
IBM 4758 PCI Cryptographic Coprocessor
Version 1: 4758-001 and 4758-013

CCA User Defined Extensions
Reference and Guide

12-NOV-01, 13:15

 12-NOV-01, 13:15

 Note!

Before using this information and the product it supports, be sure to read the general information under Appendix D, “Notices”
on page D-1.

Third Edition (October, 2001)

IBM does not stock publications at the address given below. This and other publications related to the IBM 4758 Coprocessor can
be obtained in PDF format from the Library page at http://www.ibm.com/security/cryptocards.

Reader’s comments can be communicated to IBM by using the Comments and Questions Form located on the product Web site at
http://www.ibm.com/security/cryptocards, or you can respond by mail to:

Department VM9A, MG81/204-3
IBM Corporation
8501 IBM Drive
Charlotte, NC 28262-8563
U.S.A.

IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1999, 2001. All rights reserved.

Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

 12-NOV-01, 13:15

 Contents

About This Book . xi
Prerequisite Knowledge . xi
Organization of This Book . xi
Typographic Conventions . xiii
Related Publications . xiii

General Interest . xiii
CCA Support Program Publications . xiii
Custom Software Publications . xiii
Cryptography Publications . xiv
Other IBM Cryptographic Product Publications xvi

Summary of Changes . xvi

Chapter 1. Understanding the UDX Environment 1-1
CCA Communication Structures . 1-7

Chapter 2. Building a CCA User-Defined Extension 2-1
Files You Use in Building a UDX . 2-1
Host Piece of a UDX . 2-3
Coprocessor Piece of a UDX . 2-6

Chapter 3. SCC Functions . 3-1
Host-Side SCC API Functions . 3-1
Coprocessor-Side SCC API Functions . 3-1

Chapter 4. Communications Functions . 4-1
Header Files for Communications Functions 4-1
Summary of Functions . 4-1
BuildParmBlock - Build a Parameter Block 4-2
Cas_proc_retc - Prioritize Return Code . 4-6
CSNC_SP_SCSRFBSS - Send a Request to the Coprocessor 4-7
CSUC_BULDCPRB - Build CPRB . 4-9
CSUC_PROCRETC - Prioritize Return Code 4-11
FindFirstDataBlock - Search for Address of First Data Block 4-12
FindNextDataBlock - Search for Address of Next Data Block 4-13
find_first_key_block - Search for First Key Data Block 4-14
find_next_key_block - Find Address of Next Key Data Block 4-15
InitCprbParmPointers - Initialize CPRB Parameter Pointers 4-16
keyword_in_rule_array - Search for Rule Array Keyword 4-17
parm_block_valid - Examine and Verify a Parameter Block 4-18
rule_check - Verify Rule Array . 4-19
saf_process_key_label - Process Key Label 4-23

Chapter 5. Function Control Vector Management Functions 5-1
Header Files for Function Control Vector Management Functions 5-1
Summary of Functions . 5-1
getSymmetricMaxModulusLength - Get RSA Key Length 5-2
isFunctionEnabled - Check Whether a Function is Enabled 5-3

Chapter 6. CCA Master Key Manager Functions 6-1
Header Files for Master Key Manager Functions 6-1

 Contents iii

 12-NOV-01, 13:15

Overview of the Coprocessor CCA Master Keys 6-1
Location of the Master Keys . 6-2
Initialization of the Master Key SRDI . 6-2

CCA Master Key Manager Interface Functions 6-3
Common Entry Processing . 6-3
Required Variables . 6-3

Functions to Set and Manage the Master Key Values 6-5
Summary of Functions . 6-5
clear_master_keys - Clear Master Key . 6-6
 combine_mk_parts - Combine Master Key Parts 6-7
 generate_mk_shares - Generate Master Key Shares 6-8
 generate_random_mk - Generate Random Master Key 6-10
init_master_keys - Create and Initialize Master Keys 6-11
 load_first_mk_part - Load First Master Key Part 6-12
 load_mk_from_shares - Load Master Key Shares 6-13
reinit_master_keys - Reinitialize Master Keys 6-15
 set_master_key - Set Master Key . 6-16

Functions to Check Master Key Values and Status 6-17
Summary of Functions . 6-17
compute_mk_verification_pattern . 6-18
 get_master_key_status - Get Master Key Status 6-20
get_mk_verification_pattern . 6-21

Functions to Encrypt and Decrypt Using the Master Key 6-22
Summary of Functions . 6-22
ede3_triple_decrypt_under_master_key . 6-23
ede3_triple_encrypt_under_master_key . 6-24
triple_decrypt_under_master_key . 6-25
triple_decrypt_under_master_key_with_CV 6-26
triple_encrypt_under_master_key . 6-27
triple_encrypt_under_master_key_with_CV 6-28

Chapter 7. SHA-1 Functions . 7-1
Header Files for SHA-1 Functions . 7-1
Summary of Functions . 7-1
sha_hash_message - SHA-1 Hash with Chaining 7-2
sha_hash_msg_to_bfr - SHA-1 Hash . 7-5

Chapter 8. DES Utility Functions . 8-1
Header Files for DES Utility Functions . 8-1
Summary of Functions . 8-1
Overview . 8-2
cas_adjust_parity - Adjust Parity . 8-3
 cas_build_default_cv - Build a Default Control Vector 8-4
 cas_build_default_token - Build a Default Token 8-5
 cas_current_mkvp - Current Master Key Verification Pattern 8-6
 cas_old_mkvp - Old Master Key Verification Pattern 8-7
cas_des_key_token_check - Verify the DES Key Token 8-8
cas_get_key_type - Return Key Type . 8-9
cas_key_length - Return Key Length . 8-10
cas_key_tokentvv_check - Verify the Token Validation Value 8-11
 cas_master_key_check - Master Key Version Check 8-12
cas_parity_odd - Verify Parity . 8-13
 RecoverDesDataKey - Recover DES Data Key 8-14
 RecoverDesKekImporter - Recover DES Importer KEK 8-16

iv UDX Reference and Guide

 12-NOV-01, 13:15

Chapter 9. RSA Functions . 9-1
Header Files for RSA Functions . 9-1
Summary of Functions . 9-1
Overview . 9-3
CalculatenWordLength - Return Word Length of Modulus 9-5
 CreateInternalKeyToken - Create Internal Key Token 9-6
 CreateRsaInternalSection - Create RSA Internal Section 9-7
delete_KeyToken - Delete a Key From On-Board Storage 9-8
GenerateCcaRsaToken - Generate CCA RSA Key Token 9-9
GenerateRsaInternalToken - Generate RSA Key Token 9-10
generate_dSig - Receives RSA Key Token 9-11
GeteLength - Return RSA Public Exponent Byte Length 9-13
getKeyToken - Get a PKA Token From On-Board Storage 9-14
GetModulus - Extract and Copy RSA Modulus 9-15
GetnBitLength - Return RSA Modulus Bit Length 9-16
GetnByteLength - Return RSA Modulus Byte Length 9-17
GetPublicExponent - Extract and Copy Public Exponent 9-18
GetRsaPrivateKeySection - Return Private Key 9-19
GetRsaPublicKeySection - Return Public Key 9-20
GetTokenLength - Return Key Token Length 9-21
IsPrivateExponentEven - Verify RSA Private Exponent 9-22
IsPrivateKeyEncrypted - Verify Private Key Encryption 9-23
IsPublicExponentEven - Verify RSA Public Exponent 9-24
IsRsaToken - Verify RSA Key . 9-25
IsTokenInternal - Key Token Format . 9-26
 PkaMkvpQuery - Return Master Key Version 9-27
pka96_tvvgen - Calculate Token Validation Value 9-28
RecoverPkaClearKeyTokenUnderMk . 9-29

RecoverPkaClearKeyTokenUnderXport . 9-30
 ReEncipherPkaKeyToken - Re-Encipher PKA Key Token 9-31
RequestRSACrypto - Perform an RSA Operation 9-32
store_KeyToken - Store Registered or Retained Key 9-33
TokenMkvpMatchMasterKey - Test Encryption of RSA Key 9-34
ValidatePkaToken - Validate RSA Key Token 9-35
VerifyKeyTokenConsistency - Verify Key Token Consistency 9-36
verify_dSig - Verify RSA Key Token Signature 9-37

Chapter 10. CCA SRDI Manager Functions 10-1
Header Files for SRDI Manager Functions 10-1
Overview . 10-1
CCA SRDI Manager Operation . 10-3
Controlling Concurrent Access to an SRDI 10-6
Summary of Functions . 10-7
close_cca_srdi - Close CCA SRDI . 10-8
create_cca_srdi - Create CCA SRDI . 10-9
delete_cca_srdi - Delete CCA SRDI . 10-11
get_cca_srdi_length - Get CCA SRDI Length 10-12
open_cca_srdi - Open CCA SRDI . 10-13
resize_cca_srdi - Resize CCA SRDI . 10-14
save_cca_srdi - Save CCA SRDI . 10-15
Example Code . 10-16

Chapter 11. Access Control Manager Functions 11-1
Header Files for Access Control Manager Functions 11-1

 Contents v

 12-NOV-01, 13:15

Summary of Functions . 11-1
SRDI Files . 11-2
Data Structures . 11-2
ac_check_authorization - Check Authorization to Execute Function 11-5
ac_chg_prof_auth_data - Change Profile Authentication Data 11-6
ac_chg_prof_exp_date - Change Profile Expiration Date 11-8
ac_del_profile - Delete User Profile . 11-9
ac_del_role - Delete Role . 11-10
ac_get_list_sizes - Get Sizes of Role and Profile Lists 11-11
ac_get_profile - Get Profile . 11-12
ac_get_role - Get Role . 11-13
ac_init - Initialize the Access Control Manager 11-14
ac_list_profiles - List User Profiles . 11-15
ac_list_roles - List Roles . 11-16
ac_load_profiles - Load User Profiles . 11-17
ac_load_roles - Load Roles . 11-19
ac_lu_add_user - Add a User to the List of Logged on Users 11-20
ac_lu_drop_user - Remove a User from the Logon List 11-21
ac_lu_get_ks - Get a Copy of a Session Key 11-22
ac_lu_get_num_users - Get the Number of Logged On Users 11-23
au_lu_get_role - Get Role from the Logon List 11-24
ac_lu_ks_dec - Decrypt Data with Session Key 11-25
ac_lu_ks_enc - Encrypt Data with Session Key 11-26
ac_lu_ks_macgen - Compute a MAC using Session Key 11-27
ac_lu_ks_macver - Verify a MAC using Session Key 11-28
ac_lu_list_users - List the IDs of the Logged On Users 11-29
au_lu_query_user - Check if a User is Logged On 11-30
ac_query_profile - Return the Length of a User Profile 11-31
ac_query_role - Return the Length of a Role 11-32
ac_reinit - Reinitialize the Access Control Manager 11-33
ac_reset_logon_fail_cnt - Reset Logon Failure Count 11-34

Chapter 12. Miscellaneous Functions . 12-1
Header Files for Miscellaneous Functions 12-1
Summary of Functions . 12-1
check_access_auth_fcn - Verify User Authority 12-2
GetKeyLength - Get Length of Key Token 12-4
intel_long_reverse - Convert Long Values 12-5
intel_word_reverse - Convert 2-Byte Values 12-6
TOKEN_IS_A_LABEL - Identifies the Token as a Label 12-7
TOKEN_LABEL_CHECK - Determine if Key Identifier is a Label 12-8

Appendix A. UDX Sample Code - Host Piece A-1

Appendix B. UDX Sample Code - Coprocessor Piece B-1

| Appendix C. Data Structures . C-1
| Structures Used in Communications Between NT Host and Coprocessor . . C-1
| Data Structures for Caching Functions . C-7
| Other Useful Data Structures . C-8

Appendix D. Notices . D-1
Copying and Distributing Softcopy Files . D-2
Trademarks . D-2

vi UDX Reference and Guide

 12-NOV-01, 13:15

List of Abbreviations and Acronyms . X-1

Glossary . X-3

Index . X-7

 Contents vii

 12-NOV-01, 13:15

viii UDX Reference and Guide

 12-NOV-01, 13:15

 Figures

1-1. View of CCA with User-Defined Extensions 1-2
1-2. Request and Reply Parameter Block Formats 1-7
2-1. Example CCA/UDX Function Prototype 2-3
2-2. Example UDX Subfunction Codes . 2-4
2-3. Example UDX Completion Codes . 2-5
2-4. Example UDX Command Processor Prototype 2-6
2-5. Example UDX Access Control Points 2-7
2-6. Example UDX Command Decoding Array Definition 2-8
4-1. The RULE_MAP Structure . 4-19
4-2. Example Rule Map for Verb CSNBPKI 4-21
4-3. Example Rule Map for Verb CSUAACI 4-21
5-1. Possible Values . 5-4
6-1. Master Key Status Bits . 6-20

10-1. Master SRDI Manager Overview . 10-2
10-2. Master SRDI Read Illustration, Part 1 10-4
10-3. Master SRDI Read Illustration, Part 2 10-5
10-4. Master SRDI Read Illustration, Part 3 10-5

 Figures ix

 12-NOV-01, 13:15

x UDX Reference and Guide

 12-NOV-01, 13:15

About This Book

The IBM 4758 PCI Cryptographic Coprocessor CCA User Defined Extensions
Reference and Guide, Version 1: 4758-001 and 4758-013 describes the Common
Cryptographic Architecture (CCA) application programming interface (API) function
calls that are available to user-defined extensions to CCA. A user-defined
extension (UDX) allows a developer to add customized operations to IBM’s CCA
Support Program. UDXs are written and invoked in the same manner as base
CCA functions and have access to the same internal functions and services as the
CCA Support Program.

This document begins with an overview of the UDX programming environment and
the sample files that are provided for use by UDX authors. The remainder of the
document is a reference manual that describes a variety of functions that a UDX
developer may exploit. The callable functions may be grouped into three classes:

1. Functions that may be called by the portion of a UDX that runs inside the PCI
cryptographic coprocessor.

2. Functions that may be called by the portion of a UDX that runs on the host.

3. Functions that are available both inside the coprocessor and on the host.

Most of the functions are in the first class.

The primary audience for this manual is developers who need to write a UDX. This
manual should be used in conjunction with the manuals listed under “CCA Support
Program Publications” on page xiii and “Custom Software Publications” on
page xiii.

 Prerequisite Knowledge
The reader of this book should understand how to perform basic tasks (including
editing, system configuration, file system navigation, and creating application
programs) on the host machine and should understand the use of IBM’s CCA
Support Program (as described in the IBM 4758 PCI Cryptographic Coprocessor
CCA Support Program Installation Manual and the IBM 4758 PCI Cryptographic
Coprocessor CCA Basic Services Reference and Guide). The reader should also
understand the OS/390 application environment (as described in the OS/390 ICSF
Application Programmer’s Guide and the OS/390 ICSF System Programmer’s
Guide). Familiarity with the SCC application development process (as described in
the IBM 4758 PCI Cryptographic Coprocessor Custom Software Developer’s Toolkit
Guide) is also required.

Organization of This Book
Chapter 1, “Understanding the UDX Environment” discusses the design of the CCA
application and the separation of the CCA API into host-side and coprocessor-side
components.

Chapter 2, “Building a CCA User-Defined Extension” discusses how to build each
portion of a UDX.

 About This Book xi

 12-NOV-01, 13:15

Chapter 3, “SCC Functions” summarizes the secure cryptographic coprocessor
(SCC) API on top of which IBM’s CCA coprocessor application modules are built.
A UDX may use the SCC API if so desired.

Chapter 4, “Communications Functions” describes the functions that allow the
piece of a UDX that runs on the host to exchange information with the piece of the
UDX that runs in the coprocessor.

Chapter 5, “Function Control Vector Management Functions” describes the
functions that allow a UDX to determine which cryptographic operations have been
authorized by the CCA function control vector and how long certain cryptographic
keys may be.

Chapter 6, “CCA Master Key Manager Functions” describes the functions that allow
a UDX to access and manipulate the CCA master key registers, which are used to
encrypt and decrypt data and keys using various forms of the Data Encryption
Standard (DES) algorithm.

Chapter 7, “SHA-1 Functions” describes the functions that a UDX can use to
compute the hash of a block of data using the Secure Hash Algorithm (SHA-1).

Chapter 8, “DES Utility Functions” describes the functions that a UDX can use to
manipulate and obtain information about key tokens and other cryptographic
structures.

Chapter 9, “RSA Functions” describes the functions that a UDX can use to perform
public key cryptographic operations using the RSA (Rivest-Shamir-Adleman)
algorithm.

Chapter 10, “CCA SRDI Manager Functions” describes the functions that a UDX
can use to store and retrieve data in the coprocessor’s nonvolatile memory areas
(flash memory and battery-backed RAM [BBRAM]).

Chapter 11, “Access Control Manager Functions” describes the functions that a
UDX can use to manipulate a user’s permissions, change authentication (logon)
procedures, or obtain information about permissions and users on the coprocessor.

Chapter 12, “Miscellaneous Functions” describes several assorted utility functions
available to a UDX.

Appendix A, “UDX Sample Code - Host Piece” contains the host-side portion of a
sample UDX.

Appendix B, “UDX Sample Code - Coprocessor Piece” contains the
coprocessor-side portion of a sample UDX.

Appendix C, “Data Structures” contains useful data structures from the toolkit
header files.

Appendix D, “Notices” includes product and publication notices.

A list of abbreviations, a glossary, and an index complete the manual.

xii UDX Reference and Guide

 12-NOV-01, 13:15

 Typographic Conventions
This publication uses the following typographic conventions:

� File names, function names, and return codes are presented in bold type.

� Variable information and parameters are presented in fixed-space type.

� Web addresses are presented in italic type.

 Related Publications
Many of the publications listed below under “General Interest,” “CCA Support
Program Publications,” and “Custom Software Publications” are available in Adobe
Acrobat** portable document format (PDF) at
http://www.ibm.com/security/cryptocards.

Click Library to view or print the books.

 General Interest
The following publications may be of interest to anyone who needs to install, use,
or write applications for a PCI Cryptographic Coprocessor:

� IBM 4758 PCI Cryptographic Coprocessor General Information Manual (version
-01 or later)

� IBM 4758 PCI Cryptographic Coprocessor Installation Manual

CCA Support Program Publications
The following publications may be of interest to readers who intend to use a PCI
Cryptographic Coprocessor to run IBM’s Common Cryptographic Architecture
(CCA) Support Program:

� IBM 4758 PCI Cryptographic Coprocessor CCA Support Program Installation
Manual

� IBM 4758 PCI Cryptographic Coprocessor CCA Basic Services Reference and
Guide

Custom Software Publications
The following publications may be of interest to persons who intend to write
applications that will run on a PCI Cryptographic Coprocessor:

� IBM 4758 PCI Cryptographic Coprocessor Custom Software Installation Manual

� IBM 4758 PCI Cryptographic Coprocessor Custom Software Interface
Reference

� IBM 4758 PCI Cryptographic Coprocessor Interactive Code Analysis Tool
(ICAT) User’s Guide

� IBM 4758 PCI Cryptographic Coprocessor Custom Software Developer’s Toolkit
Guide

� IBM 4758 PCI Cryptographic Coprocessor CP/Q Operating System Overview

� IBM 4758 PCI Cryptographic Coprocessor CP/Q Operating System Application
Programming Reference

 About This Book xiii

 12-NOV-01, 13:15

� IBM 4758 PCI Cryptographic Coprocessor CP/Q Operating System C Runtime
Library Reference

� AMCC S5933 PCI Controller Data Book, available from Applied Micro Circuits
Corporation, 6290 Sequence Drive, San Diego, CA 92121-4358. Phone
1-800-755-2622 or 1-619-450-9333. The manual is available online as an
Adobe Acrobat** PDF file at http://www.amcc.com/pdfs/5933db.pdf.

 Cryptography Publications
The following publications describe cryptographic standards, research, and
practices applicable to the PCI Cryptographic Coprocessor:

� “Application Support Architecture for a High-Performance, Programmable
Secure Coprocessor,” J. Dyer, R. Perez, S.W. Smith, and M. Lindemann, 22nd
National Information Systems Security Conference, October 1999.

� “Validating a High-Performance, Programmable Secure Coprocessor,” S.W.
Smith, R. Perez, S.H. Weingart, and V. Austel, 22nd National Information
Systems Security Conference, October 1999.

� “Building a High-Performance, Programmable Secure Coprocessor,” S.W. Smith
and S.H. Weingart, Research Report RC21102, IBM T.J. Watson Research
Center, February 1998.

� “Using a High-Performance, Programmable Secure Coprocessor, S.W. Smith,
E.R. Palmer, and S.H. Weingart, in FC98: Proceedings of the Second
International Conference on Financial Cryptography, Anguilla, February 1998.
Springer-Verlag LNCS, 1998. ISBN 3-540-64951-4

� “Smart Cards in Hostile Environments,” H. Gobioff, S.W. Smith, J.D. Tygar,
and B.S. Yee, Proceedings of the Second USENIX Workshop on Electronic
Commerce, 1996.

� “Secure Coprocessing Research and Application Issues,” S.W. Smith, Los
Alamos Unclassified Release LA-UR-96-2805, Los Alamos National Laboratory,
August 1996.

� “Secure Coprocessing in Electronic Commerce Applications,” B.S. Yee and J.D.
Tygar, in Proceedings of the First USENIX Workshop on Electronic Commerce,
New York, July 1995.

� “Transaction Security Systems,” D.G. Abraham, G.M. Dolan, G.P. Double, and
J.V. Stevens, in IBM Systems Journal Vol. 30 No. 2, 1991, G321-0103.

� “Trusting Trusted Hardware: Towards a Formal Model for Programmable
Secure Coprocessors,” S.W. Smith and V. Austel, in Proceedings of the Third
USENIX Workshop on Electronic Commerce, Boston, August 1998.

� “Using Secure Coprocessors,” B.S. Yee (Ph.D. thesis), Computer Science
Technical Report CMU-CS-94-149, Carnegie-Mellon University, May 1994.

� “Cryptography: It’s Not Just for Electronic Mail Anymore,” J.D. Tygar and B.S.
Yee, Computer Science Technical Report, CMU-CS-93-107, Carnegie Mellon
University, 1993.

� “Dyad: A System for Using Physically Secure Coprocessors,” J.D. Tygar and
B.S. Yee, Harvard-MIT Workshop on Protection of Intellectual Property, April
1993.

xiv UDX Reference and Guide

 12-NOV-01, 13:15

� “An Introduction to Citadel—A Secure Crypto Coprocessor for Workstations,”
E.R. Palmer, Research Report RC18373, IBM T.J. Watson Research Center,
1992.

� “Introduction to the Citadel Architecture: Security in Physically Exposed
Environments,” S.R. White, S.H. Weingart, W.C. Arnold, and E.R. Palmer,
Research Report RC16672, IBM T.J. Watson Research Center, 1991.

� “An Evaluation System for the Physical Security of Computing Systems,” S.H.
Weingart, S.R. White, W.C. Arnold, and G.P. Double, Sixth Computer Security
Applications Conference, 1990.

� “ABYSS: A Trusted Architecture for Software Protection,” S.R. White and L.
Comerford, IEEE Security and Privacy, Oakland 1987.

� “Physical Security for the microABYSS System,” S.H. Weingart, IEEE Security
and Privacy, Oakland 1987.

� Applied Cryptography: Protocols, Algorithms, and Source Code in C, Second
Edition, Bruce Schneier, John Wiley & Sons, Inc. ISBN 0-471-12845-7 or ISBN
0-471-11709-9

� ANSI X9.31 Public Key Cryptography Using Reversible Algorithms for the
Financial Services Industry

� IBM Systems Journal Volume 30 Number 2, 1991, G321-0103

� IBM Systems Journal Volume 32 Number 3, 1993, G321-5521

� IBM Journal of Research and Development Volume 38 Number 2, 1994,
G322-0191

� USA Federal Information Processing Standard (FIPS):

– Data Encryption Standard, 46-1-1988

– Secure Hash Algorithm, 180-1, May 31, 1994

– Cryptographic Module Security, 140-1

� Derived Test Requirements for FIPS PUB 140-1, W. Havener, R. Medlock, L.
Mitchell, and R. Walcott. MITRE Corporation, March 1995.

� ISO 9796 Digital Signal Standard

� Internet Engineering Taskforce RFC 1321, April 1992, MD5

� Secure Electronic Transaction Protocol Version 1.0, May 31, 1997

IBM Research Reports can be obtained from:

IBM T.J. Watson Research Center
Publications Office, 16-220
P.O. Box 218
Yorktown Heights, NY 10598

Back issues of the IBM Systems Journal and the IBM Journal of Research and
Development may be ordered by calling (914) 945-3836.

 About This Book xv

 12-NOV-01, 13:15

Other IBM Cryptographic Product Publications
The following publications describe products that utilize the IBM Cryptographic
Architecture (CCA) Application Program Interface (API).

� IBM Transaction Security System General Information Manual, GA34-2137

� IBM Transaction Security System Basic CCA Cryptographic Services,
SA34-2362

� IBM Transaction Security System I/O Programming Guide, SA34-2363

� IBM Transaction Security System Finance Industry CCA Cryptographic
Programming, SA34-2364

� IBM Transaction Security System Workstation Cryptographic Support
Installation and I/O Guide, GC31-4509

� IBM 4755 Cryptographic Adapter Installation Instructions, GC31-4503

� IBM Transaction Security System Physical Planning Manual, GC31-4505

� IBM Common Cryptographic Architecture Services/400 Installation and
Operators Guide, Version 2, SC41-0102

� IBM Common Cryptographic Architecture Services/400 Installation and
Operators Guide, Version 3, SC41-0102

� IBM ICSF/MVS General Information, GC23-0093

� IBM ICSF/MVS Application Programmer’s Guide, SC23-0098

� OS/390 Integrated Cryptographic Service Facility Overview, GC23-3972

� OS/390 Integrated Cryptographic Service Facility Application Programmer’s
Guide, SC23-3976

� OS/390 Integrated Cryptographic Service Facility System Programmer’s Guide,
SC23-3974

� OS/390 ICSF Trusted Key Entry Workstation User’s Guide, SC23-3978

Summary of Changes
This edition of the CCA User Defined Extensions Reference and Guide contains
product information that is current with IBM 4758 PCI Cryptographic Coprocessor
Version 1: 4758-001 and 4758-013.

| Changes made to this third edition in October, 2001 include:

| � Added new appendix that includes useful data structures from the toolkit
| header files.

xvi UDX Reference and Guide

 12-NOV-01, 13:15

Chapter 1. Understanding the UDX Environment

The UDX Development Toolkit for the IBM 4758 provides scaffold code, object
modules, and header files that you can use to extend the IBM-developed Common
Cryptographic Architecture (CCA) application program which employs the IBM 4758
PCI Cryptographic Coprocessor. You can use as much or as little of the CCA
application function as required to meet your processing requirements.

This chapter explains the design of the CCA “middleware” application. If you are
not familiar with the CCA implementation for the coprocessor, you should first read
portions of the IBM 4758 PCI Cryptographic Coprocessor CCA Basic Services
Reference and Guide. In particular, read chapter 1, the introductory information of
chapters 2 through 8, and become aware of the material in appendixes B, C, and
D.

This manual also assumes that you are familiar with the techniques for creating and
testing coprocessor application programs as described in the IBM 4758 PCI
Cryptographic Coprocessor Custom Software Developer’s Toolkit Guide. You may
benefit from understanding the services that you can obtain from the CP/Q++

application program interface (API). Refer to the IBM 4758 PCI Cryptographic
Coprocessor Custom Software Interface Reference.

The CCA architecture requires that security-sensitive functions are carried out in an
environment where secret or private quantities can safely appear in the clear and
where the design of the processing functions can not be altered by an adversary.
A coprocessor application program operates in such an environment. However, the
confidentiality of secret or private quantities (for example, cryptographic keys or
computational values) is also the responsibility of the application program design.

The CCA application operates as a request/response mechanism. Once initialized
by CP/Q++ as a result of a coprocessor reset sequence, the CCA application within
the coprocessor waits for an external request. The application then performs the
requested function and returns a response. The application retains persistent data
as a set of security relevant data items (SRDI). The application stores SRDIs in
RAM memory, with a backup copy retained in either battery-backed RAM (BBRAM)
or (optionally) encrypted in flash memory.

The CCA verbs (callable services) that a host application can request are generally
serviced, on a one-for-one basis, by a command processor portion of coprocessor
application code1. A common infrastructure is employed to format a verb request,
transport the request to the coprocessor, dispatch the command processor, and
return the reply to the host. Command processors and the top layer of CCA host
code, security application program interface (SAPI), make extensive use of a set of
common subroutines described in this manual.

The code that implements a user-defined extension (UDX) to CCA can be
separated into two distinct pieces. One (the “host piece”) runs as a DLL on the
host. The other (the “coprocessor piece”) is linked with a library containing IBM’s
CCA coprocessor application modules and downloaded to the coprocessor. The

1 A few CCA verbs are implemented as subroutines in the top layer of CCA host code and do not send a request to the
coprocessor.

 Chapter 1. Understanding the UDX Environment 1-1

 12-NOV-01, 13:15

host piece converts requests for service from the user’s application into messages
to be sent to the coprocessor. These messages are received by the CCA
application and routed to the appropriate (CCA or UDX) command processor.

Figure 1-1 depicts the major elements of code that form the CCA implementation
for the coprocessor. The boxes with dotted lines designate the UDX components.
Each block represents a section of the runtime code. Blocks one through six are
host system DLLs (shared libraries) with block six actually split between a DLL and
the physical device driver. An overview of these code blocks follows.

- -

- -

- ┌────────────────────┐ -

- │ User's application │ -

- │ program │ -

- └──┬─────────────┬───┘ -

- │ │ -

- │ │ -

- � � -

- ┌─────CCA API─────┐ �����UDX API������� -

- │ │ � � -

- │ Security API │%─────� UDX-SAPI � -

- │ (SAPI) �1�│ � �2�� -

- └───────┬─────────┘ ������������������� -

- � -

- ┌─────────────────┐ ┌─────────────────┐ -

- │ │ │ │ -

- │ Security Server ├─────*│ Key Storage │ -

- │ (SECY) �3�│ │ Server �4�│ -

- └───────┬─────────┘ └─────────────────┘ -

- � -

- ┌─────────────────┐ -

- │Adapter Interface│ -- - - - - - - - - - - - - --

- │ �5�│ -

- └───────┬─────────┘ -

- │ - Coprocessor

- │ - │ │ - - - - - - - - - - - - - - - - - - -

- � - │ PCI │ - -

- ┌─────────────────┐ - │ │ - ┌────────────────────┐ -

- │ Device Driver ├──────────*│ Bus │────-───*│ CP/Q++ Services │ -

- │ �6�│ - │ │ - │ �7� │ -

- └─────────────────┘ - │ │ - └────────┬───────────┘ -

- - │ │ - │ -

- - - � -

- - - - - - - - - - - - - - - - ┌──────────────────────────┐ -

 - │ CCA Dispatcher │ -

 - │ �8�│ -

 - ├──────────────────────────┤ -

 - │ CCA Services �9�│ -

 - ├─────────────�������������� -

 - │ CCA � UDX � -

 - │ Command � Command � -

- │ Processors � Processors � -

 - │ �1��� �11�� -

 - └─────────────�������������� -

 - -

- - - - - - - - - - - - - - - - - - -

Figure 1-1. View of CCA with User-Defined Extensions

1-2 UDX Reference and Guide

 12-NOV-01, 13:15

�1� Security API (SAPI)

The Security API (SAPI) code, CSUxSAPI.DLL2 , contains the CCA verb entry
points. On input SAPI gathers the request information from the variables identified
by the verb parameters and constructs a standardized set of control blocks for
communication to the coprocessor CCA application. The formatted request is then
passed to the security server (SECY) layer �3�. On output, the formatted reply is
parsed and the caller’s variables are updated with the verb results.

The request is communicated using a Cooperative Processing Request/Reply Block
(CPRB) data structure and an appended, variable-length request parameter block.
The formatted reply is likewise communicated with a CPRB and an appended reply
parameter block of the same general structure as the request block.

The fixed-length CPRB structure carries a primary function code, return and reason
code values, and pointers to, and lengths of, the request and reply parameter
blocks and data to be DMAed to/from the coprocessor. The variable-length request
and reply parameter blocks (see Figure 1-2 on page 1-7) carry:

� A sub-function code, the identifier of the command processor
� The rule-array elements, encoded in ASCII
� Verb-unique data (VUD)
� Cryptographic key information, key labels or tokens, in “key blocks.”

The subroutines used to construct and to parse these control blocks are used by all
of the verb routines in SAPI. These same subroutines are entry points that can be
called by the UDX-SAPI code �2�. See Chapter 4, “Communications Functions” on
page 4-1.

The CCA SAPI routines perform minimal checking on the input variables. The
design concept is to perform almost all variable checking within the coprocessor.
SAPI is responsible for ensuring that character-based control and data information
is encoded in the manner expected by the coprocessor application, regardless of
the encoding of this data on the host system. Likewise, SAPI must ensure that
integers and other numbers are communicated in the form expected by the
coprocessor application; in general, integers must be in little-endian format (Intel
byte-reversed format).

Because the CCA SAPI code is compiled for both personal computer and IBM
RS/6000 systems, C macros are used to ensure that the integers exchanged with
the coprocessor are in little endian format. Note, however, that most CCA data
structures, such as key tokens, define integer values as big endian (S/390 integer
format) quantities. In these cases, the coprocessor and application program are
responsible for ensuring and interpreting the appropriate integer byte-order.

�2� UDX-SAPI

The UDX callable services are assumed to be analogous to CCA services. Your
UDX host-piece code constructs and parses CPRB and request and reply
parameter blocks using the same subroutines as employed by the SAPI code.
Once the CPRB and request parameter block are constructed, you use the

2 Typical CCA host code file names begin with CSUx where the “x” is “N” for Windows NT, “E” for OS/2, “F” for AIX and “L” for
Linux.

 Chapter 1. Understanding the UDX Environment 1-3

 12-NOV-01, 13:15

CSNC_SP_SCSRFBSS() subroutine to pass control to the security server (SECY)
layer. Upon regaining control, your code should update the caller’s variables with
the information that is parsed from the CPRB and reply parameter block. See
Appendix A, “UDX Sample Code - Host Piece.”

�3� Security Server (SECY)

The Security Server (SECY), CSUxSECY.DLL, receives control from SAPI with a
pointer to the CPRB. The security server examines the key-block fields of the
request and reply parameter blocks to determine if the key storage server should
be called to allocate, delete, or list labels in key storage, or to fetch or store key
records under key labels already existing in key storage. The security server also
passes the name of the key storage files to the directory server. On input, except
for a few key-storage services which do not require use of the coprocessor, the
security server calls the adapter interface after completing any required key storage
actions. Likewise, on output the adapter interface returns control to the security
server which completes any required key storage requests and then returns control
to SAPI. Information in a key block header (see “Key Blocks” on page 1-11)
triggers the security server to process a key block.

�4� Key Storage Server

The key storage server, CSUxDIR.DLL, receives control from the security server
with pointers to the key storage file names and to the key block on which it should
take action. The server is responsible for opening and closing the directory files,
allocating records in the indexed sequential files, listing the file names, and fetching
and storing key tokens. Separate files are maintained for the DES fixed-length
records and the variable-length PKA (public key architecture, RSA) records.

�5� Adapter Interface

The adapter interface, CSUxCALL.DLL, receives control from the security server
and examines the CPRB to determine the nature of the call it will create to the
device driver.

All CCA requests to the adapter interface require that the CPRB and request
parameter block be DMAed to the coprocessor. A few requests (for example, data
ciphering and MACing requests) also require that data be scheduled for DMA
interchange with the coprocessor. The adapter interface layer examines the CPRB
request and reply data block pointer and length fields and calls the device driver so
that the coprocessor application program can cause DMA transfers from/to the
identified fields. The adapter interface layer creates the control blocks and issues
the I/O request to the device driver DLL.

�6� Device Driver and Access Layer

The device driver code is split between a DLL and a physical device driver. The
API and function of the device driver is explained in the IBM 4758 PCI
Cryptographic Coprocessor Custom Software Interface Reference.

The device driver and CP/Q++ work together to ensure that the reply to a request is
routed back to the source process and thread that initiated the associated request.

1-4 UDX Reference and Guide

 12-NOV-01, 13:15

�7� CP/Q++ Services

CP/Q++ becomes aware of an application in coprocessor segment three following a
reset sequence. The application’s entry point is called and CCA registers itself with
CP/Q++.

When CP/Q++ receives a request from the host it checks for a registered application
identifier; the identifier is a constant prearranged between the adapter interface
layer and the CCA application. CCA host requests include the CPRB and request
parameter block. The application interface layer presents sufficient information,
which is passed on by CP/Q++, so that the CCA Dispatcher can request CP/Q++ to
obtain the CPRB and request parameter block.

Other CP/Q++ services for DES, RSA, DSA, random number, date and time,
storage of data in BBRAM and flash memory, and communication with external
functions as described in the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference and IBM 4758 PCI
Cryptographic Coprocessor CP/Q Operating System C Runtime Library Reference
are available to the UDX code. Note that CCA service subroutines are already
available to perform many common functions and therefore command processor
code generally does not call CP/Q++ directly.

�8� CCA Dispatcher

When CP/Q++ responds to the CCA dispatcher’s request for input because of the
receipt of a host request, the dispatcher obtains the CPRB and request parameter
block. The dispatcher also locates the role that governs the processing of the CCA
request, either the default role or the role associated with a logged-on profile.

Each thread of each host process can logon to a role through an associated profile.
However, a single profile can be associated with only one host thread at a time; a
correct logon to a profile from another thread will be honored and a new session
key generated without any indication of this action reported to the “older” logged-on
thread (until and if the older thread makes a new request).

The dispatcher uses the sub-function code in the first two bytes of the request
parameter block in a table lookup operation to locate a CCA command processor
entry point. If a match is not found, the dispatcher checks the UDX entry point
table for a match. (Of course, if again no match is found, the dispatcher constructs
a reply CRPB and fills it with a return and reason code indicating that no such
function exists.) The dispatcher then calls the command processor and passes
pointers to the CPRB and request parameter block, and to the role that governs
processing for this request.

Later the command processor returns control to the dispatcher which uses CP/Q++

to DMA the reply CPRB, and (optionally) the reply parameter block, back to the
host.

In the current CCA coprocessor implementation, processing is performed on three
multi-tasked threads of execution:

1. The CCA dispatcher
2. The RSA key generation command processor, because this is a long-running

function
3. All other command processors

 Chapter 1. Understanding the UDX Environment 1-5

 12-NOV-01, 13:15

A future implementation might introduce additional threads of execution. Therefore,
as you write code for the CCA application, you must consider the impact of
multi-tasking. All CP/Q++ functions are thread-safe.

�9� CCA Services

The CCA application supplies many subroutines that command processors use to
perform functions in a consistent manner. These routines are described later in this
manual. The command processors also make use of three “managers” that localize
certain classes of function to the managers:

SRDI Manager The CCA coprocessor application code generally uses the SRDI
Manager to access information that is held in persistent BBRAM and flash
memory. The manager is responsible for serializing the use of the SRDIs to
accommodate the multi-tasking environment. See Chapter 10, “CCA SRDI
Manager Functions” on page 10-1.

Access Control Manager All operations on roles and profiles are carried out by
the Access Control Manager. Command processors call the manager to
determine if individual control points are authorized. When a command
processor is designed, one or more control points are assigned, as required
for security purposes, to authorize function within the command processor.
See Chapter 11, “Access Control Manager Functions” on page 11-1. The
sample SAPI code (Appendix A, “UDX Sample Code - Host Piece” on
page A-1) documents a range of control points (and also reason codes and
subfunction codes) reserved for UDX developers.

Master Key Manager All operations pertaining to the master keys are performed
by this manager. Code in other parts of CCA does not access the master key
values directly, but rather calls the manager for operations that affect or use
the master keys and their registers. See Chapter 6, “CCA Master Key
Manager Functions” on page 6-1.

Note that all of the CCA coprocessor code and much of CP/Q++ operates at
“protection ring 3” in the Intel 80x86 architecture. Therefore, all of this code has
access to memory areas belonging to any portion of CCA. As additional code is
created, it should be inspected to ensure that it performs only the intended function
and accesses only information appropriate to the intended function.

�1�� CCA Command Processors

In general, each CCA verb results in a call to one command processor, the code in
the coprocessor CCA application that performs the function unique to a verb.

Command processor code can call any of the other CCA subroutines and manager
functions as well as functions available on the CP/Q++ API. In general, a command
processor will perform the following steps. See Appendix B, “UDX Sample Code -
Coprocessor Piece.”

� Copy the request CPRB to form the reply CPRB in the memory provided by the
dispatcher.

� Set the return code and reason code to 0, 0 using Cas_proc_retc() and copy
the sub-function code into the reply block.

� Call the Access Control Manager to determine if the appropriate control point is
authorized using CHECK_ACCESS_AUTH().

1-6 UDX Reference and Guide

 12-NOV-01, 13:15

� Because most command processors will need to decrypt or encrypt a key,
determine that there is a valid master key(s) using mkmGetMasterKeyStatus().

� Check that the request parameter block is formed in a valid manner by calling
parm_block_valid().

� Check the length of the rule array data area by examining the rule array area
length bytes. For CCA, this value is 8x+2 where x=0, 1, ...,n. However, you
could make this portion of the request parameter block contain data of almost
any length. You can check the rule array elements using rule_check().

� Check the length of any VUD, data formatted to the needs of the command
processor. You should establish addressability to the VUD using a structure
definition.

� Check the length and content of the zero or more key blocks. You can use the
TOKEN_LABEL_CHECK() routine to determine if a key identifier is a key label.

� Perform the desired command function.
� Determine that the reply will not exceed the permissible reply size.
� Fill in the reply block with the rule array length and any elements, fill in the

VUD length and any data, and fill in the key-block area length and any key
blocks.

� Return to the dispatcher.

�11� UDX Command Processors

UDX command processors are coded in the same way as the existing CCA
command processors and have all of the same rights and responsibilities. In
addition, you must establish the ccax_cp_list[] and the ccax_cp_list_size variable to
inform the dispatcher of the length and content of the sub-function lookup table with
the UDX command processor entry points.

CCA Communication Structures
Two of the commonly used data structures internal to the CCA implementation are
described in this section:

� Request and reply parameter blocks
� Key blocks and their header

CCA key tokens and access control structures are described in Appendix B of the
IBM 4758 PCI Cryptographic Coprocessor CCA Basic Services Reference and
Guide.

Request and Reply Parameter Block Format
The request and reply parameter blocks immediately follow a data structure of type
CPRB_structure. Figure 1-2 shows the request and reply parameter block format.

Note: Be careful that the SAPI code processes the lengths in little-endian format
(“Intel byte-reversed order”).

Figure 1-2. Request and Reply Parameter Block Formats

Field:

Sub-
function
Code

Rule
Array
Length

Rule
Array
Data

Verb
Unique
Data
Length

Verb
Unique
Data

Key
Block
Fields
Length

Key
Block
Fields

Size: 2 2 X 2 Y 2 Z

Offset: 0 2 4 4+X 6+X 6+X+Y 8+X+Y

 Chapter 1. Understanding the UDX Environment 1-7

 12-NOV-01, 13:15

Field Name Description

Subfunction code A code that identifies the command processor through
a CCA dispatcher table lookup operation.

Rule Array Length Length in bytes of the rule array portion of the block.
Incorporation of rule-array information is optional, but
this field must be present. If no rule-array information
is specified, this field must be set to 2 (that is, the size
of the length field).

Rule Array Data Zero or more 8-byte character arrays (not
NULL-terminated). If no rule-array elements are
specified, this field is empty (0-length).

Verb Unique Data Length Length in bytes of the (optional) data that is unique to
this verb call and the length field. This field must
always be present. If no data is specified, this field
must be set to 2.

Verb Unique Data Optional data block to be passed to the verb. For
instance, if the verb is to encrypt 8 bytes as a key, the
verb unique data might be the clear value of the key.
If no data is specified, this field is empty (0-length).

Key Block Fields Length Length in bytes of the optional key block(s) portion of
the request or reply parameter block. This field must
always be present. If no keys are specified, this field
must be set to 2.

Key Block Fields Optional key block(s) exchanged between the host
and coprocessor code. If no key tokens or key labels
are specified, this field should be empty (0-length).

While it is possible to construct a request/reply parameter block “by hand” using
pointer arithmetic, it is recommended that the UDX developer instead use the
CCA-provided utility routine BuildParmBlock. The developer calls BuildParmBlock
three times to build a request/reply parameter block: once for rule information,
once for the verb unique data, and once for the key data. The order is important:
rules first, then verb unique data, followed by key data. This routine simplifies
request/reply parameter block creation by accepting an arbitrary number of
argument pairs (length + data pointer pairs) and constructs the sub-blocks in the
previous table.

Similarly, while it is possible to extract data from the request/reply parameter blocks
“by hand” using pointer arithmetic, it is recommended that the UDX developer
instead use the CCA-provided utility routines FindFirstDataBlock,
FindNextDataBlock, find_first_key_block, and find_next_key_block.

Note: An example of the use of these functions (BuildParmBlock and
CSUC_BULDCPRB) is in Appendix A, “UDX Sample Code - Host Piece” on page A-1.

Passing Large Data Blocks

If more data must be passed, it is possible to pass the host address to the
coprocessor for reading or writing with the CSUC_BULDCPRB command. The
buffer so addressed for sending to the coprocessor is referred to as a request data
block. The length and pointer for the reply data block can be used for reading data

1-8 UDX Reference and Guide

 12-NOV-01, 13:15

from the coprocessor. The data buffers must not overlap and must be a multiple of
four bytes long. In order for the device driver to manipulate the buffers efficiently,
they should be aligned on 4-byte boundaries. Access to these buffers is managed
by the coprocessor application using the sccGetBufferData and sccPutBufferData

| functions, respectively, using the defined constants CPRB_REQUEST_DATA or
| CPRB_REPLY_DATA as buffer indices.

On the host:

// First, set the CPRB structures properly, with the Rule Array, Verb Unique Data, and Key Blocks.

// To set the Request Data Block:

LocalRequestTextLength = FpTextLength;

 LocalReplyTextLength = FpTextLength;

 CSUC_BULDCPRB(pCprb,

(UCHAR F) ESSS_FUNCTION_ID_S,

 RequestBlockLength, // Req.Parm

 pRequestParmBlock, // block

// len + adr

 LocalRequestTextLength, // Req.Data

(UCHAR F) pInpText, // block

// len + adr

sizeof(pRequestReplyBuffer->reply_buf),

 pRequestReplyBuffer->reply_buf,

 LocalReplyTextLength, // Rep.Data

(UCHAR F) pOutText); // block

 Chapter 1. Understanding the UDX Environment 1-9

 12-NOV-01, 13:15

On the card:

// ---

// Get the length of the bulk text first, from

// the CPRB structure.

 // ---

BulkBlockLength = pRequestCprb->req_data_block_length;

 // ---

// Check that the length of the reply data block

// in the CPRB is long enough (depends on your function)

 // ---

if (BulkBlockLength > pRequestCprb->reply_data_block_length)

 {

Cas_proc_retc(pReplyCprb, RT_CONSISTENCY_ERROR);

 return;

 }

 // ---

// Get the InpText

 // ---

// It is best to allocate these large blocks of data dynamically.

// But don't forget to free them later!

InpTxt = malloc(BulkBlockLength);

if (InpTxt == NULL)

 {

 Cas_proc_retc(pReplyCprb, E_ALLOCATE_MEM);

 return;

 }

 memset(InpTxt,255,sizeof(InpTxt));

// Get the data from the buffer.

ReturnMsg = sccGetBufferData(RequestId,

 CPRB_REQUEST_DATA,

 InpTxt,

 BulkBlockLength);

if (ReturnMsg != S)

 {

 free(InpTxt);

 Cas_proc_retc(pReplyCprb,

 RT_CONSISTENCY_ERROR);

 return;

} // End if

 //---

 //

// Build the OutTxt

// after completing the function

// and filling the Reply CPRB with the correct information

 //---

OutTxt = malloc(BulkBlockLength);

if (OutTxt == NULL)

 {

 free(InpTxt);

 Cas_proc_retc(pReplyCprb, E_ALLOCATE_MEM);

 return;

 }

1-10 UDX Reference and Guide

 12-NOV-01, 13:15

for (iCnt=S ; iCnt < BulkBlockLength ; iCnt++)

 {

OutTxt[iCnt] = InpTxt[BulkBlockLength-iCnt-1];

} // End for

 free(InpTxt);

// The data we return is the same length as the data which

// was sent, for this function.

ReturnMsg = sccPutBufferData(RequestId,

 CPRB_REPLY_DATA,

 OutTxt,

 BulkBlockLength);

 free(OutTxt);

if (ReturnMsg != S)

 {

 Cas_proc_retc(pReplyCprb,

 RT_CONSISTENCY_ERROR);

 return;

} // End if

 //---

// Write the Length of OutTxt in the CPRB

 // --

pReplyCprb->reply_data_block_length = BulkBlockLength;

 //--

// Then return to the host function

 //--

 return;

Refer to the IBM 4758 PCI Cryptographic Coprocessor Custom Software Interface
Reference for more details on using the sccGetBufferData and sccPutBufferData
functions.

 Key Blocks
The key blocks portion of the request and reply parameter blocks is used to
transport zero or more key identifiers: key labels and/or key tokens. A key block is
a data structure consisting of a header and appended key label and/or key token
data.

The key block header is a data structure containing a USHORT Length field in
little-endian format followed by a USHORT Flags field in little-endian format. The
Length field indicates the length of the header plus the length of the key token or
label which follows it, while the Flags field informs SECY what functions are
required of it. The Flags field options are detailed in the following table:

Flags indicating the type of key (one required)

PKA96_TYPE Indicates that the key token or label is an PKA token.

DES96_TYPE Indicates that the key token or label is a DES key token.

Flags indicating the action to be taken (one required)

ACTION_READ Request SECY to retrieve the key token from the storage
file. This header must be followed by a key label.

ACTION_WRITE Requests SECY to add or overwrite the key token in the
storage file. This header must be followed by a key label
concatenated with a key token.

ACTION_NOOP Requests no action from SECY.

 Chapter 1. Understanding the UDX Environment 1-11

 12-NOV-01, 13:15

If a DES key label were being passed with the intent that SECY obtain a key token
for forwarding to the coprocessor, the Length and Flags fields would be set as
follows:

KeyHeader.Flags = htoas(DES96_TYPE | ACTION_READ);

KeyHeader.Length = htoas(KEY_HDR_LEN + sizeof(KeyLabel));

This would cause SECY to locate the label which follows this header in the key
block within the DES Key Storage File and replace the key label in the key block
with the correct key token, for use by the coprocessor.

If an RSA key token were being passed, the Length and Flags fields would be set
in this way:

KeyHeader.Flags = htoas (PKA96_TYPE | ACTION_NOOP);

KeyHeader.Length = htoas(KEY_HDR_LEN + xtohs(KeyToken.KeyLength));

Notice that the KeyLength field of a PKA key token is stored in big-endian format.

Structuring the Key Block
If a key in the key storage file is to be read from key storage and changed in the
command processor (for example, re-enciphering under the current master key) two
copies of the key label must be passed from the host to the coprocessor, one with
the ACTION_READ flag set, the other with the ACTION_NOOP flag set. This
ensures that the coprocessor will receive both a key token to work with, and a key
label with which to write the token to the key storage file when done. Upon return,
the key block is built with one header, the Flags field set to ACTION_WRITE,
followed by the Key Label and the Key Token. See the sample function in
Appendix A and Appendix B for an example.

If the key is to be read from the SECY server, but not changed (for example, for an
ENCIPHER service) the key label may be passed alone, with the Flags field set to
ACTION_READ. On return, the key block is empty and the length is set to two.

Key Labels and key tokens are further described in the IBM 4758 PCI
Cryptographic Coprocessor CCA Basic Services Reference and Guide.

1-12 UDX Reference and Guide

 12-NOV-01, 13:15

Chapter 2. Building a CCA User-Defined Extension

This chapter describes the process you can follow in creating a User-Defined
Extension (UDX) for the CCA application that performs within and accesses the
coprocessor. The chapter begins with an explanation of the files that you will use
and then continues with the steps that you can follow in developing the host and
the coprocessor pieces of code. It is assumed that you are familiar with developing
and testing applications for the coprocessor, and that you have knowledge of the
CP/Q++ API as explained in the other Toolkit publications (see “Related
Publications” on page xiii).

Files You Use in Building a UDX
A developer must create the following files (or modify the samples that are provided
with the UDX Developer’s Toolkit) to produce a UDX:

� A header file (for example, csueextn.h) that defines the interface the UDX
exports to a user’s application. This header file is #included by the user’s
application and by the host piece of the UDX and should contain a function
prototype for each service the UDX provides. Such services are implemented
in the same manner as CCA verbs; an example appears in Figure 2-1 on
page 2-3.

� A header file (for example, cxt_cmds.h) that defines the interface between the
host piece of the UDX and the coprocessor piece of the UDX. This header file
is #included by both pieces and should define UDX subfunction codes, a UDX
command processor for each subfunction, and the access control points and
completion codes used by the UDX. The sample provided with the UDX
Developer’s Toolkit includes comments that indicate the range of acceptable
values for each of these elements.

� One or more C source files (for example, sxt_samp.c) that implement the host
piece of the UDX. The sample provided with the UDX Developer’s Toolkit is a
skeleton that exports a single function to the user’s application. The function
checks its input parameters, constructs a request block, sends the request to
the coprocessor and receives the reply, extracts the result, and returns it to the
user’s application.

� One or more C source files (for example, cxt_cmds.c) that implement the
coprocessor piece of the UDX. The sample provided with the UDX Developer’s
Toolkit is a skeleton that receives a request from the host, validates the request
and extracts the arguments it contains, performs a simple operation, constructs
a reply block, and returns the reply to the host piece of the UDX.

A developer may need to modify the following files that are provided with the UDX
Developer’s Toolkit to produce a UDX:

� A makefile that builds the DLL that implements the host piece of the UDX and
the import library that describes the entry points the DLL exports. The UDX
Developer’s Toolkit provides two such files: csueextn.mak (which creates
csueextn.dll and csueextn.lib) for use on OS/2 and csunextn.mak (which
creates csunextn.dll and csunextn.lib) for use on Windows NT. These
makefiles are customizable for use with either Microsoft Visual C++ or IBM
Visual Age C++.

 Chapter 2. Building a CCA User-Defined Extension 2-1

 12-NOV-01, 13:15

� A makefile (for example, camextn.mak) that builds the executable that
implements the coprocessor piece of the UDX. This executable includes the
object for the UDX itself as well as a library that implements the coprocessor
CCA object modules. This makefile may be customized for use with either
Microsoft Visual C++ or IBM Visual Age C++.

� A linker definition file for the DLL that implements the host piece of the UDX.
This file specifies the names of the entry points exported by the UDX and lists
the CCA functions the host piece of the UDX invokes. The UDX Developer’s
Toolkit provides two such files: csueextn.def for use on OS/2 and
csunextn.def for use on Windows NT.

� A resource definition file (for example, csunextn.rc) that supplies the version
information that appears in the properties of the DLL that implements the host
piece of the UDX on Windows NT. No resource definition file is needed to
build the host piece of a UDX on OS/2.

The following binary files are used to produce a UDX:

� A library that contains definitions of the interface the UDX exports to a user’s
application. This library is linked with the user’s application. The UDX
Developer’s Toolkit makefiles generate the appropriate library: csueextn.mak
creates csueextn.lib on OS/2 and csunextn.mak creates csunextn.lib on
Windows NT.

� A library that contains the coprocessor CCA object modules. This library is
linked with the object files that constitute the coprocessor piece of the UDX.
The result is a coprocessor application executable that contains all of the
standard CCA functions and those functions provided by the UDX. The UDX
Developer’s Toolkit provides two libraries: csuelib.lib for use when building a
UDX on OS/2 and csunlib.lib for use when building a UDX on Windows NT.

A UDX developer defines certain constants (for example, subfunction codes,
access control points, and completion codes) during development. There is no
guarantee that the values the developer chooses for these constants do not collide
with the values the developer of another UDX has chosen. This is generally not a
problem since all UDXs used by a particular customer are developed by a single
organization and procedures to avoid collisions are adopted.

In order to avoid collisions between UDX constants and constants used by future
versions of CCA, the following have been reserved for use by developers writing
UDXs:

for subfunction
codes,

“WA” - “WZ”, “W0” - “W9”, “XA” - “XZ”, “X0” - “X9”, “YA” - “YZ”, and
“Y0” - “Y9”

for completion
codes,

0x5000 - 0x5FFF

for access control
points,

0x8000 - 0xFFFF

2-2 UDX Reference and Guide

 12-NOV-01, 13:15

Host Piece of a UDX
The host piece of a UDX is a dynamic link library (DLL) that converts requests for
service from the user’s application into one or more calls to the standard CCA host
API module (csuesapi.dll on OS/2, csunsapi.dll on Windows NT). The host piece of
a UDX typically checks its input parameters, constructs a request block, sends the
request to the coprocessor and receives the reply, extracts the result, and returns
the result to the user’s application.

This section lists the steps a developer must complete in order to create the host
piece of a UDX.

1. Define the UDX API.

A prototype for each function the UDX exports to the user’s application must be
placed in a header file (for example, csueextn.h) that is #included by the user’s
application and by the host piece of the UDX. The header file should also
contain any ancillary declarations (for example, constant values) the exported
interface requires.

Prototypes for the standard CCA API functions may serve as examples and are
located in csueincl.h (OS/2 versions) and csunincl.h (Windows NT versions).
Both header files are part of the UDX Developer’s Toolkit. Figure 2-1
illustrates a representative prototype.

extern void SECURITYAPI

 CCAXFCN1(long F return_code,

 long F reason_code,

 long F exit_data_length,

unsigned char F exit_data,

 long F rule_array_count,

unsigned char F rule_array,

unsigned long F key_id_length,

unsigned char F key_identifier

);

Figure 2-1. Example CCA/UDX Function Prototype

UDX prototypes may have any number of parameters, although for consistency
reasons it is recommended that all UDX functions include the first six
parameters that appear in Figure 2-1 (return_code, reason_code,
exit_data_length, exit_data, rule_array_count, and rule_array). Every
parameter must either be a pointer to a 32-bit integer, a pointer to an array of
bytes, or a pointer to an array of integers. In the case of arrays, the number of
elements in the array is by convention passed in a separate parameter.

The prototype in Figure 2-1 defines a function named CCAXFCN1. The function
takes these parameters: the array of bytes pointed to by key_identifier and
the integer pointed to by key_id_length which contains the number of bytes in
the array.

Refer to the IBM 4758 PCI Cryptographic Coprocessor CCA Basic Services
Reference and Guide for more information about parameter types.

2. Define the subfunction codes for the UDX.

The coprocessor piece of a UDX consists of zero or more command
processors. The host piece of the UDX uses a “subfunction code” to identify
the command processor to which it wants to send a particular request. The

 Chapter 2. Building a CCA User-Defined Extension 2-3

 12-NOV-01, 13:15

values of subfunction codes must be defined in a header file (for example,
cxt_cmds.h) that is #included by both pieces of the UDX. Figure 2-2 on
page 2-4 contains an example of such a definition.

A list of the subfunction codes for the standard CCA API functions appears in
cmncryt2.h, which is part of the UDX Developer’s Toolkit.

/FFF

FF ENTER

FF your CCA command extension sub-function codes after this comment.

FF ===

FF

FF The xxxx_ID entry is for unsigned short operations on the 2 byte

FF sub-function code. Because of the INTEL architecture the hex

FF values are reversed.

FF

FF The xxxx_ID_S entry is for character string operations on the 2

FF byte sub-function code. This is the actual order the character

FF code appears in the field.

FF

FF The following 2 character code points have been reserved for CCA

FF extensions. If you use other code points they may conflict with

FF existing CCA commands.

FF

FF WA - WZ, WS - W9

FF XA - XZ, XS - X9

FF YA - YZ, YS - Y9

FFFFFFFFFFFFFFFFFFFFFFFFFFF/

#define CCAXFNC1_ID Sx4158 /F 'XA' - Sample CCA extension 1 F/

#define CCAXFNC1_ID_S "XA"

Figure 2-2. Example UDX Subfunction Codes

3. Define new completion codes for the UDX.

A UDX function returns a completion code indicating whether the function
succeeded or not (and giving some idea of what caused the failure if one
occurred). The standard CCA completion codes are defined in cmnerrcd.h and
their meanings and use are further clarified in an appendix to the IBM 4758 PCI
Cryptographic Coprocessor CCA Basic Services Reference and Guide. If no
standard code is applicable to a particular situation, new completion codes
must be defined in a header file (for example, cxt_cmds.h) that is #included in
both pieces of the UDX. Figure 2-3 on page 2-5 contains an example of such
a definition.

2-4 UDX Reference and Guide

 12-NOV-01, 13:15

/FF

FF Enter your CCA extension completion codes after this comment.

FF ===

FF

FF The definition of a completion code (SxSSyyzzzz) consists of

FF 2 parts. Where:

FF yy is the return code (SS, S4, S8, SC, 1S).

FF zzzz is the reason code.

FF

FF The following range of 2 byte hex reason codes

FF have been reserved for CCA extensions.

FF

FF Sx5SSS - Sx5FFF

FFFFFFFFFFFFFFFFFFFFFFFFFFF/

#define CXT_INFO_xxxxxx SxSSSS5SSSL /F SS/2S48S sample F/

#define CXT_WARN_xxxxxx SxSSS45SS1L /F S4/2S481 sample F/

#define CXT_ERR8_xxxxxx SxSSS85SS2L /F S8/2S482 sample F/

#define CXT_ERR12_xxxxxx SxSSSC5SS3L /F 12/2S483 sample F/

#define CXT_ERR16_xxxxxx SxSS1S5SS4L /F 16/2S484 sample F/

Figure 2-3. Example UDX Completion Codes

4. Design and code the logic of the host piece of the UDX.

The host piece of a UDX is typically straightforward - it essentially constructs a
request block, sends the block to the coprocessor, and parses the result. See
Appendix A, “UDX Sample Code - Host Piece” on page A-1 for a sample
(sxt_samp.c). This sample can be used as a skeleton and customized to meet
the requirements of most UDXs.

In general, the host piece of a UDX should be as small as possible. Most of
the work should be performed by the coprocessor piece. This approach makes
it much easier to port the host piece to different platforms if the need arises.

5. Export the UDX API entry points.

The entry points in the DLL that implements the host piece of the UDX must be
exported so that the user’s application can invoke them. Sample link definition
files for OS/2 (csueextn.def) and for Windows NT (csunextn.def) are included in
the UDX Developer’s Toolkit. An EXPORT statement should be added for
each function the UDX exports to the user’s application.

6. Build the UDX DLL and LIB files.

The UDX Developer’s Toolkit includes sample makefiles for OS/2
(csueextn.mak) and for Windows NT (csunextn.mak). Statements should be
added to compile the source files that contain the host piece of the UDX and
create the UDX DLL and library file. The user’s application links with the library
file to resolve references to the functions the UDX exports.

For further information about the build environment, including required compiler
options, refer to “Chapter 3, Developing and Debugging an SCC Application” of
the IBM 4758 PCI Cryptographic Coprocessor Custom Software Developer’s
Toolkit Guide.

 Chapter 2. Building a CCA User-Defined Extension 2-5

 12-NOV-01, 13:15

Coprocessor Piece of a UDX
The coprocessor piece of a UDX is a collection of one or more command
processors that is linked with IBM’s CCA coprocessor application modules
(csuelib.lib on OS/2, csunlib.lib on Windows NT) to create an executable that can
be loaded into the coprocessor. The coprocessor piece of a UDX may invoke any
of the CCA services and can also invoke CP/Q++ functions.

This section lists the steps a developer must complete in order to create the
coprocessor piece of a UDX.

1. Define the UDX command processor API.

A prototype for each command processor the coprocessor piece of the UDX
makes available to the host piece of the UDX must be placed in a header file
(for example, cxt_cmds.h) that is #included by both pieces of the UDX. The
prototype must have the same parameters and return type as the example
shown in Figure 2-4.

/FF

FF Enter

FF your CCA command extension function prototypes after this comment.

FF ==

FF

FF The entry points must have the following parameter definitions.

FF

FF FpCprbIn - (input) Pointer to the input CPRB. The request

FF parameter block exists immediately after the

FF CPRB area.

FF FpCprbOut - (output) Pointer to an area for returning of the

FF CPRB followed by the reply parameter block.

FF RequestId - (input) Adapter request identifier. It is required

FF as input for some scc.... library calls.

FF roleID - (input) The user's role identifier. It is required

FF as input when checking the requestor's access

FF authority to this function.

FFFFFFFFFFFFFFFFFFFFFFFFFFF/

void ccax_fcn_1(

 CPRB_structure FpCprbIn,

 CPRB_structure FpCprbOut,

 unsigned long RequestId,

 role_id_t roleID);

Figure 2-4. Example UDX Command Processor Prototype

On entry to a command processor:

pCprbIn contains the address of a cooperative processing request block
(CPRB). The CPRB’s contents match the contents of the CPRB pointed to by
the pCprb argument the host piece of the UDX passed to the call to
CSNC_SP_SCSRFBSS that caused the command processor to gain control.

pCprbOut contains the address of a buffer large enough to hold a CPRB header
and the result of the operation.

RequestId contains a handle generated by the coprocessor operating system
that uniquely identifies the message that the host sent to the coprocessor

2-6 UDX Reference and Guide

 12-NOV-01, 13:15

whose receipt caused the command processor to gain control.1 A command
processor that invokes basic coprocessor operating system functions may need
to pass this handle as an argument to those functions.

roleID contains the identifier of the role associated with the host process that
caused the command processor to gain control. It can be used to verify that
the host process has the proper authority to perform the requested function.

2. Define access control points for the UDX.

Associated with each profile on the host is a role, or set of coprocessor
operations the profile is allowed to invoke. If access to the functions exported
by the coprocessor piece of the UDX needs to be restricted in any way, new
“access control point” values must be defined in a header file (for example,
cxt_cmds.h) that is #included by both pieces of the UDX. Figure 2-5 contains
an example of such a definition.

A command processor can use access control points in conjunction with the
role identifier supplied as an argument to the command processor to determine
whether or not a particular operation is authorized. See
“check_access_auth_fcn - Verify User Authority” on page 12-2 for details.

These values must also be added to the csuap.def file in the cnm subdirectory
of the CCA (for example, Program Files\IBM\4758\cnm). The cnm utility uses
this file to enable editing of roles. Refer to the IBM 4758 PCI Cryptographic
Coprocessor CCA Support Program Installation Manual manual for more
information.

/FF

FF Enter

FF your CCA command extension access control points after this

FF comment.

FF ==

FF

FF The following range of 2 byte hex code points have been reserved

FF for CCA extension access control points.

FF

FF Sx8SSS - SxFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFF/

#define CXT_COMMAND_XXXXXXX Sx8SSS /F Sample definition. F/

Figure 2-5. Example UDX Access Control Points

3. Add the UDX command processors to the command decoding array.

IBM’s CCA coprocessor application modules uses an array to determine which
UDX command processor to invoke when a request with a particular
subfunction code is received. An entry for each command processor must be
added to the ccax_cp_list array, which must be defined in a program file (for
example, cxt_cmds.c) that is compiled with both pieces of the UDX. Each entry
contains a subfunction code and the name of the corresponding command
processor.

The ccax_cp_list_size variable must be initialized to the number of entries in
the array.

1 RequestId is the value returned in the pRequestHeader->RequestID output from the call to sccGetNextHeader that received the
message. Refer to the IBM 4758 PCI Cryptographic Coprocessor Custom Software Interface Reference for details.

 Chapter 2. Building a CCA User-Defined Extension 2-7

 12-NOV-01, 13:15

Figure 2-6 on page 2-8 contains an example of the requisite definitions.

/FF

FF Enter

FF your CCA command extension array entry after this comment.

FF ==

FF

FF Each element of the table is a CCAX_CP_DEF type. That is,

FF it contains one 2 character sub-function code, and a

FF pointer to the corresponding command processor function.

FF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF/

CCAX_CP_DEF ccax_cp_list[] = { { CCAXFNC1_ID, ccax_fcn_1 },

{ CCAXFNC2_ID, ccax_fcn_2 } };

/FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FF Declare a variable which holds the number of CCA extension

FF command processors defined in the ccax_cp_list table above.

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF/

ULONG ccax_cp_list_size = (sizeof(ccax_cp_list)/sizeof(CCAX_CP_DEF));

Figure 2-6. Example UDX Command Decoding Array Definition

4. Design and code the logic of the coprocessor piece of the UDX.

The coprocessor piece of a UDX has access to the same internal functions and
services as the CCA coprocessor application modules and may be quite
complex. A sample (cxt_samp.c) appears in Appendix B, “UDX Sample Code -
Coprocessor Piece” on page B-1. It can be used as a skeleton and
customized to meet the requirements of most UDXs.

5. Build the UDX coprocessor executable.

The UDX Developer’s Toolkit includes a sample makefile (camextn.mak) that
works on OS/2 and on Windows NT. Statements should be added to compile
the source files that contain the coprocessor piece of the UDX. The makefile
generates two versions of the UDX binary, one that contains debug information
and one that does not. The version without debug information should be
incorporated into a read-only disk image using the SCCRODSK utility and
downloaded to the coprocessor using the DRUID utility. The version with
debug information remains on the host and is used by the ICAT debugger to
support source-level debug of the UDX. See the IBM 4758 PCI Cryptographic
Coprocessor Custom Software Developer’s Toolkit Guide for more information.

Note: To securely load your application into a coprocessor requires that the
application be signed with keys certified by Development in IBM Charlotte. See the
IBM 4758 PCI Cryptographic Coprocessor Custom Software Developer’s Toolkit
Guide for an explanation of the process to obtain certified keys and to sign your
application.

2-8 UDX Reference and Guide

 12-NOV-01, 13:15

 Chapter 3. SCC Functions

The CCA API is built on top of the secure cryptographic coprocessor (SCC) API, a
lower level API that allows the host piece of IBM’s CCA Support Program to
interact with the coprocessor piece of the CCA Support Program and allows the
coprocessor piece of the CCA Support Program to perform various cryptographic
operations and to manipulate persistent storage on the coprocessor. SCC API
functions can also be invoked by a UDX. The SCC API includes a set of functions
an application running on the host may invoke (the host-side API) and a set of
functions an application running on the coprocessor may invoke (the
coprocessor-side API).

This section briefly describes SCC API. A more detailed description may be found
in the IBM 4758 PCI Cryptographic Coprocessor Custom Software Interface
Reference.

Host-Side SCC API Functions
The host-side portion of the SCC API (host API) allows an application running on
the host to exchange information with an application running on a coprocessor.
The host API provides a uniform interface for applications running on AIX, OS/2,
and Windows NT.

Host API calls can be used to determine the number of cryptographic coprocessors
installed in the host, establish a communications channel to a specific coprocessor,
exchange information via the channel with a specific application running on the
coprocessor, and close the channel.

Coprocessor-Side SCC API Functions
The coprocessor API includes functions in the following categories:

Functions Category Description

Communications Allows a coprocessor application to interact with a host
application and obtain permission to request services
from the coprocessor device managers.

Hash Allows a coprocessor application to compute a
condensed representation of a block of data using
various standard hash algorithms.

DES Allows a coprocessor application to request services from
the Data Encryption Standard (DES) Manager, which
uses the coprocessor’s DES chip to support DES
operations with key lengths of 40, 56, 112, or 168 bits
and the Commercial Data Masking Facility (CDMF)
algorithm.1

Public Key Algorithm Allows a coprocessor application to request services from
the Public Key Algorithm (PKA) Manager, which uses the
coprocessor’s large-integer modular math hardware to
support public key cryptographic algorithms.

Large Integer Modular
Math

Allows a coprocessor application to direct the PKA
Manager to perform specific operations on large integers.

 Chapter 3. SCC Functions 3-1

 12-NOV-01, 13:15

Functions Category Description

Random Number
Generator

Allows a coprocessor application to request services from
the Random Number Generator (RNG) Manager, which
uses a hardware noise source to deliver random bits that
meet the standards described in FIPS Publication 140-1,
section 4.11.

Nonvolatile Memory Allows a coprocessor application to request services from
the Program Proprietary Data (PPD) Manager, which
controls the coprocessor’s nonvolatile memory areas
(flash memory and battery-backed RAM [BBRAM]).

Coprocessor
Configuration

Configures certain processor features or return
information about the coprocessor.

1 CDMF is a DES-based data confidentiality algorithm with a key strength equivalent to
40 bits. In general, it is used when import or export regulations prohibit the use of
longer keys.

3-2 UDX Reference and Guide

 12-NOV-01, 13:15

 Chapter 4. Communications Functions

In CCA, the host and coprocessor communicate by exchanging well-formed request
and reply data blocks. For consistency, UDX routines also follow this paradigm.

This section describes functions needed to allow the host and coprocessor to
exchange requests and replies.

Header Files for Communications Functions
When using these functions, your program must include the following header files.

#include "cmncryt2.h" /F Cryptographic definitions F/

#include "cmnfunct.h" /F Common library routines. F/

#include "cassub.h" /F for Cas_proc_retc F/

Summary of Functions
Request and reply processing includes the following functions.

BuildParmBlock Build a parameter block.

Cas_proc_retc Prioritizes a return code in the reply CPRB.

CSNC_SP_SCSRFBSS Send a request to the coprocessor.

CSUC_BULDCPRB Construct a well-formed CPRB block.

CSUC_PROCRETC Prioritize a return code.

FindFirstDataBlock Search for the first data block.

FindNextDataBlock Search for the next data block.

find_first_key_block Search for the first key block.

find_next_key_block Search for the next key block.

InitCprbParmPointers Initialize CPRB parameter pointers.

keyword_in_rule_array Search for a keyword in the rule array.

parm_block_valid Examine and verify a parameter block.

rule_check Verify a rule array.

saf_process_key_label Process a key label.

 Chapter 4. Communications Functions 4-1

 BuildParmBlock - Build a Parameter Block 12-NOV-01, 13:15

BuildParmBlock - Build a Parameter Block
Note: This function is available on both the host and the coprocessor.

BuildParmBlock constructs a parameter block, containing a two-byte length field,
followed by a variable number of data fields. The function accepts pairs of data
descriptors, each consisting of a pointer to the data item, and a value containing
the item’s length. For each pair, the first value is an unsigned short containing the
length, and the second value is an unsigned char pointer giving the location of the
data.

BuildParmBlock is used in building the Reply Parameter Block for the response to a
host request as well as the Request Parameter Block.

The function result contains the total length of the block built by the function.

 Function Prototype
USHORT BuildParmBlock

(

 UCHAR FpBuffer,

 USHORT pairs,

 USHORT Data1_length,

 UCHAR FpData1

 ...)

 Input
On entry to this routine:

pBuffer is the starting address of the parameter block section to be built.

pairs is the number of argument pairs which are to be added to the parameter
block section.

Datai_length is the length of the ith. item, in bytes.

Datai is a pointer to the ith data item to be added.

Note: If no items are to be added, Data1_length = 0 and Data1 = NULL.

If 2 or more items of verb unique data are to be added, each item should be
preceded by a short field containing the length of the individual item +2. This will
allow the function FindNextDataBlock to parse the result.

4-2 UDX Reference and Guide

 12-NOV-01, 13:15 BuildParmBlock - Build a Parameter Block

BlockLength = S;

pCprb = (CPRB F)&(Buffer.request_parm_buffer[S]);

pRequestBlock = &(Buffer.request_parm_buffer[S]) +sizeof(CPRB_structur

CPRB
Structure

(Empty) reply parameter block

pRequestBlock

5120 bytes 5120 bytes

Buffer.reply_parm_block

REQUEST_REPLY_BUFFER

Step one: add the subfunction code

BlockLength +=2;

F((USHORT F) pReqBlk) = htoas (CCAXFNC1_ID) ;

CPRB
Structure

(Empty) reply parameter block

Subfunction code

(Empty)

Step two: add the rule array

BlockLength += BuildParmBlock(pRequestBlock+BlockLength,

1, /F adding 1 rule array F/

(FpRuleArrayCount) F8, /F length of rule array F/

 pRuleArray);

CPRB
Structure

(Empty) (Empty) reply parameter block

SectionLength, return value of BuildParmBlock

Rule array
Section length
Subfunction code

 Chapter 4. Communications Functions 4-3

 BuildParmBlock - Build a Parameter Block 12-NOV-01, 13:15

Step three: add the verb unique data

Data1Length = Data1Size + sizeof(short);

Data2Length = Data2Size + sizeof(short);

BlockLength += BuildParmBlock(pRequestBlock + BlockLength,

4, /F adding 2 data items, plus their lengths F/

sizeof(short), &Data1Length, /F length of 1st item, including this field F/

Data1Size, pData1,

sizeof(short), &Data2Length, /F length of 2nd item, including this field F/

Data2Size, pData2);

CPRB
Structure

(Empty) (Empty) reply parameter block

SectionLength, return value of BuildParmBlock

Data1Length

Data2

Data2Length
Data1

SectionLength

Data1Length

Rule Array

SectionLength

Subfunction code

Step four: add the key blocks

KeyHeaderI.Length = KeyTokenLength + sizeof(KEY_FIELD_HEADER);

KeyHeaderI.Flags = storageOptions;

BlockLength = BuildParmBlock(pRequestBlock + BlockLength,

2, /Fadding a key block header and a key tokenF/

 sizeof(KEY_FIELD_HEADER), &KeyHeaderI,

 KeyTokenLength, &KeyToken):

 Output
On successful exit from this function:

BuildParmBlock returns the total length of the block built by the function. The buffer
at pBuffer contains the parameter block.

Return and Reason Codes
This function has no return codes.

4-4 UDX Reference and Guide

 12-NOV-01, 13:15 BuildParmBlock - Build a Parameter Block

 Notes
Building the Parameter Blocks

There are three types of parameter blocks: the rule array block, the verb unique
data block, and the key block. They must all be present in the CPRB message, in
this order. If any of the blocks is unnecessary, a length field of 2 must be present
to indicate an empty parameter block. This may be achieved by calling
BuildParmBlock(pBuffer, 0,0,NULL);

The rule array is a byte array, with 8 bytes for each rule present. Each rule is 8
bytes long, padded on the right with spaces. It is important to note that the entire 8
bytes are compared - these are not strings as C and C++ define them. No
allowance is made for a null terminator, so be careful when copying rule data into
the array. No more than one rule array is used per call, although up to 5 separate
rules can be included in the array.

For more information about key block structures, see “Key Blocks” on page 1-11.

See Appendix A, UDX Sample Code - Host Piece for sample code which includes
key label to token translation and parameter block building.

Byte Alignment of Structures

It is important that all structures which are passed from the host to the coprocessor
or the coprocessor to the host be aligned on 1-byte boundaries. If you are passing
a user-defined structure to the coprocessor, either as verb unique data or as key
data, you must ensure that your compiler aligns the structure on one-byte
boundaries. This can be done by adding a “#pragma pack(1)” directive in the
include file before the structure is defined, or by compiling with the “/Zp1” (for
MSVC++) or “Sp1” (for VACPP) directives in the makefile.

 Chapter 4. Communications Functions 4-5

 Cas_proc_retc - Prioritize Return Code 12-NOV-01, 13:15

Cas_proc_retc - Prioritize Return Code
Note: This function is available on the coprocessor.

Cas_proc_retc is used when you encounter an error, and need to set a return code
in the reply CPRB. The function compares your new return code, passed in msg,
with the return code already present in the CPRB. It uses a priority evaluation
scheme to decide whether your new return code, or the one already in the CPRB
indicates a more critical error, and it leaves whichever is higher priority in the
CPRB.

 Function Prototype
long Cas_proc_retc

(

 CPRB_structure FpCprb,

 long msg

)

 Input
On entry to this routine:

pCprb is a pointer to the reply CPRB structure.

msg is the CCA (SAPI) return code for the error just encountered.

 Output
On successful exit from this routine:

pCprb->return_code and pCprb->reason_code contain the reason codes of msg, if
the return code of msg was greater than the return code formerly in
pCprb->return_code.

Return and Reason Codes
Common return codes generated by this routine are:

OK The operation was successful.

ERROR The return code in msg was greater than Warning level (level 4).

4-6 UDX Reference and Guide

 12-NOV-01, 13:15 CSNC_SP_SCSRFBSS - Send a Request to the Coprocessor

CSNC_SP_SCSRFBSS - Send a Request to the Coprocessor
Note: This function is available on the host.

CSNC_SP_SCSRFBSS passes a request to the coprocessor, and receives the
response.1 The input and output are passed using a pointer to the CPRB structure.
The SAPI error code is returned in the variable pointed to by pMsg.

If the user is currently logged on to the CCA application in the coprocessor,
requests and replies are protected using a MAC computed with the user’s session
key. This processing is handled automatically when you use
CSNC_SP_SCSRFBSS.

 Function Prototype
long CSNC_SP_SCSRFBSS

(

 CPRB_ptr pCprb,

 long FpMsg

)

 Input
On entry to this routine:

pCprb is a pointer to the CPRB structure. It contains the request CPRB, with the
concatenated Request Parameter Block.

pMsg is a pointer to a variable for the return code of the function.

 Output
On successful exit from this routine:

pCprb contains the reply CPRB, with the concatenated Reply Parameter Block.

pMsg is a pointer to a location where the SAPI return code and reason code is
stored, on return from the requested function.

CSNC_SP_SCSRFBSS returns OK if there were no errors or ERROR if the pMsg buffer
contains an error.

1 The name of this function is rather obscure. It is inherited from the FBSS interfaces, which later became LAN/DP, the LAN
Distributed Platform. This function was a remote procedure call under FBSS, to pass a request to a server where it would be
processed. This is also the origin of the CPRB.

 Chapter 4. Communications Functions 4-7

 CSNC_SP_SCSRFBSS - Send a Request to the Coprocessor 12-NOV-01, 13:15

Return and Reason Codes
Common return codes generated by this routine are:

E_ALLOCATE_MEM Unable to allocate memory for checking data.

RT_SWERR An error was encountered in the CPRB.

E_INVALID_MAC_VAL The data returned from the coprocessor could not be
validated.

Other error codes may be returned, depending on the functions called in the
coprocessor section of the code.

4-8 UDX Reference and Guide

 12-NOV-01, 13:15 CSUC_BULDCPRB - Build CPRB

CSUC_BULDCPRB - Build CPRB
Note: This function is available on the host.

CSUC_BULDCPRB builds a new CPRB from a request or reply block built with
BuildParmBlock and an optional data field.

 Function Prototype
void CSUC_BULDCPRB

(CPRB_ptr pCprb,

 unsigned char Ffid_ptr,

 unsigned short rqpb_l,

 unsigned char Frqpb_ptr,

 unsigned long rqdb_l,

 unsigned char Frqdb_ptr,

 unsigned short rppb_l,

 unsigned char Frppb_ptr,

 unsigned long rpdb_l,

 unsigned char Frpdb_ptr

)

 Input
On entry to this routine:

pCprb is a pointer to the buffer where the new CPRB is returned.

fid_ptr is a pointer to the two-byte main function ID.

rqpb_l is the length of the Request Parameter Block, in bytes.

rqpb_ptr is the address of the Request Parameter Block.

rqdb_l is the length of the Request Data Block, in bytes.

rqdb_ptr is a pointer to the Request Data Block. This block must be aligned on a
4-byte boundary, and must be a multiple of 4 bytes long.

rppb_l is the length of the Reply Parameter Block, in bytes.

rppb_ptr is the address of the Reply Parameter Block.

rpdb_l is the length of the Reply Data Block, in bytes.

rpdb_ptr is a pointer to the Reply Data Block. This block must be aligned on a
4-byte boundary, and must be a multiple of 4 bytes long.

 Chapter 4. Communications Functions 4-9

 CSUC_BULDCPRB - Build CPRB 12-NOV-01, 13:15

 Output
On successful exit from this routine:

The buffer pointed to by pCprb contains a CPRB structure with the following values:

� function_id contains the function ID specified in the call.
� req_parm_block_length is the length of the request parameter block.
� req_parm_block is the address of the request parameter block (it immediately

follows the CPRB).
� req_data_block_length is the length of the data block provided in the call.
� req_data_block is a pointer to the data in the host memory. It must begin on a

4-byte boundary.
� reply_parm_block_length is the length of the reply parameter block.
� reply_parm_block is the address of the reply parameter block (it immediately

follows the request parameter block).
� reply_data_block_length is the length of the reply data block.
� reply_data_block is a pointer to the reply data block in the host memory. It

must begin on a 4-byte boundary.

Note: The request data block and reply data block are not copied into the
message which is sent to the coprocessor. The coprocessor will read them directly
from the host machine. The communications method requires that they begin on
4-byte boundaries.

Return and Reason Codes
This function has no return codes.

4-10 UDX Reference and Guide

 12-NOV-01, 13:15 CSUC_PROCRETC - Prioritize Return Code

CSUC_PROCRETC - Prioritize Return Code
Note: This function is available on the host.

CSUC_PROCRETC examines an error code, compares it to the return code
already in effect, and sets that return code to whichever of the two is higher priority.
If the new return code, passed in msg, is more serious than the return code already
in the variables pointed to by return_code_ptr and reason_code_ptr, then the
values pointed to by those parameters are replaced by the new code.

 Function Prototype
long CSUC_PROCRETC

(

 ADDRESS4_PTR return_code_ptr,

 ADDRESS4_PTR reason_code_ptr,

 long msg

)

 Input
On entry to this routine:

return_code_ptr is a pointer to the current SAPI return code for this verb.

reason_code_ptr is a pointer to the current SAPI reason code for this verb.

msg is an error code corresponding to a new problem, just detected. This code
contains both the return code and the reason code for that error, concatenated in a
single four-byte integer. The return code occupies the two high-order bytes, while
the reason code occupies the two low-order bytes.

 Output
On successful exit from this routine:

return_code_ptr contains the higher of the original value or the value of the two
high bytes of msg.

reason_code_ptr contains the reason code matching the priority of
return_code_ptr.

CSUC_PROCRETC returns OK if the message return code was a warning level (4) or
lower, or ERROR if the return code was an error code.

Return and Reason Codes
This function has no return codes.

 Chapter 4. Communications Functions 4-11

 FindFirstDataBlock - Search for Address of First Data Block 12-NOV-01, 13:15

FindFirstDataBlock - Search for Address of First Data Block
Note: This function is available on both the host and the coprocessor.

FindFirstDataBlock locates the address of the first data block in the Verb Unique
Data (VUD) section of the parameter block attached to the specified CPRB. If the
parameter block contains Verb Unique Data, the address of the first data block is
returned and the function result is set to TRUE. If there is no Verb Unique Data,
the function result is set to FALSE.

 Function Prototype
boolean FindFirstDataBlock(CPRB_structure FpCprb,

 unsigned int ParmBlockChoice,

 VUD_DATA_RECORD FFppFirstDataBlock)

 Input
On entry to this routine:

pCprb is a pointer to the CPRB, which has the parameter block attached.

ParmBlockChoice is a value of either SEL_REQ_BLK or SEL_REPLY_BLK,
indicating whether the structure you have passed is a Request Parameter Block or
a Reply Parameter Block.

 Output
On successful exit from this routine:

ppFirstDataBlock is a location where the function stores the address of the first
data block in the Verb Unique Data.

Return and Reason Codes
This function has no return codes.

4-12 UDX Reference and Guide

 12-NOV-01, 13:15 FindNextDataBlock - Search for Address of Next Data Block

FindNextDataBlock - Search for Address of Next Data Block
Note: This function is available on both the host and the coprocessor.

Given the address of a block in the Verb Unique Data (VUD) section of a
parameter block, find and return the address of the next data block within the same
parameter block. If another data block exists, return its address and set the function
result to TRUE. If there is no other data block, set the function result to FALSE.

 Function Prototype
boolean FindNextDataBlock(CPRB_structure FpCprb,

 unsigned int ParmBlockChoice,

 VUD_DATA_RECORD FpThisDataBlock,

VUD_DATA_RECORD FFppNextDataBlock)

 Input
On entry to this routine:

pCprb is a pointer to the CPRB, which has the parameter block attached.

ParmBlockChoice is a value of either SEL_REQ_BLK or SEL_REPLY_BLK,
indicating whether the structure you have passed is a Request Parameter Block or
a Reply Parameter Block.

pThisDataBlock is a pointer to the current data block. The function attempts to find
the data block following the one that this parameter points to.

 Output
On successful exit from this routine:

ppNextDataBlock is a location where the function stores the address of the data
block after pThisDataBlock or Null if none was found.

FindNextDataBlock returns a boolean value indicating whether a block was found.

Return and Reason Codes
This function has no return codes.

 Chapter 4. Communications Functions 4-13

 find_first_key_block - Search for First Key Data Block 12-NOV-01, 13:15

find_first_key_block - Search for First Key Data Block
Note: This function is available on both the host and the coprocessor.

find_first_key_block finds the address of the first key data block attached to the
specified Parameter Block. If there is key data in the parameter block, it returns
the address of the first key block, and sets the function result to TRUE. If there is
no key data, it sets the function result to FALSE.

This function is used in conjunction with find_next_key_block, which is used to
locate key blocks after the first one in the parameter block.

 Function Prototype
boolean find_first_key_block(CPRB_structure FpCprb,

 key_data_structure FFfirst_keyblock,

 unsigned int parm_block_choice)

 Input
On entry to this routine:

pCprb is a pointer to the CPRB. The parameter block is expected to be
concatenated to the CPRB.

parm_block_choice is a value of either SEL_REQ_BLK or SEL_REPLY_BLK,
indicating whether the structure you have passed is a Request Parameter Block or
a Reply Parameter Block.

 Output
On successful exit from this routine:

first_keyblock is a location which receives the address of the first key block
contained in the parameter block attached to pCprb.

find_first_key_block returns a boolean value of true if key data was found, false
otherwise.

Return and Reason Codes
This function has no return codes.

4-14 UDX Reference and Guide

 12-NOV-01, 13:15 find_next_key_block - Find Address of Next Key Data Block

find_next_key_block - Find Address of Next Key Data Block
Note: This function is available on both the host and the coprocessor.

Given the address of a key data block, find and return the address of the next key
data block within the specified Parameter Block. If the requested block exist, return
its address and set the function result to TRUE. If the block does not exist, set the
function result to FALSE.

This function is used in conjunction with find_first_key_block, which is used to
locate the first key block in the parameter block.

Argument parm_block_choice indicates whether the parameter block being
examined is a Request Parameter Block or a Reply Parameter Block.

 Function Prototype
boolean find_next_key_block(CPRB_structure FpCprb,

 key_data_structure Fthis_keyblock,

 key_data_structure FFnext_keyblock,

 unsigned int parm_block_choice)

 Input
On entry to this routine:

pCprb is a pointer to the CPRB. The parameter block is expected to be
concatenated to the CPRB.

this_keyblock is a pointer to a key block within the parameter block. The function
attempts to locate the key block following this one.

parm_block_choice is a value of either SEL_REQ_BLK or SEL_REPLY_BLK,
indicating whether the structure you have passed is a Request Parameter Block or
a Reply Parameter Block.

 Output
On successful exit from this routine:

next_keyblock is a pointer to a location where the function puts the address of the
key block following the one specified by this_keyblock or NULL if none was found.

find_next_key_block returns a boolean value indicating whether new key data was
found.

Return and Reason Codes
This function has no return codes.

 Chapter 4. Communications Functions 4-15

 InitCprbParmPointers - Initialize CPRB Parameter Pointers 12-NOV-01, 13:15

InitCprbParmPointers - Initialize CPRB Parameter Pointers
Note: This function is available on the coprocessor.

InitCprbParmPointers initializes the pointers to the request and reply data buffers
for both the input and the output CPRBs. It assumes that these buffers
immediately follow the CPRB blocks.

 Function Prototype
void InitCprbParmPointers

(

 CPRB_structure FpInputCprb,

 CPRB_structure FpOutputCprb

)

 Input
On entry to this routine:

pInputCprb is a pointer to the input CPRB block, which has been passed to the
coprocessor.

pOutputCprb is a pointer to the output CPRB block, which is returned to the host.

 Output
This function has no output. On successful exit from this routine:

The req_parm_block and reply_parm_block fields of InputCprb and OutputCprb are
correctly initialized.

Return and Reason Codes
This function has no return codes.

4-16 UDX Reference and Guide

 12-NOV-01, 13:15 keyword_in_rule_array - Search for Rule Array Keyword

keyword_in_rule_array - Search for Rule Array Keyword
Note: This function is available on both the host and the coprocessor.

keyword_in_rule_array determines whether a specified rule array keyword is
present in the rule array passed with the given CPRB. The CPRB contains a
pointer to the request parameter block, which in turn contains the rule array and
related data.

Input parameters are a pointer to the CPRB, and a string containing the desired
keyword. Note that comparisons are case-sensitive (although this should not
matter, since all keywords should be in uppercase).

The function returns TRUE if the keyword is in the rule array, and FALSE if it is not.

Note: Before using this function, the caller should have verified the integrity of the
CPRB using function parm_block_valid. See page 4-18 for information about
parm_block_valid.

 Function Prototype
boolean keyword_in_rule_array

(

 CPRB_structure FpCprb,

 rule_array_element keyword

)

 Input
On entry to this routine:

pCprb is a pointer to the CPRB structure. The parameter block is expected to be
concatenated to the end of the CPRB.

keyword is the keyword you are looking for in the rule array.

 Output
On successful exit from this routine:

keyword_in_rule_array returns a boolean value indicating TRUE if the keyword is
in the rule array, and FALSE if it is not.

Return and Reason Codes
This function has no return codes.

 Chapter 4. Communications Functions 4-17

 parm_block_valid - Examine and Verify a Parameter Block 12-NOV-01, 13:15

parm_block_valid - Examine and Verify a Parameter Block
Note: This function is available on both the host and the coprocessor.

parm_block_valid examines the parameter block associated with a specified
cooperative processing request block (CPRB), and verifies that the parameter block
is valid. In particular, it verifies that all the sub-fields and their data are present, so
that other functions can use that data with confidence that it is valid. It also verifies
that the function ID in the CPRB is that which is expected.

The function returns a value of TRUE if the parameter block is OK, and returns
FALSE if it is not.

 Function Prototype
boolean parm_block_valid

(

 CPRB_structure FpCprb,

 unsigned int parm_block_choice

)

 Input
On entry to this routine:

pCprb is a pointer to the CPRB structure. The parameter block is expected to be
concatenated to the end of the CPRB.

parm_block_choice is a value of either SEL_REQ_BLK or SEL_REPLY_BLK,
indicating whether the CPRB contains a Request Parameter Block or a Reply
Parameter Block.

 Output
On successful exit from this routine:

parm_block_valid returns a boolean value of TRUE if the parameter block is OK,
and returns FALSE if it is not.

Return and Reason Codes
This function has no return codes.

4-18 UDX Reference and Guide

 12-NOV-01, 13:15 rule_check - Verify Rule Array

rule_check - Verify Rule Array
Note: This function is available on the coprocessor.

rule_check can be used to verify the contents of the rule array in a received
Request Parameter Block. In the simplest use, it gives a quick indication whether
your rule array contains a valid combination of keywords. The function returns a
value of TRUE if the rule array appears to be valid, or FALSE if it does not. If it
returns FALSE, parameter pReturn_Message indicates the cause of the error.

The more complex way to use rule_check enables you to determine exactly what
rule array elements appear in the request parameter block, without having to
search through them yourself. It provides an ordered index, returned in parameter
pRule_value, where each element of the index corresponds to one keyword, or one
group of keywords where only one should be in the rule array. In each index
element, the function returns a value indicating exactly what rule array keyword
appeared, which is useful for the case where one keyword should be used out of a
group. Examples later in this section may help clarify the process.

The function operates on the basis of a rule map, which describes the rule array
elements you expect, and how they should be reported. The map is an array of
RULE_MAP structures, where RULE_MAP is defined as follows.

typedef struct

{

UCHAR keyword[9]; /F 8 characters plus null terminator F/

BYTE order_no; /F Rule array grouping number. F/

int map_value; /F Element value within rule array grp F/

} RULE_MAP;

Figure 4-1. The RULE_MAP Structure

The rule map contains one of these structures for each keyword that you expect for
your verb. The three elements of the structure have the following meanings.

keyword This is the eight-character rule array keyword.

order_no This integer indicates which element of the returned pRule_value
array should be set if the keyword in keyword is present in your rule
array.

A value of 1 refers to the first element of the array, corresponding to
a C-language array index of 0.

map_value This is the value that is stored in the output array pRule_value if the
rule array keyword in keyword is in your rule array. The value is
stored in the element indicated by order_no.

 Function Prototype
boolean rule_check(

 RULE_BLOCK FpParm_block,

unsigned int rule_map_count,

 RULE_MAP FpRule_map,

 int FpRule_value,

 long FpReturn_message)

 Chapter 4. Communications Functions 4-19

 rule_check - Verify Rule Array 12-NOV-01, 13:15

 Input
On entry to this routine:

pParm_block is a pointer to the start of the rule array block in your Request
Parameter Block. This should point to the start of the length field, not to the start of
the first rule array element.

rule_map_count is the number of elements in the array specified by the pRule_map
parameter.

pRule_map is a pointer to the rule map for this verb.

pRule_value is a pointer to the array that receives the output rule array index.

Note: On input, all elements of pRule_value must be set to the value
INVALID_RULE.

 Output
On successful exit from this routine:

pReturn_message is a pointer to the location where the function stores the error
code, if the rule array is not correct.

pRule_value contains an array of integers, the ith integer is the map value of the
keyword from the ith set which is present in the rule array, or INVALID_RULE if
there is no keyword from that set.

Return and Reason Codes
Common return codes generated by this routine are:

E_RULE_ARRAY_KWD Indicates that a required rule array keyword was
missing. This also applies if only one keyword must
be present out of a group of keywords, but none
from the group are in your rule array.

E_RULE_ARRAY_COMBINE Indicates that a rule array keyword appears more
than one time in the input rule array. It can also
indicate that more than one keyword appears from a
group, where only one from the group is supposed
to be present.

 Examples
The following examples may help clarify the use of this function.

Checking the Rule Array for Verb CSNBPKI

CSNBPKI (Key Part Import) requires a rule array that contains exactly one of the
following keywords.

 � FIRST
 � MIDDLE
 � LAST

To check the incoming rule array for validity, rule_check can be used with the
following three-element rule map.

4-20 UDX Reference and Guide

 12-NOV-01, 13:15 rule_check - Verify Rule Array

static RULE_MAP RuleMap[3] = { { "FIRST ", 1, 1 } ,

{ "MIDDLE ", 1, 2 } ,

{ "LAST ", 1, 3 } };

Figure 4-2. Example Rule Map for Verb CSNBPKI

This is a group of keywords that are mutually exclusive. Only one can appear in
the rule array, and for this verb, there are no other keywords that can appear. In
the rule map, the values for order_no are the same for each keyword; they all
specify a value of 1. This means that when any of these keywords appear in the
rule array, the first element of the output array pRule_value is set. The value that
goes into the first element of the output array is 1 for FIRST, 2 for MIDDLE, and 3
for LAST, as defined by the map_value elements of the rule map.

Since all three keywords have the same value for order_no, error code
pReturn_message is set to E_RULE_ARRAY_COMBINE if more than one of the
three keywords is present in your rule array.

Checking the Rule Array for Verb CSUAACI

CSUAACI (Access Control Initialization) has a slightly more complicated rule array
than CSNBPKI described previously. It has the following characteristics.

� The rule array must contain exactly one of the following keywords.

 – INIT-AC
 – CHGEXPDT
 – CHG-AD
 – RESET-FC

� The rule array can optionally contain the keyword PROTECTD.

� The rule array can optionally contain the keyword REPLACE.

To check this rule array, we can use the following six-element rule map.

static RULE_MAP RuleMap[6] = { { "INIT-AC ", 1, 1 } ,

{ "CHGEXPDT", 1, 2 } ,

{ "CHG-AD ", 1, 3 } ,

{ "RESET-FC", 1, 4 } ,

{ "PROTECTD", 2, 5 } ,

{ "REPLACE ", 3, 6 } };

Figure 4-3. Example Rule Map for Verb CSUAACI

The first four elements describe the keywords for which only one must be present.
The order_no for each of these is the same; a value of 1. Thus, the first element of
output array pRule_value is set when any of these keywords are found in the rule
array. The value for map_value is the value that goes into that element of the
output array. Thus, if the rule array contains CHGEXPDT, the first element of the
output array is set to 2. If more than one of these four keywords is in the rule
array, the return code variable pReturn_message is set to
E_RULE_ARRAY_COMBINE.

The last two elements, for PROTECTD and REPLACE, describe optional keywords.
Any combination of these two is valid - neither, one, or both can be in the rule
array. Thus, we treat these independently from any other keywords. They are
assigned, respectively, to elements 2 and 3 of the output array, and the values to
be stored there are 5 if PROTECTD is present, and 6 if REPLACE is present.

 Chapter 4. Communications Functions 4-21

 rule_check - Verify Rule Array 12-NOV-01, 13:15

For the following set of rules, where either COPY or REVERSE is required, and
OFFSET is optional:

int RuleValue[2]; /F to hold the rule values only 2 F/

USHORT RuleMapCount = 3;

static RULE_MAP RuleMap[] = { {"COPY ", 1 , COPY },

{"REVERSE ", 1 , REVERSE },

{"OFFSET ", 2 , OFFSET },};

/FFFFFFFFFFFFFFFFFFFFFFFFFFFF

error checking, etc.

FFFFFFFFFFFFFFFFFFFFFFFFFFFFF/

/FF

FF Compare for valid rule array values.

FF/

RuleValue[S] = INVALID_RULE; /F initialize F/

RuleValue[1] = INVALID_RULE;

if (rule_check ((RULE_BLOCK F) &pReqBlk->rule_array_length,

 RuleMapCount,

&RuleMap[S], &RuleValue[S], &ReturnMsg)

 == false)

{

 Cas_proc_retc(pCprbOut, ReturnMsg);

 return;

}

/FFF

verb unique data and keys, if needed

FF/

if (RuleValue[1] == OFFSET)

{

/F Do what OFFSET requires F/

} else

{

/F Do default things F/

}

if (RuleValue[S] == COPY)

{

/F copy the data F/

} else if (RuleValue[S] = REVERSE)

{

/F reverse the data F/

}

/FReturn needed data F/

4-22 UDX Reference and Guide

 12-NOV-01, 13:15 saf_process_key_label - Process Key Label

saf_process_key_label - Process Key Label
Note: This function is available on the host.

saf_process_key_label accepts a key label, verifies that it has no errors, and
returns an updated label processed according to the following steps.

1. Initializes the output field to all blanks.

2. Makes the label all uppercase.

3. Verifies that the first character is either a letter or a national character.

4. Allows only letters and national characters for the first character.

5. Validates each name token and checks for wildcards.

6. Removes the name token delimiter ('.').

7. Left justifies and copies each name token into an 8-byte output area.

The function result is set to TRUE if the input key label is valid, and to FALSE if it
is not.

 Function Prototype
boolean saf_process_key_label(

unsigned char FpKeyLabel,

 boolean wildcard_flag,

unsigned char FpLabelOut)

 Input
On entry to this routine:

pKeyLabel is a pointer to the input key label.

wildcard_flag is a boolean value of TRUE if the input key label can have wildcard
characters, and FALSE if they are not allowed.

 Output
On successful exit from this routine:

pLabelOut is the process key label produced by the function, if pKeyLabel was a
valid label.

saf_process_key_label returns a boolean value indicating TRUE if the input key
label is valid, and FALSE otherwise.

Return and Reason Codes
This function has no return codes.

 Chapter 4. Communications Functions 4-23

 saf_process_key_label - Process Key Label 12-NOV-01, 13:15

4-24 UDX Reference and Guide

 12-NOV-01, 13:15

Chapter 5. Function Control Vector Management Functions

This section describes functions used to interact with the function control vector
(FCV) in the coprocessor. The FCV contains information describing what
operations are permitted on this coprocessor, based on the export regulations
governing the coprocessor’s location and the business of its owner.

The FCV is loaded into the coprocessor using the csuncnm utility on Windows NT,
csuecnm utility on OS/2, and the csufcnm utility on AIX. Refer to IBM 4758 PCI
Cryptographic Coprocessor CCA Support Program Installation Manual for more
detailed information.

Note: All functions within this chapter are available only on the coprocessor.

Header Files for Function Control Vector Management Functions
When using these functions, your program must include the following header files.

#include "cmncryt2.h" /F Crypto ESSS definitions F/

#include "cam_fcv.h" /F Function control vector def. F/

Summary of Functions
Functions that interact with FCV include the following:

getSymmetricMaxModulusLength Gets the maximum RSA key length.

isFunctionEnabled Determines whether the FCV allows a
particular function.

 Chapter 5. Function Control Vector Management Functions 5-1

 getSymmetricMaxModulusLength - Get RSA Key Length 12-NOV-01, 13:15

getSymmetricMaxModulusLength - Get RSA Key Length
getSymmetricMaxModulusLength returns the maximum RSA key modulus length (in
bits) that can be used for encrypting symmetric algorithm encryption keys.

 Function Prototype
long getSymmetricMaxModulusLength(

unsigned short F pModLength)

 Input
pModLength is a pointer to an unsigned short variable.

 Output
On successful exit from this routine:

pModLength contains the modulus maximum length.

 Return Codes
Common return codes generated by this routine are:

OK The operation was successful.

srdi_ALLOC_ERROR Out of memory to open the FCV.

srdi_READ_ERROR Error reading the FCV.

srdi_GENERAL_ERROR Could not read the FCV.

srdi_NOT_FOUND The FCV was not found.

5-2 UDX Reference and Guide

 12-NOV-01, 13:15 isFunctionEnabled - Check Whether a Function is Enabled

isFunctionEnabled - Check Whether a Function is Enabled
isFunctionEnabled returns a boolean value indicating whether the specified function
is enabled or disabled in the Function Control Vector. This is used to determine
whether a function is permitted under the export rules governing this particular
coprocessor.

The function result is TRUE if the specified function is enabled, and FALSE if it is
disabled.

 Function Prototype
boolean isFunctionEnabled(

 long FunctionByteIndex,

unsigned char FunctionBitSelect)

 Input
On entry to this routine:

FunctionByteIndex is an index into the Function Control Vector, giving the location
of the byte to be checked. See Figure 5-1 on page 5-4 for a list of possible
values.

FunctionBitSelect is the bit to be checked in the specified Function Control Vector
byte. See Figure 5-1 on page 5-4 for a list of possible values.

 Output
On successful exit from this routine:

isFunctionEnabled returns a boolean value indicating whether the specified
function is enabled or disabled in the Function Control Vector.

 Chapter 5. Function Control Vector Management Functions 5-3

 isFunctionEnabled - Check Whether a Function is Enabled 12-NOV-01, 13:15

 Notes
The following figure shows how the byte or bit corresponds to a particular function.

Figure 5-1. Possible Values

Function Byte Name Function Bit Name Description

CCA_BASE_FUNCTION_BYTE Byte index of the
CCA base services
bits.

FCV_CCA_BASE Base CCA
services-enabled bit.

DES_FUNCTION_BYTE Byte index of the
DES-enabled bits.

FCV_CDMF_DES CDMF
function-enabled bit

FCV_56_BIT_DES 56-bit DES enabled
bit

FCV_TRIPLE_DES Triple DES enabled
bit

SET_FUNCTION_BYTE Byte index of the bits
that are SET
enabled

FCV_SET_SERVICES SET services
enabled bits

 Return Codes
This function has no return codes.

 Examples
To determine whether SET functions for encoding and decoding are enabled in the
coprocessor:

if (! IsFunctionEnabled(SET_FUNCTION_BYTE, FCV_SET_SERVICES))

{

/F cancel this section, SET functions are not allowed. F/

}

To see if 56-bit DES encryption is allowed:

if (IsFunctionEnabled(DES_FUNCTION_BYTE, FCV_56_BIT_DES))

{

/F use 56-bit DES encryption F/

}

5-4 UDX Reference and Guide

 12-NOV-01, 13:15

Chapter 6. CCA Master Key Manager Functions

Header Files for Master Key Manager Functions
When using these functions, your program must include the following header files.

#include "cmncrypt.h" /F Cryptographic definitions F/

#include "cam_xtrn.h" /F SRDI manager definitions F/

The CCA Master Key Manager provides access to the CCA master key registers on
the PCI cryptographic coprocessor, as required by the CCA application. The CCA
command processors never access the master keys directly, and in fact they have
no need to know how or where the master keys and related information are stored.
The Master Key Manager provides a set of functions to load the key values, and to
use the keys to encipher and decipher data. It can be viewed as an object, with
internal data, and with methods that can be used to operate on and with that data.

Since the master key storage mechanism is hidden from master key users, that
mechanism can be changed without affecting any command processors that make
use of the master keys. In the coprocessor, the master key data is stored in flash
EPROM.

Note: All functions within this chapter are available only on the coprocessor.

Overview of the Coprocessor CCA Master Keys
The coprocessor uses triple-length master keys, each consisting of three
independent eight-byte DES keys. The master keys are used to protect other data
in the following two ways.

� Single-length (eight-byte) keys are protected using EDE encryption, with three
independent keys. To encrypt an eight-byte key K with master key M, the
process is as follows:

1. Encrypt K using part 1 of key M.
2. Decrypt the result of step 1 using part 2 of key M.
3. Encrypt the result of step 2 using part 3 of key M.

� Data longer than eight bytes, such as PKA key components, is encrypted using
the EDE3 triple encryption algorithm.

CCA supports three master key values.

� Old Master Key (OMK)—The version of the master key that was in use prior to
the current value. It is maintained to permit recovery of keys that were
enciphered under the old master key.

� Current Master Key (CMK)—The current, operational master key. All keys in
use in the system are enciphered under this key.

� New Master Key (NMK)—A new master key, which is being entered into the
system to replace the current master key. It is entered in the form of one or
more key parts, which are combined to form the final key.

 Chapter 6. CCA Master Key Manager Functions 6-1

 12-NOV-01, 13:15

Each of the three master keys is stored in a logical register within the Master Key
Manager. In addition, the Master Key Manager holds data associated with each of
these key values.

� A Verification Pattern is stored for each of the three keys. The verification
pattern is a 20-byte value which is calculated using a strong one-way function
on the key value. This value can be used to verify that the key value matches
another key, or the key originally used in some process. The verification
pattern can be public, without endangering the value of the key itself.

This value is calculated using SHA-1.

� The status of the key. For the CMK and the OMK, two status values are
possible.

– The register contains a valid key value.
– The register does not contain a valid key value.

For the NMK register, three status values are possible.

– The register is empty. It does not contain any portion of a new master key
value.

– The register is partially full. The last key part has not yet been combined
into the value in the register.

– The NMK register is full. All key parts have been combined to form the
final key value.

The verification pattern and the status can be read from the Master Key Manager
using its interface functions. The values of the keys themselves can never be read.

Location of the Master Keys
The master keys and their associated data are Security Relevant Data Items
(SRDIs). Their secure storage and retrieval are handled through use of the SRDI
Manager, and its API functions.

Each SRDI has an eight character name. The master key data SRDI for DES keys
is named MSTRKEYS. The master key data SRDI for asymmetric keys is ASYMKMKS.

Initialization of the Master Key SRDI
When the CCA application is first loaded into a new coprocessor, no master key
SRDI exists in the flash EPROM. The Master Key Manager includes an
initialization function init_master_keys(), which creates and initializes this SRDI the
first time it is called. The SRDI is initialized with the following values.

� The three master key registers, NMK, CMK, and OMK, are all set to binary
zeroes.

� The state of CMK and OMK is set to invalid. The state of NMK is set to Empty.

� The master key verification patterns are set to binary zeroes.

6-2 UDX Reference and Guide

 12-NOV-01, 13:15

CCA Master Key Manager Interface Functions
The following sections describe the functions that comprise the Master Key
Manager interface. CCA command processors use these functions to manage
master key values, and to encipher or decipher data using the master keys.

Each of these functions returns an error code as the function result.

Common Entry Processing
A portion of the processing is common to all of the Master Key Manager interface
functions. This code is in a common function, which is called by each of the API
functions listed as follows.

The common entry processing performs the following functions.

1. If the Master Key Manager has already opened the Master Key SRDI, then
error code mk_NO_ERROR is returned to the caller. Otherwise, continue with
step 2.

2. Open the Master Key SRDI, MSTRKEYS. If no error occurs opening the SRDI,
then error code mk_NO_ERROR is returned to the caller. Otherwise, error
code mk_SRDI_OPEN_ERROR is returned.

 Required Variables
In order to specify which master key register is to be used, many of the master key
functions require a variable of type mk_selectors. This variable has two
parameters:

� The master key set (mk_set) that specifies which set of master keys is to be
accessed, for environments where more than one set of master keys may exist.
Where there is only one set of master keys, mk_set must be set to
MK_SET_DEFAULT.

� The master key register (mk_register) within the specified master key set. This
can be any of the defined values old_mk, current_mk, or new_mk, representing
the old master key, the current master key, and the new master key.

The following functions are summarized in this chapter.

Function Page

clear_master_keys 6-6

combine_mk_parts 6-7

compute_mk_verification_pattern 6-18

ede3_triple_decrypt_under_master_key 6-23

ede3_triple_encrypt_under_master_key 6-24

generate_mk_shares 6-8

generate_random_mk 6-10

get_master_key_status 6-20

get_mk_verification_pattern 6-21

init_master_keys 6-11

load_first_mk_part 6-12

 Chapter 6. CCA Master Key Manager Functions 6-3

 12-NOV-01, 13:15

Function Page

load_mk_from_shares 6-13

mkmLoadFirstMKPart 6-12

mkmLoadMKFromShares 6-13

mkmSetMasterKey 6-16

reinit_master_keys 6-15

set_master_key 6-16

triple_decrypt_under_master_key 6-25

triple_decrypt_under_master_key_with_CV 6-26

triple_encrypt_under_master_key 6-27

triple_encrypt_under_master_key_with_CV 6-28

6-4 UDX Reference and Guide

 12-NOV-01, 13:15

Functions to Set and Manage the Master Key Values
The following functions are used to load, clear, or initialize master key registers.
Other functions in this category are used in other ways related to generation and
distribution of master keys.

Summary of Functions
clear_master_keys Clears a specified master key register.

combine_mk_parts Combines an additional master key part into the
value already in the New Master Key register.

generate_mk_shares Splits a 24-byte master key into shares.

generate_random_mk Generates a random 24-byte master key.

init_master_keys Creates and initializes the master key SRDI.

load_first_mk_part Loads the first part of a multi-part master key into
the new master key register.

load_mk_from_shares Reconstructs the shares that were produced using
generate_mk_shares and loads the master key into
the new master key register.

reinit_master_keys Deletes all master key data and then creates and
initializes the master key SRDI.

set_master_key Activates the master key.

 Chapter 6. CCA Master Key Manager Functions 6-5

 clear_master_keys - Clear Master Key 12-NOV-01, 13:15

clear_master_keys - Clear Master Key
clear_master_keys clears a specified master key register. All bytes of the specified
register are set to a value of X'00', and the state of the register is set to Empty for
NMK, or invalid for CMK or OMK.

Three separate calls are required in order to clear all of the master key registers.

 Function Prototype
long clear_master_keys(mk_selectors MKSelector);

 Input
On entry to this routine:

mk_selector is a pointer to a variable which must be initialized as follows:

� mk_set is a pointer to the set of master keys which is to be accessed, if more
than one set is allowed on this operating system. Where there is only one set
of master keys, this must be set to MK_SET_DEFAULT.

� mk_register is set to either old_mk, current_mk, or new_mk, representing the
key which should be cleared.

 Output
This function returns no output. On successful exit from this routine:

clear_master_keys clears a specified master key register.

 Return Codes
Common return codes generated by this routine are:

mk_NO_ERROR The operation was successful.

mk_SRDI_OPEN_ERROR Could not open the master key SRDI.

mk_INVALID_KEY_SELECTOR The input parameters are not valid.

mk_SEM_CLAIM_FAILED Could not access the master key SRDI.

6-6 UDX Reference and Guide

 12-NOV-01, 13:15 combine_mk_parts - Combine Master Key Parts

combine_mk_parts - Combine Master Key Parts

combine_mk_parts combines an additional master key part into the value already in
the NMK register for the mk_set being processed. The NMK register must be in
the Partially Full state when this function is called; otherwise, an error is returned.
The key part is designated as the final part, if the key is complete after this part has
been combined into the register.

Return codes are used to notify the caller if the combined key value has bad parity,
or if it has equal left and right halves. These are informative return codes, and are
not considered errors by the Master Key Manager.

Note: The purpose behind requiring a load_first_mk_part separately from
combine_mk_parts is to enforce security. Different roles may be required for each
of these functions, ensuring that no one person has input all of the parts of the
master key.

 Function Prototype
long combine_mk_parts(TRIPLE_LENGTH_KEY Fkey_part,

 boolean final_part);

 Input
On entry to this routine:

key_part is a 24-byte cleartext key part, which is combined into the value in the
NMK register.

final_part is a boolean value, which the caller sets to TRUE when the key part is
the final part of a new master key.

The NMK register must have been initialized with a call to load_first_mk_part and
zero or more calls to combine_mk_parts.

 Output
This function returns no output. On successful exit from this routine:

combine_mk_parts combines an additional master key part into the value already in
the NMK register. If final_part was TRUE, the NMK register is left in a Full state.
Otherwise, the state of NMK is Partially Full.

 Return Codes
Common return codes generated by this routine are:

mk_NO_ERROR The operation was successful.

mk_SRDI_OPEN_ERROR Could not open the master key SRDI.

mk_SEM_CLAIM_FAILED Could not access the SRDI Manager, the operation
cannot be completed.

mk_INCORRECT_STATE The New Master Key register was not Partially Full.

mk_WEAK_KEY final_part was TRUE and the resulting key was a
weak key. The prior state has been restored.

 Chapter 6. CCA Master Key Manager Functions 6-7

 generate_mk_shares - Generate Master Key Shares 12-NOV-01, 13:15

generate_mk_shares - Generate Master Key Shares

generate_mk_shares splits a 24-byte master key into shares for the mk_set being
processed. The key is split into n separate shares, where any m of the shares can
be used to recreate the master key value at a later time.

The shares are distributed to separate individuals for safekeeping. When the
coprocessor has to be initialized with the master key, any m of these individuals
must present their master key shares in order to create the complete key in the
coprocessor.

The source of the master key is specified with the KeySource parameter.

 Function Prototype
long generate_mk_shares(mk_src_t KeySource,

 UCHAR mShareKey,

 UCHAR nShareGen,

 UCHAR FpShares[]);

 Input
On entry to this routine:

KeySource is a value which specifies the source for the master key value that is
split. The possible values are:

mShareKey is the number of shares that are required in order to reconstruct the
master key value. This is the number of shares that must be given to the function
load_mk_from_shares in order to load the key.

nShareGen is the total number of shares to generate and return. Any m of these
shares can be used to reconstruct the key.

pShares is a pointer to an area which is large enough to store n key shares, each
of which is 25 bytes in length.

Source Description
Randomly generated value
(src_random)

The function generates a new, random key value,
and splits it into the specified number of shares.
The value is discarded after the shares have been
returned.

New Master Key (NMK) Register
(src_nmk)

The value in the NMK register is split into shares.
An error is returned if the NMK state is not Full.

Current Master Key (CMK) Register
(src_cmk)

The value in the CMK register is split into shares.
An error is returned if the register does not contain
a valid value.

Old Master Key (OMK) Register
(src_omk)

The value in the OMK register is split into shares.
An error is returned if the register does not contain
a valid value.

6-8 UDX Reference and Guide

 12-NOV-01, 13:15 generate_mk_shares - Generate Master Key Shares

 Output
On successful exit from this routine:

FpShares[] is a pointer to an array where the function stores the generated key
shares. This area must be large enough to hold n key shares, each of which is 25
bytes in length.

 Return Codes
Common return codes generated by this routine are:

mk_NO_ERROR The operation was successful.

mk_SRDI_OPEN_ERROR Could not open the master key SRDI.

mk_SEM_CLAIM_FAILED Could not access the SRDI Manager, the
operation cannot be completed.

mk_INCORRECT_STATE The master key is not valid.

mk_UNSUPPORTED_SCHEME The values of mShareKey and nShareGen were
inconsistent.

mk_KEY_SHARE_SPLIT_FAIL An error occurred in the splitting process.

 Chapter 6. CCA Master Key Manager Functions 6-9

 generate_random_mk - Generate Random Master Key 12-NOV-01, 13:15

generate_random_mk - Generate Random Master Key

generate_random_mk generates a random 24-byte master key, and stores the
value in the NMK register for the mk_set being processed.

The NMK register must be in the Empty state when this function is called;
otherwise, an error is returned. If the function completes successfully, the NMK
register is left in the Full state.

 Function Prototype
long generate_random_mk(void);

 Input
This function has no input.

 Output
This function returns no output. On successful exit from this routine:

The new master key is generated and stored in the NMK register. In order to use
this master key, set_master_key() must be called.

 Return Codes
Common return codes generated by this routine are:

mk_NO_ERROR The operation was successful.

mk_SRDI_OPEN_ERROR Could not open the master key SRDI.

mk_SEM_CLAIM_FAILED Could not access the SRDI Manager, the operation
cannot be completed.

mk_INCORRECT_STATE The master key is in the incorrect state. If the
verification patterns match with the previous,
current, or old master keys, another random key is
generated.

mk_SAVE_ERROR Unable to save the master key to flash memory.

6-10 UDX Reference and Guide

 12-NOV-01, 13:15 init_master_keys - Create and Initialize Master Keys

init_master_keys - Create and Initialize Master Keys
init_master_keys creates and initializes the master key SRDI, if it doesn’t already
exist.

 Function Prototype
long init_master_keys(void);

 Input
This function has no input.

 Output
This function returns no output. On successful exit from this routine:

The master key SRDI is generated and initialized.

 Return Codes
Common return codes generated by this routine are:

mk_NO_ERROR The operation was successful.

srdi_EXISTS The master keys already exist, and cannot be
initialized.

srdi_GENERAL_ERROR Failed to access the SRDI manager.

srdi_ALLOC_ERROR Could not allocate memory for the master keys.

 Chapter 6. CCA Master Key Manager Functions 6-11

 load_first_mk_part - Load First Master Key Part 12-NOV-01, 13:15

load_first_mk_part - Load First Master Key Part

load_first_mk_part loads the first part of a multi-part cleartext master key into the
new master key (NMK) register for the mk_set being processed.

Note: The purpose behind requiring a load_first_mk_part separately from
combine_mk_parts is to enforce security. Different roles may be required for each
of these functions, ensuring that no one person has input all of the parts of the
master key.

 Function Prototype
long load_first_mk_part(TRIPLE_LENGTH_KEY Fkey_part);

 Input
On entry to this routine:

key_part is a 24-byte cleartext key part, which is stored in the NMK register.

The check_and_adjust parity routines make sure that the input key part has odd
parity. If it does not, the parity is adjusted.

 Output
This function returns no output. On successful exit from this routine:

load_first_mk_part loads the first part of a multi-part cleartext master key into the
new master key register.

 Return Codes
Common return codes generated by this routine are:

mk_NO_ERROR The operation was successful.

mk_bad_key_parity The input parity has been adjusted to odd parity.

6-12 UDX Reference and Guide

 12-NOV-01, 13:15 load_mk_from_shares - Load Master Key Shares

load_mk_from_shares - Load Master Key Shares

load_mk_from_shares loads a master key into the New Master Key register,
reconstructing the key from m supplied shares, which were originally produced by
the generate_mk_shares function for the mk_set being processed.

The shares are distributed to separate individuals for safekeeping. When the
coprocessor has to be initialized with the master key, any m of these individuals
must present their master key shares to create the complete key in the
coprocessor.

The New Master Key (NMK) register must be in the Empty state when this function
is called. It is in the Full state if the function completes successfully. The key
value is left in the NMK register; you must use the set_master_key function to
make it the current master key.

 Function Prototype
long load_mk_from_shares(UCHAR mShareKey,

 UCHAR nShareGen,

 UCHAR FpShares[]);

 Input
On entry to this routine:

mShareKey is the number of shares required to reconstruct the master key. This is
the number of shares that are provided in the shares[] array.

nShareGen is the total number of shares that were generated for this key, by the
generate_mk_shares function.

FpShares[] is a pointer to an array which contains the m shares that are used to
reconstruct the master key. Each share is 25 bytes in length.

 Output
This function has no output. On successful exit from this routine:

The new master key is generated in the NMK register.

 Return Codes
Common return codes generated by this routine are:

mk_NO_ERROR The operation was successful.

mk_SRDI_OPEN_ERROR Unable to open the SRDI item.

mk_SEM_CLAIM_FAILED Unable to access the SRDI Manager.

mk_INCORRECT_STATE The NMK is not in the Empty state.

mk_UNSUPPORTED_SCHEME mShareKey or nShareGen have invalid
values.

mk_KEY_SHARE_RECOVER_FAIL Unable to recover the master key.

mk_VP_CALCULATE_FAIL SHA calculation error.

 Chapter 6. CCA Master Key Manager Functions 6-13

 load_mk_from_shares - Load Master Key Shares 12-NOV-01, 13:15

mk_SAVE_ERROR An SRDI error occurred while attempting
to save the new master key in flash
memory.

mk_VP_MATCHES_EXISTING_KEY Verification patterns match one of the
existing master keys.

mk_EQUAL_KEY_HALFS Two of the three parts of the new key are
equal. This is a warning, no action is
required.

mk_WEAK_KEY One of the key parts is a weak key. The
key should be regenerated before use.

6-14 UDX Reference and Guide

 12-NOV-01, 13:15 reinit_master_keys - Reinitialize Master Keys

reinit_master_keys - Reinitialize Master Keys
reinit_master_keys deletes all master key data, then recreates and initializes the
master key SRDI to the default state.

The function returns TRUE if the operation completed successfully, and FALSE if it
did not.

Note: This function erases master key data. Once this function is complete, all
operational keys which have been encrypted under any master key are unusable.

 Function Prototype
long reinit_master_keys(void);

 Input
This function has no input.

 Output
This function returns no output. On successful exit from this routine:

All master keys are created and initialized.

 Return Codes
Common return codes generated by this routine are:

srdi_NO_ERROR The operation was successful.

srdi_GENERAL_ERROR Unable to access the master key SRDI.

 Chapter 6. CCA Master Key Manager Functions 6-15

 set_master_key - Set Master Key 12-NOV-01, 13:15

set_master_key - Set Master Key

set_master_key activates the master key which has been accumulated in the NMK
register for the mk_set being processed. The key value is transferred to the
Current Master Key (CMK) register. If a valid key is present in the CMK register, it
is transferred to the Old Master Key (OMK) register. The key verification patterns
are transferred from CMK to OMK, and from NMK to CMK.

 Function Prototype
long set_master_key(void);

 Input
This function has no input.

 Output
This function returns no output. On successful exit from this routine:

The master keys have been changed.

 Return Codes
Common return codes generated by this routine are:

mk_NO_ERROR The operation was successful.

mk_SRDI_OPEN_ERROR Unable to open the SRDI item.

mk_SEM_CLAIM_FAILED Unable to access the SRDI Manager.

mk_INCORRECT_STATE The NMK register is not in the Full state.

mk_SAVE_ERROR Unable to save the master key into flash memory.

6-16 UDX Reference and Guide

 12-NOV-01, 13:15

Functions to Check Master Key Values and Status

Summary of Functions
compute_mk_verification_pattern Computes a key verification pattern.

get_master_key_status Returns the status of the master key register.

get_mk_verification_pattern Returns the 20-byte master key verification
pattern for a specified master key.

 Chapter 6. CCA Master Key Manager Functions 6-17

 compute_mk_verification_pattern 12-NOV-01, 13:15

 compute_mk_verification_pattern
compute_mk_verification_pattern computes a key verification pattern for the
contents of the specified master key register. The verification pattern can be used
to determine which master key (old or current) was used to encrypt a given
operational key. The returned verification pattern is 20 bytes in length. For the
symmetric-keys master key (SYM_MK), if the first and third key parts of the register
specified are the same, the OS/390 ICSF algorithm for the generation of the master
key verification pattern will be used. If the key parts are not the same, the
verification pattern is a SHA-1 hash of the key, combined with a header. The
header is a one-byte value which is used to differentiate this hash from any other
hash on the master key, which might be computed for a different purpose. The
value of the header byte is X'01'. For the asymmetric-keys master key
(ASYM_MK), the MDC-4 algorithm will be used to compute the verification pattern.

 Function Prototype
long compute_mk_verification_pattern(UCHAR Fver_pattern,

 mk_selectors Fmk_selector);

 Input
On entry to this routine:

ver_pattern is a pointer to a 20-byte location where the computed key verification
pattern is returned.

mk_selector is a pointer to a variable which must be initialized as follows:

� mk_set is a pointer to the set of master keys which is to be accessed, if more
than one set is allowed on this operating system. Where there is only one set
of master keys, this must be set to MK_SET_DEFAULT.

� mk_register is set to either old_mk, current_mk, or new_mk, representing the
key which should be cleared.

� type_mks should be set to ASYM_MK if this set of master keys is intended for
PKA key encryption or SYM_MK if this set of master keys is used for DES key
encryption.

The type_mks variable should be set to SYM_MK, as this function calculates
the verification pattern for a master key for symmetric keys. If type_mks is
BOTH_MK and the state and value of the specified master key register of both
the master key sets is the same, the verification pattern of the specified register
will be calculated on the Symmetric Keys master key set; otherwise an error
message will be returned.

 Output
On successful exit from this routine:

ver_pattern contains the verification pattern.

 Return Codes
Common return codes generated by this routine are:

mk_NO_ERROR The operation was successful.

mk_SRDI_OPEN_ERROR Unable to open the SRDI item.

mk_SEM_CLAIM_FAILED Unable to access the SRDI Manager.

6-18 UDX Reference and Guide

 12-NOV-01, 13:15 compute_mk_verification_pattern

mk_VP_CALCULATE_FAIL SHA calculation error.

 Chapter 6. CCA Master Key Manager Functions 6-19

 get_master_key_status - Get Master Key Status 12-NOV-01, 13:15

get_master_key_status - Get Master Key Status

get_master_key_status returns the status of the three master key registers for the
mk_set being processed. The results indicate whether the register holds a valid
value, and whether a value in the NMK register is complete.

 Function Prototype
long get_master_key_status(mk_status_var Fmk_status);

 Input
On entry to this routine:

mk_status is a pointer to a one-byte variable.

 Output
On successful exit from this routine:

mk_status contains the status of the 3 master key registers as a bitmapped value.
Individual bits have the meanings defined in Figure 6-1.

mk_status returns a code indicating the success or failure of the operation.

Figure 6-1. Master Key Status Bits

Bit 0 (LSB) NMK register is empty.

Bit 1 NMK register is partially full.

Bit 2 NMK register is full.

Bit 3 CMK register holds a valid value.

Bit 4 OMK register holds a valid value.

Bits 5-7 Reserved, set to 0.

 Return Codes
Common return codes generated by this routine are:

mk_NO_ERROR The operation was successful.

mk_SRDI_OPEN_ERROR Unable to open the SRDI item.

mk_SEM_CLAIM_FAILED Unable to access the SRDI Manager.

6-20 UDX Reference and Guide

 12-NOV-01, 13:15 get_mk_verification_pattern

 get_mk_verification_pattern
get_mk_verification_pattern returns the pre-computed 20-byte master key
verification pattern (MKVP) for a specified master key. This value is computed and
saved when the master key is first loaded, and may be used to determine which of
the master keys was used to encrypt a given operational key.

 Function Prototype
long get_mk_verification_pattern(UCHAR Fver_pattern,

 mk_selectors Fmk_selector);

 Input
On entry to this routine:

ver_pattern is a pointer to a 20-byte location where the master key verification
pattern is returned.

mk_selector is a pointer to a variable which must be initialized as follows:

� mk_set is a pointer to the set of master keys which is to be accessed, if more
than one set is allowed on this operating system. Where there is only one set
of master keys, this must be set to MK_SET_DEFAULT.

� mk_register is set to either old_mk, current_mk, or new_mk, representing the
key which should be cleared.

� type_mks should be set to ASYM_MK if the request is to get the verification
pattern of the asymmetric-keys master key or to SYM_MK if the request is to
get the verification pattern of the symmetric-keys master key.

The type_mks variable should be set to SYM_MK, as this function calculates
the verification pattern for a master key for symmetric keys.

 Output
On successful exit from this routine:

ver_pattern contains the verification pattern.

 Return Codes
Common return codes generated by this routine are:

mk_NO_ERROR The operation was successful.

mk_INVALID_KEY_SELECTOR The input parameters are not valid.

mk_SEM_CLAIM_FAILED Unable to access the SRDI Manager.

mk_KEY_NOT_VALID The selected key was not in a valid state.

 Chapter 6. CCA Master Key Manager Functions 6-21

 12-NOV-01, 13:15

Functions to Encrypt and Decrypt Using the Master Key

Summary of Functions
ede3_triple_decrypt_under_master_key Triple decrypts multiple 8-byte

data strings using EDE3 triple
DES.

ede3_triple_encrypt_under_master_key Triple encrypts multiple 8-byte
data strings using EDE3 triple
DES.

triple_decrypt_under_master_key Triple-DES decrypts an 8-byte
block of data.

triple_decrypt_under_master_key_with_CV Triple-DES decrypts an 8-byte
block of data using a control
vector.

triple_encrypt_under_master_key Triple-DES encrypts an 8-byte
block of data.

triple_encrypt_under_master_key_with_CV Triple-DES encrypts an 8-byte
block of data using a control
vector.

6-22 UDX Reference and Guide

 12-NOV-01, 13:15 ede3_triple_decrypt_under_master_key

 ede3_triple_decrypt_under_master_key
ede3_triple_decrypt_under_master_key triple decrypts a string of data using EDE3
triple DES. The data length must be a multiple of eight bytes.

 Function Prototype
long ede3_triple_decrypt_under_master_key(mk_selectors Fmk_selector,

 UCHAR Fcleartext,

 UCHAR Fciphertext,

 ULONG data_length);

 Input
On entry to this routine:

mk_selector is a pointer to a variable which must be initialized as follows:

� mk_set is a pointer to the set of master keys which is to be accessed, if more
than one set is allowed on this operating system. Where there is only one set
of master keys, this must be set to MK_SET_DEFAULT.

� mk_register is set to either old_mk, current_mk, or new_mk, representing the
key which should be cleared.

� type_mks should be set to ASYM_MK if the data is to be decrypted with the
asymmetric-keys master key or to SYM_MK if the data is to be decrypted with
the symmetric-keys master key.

cleartext is a pointer to a buffer large enough to store the ciphertext. This may
be the same as the ciphertext buffer.

ciphertext is a pointer to a buffer containing the data to be deciphered.

data_length is the number of bytes of data to be deciphered. This value must be a
multiple of eight.

 Output
On successful exit from this routine:

cleartext contains where the deciphered data is placed. This buffer may be the
same as the ciphertext buffer, if desired.

 Return Codes
Common return codes generated by this routine are:

mk_NO_ERROR The operation was successful.

mk_INVALID_DATA_LENGTH The data length is not a multiple of eight.

mk_SRDI_OPEN_ERROR Could not open the master key SRDI.

mk_SEM_CLAIM_FAILED Unable to access the SRDI Manager.

mk_KEY_NOT_VALID The designated master key is not valid.

mk_INVALID_KEY_SELECTOR The input parameters are not valid.

 Chapter 6. CCA Master Key Manager Functions 6-23

 ede3_triple_encrypt_under_master_key 12-NOV-01, 13:15

 ede3_triple_encrypt_under_master_key
ede3_triple_encrypt_under_master_key triple encrypts a string of data using EDE3
triple DES. The data length must be a multiple of eight bytes.

 Function Prototype
long ede3_triple_encrypt_under_master_key(mk_selectors Fmk_selector,

 UCHAR Fcleartext,

 UCHAR Fciphertext,

 ULONG data_length);

 Input
On entry to this routine:

mk_selector is a pointer to a variable which must be initialized as follows:

� mk_set is a pointer to the set of master keys which is to be accessed, if more
than one set is allowed on this operating system. Where there is only one set
of master keys, this must be set to MK_SET_DEFAULT.

� mk_register is set to either old_mk, current_mk, or new_mk, representing the
key which should be cleared.

� type_mks should be set to ASYM_MK if the data is to be encrypted with the
asymmetric-keys master key or to SYM_MK if the data is to be encrypted with
the symmetric-keys master key.

cleartext is a pointer to a buffer containing the data to be enciphered.

ciphertext is a pointer to a buffer large enough to store the cleartext. This buffer
may be the same as the cleartext buffer.

data_length is the number of bytes of data to be enciphered. This value must be a
multiple of eight.

 Output
On successful exit from this routine:

ciphertext contains where the enciphered data is placed. This buffer may be the
same as the cleartext buffer, if desired.

 Return Codes
Common return codes generated by this routine are:

mk_NO_ERROR The operation was successful.

mk_INVALID_DATA_LENGTH The data length is not a multiple of eight.

mk_SRDI_OPEN_ERROR Could not open the master key SRDI.

mk_SEM_CLAIM_FAILED Unable to access the SRDI Manager.

mk_KEY_NOT_VALID The designated master key is not valid.

mk_INVALID_KEY_SELECTOR The input parameters are not valid.

6-24 UDX Reference and Guide

 12-NOV-01, 13:15 triple_decrypt_under_master_key

 triple_decrypt_under_master_key
triple_decrypt_under_master_key triple decrypts eight bytes of data with the EDE
algorithm, using the specified master key register.

 Function Prototype
long triple_decrypt_under_master_key(mk_selectors Fmk_selector,

 UCHAR Fciphertext,

 UCHAR Fcleartext);

 Input
On entry to this routine:

mk_selector is a pointer to a variable which must be initialized as follows:

� mk_set is a pointer to the set of master keys which is to be accessed, if more
than one set is allowed on this operating system. Where there is only one set
of master keys, this must be set to MK_SET_DEFAULT.

� mk_register is set to either old_mk, current_mk, or new_mk, representing the
key which should be cleared.

� type_mks should be set to ASYM_MK if the data is to be decrypted with the
asymmetric-keys master key or to SYM_MK if the data is to be decrypted with
the symmetric-keys master key.

ciphertext is a pointer to a buffer containing the data to be deciphered.

cleartext is a pointer to a buffer 8 bytes in length. This may be the same as the
ciphertext buffer.

 Output
On successful exit from this routine:

cleartext contains where the deciphered data is placed. This buffer may be the
same as the ciphertext buffer, if desired.

 Return Codes
Common return codes generated by this routine are:

mk_NO_ERROR The operation was successful.

mk_SRDI_OPEN_ERROR Could not open the master key SRDI.

mk_KEY_NOT_VALID The master key could not be validated,
therefore cleartext is unchanged.

mk_INVALID_KEY_SELECTOR The input parameters are not valid.

 Chapter 6. CCA Master Key Manager Functions 6-25

 triple_decrypt_under_master_key_with_CV 12-NOV-01, 13:15

 triple_decrypt_under_master_key_with_CV
triple_decrypt_under_master_key_with_CV triple decrypts eight bytes of data with
the EDE algorithm, using a control vector with the specified master key.

Note: This function does not check the validity of the control vector.

 Function Prototype
long triple_decrypt_under_master_key_with_CV(mk_selectors Fmk_selector,

 eightbyte Fcv,

 UCHAR Fciphertext,

 UCHAR Fcleartext)

 Input
On entry to this routine:

mk_selector is a pointer to a variable which must be initialized as follows:

� mk_set is a pointer to the set of master keys which is to be accessed, if more
than one set is allowed on this operating system. Where there is only one set
of master keys, this must be set to MK_SET_DEFAULT.

� mk_register is set to either old_mk, current_mk, or new_mk, representing the
key which should be cleared.

� type_mks should be set to ASYM_MK if the data is to be decrypted with the
asymmetric-keys master key or to SYM_MK if the data is to be decrypted with
the symmetric-keys master key.

cv is a pointer to a double-length CCA control vector, which is exclusive-ORed with
the specified key value before the key is used.

ciphertext is a pointer to a buffer containing the data to be deciphered.

cleartext is a pointer to a buffer 8 bytes in length. This may be the same as the
ciphertext buffer.

 Output
On successful exit from this routine:

cleartext is a pointer to the buffer where the deciphered data is placed. This
buffer may be the same as the ciphertext buffer, if desired.

 Return Codes
Common return codes generated by this routine are:

mk_NO_ERROR The operation was successful.

mk_SRDI_OPEN_ERROR Could not open the master key SRDI.

mk_SEM_CLAIM_FAILED Unable to access the SRDI Manager.

mk_INVALID_KEY_SELECTOR The input parameters are not valid.

6-26 UDX Reference and Guide

 12-NOV-01, 13:15 triple_encrypt_under_master_key

 triple_encrypt_under_master_key
triple_encrypt_under_master_key triple encrypts eight bytes of data with the EDE
algorithm, using the specified master key register.

 Function Prototype
long triple_encrypt_under_master_key(mk_selectors Fmk_selector,

 UCHAR Fcleartext,

 UCHAR Fciphertext);

 Input
On entry to this routine:

mk_selector is a pointer to a variable which must be initialized as follows:

� mk_set is a pointer to the set of master keys which is to be accessed, if more
than one set is allowed on this operating system. Where there is only one set
of master keys, this must be set to MK_SET_DEFAULT.

� mk_register is set to either old_mk, current_mk, or new_mk, representing the
key which should be cleared.

� type_mks should be set to ASYM_MK if the data is to be encrypted with the
asymmetric-keys master key or to SYM_MK if the data is to be encrypted with
the symmetric-keys master key.

cleartext is a pointer to a buffer containing the data to be enciphered.

ciphertext is a pointer to a buffer which is 8 bytes in length. This may be the same
as the cleartext buffer.

 Output
On successful exit from this routine:

ciphertext is a pointer to the buffer where the enciphered data is placed. This
buffer may be the same as the cleartext buffer, if desired.

 Return Codes
Common return codes generated by this routine are:

mk_NO_ERROR The operation was successful.

mk_SRDI_OPEN_ERROR Could not open the master key SRDI.

mk_SEM_CLAIM_FAILED Unable to access the SRDI Manager.

mk_KEY_NOT_VALID The master key (OMK, CMK, or NMK) is not a
valid key.

mk_INVALID_KEY_SELECTOR The input parameters are not valid.

 Chapter 6. CCA Master Key Manager Functions 6-27

 triple_encrypt_under_master_key_with_CV 12-NOV-01, 13:15

 triple_encrypt_under_master_key_with_CV
triple_encrypt_under_master_key_with_CV triple encrypts eight bytes of data with
the EDE algorithm, using a control vector with the specified master key.

Note: This function does not check the validity of the control vector.

 Function Prototype
long triple_encrypt_under_master_key_with_CV(mk_selectors Fmk_selector,

 eightbyte Fcv,

 UCHAR Fcleartext,

 UCHAR Fciphertext)

 Input
On entry to this routine:

mk_selector is a pointer to a variable which must be initialized as follows:

� mk_set is a pointer to the set of master keys which is to be accessed, if more
than one set is allowed on this operating system. Where there is only one set
of master keys, this must be set to MK_SET_DEFAULT.

� mk_register is set to either old_mk, current_mk, or new_mk, representing the
key which should be cleared.

� type_mks should be set to ASYM_MK if the data is to be encrypted with the
asymmetric-keys master key or to SYM_MK if the data is to be encrypted with
the symmetric-keys master key.

cv is a pointer to a double-length CCA control vector, which is exclusive-ORed with
the specified key value before the key is used.

cleartext is a pointer to a buffer containing the data that is enciphered.

ciphertext is a pointer to a buffer which can hold 8 bytes of data. This may be the
same as the cleartext buffer.

 Output
On successful exit from this routine:

ciphertext is a pointer to the buffer where the enciphered data is placed. This
buffer may be the same as the cleartext buffer, if desired.

 Return Codes
Common return codes generated by this routine are:

mk_NO_ERROR The operation was successful.

mk_SRDI_OPEN_ERROR Could not open the master key SRDI.

mk_SEM_CLAIM_FAILED Unable to access the SRDI Manager.

6-28 UDX Reference and Guide

 12-NOV-01, 13:15

 Chapter 7. SHA-1 Functions

The functions described in this chapter allow a UDX to compute the hash of a block
of data using the Secure Hash Algorithm (SHA-1) as defined in FIPS Publication
180-1.

Note: All functions within this chapter are available only on the coprocessor.

Header Files for SHA-1 Functions
When using these functions, your program must include the following header files:

#include "cmncryt2.h" /F Cryptographic types F/

#include "cmn_sha.h" /F SHA external definitions. F/

Summary of Functions
The following functions are described in this chapter:

sha_hash_message Compute the hash of a block of data using the SHA-1
algorithm.

sha_hash_msg_to_bfr “wrapper” for sha_hash_message.

 Chapter 7. SHA-1 Functions 7-1

 sha_hash_message - SHA-1 Hash with Chaining 12-NOV-01, 13:15

sha_hash_message - SHA-1 Hash with Chaining
sha_hash_message computes the hash of a block of data using the Secure Hash
Algorithm (SHA-1) and optionally incorporates the result into an initial hash value.
This function calculates the hash in software.

 Function Prototype
ULONG sha_hash_message (UCHAR FpBlock,

 UCHAR FpHash,

 dbl_ulong FpBitCount,

 sha_context FpContext,

 owh_sequence MsgPart);

 Input
On entry to this routine:

MsgPart controls the operation of the function and must be one of the following
constants:

only The input data constitutes the entire block of data to be hashed. The
hash value is computed and returned.

first The input data constitutes the first portion of a block of data to be
hashed. See “Chained Operations” on page 7-3 for details.

middle The input data constitutes an additional portion of a block of data to be
hashed. See “Chained Operations” on page 7-3 for details.

final The input data constitutes the final portion of a block of data to be
hashed. See “Chained Operations” on page 7-3 for details.

pBlock must contain the address of the block of data that is to be incorporated into
the hash.

pHash must contain the address of a buffer to which the hash value may be written.
The buffer must be at least 20 bytes long. pHash is used only if MsgPart specifies
only or final.

pBitCount must contain the address of a buffer that contains the length in bits of
the block of data referenced by pBlock. FpBitCount is interpreted as a 64-bit
integer. pBitCount->upper contains the most-significant 32 bits of FpBitCount and
pBitCount->lower contains the least-significant 32 bits of FpBitCount.

Note: Both fields are regular 32-bit integers (that is, C unsigned longs) that are
stored in the native byte order of the processor on which the code is running.

For example, pBitCount->lower and pBitCount->upper are stored in little-endian
order on the coprocessor.

If MsgPart specifies first or middle, FpBitCount must be a multiple of 512, or data
will be lost.

pContext must contain the address of a context buffer from which the function may
initialize its internal state and to which the function may write its final internal state.
See “Chained Operations” on page 7-3 for details.

If MsgPart specifies only or first, the initial value of FpContext is ignored.

7-2 UDX Reference and Guide

 12-NOV-01, 13:15 sha_hash_message - SHA-1 Hash with Chaining

 Output
On successful exit from this routine:

The buffer referenced by pHash contains the hash value of the input data if MsgPart
specifies only or final. In the latter case, the hash value incorporates the initial
hash value provided in FpContext.

FpContext has been updated to incorporate changes to the function’s internal state
caused by incorporating FpBlock into the hash.

 Notes
Chained Operations

A block of data to be hashed may be processed in a single operation. It may be
necessary, however, to break the operation into several steps, each of which
processes only a portion of the block. (For example, an application may want to
compute a hash that covers several discontiguous fields in a structure.)

A chained operation is initiated by calling sha_hash_message with MsgPart set to
first and the first piece of the block of data to hash identified by pBlock and
FpBitCount. On return, FpContext contains context information that must be
preserved and passed to sha_hash_message when the next piece of the block of
data to hash is processed.

Subsequent pieces of the block are processed by calling sha_hash_message with
MsgPart set to middle (or to final if the piece in question is the last) and the
location and length of the piece identified by pBlock and FpBitCount. FpContext

must contain the value returned in that structure by the call to sha_hash_message
that processed the previous piece of the block. The function hashes the piece and
updates FpContext and pHash appropriately.

 Return Codes
Common return codes generated by this routine are:

sh_NO_ERROR (i.e., 0) The operation was successful.

sh_MSG_PART_INVALID The MsgPart argument was not only, first, middle, or
last.

 Examples
To compute the SHA-1 hash of a contiguous block of 150 bytes of text at pBlock:

BitCount = ((dbl_ulong) 15S)F8;

memset ((UCHAR F)pContext, SxSS, sizeof(sha_context));

sha_hash_message(pBlock, &Hash, &BitCount, pContext, only);

To compute the SHA-1 hash of only the name fields of the following structure:

 Chapter 7. SHA-1 Functions 7-3

 sha_hash_message - SHA-1 Hash with Chaining 12-NOV-01, 13:15

struct emp_data{

 char ID[1S];

 double salary;

 char name[64];

}employee[MAX_EMP];

BitCount = (dbl_ulong)512;

memclr ((UCHAR F)&Context, SxSS, sizeof(sha_context));

/F Start the hash with "first" F/

sha_hash_message(employee[i].name, &Hash, &Bitcount, &Context, first);

/F hash the middle portions F/

for (i = 1; i< MAX_EMP-1; i++)

{

/F it is important that the value in BitCount is divisible by 512 F/

sha_hash_message(employee[i].name, &Hash, &BitCount, &Context, middle);

}

/F hash the final portion F/

sha_hash_message(employee[MAX_EMP-1].name, &Hash, &BitCount, &Context,final);

/F at this point, the value in Hash is the SHA-1 hash of the names F/

7-4 UDX Reference and Guide

 12-NOV-01, 13:15 sha_hash_msg_to_bfr - SHA-1 Hash

sha_hash_msg_to_bfr - SHA-1 Hash
sha_hash_msg_to_bfr is a wrapper for sha_hash_message that simplifies the
interface when chained operations (see page 7-3) are not necessary.

 Function Prototype
void sha_hash_msg_to_bfr(UCHAR FpBlock,

 UCHAR FpHash,

 dbl_ulong FpBitCount);

 Input
On entry to this routine:

pBlock must contain the address of the block of data that is to be hashed.

pHash must contain the address of a buffer to which the hash value may be written.
The buffer must be at least 20 bytes long.

pBitCount must contain the address of a buffer that contains the length in bits of
the block of data referenced by pBlock. FpBitCount is interpreted as a 64-bit
integer. pBitCount->upper contains the most-significant 32 bits of FpBitCount and
pBitCount->lower contains the least-significant 32 bits of FpBitCount.

Note: Both fields are regular 32-bit integers (that is, C unsigned longs) that are
stored in the native byte order of the processor on which the code is running.

For example, pBitCount->lower and pBitCount->upper are stored in little-endian
order on the coprocessor.

 Output
On successful exit from this routine:

The buffer referenced by pHash contains the hash value of the input data.

 Notes
Function Wraps sha_hash_message

sha_hash_msg_to_bfr(pBlock,pHash,pBitCount) performs the same function as

{

 sha_context Context;

 memset(&Context,S,sizeof(Context));

 sha_hash_message(pBlock,pHash,pBitCount,&Context,only);

}

 Return Codes
This function has no return codes.

 Chapter 7. SHA-1 Functions 7-5

 sha_hash_msg_to_bfr - SHA-1 Hash 12-NOV-01, 13:15

7-6 UDX Reference and Guide

 12-NOV-01, 13:15

Chapter 8. DES Utility Functions

This chapter describes functions to assist in the use of key tokens and other
cryptographic structures.

You should understand the use of the CCA control-vector before using the
functions in this chapter. Control vectors are explained and described in Appendix
C of the CCA Basic Services Reference and Guide. Three bits in the basic control
vector have been reserved for UDX developers. Setting Bit 61 will prevent a key
token from being used in any CCA standard verb except the import and export
verbs. Bits 4 and 5 of the control vector will be checked by any standard CCA
code. This allows developers to use these three bits to indicate their own, UDX
specific keys, which can be used only by UDX verbs. (These verbs must be written
to test the required bits.)

Note: All functions within this chapter are available only on the coprocessor.

Header Files for DES Utility Functions
When using these functions, your program must include the following header files.

#include "cmncryt2.h" /F T2 structures, constants, functions F/

#include "castyped.h" /F Adapter typedefs and structures F/

#include "cassub.h" /F DES 96 function prototypes F/

#include "casfunct.h"

Summary of Functions
DES utility routines includes the following functions.

cas_adjust_parity Adjusts the parity of a DES key token.

cas_build_default_cv Builds a default control vector.

cas_build_default_token Builds a default DES key token.

cas_current_mkvp Returns the current master key verification pattern.

cas_des_key_token_check Verifies the integrity of a DES key token.

cas_get_key_type Returns the type of DES key token.

cas_key_length Returns the length of a DES key.

cas_key_tokentvv_check Verifies a DES key token validation value.

cas_master_key_check Performs a master key version check.

cas_old_mkvp Returns the old master key verification pattern.

cas_parity_odd Determines whether a DES key has odd parity.

RecoverDesDataKey Recovers the cleartext form of a DES importer data
key.

RecoverDesKekImporter Recovers the cleartext form of a DES key encrypting
key (KEK).

 Chapter 8. DES Utility Functions 8-1

 12-NOV-01, 13:15

 Overview
The routines described in this chapter are used to analyze, modify, and validate
CCA DES key tokens.

Refer to the IBM 4758 PCI Cryptographic Coprocessor CCA Basic Services
Reference and Guide for more information. Chapter 5, “Basic CCA DES Key
Management” includes an in-depth discussion of DES key token management
within CCA. You can also refer to Appendix B, “Data Structures” for a description
of the DES key tokens structures and Appendix C, “CCA Control Vector Definitions
and Key Encryption” for a discussion of control vectors.

Keys used in these functions are one of the following KEY_TYPES:

DATA_KEY For the encryption and decryption of data.

DATAXLATE_KEY To re-encipher data from one key to another.

CIPHER_KEY A symmetric key to encipher and decipher data.

ENCIPHER_KEY A non-symmetric key, which only enciphers data.

DECIPHER_KEY A non-symmetric key, which only deciphers data.

MAC_KEY For generating and verify Message Authentication Codes.

MACVER_KEY For verifying Message Authentication Codes.

IMPORTER_KEY For decoding keys imported from other engines, or
translating keys from one encoding to another.

EXPORTER_KEY For encoding keys for export (to other engines), or
translating keys from one encoding to another.

IKEYXLATE_KEY For inputting a key translation.

OKEYXLATE_KEY For outputting a key translation.

PINGEN_KEY For generating PINs.

PINVER_KEY For verifying PINs.

IPINENC_KEY For importing PINs.

OPINENC_KEY For exporting PINs.

KEYGEN_KEY Used for key generation.

KEY_TYPE_TOKEN A key token, rather than a key.

8-2 UDX Reference and Guide

 12-NOV-01, 13:15 cas_adjust_parity - Adjust Parity

cas_adjust_parity - Adjust Parity
cas_adjust_parity adjusts each byte of the passed string, as necessary, so that
every byte has odd parity. This is useful when adjusting DES keys for correct
parity.

 Function Prototype
void cas_adjust_parity(UCHAR FDataBytes,

 unsigned int Length)

 Input
On entry to this routine:

DataBytes is a pointer to the string that is to be parity-adjusted.

Length is the number of bytes in the string at location DataBytes.

 Output
On successful exit from this routine:

DataBytes is a pointer to the string that has been parity-adjusted.

 Return Codes
This function has no return codes.

 Chapter 8. DES Utility Functions 8-3

 cas_build_default_cv - Build a Default Control Vector 12-NOV-01, 13:15

cas_build_default_cv - Build a Default Control Vector

cas_build_default_cv builds a default control vector for the specified key type.

 Function Prototype
void cas_build_default_cv(KEY_TYPES KeyType,

 UCHAR FpCV)

 Input
On entry to this routine:

KeyType is the type of key your control vector is used with.

pCv is a pointer to a 20-byte location which will hold the new control vector.

 Output
On successful exit from this routine:

pCV contains the new control vector.

 Return Codes
This function has no return codes.

8-4 UDX Reference and Guide

 12-NOV-01, 13:15 cas_build_default_token - Build a Default Token

cas_build_default_token - Build a Default Token

cas_build_default_token builds a default key token, of the type specified by
parameter KeyType for the mk_set being processed.

 Function Prototype
void cas_build_default_token(UCHAR TokenFlag,

 KEY_TYPES KeyType,

des_key_token_structure FpKeyToken)

 Input
On entry to this routine:

TokenFlag is the token flag used in constructing the new key token. Legal values
for this field are INTERNAL_TOKEN_FLAG and EXTERNAL_TOKEN_FLAG.

KeyType is the type of key token to be generated. Examples include data key,
exporter key, and MAC key.

pKeyToken is a pointer to a 64-byte buffer which can store a key token.

 Output
On successful exit from this routine:

pKeyToken contains the token constructed by the function.

 Return Codes
This function has no return codes.

 Chapter 8. DES Utility Functions 8-5

 cas_current_mkvp - Current Master Key Verification Pattern 12-NOV-01, 13:15

cas_current_mkvp - Current Master Key Verification Pattern

cas_current_mkvp returns the 20-byte master key verification pattern (MKVP) for
the current master key for the mk_set being processed. The MKVP is a
cryptographically calculated checksum on the master key value. It is used in all
internal (master-key encrypted) DES key tokens, to indicate which master key was
used to encrypt the key.

 Function Prototype
boolean cas_current_mkvp(UCHAR FpMKVP)

 Input
On entry to this routine:

pMKVP must contain the address of a variable in which a 20-byte master key
verification pattern can be stored.

 Output
On successful exit from this routine:

pMKVP contains the current master key verification pattern.

cas_current_mkvp returns TRUE if the verification pattern was found, and FALSE
otherwise.

 Return Codes
This function has no return codes.

8-6 UDX Reference and Guide

 12-NOV-01, 13:15 cas_old_mkvp - Old Master Key Verification Pattern

cas_old_mkvp - Old Master Key Verification Pattern

cas_old_mkvp returns the 20-byte master key verification pattern (MKVP) for the
old master key for the mk_set being processed. The MKVP is a cryptographically
calculated checksum on the master key value. It is used in all internal (master-key
encrypted) DES key tokens, to indicate which master key was used to encrypt the
key.

 Function Prototype
boolean cas_old_mkvp(UCHAR *pMKVP)

 Input
On entry to this routine:

 Output
On successful exit from this routine:

pMKVP contains the current master key verification pattern.

cas_current_mkvp returns TRUE if the verification pattern was found, and FALSE
otherwise.

 Return Codes
This function has no return codes.

 Chapter 8. DES Utility Functions 8-7

 cas_des_key_token_check - Verify the DES Key Token 12-NOV-01, 13:15

cas_des_key_token_check - Verify the DES Key Token
cas_des_key_token_check performs the following checks to verify the integrity of
an internal DES key token.

� Check that all reserved fields are zero.

� Check the token flag.

� Check the version number.

� Check the flags.

If no errors are found, the function returns TRUE. If there is an error, the function
returns FALSE and parameter pMessageFlag indicates the cause of the error.

 Function Prototype
boolean cas_des_key_token_check(des_key_token_structure FpKeyToken,

 DES_TOKEN_CHECK FpMessageFlag)

 Input
On entry to this routine:

pKeyToken is a pointer to the internal DES key token that is to be checked.

 Output
On successful exit from this routine:

pMessageFlag is a pointer to a location where the function stores an error code, if
the key token is found to have an error.

cas_des_key_token_check returns a boolean value of TRUE, if the token has no
errors, or FALSE otherwise.

 Return Codes
Common return codes generated by this routine are:

DES_TOKEN_CHECK_VALID The token is valid.

DES_TOKEN_CHECK_TOKENFLAG The token is not an internal DES key token.

DES_TOKEN_CHECK_RESERVEDi Reserved field i is incorrectly set.

DES_TOKEN_CHECK_VERSION The version number is incorrect.

DES_TOKEN_CHECK_FLAGBYTES The token flag is incorrect.

DES_TOKEN_CHECK_FLAG_NOCV The token has no control vector set.

DES_TOKEN_CHECK_NOKEY The token does not contain a key.

8-8 UDX Reference and Guide

 12-NOV-01, 13:15 cas_get_key_type - Return Key Type

cas_get_key_type - Return Key Type
cas_get_key_type returns the key type corresponding to the specified key token.

 Function Prototype
KEY_TYPES cas_get_key_type(des_key_token_structure FpKeyToken)

 Input
On entry to this routine:

pKeyToken is a pointer to the key token which is to be examined.

 Output
This function returns no output. On successful exit from this routine:

cas_get_key_type returns the key type corresponding to the specified key token.

 Return Codes
This function has no return codes.

 Chapter 8. DES Utility Functions 8-9

 cas_key_length - Return Key Length 12-NOV-01, 13:15

cas_key_length - Return Key Length
cas_key_length determines the length of a key, based on the Control Vector. The
key length is returned as the function result.

 Function Prototype
LENGTH_KEYWORD cas_key_length(eightbyte CvBase,

eightbyte CvExtension)

 Input
On entry to this routine:

CvBase is the control vector base.

CvExtension is the control vector extension.

 Output
On successful exit from this routine:

cas_key_length returns SINGLE or DOUBLE, depending on whether the specified
key is single or double length.

 Examples
To determine the length of the key stored in DataKey:

switch(cas_key_length(DataKey,cvBase, DataKey.cvExten))

{

 case SINGLE:

/F deal with a single length key F/

 break;

 case DOUBLE:

/F deal with a double length key F/

 break;

 default :

/Freturn with an error F/

}

 Return Codes
This function has no return codes.

8-10 UDX Reference and Guide

 12-NOV-01, 13:15 cas_key_tokentvv_check - Verify the Token Validation Value

cas_key_tokentvv_check - Verify the Token Validation Value
cas_key_tokentvv_check verifies the Token Validation Value (TVV) in the specified
internal DES key token. The TVV is an integrity check value used to detect
corruption of the token.

The function returns TRUE if the TVV verifies, and FALSE if not.

 Function Prototype
boolean cas_key_tokentvv_check(des_key_token_structure FpKeyToken)

 Input
On entry to this routine:

pKeyToken is a pointer to the internal DES key token that you want to check.

 Output
On successful exit from this routine:

cas_key_token_tvv_check returns a boolean value of TRUE if the TVV verifies, and
FALSE if not.

 Return Codes
This function has no return codes.

 Chapter 8. DES Utility Functions 8-11

 cas_master_key_check - Master Key Version Check 12-NOV-01, 13:15

cas_master_key_check - Master Key Version Check

cas_master_key_check determines which version of the master key was used to
encrypt the specified key token for the mk_set being processed. The response
indicates whether the key token is encrypted using the current master key, the old
master key, or a master key that is no longer available.

 Function Prototype
UNDER_MASTER_KEY cas_master_key_check(des_key_token_structure FpKeyToken)

 Input
On entry to this routine:

pKeyToken is a pointer to the key token which is to be examined.

 Output
On successful exit from this routine:

cas_master_key_check returns either OLD, CURRENT, or OUT_OF_DATE which
identifies which master key (old, current, or no longer available) the key token is
encrypted under.

 Notes
In CCA, an “operational key” is a key that has been multiply-enciphered with the
master key. In order to use an operational key, it must first be deciphered using
the master key.

When the user (security officers, and so on) updates the master key, CCA
maintains a copy of the old master key. This routine determines which version of
the master key was used to encipher the specified key token (CCA does this by
maintaining a hash value of the master key called the master key verification
pattern which is stored in the DES key token). Refer to Appendix B of the IBM
4758 PCI Cryptographic Coprocessor CCA Basic Services Reference and Guide for
more information.

Since CCA only stores 2 versions of the master key (current and old), upon
encountering a key token enciphered with the old master key, the UDX developer
may opt to re-encipher the key token using the current master key.

 Return Codes
This function has no return codes.

8-12 UDX Reference and Guide

 12-NOV-01, 13:15 cas_parity_odd - Verify Parity

cas_parity_odd - Verify Parity
cas_parity_odd determines whether the specified byte has odd or even parity.

 Function Prototype
boolean cas_parity_odd(UCHAR DataByte)

 Input
On entry to this routine:

DataByte is the byte that is to be checked.

 Output
On successful exit from this routine:

cas_parity_odd returns TRUE if the specified byte has odd parity, or FALSE if it
has even parity.

 Return Codes
This function has no return codes.

 Chapter 8. DES Utility Functions 8-13

 RecoverDesDataKey - Recover DES Data Key 12-NOV-01, 13:15

RecoverDesDataKey - Recover DES Data Key

RecoverDesDataKey recovers the cleartext form of a DES data key that has been
enciphered with the master key for the mk_set being processed. The input token is
checked to ensure it is valid.

 Function Prototype
long RecoverDesDataKey(des_key_token_structure FpDesToken,

 UCHAR FpClearKey,

 long FpMsg)

 Input
On entry to this routine:

pDesToken is a pointer to the input key token.

 Output
On successful exit from this routine:

pClearKey is a pointer to the location where the function stores the recovered,
cleartext key.

pMsg is the error code.

 Return Codes
Common return codes generated by this routine are:

OK The operation was successful.

ERROR pMsg contains the error code.

RT_OMK_TOKEN_USED The key was encrypted with the Old master key
(warning).

E_INTRN_TOKEN_TVV The token is not valid.

mk_SRDI_OPEN_ERROR Could not open the master key SRDI.

8-14 UDX Reference and Guide

 12-NOV-01, 13:15 RecoverDesDataKey - Recover DES Data Key

mk_SEM_CLAIM_FAILED Unable to access the master key SRDI.

RT_KEY_INV_MKVN The key was encrypted using an out-of-date master
key.

RT_KDATA_NOTODD The cleartext key failed a parity check.

 Chapter 8. DES Utility Functions 8-15

 RecoverDesKekImporter - Recover DES Importer KEK 12-NOV-01, 13:15

RecoverDesKekImporter - Recover DES Importer KEK

RecoverDesKekImporter recovers the cleartext form of a DES importer key
encrypting key (KEK) that has been enciphered with the master key for the mk_set
being processed. The token validation value is then confirmed, and the key is
checked for parity.

 Function Prototype
long RecoverDesKekImporter (des_key_token_structure FpDesToken,

 UCHAR FpClearKey,

 long FpMsg)

 Input
On entry to this routine:

pDesToken is a pointer to the input key token.

 Output
On successful exit from this routine:

pClearKey is a pointer to the location where the function stored the recovered,
cleartext key.

pMsg is the error code.

 Return Codes
Common return codes generated by this routine are:

OK The operation was successful.

ERROR pMsg contains the error code.

RT_OMK_TOKEN_USED The key was encrypted with the Old master key
(warning).

E_INTRN_TOKEN_TVV The token is not valid.

mk_SRDI_OPEN_ERROR Could not open the master key SRDI.

mk_SEM_CLAIM_FAILED Unable to access the master key SRDI.

RT_KEY_INV_MKVN The key was encrypted using an out-of-date
master key.

RT_KDATA_NOTODD The cleartext key failed a parity check.

8-16 UDX Reference and Guide

 12-NOV-01, 13:15

 Chapter 9. RSA Functions

This chapter contains functions for dealing with RSA keys and key tokens.

Refer to Appendix B of the IBM 4758 PCI Cryptographic Coprocessor CCA Basic
Services Reference and Guide for an overview of public and private key token
structures.

Note: All functions within this chapter are available only on the coprocessor.

Header Files for RSA Functions
When using these functions, your program must include the following header files.

#include "cmncryt2.h" /F T2 CPRB definitions F/

#include "scc_int.h" /F CP/Q++ API F/

#include "cam_xtrn.h" /F CCA managers F/

#include "cacdtkn.h" /F public header file F/

#include "casfunct.h"

#include "cacmkld.h" /F functions for generating RSA

/F signatures and registered keys F/

Summary of Functions
RSA keys and key tokens include the following functions.

CalculatenWordLength Returns the word length.

CreateInternalKeytoken Receives a clear key token and
creates the internal form.

CreateRsaInternalSection Creates the RSA internal section.

delete_KeyToken Remove a registered public or private
key from storage.

GenerateCcaRsaToken Generates a CCA RSA key token from
an internal format key token and a
CCA PKA skeleton token.

GenerateRsaInternalToken Creates an internal RSA token from a
CCA RSA key token.

generate_dSig Receives an RSA key token (in
operational format) and a buffer of data
(with the length and the digital
signature).

GeteLength Returns the RSA public exponent byte
length.

getKeyToken Retrieves a PKA token from the SRDI
where it is stored.

GetModulus Extracts and copies the RSA modulus.

GetnBitLength Returns the bit length of the RSA
modulus.

 Chapter 9. RSA Functions 9-1

 12-NOV-01, 13:15

GetnByteLength Returns the byte length of the RSA
modulus.

GetPublicExponent Extracts and copies the RSA key
public exponent.

GetRsaPrivateKeySection Returns a pointer to the private key
section of an RSA key token.

GetRsaPublicKeySection Returns a pointer to the public key
section of an RSA key token.

GetTokenLength Returns the length of the specified
token.

IsPrivateExponentEven Verifies whether the RSA private
exponent is an even valued integer.

IsPrivateKeyEncrypted Verifies whether the private key section
of the specified key token is encrypted.

IsPublicExponentEven Verifies whether the RSA public
exponent is an even valued integer.

IsRsaToken Verifies whether the key token contains
an RSA key.

IsTokenInternal Identifies whether the key token is in
internal format.

PkaMkvpQuery Returns a value indicating which
master key was used to encrypt the
specified key token.

pka96_tvvgen Calculates the token validation value
(TVV) for the specified key token.

RecoverPkaClearKeyTokenUnderMk Recovers the PKA clear key token
under the master key.

RecoverPkaClearKeyTokenUnderXport Recovers the PKA clear key token
under the DES export key.

ReEncipherPkaKeyToken Re-enciphers an internal PKA key
token from the old master key to the
current master key.

RequestRSACrypto Performs an RSA operation.

store_KeyToken Saves a public or private key to the
SRDI.

TokenMkvpMatchMasterKey Tests whether the key token was
encrypted using a specified version of
the master key.

ValidatePkaToken Verifies that the RSA key token is valid
for use in the system.

VerifyKeyTokenConsistency Verifies the consistency of a key token.

verify_dSig Verifies the RSA key token signature.

9-2 UDX Reference and Guide

 12-NOV-01, 13:15

 Overview
An RSA key consists of a public modulus which is the product of two large prime
numbers, a public exponent which is relatively prime to the modulus, and a private
exponent d. In the coprocessor, keys may be stored in CCA RSA tokens in the key
storage file and used in the SCC complete tokens. Either form of key has a public
and a private version.

The public version SCC complete token of a key contains the modulus and the
public exponent of the key, and the length of each. The private version may be in
either modulus exponent or Chinese remainder format, and contains the modulus
and public and private exponents for each. This version of a key is used in the
cryptographic engine for sccRSA() requests and is the type returned by
sccRSAKeyGenerate().

CCA RSA tokens consist of a token header, followed by

1. an optional private key section which holds the decrypting information (the
private key and the public modulus), verification data, and key-encryption data

2. and a required public key section which holds encryption information (the public
exponent and the modulus.)

Parts of the private key section may be encrypted under the master key (internal
keys) or under a transport key (external keys). This is the version of a key which is
stored in the key-storage file.

The functions in this chapter can be separated into the following categories:

Informational: (All of these functions operate on CCA RSA key tokens)

CalculatenWordLength Returns the length of the modulus in 16-bit words.
GeteLength Returns the length of the public exponent.
GetnBitLength Returns the length of the modulus in bits.
GetnByteLength Returns the length of the modulus in bytes.
GetTokenLength Returns the length of the CCA RSA key token.

Key checking

IsPrivateExponentEven Verifies whether the private exponent of the CCA
RSA key token is even.

IsPrivateKeyEncrypted Verifies whether the private key section of the
CCA RSA key token is encrypted.

IsPublicExponentEven Verifies whether the public exponent of the CCA
RSA key token is encrypted.

IsRsaToken Verifies whether the supplied token is an RSA
token.

IsTokenInternal Verifies whether the CCA RSA key token has
been encrypted with the master key (that is, an
internal token).

PkaMkvpQuery Identifies which master key was used to encrypt
the specified internal CCA RSA key token.

TokenMkvpMatchMasterKey Tests whether the internal CCA RSA key token
was encrypted with the specified master key.

ValidatePkaToken Verifies that a CCA RSA key token is valid for use
in the system.

 Chapter 9. RSA Functions 9-3

 12-NOV-01, 13:15

VerifyKeyTokenConsistency Tests the length fields of the CCA RSA key token,
ensuring that they are consistent.

Key manipulation

CreateInternalKeyToken Receives a clear CCA RSA key token
and encrypts the private key data,
creating an internal CCA RSA key
token.

CreateRsaInternalSection Receives an SCC complete token and
creates an internal CCA RSA key
token, including encrypting with the
master key.

GenerateRsaInternalToken Receives a CCA RSA key token and
creates an SCC complete token.

GetModulus Returns the public modulus of the CCA
RSA key token.

GetPublicExponent Returns the public exponent of the
CCA RSA key token.

GetRsaPrivateKeySection Returns a pointer to the private key
section of the CCA RSA key token.

GetRsaPublicKeySection Returns a pointer to the private key
section of the CCA RSA key token.

pka96_tvvgen Calculates the token validation value
for the CCA RSA key token.
Decrypts an internal CCA RSA key
token.

RecoverPkaClearKeyTokenUnderXport Decrypts an external CCA RSA key
token.

ReEncipherPkaKeyToken Decrypts a CCA RSA key token with
the old master key and encrypts it with
the current master key.

RequestRSACrypto Performs an encryption or decryption
operation with the CCA RSA key
token.

9-4 UDX Reference and Guide

 12-NOV-01, 13:15 CalculatenWordLength - Return Word Length of Modulus

CalculatenWordLength - Return Word Length of Modulus
CalculatenWordLength returns the length of the modulus in terms of the number of
16-bit words it occupies.

 Function Prototype
USHORT CalculatenWordLength (RsaKeyTokenHeader FpToken)

 Input
On entry to this routine:

pToken is a pointer to the key token.

 Output
On successful exit from this routine:

CalculatenWordLength returns the length of the modulus in 16-bit words.

 Return Codes
This function has no return codes.

 Chapter 9. RSA Functions 9-5

 CreateInternalKeyToken - Create Internal Key Token 12-NOV-01, 13:15

CreateInternalKeyToken - Create Internal Key Token

CreateInternalKeyToken receives a clear CCA RSA key token and creates the
internal form by encrypting the private key areas under the master key for the
mk_set being processed.

 Function Prototype
long CreateInternalKeyToken(RsaKeyTokenHeader FpTokenIn,

 RsaKeyTokenHeader FpTokenOut)

 Input
On entry to this routine:

pTokenIn is a pointer to the cleartext key token.

 Output
On successful exit from this routine:

pTokenOut is a pointer to a location which contains the encrypted internal key token.

 Return Codes
Common return codes generated by this routine are:

ERROR The token is not an RSA token, or already has an
internal section.

mk_KEY_NOT_VALID The current master key is not valid.

mk_SEM_CLAIM_FAILED Could not access the master keys.

9-6 UDX Reference and Guide

 12-NOV-01, 13:15 CreateRsaInternalSection - Create RSA Internal Section

CreateRsaInternalSection - Create RSA Internal Section

CreateRsaInternalSection receives an SCC complete token and creates an internal
CCA RSA key token by calculating the validation values and encrypting under the
master key for the mk_set being processed.

 Function Prototype
long CreateRsaInternalSection (RsaKeyTokenHeader FpTokenOut,

 sccRSAKeyToken_t FpRsaTokenIn)

 Input
On entry to this routine:

pTokenOut is a pointer to a variable which will hold the new CCA RSA key token.

pRsaTokenIn is a pointer to the internal SCC key structure.

 Output
This function returns no output. On successful exit from this routine:

The internal section of the CCA RSA key token is created.

pTokenOut contains the new CCA RSA token.

 Return Codes
Common return codes generated by this routine are:

OK The operation was successful.

mk_KEY_NOT_VALID The current master key is not valid.

mk_SEM_CLAIM_FAILED Could not access the master keys.

 Chapter 9. RSA Functions 9-7

 delete_KeyToken - Delete a Key From On-Board Storage 12-NOV-01, 13:15

delete_KeyToken - Delete a Key From On-Board Storage
delete_KeyToken permanently removes a registered public key or retained private
key from storage in the coprocessor.

 Function Prototype
delete_KeyToken (char FpKeyName)

 Input
On entry to this routine:

pKeyName is a pointer to a 64 byte array containing the name of the key to be
deleted.

 Output
This function returns no output. On successful exit from this routine:

The key referenced by pKeyName is no longer in storage, and the key storage SRDI
has been resized.

 Return Codes
Common return codes generated by this routine are:

OK The operation was successful.

Key_NAME_NOT_FOUND The key was not found in the list.

CP_MEMORY_NAVAIL Out of memory error.

PKEY_SRDI_ERROR Unable to access the key storage SRDI.

9-8 UDX Reference and Guide

 12-NOV-01, 13:15 GenerateCcaRsaToken - Generate CCA RSA Key Token

GenerateCcaRsaToken - Generate CCA RSA Key Token
GenerateCcaRsaToken generates a CCA RSA key token from an internal (CP/Q++)
format key token and a CCA PKA skeleton token. The skeleton token must be
initialized to indicate the required format of the final token.

 Function Prototype
long GenerateCcaRsaToken (RsaKeyTokenHeader FpPkaToken,

 sccRSAKeyToken_t FpRsaKeyToken)

 Input
On entry to this routine:

pPkaToken must be a pointer to a CCA RSA key token header whose nextSection
field contains the desired CCA Key token type (RSA_PRIVATE_SECTION_NOPT,
RSA_PRIVATE_SECTION_CR, RSA_PRIVATE_SECTION_NOPT_VAR, (for
version 0 keys)).

pRsaKeyToken must be a pointer to a valid internal (CP/Q++) RSA key token.

 Output
On successful exit from this routine:

pPkaToken contains a valid CCA RSA token of the type desired.

 Return Codes
Common return codes generated by this routine are:

OK The operation was successful.

ERROR The skeleton token was not initialized.

 Chapter 9. RSA Functions 9-9

 GenerateRsaInternalToken - Generate RSA Key Token 12-NOV-01, 13:15

GenerateRsaInternalToken - Generate RSA Key Token
GenerateRsaInternalToken receives a CCA RSA key token and creates an SCC
complete token with all data aligned on 4-byte boundaries, for use in RSA
computations.

 Function Prototype
long GenerateRsaInternalToken

(

 RsaKeyTokenHeader FpPkaTokenIn,

 sccRSAKeyToken_t FpRsaKeyTokenOut

)

 Input
On entry to this routine:

pPkaTokenIn is a pointer to the CCA RSA key token.

 Output
On successful exit from this routine:

pRsaKeyTokenOut is a pointer to the location where the function stores the internal
SCC complete key token it creates from the specified CCA RSA token.

 Return Codes
Common return codes generated by this routine are:

OK The operation was successful.

ERROR The input key token is not an RSA key token.

9-10 UDX Reference and Guide

 12-NOV-01, 13:15 generate_dSig - Receives RSA Key Token

generate_dSig - Receives RSA Key Token
generate_dSig receives an RSA key token in operational format and a buffer of
data, with the length of the data and the expected length of the digital signature.
The key token is deciphered and the input data is hashed with SHA-1, then the
data is formatted according to the requested Type before signing with the clear key.
The format may be one of ISO-9796, PKCS #1 block type 0 or 1, or zero-padded.

 Function Prototype
long generate_dSig (RsaKeyTokenHeader FpTokenIn,

 UCHAR FpDataIn,

 long DataLength,

 UCHAR FpSignatureOut,

 USHORT FpSignatureBitLength,

 UCHAR Type)

 Input
On entry to this routine:

pTokenIn is a pointer to the operational key token.

pDataIn is a pointer to the data which is to be signed.

DataLenth is the length of the data to be signed, in bytes.

pSignatureOut is a pointer to a buffer which is to hold the returned signature.

pSignatureBitLength is a pointer to the length of the buffer pSignatureOut, in bits.

Type is one of the following:

� M_ISO9796 if the data is to be formatted according to the ISO-9796 standard
before signing.

� M_PKCS1S if the data is to be formatted as specified in the RSADataSecurity,
Inc., Public Key Cryptography Standards #1 block type 00 before signing.

� M_PKCS11 if the data is to be formatted as specified in the RSADataSecurity,
Inc., Public Key Cryptography Standards #1 block type 01 before signing.

� M_ZEROPAD if the Data is to be placed in the low-order bits of a bit-string of the
same length as the modulus with all other bit-positions set to zero before
signing.

 Output
On successful exit from this routine:

pSignatureBitLength contains the length (in bits) of the calculated digital signature.

pSignatureOut contains the digital signature.

 Chapter 9. RSA Functions 9-11

 generate_dSig - Receives RSA Key Token 12-NOV-01, 13:15

 Return Codes
Common return Codes generated by this routine are:

OK The operation was successful.

E_SIZE The provided buffer was not large enough to contain the
signature.

PKABadAddr The key token is not valid.

9-12 UDX Reference and Guide

 12-NOV-01, 13:15 GeteLength - Return RSA Public Exponent Byte Length

GeteLength - Return RSA Public Exponent Byte Length
GeteLength returns the byte length of the RSA public exponent field, as contained
in the member field of the key token.

Note: The member field is a 16-bit field and is in zSeries (big-endian) format.
This routine returns the 16-bit integer in Intel** (little-endian) format.

 Function Prototype
USHORT GeteLength (RsaKeyTokenHeader FpToken)

 Input
On entry to this routine:

pToken is a pointer to the key token.

 Output
On successful exit from this routine:

GeteLength returns the byte length of the RSA public exponent field.

 Return Codes
This function has no return codes.

 Chapter 9. RSA Functions 9-13

 getKeyToken - Get a PKA Token From On-Board Storage 12-NOV-01, 13:15

getKeyToken - Get a PKA Token From On-Board Storage
getKeyToken retrieves a PKA retained private key or registered public key from the
SRDI where it is stored.

 Function Prototype
long getKeyToken (char FpLabel,

 char FpKey,

USHORT FpFlags)

 Input
On entry to this routine:

pLabel is a pointer to a string containing the label associated with the requested
key.

pKey is a pointer to a buffer in which the key token can be written. The maximum
length required is 2500 bytes.

pFlags is a pointer to a 2-byte buffer which can hold returned flags from the key
token.

 Output
On successful exit from this routine:

pKey contains the clear key token associated with the label at pLabel.

pFlags contains the flags associated with the key.

 Return Codes
Common return codes generated for this function are:

srdi_NO_ERROR The command completed successfully.

PKEY_NOT_REGISTER The key was not found.

PKEY_SRDI_ERROR The registered key manager could not be accessed.

9-14 UDX Reference and Guide

 12-NOV-01, 13:15 GetModulus - Extract and Copy RSA Modulus

GetModulus - Extract and Copy RSA Modulus
GetModulus extracts the RSA key modulus from the specified key token, and
copies it to the buffer provided.

 Function Prototype
void GetModulus (RsaKeyTokenHeader FpToken,

 UCHAR FpModulus)

 Input
On entry to this routine:

pToken is a pointer to the key token.

pModulus is a pointer to a buffer for the modulus.

 Output
On successful exit from this routine:

pModulus is a pointer to the provided buffer where the RSA key modulus is stored.

 Return Codes
This function has no return codes.

 Chapter 9. RSA Functions 9-15

 GetnBitLength - Return RSA Modulus Bit Length 12-NOV-01, 13:15

GetnBitLength - Return RSA Modulus Bit Length
GetnBitLength returns the bit length of the RSA modulus as contained in the
member field of the key token.

Note: The member field is a 16-bit field and is in zSeries (big-endian) format.
This routine returns the 16-bit integer in Intel** (little-endian) format.

 Function Prototype
USHORT GetnBitLength (RsaKeyTokenHeader FpToken)

 Input
On entry to this routine:

pToken is a pointer to the key token.

 Output
On successful exit from this routine:

GetnBitLength returns the bit length of the RSA modulus.

 Return Codes
This function has no return codes.

9-16 UDX Reference and Guide

 12-NOV-01, 13:15 GetnByteLength - Return RSA Modulus Byte Length

GetnByteLength - Return RSA Modulus Byte Length
GetnByteLength returns the length of the RSA modulus, in bytes.

Note: The key token contains a member field which indicates the modulus byte
length. This field may not be the actual byte length, but is an indication of the
length of the field containing the modulus. This function returns the actual byte
length of the modulus by calculating it from the bit length. It does not use the byte
length member field from the key token.

 Function Prototype
USHORT GetnByteLength (RsaKeyTokenHeader FpToken)

 Input
On entry to this routine:

pToken is a pointer to the key token.

 Output
On successful exit from this routine:

GetnByteLength returns the length of the RSA modulus, in bytes.

 Return Codes
This function has no return codes.

 Chapter 9. RSA Functions 9-17

 GetPublicExponent - Extract and Copy Public Exponent 12-NOV-01, 13:15

GetPublicExponent - Extract and Copy Public Exponent
GetPublicExponent extracts the RSA key public exponent from the specified key
token, and copies it to the provided buffer pDest.

 Function Prototype
USHORT GetPublicExponent (RsaKeyTokenHeader FpToken,

 UCHAR FpDest)

 Input
On entry to this routine:

pToken is a pointer to the key token.

pDest is a pointer to the 64-byte buffer provided for the exponent.

 Output
On successful exit from this routine:

pDest is a pointer to the caller’s buffer where the RSA key public exponent is
stored.

GetPublicExponent returns the length of the exponent.

 Return Codes
This function has no return codes.

9-18 UDX Reference and Guide

 12-NOV-01, 13:15 GetRsaPrivateKeySection - Return Private Key

GetRsaPrivateKeySection - Return Private Key
GetRsaPrivateKeySection returns a pointer to the private key section of an RSA
key token, if it is present. Otherwise, the function returns a null pointer.

 Function Prototype
void F GetRsaPrivateKeySection (RsaKeyTokenHeader FpToken)

 Input
On entry to this routine:

pToken is a pointer to the RSA key token.

 Output
This function returns no output. On successful exit from this routine:

GetRsaPrivateKeySection returns a pointer to the private key section of an RSA
key token.

 Notes
Refer to Appendix B of the IBM 4758 PCI Cryptographic Coprocessor CCA Basic
Services Reference and Guide for a diagram of the key token structure.

A typical RSA key token looks similar to the following:

Header

Private
Section

Public
Section

or

Header

Public
Section

 Return Codes
This function has no return codes.

 Chapter 9. RSA Functions 9-19

 GetRsaPublicKeySection - Return Public Key 12-NOV-01, 13:15

GetRsaPublicKeySection - Return Public Key
GetRsaPublicKeySection returns a pointer to the public key section of an RSA key
token, if it is present. If not, the function returns a null pointer.

Note: If no public key section is present an internal error has occurred, since all
RSA tokens should contain a public key section.

 Function Prototype
void F GetRsaPublicKeySection (RsaKeyTokenHeader FpToken)

 Input
On entry to this routine:

pToken is a pointer to the RSA key token.

 Output
On successful exit from this routine:

GetRsaPublicKeySection returns a pointer to the public key section of an RSA key
token.

 Return Codes
This function has no return codes.

9-20 UDX Reference and Guide

 12-NOV-01, 13:15 GetTokenLength - Return Key Token Length

GetTokenLength - Return Key Token Length
GetTokenLength returns the length of the specified token, as contained in the
member field of the header.

Note: The member field is a 16-bit field and is in zSeries (big-endian) format.
This routine returns the 16-bit integer in Intel** (little-endian) format.

 Function Prototype
USHORT GetTokenLength (RsaKeyTokenHeader FpToken)

 Input
On entry to this routine:

pToken is a pointer to the key token.

 Output
On successful exit from this routine:

GetTokenLength returns the length of the specified token.

 Return Codes
This function has no return codes.

 Chapter 9. RSA Functions 9-21

 IsPrivateExponentEven - Verify RSA Private Exponent 12-NOV-01, 13:15

IsPrivateExponentEven - Verify RSA Private Exponent
IsPrivateExponentEven returns TRUE if the private exponent in the specified key
token is an even valued integer; otherwise, it returns FALSE.

 Function Prototype
boolean IsPrivateExponentEven (RsaKeyTokenHeader FpToken)

 Input
On entry to this routine:

pToken is a pointer to the key token.

 Output
On successful exit from this routine:

IsPrivateExponentEven returns TRUE if the private exponent in the specified key
token is an even valued integer, and FALSE if it is not.

 Return Codes
This function has no return codes.

9-22 UDX Reference and Guide

 12-NOV-01, 13:15 IsPrivateKeyEncrypted - Verify Private Key Encryption

IsPrivateKeyEncrypted - Verify Private Key Encryption
IsPrivateKeyEncrypted returns TRUE if the private key section of the specified PKA
key token is in encrypted form, or FALSE if not.

 Function Prototype
boolean IsPrivateKeyEncrypted (RsaKeyTokenHeader FpToken)

 Input
On entry to this routine:

pToken is a pointer to the key token.

 Output
On successful exit from this routine:

IsPrivateKeyEncrypted returns TRUE if the private key section of the specified
PKA key token is in encrypted form, and FALSE if it is not.

 Return Codes
This function has no return codes.

 Chapter 9. RSA Functions 9-23

 IsPublicExponentEven - Verify RSA Public Exponent 12-NOV-01, 13:15

IsPublicExponentEven - Verify RSA Public Exponent
IsPublicExponentEven returns TRUE if the public exponent in the specified key
token is an even valued integer; otherwise, it returns FALSE.

 Function Prototype
boolean IsPublicExponentEven (RsaKeyTokenHeader FpToken)

 Input
On entry to this routine:

pToken is a pointer to the key token.

 Output
On successful exit from this routine:

IsPublicExponentEven returns TRUE if the public exponent in the specified key
token is an even valued integer, and FALSE if it is not.

 Return Codes
This function has no return codes.

9-24 UDX Reference and Guide

 12-NOV-01, 13:15 IsRsaToken - Verify RSA Key

IsRsaToken - Verify RSA Key
IsRsaToken returns TRUE if the specified key token contains an RSA key, or
FALSE if it does not.

 Function Prototype
boolean IsRsaToken (RsaKeyTokenHeader FpToken)

 Input
On entry to this routine:

pToken is a pointer to the key token.

 Output
On successful exit from this routine:

IsRsaToken returns TRUE if the specified key token contains an RSA key, and
FALSE if it is not an RSA key token.

 Return Codes
This function has no return codes.

 Chapter 9. RSA Functions 9-25

 IsTokenInternal - Key Token Format 12-NOV-01, 13:15

IsTokenInternal - Key Token Format
IsTokenInternal returns TRUE if the specified key token is in internal format, or
FALSE if it is in external format.

 Function Prototype
boolean IsTokenInternal (RsaKeyTokenHeader FpToken)

 Input
On entry to this routine:

pToken is a pointer to the key token.

 Output
On successful exit from this routine:

IsTokenInternal returns TRUE if the specified key token is in internal format, or
FALSE if it is in external format.

 Notes
Internal key tokens contain private key information that has been
multiply-enciphered with the master key. RecoverPkaClearKeyTokenUnderMk() is
used to decipher an internal key token so that it may be used.

 Return Codes
This function has no return codes.

9-26 UDX Reference and Guide

 12-NOV-01, 13:15 PkaMkvpQuery - Return Master Key Version

PkaMkvpQuery - Return Master Key Version

PkaMkvpQuery returns a value indicating which master key was used to encrypt
the specified key token for the mk_set being processed.

 Function Prototype
MK_VERSION PkaMkvpQuery (RsaKeyTokenHeader FpToken)

 Input
On entry to this routine:

pToken is a pointer to the key token that is checked.

 Output
On successful exit from this routine:

PkaMkvpQuery returns the version of the master key (MK_CURRENT, MK_OLD, or
MK_OUT_OF_DATE) that was used to encrypt the specified key token.

 Return Codes
This function has no return codes.

 Chapter 9. RSA Functions 9-27

 pka96_tvvgen - Calculate Token Validation Value 12-NOV-01, 13:15

pka96_tvvgen - Calculate Token Validation Value
pka96_tvvgen calculates the token validation value (TVV) for the specified key
token.

 Function Prototype
void pka96_tvvgen (USHORT token_len, UCHAR Fkey_token_ptr, ULONG Ftvv)

 Input
On entry to this routine:

token_len is the length of the token specified with parameter key_token_ptr.

key_token_ptr is a pointer to the key token whose TVV is calculated.

 Output
On successful exit from this routine:

tvv is a pointer to the location where the calculated TVV is stored.

 Return Codes
This function has no return codes.

9-28 UDX Reference and Guide

 12-NOV-01, 13:15 RecoverPkaClearKeyTokenUnderMk

RecoverPkaClearKeyTokenUnderMk

RecoverPkaClearKeyTokenUnderMk receives a PKA key token which is encrypted
under the master key for the mk_set being processed and recovers the clear form
by decrypting the private key areas and then verifying the SHA-1 hashes contained
in those areas

 Function Prototype
long RecoverPkaClearKeyTokenUnderMk(RsaKeyTokenHeader FpTokenIn,

 RsaKeyTokenHeader FpTokenOut,

 long FpMsg)

 Input
On entry to this routine:

pTokenIn is a pointer to the encrypted key token.

 Output
On successful exit from this routine:

pTokenOut is a pointer to the location which contains the decrypted key token.

pMsg is the error code.

 Notes
RecoverPkaClearKeyTokenUnderMk determines which master key was used to
encipher.

This function does not change the value of byte 28 of the private key, the Key
format and Security byte. If you are planning to store this key in clear form, you
should change this byte to the appropriate value before storing. Refer to Appendix
B of the CCA Basic Services Reference and Guide for the appropriate values for
different RSA key token formats.

 Return Codes
Common return codes generated by this routine are:

OK The operation was successful.

ERROR pRC returns a CP/Q error indicating the cause of the
error.

RT_TKN_UNUSEABLE The token was not an RSA token.

RT_KEY_INV_MKVN The key was encrypted with an invalid master key.

mk_SRDI_OPEN_ERROR Could not open the master key.

mk_SEM_CLAIM_FAILED Unable to access the SRDI Manager.

 Chapter 9. RSA Functions 9-29

 RecoverPkaClearKeyTokenUnderXport 12-NOV-01, 13:15

 RecoverPkaClearKeyTokenUnderXport
RecoverPkaClearKeyTokenUnderXport receives a PKA key token which is
encrypted under a DES export key, and recovers the clear form by decrypting the
private key areas and then verifying the SHA-1 hashes contained in those areas.

 Function Prototype
long RecoverPkaClearKeyTokenUnderXport(RsaKeyTokenHeader FpTokenIn,

 double_length_key FdesKey,

 RsaKeyTokenHeader FpTokenOut)

 Input
On entry to this routine:

pTokenIn is a pointer to the encrypted key token.

desKey is a pointer to the DES exporter key token.

pTokenOut is a pointer to a location which can store a key token.

 Output
On successful exit from this routine:

pTokenOut contains the cleartext key token that it recovers.

 Return Codes
Common return codes generated by this routine are:

OK The operation was successful.

ERROR The operation failed.

9-30 UDX Reference and Guide

 12-NOV-01, 13:15 ReEncipherPkaKeyToken - Re-Encipher PKA Key Token

ReEncipherPkaKeyToken - Re-Encipher PKA Key Token

ReEncipherPkaKeyToken re-enciphers an internal PKA key token from the old
master key to the current master key for the mk_set being processed.

 Function Prototype
long ReEncipherPkaKeyToken(RsaKeyTokenHeader FpToken,

 UCHAR FpWorkArea)

 Input
On entry to this routine:

pToken is a pointer to the input key token, enciphered under the old master key.

pWorkArea is a pointer to a variable which can hold a private key. This is used as a
work area when decrypting.

 Output
On successful exit from this routine:

pToken contains the key token, which has been enciphered under the current
master key.

 Return Codes
Common return codes generated by this routine are:

OK The operation was successful.

ERROR The input token is not an RSA token.

FALSE Unable to verify the current master key.

 Chapter 9. RSA Functions 9-31

 RequestRSACrypto - Perform an RSA Operation 12-NOV-01, 13:15

RequestRSACrypto - Perform an RSA Operation
RequestRSACrypto converts the specified CCA RSA key token to the RSA internal
key token format that the RSA engine requires, and then requests that the RSA
engine perform the specified RSA function.

Note: Prior to using this routine, ensure that you’ve deciphered the private key (if
you’re using it) using the routine RecoverPkaClearKeyTokenUnderMkWithMk().

 Function Prototype
long RequestRSACrypto

(

 void FpInput,

 RsaKeyTokenHeader FpKeyToken,

 void FpOutput,

 ULONG DataBitLength,

 ULONG RsaOperation

)

 Input
On entry to this routine:

pInput is a pointer to the input data for the RSA operation.

pKeyToken is a pointer to the key token for the RSA key. This is a CCA format RSA
key token.

DataBitLength is the length of the input data, in bits. This number is presumed to
be equal to the length of the output data buffer, in bits. If this number is larger than
the modulus length in bits, the data which will be operated on is in the rightmost
modulusLength bits of the input data buffer, and the result will be placed in the
rightmost modulusLength bits of the output data buffer.

RsaOperation is the requested RSA operation, such as RSA_ENCRYPT (public key
operation) or RSA_DECRYPT (private key operation).

 Output
On successful exit from this routine:

pOutput is a pointer to a buffer that receives the results of the requested RSA
operation.

 Return Codes
Common return codes generated by this routine are:

OK The operation was successful.

ERROR Could not create a buffer to receive the RSA key token.

E_SIZE The data is smaller than the modulus.

PKABadAddr The key token is not valid.

PKANoSpace Unable to allocate sufficient memory.

9-32 UDX Reference and Guide

 12-NOV-01, 13:15 store_KeyToken - Store Registered or Retained Key

store_KeyToken - Store Registered or Retained Key
store_KeyToken saves a registered public key or retained private key to the key
retain SRDI on the coprocessor. Once stored in this area, a key may not be
changed except by deleting with delete_KeyToken.

 Function Prototype
long store_KeyToken (KEY_register_data_t FpKey)

 Input
On entry to this routine:

pKey is a pointer to a KEY_register_data_t, whose fields must be initialized as
follows:

� version - The version of the key token stored in this record. Legal values are 0
and 1.

� reservd - This short variable must be initialized to 0.
� length - The length of this record, in little-endian format.
� label - Contains a 64-byte key name.
� flags - Valued to CCA_CLONE if this key is allowed to participate in master

key cloning operations, or 0 otherwise.
� keydata - The beginning of the actual key token.

 Output
This function returns no output. On successful exit from this routine:

The KeyRetain SRDI has been expanded to include the data a pKey.

 Return Codes
Common return codes generated by this routine are:

srdi_NO_ERROR The operation was successful.

CP_MEMORY_NAVAIL Out of memory error.

PK_SRDI_ERROR Unable to access the key storage SRDI.

DUPLICATE_NAME A key with the same name is already registered.

 Chapter 9. RSA Functions 9-33

 TokenMkvpMatchMasterKey - Test Encryption of RSA Key 12-NOV-01, 13:15

TokenMkvpMatchMasterKey - Test Encryption of RSA Key
TokenMkvpMatchMasterKey tests whether the specified key token was encrypted
using a specified version of the master key. The Master Key Verification Pattern
(MKVP) of the specified key token is compared to the MKVP for the specified
master key. If the two are equal, the function returns TRUE; if not, it returns
FALSE.

 Function Prototype
boolean TokenMkvpMatchMasterKey(mk_selectors Fmk_selector,

RsaKeyTokenHeader FpToken)

 Input
On entry to this routine:

mk_selector is a pointer to a variable which must be initialized as follows:

� mk_set is a pointer to the set of master keys which is to be accessed, if more
than one set is allowed on this operating system. Where there is only one set
of master keys, this must be set to MK_SET_DEFAULT.

� mk_register is set to either old_mk, current_mk, or new_mk, representing the
key which should be cleared.

� type_mks should be set to ASYM_MK.

pToken is a pointer to the key token that you want to test.

 Output
On successful exit from this routine:

TokenMkvpMatchMasterKey returns TRUE if the MKVP of the specified key token is
equal to the MKVP for the specified master key, and FALSE if it is not.

 Return Codes
This function has no return codes.

9-34 UDX Reference and Guide

 12-NOV-01, 13:15 ValidatePkaToken - Validate RSA Key Token

ValidatePkaToken - Validate RSA Key Token
ValidatePkaToken accepts a cleartext RSA key token, and verifies that the token is
valid for use in the system.

 Function Prototype
long ValidatePkaToken(RsaKeyTokenHeader FpToken,

 long FpErrorCode)

 Input
On entry to this routine:

pToken is a pointer to the RSA key token.

pErrorCode is a pointer to the location where the function stores an error code, if a
critical error occurs.

 Output
This function returns no output.

 Return Codes
Common return codes generated by this routine are:

OK The operation was successful.

ERROR The input token is not an RSA key token.

RSA_KEY_INVALID The input token is not an internal or external RSA key
token.

RT_TKN_UNUSEABLE The input token is not an RSA key token.

E_KEY_TKNVER Incorrect version data in input token.

E_PKA_KEYINVALID An error was found in the token.

 Chapter 9. RSA Functions 9-35

 VerifyKeyTokenConsistency - Verify Key Token Consistency 12-NOV-01, 13:15

VerifyKeyTokenConsistency - Verify Key Token Consistency
VerifyKeyTokenConsistency verifies that the length specified in the input matches
the length of the RSA key token, and that the length contained in the token is
consistent with the lengths of all of the parts of the token.

 Function Prototype
long VerifyKeyTokenConsistency(RsaKeyTokenHeader FpToken,

 USHORT tokenLengthIn)

 Input
On entry to this routine:

pToken is a pointer to the key token.

tokenLengthIn is the length of the token specified by pToken.

 Output
On successful exit from this routine:

VerifyKeyTokenConsistency returns OK if the key token was consistent, and FALSE
otherwise.

 Return Codes
This function has no return codes.

9-36 UDX Reference and Guide

 12-NOV-01, 13:15 verify_dSig - Verify RSA Key Token Signature

verify_dSig - Verify RSA Key Token Signature
verify_dSig receives an RSA key token in operational form, a buffer of data (with
the length of the data), a digital signature and the length of the digital signature (in
bytes), as well as the format of the digital signature. The data is hashed with
SHA-1 and formatted according to the Type variable before being compared with
the encrypted signature. The return code indicates whether the signature was
verified.

 Function Prototype
long verify_dSig (RsaKeyTokenHeader FpTokenIn,

 UCHAR FpDataIn,

 long DataLength,

 UCHAR FpDigitalSignature,

 USHORT SignatureLength,

 UCHAR Type)

 Input
On entry to this routine:

pTokenIn is a pointer to the operational key token.

pDataIn is a pointer to the data which is to be hashed and compared with the
encrypted signature.

DataLenth is the length of the data to be signed, in bytes.

pSignatureOut is a pointer to a buffer which contains the signature to be verified.

SignatureLength is the length of the buffer pSignatureOut, in bytes.

Type is one of the following:

� M_ISO9796 if the data is to be formatted according to the ISO-9796 standard
before signing.

� M_PKCS1S if the data is to be formatted as specified in the RSADataSecurity,
Inc., Public Key Cryptography Standards #1 block type 00 before signing.

� M_PKCS11 if the data is to be formatted as specified in the RSADataSecurity,
Inc., Public Key Cryptography Standards #1 block type 01 before signing.

� M_ZEROPAD if the Data is to be placed in the low-order bits of a bit-string of the
same length as the modulus with all other bit-positions set to zero before
signing.

 Return Codes
Common return Codes generated by this routine are:

OK The operation was successful.

DSIG_NOT_VERIFIED The digital signature was not verified.

E_SIZE The provided buffer was not large enough to contain the
signature.

PKABadAddr The key token is not valid.

 Chapter 9. RSA Functions 9-37

 verify_dSig - Verify RSA Key Token Signature 12-NOV-01, 13:15

9-38 UDX Reference and Guide

 12-NOV-01, 13:15

Chapter 10. CCA SRDI Manager Functions

This section describes the CCA SRDI Manager, which manages the storage and
retrieval of persistent data in the coprocessor.

Note: All functions within this chapter are available only on the coprocessor.

Header Files for SRDI Manager Functions
When using these functions, your program must include the following header files.

#include "cmncrypt.h" /F Cryptographic definitions F/

#include "cam_xtrn.h" /F SRDI manager definitions F/

 Overview
The security relevant data item (SRDI)1 Manager is the single interface through
which all CCA-related functions access security related data. Only the SRDI
Manager interacts with the physical medium on which the SRDI data is stored. The
CCA verbs and any other CCA code read and write SRDI information only through
the SRDI Manager interface. In turn, the SRDI Manager accesses the physical
SRDI storage through the CP/Q++ PPD Manager, which controls the flash EPROM
and BBRAM memories. This relationship is shown in Figure 10-1 on page 10-2.

1 SRDI’s are the sensitive data elements owned by the cryptographic application, and requiring protection. Examples include
cryptographic keys and access control profiles.

 Chapter 10. CCA SRDI Manager Functions 10-1

 12-NOV-01, 13:15

Flash EPROM BBRAM

Flash Interface BBRAM Interface

Kernel PPD Manager

SRDI Manager

Command
Processor

Command
Processor

Command
Processor

Figure 10-1. Master SRDI Manager Overview

Encapsulation of the SRDI physical storage mechanism makes it possible to
change that mechanism without any effect on the CCA application code.

Each SRDI is identified by a name, much like a file name. The SRDI name is an
eight character ASCII string, with no null terminator. Names that are less than
eight characters should be left-justified, and padded on the right with ASCII spaces.

10-2 UDX Reference and Guide

 12-NOV-01, 13:15

CCA SRDI Manager Operation
The CP/Q++ PPD Manager can store SRDI data in either of two physical memory
types.

Flash EPROM The flash memory is very large, but very slow to write. In addition,
it has a limited lifetime in terms of write cycles; after 100,000 writes
to any single memory cell, that cell may fail.

The flash memory can only be written in segments of 64K bytes.
Thus, when any SRDI is written to flash, the CP/Q++ PPD Manager
will usually have to rewrite a large amount of data that is not
associated with that particular SRDI, but happens to lie in the
same 64K byte page. This means that the 100,000 cycle lifetime
may be reached much more quickly than expected, if a calculation
is made based only on the number of times a specific SRDI is
stored.

These characteristics make flash the appropriate location for SRDI
data that is large, and infrequently changed. Examples include
access control profiles, and stable cryptographic keys.

BBRAM BBRAM is small, but fast, and it has no limitations on the number
of times it can be written. This makes it the appropriate choice for
SRDI data that is small, and frequently updated. Examples include
session keys, sequence counters, and state information.

The interface functions provide a parameter to select whether an SRDI is created in
flash or BBRAM.

CCA applications do not have direct access to the SRDI information in the
persistent memories.2 When an SRDI is opened, the SRDI Manager creates a
cleartext copy in RAM, in the CCA application address space. The caller receives
a pointer to this location in RAM, and uses that space for all read and write
references to the SRDI.

Only one working copy of an SRDI exists in RAM at any time, regardless of how
many different callers open that same SRDI. The SRDI Manager maintains an
open count for each open SRDI, indicating how many callers are using it. This
count is initialized to one when the first caller opens the SRDI, and incremented for
each additional open request on the same SRDI. When a caller closes the SRDI,
the count is decremented. If the count reaches zero, indicating that no callers are
using the SRDI, the working copy is deleted from memory.

When the caller asks to store the SRDI data, the SRDI Manager copies it to the
persistent memory. Since there is only one physical working copy of the data at
any one time, each caller’s changes are made to the same SRDI data area, and all
are saved when any of the callers requests that the SRDI be stored.

2 Persistent memories are those that preserve their contents even when power is turned off. In the coprocessor, the flash EPROM
and the BBRAM are persistent. The main system RAM used for executing programs and their data is not persistent.

 Chapter 10. CCA SRDI Manager Functions 10-3

 12-NOV-01, 13:15

An Example: Opening an SRDI
Figures 10-2, 10-3, and 10-4 describe the steps when an SRDI is opened. The
following text explains the sequence of events, using reference numbers that match
those on the figures.

Step Description

1. A CCA command processor sends a request to the CCA SRDI Manager,
asking for access to an SRDI named ABC, which resides in flash EPROM.

At this time, SRDI ABC is not open. No copy of the SRDI data exists in the
CCA application RAM address space.

2. The CCA Manager sends a request to the Kernel PPD Manager, asking for the
length of SRDI ABC. It needs to know the length, so it can allocate the
required buffer in RAM.

3. The Kernel PPD Manager returns the length of SRDI ABC.

4. The CCA SRDI Manager allocates a buffer to hold ABC. This buffer is in RAM
addressable by the CCA application.

RAM - CCA application addr. spaceFlash EPROM

CCA Command Processor
Kernel PPD

Manager
CCA SRDI

Manager

SRDI "ABC"

1 open_cca_srdi()
2 sccGetSRDILen()

SRDI length3

Alloc. m
em.

4

Figure 10-2. Master SRDI Read Illustration, Part 1

10-4 UDX Reference and Guide

 12-NOV-01, 13:15

Step Description

5. The CCA SRDI Manager sends a request to the Kernel PPD Manager, asking it
to read ABC into the buffer allocated in step 4 above.

6. The SRDI is read from flash EPROM, decrypted, and deposited in the specified
buffer.

RAM - CCA application addr. spaceFlash EPROM

CCA Command Processor
Kernel PPD

Manager
CCA SRDI

Manager

SRDI "ABC"

5 sccGetSRDI()

6 Read, decrypt, and store SRDI

(allocated
memory)

Figure 10-3. Master SRDI Read Illustration, Part 2

Step Description

7. The CCA SRDI Manager returns the buffer address to the CCA command
processor. The command processor then uses the RAM copy of the SRDI
whenever it needs to read or alter ABC.

RAM - CCA application addr. spaceFlash EPROM

CCA Command Processor
Kernel PPD

Manager
CCA SRDI

Manager

SRDI "ABC"

7 Return SRDI length, and addr. in RAM

SRDI "ABC"
working copy

Figure 10-4. Master SRDI Read Illustration, Part 3

 Chapter 10. CCA SRDI Manager Functions 10-5

 12-NOV-01, 13:15

Controlling Concurrent Access to an SRDI
Since the CCA application is multi-threaded, different callers may access an SRDI
at the same time. If one caller is altering data in the SRDI while a different caller is
either reading or writing that same data, corruption results.

Serialization semaphores are used to prevent this from occurring. Each time the
SRDI Manager retrieves an SRDI from flash EPROM or BBRAM, it allocates a
semaphore for that SRDI. The SVid which identifies this semaphore is passed
back to the caller whenever an SRDI is opened.

Every SRDI user in the CCA application is required to gain ownership of the
semaphore before either reading or writing to the SRDI. This guarantees that no
other caller is simultaneously accessing that same SRDI. As soon as the SRDI is
no longer needed, the semaphore is released so that others can use the SRDI.

The semaphore is controlled by use of the CP/Q system calls CPSemClaim and
CPSemRelease. The CCA application should never, under any circumstances,
destroy the semaphore; this is done by the SRDI Manager when the last user
closes the SRDI.

10-6 UDX Reference and Guide

 12-NOV-01, 13:15

Summary of Functions
These functions are used by the CCA command processor to read and write SRDI
data.

close_cca_srdi Closes the open copy of an SRDI.

create_cca_srdi Creates an SRDI.

delete_cca_srdi Deletes an SRDI from memory.

get_cca_srdi_length Obtains the length of an SRDI, in bytes.

open_cca_srdi Opens and gains access to an SRDI.

resize_cca_srdi Increases or decreases the length of an SRDI, in bytes.

save_cca_srdi Stores SRDI data.

 Chapter 10. CCA SRDI Manager Functions 10-7

 close_cca_srdi - Close CCA SRDI 12-NOV-01, 13:15

close_cca_srdi - Close CCA SRDI
close_cca_srdi deactivates the open copy of the SRDI, which is managed by the
SRDI Manager. If no other applications are using the SRDI, the RAM which held
the working copy of the SRDI is released.

Note: If the working copy of the SRDI has been changed, the application must
issue the save_cca_srdi() function in order to have the SRDI saved. SRDI data is
not automatically saved when the SRDI is closed.

 Function Prototype
long close_cca_srdi(char Fsrdi_name);

 Input
On entry to this routine

srdi_name is a pointer to an eight character ASCII string containing the name of the
desired SRDI. This string does not contain a null terminator.

 Output
This function returns no output. On successful exit from this routine:

close_cca_srdi deactivates the open copy of the SRDI.

 Return Codes
Common return codes generated by this routine are:

srdi_NO_ERROR The operation was successful.

srdi_GENERAL_ERROR Can not access the SRDI Manager, the operation
cannot be completed.

srdi_NOT_OPEN The SRDI item is not in the open state.

10-8 UDX Reference and Guide

 12-NOV-01, 13:15 create_cca_srdi - Create CCA SRDI

create_cca_srdi - Create CCA SRDI
create_cca_srdi creates an SRDI in flash EPROM or BBRAM using the specified
name.

 Function Prototype
long create_cca_srdi(char Fsrdi_name, ULONG srdi_options,

char Fsrdi_addr, ULONG srdi_length);

 Input
On entry to this routine:

srdi_name is a pointer to an eight character ASCII string containing the name of the
desired SRDI. This string does not contain a null terminator, and should be padded
on the right with blanks.

srdi_options holds bit-significant options which are passed on to the CP/Q++ PPD
Manager’s sccSaveSRDI() function. There are two fields in the options value:

1. A value that indicates whether the SRDI data should be stored in flash
EPROM, or in BBRAM. Flash is large, but slow to access, and each cell has a
limited number of possible write cycles before it fails. BBRAM is fast and has
unlimited write cycles, but it is much smaller than the flash.

2. A value which indicates how the SRDI data should be encrypted, if it is to be
stored in flash EPROM.3 There are three options.

a. Do not encrypt the data at all.

b. Single-encrypt with DES.

c. Triple-encrypt with DES.

The options are defined with constants in header file scc_int.h. The values defined
there are as follows.

srdi_addr is a pointer to the address of the SRDI data. This data is written to the
newly created SRDI.

srdi_length is the length of the SRDI data, in bytes.

Symbol Value Description

PPD_BBRAM X'01' Store in BBRAM

PPD_SINGLE X'10' Store in flash, encrypted using a
single-length DES key.

PPD_TRIPLE X'30' Store in flash, encrypted using DES triple
encryption.

PPD_NONE X'00' Store in flash, unencrypted.

3 Data is only encrypted when stored in the flash EPROM; it is never encrypted in BBRAM. The BBRAM contents are destroyed on
intrusion, so there is no need to protect the data there by way of encryption.

 Chapter 10. CCA SRDI Manager Functions 10-9

 create_cca_srdi - Create CCA SRDI 12-NOV-01, 13:15

 Output
This function returns no output. On successful exit from this routine:

create_cca_srdi creates an SRDI in flash EPROM or BBRAM using the specified
name.

 Return Codes
Common return codes generated by this routine are:

srdi_NO_ERROR The operation was successful.

srdi_GENERAL_ERROR Can not access the SRDI Manager, the operation
cannot be completed.

srdi_EXISTS The SRDI item already exists.

10-10 UDX Reference and Guide

 12-NOV-01, 13:15 delete_cca_srdi - Delete CCA SRDI

delete_cca_srdi - Delete CCA SRDI
delete_cca_srdi deletes an SRDI from the persistent memory area where it is
stored (either flash EPROM or BBRAM). This is equivalent to erasing a file from a
hard disk.

 Function Prototype
long delete_cca_srdi(char Fsrdi_name);

 Input
On entry to this routine:

srdi_name is a pointer to an eight character ASCII string containing the name of the
desired SRDI. This string does not contain a null terminator, and should be padded
on the right with blanks.

 Output
This function returns no output. On successful exit from this routine:

delete_cca_srdi deletes an SRDI from the persistent memory area where it is
stored.

 Return Codes
Common return codes generated by this routine are:

srdi_NO_ERROR The operation was successful.

srdi_GENERAL_ERROR Can not access the SRDI Manager, the operation
cannot be completed.

srdi_NOT_FOUND SRDI item does not exist.

srdi_OPEN The SRDI item is not in the closed state.

Note: An SRDI cannot be deleted if it is in the “open” state, since another
application may be using it.

 Chapter 10. CCA SRDI Manager Functions 10-11

 get_cca_srdi_length - Get CCA SRDI Length 12-NOV-01, 13:15

get_cca_srdi_length - Get CCA SRDI Length
get_cca_srdi_length obtains the length of the specified SRDI, in bytes.

 Function Prototype
long get_cca_srdi_length(char Fsrdi_name, ULONG Fsrdi_length);

 Input
On entry to this routine:

srdi_name is a pointer to an eight character ASCII string containing the name of the
desired SRDI. This string does not contain a null terminator.

srdi_length is a pointer to the ULONG variable.

 Output
On successful exit from this routine:

srdi_length contains the length of the SRDI data, in bytes.

 Return Codes
Common return codes generated by this routine are:

srdi_NO_ERROR The operation was successful.

srdi_GENERAL_ERROR Can not access the SRDI Manager, the operation
cannot be completed.

srdi_READ_ERROR Unable to read the SRDI item from BBRAM or flash.

10-12 UDX Reference and Guide

 12-NOV-01, 13:15 open_cca_srdi - Open CCA SRDI

open_cca_srdi - Open CCA SRDI
open_cca_srdi opens an SRDI, gaining access to its contents. The function returns
the address and length of the SRDI data, where the address points to a cleartext
working copy of the actual SRDI, which is stored in flash EPROM or BBRAM.

If multiple callers open the same SRDI, they all have access to the same shared
copy in RAM. Any modifications to the SRDI are visible immediately to all functions
that open that SRDI.

In addition to the SRDI address and length, the function returns a semaphore ID for
the selected SRDI. This semaphore is used to gain exclusive access to the SRDI,
to prevent errors when one thread is writing data, while another is simultaneously
either reading or writing that same data. See “Controlling Concurrent Access to an
SRDI” on page 10-6 for further details.

 Function Prototype
long open_cca_srdi(char Fsrdi_name, char FFsrdi_addr, ULONG Fsrdi_length

 ULONG FsemSVid);

 Input
On entry to this routine:

srdi_name is a pointer to an eight character ASCII string containing the name of the
desired SRDI. This string does not contain a null terminator.

 Output
On successful exit from this routine:

srdi_addr is a pointer to a pointer variable, in which the SRDI Manager returns the
address of the SRDI. This is an address in RAM, where the SRDI Manager places
a copy of the SRDI data.

srdi_length is a pointer to a location where the SRDI Manager stores the length of
the SRDI data, in bytes.

semSVid is the SVid for the semaphore assigned to the specified SRDI.

 Return Codes
Common return codes generated by this routine are:

srdi_NO_ERROR The operation was successful.

srdi_NOT_FOUND The SRDI item could not be found.

srdi_READ_ERROR Unable to read the SRDI item from BBRAM or flash.

srdi_ALLOC_ERROR Unable to allocate memory for the SRDI item.

srdi_GENERAL_ERROR Could not access the SRDI Manager, the operation
was not completed.

 Chapter 10. CCA SRDI Manager Functions 10-13

 resize_cca_srdi - Resize CCA SRDI 12-NOV-01, 13:15

resize_cca_srdi - Resize CCA SRDI
resize_cca_srdi increases or decreases the length of the specified CCA SRDI, in
bytes.

An SRDI can only be resized if you are the only requestor who has it open. If the
SRDI is opened by more than one user concurrently, it cannot be resized; the
address of the RAM copy changes when it is resized, and there is no way to notify
other callers of this.

 Function Prototype
long resize_cca_srdi(char Fsrdi_name, ULONG srdi_length,

 char FFnew_srdi_addr);

 Input
On entry to this routine:

srdi_name is a pointer to an eight character ASCII string containing the name of the
desired SRDI. This string does not contain a null terminator.

srdi_length is the new length for the SRDI, in bytes.

 Output
On successful exit from this routine:

new_srdi_addr is a pointer to a location where the function returns the address of
the resized SRDI. After resizing, the SRDI buffer is relocated from its previous
address.

 Return Codes
Common return codes generated by this routine are:

srdi_NO_ERROR The operation was successful.

srdi_NOT_FOUND The SRDI item could not be found.

srdi_READ_ERROR Unable to read the SRDI item from BBRAM or flash.

srdi_ALLOC_ERROR Unable to allocate memory for the SRDI item.

srdi_GENERAL_ERROR Could not access the SRDI Manager, the operation
was not completed.

10-14 UDX Reference and Guide

 12-NOV-01, 13:15 save_cca_srdi - Save CCA SRDI

save_cca_srdi - Save CCA SRDI
save_cca_srdi stores the SRDI data on a persistent storage medium (flash or
BBRAM) using the encryption method specified when the SRDI was created.

This function ensures that no thread is updating the SRDI while it is being stored by
gaining exclusive access rights using the SRDI semaphore. See “Controlling
Concurrent Access to an SRDI” on page 10-6 for details on this semaphore.

 Function Prototype
long save_cca_srdi(char Fsrdi_name);

 Input
On entry to this routine:

srdi_name is a pointer to an eight character ASCII string containing the name of the
desired SRDI. This string does not contain a null terminator.

Note: No two SRDI’s can have the same name, even if one resides in flash
EPROM and the other resides in BBRAM. The CP/Q++ PPD Manager enforces this
restriction.

 Output
This function returns no output. On successful exit from this routine:

save_cca_srdi stores the SRDI data on a persistent storage medium.

 Return Codes
Common return codes generated by this routine are:

srdi_NO_ERROR The operation was successful.

srdi_NOT_OPEN The SRDI item is not in the open state.

srdi_WRITE_ERROR Unable to write to flash or BBRAM.

srdi_GENERAL_ERROR Could not access the SRDI Manager, the operation
was not completed.

 Chapter 10. CCA SRDI Manager Functions 10-15

 12-NOV-01, 13:15

 Example Code
The following C-language code shows a general structure for the way a CCA
application would open, use, and close an SRDI.

1 #define QSVCgood S /F CP/Q semaphore fcn. error code F/

2 #define TIMEOUT_FOREVER SxFFFFFFFF /F Parameter for CPSemClaim F/

3 #define MY_SRDI_NAME "MY_SRDI " /F Name of SRDI we're using F/

 4

5 USHORT srdi_rc; /F SRDI fcn. return code F/

6 char F my_srdi_addr; /F Pointer to clear SRDI data in RAMF/

7 ULONG my_srdi_length; /F Length of SRDI data, in bytes F/

8 ULONG semaphore_id; /F SVid of SRDI access semaphore F/

 9

 1S void srdi_stuff(void)
 11 ┌{

 12 │

13 │ /F Open the SRDI F/

 14 │

15 │ srdi_rc = open_cca_srdi(MY_SRDI_NAME, &my_srdi_addr, &my_srdi_length,

 │ &semaphore_id);

 16 │

17 │ if (srdi_NO_ERROR == srdi_rc) /F If no errors opening SRDI...F/

 18 │ ┌{

19 │ │ /F do other stuff as needed... F/

 2S │ │

21 │ │ /F Gain exclusive access rights to the SRDI F/

 22 │ │

23 │ │ if (QSVCgood == CPSemClaim(semaphore_id, TIMEOUT_FOREVER))
24 │ │ ┌{

25 │ │ │

26 │ │ │ /F This is where the code will read and/or write to the SRDI data,

27 │ │ │ in the area pointed to by my_srdi_addr. F/

28 │ │ │

29 │ │ │ /F Release semaphore, allowing others to access the SRDI F/

3S │ │ │

31 │ │ │ if (QSVCgood == CPSemRelease(semaphore_id))
32 │ │ │ ┌{

33 │ │ │ │

34 │ │ │ │ /F do other stuff as needed... F/

35 │ │ │ │

36 │ │ │ └}

37 │ │ │ else
38 │ │ │ ┌{

39 │ │ │ │ /F handle semaphore release error... F/

4S │ │ │ └}

41 │ │ │

42 │ │ └}

 43 │ │

 44 │ │ else
45 │ │ ┌{

46 │ │ │ /F handle semaphore claim error... F/

47 │ │ └}

 48 │ │

49 │ │ /F Close the SRDI F/

 5S │ │

51 │ │ srdi_rc = close_cca_srdi(MY_SRDI_NAME);
 52 │ │

53 │ │ if (srdi_NO_ERROR != srdi_rc)
 54 │ │ ┌{

55 │ │ │ /F handle SRDI close error... F/

 56 │ │ └}

 57 │ │

 58 │ └}

 59 │

6S │ else
 61 │ ┌{

62 │ │ /F handle SRDI open error... F/

 63 │ └}

 64 └}

10-16 UDX Reference and Guide

 12-NOV-01, 13:15

Chapter 11. Access Control Manager Functions

The functions described in this chapter enable a UDX to initialize or update access
control tables, log users on or off of the coprocessor, or check a user’s authority to
perform a specified function.

Note: All functions within this chapter are available only on the coprocessor.

Header Files for Access Control Manager Functions
When using these functions, your program must include the following header files.

#include "camxtrn.h" /F CCA managers F/

#include "camacm.h" /F Access Control Manager routines F/

#include "camacm_p.h" /F Access Control Manager routines F/

Summary of Functions
Access Control Manager includes the following functions.

ac_check_authorization Check whether a user is authorized to execute a
specified function.

ac_chg_prof_auth_data Change the authentication data for a user profile.

ac_chg_prof_exp_date Change the expiration date of a user profile.

ac_del_profile Delete a user profile.

ac_del_role Delete a role definition.

ac_get_list_sizes Find out how many roles and how many profiles
exist on the coprocessor.

ac_get_profile Read the contents of a specified user profile.

ac_get_role Read the contents of a specified role.

ac_init Initialize the access control system, including
setup of role and profile tables.

ac_list_profiles Get a list of all the user IDs for which there are
profiles.

ac_list_roles Get a list of all the role IDs.

ac_load_profiles Load one or more user profiles.

ac_load_roles Load one or more role definitions.

ac_lu_add_user Add a user to the table of logged-on users, and
generate a session key for that user.

ac_lu_drop_user Drop a user from the table of logged-on users.

ac_lu_get_ks Get a copy of a specified user’s session key.

ac_lu_get_num_users Find out how many users are currently logged on.

ac_lu_get_role Get the role ID for a specified logged-on user.

ac_lu_ks_dec Decrypt data with a specified user’s session key.

 Chapter 11. Access Control Manager Functions 11-1

 12-NOV-01, 13:15

ac_lu_ks_enc Encrypt data with a specified user’s session key.

ac_lu_ks_macgen Compute a MAC (message authentication code)
using a specified user’s session key.

ac_lu_ks_macver Verify a MAC (message authentication code)
using a specified user’s session key.

ac_lu_list_users Get a list of all the logged-on users.

ac_lu_query_user Check whether a specified user is currently
logged on (authenticated).

ac_query_profile Verify that a specified profile exists on the
coprocessor, and return its length.

ac_query_role Verify that a specified role exists on the
coprocessor.

ac_reinit Reinitialize the access control system, to the
default state.

ac_reset_logon_fail_cnt Reset the logon failure count in a user profile.

 SRDI Files
The Access Control Manager uses two SRDI files, stored in flash EPROM.

� Profiles - holds all the user profiles that are enrolled on the coprocessor.

� Roles - holds all the roles that have been defined on the coprocessor.

Each of these SRDIs has a similar format. The file begins with a 4-byte header, in
which the first two bytes contain an integer specifying how many items are in the
file, and the second two bytes are reserved and set to X'0000'. The number of
items reflects either the number of profiles or the number of roles, depending on
the SRDI in question.

The profiles or roles follow the header. The first one is concatenated to the end of
the header, and each successive role or profile is concatenated to its predecessor.
Neither roles nor profiles are ordered in any meaningful way.

For quicker access, the Access Control Manager builds indexes in RAM for the
roles and the profiles. For each role or profile in the SRDIs, the respective index
table holds the name of the role or profile and its offset from the start of the SRDI.

 Data Structures
This section contains definitions for common data structures used in the Access
Control Manager.

Generic Data Types
The following types are used in various other definitions.

typedef unsigned char two_byte[2]; // "Big-endian" 2-byte integer

It is assumed that all of the “standard” types are available, such as UCHAR, UINT,
USHORT, and boolean.

11-2 UDX Reference and Guide

 12-NOV-01, 13:15

 Profile Structures
The Profile ID is an eight character unterminated string, as follows.

typedef UCHAR profile_id_t[8]; // Profile ID

The activation and expiration dates use the following format.

typedef struct {

 two_byte year;

 UCHAR month;

 UCHAR day;

} prof_date_t;

The profile consists of a fixed structure, with the authentication data concatenated
to the end. The fixed portion is defined with the structure below.

typedef struct {

two_byte profile_vers; // Profile structure version

two_byte profile_lth; // Length of entire profile

char comment[2S]; // Descriptive comment

two_byte cksum; // Checksum for integrity

UCHAR failure_cnt; // Logon failure count

UCHAR reserved_1; // Reserved field

profile_id_t user_id; // User ID

role_it_t role_id; // Role ID

prof_date_t act_date; // Activation date

prof_date_t exp_date; // Expiration date

// The variable-length authentication data appears here

} user_profile_t;

 Role Structures
The Role ID is an eight character unterminated string, as follows.

typedef UCHAR role_id_t[8]; // Role ID

The role definition consists of a fixed structure, with the list of permitted access
control points appended at the end. The fixed part of the structure is defined by
the following type declaration.

typedef struct {

two_byte role_vers; // Role structure version

two_byte role_lth; // Length of role structure

char comment[2S]; // Descriptive comment

two_byte cksum; // Checksum for integrity

two_byte reserved_1; // Reserved field

role_id_t role_id; // Role ID

two_byte reqd_auth_str; // Required authentication strength

role_time_t upper_time_limit; // Upper time limit for access

dow_t valid_dow; // Valid days of the week for access

UCHAR reserved_2; // Reserved field

// Permitted operations definition (access control points) attached here

role_time_t lower_time_limit; // Lower time limit for access

} role_t

 Chapter 11. Access Control Manager Functions 11-3

 12-NOV-01, 13:15

User Information Structures
The Access Control Manager holds the following data for each user logged on to
the coprocessor.

� The profile ID (user ID)

� The role ID for that user

� The session key KS for the user

The structures defining this data are as follows.

typedef UCHAR des_key[8]; // DES key

typedef user_session_key_t des_key[3]; // Triple-length DES session key

typedef struct {

profile_id_t userid; // User ID

role_id_t role_id; // User’s role

 dl_des_key ks; // User’s session key

} user_info_t;

#define INITIAL_USER_TBL_SIZE 2S // Initial number of spaces

in table

// There will be a static pointer to an array of user_info_t elements. If the

// array fills, a new and larger array will be allocated and assigned to the

// pointer, and the contents of the old array copied over.

11-4 UDX Reference and Guide

 12-NOV-01, 13:15 ac_check_authorization - Check Authorization to Execute Function

ac_check_authorization - Check Authorization to Execute Function
ac_check_authorization determines if a user is permitted to execute a specified
function, based on the user’s role, access control state information, and other
access control parameters.

 Function Prototype
long ac_check_authorization(role_id_t role, USHORT requested_fcn,

 boolean Fgranted);

 Input
role_id_t is a pointer to the role SRDI.

role is the role under which the user is operating.

requested_fcn is an index into the Access Control Points table, indicating which
function the user wants to execute.

granted is a pointer to a variable that will receive the response, indicating whether
the user us allowed to execute the desired function.

 Output
On successful exit from this routine:

ac_check_authorization returns a boolean value of TRUE indicating the user is
allowed to use the specified function in the CCA application, and FALSE if not.

 Return Codes
Common return codes generated by this routine are:

acm_NO_ERROR The operation was successful.

acm_ROLE_NOT_FOUND The specified role was not found.

 Chapter 11. Access Control Manager Functions 11-5

 ac_chg_prof_auth_data - Change Profile Authentication Data 12-NOV-01, 13:15

ac_chg_prof_auth_data - Change Profile Authentication Data
ac_chg_prof_auth_data replaces the authentication data in a user profile, for a
specific authentication mechanism. The old data is replaced with the new data, but
only if the Replacable flag is set in the attributes of the old authentication data.

Alternatively, if no data exists in the profile for the specified mechanism, the data is
appended to the authentication data already present in that profile.

 Function Prototype
long ac_chg_prof_auth_data(profile_id_t profile_id, void Fauth_data);

 Input
profile_id is the 8-byte, non-NULL terminated ID of the profile whose
authentication data is to be changed.

auth_data is a pointer to a buffer containing the new authentication data, in the
following format:

� a variable of type profs_authen_mech_t which contains:
– numbytes - the number of bytes of data in the buffer.
– mech_Id - an identifier which describes the authentication mechanism - for

passphrase authentication, the mechanism ID is X'01'
– mech_strength - an integer which defines the strength of this authentication

method. X'00' is reserved for users who have not been authenticated.
– exp_date - a prof_date_t variable containing the expiration date for this

authentication data. The format is:
- year is a 2-byte integer in big-endian order
- month is a one-byte integer (1-12)
- date is a one-byte integer (1-31)

– mech_attr - a bit-flag to represent any attributes needed to describe the
operation and use of this authentication mechanism. The only currently
defined value is RENEWABLE, in the most significant bit. The presence of
this flag indicates that an authentication method may be updated by the
user (for example, a passphrase change).

� concatenated to the profs_authen_mech_t variable, a variable length field
containing the authentication data for this user and method. For passphrases,
this field contains the 20-byte SHA-1 hash of the user’s passphrase. This hash
is computed in the host.

 Output
This function returns no output. On successful exit from this routine:

The profile specified in profile_id has been updated in one of the following two
ways:

1. If the profile previously had an authentication with the same mechanism ID, its
authentication method has been changed.

2. If the profile previously had NO authentication with an identical mechanism ID,
the authentication data has been ADDED to the profile.

The PROFILES SRDI has been saved to flash EPROM.

11-6 UDX Reference and Guide

 12-NOV-01, 13:15 ac_chg_prof_auth_data - Change Profile Authentication Data

 Return Codes
Common return codes generated by this routine are:

acm_NO_ERROR The operation was successful.

acm_INVALID_AUTHENT_DATA The authentication data was invalid.

acm_PROFILE_NOT_FOUND The specified profile was not in the profile list.

acm_NON_REPLACABLE_DATA The REPLACABLE flag was not set in the
user’s profile.

acm_MEM_ALLOC_ERROR There was insufficient memory to store the
new data.

 Chapter 11. Access Control Manager Functions 11-7

 ac_chg_prof_exp_date - Change Profile Expiration Date 12-NOV-01, 13:15

ac_chg_prof_exp_date - Change Profile Expiration Date
ac_chg_prof_exp_date changes the expiration date in a specified user profile. This
function is used to re-enable a user whose profile has expired, or to extend the
lifetime of a profile that is about to expire.

 Function Prototype
long ac_chg_prof_exp_date(profile_id_t profile_id, prof_exp_date_t exp_date);

 Input
profile_id is the ID of the profile whose expiration date should be changed.

exp_date is the new expiration date, in the following format:

� year is a 2-byte integer in big-endian order
� month is a one-byte number representing the month (1-12)
� date is a one-byte number representing the date (1-31)

 Output
This function returns no output. On successful exit from this routine:

The expiration date of profile_id has been changed to exp_date, and the
PROFILES SRDI has been saved to flash EPROM.

 Return Codes
Common return codes generated by this routine are:

acm_NO_ERROR The operation was successful.

acm_PROFILE_NOT_FOUND The specified profile was not in the profile list.

11-8 UDX Reference and Guide

 12-NOV-01, 13:15 ac_del_profile - Delete User Profile

ac_del_profile - Delete User Profile
ac_del_profile deletes a user profile from the coprocessor. The specified profile is
deleted from the table of enrolled profiles. In addition, if the specified user is
logged on, they are logged off.

 Function Prototype
long ac_del_profile(profile_id_t profile_id);

 Input
profile_id is the 8-byte, non-NULL terminated ID of the profile to be deleted.

 Output
This function returns no output. On successful exit from this routine:

The user specified by profile_id has been logged off the system (if needed) and
the profile has been removed from the profiles list. In addition, the PROFILES
SRDI has been saved to flash memory.

 Return Codes
Common return codes generated by this routine are:

acm_NO_ERROR The operation was successful.

acm_PROFILE_NOT_FOUND The specified profile was not in the profile list.

 Chapter 11. Access Control Manager Functions 11-9

 ac_del_role - Delete Role 12-NOV-01, 13:15

ac_del_role - Delete Role
ac_del_role deletes a specified role definition from the coprocessor. In addition, if
any logged on users have their authority defined by this role, those users are
logged off.

If the request is to delete the DEFAULT role, the role is not actually deleted; the
default role must always be present on the coprocessor. Instead, it is reset to the
default values for that role.

 Function Prototype
long ac_del_role(role_id_t role_id);

 Input
role_id is the 8-byte, non-NULL terminated ID of the role to be deleted.

 Output
This function returns no output. On successful exit from this routine:

The specified role has been deleted, unless the role specified was DEFAULT. If
the specified role was DEFAULT, the Default role has been reset to its original
contents. The list of roles has been saved to flash memory.

 Return Codes
Common return codes generated by this routine are:

acm_NO_ERROR The operation was successful.

acm_ROLE_NOT_FOUND The specified role was not found.

11-10 UDX Reference and Guide

 12-NOV-01, 13:15 ac_get_list_sizes - Get Sizes of Role and Profile Lists

ac_get_list_sizes - Get Sizes of Role and Profile Lists
ac_get_list_sizes is used to find out how much data will be returned by the
ac_list_profiles and ac_list_roles functions. By calling this function first, the
application can ensure it has a large enough buffer for the data it will receive.

 Function Prototype
long ac_get_list_sizes(ULONG Fnum_profiles, ULONG Fnum_roles);

 Input
num_profiles is a pointer to a variable that will receive the number of profiles on
the coprocessor.

num_roles is a pointer to a variable that will receive the number of roles on the
coprocessor.

 Output
On successful exit from this routine:

num_profiles contains the number of profiles returned.

num_roles contains the number of roles returned.

 Return Codes
Common return codes generated by this routine are:

acm_NO_ERROR The operation was successful.

 Chapter 11. Access Control Manager Functions 11-11

 ac_get_profile - Get Profile 12-NOV-01, 13:15

ac_get_profile - Get Profile
ac_get_profile returns the information from a specified user profile. The data
begins with the fixed profile contents, defined by data type user_profile_t. The
user’s authentication data is concatenated to the end of this structure.

 Function Prototype
long ac_get_profile(profile_id_t profile_id,

ULONG Fprofile_size, void Fprofile_data);

 Input
profile_id is an 8-byte character string non-NULL terminated containing the name
of the profile to be returned.

profile_size is a pointer to a variable which contains the size of the profile_data

buffer, in bytes.

profile_data is a pointer to a buffer where the profile will be stored.

 Output
On successful exit from this routine:

profile_size contains the actual size of the returned profile data.

profile_data contains the profile data.

 Return Codes
Common return codes generated by this routine are:

acm_NO_ERROR The operation was successful.

acm_PROFILE_NOT_FOUND The specified profile was not in the profile list.

acm_BFR_TOO_SMALL The buffer was not large enough to hold the
profile data. The buffer size required is in the
profile_size variable.

11-12 UDX Reference and Guide

 12-NOV-01, 13:15 ac_get_role - Get Role

ac_get_role - Get Role
ac_get_role returns the information from a specified role.

 Function Prototype
long ac_get_role(role_id_t role_id, ULONG Frole_size, void Frole_data);

 Input
role_id is an 8-byte character string non-NULL terminated containing the name of
the role to be returned.

role_size is a pointer to a variable which contains the size of the role_data buffer,
in bytes.

role_data is a pointer to a buffer where the role data will be stored.

 Output
On successful exit from this routine:

role_size contains the actual size of the returned role data.

role_data contains the role data.

 Return Codes
Common return codes generated by this routine are:

acm_NO_ERROR The operation was successful.

acm_ROLE_NOT_FOUND The specified role was not found.

acm_BFR_TOO_SMALL The buffer was not large enough to hold the role data.
The buffer size required is in the role_size variable.

 Chapter 11. Access Control Manager Functions 11-13

 ac_init - Initialize the Access Control Manager 12-NOV-01, 13:15

ac_init - Initialize the Access Control Manager
ac_init initializes the Access Control Manager including all data areas and state
information. In addition, creates and initializes the role and profile SRDIs if they do
not already exist, including creation of a DEFAULT role.

 Function Prototype
long ac_init(void);

 Input
This function has no input.

 Output
This function has no output. On successful exit from this routine:

ac_init creates and initializes the Access Control Manager.

 Return Codes
Common return codes generated by this routine are:

acm_NO_ERROR The operation was successful.

11-14 UDX Reference and Guide

 12-NOV-01, 13:15 ac_list_profiles - List User Profiles

ac_list_profiles - List User Profiles
ac_list_profiles returns a list of all the user IDs for the profiles enrolled on the
coprocessor. This is a series of unordered 8-byte user IDs.

 Function Prototype
long ac_list_profiles(profile_id_t[] profile_list

 ULONG Fnum_profiles);

 Input
profile_list is a pointer to an array of 8-byte elements to hold the user IDs.

num_profiles is a pointer to the maximum number of 8-byte values which the array
can hold.

 Output
On successful exit from this routine:

profile_list contains the list of IDs (non-NULL terminated 8-byte strings).

num_profiles contains the number of profile IDs which were returned.

 Return Codes
Common return codes generated by this routine are:

acm_NO_ERROR The operation was successful.

acm_BFR_TOO_SMALL The array is not large enough to hold all the profile IDs.

 Chapter 11. Access Control Manager Functions 11-15

 ac_list_roles - List Roles 12-NOV-01, 13:15

ac_list_roles - List Roles
ac_list_roles returns a list of the role IDs for each role defined on the coprocessor.
This is a series of unordered 8-byte role IDs.

 Function Prototype
long ac_list_roles(role_id_t[] role_list, ULONG Fnum_roles);

 Input
role_list is a pointer to an array to hold the list of role IDs.

num_roles is a pointer to a variable containing the maximum number of 8-byte IDs
which the array can hold.

 Output
On successful exit from this routine:

role_list contains the list of role IDs.

num_roles contains the number of role IDs returned.

 Return Codes
Common return codes generated by this routine are:

acm_NO_ERROR The operation was successful.

acm_BFR_TOO_SMALL The array was not large enough to hold all of the role
IDs.

11-16 UDX Reference and Guide

 12-NOV-01, 13:15 ac_load_profiles - Load User Profiles

ac_load_profiles - Load User Profiles
ac_load_profiles loads one or more user profiles into the coprocessor. Existing
profiles can be replaced, if new ones have the same name.

The user profiles are an aggregate structure, where any number of profiles can be
concatenated into a single message.

 Function Prototype
long ac_load_profiles(void Fprofile_list, boolean replace_profiles);

 Input
On entry to this routine:

profile_list is a pointer to a variable length buffer of the following form:

� a 4-byte variable containing the number of profiles in this list followed by
� a 4-byte variable containing X'0000' followed by
� the first profile followed by
� any profiles in between followed by
� the last profile

Each of the profiles in the profile list is a user_profile_t variable initialized to the
following values:

� profile_vers - the profile structure version, currently X'01'.
� profile_lth - the length of this profile, in bytes.
� comment - a descriptive comment, of 19 bytes or less in length, NULL

terminated.
� cksum - a checksum value to ensure the integrity of the data.
� failure_cnt - the number of logon failures, initialized to 0.
� user_id - the user ID associated with this profile. An 8-byte, non-NULL

terminated string.
� role_id - an existing Role from the ROLES SRDI. An 8-byte, non-NULL

terminated string.
� act_date - the activation date of this user, a prof_date_t variable with the

following values:
– year - a 2-byte variable with the year (4 digits) in big-endian format
– month - a one-byte character representing the month (1-12)
– day - a one-byte character representing the date (1-31)

� exp_date - the expiration date of this user, a prof_date_t variable with the
values as the act_date structure

� authentication data is included at this point. The variable length nature of
authentication data is the reason for the profile_lth field.

replace_profiles is a boolean variable with TRUE indicating that existing profiles
should be changed, FALSE indicating that they should not.

 Output
This function returns no output. On successful exit from this routine:

The PROFILES SRDI has been updated and saved to flash memory.

 Chapter 11. Access Control Manager Functions 11-17

 ac_load_profiles - Load User Profiles 12-NOV-01, 13:15

 Return Codes
Common return codes generated by this routine are:

acm_NO_ERROR The operation was successful.

acm_FLASH_SPACE_FULL There is insufficient memory in the flash
EPROM to store the new profile list.

acm_MEM_ALLOC_ERROR The function was unable to allocate sufficient
memory to install the new profiles.

acm_PROFILE_EXISTS The user_id is already in the PROFILES SRDI,
and replace_profiles was FALSE. No profiles
have been added.

11-18 UDX Reference and Guide

 12-NOV-01, 13:15 ac_load_roles - Load Roles

ac_load_roles - Load Roles
ac_load_roles loads one or more roles into the coprocessor. The roles are passed
in an aggregate structure, which can contain any number of concatenated role
definitions.

 Function Prototype
long ac_load_roles(void Frole_list);

 Input
On entry to this routine:

role_list is a pointer to a variable length buffer of the following form:

� a 4-byte variable containing the number of roles in this list followed by
� a 4-byte variable containing 0 followed by
� the first role followed by
� any roles in between followed by
� the last role

Each role is a variable length role initialized to the following:

� A role_t variable containing:
– role_vers - the role structure version, X'01'
– role_lth - the number of bytes in this role
– comment - a 20-byte comment, NULL-terminated, describing this role
– cksum - checksum, for determining role integrity
– role_id - an 8-byte, non-NULL terminated string, the ID for this role.
– reqd_auth_str - the required authentication strength for this role. Each

method of authentication is assigned a strength value, with 0 being no
authentication. A role may be restricted to users who have logged on with
a more stringent method (that is, passphrase rather than PIN) if more than
one method has been supplied.

 – lower_time_limit

 – upper_time_limit

 – valid_dow

� Followed by an access control point list for the role.

 Output
This function has no output. On successful exit from this routine:

The new role is added to the existing set of roles. If the role exists, it is replaced
with the new role.

 Return Codes
Common return codes generated by this routine are:

acm_NO_ERROR The operation was successful.

 Chapter 11. Access Control Manager Functions 11-19

 ac_lu_add_user - Add a User to the List of Logged on Users 12-NOV-01, 13:15

ac_lu_add_user - Add a User to the List of Logged on Users
ac_lu_add_user informs the Access Control Manager that a specified user has
successfully authenticated, and should be added to the list of logged-on users.

The Access Control Manager adds a new entry to the table of logged on users,
inserting the specified profile ID as the search key used to identify the entry. It
finds the profile and looks up the role, and also puts that in the table entry. This
saves the cost of finding the profile each time the user’s role is required for future
access control operations. Finally, the Access Control Manager generates a
session key for the user, and inserts that in the table with the ID and the role.

If the specified profile ID is already in the table of logged on users, the request is
rejected.

 Function Prototype
long ac_lu_add_user(profile_id_t profile_id);

 Input
profile_id is an 8-byte, non-NULL terminated string representing the user to be
logged on.

 Output
This function has no output. On successful exit from this routine:

The user has been added to the list of logged-on users.

 Return Codes
Common return codes generated by this routine are:

acm_NO_ERROR The operation was successful.

acm_ALREADY_LOGGED_ON The user was already logged on.

acm_MEM_ALLOC_ERROR The function was unable to allocate sufficient
memory to add the role.

acm_ROLE_NOT_FOUND The specified role was not found.

acm_PROFILE_NOT_FOUND The specified profile was not in the profile list.

11-20 UDX Reference and Guide

 12-NOV-01, 13:15 ac_lu_drop_user - Remove a User from the Logon List

ac_lu_drop_user - Remove a User from the Logon List
ac_lu_drop_user informs the Access Control Manager that a user should be logged
off, dropping that user from the logged-on users table.

 Function Prototype
long ac_lu_drop_user(profile_id_t profile_id);

 Input
profile_id is an 8-byte, non-NULL terminated string containing the name of the
profile to be removed.

 Output
This function returns no output. On successful exit from this routine:

ac_lu_drop_user removes the user from the logged-on users table.

 Return Codes
Common return codes generated by this routine are:

acm_NO_ERROR The operation was successful.

acm_NOT_LOGGED_ON The user was not logged on.

 Chapter 11. Access Control Manager Functions 11-21

 ac_lu_get_ks - Get a Copy of a Session Key 12-NOV-01, 13:15

ac_lu_get_ks - Get a Copy of a Session Key
ac_lu_get_ks gets a copy of the session key for a specified logged-on user.

 Function Prototype
long ac_lu_get_ks(profile_id_t profile_id,

 user_session_key_t Fsession_key);

 Input
profile_id is an 8-byte, non-NULL terminated string containing the name of the
profile whose session key you want to retrieve.

session_key is a pointer to the caller’s variable which will receive the cleartext
session key KS for the specified user.

 Output
On successful exit from this routine:

session_key contains the cleartext session key Ks for the specified user.

 Return Codes
Common return codes generated by this routine are:

acm_NO_ERROR The operation was successful.

11-22 UDX Reference and Guide

 12-NOV-01, 13:15 ac_lu_get_num_users - Get the Number of Logged On Users

ac_lu_get_num_users - Get the Number of Logged On Users
ac_lu_get_num_users returns the number of users who are currently logged on to
the coprocessor. This can be used to determine how much data will be returned by
the ac_lu_list_users function.

 Function Prototype
long ac_lu_get_num_users(ULONG Fnum_users);

 Input
num_users is a pointer to a variable which receives the number of logged-on users.

 Output
On successful exit from this routine:

num_users contains the number of users who are currently logged on to the
coprocessor.

 Return Codes
Common return codes generated by this routine are:

acm_NO_ERROR The operation was successful.

 Chapter 11. Access Control Manager Functions 11-23

 au_lu_get_role - Get Role from the Logon List 12-NOV-01, 13:15

au_lu_get_role - Get Role from the Logon List
au_lu_get_role returns the role ID for a specified logged-on user.

 Function Prototype
long ac_lu_get_role(profile_id_t profile_id, role_id_t role);

 Input
profile_id is an 8-byte, non-NULL terminated ID of the profile that you want to
retrieve.

role is a variable which receives the role ID for the specified user.

 Output
On successful exit from this routine:

role contains the role ID for the specified user.

 Return Codes
Common return codes generated by this routine are:

acm_NO_ERROR The operation was successful.

11-24 UDX Reference and Guide

 12-NOV-01, 13:15 ac_lu_ks_dec - Decrypt Data with Session Key

ac_lu_ks_dec - Decrypt Data with Session Key
ac_lu_ks_dec decrypts a string of data with a specified user’s session key. The
data length must be a multiple of eight bytes. Decryption is performed using
triple-DES CBC mode, with an IV of X'0000000000000000'.

 Function Prototype
long ac_lu_ks_dec(profile_id_t profile_id,

UCHAR Fciphertext, UCHAR Fcleartext,

 ULONG text_length);

 Input
profile_id is an 8-byte, non-NULL terminated string representing the name of the
profile whose session key should be used to decrypt the data.

ciphertext is a pointer to the buffer containing the data to be deciphered.

cleartext is a pointer to a buffer where the deciphered data will be stored. This
buffer must be at least as large as the ciphertext buffer.

text_length is the length of the data to be deciphered, in bytes. This value must
be a multiple of eight.

 Output
On successful exit from this routine:

cleartext contains the deciphered data.

 Return Codes
Common return codes generated by this routine are:

acm_NO_ERROR The operation was successful.

 Chapter 11. Access Control Manager Functions 11-25

 ac_lu_ks_enc - Encrypt Data with Session Key 12-NOV-01, 13:15

ac_lu_ks_enc - Encrypt Data with Session Key
Encrypt a string of data with a specified user’s session key. The data length must
be a multiple of eight bytes. Encryption is performed using triple-DES CBC mode,
with an IV of X'0000000000000000'.

 Function Prototype
long ac_lu_ks_enc(profile_id_t profile_id,

UCHAR Fcleartext, UCHAR Fciphertext,

 ULONG text_length);

 Input
profile_id is an 8-byte, non-NULL terminated string representing the name of the
profile whose session key should be used to encrypt the data.

cleartext is a pointer to the buffer containing the data to be enciphered.

ciphertext is a pointer to a buffer where the enciphered data will be stored. This
buffer must be at least as large as the cleartext buffer.

text_length is the length of the data to be enciphered, in bytes. This value must
be a multiple of eight.

 Output
On successful exit from this routine:

ciphertext contains the enciphered data.

 Return Codes
Common return codes generated by this routine are:

acm_NO_ERROR The operation was successful.

11-26 UDX Reference and Guide

 12-NOV-01, 13:15 ac_lu_ks_macgen - Compute a MAC using Session Key

ac_lu_ks_macgen - Compute a MAC using Session Key
ac_lu_ks_macgen computes a triple-DES MAC (message authentication code)
using the specified user’s session key. The full 8-byte MAC result is returned.

The data length must be a multiple of eight bytes. The MAC is computed using an
IV of X'0000000000000000'.

 Function Prototype
long ac_lu_ks_macgen(profile_id_t profile_id,

 UCHAR Fmessagetext,

 ULONG msg_length,

 mac_t Fmac);

 Input
profile_id is an 8-byte, non-NULL terminated string representing the name of the
profile whose session key should be used to compute the MAC.

messagetext is a pointer to a buffer containing the data for which you want to
calculate the MAC.

msg_length is the number of bytes of data in buffer messagetext. This must be a
multiple of eight.

mac is a pointer to a buffer which will receive the 8-byte MAC.

 Output
On successful exit from this routine:

mac contains the 8-byte MAC.

 Return Codes
Common return codes generated by this routine are:

acm_NO_ERROR The operation was successful.

 Chapter 11. Access Control Manager Functions 11-27

 ac_lu_ks_macver - Verify a MAC using Session Key 12-NOV-01, 13:15

ac_lu_ks_macver - Verify a MAC using Session Key
ac_lu_ks_macver verifies a triple-DES MAC (message authentication code) using
the specified user’s session key. The MAC can be any length up to the full eight
bytes. The result is a boolean value indicating whether the supplied MAC matched
the computed value.

The MAC is computed using an IV of X'0000000000000000'.

 Function Prototype
long ac_lu_ks_macver(profile_id_t profile_id, UCHAR Fmessagetext,

 ULONG msg_length,

mac_t mac, USHORT mac_length, boolean Fverified);

 Input
profile_id is an 8-byte, non-NULL terminated string representing the name of the
profile whose session key should be used to compute the MAC.

messagetext is a pointer to a buffer containing the data on which you want to verify
the MAC.

msg_length is the number of bytes of data in buffer messagetext. This must be a
multiple of eight.

mac is the input MAC, which is to be compared with the calculated MAC.

mac_length is the length of the mac parameter, in bytes. It can range from 1 to 8.

 Output
On successful exit from this routine:

verified is a pointer to a boolean variable which receives the verification result.
The value is TRUE if the MAC verifies, and FALSE if it does not.

 Return Codes
Common return codes generated by this routine are:

acm_NO_ERROR The operation was successful.

11-28 UDX Reference and Guide

 12-NOV-01, 13:15 ac_lu_list_users - List the IDs of the Logged On Users

ac_lu_list_users - List the IDs of the Logged On Users
ac_lu_list_users returns a list of the user IDs for each logged-on user.

 Function Prototype
long ac_lu_list_users(profile_id_t[] user_list, ULONG Fnum_users);

 Input
user_list is an array which receives the list of logged-on users.

num_users is a pointer to a variable containing the number of elements in
user_list.

 Output
On successful exit from this routine:

user_list contains the (unordered) list of users.

num_users receives the number of elements returned in the user_list array.

 Return Codes
Common return codes generated by this routine are:

acm_NO_ERROR The operation was successful.

acm_BFR_TOO_SMALL The array is not large enough to hold the number
of users.

 Chapter 11. Access Control Manager Functions 11-29

 au_lu_query_user - Check if a User is Logged On 12-NOV-01, 13:15

au_lu_query_user - Check if a User is Logged On
au_lu_query_user determines whether a specified user is currently logged on to the
coprocessor. This is an indication that the user has successfully authenticated to
the coprocessor according to one of the enrolled user profiles.

 Function Prototype
long ac_lu_query_user(profile_id_t profile_id, boolean Flogged_on);

 Input
profile_id is an 8-byte, non-NULL terminated string representing the name of the
user being checked.

logged_on is a pointer to a boolean variable which receives the response to your
query.

 Output
On successful exit from this routine:

au_lu_query_user returns a boolean value of TRUE if the user is logged on, and
FALSE if not.

 Return Codes
Common return codes generated by this routine are:

acm_NO_ERROR The operation was successful.

11-30 UDX Reference and Guide

 12-NOV-01, 13:15 ac_query_profile - Return the Length of a User Profile

ac_query_profile - Return the Length of a User Profile
ac_query_profile returns the length of a specified user profile, or zero if the profile
does not exist on the coprocessor.

 Function Prototype
long ac_query_profile(profile_id_t profile_id, ULONG Fprofile_length);

 Input
profile_id is an 8-byte, non-NULL terminated string representing the name of the
profile being checked.

profile_length is a pointer to variable that will receive the profile structure length,
in bytes. The length will be zero if the profile does not exist.

 Output
On successful exit from this routine:

profile_length contains the length, in bytes. If the profile does not exist, a length
of zero is returned.

 Return Codes
Common return codes generated by this routine are:

acm_NO_ERROR The operation was successful.

acm_PROFILE_NOT_FOUND The specified profile was not in the profile list.

 Chapter 11. Access Control Manager Functions 11-31

 ac_query_role - Return the Length of a Role 12-NOV-01, 13:15

ac_query_role - Return the Length of a Role
ac_query_role returns the length of a specified role, or zero if the role does not
exist on the coprocessor.

 Function Prototype
long ac_query_role(role_id_t role_id, ULONG Frole_length);

 Input
role_id is an 8-byte, non-NULL terminated ID of the role to be queried.

role_length is a pointer to a variable which receives the length of the specified
role, in bytes.

 Output
On successful exit from this routine:

role_length contains the length, in bytes. If the role does not exist, a length of
zero is returned.

 Return Codes
Common return codes generated by this routine are:

acm_NO_ERROR The operation was successful.

acm_ROLE_NOT_FOUND The role does not exist in the SRDI.

11-32 UDX Reference and Guide

 12-NOV-01, 13:15 ac_reinit - Reinitialize the Access Control Manager

ac_reinit - Reinitialize the Access Control Manager
ac_reinit reinitializes the Access Control Manager, deletes all existing roles, profiles,
and other data, and reinitializes to the access control state of a new coprocessor.

 Function Prototype
long ac_reinit(void);

 Input
This function has no input.

 Output
This function has no output. On successful exit from this routine:

ac_reinit reinitializes the Access Control Manager.

 Return Codes
Common return codes generated by this routine are:

acm_NO_ERROR The operation was successful.

 Chapter 11. Access Control Manager Functions 11-33

 ac_reset_logon_fail_cnt - Reset Logon Failure Count 12-NOV-01, 13:15

ac_reset_logon_fail_cnt - Reset Logon Failure Count
ac_reset_logon_fail_cnt resets the logon failure count in the specified user profile.
This is the count of the number of consecutive times the user has tried
unsuccessfully to authenticate themselves to the coprocessor. The count is reset
to zero.

 Function Prototype
long ac_reset_logon_fail_cnt(profile_id_t profile_id);

 Input
profile_id is an 8-byte, non-NULL terminated character string ID for the profile to
be reset.

 Output
This function returns no output. On successful exit from this routine:

The logon failure count of the specified profile has been set to zero.

 Return Codes
Common return codes generated by this routine are:

acm_NO_ERROR The operation was successful.

acm_PROFILE_NOT_FOUND The specified profile was not in the profile list.

11-34 UDX Reference and Guide

 12-NOV-01, 13:15

 Chapter 12. Miscellaneous Functions

This chapter describes functions that do not fit into any of the previously described
categories.

Header Files for Miscellaneous Functions
When using these functions, your program must include the following header files.

#include "cassub.h" /F DES 96 function prototypes F/

#include "camacm.h"

#include "cmnfunct.h"

Summary of Functions
check_access_auth_fcn Verifies the user’s authority.

GetKeyLength Returns the length of a specified key token.

intel_long_reverse Byte-reverses a 4-byte block of data.

intel_word_reverse Byte-reverses a 2-byte block of data.

 Chapter 12. Miscellaneous Functions 12-1

 check_access_auth_fcn - Verify User Authority 12-NOV-01, 13:15

check_access_auth_fcn - Verify User Authority
Note: This function is available on the coprocessor.

check_access_auth_fcn performs operations that are necessary before executing a
requested CCA command.

1. It checks to see if the user who sent the request is authorized to perform the
requested function. This is done by passing a function code, known as an
Access Control Point. A user’s role contains a list of the Access Control Points
corresponding to functions that the user is permitted to execute.

2. If the user is authorized to execute the command, the reply CPRB and
parameter block are initialized.

The function returns a boolean value in pGranted to indicate whether the specified
function was authorized.

 Function Prototype
#define CHECK_ACCESS_AUTH(Rqc, Rpc,r,c,g) check_access_auth_fcn(Rqc, Rpc, r, c, g)

ULONG check_access_auth_fcn(CPRB_ptr pRequestCprb,

 CPRB_ptr pReplyCprb,

 role_id_t rolelID,

 USHORT requested_fcn_code,

 boolean FpGranted)

 Input
On entry to this routine:

pRequestCprb is a pointer to the request (input) CPRB structure.

pReplyCprb is a pointer to a buffer which receives the initialized reply (output)
CPRB structure.

rolelID is the eight-character Role ID defining the access control role for the user
who sent this request. The Role ID is an input parameter, passed to every CCA
command processor when it is called.

requested_fcn_code is the Access Control Point corresponding to the CCA verb
you are executing. The Access Control Manager determines if the user is allowed
to execute this verb, based on whether the Access Control Point is enabled in the
user’s role.

 Output
On successful exit from this routine:

pGranted is a pointer to a location where the boolean result is returned. The value
stored in pGranted is TRUE if the user has authorization, and FALSE if not.

12-2 UDX Reference and Guide

 12-NOV-01, 13:15 check_access_auth_fcn - Verify User Authority

 Notes
Access is granted to role IDs using the csuncnm utility. New access control points
are added to the file csuap.def.

This function may also be called using the macro CHECK_ACCESS_AUTH, with
the same parameters as previously described.

 Return Codes
Common return codes generated by this routine are:

OK The operation was successful.

acm_ROLE_NOT_FOUND The role is not in the SRDI.

 Chapter 12. Miscellaneous Functions 12-3

 GetKeyLength - Get Length of Key Token 12-NOV-01, 13:15

GetKeyLength - Get Length of Key Token
Note: This function is available on the host.

GetKeyLength returns the length of a specified key token.

 Function Prototype
USHORT GetKeyLength

(

UCHAR F keyid_ptr,

 long F key_parm_length_ptr,

 long F message_ptr

)

 Input
On entry to this routine:

keyid_ptr is a pointer to the start of the input key data.

key_parm_length_ptr is a pointer to the expected key length, if this is an RSA key
token, or NULL if not an RSA token. (RSA tokens are passed to the host with a
parameter length, because they are variable sized. This function returns an error if
the RSA token is larger than this expected size.)

message_ptr is a pointer to an address which stores the return code.

 Output
On successful exit to this routine:

GetKeyLength returns the length of the token, or -1 if an error occurred.

message_ptr contains the return code. If there is no error, this is set to S_OK (0).

 Return Codes
Common return codes generated by this routine are:

ERROR If the error code pointed to by message_ptr is S_OK, the function
result is set to the length of the key. Otherwise, the function
returns a value of ERROR (-1), and the value pointed to by
message_ptr is a SAPI error code.

E_KEY_LEN The key has a length less than 1 byte.

E_SIZE The key is longer than the expected length in
key_parm_length_ptr.

E_KEY_TOKEN keyid_ptr was not pointing at a valid key token.

12-4 UDX Reference and Guide

 12-NOV-01, 13:15 intel_long_reverse - Convert Long Values

intel_long_reverse - Convert Long Values
Note: This function is available on both the host and the coprocessor.

intel_long_reverse reverses the order of the bytes in a long (4-byte) integer. This is
used to convert long values between big-endian and little-endian formats.

 Function Prototype
ULONG intel_long_reverse(ULONG long_val)

For portability reasons, the following macros have been conditionally defined for
integer translation.

#ifdef BIG_ENDIAN

#define xtohl(d) ((ULONG)d)

#define htoxl(d) ((ULONG)d)

#define atohl(d) intel_long_reverse((ULONG)d)

#define htoal(d) intel_long_reverse((ULONG)d)

#else

#define xtohl(d) intel_long_reverse((ULONG)d)

#define htoxl(d) intel_long_reverse((ULONG)d)

#define atohl(d) ((ULONG)d)

#define htoal(d) ((ULONG)d)

#endif

 Input
On entry to this routine:

long_val is the input value. It is reversed in byte order, and returned as the
function result.

 Output
This function returns no output. On successful exit to this routine:

intel_long_reverse returns the bytes from long_val in reverse order.

 Return Codes
This function has no return codes.

 Chapter 12. Miscellaneous Functions 12-5

 intel_word_reverse - Convert 2-Byte Values 12-NOV-01, 13:15

intel_word_reverse - Convert 2-Byte Values
Note: This function is available on both the host and the coprocessor.

intel_word_reverse reverses the order of the bytes in a word (2-bytes) of data. This
is used to convert 2-byte values between big-endian and little-endian formats.

For portability reasons, the following macros have been conditionally defined for
integer translation.

#ifdef BIG_ENDIAN

#define xtohs(d) ((USHORT)d)

#define htoxs(d) ((USHORT)d)

#define atohs(d) intel_word_reverse((USHORT)d)

#define htoas(d) intel_word_reverse((USHORT)d)

#else

#define xtohs(d) intel_word_reverse((USHORT)d)

#define htoxs(d) intel_word_reverse((USHORT)d)

#define atohs(d) ((USHORT)d)

#define htoas(d) ((USHORT)d)

#endif

where:

x External
h Host
a Adapter

 Function Prototype
USHORT intel_word_reverse(USHORT intel_int)

 Input
On entry to this routine:

intel_int is the input word. It is reversed in byte order, and returned as the
function result.

 Output
On successful exit from this routine:

intel_word_reverse returns the bytes from intel_int in reverse order.

 Return Codes
This function has no return codes.

12-6 UDX Reference and Guide

 12-NOV-01, 13:15 TOKEN_IS_A_LABEL - Identifies the Token as a Label

TOKEN_IS_A_LABEL - Identifies the Token as a Label
This macro has a value of TRUE when the first byte of the key identifier input is
valid for a key label. All key labels have a first byte between 0x20 and 0xFE.
TOKEN_IS_A_LABEL should be used when a token is available for checking.

#define TOKEN_IS_A_LABEL(keyid) \

((keyid[S] >= MIN_FOR_LABEL) && (keyid[S] <= MAX_FOR_LABEL))

 Chapter 12. Miscellaneous Functions 12-7

 TOKEN_LABEL_CHECK - Determine if Key Identifier is a Label 12-NOV-01, 13:15

TOKEN_LABEL_CHECK - Determine if Key Identifier is a Label
This macro has a value of TRUE when the character input is valid for a key label.
All key labels have a first byte between 0x20 and 0xFE. TOKEN_LABEL_CHECK
should be used when only one byte is available for checking.

#define TOKEN_LABEL_CHECK(keyid) \

((keyid >= MIN_FOR_LABEL) && (keyid <= MAX_FOR_LABEL))

12-8 UDX Reference and Guide

 12-NOV-01, 13:15

Appendix A. UDX Sample Code - Host Piece

This appendix contains a listing of the sample file sxt_samp.c. This file is a
skeleton for the design of the host piece of a CCA extension.

/FFFFFFFFFFFFFFFFFFFFFFFFFFF

FF Bring in the include files

FFFFFFFFFFFFFFFFFFFFFFFFFFF/

#include <stdlib.h>

#include <string.h>

#include "cmncryt2.h" /F Cryptograhic types F/

#include "cmnerrcd.h" /F Common error codes. F/

#include "cmnlibr.h" /F Common library routines. F/

#include "safhead1.h" /F External SAPI functions. F/

#include "safcextn.h" /F External SAPI functions. F/

#include "csueextn.h" /F CCA extensions for SAPI API F/

#include "cxt_cmds.h" /F CCA extensions for SAPI, cmdprocF/

/FFF/

/F CCAXFCN1 F/

/F---F/

/F Purpose F/

/F This is the entry point for a sample CCA API extension verb. F/

/F F/

/F This sample's input parameters are similiar to a CCA verb's F/

/F parameters. Following is an explanation of the parameters. F/

/F F/

/F pReturnCode -- Where to return the return code value. F/

/F pReasonCode -- Where to return the completion reason. F/

/F pExitDataLength -- Unused parameter placeholder. F/

/F pExitData -- Unused parameter placeholder. F/

/F pRuleArrayCount -- Pointer to number of 8 byte rule array F/

/F entries. F/

/F pRuleArray -- Pointer to the rule array values. F/

/F pKeyId -- Pointer to a 64 byte key or a key token. F/

/F F/

/FFF/

void SECURITYAPI CCAXFCN1

(

 long F pReturnCode,

 long F pReasonCode,

 long F pExitDataLength,

unsigned char F pExitData,

 long F pRuleArrayCount,

unsigned char F pRuleArray,

unsigned char F pKeyId

)

{

 /FFFFFFFFFFFFFFFFFFF

FF Local variables.

 FFFFFFFFFFFFFFFFFFF/

long ErrorMsg; /F Error message of SAPI routines F/

CPRB_ptr pCprb; /F CPRB pointer F/

UCHAR FpReqBlk; /F request parm blk pointer F/

USHORT ReqBlkLen; /F request parm buffer length F/

USHORT KeyIdLength; /F Length of key id/token. F/

KEY_FIELD_HEADER KeyBlkHeader; /F Key block header area. F/

KEY_FIELD_HEADER KeyBlkReturn; /F Key block header return area. F/

 REQUEST_REPLY_BUF F pReqReplyBuf; /F Buffer area pointer for requestF/

/F and reply CPRB/parm areas. F/

UCHAR KeyLabel[64]; /F A key token with no data. F/

boolean KeyIdIsLabel; /F Truth value that the key id wasF/

 Appendix A. UDX Sample Code - Host Piece A-1

 12-NOV-01, 13:15

/F passed as a label F/

key_data_structure FpKeyBlock; /F Ptr. to generated key F/

key_data_structure FpNextKeyBlock; /F Ptr. to generated key F/

generic_key_block_structure FpKeyField; /F Ptr. to start of a key field.F/

 /FFFFFFFFFFFFFFFFFFF

FF Assure we can return values without causing an address exception

FF by checking for NULL pointers.

 FFFFFFFFFFFFFFFFFFF/

if ((pReturnCode == NULL) || (pReasonCode == NULL))

 return;

 /FFFFFFFFFFFFFFFFFFF

FF Initialize return code and return code.

 FFFFFFFFFFFFFFFFFFF/

FpReturnCode = S; /F reset return code F/

FpReasonCode = S; /F reset reason code F/

 /FFFFFFFFFFFFFFFFFFF

FF Assure we can use the passed pointers without causing an

FF address exception by checking that required pointers are

FF not NULL.

 FFFFFFFFFFFFFFFFFFF/

if ((pRuleArrayCount == NULL) || (pRuleArray == NULL) ||

(pKeyId == NULL))

 {

CSUC_PROCRETC(pReturnCode, pReasonCode, E_NULL_PTR);

 return;

 }

 /FFFFFFFFFFFFFFFFFFF

FF OPTIONAL ----- depends on whether your CCA extension has

FF rule array values.

 FF

FF Assure that the rule count is reasonable.

 FFFFFFFFFFFFFFFFFFF/

if ((FpRuleArrayCount < RAC_MIN) || (FpRuleArrayCount > RAC_MAX))

 {

CSUC_PROCRETC(pReturnCode, pReasonCode, E_RULE_ARRAY_CNT);

 return;

 }

 /FFFFFFFFFFFFFFFFFFF

FF OPTIONAL ----- depends on whether your CCA extension uses

 FF key tokens.

 FF

FF Get the length of the key identifier field and check for validity.

 FFFFFFFFFFFFFFFFFFF/

KeyIdLength = GetKeyLength(pKeyId, NULL, &ErrorMsg);

if((ErrorMsg != S_OK) &&

(CSUC_PROCRETC(pReturnCode, pReasonCode, ErrorMsg) == ERROR))

 {

 return;

 }

 /FFFFFFFFFFFFFFFFFFF

 FF

 FF

FF Add your own checking, etc. logic here.

 FF

 FF

 FFFFFFFFFFFFFFFFFFF/

 /FFFFFFFFFFFFFFFFFFF

FF Build the 4 parts of the CPRB "T2" Request Parameter Block

FF that is sent to the adapter for processing.

FF The block consists of the following fields.

 FF

 FF +---------+------+-------//-+------+------//-+------+-----//-+

 FF |Sub- |Rule Array |Verb Unique |Key Block |

A-2 UDX Reference and Guide

 12-NOV-01, 13:15

 FF |Function | | |Fields |

 FF |Code | | Array | | | | |

 FF | |Length| Elements |Length| Data |Length| Fields |

 FF +---------+------+-------//-+------+------//-+------+-----//-+

 FF S 2 4 2+X 4+X 2+X+Y 4+X+Y

 FF

 FF |<-- 2 -->|<-- X ---------->|<-- Y --------->|<-- Z -------->|

 FF

 FFFFFFFFFFFFFFFFFFF/

 /FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FF Allocate working space for the sending CPRB, request

FF parameter block, returning CPRB and the reply

FF parameter block.

 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF/

pReqReplyBuf = malloc(sizeof(REQUEST_REPLY_BUF));

if (pReqReplyBuf == NULL)

 {

CSUC_PROCRETC (pReturnCode, pReasonCode, E_ALLOCATE_MEM) ;

 return;

 }

 /FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FF Establish addressability to the CPRB area and the request

FF parameter block.

 FF

FF NOTE: The CPRB and the request parameter block must be built

FF in the allocated structure in the following manner.

 FF +----------+--------------------+

FF |CPRB | Request parameter |

FF |structure | block |

 FF +----------+--------------------+

 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF/

pCprb = (CPRB_ptr) &(pReqReplyBuf->request_buf[S]) ;

pReqBlk = &(pReqReplyBuf->request_buf[S]) +

 sizeof(CPRB_structure);

 /FFFFFFFFFFFFFFFFFFF

FF Part 1 of 4.

 FF

FF Put the 2-byte subfunction code at the beginning of the

FF request parameter area.

 FF

FF NOTE- Replace CCAXFNC1_ID with the subfunction code for your

FF CCA API extension.

 FFFFFFFFFFFFFFFFFFF/

ReqBlkLen = 2;

F((USHORT F) pReqBlk) = htoas (CCAXFNC1_ID) ;

 /FFFFFFFFFFFFFFFFFFF

FF Part 2 of 4.

 FF

FF Add the rule array block to the request parameter area.

 FF

FF NOTE- If there are no rule array values, a 2 byte length field

FF with a value of 2 must be added.

 FFFFFFFFFFFFFFFFFFF/

ReqBlkLen += BuildParmBlock(pReqBlk + ReqBlkLen, /F Target addressF/

1, /F # of blocks to add.F/

(USHORT) (8 F FpRuleArrayCount),

 pRuleArray);

 /FFFFFFFFFFFFFFFFFFF

FF Part 3 of 4.

 FF

FF Add the verb unique data block to the request parameter area.

 FF

FF NOTE- If there is no verb unique data block, a 2 byte length field

FF with a value of 2 must be added. This is an example of how

FF to just add a 2 byte length field when there is no

 FF additional data.

 Appendix A. UDX Sample Code - Host Piece A-3

 12-NOV-01, 13:15

 FFFFFFFFFFFFFFFFFFF/

ReqBlkLen += BuildParmBlock(pReqBlk + ReqBlkLen, /F Target address F/

S, /F # of blocks to add. F/

 S, NULL);

 /FFFFFFFFFFFFFFFFFFF

FF Part 4 of 4.

 FF

FF Add the key block to the request parameter area. The

FF key block can consist of key tokens or key labels.

 FF

FF NOTE- If there is no key block, a 2 byte length field

FF with a value of 2 must be added.

 FFFFFFFFFFFFFFFFFFF/

/F Check first byte to determine if pKeyId is a label or a token F/

if ((FpKeyId >= MIN_FOR_LABEL) &&

(FpKeyId <= MAX_FOR_LABEL))

 {

 /FFFFFFFFFFFFFFFFFFF

FF The application specified a key label for the key token.

FF The key label will be replaced by a key token from the key

FF storage file prior to sending this request to the adapter.

 FF

FF NOTE- When a key token is going to be updated in the key

FF storage file by this operation, the second key block

FF must be specified for returning and updating of

FF the key token in the key storage file.

 FFFFFFFFFFFFFFFFFFF/

if (saf_process_key_label(pKeyId, true, KeyLabel)

== false)

 {

 /FFFFFFFFFFFFFFFFFFF

FF The format of the key label is invalid.

 FFFFFFFFFFFFFFFFFFF/

free(pReqReplyBuf);

CSUC_PROCRETC(pReturnCode, pReasonCode, E_KEY_LABEL_FMT);

 return;

 }

KeyIdIsLabel = true;

KeyBlkHeader.Flags = htoas (DES96_TYPE | ACTION_READ) ;

KeyBlkHeader.Length = htoas (KEY_HDR_LEN + sizeof(KeyLabel)) ;

KeyBlkReturn.Flags = htoas (DES96_TYPE | ACTION_NOOP) ;

KeyBlkReturn.Length = htoas (KEY_HDR_LEN + sizeof(KeyLabel)) ;

ReqBlkLen += BuildParmBlock(pReqBlk + ReqBlkLen, /F Target addressF/

4, /F # of blocks to add.F/

 sizeof(KeyBlkHeader), &KeyBlkHeader,

 sizeof(KeyLabel), KeyLabel,

 sizeof(KeyBlkReturn), &KeyBlkReturn,

 sizeof(KeyLabel), KeyLabel);

 }

 else

 {

 /FFFFFFFFFFFFFFFFFFF

FF A key token was specified for the key identifier.

FF An actual key token is being passed instead of a key label.

 FFFFFFFFFFFFFFFFFFF/

KeyIdIsLabel = false;

KeyBlkHeader.Flags = htoas (DES96_TYPE | ACTION_NOOP) ;

KeyBlkHeader.Length = htoas (KEY_HDR_LEN + KeyIdLength) ;

ReqBlkLen += BuildParmBlock(pReqBlk + ReqBlkLen, /F Target addressF/

2, /F # of blocks to add.F/

 sizeof(KeyBlkHeader), &KeyBlkHeader,

KeyIdLength, pKeyId);

 }

 /FFFFFFFFFFFFFFFFFFF

FF Build the CPRB

 FF

A-4 UDX Reference and Guide

 12-NOV-01, 13:15

FF NOTE- If your extension uses the data buffer, you must change

FF the request/reply data buffer parameters in the following

 FF statement.

 FFFFFFFFFFFFFFFFFFF/

 CSUC_BULDCPRB(pCprb,

(UCHAR F) ESSS_FUNCTION_ID_S,

ReqBlkLen, pReqBlk, /F Request parm. buffer F/

S, (UCHAR F) NULL, /F Request data buffer F/

sizeof(pReqReplyBuf->reply_buf),

pReqReplyBuf->reply_buf, /F Reply parameter buffer F/

S, (UCHAR F) NULL); /F Reply data buffer F/

 /FFFFFFFFFFFFFFFFFFF

 FF

FF SEND REQUEST TO THE COPROCESSOR FOR EXECUTION.

 FF

FF The CPRB request is sent to the Security Server which in turn then

FF forwards it to the device driver.

 FFFFFFFFFFFFFFFFFFF/

CSNC_SP_SCSRFBSS(pCprb, &ErrorMsg);

 /FFFFFFFFFFFFFFFFFFF

FF Check the return/reason codes of the completed operation.

 FF

FF NOTE- CSUC_PROCRETC returns ERROR if the error code in msg is higher

FF than the error code already in FpReturnCode and FpReasonCode.

FF msg is the return code and reason code, concatenated in a single

FF long integer - for example, msg=SSS8SS12 is equivalent to return

FF code 8, reason code 12.

 FFFFFFFFFFFFFFFFFFF/

if ((ErrorMsg != S_OK) &&

(CSUC_PROCRETC(pReturnCode, pReasonCode, ErrorMsg) == ERROR))

 {

free(pReqReplyBuf);

 return;

 }

 /FFFFFFFFFFFFFFFFFFF

FF Process the returned data, which is in the reply parameter block.

FF The reply parameter block must have the same format as the

FF request parameter block.

 FF

FF Examine the reply parameter block to make sure it is OK. If not,

FF something went wrong in the adapter - it should return valid data.

 FFFFFFFFFFFFFFFFFFF/

if (parm_block_valid(pCprb, SEL_REPLY_BLK) == false)

 {

CSUC_PROCRETC(pReturnCode, pReasonCode, CP_DEV_HWERR);

free(pReqReplyBuf);

 return;

 }

 /FFFFFFFFFFFFFFFFFFF

FF OPTIONAL ----- depends on your CCA extension.

 FF

FF Find the first key in the key block of the reply parameter block.

FF This will be the newly generated key, which we will pass back to the

FF caller. If there is no key, abort with an error.

 FFFFFFFFFFFFFFFFFFF/

if (find_first_key_block(pCprb, &pKeyBlock, SEL_REPLY_BLK) == false)

 {

CSUC_PROCRETC(pReturnCode, pReasonCode, FT_INCONSIST_DATA);

free(pReqReplyBuf);

 return;

 }

 /FFFFFFFFFFFFFFFFFFF

FF OPTIONAL ----- depends on your CCA extension.

 FF

FF Assure that only one key block is returned.

 Appendix A. UDX Sample Code - Host Piece A-5

 12-NOV-01, 13:15

 FFFFFFFFFFFFFFFFFFF/

if (find_next_key_block(pCprb, pKeyBlock,

&pNextKeyBlock, SEL_REPLY_BLK) == true)

 {

CSUC_PROCRETC(pReturnCode, pReasonCode, FT_INCONSIST_DATA);

free(pReqReplyBuf);

 return;

 }

 /FFFFFFFFFFFFFFFFFFF

FF OPTIONAL ----- depends on your CCA extension.

 FF

FF We've successfully located the first key in the key block, and its

FF address is in pKeyBlock. Everything looks OK.

 FFFFFFFFFFFFFFFFFFF/

pKeyField = (generic_key_block_structure F) pKeyBlock;

if (KeyIdIsLabel == false)

 {

 /FFFFFFFFFFFFFFFFFFF

FF Since KeyId is not a label, we need to pass the re-enciphered

FF key token back to the caller. pKeyBlock points to the start of the

FF entire key field, including the key field header (length and flag

 FF bytes).

 FFFFFFFFFFFFFFFFFFF/

memcpy(pKeyId, &(pKeyField->label_or_token), DES_TOKEN_LENGTH);

 }

 /FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FF Free the space allocated for the CPRB and the request/reply

FF data areas and then return to the calling application.

 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF/

free(pReqReplyBuf);

 return;

} /F end-of CCAXFCN1() F/

UDXKEN1.PLX.

A-6 UDX Reference and Guide

 12-NOV-01, 13:15

Appendix B. UDX Sample Code - Coprocessor Piece

This appendix contains a listing of the sample file cxt_samp.c. This file is a
skeleton for the design of the adapter piece of a CCA extension, including the
command processor.

/FFFFFFFFFFFFFFFFFFFFFFFFFFF

FF Bring in the include files

FF

FF If you are using any of the "C" functions provided by CPQ,

FF include the following CPQ files instead of the standard

FF "C" files (stdlib.h, string.h, etc.).

FF

FF #include <clib.h>

FF #include <cpqlib.h>

FF #include <sys\stat.h>

FF #include <qrm_cnst.h>

FF

FFFFFFFFFFFFFFFFFFFFFFFFFFF/

#include "cmncryt2.h" /F CCA common definitions F/

#include "camacm.h" /F Access manager definitions F/

#include "cmnerrcd.h" /F Common error codes. F/

#include "cam_xtrn.h" /F CCA managers F/

#include "cassub.h"

#include "casfunct.h" /F Common command processor funct's F/

#include "cacdtkn.h" /F PKA token subroutines. F/

#include "cacscacp.h" /F Access control codes F/

#include "cxt_cmds.h" /F CCA command extensions. F/

/FF

FF ENTER

FF your CCA command extension array entry after this comment.

FF ==

FF

FF Each element of the table is a CCAX_CP_DEF type. That is, it

FF contains one 2 character sub-function code, and a pointer to

FF the corresponding command processor function.

FF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF/

CCAX_CP_DEF ccax_cp_list[] = { { CCAXFNC1_ID, ccax_fcn_1 } };

/FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FF

FF Declare a variable which holds the number of CCA extension verbs

FF defined in the ccax_cp_list table above.

FF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF/

ULONG ccax_cp_list_size = S; // NOTE:

// Once you add your first entry to

// "ccax_cp_list", delete this

// statement and un-comment the

// following statement.

// ULONG ccax_cp_list_size = (sizeof(ccax_cp_list) / sizeof(CCAX_CP_DEF));

/FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FF Local rule array value definitions.

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF/

#define KEY_CLR 11

#define KEY_ENC 12

#define KEY_CLRD 13

 Appendix B. UDX Sample Code - Coprocessor Piece B-1

 12-NOV-01, 13:15

#define KEY_ENCD 14

#define KEY_KM 15

#define KEY_NKM 16

#define KEY_OKM 17

#define GENERATE 2S

#define VERIFY 21

#define DFLT_CF 31

#define ADAPTER 32

/FF/

/F ccax_fcn_1 F/

/F--F/

/F Purpose: F/

/F This sample CCA extension shows the general structure of a F/

/F command processor. F/

/F F/

/F Linkage: see below F/

/F F/

/F Input: See below F/

/F F/

/F Output: F/

/F The output CPRB and reply parameter blocks contains the F/

/F results. F/

/F F/

/F Return Code: F/

/F Passed back in the CPRB. F/

/FF/

void ccax_fcn_1(

CPRB_structure FpCprbIn, /F (input) request CPRB F/

CPRB_structure FpCprbOut, /F (output) reply CPRB F/

unsigned long RequestId, /F (input) Adapter request F/

 /F identifier. F/

role_id_t roleID) /F (input) role ID ptr F/

{

 /FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FF Define the rule array for converting 8 character rules into

FF integer values. This example has 11 rules divided into 3 groups.

FF On every request, there can be 3 choices, 1 from each group.

 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF/

int RuleValue[3]; /F Variable to encrypt rule values.F/

USHORT RuleMapCount = 11;

static RULE_MAP RuleMap[] = {{"KEY-CLR ", 1 , KEY_CLR },

{"KEY-ENC ", 1 , KEY_ENC },

{"KEY-CLRD", 1 , KEY_CLRD},

{"KEY-ENCD", 1 , KEY_ENCD},

{"KEY-KM ", 1 , KEY_KM },

{"KEY-NKM ", 1 , KEY_NKM },

{"KEY-OKM ", 1 , KEY_OKM },

{"GENERATE", 2 , GENERATE},

{"VERIFY ", 2 , VERIFY },

{"DFLT-CF ", 3 , DFLT_CF },

{"ADAPTER ", 3 , ADAPTER },};

 /FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FF Define local variables.

 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF/

long ReturnMsg; /F Return code messages. F/

 RBFPTR pReqBlk ;

 RBFPTR pReplyBlk ;

 void FpToken;

 UCHAR FpKeyBlock ;

 UCHAR FpLabel;

 USHORT ReplyLength;

 des_key_token_structure FpDesToken;

 verb_unique_data_structure FpVerbData;

 generic_key_block_structure FpKeyBlockStruct;

 mk_status_var MstrKeyStatus;

B-2 UDX Reference and Guide

 12-NOV-01, 13:15

boolean KeyIdIsLabel; /F Truth value that the key id was F/

/F passed as a label F/

long ReplyBlockLength; /F length of the data added to the F/

 /F reply block F/

KEY_FIELD_HEADER KeyHeader; /F header for key in reply block F/

 boolean Authorized;

if (RequestId == S) /F Do nothing statement to get rid of F/

ReplyLength = S; /F compiler warning messages because F/

/F RequestId is not used. F/

 /FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FF Copy input CPRB to the output area.

 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF/

memcpy (pCprbOut, pCprbIn, pCprbIn->CPRB_length);

Cas_proc_retc (pCprbOut, S_OK);

 /FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FF Initialize the CPRB request/reply parameter pointers and then

FF set my local pointers to the request and reply parameter blocks.

 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF/

InitCprbParmPointers(pCprbIn, pCprbOut);

 pReqBlk = pCprbIn->req_parm_block;

pReplyBlk = pCprbOut->reply_parm_block;

 /FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FF Set the reply subfunction code early, because the Cas_proc_retc

FF routine needs it set for negative return codes.

 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF/

 pReplyBlk->subfunction_code = pReqBlk->subfunction_code;

 /FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FF OPTIONAL ----- depends on your CCA extension.

 FF

FF Make sure this service is authorized before we go any further

 FF

FF NOTE: Replace SCA_COMMAND_BKTC with your own access point for

FF this extension. CACSCACP.H defines what range of access

FF points are available for extension services.

 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF/

 CHECK_ACCESS_AUTH(pCprbIn,

 pCprbOut,

 roleID,

SCA_COMMAND_BKTC, // Access control point.

 &Authorized);

if (Authorized == false)

 {

Cas_proc_retc (pCprbOut, CP_NOT_AUTH) ;

 return ;

 }

 /FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FF OPTIONAL ----- depends on your CCA extension.

 FF

FF Make sure the current master key is valid before we go

FF any further.

 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF/

switch (get_master_key_status (&MstrKeyStatus))

 {

case MK_NO_ERROR :

if ((MstrKeyStatus & mks_CMK_VALID) != mks_CMK_VALID)

 {

Cas_proc_retc (pCprbOut, MASTER_KEY_ERROR);

 return ;

 }

 break ;

 Appendix B. UDX Sample Code - Coprocessor Piece B-3

 12-NOV-01, 13:15

case MK_SRDI_OPEN_ERROR :

Cas_proc_retc (pCprbOut, FT_MK_SRDI_OPENERR);

 return ;

 break ;

 default :

Cas_proc_retc (pCprbOut, MASTER_KEY_MGR_ERROR);

 return ;

 }

 /FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FF Perform consistency check on the request parameter block

 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF/

if (parm_block_valid(pCprbIn, SEL_REQ_BLK) == false)

 {

Cas_proc_retc (pCprbOut, RT_CONSISTENCY_ERROR);

 return ;

 }

 /FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FF OPTIONAL ----- depends on your CCA extension.

 FF

FF Perform consistency check on the rule array - for this verb, the

FF rule array always has one value.

 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF/

if (pReqBlk->rule_array_length != (sizeof(pReqBlk->rule_array_length)

+ sizeof(rule_array_element)))

 {

Cas_proc_retc(pCprbOut, E_RULE_ARRAY_CNT);

 return ;

 }

 /FFFFFFFFFFFFFFFFFFF

FF OPTIONAL ----- depends on your CCA extension.

 FF

FF Compare for valid rule array values.

 FFFFFFFFFFFFFFFFFFF/

RuleValue[S] = INVALID_RULE; /F rule_check requires this initialization.F/

RuleValue[1] = INVALID_RULE; /F rule_check requires this initialization.F/

RuleValue[2] = INVALID_RULE; /F rule_check requires this initialization.F/

if (rule_check ((RULE_BLOCK F) &pReqBlk->rule_array_length,

 RuleMapCount,

&RuleMap[S], &RuleValue[S], &ReturnMsg)

== false)

 {

Cas_proc_retc (pCprbOut, ReturnMsg) ;

 return ;

 }

 /FFFFFFFFFFFFFFFFFFF

FF OPTIONAL ----- depends on your CCA extension.

 FF

FF Perform consistency check on the verb unique data - for this verb,

FF the verb unique data is not used.

 FFFFFFFFFFFFFFFFFFF/

pVerbData = (verb_unique_data_structure F)

((UCHAR F) &(pReqBlk->rule_array_length) +

pReqBlk->rule_array_length) ;

if (pVerbData->verb_unique_data_length != NO_VERBDATA)

 {

Cas_proc_retc (pCprbOut, E_SIZE) ;

 return ;

 }

 /FFFFFFFFFFFFFFFFFFF

FF OPTIONAL ----- depends on your CCA extension.

 FF

FF Perform consistency check on the key block - there should be

FF 1 or 2 key block fields for this verb.

 FFFFFFFFFFFFFFFFFFF/

B-4 UDX Reference and Guide

 12-NOV-01, 13:15

if (find_first_key_block(pCprbIn,

(key_data_structure FF) &pToken,

SEL_REQ_BLK) == false)

 {

Cas_proc_retc (pCprbOut, RT_CONSISTENCY_ERROR) ; /F @p1c F/

 return ;

 }

if (find_next_key_block(pCprbIn,

(key_data_structure F) pToken,

(key_data_structure FF) &pKeyBlockStruct,

SEL_REQ_BLK) == true)

 {

pLabel = &(pKeyBlockStruct->label_or_token);

KeyIdIsLabel = true;

 }

 else

KeyIdIsLabel = false;

 /FFFFFFFFFFFFFFFFFFF

FF OPTIONAL ----- depends on your CCA extension.

 FF

FF Check for unexpected key label. When SECY cannot find the requested

FF key storage record, the key label is forwarded.

 FFFFFFFFFFFFFFFFFFF/

pKeyBlock = (UCHAR F) &(((generic_key_block_structure F)

 pToken)->label_or_token);

if (TOKEN_LABEL_CHECK(FpKeyBlock) == TRUE)

 {

Cas_proc_retc (pCprbOut, RT_KEYLABEL_NEXIST);

 return;

 }

 /FFFFFFFFFFFFFFFFFFF

FF OK, the input looks pretty good, but will the reply buffer hold the

FF output from this CCA extension.

 FFFFFFFFFFFFFFFFFFF/

ReplyLength = pCprbIn->CPRB_length + sizeof(pReqBlk->subfunction_code) +

(3 F sizeof(lthfield)) + KEY_HDR_LEN + DES_TOKEN_LENGTH;

if (pCprbIn->reply_parm_block_length < ReplyLength)

 {

Cas_proc_retc (pCprbOut, BUFFER_LENGTH_ERROR);

 return ;

 }

 /FFFFFFFFFFFFFFFFFFF

 FF

 FF

FF Add code to perform the requested function.

 FF

 FF

 FFFFFFFFFFFFFFFFFFF/

 /FFFFFFFFFFFFFFFFFFF

FF Build 4 parts in the following Reply Parameter Block.

 FF

 FF +---------+------+-------//-+------+------//-+------+-----//-+

 FF |Sub- |Rule Array |Verb Unique |Key Block |

 FF |Function | | |Fields |

 FF |Code | | Array | | | | |

 FF | |Length| Elements |Length| Data |Length| Fields |

 FF +---------+------+-------//-+------+------//-+------+-----//-+

 FF S 2 4 2+X 4+X 2+X+Y 4+X+Y

 FF

 FF |<-- 2 -->|<-- X ---------->|<-- Y --------->|<-- Z -------->|

 FF

 FFFFFFFFFFFFFFFFFFF/

 /FFFFFFFFFFFFFFFFFFF

FF Build the response for returning the re-enciphered key token.

 FFFFFFFFFFFFFFFFFFF/

 Appendix B. UDX Sample Code - Coprocessor Piece B-5

 12-NOV-01, 13:15

pCprbOut->reply_parm_block = pReplyBlk ;

pReplyBlk->rule_array_length = NO_RULEARRAY ;

pVerbData = (verb_unique_data_structure F)

((UCHAR F) &pReplyBlk->rule_array_length +

pReplyBlk->rule_array_length) ;

pVerbData->verb_unique_data_length = NO_VERBDATA ;

pKeyBlock = ((UCHAR F) &pVerbData->verb_unique_data_length +

pVerbData->verb_unique_data_length) ;

ReplyBlockLength = BLOCK_LENGTH + NO_RULEARRAY + NO_VERBDATA;

if (KeyIdIsLabel == true)

 {

KeyHeader.Length = KEY_HDR_LEN + KEY_LABEL_LEN + DES_TOKEN_LENGTH;

KeyHeader.Flags = DES96_TYPE | ACTION_WRITE;

ReplyBlockLength += BuildParmBlock(pKeyBlock,

 3,

 KEY_HDR_LEN, &KeyHeader,

 KEY_LABEL_LEN, pLabel,

 DES_TOKEN_LENGTH, pDesToken);

 }

 else

 {

KeyHeader.Length = KEY_HDR_LEN + DES_TOKEN_LENGTH;

KeyHeader.Flags = DES96_TYPE | ACTION_NOOP;

ReplyBlockLength += BuildParmBlock(pKeyBlock,

 2,

 KEY_HDR_LEN, &KeyHeader,

 DES_TOKEN_LENGTH, pDesToken);

 }

 /FFFFFFFFFFFFFFFFFFF

FF Set the replied parameter block length and return to caller.

 FFFFFFFFFFFFFFFFFFF/

pCprbOut->replied_parm_block_length = ReplyBlockLength;

 return;

} /F end-of ccax_fcn_1() F/

udx_ken1.c.

B-6 UDX Reference and Guide

 12-NOV-01, 13:15

| Appendix C. Data Structures

| This appendix identifies useful data structures from the toolkit header files.

| Structures Used in Communications Between NT Host and
| Coprocessor
| These structures may be used on the coprocessor or on the NT host machine. If
| you are writing code for the zSeries 4758, the host side instructions in this section
| will be useful only for building the NT test DLL.

| A REQUEST_REPLY_BUF structure should be declared in the host function to allocate
| the data storage for the CPRB Structures and the request and reply buffers. This
| structure has two fields, both of 5120 bytes (BLK_LEN_MAX).

| REQUEST_REPLY_BUF

| The REQUEST_REPLY_BUF structure is filled with the following structures (hence they
| are declared as pointers into the REQUEST_REPLY_BUF structure).

| First, a CPRB structure:

| Note that the (request) CPRB structure is filled (as completely as it needs to be) by
| calling CSUC_BULDCPRB() with the appropriate lengths and pointers from within the
| host function. Fields not filled by this function will be filled by the Security Server
| when the coprocessor is called. Within the coprocessor code, the output CPRB
| fields are filled by copying the values from the input CPRB. Changing the values of
| these fields is not recommended, except for the replied_parm_block_length and
| replied_data_block_length fields in the coprocessor code.

| Changing the values in a “FILLED AUTOMATICALLY” field will have one of two
| effects:

| 1. SECY will overwrite the changed value with the correct value.
| 2. The call will fail because of an invalid value.

| Since the CPRB_structure is used exclusively as a pointer into the
| REQUEST_REPLY_BUF structure, the type CPRB_ptr has been typedefed as a pointer to
| the CPRB_structure.

| CPRB_structure, or *CPRB_ptr

| Field name| Size of field| Purpose

| request_buf| 5120 bytes| Holds the CPRB structure and the request
| block.

| reply_buf| 5120 bytes| Holds the (return) CPRB structure and the
| reply block.

| Field name| Size/Type| Purpose

| CPRB_length| USHORT| This field should contain D'112'
| (little endian).

 Appendix C. Data Structures C-1

 12-NOV-01, 13:15

| Field name| Size/Type| Purpose

| cprb_version_id| 1 byte| Flag indicating the version of this
| structure.

| MAC_content_flags| 1 byte| Flags for the message
| authentication function. FILLED
| AUTOMATICALLY

| SRPI_return_code| unsigned long| Return code from SECY.

| SRPI_verb_type| 1 byte| This field should have the value
| X'1' . FILLED AUTOMATICALLY

| reserved_1| 1 byte| This field should contain X'0'.

| function_id| 2 bytes| This field should contain 'T2'

| S390Checkpoint| 1 byte| FILLED AUTOMATICALLY.

| reserved_2| 1 byte| This field should contain X'0'.

| req_parm_block_length| unsigned short| Request parameter block length
| (little-endian).

| req_parm_block| pointer (4
| bytes)
| Address of the request parameter
| block.

| req_data_block_length| unsigned long| Request data block length
| (little-endian)

| req_data_block_addr| pointer (4
| bytes)
| Address of request data block.

| reply_parm_block_length| unsigned short| Reply parameter block length
| (little-endian)

| pad_001| unsigned short| Number of bytes to pad to ensure
| proper alignment. FILLED
| AUTOMATICALLY. (little-endian)

| reply_parm_block| pointer (4
| bytes)
| Address of reply parameter block.

| reply_data_block_length| unsigned long| Reply data block length
| (little-endian)

| reply_data_block| pointer (4
| bytes)
| Address of reply data block

| secy_return_code| unsigned long| This is the
| returnCode]]reasonCode
| combination.

| replied_parm_block_length| unsigned short| The length of the reply data
| returned from the coprocessor in
| the reply parameter block.

| MAC_data_length| unsigned short| The length of the data to be
| authenticated. FILLED
| AUTOMATICALLY. (little-endian)

| replied_data_block_length| unsigned long| The length of the reply data
| returned from the coprocessor in
| the reply DATA block.
| (little-endian)

| requestor_id| unsigned short| ID of requestor FILLED BY
| ROUTER.

| resource_origin| 8 bytes| FILLED AUTOMATICALLY.

C-2 UDX Reference and Guide

 12-NOV-01, 13:15

| On the host side, you will only need one CPRB_ptr, since the request CPRB you
| build will be replaced by the reply CPRB from the coprocessor during the call to
| CSNC_SP_SCSRFBSS(). On the coprocessor, two of the parameters for a command
| function are pCprbIn, and pCprbOut. Therefore, you do not need to declare either a
| REQUEST_REPLY_BUF or a CPRB_ptr.

| Following the CPRB_structure in the buffer is a request block:

| The ESSS_request_block_structure defines the structure for the request or reply
| block. Since request and reply blocks are variable length, this structure is used
| purely as a pointer into the request_buf or reply_buf field of the
| REQUEST_REPLY_BUF structure. RBFPTR is typedefed as a pointer to an
| ESSS_request_block_structure, and thus is more commonly used.

| On the host side, you may want to declare an RBFPTR for the request buffer. On the
| coprocessor code, you may want to declare an RBFPTR for both the request buffer
| and the reply buffer.

| ESSS_request_block_structure, or *RBFPTR

| Field name| Size/Type| Purpose

| MAC_value| 4 bytes| FILLED AUTOMATICALLY.

| logon_identifier| 8 bytes| FILLED AUTOMATICALLY.

| Domain| unsigned short| Usage/control domain. FILLED
| AUTOMATICALLY.

| UsageDomainMask| 4 bytes| Usage domain mask. FILLED
| AUTOMATICALLY.

| ControlDomainMask| 4 bytes| Control domain mask. FILLED
| AUTOMATICALLY.

| S390EnforcementMask| 4 bytes| S390 Enforcement mask. FILLED
| AUTOMATICALLY.

| reserved_for_requestors| 6 bytes| Reserved for requestors. FILLED
| AUTOMATICALLY.

| secy_name_length| unsigned short| Length of the security server
| name (8 bytes) FILLED
| AUTOMATICALLY.

| server_name| 8 bytes| Security server name
| (“SECY ”)FILLED
| AUTOMATICALLY.

| Field name| Size of field| Purpose

| subfunction_code| unsigned short| Holds the two-byte subfunction
| code in little-endian format.

| rule_array_length| unsigned short| Total length of rule array and this
| field, in little-endian format.

| first_rule_array_element| 1 byte| First character of first rule array
| element, if rule_array_length is
| greater than 2. Otherwise, this
| will be the first byte of the verb
| unique data length field.

 Appendix C. Data Structures C-3

 12-NOV-01, 13:15

| Filling the rule array is easy using the BuildParmBlock() function:

| BuildParmBlock (ptr1,

| 1,

| SIZE_OF_RULE F (FpRuleCount), pRuleArray);

| To parse a rule array with the rule_check() function, two more structures are
| used. A pointer to a RULE_BLOCK is passed to the function to be parsed. Note that
| the rule array format within the ESSS_request_block structure is, in fact, a
| RULE_BLOCK:

| RULE_BLOCK

| The other structure required is a RULE_MAP structure. This maps 8-byte strings into
| a value array, assigning a unique value to each string, and 1 or more strings to
| each position in the array, depending on mutual exclusion issues.

| RULE_MAP

| To check the values in the rule array, use the rule_check() function:

| rule_check((RULE_BLOCK F)&pReq->rule_array_length,

| sizeof(aRuleMap)/sizeof(RULE_MAP),

| aRuleMap,

| aRuleValue,

| &returnMessage);

| Immediately following the rule array in the REQUEST_REPLY_BUF is the verb unique
| data. Two types of structures are supplied for working with verb unique data, the
| VUD_DATA_RECORD, which is a length/tag/data structure (the data preceded by a
| DATA_RECORD_HEADER structure), and the verb_unique_data_structure, which is a
| length/data structure.

| DATA_RECORD_HEADER

| Field name| Size/Type| Purpose

| length| unsigned short| Total length of rule block. (little-endian)

| data| 80 bytes| Up to 10 (8-byte) rules.

| Field name| Size/Type| Purpose

| keyword| 9 bytes (8 chars
| plus null
| terminator)

| String to be matched in rule array.

| order_no| 1 byte| Group number: all rules which are
| mutually exclusive to each other will have
| the same group number.

| map_value| int (4 bytes)| The numeric value associated with this
| rule.

| Field name| Size| Purpose

| Length| unsigned short| Length of this verb data.

| Flag| unsigned short| User defined: usually type of data.

C-4 UDX Reference and Guide

 12-NOV-01, 13:15

| #define DATA_HEADER_LENGTH sizeof(DATA_RECORD_HEADER)

| If you want to use the length/tag/data format for your verb unique data, declare a
| DATA_RECORD_HEADER structure to place before the data, and use the
| BuildParmBlock() function to place it before the data.

| BuildParmBlock(ptr,

| 2,

| DATA_HEADER_LENGTH, &DataHeader,

| dataLength, &Data[S]);

| The FindFirstDataBlock() function returns a pointer to a VUD_DATA_RECORD, so that
| you can access your data in this format easily:

| VUD_DATA_RECORD

| FindFirstDataBlock(pCPRB, SEL_REPLY_BLK, &pVerbDataRecord);

| if(pVerbDataRecord->Flag == EncryptedKey)

| {

| memcpy(pKeyParameter, &pVerbDataRecord->Data,

| pVerbDataRecord->Length - DATA_HEADER_LENGTH);

| }

| On the other hand, if you have no need to access the Flags field, you can use the
| verb_unique_data_structure type instead:

| verb_unique_data_structure

| BuildParmBlock(ptr,

| 2,

| sizeof(short), &vudLength,

| dataLength, &Data);

| To retrieve the above data, you must first cast the verb_unique_data_structure as
| a VUD_DATA_RECORD:

| FindFirstDataBlock (pCPRB, SEL_REPLY_BLK, (VUD_DATA_RECORD FF)&pVerbUniqueDataStructure);

| FpLengthParm = atohs(pVerbUniqueDataStructure->

| verb_unique_data_length) - LENGTH_FIELD_SIZE;

| memcpy(pReturnedData,

| &pVerbUniqueDataStructure->verb_unique_data, FpLengthParm);

| If the only piece of data which is being passed has a fixed length (for example, if it
| is a structure), you need not use either of the verb structures shown:

| Field name| Size/Type| Purpose

| Length| unsigned short| Length of this verb data

| Flag| unsigned short| See above DATA_RECORD_HEADER

| Data| 1 byte| The first byte of the data.

| Field name| Size/Type| Purpose

| verb_unique_data_length| unsigned short| Length of this verb data

| verb_unique_data| 1 byte| The first byte of the data

 Appendix C. Data Structures C-5

 12-NOV-01, 13:15

| BuildParmBlock(ptr,

| 1,

| sizeof(Structure), &Structure);

| Then to access the data:

| FindFirstDataBlock(pCPRB, SEL_REPLY_BLOCK, (VUD_DATA_RECORD FF)&pData);

| memcpy(&Structure, pData, sizeof(Structure));

| If you use this method, you must not pass more than one piece of verb unique
| data, as the FindNextDataBlock() function uses the length field to determine where
| to look for the next piece of data.

| Following the verb unique data, the key data is organized into key fields and key
| data structures. Each key is preceded by a KEY_FIELD_HEADER structure:

| KEY_FIELD_HEADER

| On the host side, you will need to declare a KEY_FIELD_HEADER structure for each
| key you will be passing to the coprocessor. On the coprocessor, you will need to
| declare a KEY_FIELD_HEADER structure for each key you will be passing to the host.
| If you are passing a token to be written to the key storage file, you must declare
| two KEY_FIELD_HEADER structures, and pass first the label of the key to write to, then
| the key token to write into the key storage file.

| BuildParmBlock(ptr,

| 4, // 2 for each key you will be passing

| sizeof(KEY_FIELD_HEADER), &keyFieldHeader1,

| KEY_LABEL_LENGTH, keyLabel,

| sizeof(KEY_FIELD_HEADER), &keyFieldHeader2,

| keyTokenLength, keyToken);

| The find_first_key_block() function returns a pointer to a key_data_structure:

| key_data_structure

| Since there is no reason to access the first byte of the keyFieldHeader.Flags field,
| you will usually declare a generic_key_block_structure pointer, and cast it as a
| key_data_structure in the function call.

| generic_key_block_structure

| Field name| Size/Type| Purpose

| Length| unsigned short| Total length of this key block.
| (little-endian)

| Flags| unsigned short| Flags indication action required by the
| Security Server and type of key.

| Field name| Size/Type| Purpose

| key_field_data_length| unsigned short| Total length of this key data.

| key_data| 1 byte| First byte of keyFieldHeader.Flags

C-6 UDX Reference and Guide

 12-NOV-01, 13:15

| find_first_key_block(pCprb, (key_data_structure FF)&pGenericKeyBlockStructure,SEL_REQ_BLK);

| keyLength = atohs(pGenericKeyBlockStructure->length) -

| sizeof(KEY_FIELD_HEADER);

| pKeyToken = &pGenericKeyBlockStructure->label_or_token;

| Notice that the value of the byte in the label_or_token field can be used in the
| macro TOKEN_LABEL_CHECK to determine whether the token is a key token with key
| data or the label of a key in key storage.

| If the key which has been passed is an RSA key, some of the functions which
| manipulate and check it take parameters of type RsaKeyTokenHeader:

| RsaKeyTokenHeader

| In most cases, you should simply cast the pointer to the token as an
| RsaKeyTokenHeader pointer.

| Field name| Size/Type| Purpose

| length| unsigned short| Total length of this key data. (little-endian)

| flags| unsigned short| Flag bytes (little-endian) (ignore)

| label_or_token| 1 byte| First byte of key token or label.

| Field name| Size/Type| Purpose

| tokenId| 1 byte| Indicates Internal PKA, External PKA,
| Label, or “not RSA”

| version| 1 byte| Version of RSA token

| tokenLength| unsigned short| Total length of token (big-endian)

| reserved| 4 bytes| valued to 0

| nextSection| 1 byte| First byte of next token section - indicates
| public or privateModexponent, private
| Chinese remainder, and so on.

| Data Structures for Caching Functions
| Only one new data structure is required for the use of the cache functions, the
| short_tag_t:

| short_tag_t

| You may choose to cast a 2-byte value as a short_tag_t for the function call.

| Field name| Size/Type| Purpose

| tag_1| 1 byte| First byte of 2 byte short tag, index into
| linked list of second bytes.

| tag_2| 1 byte| Second byte of 2 byte short tag, index
| into linked list of entries.

 Appendix C. Data Structures C-7

 12-NOV-01, 13:15

| Other Useful Data Structures
| The mk_selectors data structure is used to indicate which of several master keys to
| use in a given master key function.

| mk_selectors

| The RsaRecoverClearKeyTokenUnderXport() function requires a type of
| double_length_key.

| double_length_key

| The functions load_first_mk_part() and combine_mk_parts() require a
| TRIPLE_LENGTH_KEY:

| TRIPLE_LENGTH_KEY

| The dbl_ulong (double, unsigned, long) data type is used to pass the number of
| bits of data for SHA1 hashing:

| dbl_ulong

| Field name| Size/Type| Purpose

| mk_set| unsigned short| Domain of master key set:
| MK_SET_DEFAULT

| mk_register| enumeration| old_mk, current_mk, new_mk to
| determine which of the three registers to
| access.

| type_mks| enumeration| SYM_MK, ASYM_MK, Both_MK, to
| determine which type of master key to
| use or change.

| Field name| Size/Type| Purpose

| left| 8 bytes| First 8 bytes of key.

| right| 8 bytes| Second 8 bytes of key.

| Field name| Size/Type| Purpose

| first| 8 bytes| First 8 bytes of key.

| middle| 8 bytes| Second 8 bytes of key.

| last| 8 bytes| Third 8 bytes of key.

| Field name| Size/Type| Purpose

| upper| unsigned long| The high-order 8 bytes of the value.

| lower| unsigned long| The low-order 8 bytes of the value.

C-8 UDX Reference and Guide

 12-NOV-01, 13:15

 Appendix D. Notices

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY, 10504-1785, USA.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this publication
at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information that you supply in any way it
believes appropriate without incurring any obligation to you.

COPYRIGHT LICENSE: This information contains sample application programs in
source language, which illustrates programming techniques on various operating
platforms. You may copy, modify, and distribute these sample programs in any form
without payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are written.
These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. You may copy, modify, and distribute these sample programs in any
form without payment to IBM for the purposes of developing, using, marketing, or
distributing application programs conforming to IBM’s application programming
interfaces.

 Appendix D. Notices D-1

 12-NOV-01, 13:15

Copying and Distributing Softcopy Files
For online versions of this book, we authorize you to:

� Copy, modify, and print the documentation contained on the media, for use
within your enterprise, provided you reproduce the copyright notice, all warning
statements, and other required statements on each copy or partial copy.

� Transfer the original unaltered copy of the documentation when you transfer the
related IBM product (which may be either machines you own, or programs, if
the program's license terms permit a transfer). You must, at the same time,
destroy all other copies of the documentation.

You are responsible for payment of any taxes, including personal property taxes,
resulting from this authorization.

THERE ARE NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING THE
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Some jurisdictions do not allow the exclusion of implied warranties, so the above
exclusion may not apply to you.

Your failure to comply with the terms above terminates this authorization. Upon
termination, you must destroy your machine readable documentation.

 Trademarks
The following terms are trademarks or registered trademarks of the IBM
Corporation in the United States, or other countries, or both:

Intel is a registered trademark of Intel Corporation in the United States, or other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks or
registered trademarks of Microsoft Corporation in the United States, or other
countries, or both.

SET and the SET Logo are trademarks owned by SET Secure Electronic
Transaction LLC.

UNIX is a registered trademark in the United States, or other countries, or both and
is licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be the trademarks or service
marks of others.

AIX
IBM
OS/2
S/390

D-2 UDX Reference and Guide

 12-NOV-01, 13:15

List of Abbreviations and Acronyms

AIX Advanced Interactive Executive
(operating system)

API application program interface

ASCII American Standard Code for
Information Interchange

BBRAM battery-backed random access
memory

CCA Common Cryptographic Architecture

CDMF Commercial Data Masking Facility

CMK current master key

CP/Q Control Program/Q

CPRB Cooperative Processing Request
Block

DES Data Encryption Standard

DLL dynamic load library

EPROM erasable programmable read-only
memory

FIPS Federal Information Processing
Standard

KEK key encrypting key

IBM International Business Machines

MAC message authentication code

MKVP master key verification pattern

NMK new master key

OMK old master key

OS/2 Operating System/2

PCI peripheral component interconnect

PDF portable document format

PIN personal identification number

PKA public key algorithm

PPD program proprietary data

RAM random access memory

RNG random number generator

RSA Rivest-Shamir-Adleman (algorithm)

SCC secure cryptographic coprocessor

SET Secure Electronic Transaction

SHA Secure Hash Algorithm

SRDI security relevant data item

TVV token validation value

UDX user-defined extensions

VUD verb unique data

 List of Abbreviations and Acronyms X-1

 12-NOV-01, 13:15

X-2 UDX Reference and Guide

 12-NOV-01, 13:15

 Glossary

This glossary includes terms and definitions from the
IBM Dictionary of Computing, New York: McGraw Hill,
1994. This glossary also includes terms and definitions
taken from:

� The American National Standard Dictionary for
Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standards Institute
(ANSI). Copies may be purchased from the
American National Standards Institute, 11 West 42
Street, New York, New York 10036. Definitions are
identified by the symbol (A) following the definition.

� The Information Technology Vocabulary, developed
by Subcommittee 1, Joint Technical Committee 1, of
the International Organization for Standardization
and the International Electrotechnical Commission
(ISO/IEC JTC1/SC1). Definitions of published parts
of this vocabulary are identified by the symbol (I)
following the definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) following
the definition, indicating that final agreement has not
yet been reached among the participating National
Bodies of SC1.

A
access. In computer security, a specific type of
interaction between a subject and an object that results
in the flow of information from one to the other.

access control. Ensuring that the resources of a
computer system can be accessed only by authorized
users and in authorized ways.

Advanced Interactive Executive (AIX) operating
system. The IBM implementation of the UNIX**
operating system.

agent. (1) An application that runs within the IBM
4758 PCI Cryptographic Coprocessor. (2) Synonym for
secure cryptographic coprocessor application.

AIX operating system. Advanced Interactive
Executive operating system.

American National Standards Institute (ANSI). An
organization consisting of producers, consumers, and
general interest groups that establishes the procedures
by which accredited organizations create and maintain
voluntary industry standards for the United States. (A)

ANSI. American National Standards Institute.

API. Application program interface.

application program interface (API). A functional
interface supplied by the operating system, or by a
separate program, that allows an application program
written in a high-level language to use specific data or
functions of the operating system or that separate
program.

authentication. (1) A process used to verify the
integrity of transmitted data, especially a message. (T)
(2) In computer security, a process used to verify the
user of an information system or protected resource.

authorization. (1) In computer security, the right
granted to a user to communicate with or make use of a
computer system. (T) (2) The process of granting a
user either complete or restricted access to an object,
resource, or function.

authorize. To permit or give authority to a user to
communicate with or make use of an object, resource,
or function.

B
battery-backed random access memory (BBRAM).
Random access memory that uses battery power to
retain data while the system is powered off. The IBM
4758 PCI Cryptographic Coprocessor uses BBRAM to
store persistent data for SCC applications, as well as
the coprocessor device key.

BBRAM. Battery-backed random access memory.

C
call. The action of bringing a computer program, a
routine, or a subroutine into effect, usually by specifying
the entry conditions and jumping to an entry point.
(I) (A)

card. (1) An electronic circuit board that is plugged
into an expansion slot of a system unit. (2) A plug-in
circuit assembly.

CBC. Cipher Block Chain.

CCA. Common Cryptographic Architecture.

CDMF algorithm. Commercial Data Masking Facility
algorithm.

ciphertext. (1) Data that has been altered by any
cryptographic process. (2) See clear data.

 Glossary X-3

 12-NOV-01, 13:15

cipher block chain (CBC). A mode of operation that
cryptographically connects one block of ciphertext to the
next clear data block.

cleartext. (1) Data that has not been altered by any
cryptographic process. (2) See clear data. (3) See
also ciphertext.

clear data. Data that is not enciphered.

Commercial Data Masking Facility (CDMF)
algorithm. An algorithm for data confidentiality
applications; it is based on the DES algorithm and has
an effective key strength of 40 bits.

Common Cryptographic Architecture (CCA). A
comprehensive set of cryptographic services that
furnishes a consistent approach to cryptography on
major IBM computing platforms. Application programs
can access these services through the CCA application
program interface.

Common Cryptographic Architecture (CCA) API.
The application program interface used to call Common
Cryptographic Architecture functions; it is described in
the IBM 4758 PCI Cryptographic Coprocessor CCA
Basic Services Reference and Guide.

Control Program/Q (CP/Q). The operating system
embedded within the IBM 4758 PCI Cryptographic
Coprocessor. The version of CP/Q used by the
coprocessor—including extensions to support
cryptographic and security-related functions—is known
as CP/Q++.

coprocessor. (1) A supplementary processor that
performs operations in conjunction with another
processor. (2) A microprocessor on an expansion card
that extends the address range of the processor in the
host system, or adds specialized instructions to handle
a particular category of operations; for example, an I/O
coprocessor, math coprocessor, or a network
coprocessor.

CP/Q. Control Program/Q.

Cryptographic Coprocessor (IBM 4758). An
expansion card that provides a comprehensive set of
cryptographic functions to a workstation.

cryptography. (1) The transformation of data to
conceal its meaning. (2) In computer security, the
principles, means, and methods used to transform data.

D
data encrypting key. (1) A key used to encipher,
decipher, or authenticate data. (2) Contrast with
key-encrypting key.

Data Encryption Standard (DES). The National
Institute of Standards and Technology (NIST) Data
Encryption Standard, adopted by the U.S. government
as Federal Information Processing Standard (FIPS)
Publication 46, which allows only hardware
implementation of the data encryption algorithm.

decipher. (1) To convert enciphered data into clear
data. (2) Contrast with encipher.

DES. Data Encryption Standard.

E
encipher. (1) To scramble data or convert it to a
secret code that masks its meaning. (2) Contrast with
decipher.

enciphered data. (1) Data whose meaning is
concealed from unauthorized users or observers.
(2) See also ciphertext.

EPROM. Erasable programmable read-only memory.

erasable programmable read-only memory
(EPROM). Programmable read-only memory that can
be erased by a special process and reused.

F
feature. A part of an IBM product that can be ordered
separately from the essential components of the
product.

Federal Information Processing Standard (FIPS). A
standard that is published by the US National Institute
of Science and Technology.

FIPS. Federal Information Processing Standard

flash memory. A specialized version of erasable
programmable read-only memory (EPROM) commonly
used to store code in small computers.

H
host. As regards to the IBM 4758 PCI Cryptographic
Coprocessor, the workstation into which the
coprocessor is installed.

X-4 UDX Reference and Guide

 12-NOV-01, 13:15

I
interface. (1) A boundary shared by two functional
units, as defined by functional characteristics, signal
characteristics, or other characteristics as appropriate.
The concept includes specification of the connection
between two devices having different functions. (T)
(2) Hardware, software, or both that links systems,
programs, and devices.

K
key. In computer security, a sequence of symbols
used with an algorithm to encipher or decipher data.

L

M
MAC. Message authentication code.

master key. In computer security, the top-level key in
a hierarchy of KEKs.

message authentication code (MAC). In computer
security, (1) a number or value derived by processing
data with an authentication algorithm, (2) the
cryptographic result of block cipher operations, on text
or data, using the cipher block chain (CBC) mode of
operation.

N
NT. See Windows NT.

O
Operating System/2 (OS/2). An IBM operating system
for personal computers.

OS/2. Operating System/2.

P
PKA. Public key algorithm.

PPD. Program proprietary data.

private key. (1) In computer security, a key that is
known only to the owner and used with a public key
algorithm to decipher data. Data is enciphered using the
related public key. (2) Contrast with public key.
(3) See also public key algorithm.

procedure call. In programming languages, a
language construct for invoking execution of a
procedure. (I) A procedure call usually includes an
entry name and the applicable parameters.

program proprietary data (PPD). Persistent data
stored within the IBM 4758 PCI Cryptographic
Coprocessor flash memory or battery-backed RAM that
is associated with a particular agent.

public key. (1) In computer security, a key that is
widely known and used with a public key algorithm to
encipher data. The enciphered data can be deciphered
only with the related private key. (2) Contrast with
private key. (3) See also public key algorithm.

public key algorithm (PKA). (1) In computer security,
an asymmetric cryptographic process that uses a public
key to encipher data and a related private key to
decipher data. (2) See also RSA algorithm.

R
RAM. Random access memory.

random access memory (RAM). A storage device
into which data is entered and from which data is
retrieved in a non-sequential manner.

random number generator (RNG). A system
designed to output values that cannot be predicted.
Since software-based systems generate predictable,
pseudo-random values, the IBM 4758 PCI
Cryptographic Coprocessor uses a hardware-based
system to generate true random values for
cryptographic use.

return code. (1) A code used to influence the
execution of succeeding instructions. (A) (2) A value
returned to a program to indicate the results of an
operation requested by that program.

RNG. Random number generator.

RSA algorithm. A public key encryption algorithm
developed by R. Rivest, A. Shamir, and L. Adleman.

S
SCC. Secure cryptographic coprocessor.

secure cryptographic coprocessor (SCC). An
alternate name for the IBM 4758 PCI Cryptographic
Coprocessor. The abbreviation “SCC” is used within
the product software code.

secure cryptographic coprocessor (SCC)
application. (1) An application that runs within the

 Glossary X-5

 12-NOV-01, 13:15

IBM 4758 PCI Cryptographic Coprocessor.
(2) Synonym for agent.

security. The protection of data, system operations,
and devices from accidental or intentional ruin, damage,
or exposure.

T

U
utility program. A computer program in general
support of computer processes.(T)

V
verb. A function possessing an entry_point_name and
a fixed-length parameter list. The procedure call for a
verb uses the syntax standard to programming
languages.

W
Windows NT. A Microsoft operating system for
personal computers.

Numerics
IBM 4758. IBM 4758 PCI Cryptographic Coprocessor.

X-6 UDX Reference and Guide

 12-NOV-01, 13:15

 Index

Numerics
2-byte values, convert 12-6

A
ac_check_authorization 11-5
ac_chg_prof_auth_data 11-6
ac_chg_prof_exp_date 11-8
ac_del_profile 11-9
ac_del_role 11-10
ac_get_list_sizes 11-11
ac_get_profile 11-12
ac_get_role 11-13
ac_init 11-14
ac_list_profiles 11-15
ac_list_roles 11-16
ac_load_profiles 11-17
ac_load_roles 11-19
ac_lu_add_user 11-20
ac_lu_drop_user 11-21
ac_lu_get_ks 11-22
ac_lu_get_num_users 11-23
ac_lu_get_role 11-24
ac_lu_ks_dec 11-25
ac_lu_ks_enc 11-26
ac_lu_ks_macgen 11-27
ac_lu_ks_macver 11-28
ac_lu_list_users 11-29
ac_lu_query_user 11-30
ac_query_profile 11-31
ac_query_role 11-32
ac_reinit 11-33
ac_reset_logon_fail_cnt 11-34
Access Control Manager functions

ac_check_authorization 11-5
ac_chg_prof_auth_data 11-6
ac_chg_prof_exp_date 11-8
ac_del_profile 11-9
ac_del_role 11-10
ac_get_list_sizes 11-11
ac_get_profile 11-12
ac_get_role 11-13
ac_init 11-14
ac_list_profiles 11-15
ac_list_roles 11-16
ac_load_profiles 11-17
ac_load_roles 11-19
ac_lu_add_user 11-20
ac_lu_drop_user 11-21
ac_lu_get_ks 11-22
ac_lu_get_num_users 11-23

Access Control Manager functions (continued)
ac_lu_get_role 11-24
ac_lu_ks_dec 11-25
ac_lu_ks_enc 11-26
ac_lu_ks_macgen 11-27
ac_lu_ks_macver 11-28
ac_lu_list_users 11-29
ac_lu_query_user 11-30
ac_query_profile 11-31
ac_query_role 11-32
ac_reinit 11-33
ac_reset_logon_fail_cnt 11-34

access control points, defining 2-7
adapter interface 1-4
adjust parity 8-3
architecture of the UDX environment 1-1
authority, user 12-2

B
building a CCA user-defined extension 2-1
building a CPRB in the host 4-9
building a parameter block 4-2
building a UDX 2-1
BuildParmBlock 4-2

C
cache management functions
caching functions, data structures C-7
calculate token validation value 9-28
CalculatenWordLength 9-5
callable functions

ac_check_authorization 11-5
ac_chg_prof_auth_data 11-6
ac_chg_prof_exp_date 11-8
ac_del_profile 11-9
ac_del_role 11-10
ac_get_list_sizes 11-11
ac_get_profile 11-12
ac_get_role 11-13
ac_init 11-14
ac_list_profiles 11-15
ac_list_roles 11-16
ac_load_profiles 11-17
ac_load_roles 11-19
ac_lu_add_user 11-20
ac_lu_drop_user 11-21
ac_lu_get_ks 11-22
ac_lu_get_num_users 11-23
ac_lu_get_role 11-24
ac_lu_ks_dec 11-25

 Index X-7

 12-NOV-01, 13:15

callable functions (continued)
ac_lu_ks_enc 11-26
ac_lu_ks_macgen 11-27
ac_lu_ks_macver 11-28
ac_lu_list_users 11-29
ac_lu_query_user 11-30
ac_query_profile 11-31
ac_query_role 11-32
ac_reinit 11-33
ac_reset_logon_fail_cnt 11-34
BuildParmBlock 4-2
CalculatenWordLength 9-5
cas_adjust_parity 8-3
cas_build_default_cv 8-4
cas_build_default_token 8-5
cas_current_mkvp 8-6
cas_des_key_token_check 8-8
cas_get_key_type 8-9
cas_key_length 8-10
cas_key_tokentvv_check 8-11
cas_master_key_check 8-12
cas_old_mkvp 8-7
cas_parity_odd 8-13
Cas_proc_retc 4-6
check_access_auth_fcn 12-2
clear_master_keys 6-6
close_cca_srdi 10-8
combine_mk_parts 6-7
compute_mk_verification_pattern 6-18
create_cca_srdi 10-9
CreateInternalKeyToken 9-6
CreateRsaInternalSection 9-7
CSNC_SP_SCSRFBSS 4-7
CSUC_BULDCPRB 4-9
CSUC_PROCRETC 4-11
delete_cca_srdi 10-11
delete_KeyToken 9-8
ede3_triple_decrypt_under_master_key 6-23
ede3_triple_encrypt_under_master_key 6-24
find_first_key_block 4-14
find_next_key_block 4-15
FindFirstDataBlock 4-12
FindNextDataBlock 4-13
generate_dSig 9-11
generate_mk_shares 6-8
generate_random_mk 6-10
GenerateCcaRsaToken 9-9
GenerateRsaInternalToken 9-10
get_cca_srdi_length 10-12
get_mk_verification_pattern 6-21
GeteLength 9-13
GetKeyLength 12-4
getKeyToken 9-14
GetModulus 9-15
GetnBitLength 9-16
GetnByteLength 9-17

callable functions (continued)
GetPublicExponent 9-18
GetRsaPrivateKeySection 9-19
GetRsaPublicKeySection 9-20
getSymmetricMaxModulusLength 5-2
GetTokenLength 9-21
init_master_keys 6-11
InitCprbParmPointers 4-16
intel_long_reverse 12-5
intel_word_reverse 12-6
isFunctionEnabled 5-3
IsPrivateExponentEven 9-22
IsPrivateKeyEncrypted 9-23
IsPublicExponentEven 9-24
IsRsaToken 9-25
IsTokenInternal 9-26
key register status 6-20
keyword_in_rule_array 4-17
load_first_mk_part 6-12
load_mk_from_shares 6-13
open_cca_srdi 10-13
parm_block_valid 4-18
pka96_tvvgen 9-28
PkaMkvpQuery 9-27
RecoverDesDataKey 8-14
RecoverDesKekImporter 8-16
RecoverPkaClearKeyTokenUnderMk 9-29
RecoverPkaClearKeyTokenUnderXport 9-30
ReEncipherPkaKeyToken 9-31
reinit_master_keys 6-15
RequestRSACrypto 9-32
resize_cca_srdi 10-14
rule_check 4-19
saf_process_key_label 4-23
save_cca_srdi 10-15
set_master_key 6-16
sha_hash_message 7-2
sha_hash_msg_to_bfr 7-5
store_KeyToken 9-33
TokenMkvpMatchMasterKey 9-34
triple_decrypt_under_master_key 6-25
triple_decrypt_under_master_key_with_CV 6-26
triple_encrypt_under_master_key 6-27
triple_encrypt_under_master_key_with_CV 6-28
ValidatePkaToken 9-35
verify_dSig 9-37
VerifyKeyTokenConsistency 9-36

cas_adjust_parity 8-3
cas_build_default_cv 8-4
cas_build_default_token 8-5
cas_current_mkvp 8-6
cas_des_key_token_check 8-8
cas_get_key_type 8-9
cas_key_length 8-10
cas_key_tokentvv_check 8-11

X-8 UDX Reference and Guide

 12-NOV-01, 13:15

cas_master_key_check 8-12
cas_old_mkvp 8-7
cas_parity_odd 8-13
Cas_proc_retc 4-6
CCA communication structures 1-7
chaining, SHA-1 hash 7-2
check authorization, Access Control Manager

function 11-5
check key label 4-23
CHECK_ACCESS_AUTH

See check_access_auth_fcn
check_access_auth_fcn 12-2
clear master key 6-6
clear_master_keys 6-6
close_cca_srdi 10-8
code sample

coprocessor piece B-1
host piece A-1

combine master key 6-7
combine_mk_parts 6-7
command processor 1-1, 1-6
command processor API, defining 2-6
command processor, identifier 1-3
command processors to array, adding 2-7
communication functions

BuildParmBlock 4-2
Cas_proc_retc 4-6
find_first_key_block 4-14
find_next_key_block 4-15
FindFirstDataBlock 4-12
FindNextDataBlock 4-13
InitCprbParmPointers 4-16
keyword_in_rule_array 4-17
parm_block_valid 4-18
rule_check 4-19

communication structures, CCA 1-7
communications, structures used between host and

coprocessor C-1
completion codes, defining new 2-4
compute verification pattern, master key 6-18
compute_mk_verification_pattern 6-18
control points 1-6
cooperative processing request/reply block

(CPRB) 1-3
coprocessor piece of a UDX 2-6

adding command processors to the array 2-7
building the executable 2-8
defining access control points 2-7
defining the command processor API 2-6
designing and coding the logic 2-8

CPRB 1-3
CPRB parameter pointers, initialize 4-16
CPRB, building in the host 4-9
create_cca_srdi 10-9
create, master key 6-11

CreateInternalKeyToken 9-6
CreateRsaInternalSection 9-7
CSNC_SP_SCSRFBSS 4-7
CSUC_BULDCPRB 4-9
CSUC_PROCRETC 4-11
current master key verification pattern 8-6
CXT_SAMP.C listing B-1

D
data structures C-1

caching functions C-7
communications between host and computer C-1
other useful C-8

data structures, Access Control Manager 11-2
generic 11-2
profile 11-3
role 11-3
user information 11-4

default control vector, build 8-4
default token, build 8-5
delete_cca_srdi 10-11
delete_KeyToken 9-8
DES data key, recover 8-14
DES importer KEK, recover 8-16
DES key token, verify 8-8
DES utility functions

cas_adjust_parity 8-3
cas_build_default_cv 8-4
cas_build_default_token 8-5
cas_current_mkvp 8-6
cas_des_key_token_check 8-8
cas_get_key_type 8-9
cas_key_length 8-10
cas_key_tokentvv_check 8-11
cas_master_key_check 8-12
cas_old_mkvp 8-7
cas_parity_odd 8-13
RecoverDesDataKey 8-14
RecoverDesKekImporter 8-16

development overview 2-1

E
EDE3 triple decrypt master key 6-23
EDE3 triple encrypt master key 6-24
ede3_triple_decrypt_under_master_key 6-23
ede3_triple_encrypt_under_master_key 6-24
enabled function, check 5-3
entry points, exporting 2-5
examine parameter block 4-18
executable, building 2-8

 Index X-9

 12-NOV-01, 13:15

F
files

binary, used to produce a UDX 2-2
created by the developer 2-1
host 2-1
provided with UDX 2-1

files you use in building a UDX 2-1
find address of next key data block 4-15
find_first_key_block 4-14
find_next_key_block 4-15
FindFirstDataBlock 4-12
FindNextDataBlock 4-13
first data block, search for address 4-12
first key data block, search 4-14
format, key token 9-26
function control vector management functions

getSymmetricMaxModulusLength 5-2
isFunctionEnabled 5-3

functions
See callable functions

G
generate random, master key 6-10
generate shares, master key 6-8
generate_dSig 9-11
generate_mk_shares 6-8
generate_random_mk 6-10
GenerateCcaRsaToken 9-9
GenerateRsaInternalToken 9-10
get_cca_srdi_length 10-12
get_master_key_status 6-20
get_mk_verification_pattern 6-21
GeteLength 9-13
GetKeyLength 12-4
getKeyToken 9-14
GetModulus 9-15
GetnBitLength 9-16
GetnByteLength 9-17
GetPublicExponent 9-18
GetRsaPrivateKeySection 9-19
getSymmetricMaxModulusLength 5-2
GetTokenLength 9-21

H
hashing functions, SHA-1 7-1
header files

Access Control Manager functions 11-1
Communications functions 4-1
DES utility functions 8-1
Function Control Vector functions 5-1
Master Key Manager functions 6-1
Miscellaneous functions 12-1
RSA functions 9-1
SHA-1 functions 7-1

header files (continued)
SRDI Manager functions 10-1

host piece of the UDX 2-3
building the DLL and LIB files 2-5
defining new completion codes 2-4
defining the API 2-3
defining the subfunction code 2-3
designing and coding the logic 2-5
exporting the API entry points 2-5

I
init_master_keys 6-11
InitCprbParmPointers 4-16
initialize CPRB parameter pointers 4-16
initialize master key 6-11
initialize the Access Control Manager 11-14
intel_long_reverse 12-5
intel_word_reverse 12-6
internal key token, create 9-6
isFunctionEnabled 5-3
IsPrivateExponentEven 9-22
IsPrivateKeyEncrypted 9-23
IsPublicExponentEven 9-24
IsRsaToken 9-25
IsTokenInternal 9-26

K
key block 1-4
key blocks 1-3
key label 1-4
key label, checking and processing 4-23
key length, return 8-10
key record 1-4
key storage server 1-4
key token 1-4

consistency, verify 9-36
format 9-26
length 9-21, 12-4
signature 9-37

key type, return 8-9
keyword_in_rule_array 4-17

L
load first part, master key 6-12
load shares, master key 6-13
load_first_mk_part 6-12
load_mk_from_shares 6-13
logged on users, Access Control Manager

add to list 11-20
copy session key 11-22
list 11-29
number of 11-23
query 11-30

X-10 UDX Reference and Guide

 12-NOV-01, 13:15

logged on users, Access Control Manager (continued)
remove 11-21
role 11-24

logic, designing and coding 2-5, 2-8
logon failure count, reset (Access Control

Manager) 11-34
long values, convert 12-5

M
Master Key Manager (CCA) functions

clear_master_keys 6-6
combine_mk_parts 6-7
common processing 6-3
compute_mk_verification_pattern 6-18
ede3_triple_decrypt_under_master_key 6-23
ede3_triple_encrypt_under_master_key 6-24
generate_mk_shares 6-8
generate_random_mk 6-10
get_master_key_status 6-20
get_mk_verification_pattern 6-21
initialization of the SRDI 6-2
initializing the SRDI 6-11
key register status 6-2, 6-20
load_first_mk_part 6-12
load_mk_from_shares 6-13
location 6-2
master key registers 6-1
overview 6-1
reinitializing 6-15
required variables 6-3
set_master_key 6-16
test encryption 9-34
triple_decrypt_under_master_key 6-25
triple_decrypt_under_master_key_with_CV 6-26
triple_encrypt_under_master_key 6-27
triple_encrypt_under_master_key_with_CV 6-28
variables, required 6-3
verification pattern 6-2
version 9-27
version check 8-12

master key status 6-20
master key, set 6-16
miscellaneous functions

Cas_proc_retc 4-6
check_access_auth_fcn 12-2
GetKeyLength 12-4
intel_long_reverse 12-5
intel_word_reverse 12-6
TOKEN_IS_A_LABEL 12-7
TOKEN_LABEL_CHECK 12-8

N
next data block, search for address 4-13

next key data block, find address 4-15

O
old master key verification pattern 8-7
open_cca_srdi 10-13
overview, development 2-1

P
parameter block

building 4-2
examine 4-18
verify 4-18

parity, adjust 8-3
parity, verify 8-13
parm_block_valid 4-18
parts, master key 6-7
PKA clear key

clear under DES export key, recover 9-30
re-encipher 9-31
recover under master key 9-29

pka96_tvvgen 9-28
PkaMkvpQuery 9-27
private key encryption, verify 9-23
private key, return 9-19
process key label 4-23
public exponent, extract and copy 9-18
public key, return 9-20
publications, related xiii

R
recover DES data key 8-14
recover DES importer KEK 8-16
RecoverDesDataKey 8-14
RecoverDesKekImporter 8-16
RecoverPkaClearKeyTokenUnderMk 9-29
RecoverPkaClearKeyTokenUnderXport 9-30
ReEncipherPkaKeyToken 9-31
reinit_master_keys 6-15
reinitialize master key 6-15
reinitialize the Access Control Manager 11-33
related publications xiii
reply parameter block 1-3
request and reply blocks, format 1-7
request parameter block 1-3
request, sending to the coprocessor 4-7
RequestRSACrypto 9-32
reset logon failure count, Access Control

Manager 11-34
resize_cca_srdi 10-14
return code, prioritize 4-6, 4-11
return key length 8-10
return key type 8-9

 Index X-11

 12-NOV-01, 13:15

role, Access Control Manager
delete 11-10
get information 11-13
length 11-32
list 11-16
load 11-19
size of profile list 11-11

RSA functions
CalculatenWordLength 9-5
CreateInternalKeyToken 9-6
CreateRsaInternalSection 9-7
delete_KeyToken 9-8
generate_dSig 9-11
GenerateCcaRsaToken 9-9
GenerateRsaInternalToken 9-10
GeteLength 9-13
getKeyToken 9-14
GetModulus 9-15
GetnBitLength 9-16
GetnByteLength 9-17
GetPublicExponent 9-18
GetRsaPrivateKeySection 9-19
GetRsaPublicKeySection 9-20
GetTokenLength 9-21
IsPrivateExponentEven 9-22
IsPrivateKeyEncrypted 9-23
IsPublicExponentEven 9-24
IsRsaToken 9-25
IsTokenInternal 9-26
overview 9-3
pka96_tvvgen 9-28
PkaMkvpQuery 9-27
RecoverPkaClearKeyTokenUnderMk 9-29
RecoverPkaClearKeyTokenUnderXport 9-30
ReEncipherPkaKeyToken 9-31
RequestRSACrypto 9-32
store_KeyToken 9-33
TokenMkvpMatchMasterKey 9-34
ValidatePkaToken 9-35
verify_dSig 9-37
VerifyKeyTokenConsistency 9-36

RSA internal section, create 9-7
RSA key

format 9-26
generate 9-10
generate CCA RSA key token 9-9
length 5-2, 9-21, 12-4
validate 9-35
verify 9-25, 9-36
verify signature 9-37

RSA modulus
bit length 9-16
byte length 9-17
extract and copy 9-15

RSA operation, perform 9-32

RSA private exponent, verify 9-22
RSA public exponent

byte length 9-13
generate_dSig 9-11
get PKA token 9-14
verify 9-24

rule array
CSNBPKI 4-20

rule map example 4-21
CSUAACI 4-21

rule map example 4-21
verify 4-19

rule array keyword, search 4-17
rule_check 4-19

S
saf_process_key_label 4-23
save_cca_srdi 10-15
SCC API functions

coprocessor-side API functions 3-1
host-side API functions 3-1

search for first key data block 4-14
security relevant data items 1-1
security server, SECY 1-4
SECY 1-4
sending a request to the coprocessor 4-7
session key, Access Control Manager

compute a MAC 11-27
decrypt data 11-25
encrypt data 11-26
verify a MAC 11-28

set master key 6-16
set_master_key 6-16
SHA-1 functions

sha_hash_message 7-2
sha_hash_msg_to_bfr 7-5

SHA-1 hash 7-2, 7-5
sha_hash_message 7-2
sha_hash_msg_to_bfr 7-5
shares, master key 6-8
SRDI 1-1

close 10-8
create 10-9
delete 10-11
files 11-2
length 10-12
open 10-13
resize 10-14
save 10-15

SRDI Manager (CCA) functions
close_cca_srdi 10-8
concurrent access protection 10-6
create_cca_srdi 10-9
delete_cca_srdi 10-11
example code 10-16

X-12 UDX Reference and Guide

 12-NOV-01, 13:15

SRDI Manager (CCA) functions (continued)
get_cca_srdi_length 10-12
open_cca_srdi 10-13
opening an SRDI, example 10-4
operation 10-3
overview 10-1
resize_cca_srdi 10-14
save_cca_srdi 10-15
semaphore to control concurrent access 10-6

status, master key 6-20
store_KeyToken 9-33
structures, data C-1
structures, data (Access Control Manager) 11-2

generic 11-2
profile 11-3
role 11-3
user information 11-4

sub-function code 1-3
subfunction code, defining 2-3
SXT_SAMP.C listing A-1

T
test encryption of master key 9-34
token validation value, calculate 9-28
token validation value, verify 8-11
TOKEN_IS_A_LABEL 12-7
TOKEN_LABEL_CHECK 12-8
TokenMkvpMatchMasterKey 9-34
triple decrypt

master key 6-25
master key with CV 6-26

triple encrypt
master key 6-27
master key with CV 6-28

triple_decrypt_under_master_key 6-25
triple_decrypt_under_master_key_with_CV 6-26
triple_encrypt_under_master_key 6-27
triple_encrypt_under_master_key_with_CV 6-28

U
UDX environment 1-1
user authority, verify 12-2

V
ValidatePkaToken 9-35
verb unique data 1-3
verification pattern

current master key 8-6
old master key 8-7
specified master key 6-21

verify parameter block 4-18
verify rule array 4-19

verify_dSig 9-37
VerifyKeyTokenConsistency 9-36
version check, master key 8-12
version, master key 9-27
VUD 1-3

W
word length of modulus, return 9-5
wrapper, SHA-1 hash 7-5

 Index X-13

	About This Book
	Prerequisite Knowledge
	Typographic Conventions
	Related Publications
	Summary of Changes

	Chapter 1. Understanding the UDX Environment
	Chapter 2. Building a CCA User-Defined Extension
	Files You Use in Building a UDX
	Host Piece of a UDX
	Coprocessor Piece of a UDX

	Chapter 3. SCC Functions
	Host-Side SCC API Functions
	Coprocessor-Side SCC API Functions

	Chapter 4. Communications Functions
	Header Files for Communications Functions
	Summary of Functions
	BuildParmBlock - Build a Parameter Block
	Cas_proc_retc - Prioritize Return Code
	CSNC_SP_SCSRFBSS - Send a Request to the Coprocessor
	CSUC_BULDCPRB - Build CPRB
	CSUC_PROCRETC - Prioritize Return Code
	FindFirstDataBlock - Search for Address of First Data Block
	FindNextDataBlock - Search for Address of Next Data Block
	find_first_key_block - Search for First Key Data Block
	find_next_key_block - Find Address of Next Key Data Block
	InitCprbParmPointers - Initialize CPRB Parameter Pointers
	keyword_in_rule_array - Search for Rule Array Keyword
	parm_block_valid - Examine and Verify a Parameter Block
	rule_check - Verify Rule Array
	saf_process_key_label - Process Key Label

	Chapter 5. Function Control Vector Management Functions
	Header Files for Function Control Vector Management Functions
	Summary of Functions
	getSymmetricMaxModulusLength - Get RSA Key Length
	isFunctionEnabled - Check Whether a Function is Enabled

	Chapter 6. CCA Master Key Manager Functions
	Header Files for Master Key Manager Functions
	Overview of the Coprocessor CCA Master Keys
	CCA Master Key Manager Interface Functions
	Functions to Set and Manage the Master Key Values
	Summary of Functions
	clear_master_keys - Clear Master Key
	combine_mk_parts - Combine Master Key Parts
	generate_mk_shares - Generate Master Key Shares
	generate_random_mk - Generate Random Master Key
	init_master_keys - Create and Initialize Master Keys
	load_first_mk_part - Load First Master Key Part
	load_mk_from_shares - Load Master Key Shares
	reinit_master_keys - Reinitialize Master Keys
	set_master_key - Set Master Key

	Functions to Check Master Key Values and Status
	Summary of Functions
	compute_mk_verification_pattern
	get_master_key_status - Get Master Key Status
	get_mk_verification_pattern

	Functions to Encrypt and Decrypt Using the Master Key
	Summary of Functions
	ede3_triple_decrypt_under_master_key
	ede3_triple_encrypt_under_master_key
	triple_decrypt_under_master_key
	triple_decrypt_under_master_key_with_CV
	triple_encrypt_under_master_key
	triple_encrypt_under_master_key_with_CV

	Chapter 7. SHA-1 Functions
	Header Files for SHA-1 Functions
	Summary of Functions
	sha_hash_message - SHA-1 Hash with Chaining
	sha_hash_msg_to_bfr - SHA-1 Hash

	Chapter 8. DES Utility Functions
	Header Files for DES Utility Functions
	Summary of Functions
	cas_adjust_parity - Adjust Parity
	cas_build_default_cv - Build a Default Control Vector
	cas_build_default_token - Build a Default Token
	cas_current_mkvp - Current Master Key Verification Pattern
	cas_old_mkvp - Old Master Key Verification Pattern
	cas_des_key_token_check - Verify the DES Key Token
	cas_get_key_type - Return Key Type
	cas_key_length - Return Key Length
	cas_key_tokentvv_check - Verify the Token Validation Value
	cas_master_key_check - Master Key Version Check
	cas_parity_odd - Verify Parity
	RecoverDesDataKey - Recover DES Data Key
	RecoverDesKekImporter - Recover DES Importer KEK

	Chapter 9. RSA Functions
	Header Files for RSA Functions
	Summary of Functions
	Overview
	CalculatenWordLength - Return Word Length of Modulus
	CreateInternalKeyToken - Create Internal Key Token
	CreateRsaInternalSection - Create RSA Internal Section
	delete_KeyToken - Delete a Key From On-Board Storage
	GenerateCcaRsaToken - Generate CCA RSA Key Token
	GenerateRsaInternalToken - Generate RSA Key Token
	generate_dSig - Receives RSA Key Token
	GeteLength - Return RSA Public Exponent Byte Length
	getKeyToken - Get a PKA Token From On-Board Storage
	GetModulus - Extract and Copy RSA Modulus
	GetnBitLength - Return RSA Modulus Bit Length
	GetnByteLength - Return RSA Modulus Byte Length
	GetPublicExponent - Extract and Copy Public Exponent
	GetRsaPrivateKeySection - Return Private Key
	GetRsaPublicKeySection - Return Public Key
	GetTokenLength - Return Key Token Length
	IsPrivateExponentEven - Verify RSA Private Exponent
	IsPrivateKeyEncrypted - Verify Private Key Encryption
	IsPublicExponentEven - Verify RSA Public Exponent
	IsRsaToken - Verify RSA Key
	IsTokenInternal - Key Token Format
	PkaMkvpQuery - Return Master Key Version
	pka96_tvvgen - Calculate Token Validation Value
	RecoverPkaClearKeyTokenUnderMk
	RecoverPkaClearKeyTokenUnderXport
	ReEncipherPkaKeyToken - Re-Encipher PKA Key Token
	RequestRSACrypto - Perform an RSA Operation
	store_KeyToken - Store Registered or Retained Key
	TokenMkvpMatchMasterKey - Test Encryption of RSA Key
	ValidatePkaToken - Validate RSA Key Token
	VerifyKeyTokenConsistency - Verify Key Token Consistency
	verify_dSig - Verify RSA Key Token Signature

	Chapter 10. CCA SRDI Manager Functions
	Header Files for SRDI Manager Functions
	Overview
	Summary of Functions
	close_cca_srdi - Close CCA SRDI
	create_cca_srdi - Create CCA SRDI
	delete_cca_srdi - Delete CCA SRDI
	get_cca_srdi_length - Get CCA SRDI Length
	open_cca_srdi - Open CCA SRDI
	resize_cca_srdi - Resize CCA SRDI
	save_cca_srdi - Save CCA SRDI
	Example Code

	Chapter 11. Access Control Manager Functions
	Header Files for Access Control Manager Functions
	Summary of Functions
	ac_check_authorization - Check Authorization to Execute Function
	ac_chg_prof_auth_data - Change Profile Authentication Data
	ac_chg_prof_exp_date - Change Profile Expiration Date
	ac_del_profile - Delete User Profile
	ac_del_role - Delete Role
	ac_get_list_sizes - Get Sizes of Role and Profile Lists
	ac_get_profile - Get Profile
	ac_get_role - Get Role
	ac_init - Initialize the Access Control Manager
	ac_list_profiles - List User Profiles
	ac_list_roles - List Roles
	ac_load_profiles - Load User Profiles
	ac_load_roles - Load Roles
	ac_lu_add_user - Add a User to the List of Logged on Users
	ac_lu_drop_user - Remove a User from the Logon List
	ac_lu_get_ks - Get a Copy of a Session Key
	ac_lu_get_num_users - Get the Number of Logged On Users
	au_lu_get_role - Get Role from the Logon List
	ac_lu_ks_dec - Decrypt Data with Session Key
	ac_lu_ks_enc - Encrypt Data with Session Key
	ac_lu_ks_macgen - Compute a MAC using Session Key
	ac_lu_ks_macver - Verify a MAC using Session Key
	ac_lu_list_users - List the IDs of the Logged On Users
	au_lu_query_user - Check if a User is Logged On
	ac_query_profile - Return the Length of a User Profile
	ac_query_role - Return the Length of a Role
	ac_reinit - Reinitialize the Access Control Manager
	ac_reset_logon_fail_cnt - Reset Logon Failure Count

	Chapter 12. Miscellaneous Functions
	Header Files for Miscellaneous Functions
	Summary of Functions
	check_access_auth_fcn - Verify User Authority
	GetKeyLength - Get Length of Key Token
	intel_long_reverse - Convert Long Values
	intel_word_reverse - Convert 2-Byte Values
	TOKEN_IS_A_LABEL - Identifies the Token as a Label
	TOKEN_LABEL_CHECK - Determine if Key Identifier is a Label

	Appendix A. UDX Sample Code - Host Piece
	Appendix B. UDX Sample Code - Coprocessor Piece
	Appendix C. Data Structures
	Structures Used in Communications Between NT Host and Coprocessor
	Data Structures for Caching Functions
	Other Useful Data Structures

	Appendix D. Notices
	Copying and Distributing Softcopy Files
	Trademarks

