial
number incorporated in the coprocessor chip that implements the real-time
clock and the battery-backed RAM.19 Each of these arguments is a string and
may contain as many as eight characters. The arguments should have the
same length.

Each character in RTCid_mask must be either ASCII 0 or ASCII 1. TKNSGNR
uses RTCid_mask to construct an 8-byte hexadecimal number. Each byte in

18 See Figure E-1 on page E-3 and Figure E-2 on page E-4.

19 That is, the value sccGetConfig returns in pInfo->AdapterID. Refer to the IBM 4758 PCI Cryptographic Coprocessor Custom
Software Interface Reference for details.

 Appendix E. Using Signer and Packager E-17

 30-JUL-98, 09:17

the hexadecimal number is set to 0xFF if the corresponding character in
RTCid_mask is ASCII 1 and is set to 0x00 otherwise.

TKNSGNR logically ANDs RTCid with the hexadecimal number derived from
RTCid_mask and passes the result to the coprocessor. The coprocessor
logically ANDs the serial number incorporated in the coprocessor’s real-time
clock chip with the hexadecimal number derived from RTCid_mask and
compares the result to the value generated by TKNSGNR. If they are not
equal, the Miniboot command that incorporates the targeting information is
rejected.

If a command is intended to apply to all possible coprocessors, specify an
arbitrary character for RTCid and 0 for RTCid_mask.

� VPDserno and VPDserno_mask specify a range of permitted values for the
coprocessor’s IBM serial number.20 Each of these arguments is a string and
may contain as many as eight characters. The arguments should have the
same length.

Each character in VPDserno_mask must be either ASCII 0 or ASCII 1.
TKNSGNR uses VPDserno_mask to construct an 8-byte hexadecimal number.
Each byte in the hexadecimal number is set to 0xFF if the corresponding
character in VPDserno_mask is ASCII 1 and is set to 0x00 otherwise.

TKNSGNR logically ANDs VPDserno with the hexadecimal number derived
from VPDserno_mask and passes the result to the coprocessor. The
coprocessor logically ANDs the coprocessor’s IBM serial number with the
hexadecimal number derived from VPDserno_mask and compares the result to
the value generated by TKNSGNR. If they are not equal, the Miniboot
command that incorporates the targeting information is rejected.

If a command is intended to apply to all possible coprocessors, specify an
arbitrary character for VPDserno and 0 for for VPDserno_mask.

� VPDpartno and VPDpartno_mask specify a range of permitted values for the
coprocessor’s IBM part number.21 Each of these arguments is a string and may
contain as many as seven characters. The arguments should have the same
length.

Each character in VPDpartno_mask must be either ASCII 0 or ASCII 1.
TKNSGNR uses VPDpartno_mask to construct a 7-byte hexadecimal number.
Each byte in the hexadecimal number is set to 0xFF if the corresponding
character in VPDpartno_mask is ASCII 1 and is set to 0x00 otherwise.

TKNSGNR logically ANDs VPDpartno with the hexadecimal number derived
from VPDpartno_mask and passes the result to the coprocessor. The
coprocessor logically ANDs the coprocessor’s IBM part number with the
hexadecimal number derived from VPDpartno_mask and compares the result to
the value generated by TKNSGNR. If they are not equal, the Miniboot
command that incorporates the targeting information is rejected.

If a command is intended to apply to all possible coprocessors, specify an
arbitrary character for VPDpartno and 0 for VPDpartno_mask.

20 That is, the value sccGetConfig returns in pInfo->VPD.sn. Refer to the IBM 4758 PCI Cryptographic Coprocessor Custom
Software Interface Reference for details.

21 That is, the value sccGetConfig returns in pInfo->VPD.pn. Refer to the IBM 4758 PCI Cryptographic Coprocessor Custom
Software Interface Reference for details.

E-18 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

� VPDecno and VPDecno_mask specify a range of permitted values for the
coprocessor’s IBM engineering change level.22 Each of these arguments is a
string and may contain as many as seven characters. The arguments should
have the same length.

Each character in VPDecno_mask must be either ASCII 0 or ASCII 1.
TKNSGNR uses VPDecno_mask to construct a 7-byte hexadecimal number.
Each byte in the hexadecimal number is set to 0xFF if the corresponding
character in VPDecno_mask is ASCII 1 and is set to 0x00 otherwise.

TKNSGNR logically ANDs VPDecno with the hexadecimal number derived from
VPDecno_mask and passes the result to the coprocessor. The coprocessor
logically ANDs the coprocessor’s IBM engineering change level with the
hexadecimal number derived from VPDecno_mask and compares the result to
the value generated by TKNSGNR. If they are not equal, the Miniboot
command that incorporates the targeting information is rejected.

If a command is intended to apply to all possible coprocessors, specify an
arbitrary character for VPDecno and 0 for VPDecno_mask.

� VPDflags and VPDflags_mask specify a range of permitted values for the
coprocessor’s VPD flags.23 Each of these arguments is a string and may
contain as many as 32 characters. The arguments should have the same
length.

Each character in VPDflags_mask must be either ASCII 0 or ASCII 1.
TKNSGNR uses VPDflags_mask to construct a 32-byte hexadecimal number.
Each byte in the hexadecimal number is set to 0xFF if the corresponding
character in VPDflags_mask is ASCII 1 and is set to 0x00 otherwise.

TKNSGNR logically ANDs VPDflags with the hexadecimal number derived from
VPDflags_mask and passes the result to the coprocessor. The coprocessor
logically ANDs the last 32 bytes of the coprocessor’s Vital Product Data record
with the hexadecimal number derived from VPDflags_mask and compares the
result to the value generated by TKNSGNR. If they are not equal, the Miniboot
command that incorporates the targeting information is rejected.

If a command is intended to apply to all possible coprocessors, specify an
arbitrary character for VPDflags and 0 for VPDflags_mask.

� bootcount_fl, bootcount_left, and bootcount_right are used as follows: each
time the coprocessor boots, it increments one of two counters. The “left count”
is a 16-bit number kept in EEPROM that is zero when the coprocessor leaves
the factory and is incremented each time the coprocessor boots in a zeroized
state (that is, each time the coprocessor is revived after having cleared memory
upon detecting an attempt to compromise the coprocessor’s security). The
“right count” is a 32-bit number that is zero when the coprocessor leaves the
factory and is incremented each time the coprocessor is booted in a
nonzeroized state.24 It is set to zero if the coprocessor detects an attempt to

22 That is, the value sccGetConfig returns in pInfo->VPD.ec. Refer to the IBM 4758 PCI Cryptographic Coprocessor Custom
Software Interface Reference for details.

23 That is, the value sccGetConfig returns in the last sixteen bytes of pInfo->VPD.reserved. Refer to the IBM 4758 PCI
Cryptographic Coprocessor Custom Software Interface Reference for details.

24 Every boot increments either the left count or the right count, so the full 48-bit boot count always increases with each boot. If
incrementing either the left count or the right count would cause the counter to overflow, the boot process halts in error.

 Appendix E. Using Signer and Packager E-19

 30-JUL-98, 09:17

compromise the coprocessor’s security.25 bootcount_fl, bootcount_left, and
bootcount_right specify a range of permitted values for the left and right
counts.

bootcount_fl may be 0, 1, or 2. If bootcount_fl is 0, bootcount_left and
bootcount_right do not appear and the Miniboot command that incorporates
the targeting information is accepted regardless of the left and right counts.

If bootcount_fl is 1, bootcount_left is compared to the left count. The Miniboot
command that incorporates the targeting information is rejected if the left count
is greater than bootcount_left. bootcount_left must be between 0 and 65535,
inclusive, and bootcount_right does not appear in this case.

If bootcount_fl is 2, bootcount_left is compared to the left count and
bootcount_right is compared to the right count. The Miniboot command that
incorporates the targeting information is rejected if the left count is greater than
bootcount_left or if the left count is equal to bootcount_left and the right count
is greater than bootcount_right. Use of both counts in this manner can create a
Miniboot command that can be downloaded to the coprocessor only once.
bootcount_left must be between 0 and 65535, inclusive, and bootcount_right
must be between 0 and 4294967295, inclusive, in this case.

If a command is intended to apply to all possible coprocessors, specify 0 for
bootcount_fl and omit bootcount_left and bootcount_right.

� seg1_info, seg2_info, and seg3_info specify a range of permitted values for
certain of the information associated with segment 1, segment 2, and segment
3, respectively. The format of seg1_info, seg2_info, and seg3_info is

segflags segflags_mask revision_min revision_max hash_fl hash

where

– segflags and segflags_mask specify a range of permitted values for the last
32 bytes of the segment’s name or title (as specified in the EMBURN or
REMBURN command that loaded the segment into the coprocessor - see
“Image File Arguments” on page E-16 for details). By convention, this
portion of the name is used to hold information that specifies the version of
the code loaded into the segment. Each of these arguments is a string and
may contain as many as 32 characters. The arguments should have the
same length.

Each character in segflags_mask must be either ASCII 0 or ASCII 1.
TKNSGNR uses segflags_mask to construct a 32-byte hexidecimal number.
Each byte in the hexadecimal number is set to 0xFF if the corresponding
character in segflags_mask is ASCII 1 and is set to 0x00 otherwise.

The coprocessor logically ANDs segflags with the 32-byte hexadecimal
number derived from segflags_mask. Both quantities are first extended on
the right with binary zeros to a length of 80 bytes if necessary. It then
logically ANDs the last 32 bytes of the name associated with the segment
(as stored in the coprocessor) with the hexadecimal number derived from
segflags_mask and compares the two results. If they are not equal, the
Miniboot command that incorporates the targeting information is rejected.

25 The DRUID utility displays the current left and right counts each time it is run.

E-20 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

If a command is intended to apply to all possible coprocessors, specify an
arbitrary character for segflags and 0 for segflags_mask.

– revision_min and revision_max specify a range of permitted values for the
segment’s revision level (as specified in the EMBURN or REMBURN
command that loaded the segment into the coprocessor - see “Image File
Arguments” on page E-16 for details). Each of these arguments is a
number between 0 and 65535, inclusive. revision_max must be greater
than or equal to revision_min.

The coprocessor compares the revision level associated with the segment
(as stored in the coprocessor) with revision_min and revision_max. If the
revision level is less than revision_min or greater than revision_max, the
Miniboot command that incorporates the targeting information is rejected.

If a command is intended to apply to all possible coprocessors, specify 0
for revision_min and 65535 for revision_max.

– hash_fl and hash specify the segment’s contents (that is, the code in the
segment). hash_fl may be 0 or 1 and hash is either 0 or a string
containing 20 characters.

If hash_fl is 1, hash must be a string containing 20 characters. Each
character must be a hexadecimal digit (that is, ASCII 0 through 9, a
through f, or A through F) and is interpreted as a 10-byte hexadecimal
number (for example, 0F1E2D3C4B5A69788796 is taken to mean
0x0F1E2D3C4B5A69788796). The coprocessor computes the hash value
of the contents of the segment using the SHA1 algorithm and compares the
hash to the value specified by hash. If the two values are not equal, the
Miniboot command that incorporates the targeting information is rejected.

If hash_fl is 0, hash must also be 0. The Miniboot command is accepted
regardless of the contents of the segment.

If a command is intended to apply to all possible coprocessors, specify 0
for hash_fl and 0 for hash.

Only seg1_info appears in “type 1” targeting information. The EMBURN2 command
incorporates type 1 targeting information.

seg1_info and seg2_info appear in “type 2” targeting information. The EMBURN3,
ESIG3, ESTOWN3, REMBURN2, and SUROWN2 commands incorporate type 2
targeting information.

seg1_info, seg2_info, and seg3_info appear in “type 3” targeting information. The
REMBURN3 and SUROWN3 commands incorporate type 3 targeting information,
and the REMBURN2 command may include type 3 targeting information in its
countersignature.

The Packager Utility (TKNPKGR.EXE)
The packager utility (TKNPKGR.EXE) generates a file containing one or more
Miniboot commands (each generated by TKNSGNR) and digitally signs it so CLU
can verify the command was produced by an authorized agent. This section
describes the syntax of the TKNPKGR command and explains the function of the
various TKNPKGR options.

 Appendix E. Using Signer and Packager E-21

 30-JUL-98, 09:17

Files generated by TKNSGNR are not suitable for use as input to CLU. They must
be processed by TKNPKGR, even if the packager is “packaging together” only one
Miniboot command.

Syntax

TKNPKGR -H

TKNPKGR -F parm_file_name[-Q]

TKNPKGR [sigkey_args [num_files [in_fn_list [out_fn [outtype [filedesc_args]]]]]] [-Q]

TKNPKGR ignores the case of its options (for example, -H and -h are equivalent).
Options may be prefixed with a hyphen or a forward slash (for example, -Q and /Q
are equivalent).

The -Q option suppresses all prompts and messages (including error messages). If
-Q is specified and TKNPKGR finds it necessary to issue a prompt, the program
ends in failure.

The first form displays instructions about how to use the program. In addition to
-H and its equivalents, the program accepts ?, -?, and /?.

The second form causes TKNPKGR to read arguments from the file named
parm_file_name. Each argument in the file appears on a separate line. Once the
file is exhausted, TKNPKGR issues a prompt for each additional argument required
and reads the argument from stdin.

The third form causes TKNPKGR to read arguments from the command line. Once
the command line is exhausted, TKNPKGR issues a prompt for each additional
argument required and reads the argument from stdin.

If TKNPKGR reads an argument from stdin, you may select the default for the
argument (if there is one) by entering a null line (that is, by pressing the Enter key
when prompted for the argument), and you must enclose the argument in double
quotes if it contains an embedded blank (for example, “This is the description”).

TKNPKGR takes the following arguments:

� sigkey_args specifies the RSA private key that TKNPKGR will use to sign the
output file and the certificate provided by IBM for the corresponding RSA public
key. See “Signature Key Arguments” on page E-15 for details.

� num_files specifies the number of files (each containing a single Miniboot
command) TKNPKGR is to combine into a single image. num_files must be
greater than zero.

� in_fn_list is a list containing the name of each file TKNPKGR is to combine
into a single image. The files are added to the image in the order in which they
appear in the list.

� out_fn is the name of the file TKNPKGR generates to hold the combined input
files. By convention, the file extension is CLU. The default is fn.clu, where fn

is the name of the last file in in_fn_list.
� outtype specifies how the output file is intended to be used. Recognized

values are as follows:
– 2 for segment 1
– 3 for segment 2

E-22 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

– 4 for segment 3
– 5 for the Hardware Lock Monitor
– 6 for the Function Control Vector
– 7 for a key certificate (KEYCERT)
– 8 for a data certificate (DATACERT)
– 9 for any other image
– 10 for reload segment 1 (REMBURN1)
– 11 for reload segment 2 (REMBURN2)
– 12 for reload segment 3 (REMBURN3)
– 13 for reload segment 2 (EMBURN2)
– 14 for reload segment 3 (EMBURN3)
– 15 for establish ownership of segment 2 (ESTOWN2)
– 16 for establish ownership of segment 3 (ESTOWN3)
– 17 for surrender ownership of segment 2 (SUROWN2)
– 18 for surrender ownership of segment 3 (SUROWN3)
– 19 for recertify the coprocessor (RECERT)

Most values of outtype are associated with a single TKNSGNR command,
which is shown in parenthesis following the description of the value. For
example, specify 12 to package a single TKNSGNR file containing a
REMBURN3 command. Specify 9 if the output file will contain more than one
Miniboot command.

� filedesc_args provides certain descriptive information that is incorporated into
the output file. See “File Description Arguments” on page E-15 for details.

 Appendix E. Using Signer and Packager E-23

 30-JUL-98, 09:17

E-24 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

 Appendix F. Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM’s product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM’s
intellectual property rights or other legally protectable rights may be used instead of
the IBM product, program, or service. Evaluation and verification of operation in
conjunction with other products, programs, or services, except those expressly
designated by IBM, are the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY, 10594, USA.

Copying and Distributing Softcopy Files
For online versions of this book, we authorize you to:

� Copy, modify, and print the documentation contained on the media, for use
within your enterprise, provided you reproduce the copyright notice, all warning
statements, and other required statements on each copy or partial copy.

� Transfer the original unaltered copy of the documentation when you transfer the
related IBM product (which may be either machines you own, or programs, if
the program's license terms permit a transfer). You must, at the same time,
destroy all other copies of the documentation.

You are responsible for payment of any taxes, including personal property taxes,
resulting from this authorization.

THERE ARE NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING THE
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Some jurisdictions do not allow the exclusion of implied warranties, so the above
exclusion may not apply to you.

Your failure to comply with the terms above terminates this authorization. Upon
termination, you must destroy your machine readable documentation.

 Copyright IBM Corp. 1998 F-1

 30-JUL-98, 09:17

 Trademarks
The following terms, denoted by an asterisk (*) in this publication, are trademarks of
the IBM Corporation in the United States or other countries or both:

The following terms, denoted by a double asterisk (**) in this publication, are the
trademarks of other companies:

Acrobat Reader Adobe Systems, Inc.
Microsoft Microsoft Corporation
Microsoft Assembler Microsoft Corporation
Microsoft Visual C++ Microsoft Corporation
Microsoft Developer Studio 97 Microsoft Corporation

Windows Microsoft Corporation
Windows NT Microsoft Corporation

IBM
VisualAge

F-2 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

List of Abbreviations and Acronyms

API application program interface

ASCII American National Standard Code for
Information Interchange

CCA Common Cryptographic Architecture

CLU Coprocessor Load Utility

CP/Q Control Program/Q

FIPS Federal Information Processing
Standard

IBM International Business Machines

ICAT Interactive Code Analysis Tool

I/O input/output

IPL initial program load

ISO International Organization for
Standardization

MD5 message digest 5 (hashing algorithm)

PCI peripheral component interconnect

PDF portable document format

RSA Rivest-Shamir-Adleman (algorithm)

SCC secure cryptographic coprocessor

TOD time-of-day (clock)

UART universal asynchronous
receiver/transmitters

VPD vital product data

 Copyright IBM Corp. 1998 X-1

 30-JUL-98, 09:17

X-2 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

 Glossary

This glossary includes terms and definitions from the
IBM Dictionary of Computing, New York: McGraw Hill,
1994. This glossary also includes terms and definitions
taken from:

� The American National Standard Dictionary for
Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standards Institute
(ANSI). Copies may be purchased from the
American National Standards Institute, 11 West 42
Street, New York, New York 10036. Definitions are
identified by the symbol (A) following the definition.

� The Information Technology Vocabulary, developed
by Subcommittee 1, Joint Technical Committee 1, of
the International Organization for Standardization
and the International Electrotechnical Commission
(ISO/IEC JTC1/SC1). Definitions of published parts
of this vocabulary are identified by the symbol (I)
following the definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) following
the definition, indicating that final agreement has not
yet been reached among the participating National
Bodies of SC1.

A
access . In computer security, a specific type of
interaction between a subject and an object that results
in the flow of information from one to the other.

access control . Ensuring that the resources of a
computer system can be accessed only by authorized
users and in authorized ways.

access method . A technique for moving data between
main storage and input/output devices.

adapter . Synonym for expansion card.

agent . (1) An application that runs within the IBM
4758 PCI Cryptographic Coprocessor. (2) Synonym for
secure cryptographic coprocessor application.

American National Standard Code for Information
Interchange (ASCII) . The standard code, using a
coded character set consisting of seven-bit characters
(eight bits including parity check), that is used for
information interchange among data processing

systems, data communication systems, and associated
equipment. The ASCII set consists of control
characters and graphic characters. (A)

American National Standards Institute (ANSI) . An
organization consisting of producers, consumers, and
general interest groups that establishes the procedures
by which accredited organizations create and maintain
voluntary industry standards for the United States. (A)

ANSI. American National Standards Institute.

API. Application program interface.

application program interface (API) . A functional
interface supplied by the operating system, or by a
separate program, that allows an application program
written in a high-level language to use specific data or
functions of the operating system or that separate
program.

ASCII. American National Standard Code for
Information Interchange.

authentication . (1) A process used to verify the
integrity of transmitted data, especially a message. (T)
(2) In computer security, a process used to verify the
user of an information system or protected resource.

authorization . (1) In computer security, the right
granted to a user to communicate with or make use of a
computer system. (T) (2) The process of granting a
user either complete or restricted access to an object,
resource, or function.

authorize . To permit or give authority to a user to
communicate with or make use of an object, resource,
or function.

B
battery-backed random access memory (BBRAM) .
Random access memory that uses battery power to
retain data while the system is powered off. The IBM
4758 PCI Cryptographic Coprocessor uses BBRAM to
store persistent data for SCC applications, as well as
the coprocessor device key.

BBRAM . Battery-backed random access memory.

bus . In a processor, a physical facility along which
data is transferred.

 Copyright IBM Corp. 1998 X-3

 30-JUL-98, 09:17

C
call . The action of bringing a computer program, a
routine, or a subroutine into effect, usually by specifying
the entry conditions and jumping to an entry point.
(I) (A)

card . (1) An electronic circuit board that is plugged
into an expansion slot of a system unit. (2) A plug-in
circuit assembly. (3) See also expansion card.

CCA. Common Cryptographic Architecture.

ciphertext . (1) Data that has been altered by any
cryptographic process. (2) See also plaintext.

cleartext . (1) Data that has not been altered by any
cryptographic process. (2) Synonym for plaintext.
(3) See also ciphertext.

CLU. Coprocessor Load Utility.

Comm_Mgr . Communications Manager.

Common Cryptographic Architecture (CCA) . A
comprehensive set of cryptographic services that
furnishes a consistent approach to cryptography on
major IBM computing platforms. Application programs
can access these services through the CCA application
program interface.

Common Cryptographic Architecture (CCA) API .
The application program interface used to call Common
Cryptographic Architecture functions; it is described in
the IBM 4758 CCA Basic Services Reference and
Guide, SC31-8609.

Communications Manager (Comm_Mgr) . A CP/Q++

extension for the IBM 4758 PCI Cryptographic
Coprocessor that manages communication among the
host device driver, SCC applications, and CP/Q++. It
handles the receipt and delivery of request headers,
and the inbound and outbound data buffers.

Control Program/Q (CP/Q) . The operating system
embedded within the IBM 4758 PCI Cryptographic
Coprocessor. The version of CP/Q used by the
coprocessor—including extensions to support
cryptographic and security-related functions—is known
as CP/Q++.

coprocessor . (1) A supplementary processor that
performs operations in conjunction with another
processor. (2) A microprocessor on an expansion card
that extends the address range of the processor in the
host system, or adds specialized instructions to handle
a particular category of operations; for example, an I/O
coprocessor, math coprocessor, or a network
coprocessor.

Coprocessor Load Utility (CLU) . A program used to
load validated code into the IBM 4758 PCI
Cryptographic Coprocessor.

CP/Q. Control Program/Q.

Cryptographic Coprocessor (IBM 4758) . An
expansion card that provides a comprehensive set of
cryptographic functions to a workstation.

cryptographic node . A node that provides
cryptographic services such as key generation and
digital signature support.

cryptography . (1) The transformation of data to
conceal its meaning. (2) In computer security, the
principles, means, and methods used to so transform
data.

D
data encrypting key . (1) A key used to encipher,
decipher, or authenticate data. (2) Contrast with
key-encrypting key.

Data Encryption Standard Manager (DES_Mgr) . A
CP/Q++ extension that manages the IBM 4758 PCI
Cryptographic Coprocessor DES processing hardware.

decipher . (1) To convert enciphered data into clear
data. (2) Contrast with encipher.

DES_Mgr . Data Encryption Standard Manager.

device driver . (1) A file that contains the code needed
to use an attached device. (2) A program that enables
a computer to communicate with a specific peripheral
device; for example, a printer, videodisc player, or a CD
drive.

E
encipher . (1) To scramble data or convert it to a
secret code that masks its meaning. (2) Contrast with
decipher.

enciphered data . (1) Data whose meaning is
concealed from unauthorized users or observers.
(2) See also ciphertext.

expansion board . Synonym for expansion card.

expansion card . A circuit board that a user can plug
into an expansion slot to add memory or special
features to a computer.

expansion slot . One of several receptacles in a PC or
RS/6000 machine into which a user can install an
expansion card.

X-4 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

F
feature . A part of an IBM product that can be ordered
separately from the essential components of the
product.

Federal Information Processing Standard (FIPS) . A
standard that is published by the US National Institute
of Science and Technology.

FIPS. Federal Information Processing Standard

flash memory . A specialized version of erasable
programmable read-only memory (EPROM) commonly
used to store code in small computers.

H
hertz (Hz) . A unit of frequency equal to one cycle per
second. Note: In the United States, line frequency is
60 Hz, a change in voltage polarity 120 times per
second; in Europe, line frequency is 50 Hz, a change in
voltage polarity 100 times per second.

host . As regards to the IBM 4758 PCI Cryptographic
Coprocessor, the workstation into which the
coprocessor is installed.

I
ICAT. Interactive Code Analysis Tool.

initial program load (IPL) . (1) The initialization
procedure that causes an operating system to
commence operation. (2) The process by which a
configuration image is loaded into storage. (3) The
process of loading system programs and preparing a
system to run jobs.

inline code . In a program, instructions that are
executed sequentially without branching to routines,
subroutines, or other programs.

input/output (I/O) . (1) Pertaining to input, output, or
both. (A) (2) Pertaining to a device, process, or
channel involved in data input, data output, or both.

Interactive Code Analysis Tool (ICAT) . A remote
debugger used to debug applications running within the
IBM 4758 PCI Cryptographic Coprocessor.

interface . (1) A boundary shared by two functional
units, as defined by functional characteristics, signal
characteristics, or other characteristics as appropriate.
The concept includes specification of the connection
between two devices having different functions. (T)
(2) Hardware, software, or both that links systems,
programs, and devices.

International Organization for Standardization
(ISO). An organization of national standards bodies
established to promote the development of standards
that facilitate the international exchange of goods and
services; also, to foster cooperation in intellectual,
scientific, technological, and economic activity.

intrusion latch . A software-monitored bit that can be
triggered by an external switch connected to a jumper
on the IBM 4758 PCI Cryptographic Coprocessor. This
latch can be used, for example, to detect when the
cover of the coprocessor host workstation has been
opened. The intrusion latch does not trigger the
destruction of data stored within the coprocessor.

I/O. Input/output.

IPL. Initial program load.

ISO. International Organization for Standardization.

J
jumper . A wire that joins two unconnected circuits.

K
key . In computer security, a sequence of symbols
used with an algorithm to encipher or decipher data.

M
master key . In computer security, the top-level key in
a hierarchy of KEKs.

miniboot . Software within the IBM 4758 PCI
Cryptographic Coprocessor designed to initialize the
CP/Q++ operating system and to control updates to flash
memory.

multi-user environment . A computer system that
supports terminals and keyboards for more than one
user at the same time.

N
National Institute of Science and Technology
(NIST). Current name for the US National Bureau of
Standards.

NIST. National Institute of Science and Technology.

node . (1) In a network, a point at which one or more
functional units connects channels or data circuits. (I)
(2) The endpoint of a link or junction common to two or
more links in a network. Nodes can be processors,
communication controllers, cluster controllers, or

 Glossary X-5

 30-JUL-98, 09:17

terminals. Nodes can vary in routing and other
functional capabilities.

NT. See Windows NT.

P
passphrase . In computer security, a string of
characters known to the computer system and to a
user; the user must specify it to gain full or limited
access to the system and to the data stored therein.

private key . (1) In computer security, a key that is
known only to the owner and used with a public key
algorithm to decipher data. Data is enciphered using the
related public key. (2) Contrast with public key.
(3) See also public key algorithm.

procedure call . In programming languages, a
language construct for invoking execution of a
procedure. (I) A procedure call usually includes an
entry name and the applicable parameters.

public key . (1) In computer security, a key that is
widely known and used with a public key algorithm to
encipher data. The enciphered data can be deciphered
only with the related private key. (2) Contrast with
private key. (3) See also public key algorithm.

Public Key Algorithm Manager (PKA_Mgr) . A
CP/Q++ extension that manages the IBM 4758 PCI
Cryptographic Coprocessor PKA processing hardware.

R
Random Number Generator Manager (RNG_Mgr) . A
CP/Q++ extension that manages the IBM 4758 PCI
Cryptographic Coprocessor hardware-based random
number generator.

reduced instruction set computer (RISC) . A
computer that processes data quickly by using only a
small, simplified instruction set.

return code . (1) A code used to influence the
execution of succeeding instructions. (A) (2) A value
returned to a program to indicate the results of an
operation requested by that program.

RNG_Mgr . Random Number Generator Manager.

RSA algorithm . A public key encryption algorithm
developed by R. Rivest, A. Shamir, and L. Adleman.

S
SCC. Secure cryptographic coprocessor.

SCC_Mgr . Secure Cryptographic Coprocessor
Manager.

secure cryptographic coprocessor (SCC) . An
alternate name for the IBM 4758 PCI Cryptographic
Coprocessor. The abbreviation “SCC” is used within
the product software code.

secure cryptographic coprocessor (SCC)
application . (1) An application that runs within the
IBM 4758 PCI Cryptographic Coprocessor.
(2) Synonym for agent.

Secure Cryptographic Coprocessor Manager
(SCC_Mgr) . A CP/Q++ extension that provides
high-level management of all agents running within a
IBM 4758 PCI Cryptographic Coprocessor. As the
“traffic cop”, the SCC_Mgr identifies agents and controls
the delivery of their messages and data.

security . The protection of data, system operations,
and devices from accidental or intentional ruin, damage,
or exposure.

SMIT. System Management Interface Tool.

system administrator . The person at a computer
installation who designs, controls, and manages the use
of the computer system.

System Management Interface Tool (SMIT) . An AIX
utility program used to maintain the system in good
working order and to modify the system to meet
changing requirements.

T
time-of-day (TOD) clock . A hardware feature that is
incremented once every microsecond, and provides a
consistent measure of elapsed time suitable for
indicating date and time. The TOD clock runs
regardless of whether the processing unit is in a
running, wait, or stopped state.

throughput . (1) A measure of the amount of work
performed by a computer system over a given period of
time; for example, number of jobs-per-day. (A) (I)
(2) A measure of the amount of information transmitted
over a network in a given period of time; for example, a
network data-transfer-rate is usually measured in
bits-per-second.

TOD clock . Time-of-day clock.

X-6 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

U
utility program . A computer program in general
support of computer processes. (T)

V
verb . A function possessing an entry_point_name and
a fixed-length parameter list. The procedure call for a
verb uses the syntax standard to programming
languages.

vital product data (VPD) . A structured description of a
device or program that is recorded at the manufacturing
site.

VPD. Vital product data.

W
Windows NT . A Microsoft operating system for
personal computers.

workstation . A terminal or microcomputer, usually one
that is connected to a mainframe or a network, and
from which a user can perform applications.

Numerics
IBM 4758. IBM 4758 PCI Cryptographic Coprocessor.

 Glossary X-7

 30-JUL-98, 09:17

X-8 IBM 4758 Developer's Toolkit

 30-JUL-98, 09:17

 Index

A
agent 1-1
assembler switches 3-8
authentication, software

B
BLDRODSK Utility 3-10
building SCC applications with Microsoft Developer

Studio 97 D-1

C
C runtime library

intrinsic functions 3-6, 3-8
modified functions
supported functions 3-4
unsupported functions 3-5

CCA support program 2-1, 3-11
certification, IBM
CLU

See Coprocessor Load Utility (CLU)
CLU, using B-1
code-signing utility 3-11
compiler options

IBM VisualAge C++ (VACPP) 3-6
Microsoft Visual C++ (MSVC++) 3-7

Coprocessor Load Utility (CLU)
introduction 1-4
return codes
SCC application load
SCC application replace
software validation
syntax

coprocessor memory segments
CP/Q

debug version 1-5
optimized version 1-5

CPQXLT Utility 3-10

D
development environment

road map 3-1
toolkit components 1-4

development process 1-3
development process, overview A-1
Device Reload Utility (DRUID)

description
introduction 1-4
syntax

Disk Builder Utility
description 3-10
introduction 1-4
syntax 3-11

E
emergency certificate

I
IBM VisualAge C++

See VisualAge C++

installation
CCA support program 2-1
Coprocessor Load Utility 2-1
Disk Builder Utility 2-1
include files 2-1
Signer Utility 2-1
Toolkit 2-1
Translator Utility 2-1

intrinsic functions 3-6, 3-8

L
librarian, options 3-10
linker switches 3-9
loading disk images

M
makefiles, sample

compiler independent
Visual C++

VisualAge C++

MASM assembler 3-8
memory segments, coprocessor
Microsoft Visual C++

See Visual C++

MSVC++

See Visual C++

O
operating system, coprocessor

See CP/Q
options

assembler 3-8
compiler 3-6
librarian 3-10
linker 3-9

overview of the development process A-1

 Copyright IBM Corp. 1998 X-9

 30-JUL-98, 09:17

P
packager, using E-1
packaging and releasing an SCC application 5-1
preparing the development platform 2-5
production environment, testing SCC application 4-1

R
Read-Only Disk Builder Utility 3-10
rebooting the IBM 4758 C-1
release components 1-5
RSA key pair

S
sample makefiles

See makefiles, sample
SCC application 1-1
Signer Utility

description 3-11
introduction 1-5
signing an SCC application
syntax

signer, using E-1
switches

assembler 3-8
compiler 3-6
librarian 3-10
linker 3-9

syntax
Coprocessor Load Utility
Disk Builder Utility 3-11
Signer Utility
Translator Utility 3-10

T
testing an SCC application 4-1
toolkit components 1-4
Translator Utility

description 3-10
introduction 1-4
syntax 3-10

U
using CLU B-1
using Signer and Packager E-1
utilities

Coprocessor Load Utility
Disk Builder 3-10
Signer 3-11
Translator 3-10

V
VACPP

See VisualAge C++

validation, software
Visual C++

intrinsic functions 3-8
sample makefile
switches 3-7

VisualAge C++

intrinsic functions 3-6
sample makefile
switches 3-6

X-10 IBM 4758 Developer's Toolkit

	About This Book
	 Prerequisite Knowledge
	Organization of This Book
	 Typographic Conventions
	 Syntax Diagrams
	 Related Publications
	 General Interest
	CCA Support Program Publications
	Custom Software Publications
	 Cryptography Publications

	Summary of Changes

	Chapter 1. Introduction
	 Available Documentation
	 Prerequisites
	 Development Overview
	Development Environment Components
	 Release Components

	Chapter 2. Installation and Setup
	Installing the Toolkit
	Directories and Files

	Preparing the Development Platform

	Chapter 3. Developing and Debugging an SCC Application
	Development Process Road Map
	Special Coding Requirements During Development
	 Developer Identifiers
	Attaching with the Debugger

	Compiling, Assembling, and Linking
	CP/Q Base Operating System Function Support
	C Run-Time Library Support
	Supported Functions and Global Variables
	Unsupported Functions and Global Variables

	 Compiler Options
	VisualAge C++ (VACPP) Options
	Microsoft Visual C ++ (MSVC ++) Options

	 Assembler Options
	 Linker Options
	Librarian Options

	 Translating
	Building Read-Only Disk Images
	Downloading and Debugging

	Chapter 4. Testing an SCC Application in a Production
	Chapter 5. Packaging and Releasing an SCC Application
	Appendix A. An Overview of the Development Process
	 Appendix B. Using CLU
	Appendix C. How to Reboot the IBM 4758
	Appendix D. Building SCC Applications with Microsoft
	Required Settings for the Host-Side Portion of an SCC Application
	Required Settings for the Coprocessor-Side Portion of an SCC

	Appendix E. Using Signer and Packager
	Coprocessor Memory Segments and Security
	The Signer Utility (TKNSGNR.EXE)
	Signer Operations
	EMBURN2 - Load Software into Segment 2
	EMBURN3 - Load Software into Segment 3
	ESIG3 - Build Emergency Signature for Segment 3
	ESTOWN3 - Establish Ownership of Segment 3
	HASH_GEN - Generate Hash for File
	HASH_VER - Verify Hash of File
	KEYGEN - Generate RSA Key Pair
	REMBURN2 - Replace Software in Segment 2
	REMBURN3 - Replace Software in Segment 3
	SUROWN2 - Surrender Ownership of Segment 2
	SUROWN3 - Surrender Ownership of Segment 3
	File Description Arguments
	Signature Key Arguments
	Image File Arguments
	Trust and Countersignature Arguments
	 Targeting Arguments

	The Packager Utility (TKNPKGR.EXE)

	 Appendix F. Notices
	Copying and Distributing Softcopy Files
	 Trademarks

