

IBM 4758 PCI Cryptographic Coprocessor
Custom Software Interface Reference

Version 2: 4758-002 and 4758-023

19-SEP-01, 15:06 Release 2.40

 19-SEP-01, 15:06 Release 2.40

 Note!

Before using this information and the products it supports, be sure to read the general information under Appendix D, “Notices”
on page D-1.

Third Edition (February, 2001)

IBM does not stock publications at the address given below. This and other publications related to the IBM 4758 Coprocessor can
be obtained in PDF format from the Library page at http://www.ibm.com/security/cryptocards.

Reader’s comments can be communicated to IBM by using the Comments and Questions Form located on the product Web site at
http://www.ibm.com/security/cryptocards, or you can respond by mail to:

Department VM9A, MG81/204-3
IBM Corporation
8501 IBM Drive
Charlotte, NC 28262-8563
U.S.A.

IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1998, 2001. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 19-SEP-01, 15:06 Release 2.40

 Contents

About This Book . vii
Prerequisite Knowledge . vii
Organization of This Book . vii
Typographic Conventions . viii
Related Publications . viii

General Interest . viii
CCA Support Program Publications . viii
PKCS #11 Support Program Publications . viii
Custom Software Publications . ix
Cryptography Publications . ix
Other IBM Cryptographic Product Publications xi

Summary of Changes . xi

Chapter 1. Overview . 1-1
Software Architecture . 1-1
Host and Coprocessor Interaction . 1-3
Synchronous and Asynchronous Calls . 1-3
Software Attacks and Defensive Coding . 1-4
Sample Applications . 1-4

Header File . 1-5
Coprocessor Application Code . 1-5
Host Application Code . 1-7

How to Compile and Link the Sample Programs 1-9

Chapter 2. Host-Side API . 2-1
General Information . 2-1

Host-Side API Functions . 2-1
Header Files . 2-1
Sample Code . 2-2
Error Codes . 2-2
sccAdapterCount - Count Installed Coprocessors 2-3
sccGetAdapterID - Get Coprocessor Identification 2-4
sccOpenAdapter - Open Channel to Coprocessor 2-6
sccRequest - Send Request to Coprocessor Application 2-8
sccCloseAdapter - Close Channel to Coprocessor 2-12

Chapter 3. Coprocessor-Side API . 3-1
General Information . 3-1

Coprocessor-Side API Functions . 3-1
Header Files . 3-5
Sample Code . 3-5
Serialization of Requests . 3-6
Error Codes . 3-7

Host Communication Functions . 3-9
sccSignOn - Register to Receive Requests 3-9
sccGetNextHeader - Get Next Request from Host 3-12
sccGetBufferData - Read Data from Host 3-14
sccPutBufferData - Write Data to Host . 3-16
sccEndRequest - Return Result of Request to Host 3-19

Hash Functions . 3-21

 Copyright IBM Corp. 1998, 2001 iii

 19-SEP-01, 15:06 Release 2.40

Internal and External Buffers . 3-21
sccSHA1 - SHA-1 Hash . 3-22

DES Functions . 3-25
Keys . 3-25
Internal and External Buffers . 3-25
sccDES8bytes - Encipher/Decipher Eight Bytes of Data 3-26
sccDES - Encipher/Decipher Data or Generate MAC 3-28
sccDES3Key - Wrap/Unwrap Cryptographic Key 3-32
sccTDES - Triple DES (4758 Model 002/023 Only) 3-34
sccEDE3_3DES - Perform EDE3 Mode Triple-DES Operation 3-38
sccTransformCDMFKey - Transform DES Key to CDMF Key 3-40

Public Key Algorithm Functions . 3-43
RSA Key Tokens . 3-43
sccRSAKeyGenerate - Generate RSA Key Pair 3-47
sccRSA - Encipher/Decipher Data or Wrap/Unwrap X9.31 Encapsulated

Hash . 3-50
sccComputeBlindingValues - Compute Blinding Values for RSA Key 3-55
DSA Key Tokens . 3-57
DSA Signature Tokens . 3-58
sccDSAKeyGenerate - Generate DSA Key Pair 3-59
sccDSA - Sign Data or Verify Signature for Data 3-62

Large Integer Modular Math Functions . 3-66
Large Integers . 3-66
sccModMath - Perform Modular Computations 3-67

Random Number Generator Functions . 3-70
sccGetRandomNumber - Generate Random Number 3-70
sccTestRandomNumber - Test Random Number Generator (4758 Model

002/023 Only) . 3-73
Nonvolatile Memory Functions . 3-76

Names and Namespaces . 3-76
sccQueryPPDSpace - Count Free Space in Nonvolatile Memory 3-77
sccCreate4UpdatePPD - Allocate Space in Nonvolatile Memory 3-78
sccSavePPD - Store Item in Nonvolatile Memory 3-80
sccUpdatePPD - Update Item in BBRAM . 3-83
sccGetPPDDir - Count Items in Nonvolatile Memory 3-85
sccGetPPDLen - Get Length of Item in Nonvolatile Memory 3-87
sccGetPPD - Retrieve Item from Nonvolatile Memory 3-88
sccDeletePPD - Delete Item from Nonvolatile Memory 3-90
sccDeleteAllPPD - Delete All Items from Nonvolatile Memory 3-92

Configuration Functions . 3-94
Privileged Operations . 3-94
sccGetConfig - Get Coprocessor Configuration 3-94
sccSetClock - Set Coprocessor Time-Of-Day Clock 3-97
sccClearILatch - Clear Coprocessor Intrusion Latch 3-98
sccClearLowBatt - Clear Coprocessor Low Battery Warning Latch 3-99

Outbound Authentication Functions (4758 Model 002/023 Only) 3-100
Coprocessor Architecture . 3-100
Overview of the Authentication Scheme . 3-101

Initialization . 3-101
Updates to Segment 1 . 3-101
Changes to Segments 2 and 3 . 3-102
Configuration Start . 3-103
Configuration End . 3-103
Epoch End . 3-103

iv IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

Examples . 3-104
OA Certificates . 3-111
Fields Common to All Certificates . 3-112
IBM Class Root Certificates . 3-114
Device Key Certificates . 3-115
Transition Certificates . 3-115
Operating System Key Certificates . 3-116
Application Key Certificates . 3-116
Keypair Names . 3-117
IBM Root Keypairs . 3-117
IBM Class Root Keypairs . 3-117
Coprocessor-Generated Keypairs . 3-118
Device Names and Device Descriptors . 3-118
Layer Names and Layer Descriptors . 3-119
Timestamps . 3-120
Class Root Descriptions . 3-121
 sccOAGetDir - Count and List OA Certificates (4758 Model 002/023

Only) . 3-122
sccOAGetCert - Retrieve an OA Certificate (4758 Model 002/023 Only) . 3-125
 sccOAGenerate - Generate Application Keypair and OA Certificate (4758

Model 002/023 Only) . 3-127
 sccOADelete - Delete Application Keypair and OA Certificate (4758

Model 002/023 Only) . 3-130
 sccOAPrivOp - Perform Cryptographic Operation with an Application Key

(4758 Model 002/023 Only) . 3-132
sccOAVerify - Verify OA Certificate Chain (4758 Model 002/023 Only) . . 3-135
sccOAStatus - Get Coprocessor Status (4758 Model 002/023 Only) 3-137

Serial Communication Functions . 3-140
ASYNopen - Open Serial Port (IBM 4758 Model 002/023 Only) 3-140
ASYNioctl - Change Serial Communication Parameters (IBM 4758 Model

002/023 Only) . 3-144
ASYNread - Read Data from the Serial Line (IBM 4758 Model 002/023

Only) . 3-146
ASYNwrite - Write Data to the Serial Line (IBM 4758 Model 002/023

Only) . 3-148
ASYNdrain - Wait for Serial Operation to Complete (IBM 4758 Model

002/023 Only) . 3-150
ASYNflush - Purge Serial Buffer (IBM 4758 Model 002/023 Only) 3-152
ASYNclose - Close Serial Port (IBM 4758 Model 002/023 Only) 3-154

Chapter 4. Coprocessor Interface for Host Device Drivers 4-1
PCI Communication . 4-1
Use of the Mailboxes . 4-3
Tamper Status Bits . 4-3
Mailbox Overrun . 4-4
Use of the FIFOs . 4-4
Host-Generated Commands . 4-5

GOT_HEADERS - Signal Pending Requests 4-5
ABORT_REQUEST - Abort a Specific Request 4-6
ABORT_END - Signal End of Abort Requests 4-6

Coprocessor - Generated Commands and Notifications 4-6
START_BUFFERS - Transfer Data Buffers . 4-6
INVALID_MB_CMD - Command Not Recognized 4-8
ABORT_COMPLETE - Request Successfully Aborted 4-9

 Contents v

 19-SEP-01, 15:06 Release 2.40

GOODNIGHT_JUAN - System Error Occurred 4-9
CPQ_ABEND - Kernel Error Occurred . 4-9

Abort Processing . 4-9
Initialization . 4-11
Miniboot Mode . 4-16
Host - POST/Miniboot Interaction Flow Diagrams 4-17

Normal Mode . 4-17
Walking 1’s Test . 4-18
AMCC FIFO Test . 4-19
Miniboot Mode . 4-21
Host - IBM 4758 Normal Interaction . 4-23

Appendix A. Error Code Formatting . A-1

Appendix B. DES Weak, Semi-Weak, and Possibly Weak Keys B-1

Appendix C. The IBM Root Public Key . C-1

Appendix D. Notices . D-1
Copying and Distributing Softcopy Files . D-1
Trademarks . D-2

List of Abbreviations and Acronyms . X-1

Glossary . X-3

Index . X-9

vi IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

About This Book

The IBM 4758 PCI Cryptographic Coprocessor Custom Software Interface
Reference describes the secure cryptographic coprocessor (SCC) application
programming interface (API) function calls that applications running on the
cryptographic coprocessor use to obtain cryptographic and communication services
from the operating system. It also describes the function calls that applications
running on the host use to interact with applications running on the cryptographic
coprocessor. Finally, it describes the interface the coprocessor provides to allow a
host device driver to initialize the coprocessor, test its operation, and transfer data
between the host and the coprocessor.

The primary audience for this manual is developers who are creating applications to
use with the coprocessor. This manual should be used in conjunction with the
manuals listed under “Custom Software Publications” on page ix.

 Prerequisite Knowledge
The reader of this book should understand how to perform basic tasks (including
editing, system configuration, file system navigation, and creating application
programs) on the host machine. Familiarity with the SCC application development
process (as described in the IBM 4758 PCI Cryptographic Coprocessor Custom
Software Developer’s Toolkit Guide) may also be helpful. Readers who intend to
write a host device driver to manage the coprocessor should have a general
understanding of the AMCC S5933 PCI Controller (as provided by the AMCC
S5933 PCI Controller Data Book).

Organization of This Book
Chapter 1, “Overview” discusses the separation of the SCC API into host-side and
coprocessor-side components and describes how an application on the host
interacts with an application on the cryptographic coprocessor. It includes the
source for a sample host application and a sample coprocessor application that
illustrate this interaction.

Chapter 2, “Host-Side API” describes the host-side portion of the SCC API in
detail.

Chapter 3, “Coprocessor-Side API” describes the coprocessor-side portion of the
SCC API in detail.

Chapter 4, “Coprocessor Interface for Host Device Drivers” describes in detail how
the host device driver that manages the coprocessor interacts with the coprocessor
and transfers information from the host to the coprocessor and from the
coprocessor to the host.

Appendix A, “Error Code Formatting” details return codes common to the host and
coprocessor APIs.

Appendix B, “DES Weak, Semi-Weak, and Possibly Weak Keys” lists keys that are
not suitable for use as DES keys. The random number generator can be instructed
not to return any of these numbers.

 Copyright IBM Corp. 1998, 2001 vii

 19-SEP-01, 15:06 Release 2.40

Appendix D, “Notices” includes product and publication notices.

A list of abbreviations, a glossary, and an index complete the manual.

 Typographic Conventions
This publication uses the following typographic conventions:

� Commands that you enter verbatim onto the command line are presented in
bold type.

� Variable information, parameters, and file names are presented in italic type.

� The names of menu items, buttons, and fields displayed in graphical user
interface (GUI) applications are presented in bold type.

� System response in a non-GUI environment is presented in monospace type.

� Function names and return codes are presented in bold type.

� Web addresses and file directory locations are presented in italic type.

 Related Publications
Many of the publications listed below under “General Interest,” “CCA Support
Program Publications,” and “Custom Software Publications” on page ix are
available in Adobe Acrobat** portable document format (PDF) at
http://www.ibm.com/security/cryptocards.

 General Interest
The following publications may be of interest to anyone who needs to install, use,
or write applications for a PCI Cryptographic Coprocessor:

� IBM 4758 PCI Cryptographic Coprocessor General Information Manual (version
-01 or later)

� IBM 4758 PCI Cryptographic Coprocessor Installation Manual

CCA Support Program Publications
The following publications may be of interest to readers who intend to use a PCI
Cryptographic Coprocessor to run IBM’s Common Cryptographic Architecture
(CCA) Support Program:

� IBM 4758 PCI Cryptographic Coprocessor CCA Support Program Installation
Manual

� IBM 4758 CCA Basic Services Reference and Guide

PKCS #11 Support Program Publications
The following publication may be of interest to readers who intend to develop
applications using PKCS #11 services.

� IBM 4758 PCI Cryptographic Coprocessor PKCS #11 Support Program
Installation Manual

viii IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

Custom Software Publications
The following publications may be of interest to persons who intend to write
applications or operating systems that will run on a PCI Cryptographic Coprocessor:

� IBM 4758 PCI Cryptographic Coprocessor Custom Software Installation Manual

� IBM 4758 PCI Cryptographic Coprocessor Interactive Code Analysis Tool
(ICAT) User’s Guide

� IBM 4758 PCI Cryptographic Coprocessor CP/Q Operating System Overview

� IBM 4758 PCI Cryptographic Coprocessor CP/Q Operating System Application
Programming Reference

� IBM 4758 PCI Cryptographic Coprocessor CP/Q Operating System C Runtime
Library Reference

� IBM 4758 PCI Cryptographic Coprocessor Custom Software Developer’s Toolkit
Guide

� IBM 4758 PCI Cryptographic Coprocessor CCA User Defined Extensions
Programming Reference

� AMCC S5933 PCI Controller Data Book, available from Applied Micro Circuits
Corporation, 6290 Sequence Drive, San Diego, CA 92121-4358. Phone
1-800-755-2622 or 1-619-450-9333. The manual is available online as an
Adobe Acrobat** PDF file at http://www.amcc.com/pdfs/pciprod.pdf.

 Cryptography Publications
The following publications describe cryptographic standards, research, and
practices applicable to the PCI Cryptographic Coprocessor:

� “Application Support Architecture for a High-Performance, Programmable
Secure Coprocessor,” J. Dyer, R. Perez, S.W. Smith, and M. Lindemann, 22nd
National Information Systems Security Conference, October 1999.

� “Validating a High-Performance, Programmable Secure Coprocessor,” S.W.
Smith, R. Perez, S.H. Weingart, and V. Austel, 22nd National Information
Systems Security Conference, October 1999.

� “Building a High-Performance, Programmable Secure Coprocessor,” S.W. Smith
and S.H. Weingart, Research Report RC21102, IBM T.J. Watson Research
Center, February 1998. A revised version of this paper appeared in Computer
Networks 31:831-860, April 1999.

� “Using a High-Performance, Programmable Secure Coprocessor, S.W. Smith,
E.R. Palmer, and S.H. Weingart, in FC98: Proceedings of the Second
International Conference on Financial Cryptography, Anguilla, February 1998.
Springer-Verlag LNCS. 1998. ISBN 3-540-64951-4

� “Smart Cards in Hostile Environments,” H. Gobioff, S.W. Smith, J.D. Tygar,
and B.S. Yee, Proceedings of the Second USENIX Workshop on Electronic
Commerce, 1996.

� “Secure Coprocessing Research and Application Issues,” S.W. Smith, Los
Alamos Unclassified Release LA-UR-96-2805, Los Alamos National Laboratory,
August 1996.

� “Secure Coprocessing in Electronic Commerce Applications,” B.S. Yee and J.D.
Tygar, in Proceedings of the First USENIX Workshop on Electronic Commerce,
New York, July 1995.

 About This Book ix

 19-SEP-01, 15:06 Release 2.40

� “Transaction Security Systems,” D.G. Abraham, G.M. Dolan, G.P. Double, and
J.V. Stevens, in IBM Systems Journal Vol. 30 No. 2, 1991, G321-0103.

� “Trusting Trusted Hardware: Towards a Formal Model for Programmable
Secure Coprocessors,” S.W. Smith and V. Austel, in Proceedings of the Third
USENIX Workshop on Electronic Commerce,” Boston, August 1998.

� “Using Secure Coprocessors,” B.S. Yee (Ph.D. thesis), Computer Science
Technical Report CMU-CS-94-149, Carnegie-Mellon University, May 1994.

� “Cryptography: It’s Not Just for Electronic Mail Anymore,” J.D. Tygar and B.S.
Yee, Computer Science Technical Report, CMU-CS-93-107, Carnegie Mellon
University, 1993.

� “Dyad: A System for Using Physically Secure Coprocessors,” J.D. Tygar and
B.S. Yee, Harvard-MIT Workshop on Protection of Intellectual Property, April
1993.

� “An Introduction to Citadel—A Secure Crypto Coprocessor for Workstations,”
E.R. Palmer, Research Report RC18373, IBM T.J. Watson Research Center,
1992.

� “Introduction to the Citadel Architecture: Security in Physically Exposed
Environments,” S.R. White, S.H. Weingart, W.C. Arnold, and E.R. Palmer,
Research Report RC16672, IBM T.J. Watson Research Center, 1991.

� “An Evaluation System for the Physical Security of Computing Systems,” S.H.
Weingart, S.R. White, W.C. Arnold, and G.P. Double, Sixth Computer Security
Applications Conference, 1990.

� “ABYSS: A Trusted Architecture for Software Protection,” S.R. White and L.
Comerford, IEEE Security and Privacy, Oakland 1987.

� “Physical Security for the microABYSS System,” S.H. Weingart, IEEE Security
and Privacy, Oakland 1987.

� Applied Cryptography: Protocols, Algorithms, and Source Code in C, Second
Edition, Bruce Schneier, John Wiley & Sons, Inc. ISBN 0-471-12845-7 or ISBN
0-471-11709-9

� ANSI X9.31 Public Key Cryptography Using Reversible Algorithms for the
Financial Services Industry

� IBM Systems Journal Volume 30 Number 2, 1991, G321-0103

� IBM Systems Journal Volume 32 Number 3, 1993, G321-5521

� IBM Journal of Research and Development Volume 38 Number 2, 1994,
G322-0191

� USA Federal Information Processing Standard (FIPS):

– Data Encryption Standard, 46-1-1988

– Secure Hash Algorithm, 180-1, May 31, 1994

– Cryptographic Module Security, 140-1

� Derived Test Requirements for FIPS PUB 140-1, W. Havener, R. Medlock, L.
Mitchell, and R. Walcott. MITRE Corporation, March 1995.

� ISO 9796 Digital Signal Standard

� Internet Engineering Taskforce RFC 1321, April 1992, MD5

� Secure Electronic Transaction Protocol Version 1.0, May 31, 1997

x IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

IBM Research Reports can be obtained from:

IBM T.J. Watson Research Center
Publications Office, 16-220
P.O. Box 218
Yorktown Heights, NY 10598

Back issues of the IBM Systems Journal and the IBM Journal of Research and
Development may be ordered by calling (914) 945-3836.

Other IBM Cryptographic Product Publications
The following publications describe products that utilize the IBM Common
Cryptographic Architecture (CCA) application program interface (API).

� IBM Transaction Security System General Information Manual, GA34-2137

� IBM Transaction Security System Basic CCA Cryptographic Services,
SA34-2362

� IBM Transaction Security System I/O Programming Guide, SA34-2363

� IBM Transaction Security System Finance Industry CCA Cryptographic
Programming, SA34-2364

� IBM Transaction Security System Workstation Cryptographic Support
Installation and I/O Guide, GC31-4509

� IBM 4755 Cryptographic Adapter Installation Instructions, GC31-4503

� IBM Transaction Security System Physical Planning Manual, GC31-4505

� IBM Common Cryptographic Architecture Services/400 Installation and
Operators Guide, Version 2, SC41-0102

� IBM Common Cryptographic Architecture Services/400 Installation and
Operators Guide, Version 3, SC41-0102

� IBM ICSF/MVS General Information, GC23-0093

� IBM ICSF/MVS Application Programmer’s Guide, SC23-0098

Summary of Changes
This first edition of the IBM 4758 PCI Cryptographic Coprocessor Custom Software
Interface Reference contains product information that is current with the IBM 4758
PCI Cryptographic Coprocessor announcements made in May, 1998.

Changes made to this edition in January, 1999 include:

� Chapter 3, Public Key Algorithm Functions—Clarified that offsets within an RSA
key token are offsets from the beginning of the token, not from the beginning of
the tokenData buffer; clarified the behavior of sccRSA when the length of the
input and output buffers is not the same as the length of the modulus; clarified
the use of the blinding values in a key token (they are only of use with private
keys); and added descriptions of the new function provided by
sccDSAKeyGenerate (the caller can specify the values of p, q, and g) and
sccDSA (the caller can specify that the input has already been hashed).

Nonvolatile Memory Functions—Clarified the effects sccCreate4UpdatePPD,
sccSavePPD, and sccUpdatePPD have on flash.

 About This Book xi

 19-SEP-01, 15:06 Release 2.40

Changes made to this edition in March, 1999 include:

� Chapter 3—Added sections on hash functions and large integer modular math
functions. Clarified how the RSA X9.31 support works.

Changes made to this edition in July, 1999 include:

� Chapter 3—Documented the enhanced sccGetRandomNumber interface.

Changes made to this edition in September, 1999 include:

� Addition of the APIs provided by the IBM 4758 PCI Cryptographic Coprocessor
model 002 hardware (external buffer support in sccSHA1 and new sccTDES
and sccTestRandomNumber APIs).

Changes made to this edition in October, 1999 include:

� Chapter 2—Clarified the values returned by sccRequest when an error is
detected.

� Chapters 2 and 3—Added sections to the beginning of each chapter to list the
required header files, location of the sample code, and so on.

Changes made to this third edition in March, 2001 include:

� Chapter 3—Added serial communication functions. Updated the CP/Q++ device
manager priorities.

| Changes made to this third edition in July, 2001 include:

| � Chapter 2—Added sccGetConfig and sccQueryAgent to sccRequest.

xii IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

 Chapter 1. Overview

The secure cryptographic coprocessor (SCC) application programming interface
(API) allows applications running on the host to interact with applications running on
the cryptographic coprocessor. The SCC API includes a set of functions an
application running on the host may invoke (the host-side API) and a set of
functions an application running on the cryptographic coprocessor may invoke (the
coprocessor-side API).

This chapter describes how an application on the host interacts with an application
on the cryptographic coprocessor and illustrates the flow of data and messages
among the various agents involved in the process. It also briefly discusses the
message-passing model the cryptographic coprocessor operating system (CP/Q)
uses for interprocess communication and how synchronous and asynchronous
versions of some coprocessor-side API calls are built on top of this model. Finally,
it includes the source for a sample host application and a sample coprocessor
application that illustrates the interaction.

 Software Architecture
Figure 1-1 on page 1-2 illustrates the principal software agents in the system, with
connections between components that directly communicate with one another.

 Copyright IBM Corp. 1998, 2001 1-1

 19-SEP-01, 15:06 Release 2.40

Host Application

Cryptographic Coprocessor
Device Driver

Communications
Manager

Host

Coprocessor

SCC
Manager

Coprocessor
Application

CP/Q++
Device Managers

DES
Manager

PKA
Manager

RNG
Manager

PPD
Manager

Figure 1-1.

� All requests for service from the host application are sent via the host
cryptographic coprocessor device driver. The host device driver forwards
requests from the host application across the PCI bus to a special device
manager (the Communications Manager) on the cryptographic coprocessor.
The host device driver also reads data from and writes data to the host
application’s address space on behalf of the coprocessor application.

� The Communications Manager forwards requests from the host to the
coprocessor application and forwards requests to read or write data from the
coprocessor application to the host.

� CP/Q++ device managers control sensitive parts of the coprocessor (for
example, the DES encryption hardware).

� The SCC Manager maintains a table of all registered coprocessor applications
so that host requests can be routed to the proper destination. The SCC
Manager also helps ensure that the CP/Q++ device managers act only on the
behalf of properly authorized coprocessor applications.

1-2 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

Host and Coprocessor Interaction
The host application and coprocessor application exchange information as follows:

1. The coprocessor application calls sccSignOn to register with the SCC Manager
and passes the SCC Manager a structure of type sccAgentID_t that identifies
the coprocessor application.

2. The host application calls sccOpenAdapter to establish a communications
channel between the host application and the Communications Manager.

3. The coprocessor application calls sccGetNextHeader to await the receipt of a
request from the host.

4. The host application sends a request to the Communications Manager. The
request includes an sccAgentID_t structure that identifies the coprocessor
application for which the request is intended. The Communications Manager
scans the SCC Manager’s list of registered coprocessor applications and then
forwards the request to the application whose sccAgentID_t structure matches
the one in the request.

5. The coprocessor application processes the request. As part of its processing,
the coprocessor application may:

a. Call sccGetBufferData to read data from the host application.
b. Request services (for example, DES or RSA encryption or decryption,

random number generation) from CP/Q++ device managers. These device
managers may inspect the table maintained by the SCC Manager to verify
the coprocessor application has registered itself and has the proper
authority to make the request.

c. Call sccPutBufferData to write data to the host application.

6. The coprocessor application calls sccEndRequest to notify the host application
that the request is complete and supplies a return code for the request and
(optionally) the result of the request.

(Steps 3 through 6 are repeated each time the host generates a request.)

7. The host application calls sccCloseAdapter to close the communications
channel between the host application and the Communications Manager.

The host application must initiate all transactions. The coprocessor application
cannot interrupt the host application and can transfer data only in response to a
request from the host application. Several host applications may interact with the
coprocessor at the same time.

Synchronous and Asynchronous Calls
Interprocess communication on CP/Q is most commonly accomplished by passing
messages from one process to another. Messages are unidirectional, but each
message bears a unique identifier and by convention the reply to a message
includes the message’s identifier. This allows the original sender to distinguish the
reply from other messages.

 Chapter 1. Overview 1-3

 19-SEP-01, 15:06 Release 2.40

CP/Q’s message passing model greatly simplifies support of asynchronous
(nonblocking) interprocess function calls. Associated with each CP/Q task1 is a
queue on which messages destined for that task are placed by default2. To make
an asynchronous call, an application sends a message to the target process and
records the message identifier. At a later time, the application can wait for the
reply (a message containing the original message identifier) or examine the
message queue to see whether a reply has arrived. For synchronous (blocking)
interprocess function calls, the application simply sends a message and
immediately waits for the reply.

Refer to the IBM 4758 PCI Cryptographic Coprocessor CP/Q Operating System
Application Programming Reference, CPQR-2A01 for detailed information about
CP/Q messages and message passing conventions.

Software Attacks and Defensive Coding
Coprocessor applications run in a secure environment and often manipulate or
manage sensitive data. To reduce the likelihood that this data will be
compromised, a coprocessor application must assume any host application to
which it provides service may have been written by an adversary in an attempt to
mount an attack on the coprocessor application. For example, the coprocessor
application should thoroughly validate any arguments provided by the host
application.

CP/Q attempts to limit the amount of damage an errant coprocessor application can
cause. If an application terminates (via exit() or by returning from main()) or one of
the tasks in the application generates an exception (for example, divide by zero or
addressing exception) and the application did not supply a fault handler for the
task3, CP/Q halts the system. No further processing occurs until the coprocessor is
rebooted.

 Sample Applications
The following applications illustrate the concepts described in this chapter. The
applications include the following header and source code files:

OEM_hdr.h Defines the protocol used between the host and coprocessor
applications

OEM_card.c Coprocessor application source code

OEM_host.c Host application source code

This simple example illustrates the transport mechanism between the host and the
coprocessor; it does not utilize the cryptographic capabilities of the coprocessor.

Various structures can be passed between cooperating host and coprocessor
applications. It is important to compile both applications with the same

1 A CP/Q task is a dispatchable unit and is equivalent to a thread on many other operating systems, including Windows NT.

2 A task can create additional queues to which messages can be directed as well.

3 One of the arguments to CPCreateTask identifies the task’s fault handler. Refer to the IBM 4758 PCI Cryptographic Coprocessor
CP/Q Operating System Application Programming Reference for details.

1-4 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

structure-packing conventions. This can be controlled with a compiler
command-line flag, or by a pragma in common header files.

Because of the 32-bit data boundary alignment imposed by the PCI architecture,
host buffers should be aligned to a 32-bit boundary for best performance. All buffer
lengths must be multiples of four bytes.

 Header File
The following code (OEM_hdr.h) defines the protocol used in communication
between the host application and the coprocessor application:

#ifndef OEM_HDR_H

#define OEM_HDR_H

/� The first two bytes in an AgentID are assigned by IBM.

/� The value given here is used with the RSA key supplied in the IBM 4758

Application Program Development Toolkit. �/

�� The trailing 14 bytes are chosen by the OEM.

 �/

 #define OEM_X1 6

 #define OEM_X2 2

#define OEM_AGENT_1 { { OEM_X1, OEM_X2},\

{ 2,2,2,2,2,2,2,2,2,2,2 },\

 {2},\

 {2},\

 {1} }

/� These are the commands understood between the partners below,

�� and some of the conversation semantics.

 ��

 �/

 #define OEM_CMD_HELLO 2

 #define OEM_CMD_DONE 1

#define OEM_BUFLEN 32 /� must be a 4-byte multiple �/

 #define OEM_TOCARD_BUF 2

 #define OEM_TOHOST_BUF 2

#define OEM_HELLO_MSG "Hello from the 4758."

#define OEM_DONE_MSG "Bye, you said you were done."

 #define OEM_GOOD 2

 #define OEM_BAD 1

#endif /�OEM_HDR_H�/

Coprocessor Application Code
The following code (OEM_card.c) signs on with the SCC Manager and sets up a
test buffer:

/�start-of-c-file�/

#include <string.h>

#include <stdlib.h>

#include <cpqlib.h>

#include <scc_int.h>

/� scctypes.h is included by scc_int.h; it defines the req'd types �/

#include "OEM_hdr.h"

 Chapter 1. Overview 1-5

 19-SEP-01, 15:06 Release 2.40

sccAgentID_t agentID_OEM = OEM_AGENT_1;

sccRequestHeader_t reqHdr;

char buf[OEM_BUFLEN];

char testBuf[OEM_BUFLEN];

void main(void)

{

 long rc;

 long status;

/� The first thing we do is signon with the SCC_Mgr.

�� Until this is done, any host-side program trying to send a message

�� to me (using my agentID) will get the equivalent of

�� "addressee unknown".

 ��

�� This signon asks that the SCC_Mgr use the default message queue

�� (which is my task queue) in order to pass requests to this program.

�� Subsequent calls to GetNextHeader will then use 2 for msgq_id.

 �/

rc = sccSignOn(&agentID_OEM, NULL);

if(rc)

exit(rc);

/� For this simple program, we just set up our testBuf.

�� Other activities, such as acquiring memory or getting

�� previously saved data (keys, prior configuration)

�� would be done as needed before waiting for work.

 �/

strcpy(testBuf, OEM_HELLO_MSG);

/� The main loop...pick up one work item at a time �/

 for(;;)

 {

/� Wait until a request comes our way �/

rc = sccGetNextHeader(&reqHdr, 2, SVCWAITFOREVER);

if(rc)

exit(rc);

/� Assume the normal case, all will be well �/

status = OEM_GOOD;

/� Switch on the commands we accept.

�� By convention, the command is stored in the UserDefined

�� field of the request header.

 �/

switch(reqHdr.UserDefined)

 {

 case OEM_CMD_HELLO:

/� We expect to receive a single buffer from the

�� host, into which we are to put our message

 �/

if(reqHdr.InBufferLength[OEM_TOHOST_BUF]!=OEM_BUFLEN)

 {

status = OEM_BAD;

 break;

 }

memcpy(buf, testBuf, OEM_BUFLEN);

 break;

 case OEM_CMD_DONE:

/� We expect to receive a buffer from the

�� host, which holds a copy of our hello, and

�� a buffer into which we are to put our goodby.

 �/

1-6 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

 if(reqHdr.OutBufferLength[OEM_TOCARD_BUF]!=OEM_BUFLEN

|| reqHdr.InBufferLength[OEM_TOHOST_BUF]!=OEM_BUFLEN)

 {

status = OEM_BAD;

 break;

 }

/� Get the buffer being sent to us (OUT from host) �/

rc = sccGetBufferData(reqHdr.RequestID, OEM_FROMHOST_BUF,

buf, OEM_BUFLEN);

if(rc)

 {

status = rc;

 break;

 }

/� Verify the echo �/

if(2!=memcmp(buf, testBuf, OEM_BUFLEN))

 {

status = OEM_BAD;

 break;

 }

/� Copy answer to results buffer �/

strcpy(buf, OEM_DONE_MSG);

 break;

 default:

status = OEM_BAD;

 break;

 }/�switch�/

/� End this request, sending the host the content

�� of 'buf' if we have good status.

�� We must specify the request ID (there may be other

�� agents at work in the system, or we may choose to

�� juggle several requests at once).

 �/

if(status== OEM_GOOD)

rc = sccEndRequest(reqHdr.RequestID, OEM_TOHOST_BUF,

buf, OEM_BUFLEN, OEM_GOOD);

 else

rc = sccEndRequest(reqHdr.RequestID, 2, NULL, 2, status);

if(rc)

exit(rc);

 } /�for�/

} /�main()�/

/�end-of-c-file�/

Host Application Code
The following code (OEM_host.c) opens the coprocessor and requests a “hello”
message from the coprocessor application.

/�start-of-c-file�/

#include <windows.h>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <scc_host.h>

/� scctypes.h is included by scc_host; It defines the req'd types. �/

#include "OEM_hdr.h"

 Chapter 1. Overview 1-7

 19-SEP-01, 15:06 Release 2.40

sccAgentID_t agent = OEM_AGENT_1

sccAdapterHandle_t adpt;

sccRB_t rb_OEM;

/� This buffer should be on a 32-bit boundary �/

char buf[OEM_BUFLEN];

long main(int argc, char ��argv)

{

 long rc;

 long iters;

/� Open the earliest adapter.

�� We could ask how many there are, and try them one-by-one

�� until we find the first adapter containing our companion,

�� agent OEM_AGENT_1.

 �/

rc = sccOpenAdapter(2L, &adpt);

if(rc)

 {

printf("sccOpenAdapter 2 returned %#X\n", rc);

return(rc);

 }

/� How many times should we say hello?

�� This dumb program actually understands one parameter!

 �/

if(argc>1)

 {

if(2==sscanf(argv[1], "%i", &iters))

iters = 1;

if(iters<=2)

iters = 1;

 }

 else

iters = 1;

/� Set the non-zero fields for the HELLO.

�� The command asks for a hello from our companion

�� on the coprocessor, supplying a buffer for the response.

 �/

memcpy (&rb_OEM.AgentID, &agent, sizeof (sccAgentID_t));

rb_OEM.UserDefined = OEM_CMD_HELLO;

rb_OEM.InBufferLength[OEM_TOHOST_BUF] = OEM_BUFLEN;

rb_OEM.pInBuffer[OEM_TOHOST_BUF] = buf;

for(; iters>2; --iters)

 {

rc = sccRequest(adpt, &rb_OEM);

if(rc)

 {

printf("sccRequest returned %#X\n", rc);

 break;

 }

if(rb_OEM.Status)

 {

printf("sccRequest.Status %#X\n", rb_OEM.Status);

 break;

 }

printf("Iter %d, message received: '%s'\n", iters, buf);

 }/�for�/

/� Now set up the GOODBY command.

1-8 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

�� We echo back the last hello; we have iterated at least once.

�� It uses the same input buffer (to host) as the HELLO,

�� and supplies an additional outbound (to-card) buffer.

 �/

rb_OEM.UserDefined = OEM_CMD_DONE;

rb_OEM.OutBufferLength[OEM_TOCARD_BUF] = OEM_BUFLEN;

rb_OEM.pOutBuffer[OEM_TOCARD_BUF] = buf;

rc = sccRequest(adpt, &rb_OEM);

if(rc)

 {

printf("last sccRequest returned %#X\n", rc);

 }

else if(rb_OEM.Status)

 {

/� We have a good rc, so the request went to the card

�� and now we need to check the card's answer.

 �/

printf("last sccRequest.Status %#X\n", rb_OEM.Status);

 }

 else

 {

/� We have a good rc (transport) and good status (OEM_card).

�� Therefore we have a last message to print.

 �/

printf("last message received: '%s'\n", buf);

 }

/� Indicate we no longer need to talk to the coprocessor.

�� Always good to be polite.

 �/

sccCloseAdapter(adpt);

return(rc);

}/�main()�/

/�end-of-c-file�/

How to Compile and Link the Sample Programs
OEM_host.c should be compiled and linked just like any other application on the
host. Link with libscc.a and libodm.a on AIX, with crypto.lib on OS/2, and with
cryptont.lib on Windows NT.

Refer to the IBM 4758 PCI Cryptographic Coprocessor Custom Software
Developer’s Toolkit Guide for information on how to compile and link OEM_card.c
(the coprocessor application) and how to load the executable into the coprocessor.

The host application and the coprocessor application must agree on the packing
conventions for structures used in the interface between them (defined in
OEM_hdr.h and the various SCC .h files). You may need to add pragmas to these
files to ensure this is the case.

 Chapter 1. Overview 1-9

 19-SEP-01, 15:06 Release 2.40

1-10 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

 Chapter 2. Host-Side API

The host-side portion of the SCC API (host API) allows an application running on
the host to exchange information with an application running on a cryptographic
coprocessor. The host API provides a uniform interface for applications running on
AIX, OS/2, and Windows NT.

Host API calls can be used to determine the number of cryptographic coprocessors
installed in the host, establish a communications channel to a specific coprocessor,
exchange information via the channel with a specific application running on the
coprocessor, and close the channel.

This chapter describes each of the functions supplied by the host API. Each
description includes the function prototype (in C), the inputs to the function, the
outputs returned by the function, and the most common return codes generated by
the function.

 General Information

Host-Side API Functions
The host API includes the following functions:

sccAdapterCount Determine the number of cryptographic coprocessors
installed in the host. See page 2-3.

sccGetAdapterID Obtain coprocessor identification data. See page 2-4.

sccOpenAdapter Establish a communications channel to a specific
coprocessor. See page 2-6.

sccRequest Send a request across an open communications channel to a
specific application and receive the reply. See page 2-8.

sccCloseAdapter Close a communications channel that was previously opened
via a call to sccOpenAdapter. See page 2-12.

All host API calls are synchronous (that is, the calls do not return until the
corresponding function is complete).

 Header Files
The prototypes for these functions are contained in scc_host.h. Other header files
used to create host applications are scctypes.h and scc_err.h. The code that
implements the host API functions is in libscc.a on AIX, in crypto.lib on OS/2, and
in cyptont.lib on Windows NT. The NT library is included in the IBM 4758
Application Program Development Toolkit. Refer to the IBM 4758 PCI
Cryptographic Coprocessor Custom Software Developer’s Toolkit Guide for details.
On AIX, the cryptographic coprocessor uses the object data manager (ODM) and
both libscc.a and the ODM library must be linked with an application.

The prototypes in scc_host.h include keywords, preprocessor directives, or both
that ensure the functions are called using the appropriate linkage convention
regardless of the default linkage convention in effect during compilation. For clarity,
the prototypes that appear in this chapter do not include this syntax.

 Copyright IBM Corp. 1998, 2001 2-1

 19-SEP-01, 15:06 Release 2.40

 Sample Code
Examples of the use of many of the host API functions can be found in the
following files shipped with the IBM 4758 PCI Cryptographic Coprocessor Custom
Software Developer’s Toolkit:

 � scctk\src\samples\oem_samp\OEM_host.c
 � scctk\src\samples\rte\hre.c
 � scctk\src\samples\skeleton\host\skelhost.c

 Error Codes
Appendix A, “Error Code Formatting” on page A-1 describes the format of a return
code. Note that although the host API calls return a 32-bit return code, in some
cases the low order bits of the value contain additional information rather than a
constant value:

� If the cryptographic coprocessor’s power-on self test (POST) fails, a host API
call may return POST_ERR in the high order 16 bits of the return code and a
value that identifies the specific POST checkpoint that failed in the low order 16
bits. POST checkpoint identifiers are subject to change and are not made
publicly available.

� If the cryptographic coprocessor microcode detects an attempt to tamper with
the physical security of the card, a host API call may return
HDDSecurityTamper in the high order 24 bits of the return code and the state
of the hardware tamper bits (defined in scctypes.h) in the low order 8 bits.

� If a host API call invokes the host operating system for service and the
invocation fails, the host API call may return HOST_OS_ERR in the high order
16 bits of the return code and the error code returned by the system call (or a
portion of it) in the low order 16 bits.

2-2 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

sccAdapterCount - Count Installed Coprocessors
sddAdapterCount determines the number of cryptographic coprocessors installed in
the host computer.

 Function Prototype
long sccAdapterCount(sccAdapterNumber_t �pAdapterCount);

 Input
On entry to this routine:

pAdapterCount must contain the address of a variable in which an item of type
sccAdapterNumber_t can be stored.

 Output
On successful exit from this routine:

�pAdapterCount contains the number of coprocessors installed in the host.

 Notes
Coprocessors Counted During Boot

The number of coprocessors installed on the host is determined by the device
driver for the cryptographic coprocessor when the host is booted and is not updated
to reflect any physical changes to the system (for example, removal of a
coprocessor while the host is suspended or in hibernation) until a subsequent
reboot.

sccAdapterNumber_t is Arithmetic

An item of type sccAdapterNumber_t can be used in an arithmetic context (for
example, as an array index or for-loop terminal value).

 Return Codes
Common return codes generated by this routine are:

HDDGood (i.e., 0) The operation was successful.

HDDError The operation was unsuccessful.

HOST_OS_ERR An error occurred on a call to the host operating system (the
low-order 16 bits contain the return code from the call that
failed).

Refer to scc_err.h for a comprehensive list of return codes.

 Chapter 2. Host-Side API 2-3

 19-SEP-01, 15:06 Release 2.40

sccGetAdapterID - Get Coprocessor Identification
sccGetAdapterID obtains information about the coprocessor’s hardware level from
the AMCC S5933 PCI Controller’s configuration registers.

 Function Prototype
long sccGetAdapterID(sccAdapterNumber_t AdapterNumber,

 sccAdapterID_t �pAdapterID);

 Input
On entry to this routine:

AdapterNumber uniquely identifies one of the cryptographic coprocessors installed in
the host. AdapterNumber must contain an integer greater than or equal to zero and
less than the value returned in the �pAdapterCount output from a call to
sccAdapterCount.

pAdapterID must contain the address of a variable in which an item of type
sccAdapterID_t can be stored.

 Output
On successful exit from this routine:

�pAdapterID contains information about the coprocessor’s hardware level. The
fields of the sccAdapterID_t structure are set as follows:

� VendorID is the contents of the AMCC S5933’s Vendor Identification Register
(VID). This value matches the 16-bit word at offset zero in the AMCC_EEPROM

field returned by sccGetConfig.
� DeviceID is the contents of the AMCC S5933’s Device Identification Register

(DID). This value matches the 16-bit word at offset 2 in the AMCC_EEPROM field
returned by sccGetConfig.

� RevisionID is the contents of the AMCC S5933’s Revision Identification
Register (RID). This value matches the byte at offset 8 in the AMCC_EEPROM field
returned by sccGetConfig.

� ReservedByte is zero.
� ReservedShort is zero.
� ReservedLong is zero.

 Notes
sccOpenAdapter Not Required

A host application may call sccGetAdapterID before a communications channel to
the coprocessor is opened via sccOpenAdapter.

2-4 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

 Return Codes
Common return codes generated by this routine are:

HDDGood (i.e., 0) The operation was successful.

HDDError The operation was unsuccessful.

HOST_OS_ERR An error occurred on a call to the host operating system (the
low-order 16 bits contain the return code from the call that
failed).

Refer to scc_err.h for a comprehensive list of return codes.

 Chapter 2. Host-Side API 2-5

 19-SEP-01, 15:06 Release 2.40

sccOpenAdapter - Open Channel to Coprocessor
sccOpenAdapter establishes a communications channel between a host application
and a specific coprocessor. The host application may interact with any application
running on the coprocessor via the channel and may only interact with applications
on coprocessors with which communications channels have been established.

 Function Prototype
long sccOpenAdapter(sccAdapterNumber_t AdapterNumber,

 sccAdapterHandle_t �pAdapterHandle);

 Input
On entry to this routine:

pAdapterHandle must contain the address of a variable in which an item of type
sccAdapterHandle_t can be stored.

AdapterNumber uniquely identifies one of the cryptographic coprocessors installed in
the host. AdapterNumber must contain an integer greater than or equal to zero and
less than the value returned in the �pAdapterCount output from a call to
sccAdapterCount.

 Output
On successful exit from this routine:

�pAdapterHandle contains a handle that can be used in subsequent host API calls
to identify the cryptographic coprocessor to which the call refers.

 Notes
Assignment of Numbers to Coprocessors

The number assigned to a particular cryptographic coprocessor depends on the
order in which information about devices in the system is presented to the device
driver by the host operating system. At the present time there is no way to tell a
priori which coprocessor will be assigned a given number.

Multiple Communications Channels

A host application may establish communications channels to more than one
coprocessor by calling sccOpenAdapter multiple times with different AdapterNumber
arguments. A host application may also establish more than one communications
channel to a single coprocessor by calling sccOpenAdapter multiple times with the
same AdapterNumber argument. In either case, each call to sccOpenAdapter
returns a new handle in �pAdapterHandle.

2-6 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

 Return Codes
Common return codes generated by this routine are:

HDDGood (i.e., 0) The operation was successful.

HDDInvalidParm One or more inputs were not valid.

HDDTooManyOpens The device driver or host operating system cannot create a
new communications channel due to lack of resources.

HDDAccessDenied The device driver cannot open a communications channel
to interact with an application on the adapter because
another process on the host already has a channel open in
order to interact with the adapter’s system software.

HDDDeviceBusy The cryptographic coprocessor is still booting up; try again
later.

HDDError The operation was unsuccessful.

HOST_OS_ERR An error occurred on a call to the host operating system
(the low-order 16 bits contain the return code from the call
that failed).

Refer to scc_err.h for a comprehensive list of return codes.

 Chapter 2. Host-Side API 2-7

 19-SEP-01, 15:06 Release 2.40

sccRequest - Send Request to Coprocessor Application
sccRequest sends a request across a communications channel to a specific
application running on the target coprocessor and waits for and receives the
application’s reply.

 Function Prototype
long sccRequest(sccAdapterHandle_t AdapterHandle,

 sccRB_t �pRequestBlock);

 Input
On entry to this routine:

AdapterHandle uniquely identifies a communications channel to one of the
cryptographic coprocessors installed in the host. AdapterHandle must contain the
handle returned in the �pAdapterHandle output from a call to sccOpenAdapter.

pRequestBlock must contain the address of a request block whose fields are
initialized as follows:

� AgentID identifies the coprocessor application to which the request is to be
sent. See “sccSignOn - Register to Receive Requests” on page 3-9 for details.

� reserved must be zero.

� UserDefined contains an arbitrary value. The coprocessor application receives
this value as soon as a call it makes to sccGetNextHeader returns with
information about the request.

The host application will typically set this field to a value that identifies the
action the coprocessor application is to perform on behalf of the host
application, although it need not be used in this manner.

� pOutBuffer and OutBufferLength define as many as four buffers from which the
coprocessor application may read data. pOutBuffer[i] is the address of the
first byte of a buffer and OutBufferLength[i] is the length in bytes of the buffer
(which must be a multiple of 4). The coprocessor application calls
sccGetBufferData to read the contents of a buffer and consequently has
complete control over which buffers are read and when a buffer is read,
although whenever the coprocessor application reads a buffer it reads the
entire buffer at once.

These buffers should be aligned on a 4-byte boundary for the best
performance.1

The device driver and CP/Q++ operating system ensure that a coprocessor
application cannot read past the end or prior to the start of a buffer. The host
application should set any unused pOutBuffer entries to NULL and the
corresponding OutBufferLength entries to zero to avoid inadvertently allowing a
coprocessor application to read data it is not authorized to see.

� pInBuffer and InBufferLength define as many as four buffers into which the
coprocessor application may write data. pInBuffer[i] is the address of the
first byte of a buffer and InBufferLength[i] is the length in bytes of the buffer
(which must be a multiple of 4). The coprocessor application calls

1 If pOutBuffer[i] is not aligned on a 4-byte boundary, the device driver must copy it to an aligned buffer before it can be read.

2-8 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

sccPutBufferData or sccEndRequest to write data to a buffer and consequently
has complete control over which buffers are written and when a buffer is
written, although whenever the coprocessor application writes data to a buffer
the first byte of data is written to the first byte of the buffer.

These buffers should be aligned on a 4-byte boundary for best performance.2

The device driver and CP/Q++ operating system ensure that a coprocessor
application cannot write past the end or prior to the start of a buffer. The host
application should set any unused pInBuffer entries to NULL and the
corresponding InBufferLength entries to zero to avoid inadvertently allowing a
coprocessor application to write to areas it is not authorized to modify.

 Output
On successful exit from this routine:

The following fields of �pRequestBlock are changed as noted:

� The buffers defined by pInBuffer and InBufferLength on entry to the routine
may contain information written by the coprocessor application via a call to
sccPutBufferData or sccEndRequest. InBufferLength[i] is updated to reflect
the actual number of bytes written by the coprocessor application to the
corresponding buffer (and must be a multiple of 4).

� The coprocessor application calls sccEndRequest to indicate that it has finished
processing a request, at which point sccRequest returns to the host application.
Status is set to the value of the last argument passed by the coprocessor
application to sccEndRequest.

 Notes
Length of Reply Unknown

The host application may not know a priori how much data the coprocessor
application may write to a buffer. In this case, the host application must ensure the
buffer is large enough to hold the largest possible result. The actual length of the
result will appear in the appropriate InBufferLength entry after the call to
sccRequest returns.

Overlapped Input and Output Buffers

The behavior of a coprocessor application is undefined if a buffer from which the
application reads data and a buffer to which the application writes data overlap. In
particular, if the coprocessor application writes data to a buffer and then reads from
the same buffer, it may see the original contents of the buffer, the new contents of
the buffer, a mix of old and new contents, or random bytes.

Changes to Buffers while Request Outstanding

Because the coprocessor application may access any of the buffers defined by the
pOutBuffer and pInBuffer fields at any time, the host application must not modify,
reuse, or deallocate any part of the buffers before the call to sccRequest returns.

2 If pInBuffer[i] is not aligned on a 4-byte boundary, the device driver must place data written by the coprocessor to pInBuffer[i]
in an aligned buffer and then copy that buffer to pInBuffer[i].

 Chapter 2. Host-Side API 2-9

 19-SEP-01, 15:06 Release 2.40

The effect of changes to the buffers while a request is outstanding is undefined. In
particular,

� If the coprocessor application reads a buffer, the host application changes the
contents of the buffer, and the coprocessor application reads the buffer again,
the value the coprocessor application sees may be the original contents of the
buffer, the new contents of the buffer, a mix of old and new contents, or
random bytes.

� If the coprocessor application writes a buffer and subsequently writes the buffer
a second time, the value written the first time may never be visible to the host
application.

| Operating System Requests (sccGetConfig and sccQueryAgent)

| A host application may use sccRequest to obtain certain information directly from
| the coprocessor operating system. To direct a request to the coprocessor
| operating system, the host application must set the AgentID field in the request
| block to zeros. The following requests are supported:

| sccGetConfig

| In response to this request, the coprocessor operating system returns information
| about the coprocessor. On entry to sccRequest, the fields in the request block
| must be set as follows:

| � UserDefined must be 3.
| � InBufferLength[2] must be a positive multiple of 4 no larger than
| (sizeof(sccAdapterInfo_t) + 3)/4)�4.
| � pInBuffer[2] must be the address of a buffer to which information about the
| coprocessor can be written. The buffer must be at least as long as the value
| passed in InBufferLength[2].

| On return from sccRequest, the Status field of the request block is zero and
| �(pInBuffer[2]) contains a structure of type sccAdapterInfo_t (or as much of
| such a structure as will fit in the space provided) containing the same information
| the sccGetConfig function returns (see “sccGetConfig - Get Coprocessor
| Configuration” on page 3-94 for details).

| If InBufferLength[2] is invalid on entry to sccRequest, the Status field of the
| request block on return from sccRequest is 0x80410003.

| sccQueryAgent

| In response to this request, the coprocessor operating system indicates whether a
| coprocessor application with a particular agent identifier has registered to receive
| requests. On entry to sccRequest, the fields in the request block must be set as
| follows:

| � UserDefined must be 6.
| � OutBufferLength[2] must be (sizeof(sccAgentID_t) + 3)/4)�4.
| � pOutBuffer[2] must be the address of a buffer containing the agent identifier to
| be queried. The buffer must be at least as long as the value passed in
| OutBufferLength[2].

| On return from sccRequest, the Status field of the request block is zero if the agent
| identifier passed in �(pOutBuffer[2]) is known to the coprocessor operating

2-10 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

| system (that is, if a coprocessor application has passed the agent identifier as an
| argument to sccSignOn) and is 0x80410004 if the agent identifier passed in
| �(pOutBuffer[2]) was not found.

 Return Codes
Common return codes generated by this routine are:

HDDGood (i.e., 0) No error occurred on a call to the host operating system.

HDDError The operation was unsuccessful.

HOST_OS_ERR An error occurred on a call to the host operating system
(the low-order 16 bits contain the return code from the call
that failed).

Refer to scc_err.h for a comprehensive list of return codes.

A return code of zero does not imply that the request was successfully delivered to
the coprocessor application, or that the coprocessor application successfully
processed the request. A host application should always check both the return
code and the Status field of the request block to determine whether or not the
request was successfully completed.

Common nonzero values placed in the Status field by the device driver or the
coprocessor operating system are:

HDDInvalidLength The length of a buffer associated with the request is not a
multiple of 4.

HDDInvalidParm One or more inputs were not valid.

HDDDeviceBusy Due to the lack of resources, a new request cannot be
initiated until a pending request has completed. Try again
later.

HDDRequestAborted The request was aborted (for example, because an
application on the coprocessor faulted).

HDDBufferTooSmall A buffer from which the coprocessor application attempted
to read or to which the coprocessor application attempted
to write is not valid or too short.

HDDSecurityTamper The coprocessor’s tamper detection mechanisms have
been triggered.

HDDError The operation was unsuccessful.

CM_UNDELIVERABLE The identifier in pRequestBlock->AgentID does not match
the identifier of any registered agent on the coprocessor.

The coprocessor application may also place a nonzero value in the Status field;
see “sccEndRequest - Return Result of Request to Host” on page 3-19 for details.

 Chapter 2. Host-Side API 2-11

 19-SEP-01, 15:06 Release 2.40

sccCloseAdapter - Close Channel to Coprocessor
sccCloseAdapter closes a communications channel that was previously opened via
a call to sccOpenAdapter.

 Function Prototype
long sccCloseAdapter(sccAdapterHandle_t AdapterHandle);

 Input
On entry to this routine:

AdapterHandle uniquely identifies a communications channel to one of the
cryptographic coprocessors installed in the host. AdapterHandle must contain the
handle returned in the �pAdapterHandle output from a call to sccOpenAdapter.

 Output
On successful exit from this routine:

The communications channel identified by AdapterHandle has been closed. The
handle should not be subsequently passed as an argument to any host API
function.

 Return Codes
Common return codes generated by this routine are:

HDDGood (i.e., 0) The operation was successful.

HDDInvalidParm One or more inputs were not valid.

HDDError The operation was unsuccessful.

HOST_OS_ERR An error occurred on a call to the host operating system (the
low-order 16 bits contain the return code from the call that
failed).

Refer to scc_err.h for a comprehensive list of return codes.

2-12 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

 Chapter 3. Coprocessor-Side API

The coprocessor-side portion of the SCC API (coprocessor API) allows an
application running on a cryptographic coprocessor to request services from the
various device managers running on the coprocessor and to exchange information
with an application running on the host in which the cryptographic coprocessor is
installed.

Coprocessor API calls can be used to perform various cryptographic operations
(including DES and public key encryption and decryption, hashing, general large
integer modular functions, and random number generation), manage sensitive data
stored in the coprocessor’s secure memory, and receive requests from and return
results to applications running on the host. A coprocessor application can also
make calls directly to the CP/Q base operating system and to the C run-time
library. These APIs are described in the IBM 4758 PCI Cryptographic Coprocessor
CP/Q Operating System Application Programming Reference and the IBM 4758
PCI Cryptographic Coprocessor CP/Q Operating System C Runtime Library
Reference.

This chapter describes each of the functions supplied by the coprocessor API.
Each description includes the function prototype (in C), the inputs to the function,
the outputs returned by the function, and the most common return codes generated
by the function.

 General Information

Coprocessor-Side API Functions
The coprocessor API includes functions in the following categories:

 � Host communication
 � Hash functions
� Data Encryption Standard (DES) operations
� Public key algorithms
� Large integer modular arithmetic
� Random number generator
� Nonvolatile memory management

 � Coprocessor configuration
� Outbound authentication (4758 Model 002/023 only)
� Serial communication (4758 Model 002/023 only)

Many coprocessor API functions have both a synchronous form (that is, the call
does not return until the corresponding function is complete) and an asynchronous
form (that is, the call enqueues a message for the appropriate CP/Q++ device
manager and returns without waiting for the manager to perform the requested
action). See “Synchronous and Asynchronous Calls” on page 1-3 for an overview
of asynchronous calls under CP/Q.

 Copyright IBM Corp. 1998, 2001 3-1

 19-SEP-01, 15:06 Release 2.40

Host Communication Functions

These functions allow a coprocessor application to interact with a host application
and obtain permission to request services from the coprocessor device managers:

sccSignOn Register a coprocessor application so that a host application
can direct requests to it and so it can request cryptographic
and other sensitive services from the coprocessor device
managers. See page 3-9.

sccGetNextHeader Get the next request sent from the host to the coprocessor
application. See page 3-12.

sccGetBufferData Read data from the host application. See page 3-14.

sccPutBufferData Write data to the host application. See page 3-16.

sccEndRequest Return the result of a request to the host application. See
page 3-19.

Hash Functions

These functions allow a coprocessor application to compute a condensed
representation of a block of data using various standard hash algorithms:

sccSHA1 Compute the hash of a block of data using the Secure Hash
Algorithm (SHA-1) as defined in FIPS Publication 180-1. See
page 3-22.

DES Functions

These functions allow a coprocessor application to request services from the Data
Encryption Standard (DES) Manager, which uses the coprocessor’s DES chip to
support DES operations with key lengths of 40, 56, 112, or 168 bits and the
Commercial Data Masking Facility (CDMF) algorithm:1

sccDES8bytes Encipher or decipher eight bytes of data using the
DES algorithim. See page 3-26.

sccDES Encipher or decipher an arbitrary amount of data or
generate a message authentication code using the
DES algorithm. See page 3-28.

sccDES3Key Triple-encipher (wrap) or triple-decipher (unwrap) a
cryptographic key using the DES algorithm. See
page 3-32.

sccTDES Encipher or decipher an arbitrary amount of data or
generate a message authentication code using the
triple-DES algorithm. See page 3-34.

sccEDE3_3DES Perform an EDE3 mode triple-DES operation. See
page 3-38.

sccTransformCDMFKey Transform a DES key into a key for use with the
CDMF algorithm. See page 3-40.

1 CDMF is a DES-based data confidentiality algorithm with a key strength equivalent to 40 bits. In general, it is used when import
or export regulations prohibit the use of longer keys.

3-2 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

Public Key Algorithm Functions

These functions allow a coprocessor application to request services from the Public
Key Algorithm (PKA) Manager, which uses the coprocessor’s large-integer modular
math hardware to support public key cryptographic algorithms:

sccRSAKeyGenerate Generate an RSA key pair. See page 3-47.

sccRSA Encipher or decipher a block of data using the RSA
algorithm or wrap or unwrap an X9.31 encapsulated
hash. See page 3-50.

sccComputeBlindingValues Compute blinding values used to defeat
timing-based attacks against an RSA key. See
page 3-55.

sccDSAKeyGenerate Generate a DSA key pair. See page 3-59.

sccDSA Sign or verify the signature for an arbitrary amount
of data using the DSA algorithm. See page 3-62.

Large Integer Modular Math Functions

These functions allow a coprocessor application to direct the PKA Manager to
perform specific operations on large integers:

sccModMath Perform a modular multiplication (C = A x B mod N),
modular exponentiation (C = AB mod N), or modular
reduction (C = A mod N). See page 3-67.

Random Number Generator Functions

These functions allow a coprocessor application to request services from the
Random Number Generator (RNG) Manager, which uses a hardware noise source
and a pseudo-random number generator to deliver random bits that meet the
standards described in FIPS Publication 140-1, section 4.11:

sccGetRandomNumber Generate a 64-bit random number. See page 3-70.

sccTestRandomNumber Ensure the random number generator meets the
applicable FIPS standards. See page 3-73.

Nonvolatile Memory Functions

These functions allow a coprocessor application to request services from the
Program Proprietary Data (PPD) Manager, which controls the coprocessor’s
nonvolatile memory areas (flash memory and battery-backed RAM [BBRAM]):

sccQueryPPDSpace Determine the amount of free space in nonvolatile
memory. See page 3-77.

sccCreate4UpdatePPD Create space in nonvolatile memory to hold data. See
page 3-78.

sccSavePPD Store data in nonvolatile memory. See page 3-80.

sccUpdatePPD Update data in nonvolatile memory. See page 3-83.

sccGetPPDDir Determine the number of items in nonvolatile memory
that belong to the caller. See page 3-85.

 Chapter 3. Coprocessor-Side API 3-3

 19-SEP-01, 15:06 Release 2.40

sccGetPPDLen Determine the length of an item stored in nonvolatile
memory. See page 3-87.

sccGetPPD Retrieve data from nonvolatile memory. See page
3-88.

sccDeletePPD Delete data from nonvolatile memory. See page 3-90.

sccDeleteAllPPD Delete all items that belong to the caller from
nonvolatile memory. See page 3-92.

Data saved in the coprocessor’s nonvolatile memory persists when the coprocessor
loses power or is rebooted. Data saved in flash memory persists even when the
coprocessor detects an attempt to tamper with the hardware, so sensitive
information should be encrypted before it is saved in flash memory. BBRAM is
automatically cleared when the coprocessor detects an attempt to tamper with the
hardware, so data saved in BBRAM need not be encrypted first.

Coprocessor Configuration Functions

These functions configure certain processor features or return information about the
coprocessor:

sccGetConfig Get information about the coprocessor. See page 3-94.

sccSetClock Set the coprocessor time-of-day (TOD) clock. See page
3-97.

sccClearILatch Clear the coprocessor intrusion latch. See page 3-98.

sccClearLowBatt Clear the coprocessor low battery warning latch. See page
3-99.

Outbound Authentication Functions (4758 Model 002/023 Only)

 Note

These functions are not available on the 4758 model 001/013.

These functions allow a coprocessor application to authenticate itself to an
application on the host:

sccOAGetDir Count or list all certificates. See page 3-122.

sccOAGetCert Retrieve a certificate. See page 3-125.

sccOAGenerate Generate a keypair and a certificate that contains the public
half of the keypair. See page 3-127.

sccOADelete Delete a certificate and the corresponding keypair. See page
3-130.

sccOAPrivOp Perform an operation using one of the keys from a keypair.
See page 3-132.

sccOAVerify Verify the signature in one certificate using the public key
from another certificate. See page 3-135.

sccOAStatus Obtain information about the contents of the coprocessor.
See page 3-137.

3-4 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

Serial Communication Functions (4758 Model 002/023 Only)

 Note

These functions are not available on the 4758 model 001/013.

ASYNopen Open the serial port. See page 3-140.

ASYNioctl Change settings on an open serial port. See page 3-144.

ASYNread Read data from the serial line. See page 3-146.

ASYNwrite Write data to the serial line. See page 3-148.

ASYNdrain Wait for data written to the serial line to be transmitted. See
page 3-150.

ASYNflush Purge data awaiting transmission or receipt. See page
3-152.

ASYNclose Close the serial port. See page 3-154.

 Header Files
The prototypes for most coprocessor API functions are contained in scc_int.h. The
prototypes for the Outbound Authentication functions are in scc_oa.h, and the
prototypes for the Serial Communication functions are in asynlib.h. Many other
header files are used to create coprocessor applications, including scctypes.h and
scc_err.h. These files are included in the IBM 4758 Application Program
Development Toolkit. Refer to the IBM 4758 PCI Cryptographic Coprocessor
Custom Software Developer’s Toolkit Guide for details.

 Sample Code
Examples of the use of many of the coprocessor API functions can be found in the
following files shipped with the IBM 4758 PCI Cryptographic Coprocessor Custom
Software Developer’s Toolkit:

Host Communication Functions

 � scctk\src\samples\oem_samp\OEM_card.c
 � scctk\src\samples\rte\rte.c
 � scctk\src\samples\skeleton\scc\skelscc.c

Hash Functions

 � scctk\src\samples\skeleton\hshserv\hshserv.c

DES Functions

 � scctk\src\samples\skeleton\desserv\desserv.c

Public Key Algorithm Functions

 � scctk\src\samples\skeleton\pkaserv\pkaserv.c

Large Integer Modular Math Functions

 � scctk\src\samples\skeleton\limserv\limserv.c

 Chapter 3. Coprocessor-Side API 3-5

 19-SEP-01, 15:06 Release 2.40

Random Number Generator Functions

 � scctk\src\samples\skeleton\rngserv\rngserv.c

Nonvolatile Memory Functions

 � scctk\src\samples\skeleton\ppdserv\ppdserv.c

Coprocessor Configuration Functions

 � scctk\src\samples\skeleton\ralserv\ralserv.c

Outbound Authentication Functions

 � scctk\src\samples\oa

Serial Communication Functions

 � scctk\src\samples\serial

Serialization of Requests
In general, a single CP/Q++ device manager provides the services for all the
functions in a particular category. And each device manager typically serializes all
the requests it receives, since there is only a single instance of the hardware the
device manager controls. This means that a request for service must wait until all
previously received requests have completed. For example, if two applications (or
two tasks within the same application) call sccDES, the request that is delivered to
the DES Manager last cannot begin until the request that was delivered first has
completed. Coprocessor applications should be designed with potential bottlenecks
of this nature in mind, although functions that can take several seconds to complete
(for example, sccRSAKeyGenerate) do attempt to yield to less demanding requests
before starting certain time-consuming operations.

Furthermore, each device manager has a priority. A manager at a less favored
(numerically higher) priority will not run if a manager at a more favored (numerically
lower) priority is runnable:

Table 3-1 (Page 1 of 2). CP/Q++ Device Manager Priority

Device Manager

Priority (the smaller number is the more favored
priority)

OA Manager Priority 3 (if present)

Session Manager Priority 4* (Priority 3 if OA Manager is not present)

RNG Manager Priority 9 (second task at 8)

Serial port driver Priority 6 (if present)

Communications Manager Priority 7

DES Manager Priority 11

SCC Manager Priorities 12, 16, and 17**

PKA Manager Priority 14

PPD Manager Priority 15

Debug probe Priority 18*

3-6 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

Applications created using the Developer’s Toolkit are launched at priority 22. Note
therefore that an application cannot run if any device manager has work to do.2

Furthermore, because requests from the host must be processed by an application,
a request that uses the services of a more favored manager cannot be serviced if a
less favored manager is running. For example, if an application begins a DES
operation, a host request that invokes the services of the RNG Manager cannot be
serviced by the application until the DES Manager yields the CPU, even though the
RNG Manager is more favored than the DES Manager.

Table 3-1 (Page 2 of 2). CP/Q++ Device Manager Priority

Device Manager

Priority (the smaller number is the more favored
priority)

* Present only in the kernel that supports the debugging of applications.
** The SCC Manager process incorporates three tasks, each running a different

executable, and each with a different priority.

Note: The listed priorities apply to those parts of the system that are statically built.
For example, when the RNG Manager runs it creates a second task which is at
priority 5.

 Error Codes
Appendix A, “Error Code Formatting” on page A-1 describes the format of a return
code. For synchronous functions, the return code generally indicates whether or
not the requested operation was successfully completed. For asynchronous
functions, the return code simply indicates whether or not the request was
successfully sent to the proper CP/Q++ device manager.

Any coprocessor API function may return an error code generated by a CP/Q
system call. Refer to the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for more information.

2 An application may run if the device manager is waiting for the hardware the manager controls to complete an operation.

 Chapter 3. Coprocessor-Side API 3-7

 19-SEP-01, 15:06 Release 2.40

3-8 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

Host Communication Functions
The functions described in this section allow a coprocessor application to interact
with a host application and obtain permission to request services from the
coprocessor device managers.

sccSignOn - Register to Receive Requests
sccSignOn registers a coprocessor application with the SCC Manager so that it can
receive requests from the host. Registration is also required to request
cryptographic and other sensitive services from the CP/Q++ device managers.

 Function Prototype
 long sccSignOn(sccAgentID_t �pAgentID,

 unsigned long �pMsgQID);

 Input
On entry to this routine:

pAgentID must contain the address of an agent identifier structure whose fields are
initialized as follows:3

� DeveloperID uniquely identifies the developer that developed the application.
Developer identifiers are assigned by IBM.4

� ProgramID contains an arbitrary string that identifies the application. The string
is not null terminated and should be padded if necessary to occupy the entire
field. The developer identified by DeveloperID may load several different
applications into the coprocessor.5 Each application must have a distinct
ProgramID.

� Several versions (or releases) of an application may be loaded into the
coprocessor.5 Different versions are distinguished by the values in the Version

field of their respective agent identifiers.

� CP/Q is a multitasking operating system and consequently several identical
copies of an application may be loaded into the coprocessor.5 Different
instantiations are distinguished by the values in the Instance field of their
respective agent identifiers.

� An application may define several logical message queues on which it will
receive requests.6 Different logical message queues are distinguished by the
values in the Queue field of their respective agent identifiers.

Note that each logical message queue may map to a distinct CP/Q message
queue, or the traffic for several logical message queues may be multiplexed
onto a single CP/Q message queue. See the following description of the
pMsgQID argument.

3 See “Interpretation of Agent Identifier” on page 3-10.

4 A developer identifier is typically the same as the owner identifier for segment 3. Refer to the IBM 4758 PCI Cryptographic
Coprocessor Custom Software Developer’s Toolkit Guide for more information.

5 Although it is possible to download several applications to the coprocessor, only one is actually run at present.

6 For example, the application might define one queue for urgent requests and another for normal requests and always service
requests on the former first.

 Chapter 3. Coprocessor-Side API 3-9

 19-SEP-01, 15:06 Release 2.40

pMsgQID determines the CP/Q message queue on which requests from the host
addressed to the coprocessor application are placed:7

� If pMsgQID is NULL, requests from the host will be placed on the default
message queue for the task that invoked sccSignOn.

� If pMsgQID is not NULL,

– If �pMsgQID is nonzero, it is the identifier of the message queue8 on which
requests from the host should be placed.

– If �pMsgQID is zero, sccSignOn creates a new message queue on which
requests from the host will be placed.

See “Synchronous and Asynchronous Calls” on page 1-3 for a brief description of
messaging and message queues in CP/Q.

 Output
On successful exit from this routine:

If pMsgQID is not NULL, �pMsgQID identifies the CP/Q message queue on which
requests from the host addressed to the coprocessor application will be placed.
This message queue identifier must be passed to sccGetNextHeader when the
coprocessor application wants to receive a request from the host.

If pMsgQID is NULL, requests from the host will be placed on the default CP/Q
message queue for the task that invoked sccSignOn. A message queue identifier
of zero must be passed to sccGetNextHeader when the coprocessor application
wants to receive a request from the host.

 Notes
Interpretation of Agent Identifier

Although the fields of a sccAgentID_t structure are intended to be used in the
manner described in “Input” above, the SCC Manager does not enforce this
particular interpretation. It simply establishes a mapping from agent identifier to
CP/Q message queue. This mapping is maintained in a table which is shared
between the SCC Manager and the Communication Manager. When a request is
received from the host, the Communication Manager compares the agent identifier
in the request with each registered agent identifier, byte-for-byte, and forwards the
request to the appropriate CP/Q message queue when an exact match is found.

 Return Codes
Common return codes generated by this routine are:

SCCGood (i.e., 0) The operation was successful.

SCCBadParm Another coprocessor application has already registered using the
same agent identifier structure (�pAgentID).

7 A single CP/Q message queue may be associated with several different agent identifiers.

8 For example, a message queue created by the coprocessor application via a call to CPCreateMsgQ. Refer to the IBM 4758 PCI
Cryptographic Coprocessor CP/Q Operating System Application Programming Reference for details.

3-10 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

 Chapter 3. Coprocessor-Side API 3-11

 19-SEP-01, 15:06 Release 2.40

sccGetNextHeader - Get Next Request from Host
sccGetNextHeader retrieves the next request header from the host from a CP/Q
message queue.

 Function Prototype
 long sccGetNextHeader(sccRequestHeader_t �pRequestHeader,

 unsigned long msgQID

 unsigned long timeout);

 Input
On entry to this routine:

pRequestHeader must contain the address of a variable in which an item of type
sccRequestHeader_t can be stored.

msgQID must contain the identifier of the CP/Q message queue on which the SCC
manager was instructed to place requests addressed to the calling application when
the application invoked sccSignOn. sccGetNextHeader retrieves a request from the
message queue identified by msgQID.

If msgQID is zero, sccGetNextHeader retrieves a request from the default message
queue for the calling task.

timeout specifies the number of microseconds to wait for a request if none is
available immediately. If timeout is zero, sccGetNextHeader returns immediately
even if no request is available. If timeout is SVCWAITFOREVER,
sccGetNextHeader does not return until a request is received.

 Output
On successful exit from this routine:

�pRequestHeader contains a request removed from the head of the CP/Q message
queue specified by msgQID on entry to the routine. The fields of �pRequestHeader
are set as follows:

� AgentID contains the agent identifier of the coprocessor application to which the
request was sent as specified by the host application in the call to sccRequest
that caused the request to be sent.9 See “sccSignOn - Register to Receive
Requests” on page 3-9 for details.

� RequestID contains a handle generated by CP/Q++ that uniquely identifies the
request. This handle must be passed to sccGetBufferData when the
coprocessor application wants to read data from the host, to sccPutBufferData
when the coprocessor application wants to write data to the host, and to
sccEndRequest when the coprocessor application wants to return the result of
a request to the host.

� rsvd is undefined.

9 The agent identifier in the request logically must match the agent identifier registered with the SCC Manager that is associated
with the queue identified by msgQID (the request would not have been delivered otherwise). However, the task that retrieves a
request with sccGetNextHeader need not be the task that registered the agent identifier with sccSignOn. The task that retrieves
the request need only have authority to read the CP/Q message queue identified by msgQID. Refer to the IBM 4758 PCI
Cryptographic Coprocessor CP/Q Operating System Application Programming Reference for details.

3-12 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

� UserDefined, OutBufferLength, and InBufferLength contain the values of the
corresponding fields in the request block passed by the host application in the
call to sccRequest that caused the request to be sent. In general, UserDefined
identifies the action the coprocessor application is to perform on behalf of the
host application, OutBufferLength contains the lengths of the host application
buffers from which the coprocessor application may read data, and
InBufferLength contains the lengths of the host application buffers to which the
coprocessor application may write data.

A coprocessor application that provides sensitive services or guards sensitive
data should not assume a request was issued by a legitimate host application.

 Return Codes
Common return codes generated by this routine are:

SCCGood (i.e., 0) The operation was successful.

QSVCtimedout The timeout expired before a request was received
from the host.

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

 Chapter 3. Coprocessor-Side API 3-13

 19-SEP-01, 15:06 Release 2.40

sccGetBufferData - Read Data from Host
sccGetBufferData reads data from a buffer supplied by the host application as part
of a request.

 Function Prototype
 long sccGetBufferDataAsync(sccRequestID_t requestID,

 sccBufferID_t bufIdx,

 void �pBuffer,

 unsigned long buflen,

 unsigned long �pMsgID);

 #define sccGetBufferData(r,bi,pb,bl) sccGetBufferDataAsync(r,bi,pb,bl,NULL)

 Input
On entry to this routine:

requestID is the handle of the request with which the buffer to be read is
associated. requestID must contain the handle returned in the
pRequestHeader->RequestID output from a call to sccGetNextHeader.

A host application may associate as many as four readable buffers with a single
request. bufIdx is the index of the buffer the coprocessor application wants to
read and must be greater than or equal to zero and less than four.

pBuffer must contain the address of a buffer to which the contents of the buffer
supplied by the host application may be copied. The buffer referenced by pBuffer
must be aligned on a 4-byte boundary. The first byte of the buffer supplied by the
host application is always the first byte copied, and it is always placed in the first
byte of the buffer referenced by pBuffer.

bufLen is the length of the buffer referenced by pBuffer. bufLen must be a
multiple of four equal to the value returned in the
pRequestHeader->OutBufferLength[bufIdx] output from a call to
sccGetNextHeader.

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until the contents of the buffer supplied by the host application have
been completely copied into the buffer referenced by pBuffer.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the Communications Manager
instructing it to transfer data from the host.

 Output
On successful exit from this routine:

If pMsgID is NULL, the buffer referenced by pBuffer contains a copy of the contents
of the appropriate host application buffer.

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
Communications Manager to initiate the transfer of data from the host. When the
transfer is complete, the Communications Manager will send the coprocessor

3-14 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

application a message whose type field (MSG.h.msg_type) contains this identifier
and whose first (and only) data item (MSG.msg_data[2]) contains the return code
generated by the routine.10 The message is placed on the default CP/Q message
queue for the task that called sccGetBufferDataAsync. Refer to the IBM 4758 PCI
Cryptographic Coprocessor CP/Q Operating System Application Programming
Reference for details.

 Notes
Use of Host Application Buffers

The coprocessor application may use the buffers provided by the host application in
any manner agreed to by the two applications. The SCC API does not interpret the
contents of the buffers nor does it require that the buffers be read in a specific
order or limit the number of times the contents of a buffer may be read.

Changes to Buffers while Request Outstanding

The effect of changes to the buffers while a request is outstanding is undefined. In
particular, if the coprocessor application reads a buffer, the host application
changes the contents of the buffer, and the coprocessor application reads the
buffer again, the value the coprocessor application sees may be the original
contents of the buffer, the new contents of the buffer, a mix of old and new
contents, or random bytes.

 Return Codes
Common return codes generated by this routine are:

SCCGood (i.e., 0) The operation was successful.

CM_INVALID_REQUEST_ID The requestID argument is not valid or host
application ended.

CM_INVALID_BUFFER_ID The buffer referenced by pBuffer is not aligned on a
4-byte boundary.

CM_INVALID_ADDRESS The buffer referenced by pBuffer is not writeable.

CM_INVALID_LENGTH The bufLen argument is not a multiple of four or is
not equal to the length of the buffer provided by the
host application.

CM_REQUEST_ABORTED The request was aborted because the host
application ended.

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

10 The return code from the call to sccGetBufferDataAsync indicates whether or not the initial message to the Communications
Manager was successfully enqueued.

 Chapter 3. Coprocessor-Side API 3-15

 19-SEP-01, 15:06 Release 2.40

sccPutBufferData - Write Data to Host
sccPutBufferData writes data to a buffer supplied by the host application as part of
a request.

 Function Prototype
 long sccPutBufferDataAsync(sccRequestID_t requestID,

 sccBufferID_t bufIdx,

 void �pBuffer,

 unsigned long buflen,

 unsigned long �pMsgID);

#define sccPutBufferData(r,bi,pb,bl) sccPutBufferDataAsync(r,bi,pb,bl,NULL)

 Input
On entry to this routine:

requestID is the handle of the request with which the buffer to be written is
associated. requestID must contain the handle returned in the
pRequestHeader->RequestID output from a call to sccGetNextHeader.

A host application may associate as many as four writeable buffers with a single
request. bufIdx is the index of the buffer the coprocessor application wants to
write and must be greater than or equal to zero and less than four.

pBuffer must contain the address of a buffer whose contents will be copied to the
buffer supplied by the host application. The buffer referenced by pBuffer must be
aligned on a 4-byte boundary. The first byte of the buffer referenced by pBuffer is
always the first byte copied and it is always placed in the first byte of the buffer
supplied by the host application.

bufLen is the length of the buffer referenced by pBuffer. bufLen must be a
multiple of four less than or equal to the value returned in the
pRequestHeader->InBufferLength[bufIdx] output from a call to sccGetNextHeader.

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until the contents of the buffer referenced by pBuffer have been
completely copied into the buffer supplied by the host application.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the Communications Manager
instructing it to transfer data to the host. In this case, the coprocessor
application must not modify, deallocate, or reuse any portion of the buffer
referenced by pBuffer before the transfer is complete.

3-16 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

 Output
On successful exit from this routine:

If pMsgID is NULL, the appropriate host application buffer contains a copy of the
contents of the buffer referenced by pBuffer.

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
Communications Manager to initiate the transfer of data to the host. When the
transfer is complete, the Communications Manager will send the coprocessor
application a message whose type field (MSG.h.msg_type) contains this identifier
and whose first (and only) data item (MSG.msg_data[2]) contains the return code
generated by the routine.11 The message is placed on either the default CP/Q
message queue for the task that called sccPutBufferDataAsync or if the task had
registered by way of sccSignOn with a nonzero message queue identifier (that is,
�pMsgQID is nonzero), then the message is placed on the task’s CP/Q message
queue registered with the sccSignOn call.

 Notes
Use of Host Application Buffers

The coprocessor application may use the buffers provided by the host application in
any manner agreed to by the two applications. The SCC API does not interpret the
contents of the buffers nor does it require that the buffers be written in a specific
order or limit the number of times the contents of a buffer may be written.

Changes to Buffers while Request Outstanding

The effect of changes to the buffers while a request is outstanding is undefined. In
particular, if the coprocessor application writes a buffer and subsequently writes the
buffer a second time, the value written the first time may never be visible to the
host application.

 Return Codes
Common return codes generated by this routine are:

SCCGood (i.e., 0) The operation was successful.

CM_INVALID_REQUEST_ID The requestID argument is not valid or host
application ended.

CM_INVALID_BUFFER_ID The buffer referenced by pBuffer is not aligned on a
4-byte boundary.

CM_INVALID_ADDRESS The buffer referenced by pBuffer is not readable.

CM_INVALID_LENGTH The bufLen argument is not a multiple of four or is
greater than the length of the buffer provided by the
host application.

CM_REQUEST_ABORTED The request was aborted because the host
application ended.

11 The return code from the call to sccPutBufferDataAsync indicates whether or not the initial message to the Communications
Manager was successfully enqueued.

 Chapter 3. Coprocessor-Side API 3-17

 19-SEP-01, 15:06 Release 2.40

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

3-18 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

sccEndRequest - Return Result of Request to Host
sccEndRequest ends a request and returns a status code to the host application
indicating whether or not the request was successful. sccEndRequest can also
write data to a buffer supplied by the host application as part of the request.

 Function Prototype
 long sccEndRequest(sccRequestID_t requestID,

 sccBufferID_t bufIdx,

 void �pBuffer,

 unsigned long buflen,

 long status);

 Input
On entry to this routine:

requestID is the handle of the request that has been completed. requestID must
contain the handle returned in the pRequestHeader->RequestID output from a call to
sccGetNextHeader.

sccEndRequest can optionally write data to a buffer supplied by the host application
in the same manner as sccPutBufferData. If it does, bufIdx is the index of the
buffer the coprocessor application wants to write and must be greater than or equal
to zero and less than four.

pBuffer may contain the address of a buffer whose contents will be copied to the
buffer supplied by the host application. If the buffer referenced by pBuffer is used
(see bufLen below), it must be aligned on a 4-byte boundary. The first byte of the
buffer referenced by pBuffer is always the first byte copied and it is always placed
in the first byte of the buffer supplied by the host application.

bufLen is the length of the buffer referenced by pBuffer. bufLen must be a
multiple of four less than or equal to the value returned in the
pRequestHeader->InBufferLength[bufIdx] output from a call to sccGetNextHeader.
If bufLen is zero, sccEndRequest does not write data to a host application buffer
and the bufIdx and pBuffer arguments are not used.

status contains an arbitrary value that is returned to the host application in the
pRequestBlock->Status output from a call to sccRequest. This is typically used as
a return code from the request indicating whether or not it was successful. See
“sccRequest - Send Request to Coprocessor Application” on page 2-8 for details.

 Output
This function returns no output. On successful exit from this routine:

The value in the status argument and any data written to the host (if bufLen is
nonzero) have been sent to the host application.

The handle in requestID is no longer valid.

 Chapter 3. Coprocessor-Side API 3-19

 19-SEP-01, 15:06 Release 2.40

 Return Codes
Common return codes generated by this routine are:

SCCGood (i.e., 0) The operation was successful.

CM_INVALID_REQUEST_ID The requestID argument is not valid or host
application ended.

CM_INVALID_BUFFER_ID The buffer referenced by pBuffer is not aligned on a
4-byte boundary.

CM_INVALID_ADDRESS The buffer referenced by pBuffer is not readable.

CM_INVALID_LENGTH The bufLen argument is not a multiple of four or is
greater than the length of the buffer provided by the
host application.

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference, CPQR-2A01 for a
comprehensive list of return codes.

3-20 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

 Hash Functions
The functions described in this section allow a coprocessor application to compute
a condensed representation of a block of data using various standard hash
algorithms.

Internal and External Buffers
The buffer from which hash functions read the block of data to hash may be
located on the cryptographic coprocessor in a coprocessor application’s address
space. Such buffers are called internal. In addition, on the 4758 model 002/023
certain hash operations (for example, SHA-1) can read their input directly from a
buffer located on the host in a host application’s address space. Such buffers are
called external.12

An internal buffer is described by a structure of type sccInternalBuffer_t. The
fields of this structure are:

� count, which specifies the length in bytes of the block of data to hash. count
must be less than 32M. Additional constraints may be imposed by particular

| hash algorithms. For example, if count is not a multiple of 4, sccSHA1 takes
| the last few bytes of its input from its request block rather than from the buffer.

� buffer, which is the address of the first byte in the buffer. Alignment
constraints may be imposed by particular hash algorithms.

An external buffer is described by a structure of type sccExternalBuffer_t. The
fields of this structure are:

� count, which specifies the length in bytes of the block of data to hash. count
must be a multiple of 4 less than 32M. Additional constraints may be imposed
by particular hash algorithms.

� request_id, which is the handle of the host request with which the buffer is
associated. request_id must contain the handle returned in the
pRequestHeader->RequestID output from a call to sccGetNextHeader.

� buffer_id. A host application may associate with a single request as many as
four readable buffers. buffer_id is the index of the buffer to be read and must
be greater than or equal to zero and less than four.

The hash functions read host buffers in the same way as sccGetBufferData.

12 On the 4758 model 002/023, DES operations can also read input from or write results to an external buffer. The SHA-1 and DES
hardware share a single path to the host, so if a coprocessor application requests a SHA-1 operation that uses an external buffer
while a DES operation that also uses an external buffer is in progress, the SHA-1 operation waits until the DES operation is
complete.

 Chapter 3. Coprocessor-Side API 3-21

 19-SEP-01, 15:06 Release 2.40

sccSHA1 - SHA-1 Hash
sccSHA1 computes the hash of a block of data using the Secure Hash Algorithm
(SHA-1).

 Function Prototype
 long sccSHA1Async(sccSHA_RB_t �pSHARB,

 unsigned long �pMsgID);

 #define sccSHA1(p) sccSHA1Async(p,NULL)

 Input
On entry to this routine:

pSHARB must contain the address of a SHA-1 operation request block whose fields
are initialized as follows:

� options controls the operation of the function and must be set to the logical OR
of constants from the following categories:

Operating Mode

options must include one of the following constants:

SHA_MSGPART_ONLY The input data constitutes the entire block of
data to be hashed. The hash value is computed
and returned.

SHA_MSGPART_FIRST The input data constitutes the first portion of a
block of data to be hashed. See “Chained
Operations” on page 3-24 for details.

SHA_MSGPART_MIDDLE The input data constitutes an additional portion
of a block of data to be hashed. See “Chained
Operations” on page 3-24 for details.

SHA_MSGPART_FINAL The input data constitutes the final portion of a
block of data to be hashed. See “Chained
Operations” on page 3-24 for details.

Source of Input

options must include one of the following constants:

SHA_INTERNAL_INPUT Read input data from an internal buffer.

SHA_EXTERNAL_INPUT Read input data from an external buffer.

See “Internal and External Buffers” on page 3-21 for details.

options must specify SHA_INTERNAL_INPUT on the 4758 model 001/013.

� source describes the location of the buffer containing the input data. If options
specifies SHA_INTERNAL_INPUT, source.internal defines an internal buffer
that contains the input. If options specifies SHA_EXTERNAL_INPUT,
source.external defines an external buffer that contains the input. See
“Internal and External Buffers” on page 3-21 for details.

If options specifies SHA_MSGPART_FIRST or SHA_MSGPART_MIDDLE,
source.internal.count or source.external.count, as appropriate, must be a
multiple of 64.

3-22 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

� final_data may hold the last few bytes of the input data. If options specifies
SHA_MSGPART_ONLY or SHA_MSGPART_FINAL and the length of the input
data (that is, the count field in the buffer descriptor contained in source) is not
a multiple of 4, the last count mod 4 bytes of input are not read from the buffer
described by source but are instead taken from final_data (starting with
final_data[2]).

final_data is not used if options does not specify SHA_MSGPART_ONLY or
SHA_MSGPART_FINAL or if the length of the input data is a multiple of 4.

� hash_value contains the hash value computed for that portion of the block of
data to hash that has been processed by prior calls to sccSHA1.13 hash_value

is used only if options specifies SHA_MSGPART_MIDDLE or
SHA_MSGPART_FINAL.

� running_length contains the number of bytes of the block of data to hash that
have been processed by prior calls to sccSHA1. running_length must be 0 if
options specifies SHA_MSGPART_FIRST or SHA_MSGPART_ONLY.

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until the requested hash operation is complete.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the DES Manager14 instructing
it to perform the desired operation. In this case, the caller must not modify,
deallocate, or reuse any portion of the request block referenced by pSHARB or
the buffer described by pSHARB->source before the operation is complete.

The asynchronous form of this call is not available on the 4758 model 001/013.

 Output
On successful exit from this routine:

If pMsgID is NULL, pSHARB->hash_value contains the hash value of the input data.
If options specifies SHA_MSGPART_MIDDLE or SHA_MSGPART_FINAL, this
incorporates the value of pSHARB->hash_value on entry to the routine.

pSHARB->running_length reflects the number of bytes of input that were hashed. If
options specifies SHA_MSGPART_ONLY or SHA_MSGPART_FIRST, this is the
number of bytes of input that were hashed. If options specifies
SHA_MSGPART_MIDDLE or SHA_MSGPART_FINAL, this is the value of
pSHARB->running_length on entry to the routine increased by the number of bytes
of input that were hashed.

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
DES Manager to initiate the desired operation. When the operation is complete,
the DES Manager sends the coprocessor application a message whose type field
(Msg.h.msg_type) contains this identifier and whose first (and only) data item
(Msg.msg_data[2]) contains the return code generated by the routine. If the

13 That is, hash_value specifies the initial values of the Hi used in the SHA-1 algorithm.

14 The DES Manager handles SHA-1 hashing.

 Chapter 3. Coprocessor-Side API 3-23

 19-SEP-01, 15:06 Release 2.40

operation was successful, pSHARB->hash_value and pSHARB->running_length

contain the results as previously described. The message is placed on the default
CP/Q message queue for the task that called sccSHA1Async.

 Notes
Chained Operations

A block of data to be hashed may be processed in a single operation. It may be
necessary, however, to break the operation into several steps, each of which
processes only a portion of the block. (For example, an application may want to
compute a hash that covers several discontiguous fields in a structure.)

A chained operation is initiated by calling sccSHA1 with SHA_MSGPART_FIRST
specified in pSHARB->options and the first piece of the block of data to hash
identified in pSHARB->source. On return, pSHARB->hash_value contains the hash for
the first piece of data and pSHARB->running_length contains the number of bytes of
data processed. These values must be preserved and passed to sccSHA1 when
the next piece of the block of data to hash is processed.

Subsequent pieces of the block are processed by calling sccSHA1 with
SHA_MSGPART_MIDDLE specified in pSHARB->options (SHA_MSGPART_FINAL
must be specified if the piece in question is the last) and the location of the piece
identified in pSHARB->source. pSHARB->hash_value and pSHARB->running_length
must contain the values returned in those fields by the call to sccSHA1 that
processed the previous piece of the block. The function hashes the piece and
updates pSHARB->hash_value and pSHARB->running_length appropriately.

 Return Codes
Common return codes generated by this routine are:

SHA1Good (i.e., 0) The operation was successful.

SHA1_DATA64_ERROR The options argument specified
SHA_MSGPART_FIRST or
SHA_MSGPART_MIDDLE but the
length of the data to process is not a
multiple of 64.

SHA1_DATA32MB_ERROR The length of the data to process is
32M or greater.

SHA1_FINAL_ERROR An error occurred while attempting to
pad the input data as dicated by the
SHA-1 algorithm or while attempted to
hash the pad bytes.

SHA1_EXTERNAL_NOT_SUPPORTED The options argument specified
SHA_EXTERNAL_INPUT but the
coprocessor hardware does not
support external buffers.

3-24 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

 DES Functions
The functions described in this section allow a coprocessor application to request
services from the DES Manager, which performs various encryption and decryption
operations using the coprocessor’s DES hardware.

 Keys
The interface to the DES Manager defines the sccDES_Key_t type to hold DES and
CDMF keys. Both DES and CDMF keys are 56 bits long (although CDMF keys
have an effective strength of 40 bits). An item of type sccDES_Key_t is eight bytes
long. The high-order seven bits of each byte are key bits. The low-order bit of
each byte is a parity bit (which the DES Manager ignores15).

Internal and External Buffers
DES operations that process large blocks of data read the data to encrypt or
decrypt from one buffer and write the resulting ciphertext or plaintext to another
buffer. Either buffer (or both) may be located on the cryptographic coprocessor in a
coprocessor application’s address space. Such buffers are called internal. In
addition, the DES Manager can be directed to read data directly from or write data
directly to a buffer located on the host in a host application’s address space. Such
buffers are called external.16

An internal buffer is described by a structure of type sccInternalBuffer_t. The
fields of this structure are:

� count, which specifies the length in bytes of the data to encrypt or of the buffer
that is to hold the encrypted result. count must be a multiple of 8 less than
32M.

� buffer, which is the address of the first byte of the buffer. The buffer must be
aligned on a 4-byte boundary.

An external buffer is described by a structure of type sccExternalBuffer_t. The
fields of this structure are:

� count, which specifies the length in bytes of the data to encrypt or of the buffer
that is to hold the encrypted result. count must be a multiple of 8 less than
32M. For an output (result) buffer, count must match the length of the buffer
provided by the host application.

� request_id, which is the handle of the host request with which the buffer is
associated. request_id must contain the handle returned in the
pRequestHeader->RequestID output from a call to sccGetNextHeader.

� buffer_id. A host application may associate with a single request as many as
four readable buffers and four writeable buffers. buffer_id is the index of the
buffer to be read or written and must be greater than or equal to zero and less
than four.

15 That is, the DES Manager does not check the parity of keys.

16 On the 4758 model 002/023, SHA-1 operations can also read their input from an external buffer. The DES and SHA-1 hardware
share a single path to the host, so if a coprocessor application requests a DES operation that uses one or two external buffers
while a SHA-1 operation that also uses an external buffer is in progress, the DES operation waits until the SHA-1 operation is
complete.

 Chapter 3. Coprocessor-Side API 3-25

 19-SEP-01, 15:06 Release 2.40

The DES Manager reads host buffers in the same way as sccGetBufferData and
writes host buffers in the same way as sccPutBufferData.

sccDES8bytes - Encipher/Decipher Eight Bytes of Data
sccDES8bytes enciphers and deciphers eight bytes of data using a DES or CDMF
key. The operation is performed in CBC mode using zero for the initial vector.

 Function Prototype
 long sccDES8bytesAsync(sccDES8bytes_RB_t �pDES8RB,

 unsigned long �pMsgID);

 #define sccDES8bytes(p) sccDES8bytesAsync(p,NULL)

 Input
On entry to this routine:

pDES8RB must contain the address of a DES 8-byte operation request block
structure whose fields are initialized as follows:

� options determines whether an encryption or a decryption is performed.
options must be either DES_ENCRYPT (encryption) or DES_DECRYPT
(decryption).

� key is the encryption/decryption key. key may be a regular DES key or a
CDMF key (for example, the value returned in the key_out output from a call to
sccTransformCDMFKey).

� input_data contains eight bytes of data to encrypt or to decrypt.

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until the encryption or decryption is complete.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the DES Manager instructing it
to perform the desired operation. In this case, the caller must not modify,
deallocate, or reuse any portion of the request block referenced by pDES8RB
before the operation is complete.

 Output
On successful exit from this routine:

If pMsgID is NULL, pDES8RB->output_data contains

� the contents of pDES8RB->input_data encrypted with pDES8RB->key if options is
DES_ENCRYPT and

� the contents of pDES8RB->input_data decrypted with pDES8RB->key if options is
DES_DECRYPT.

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
DES Manager to initiate the desired operation. When the operation is complete,
the DES Manager will send the coprocessor application a message whose type
field (MSG.h.msg_type) contains this identifier and whose first (and only) data item

3-26 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

(MSG.msg_data[2]) contains the return code generated by the routine.17 If the
operation was successful, pDES8RB->output_data contains the result. The message
is placed on the default CP/Q message queue for the task that called
sccDES8bytesAsync.

 Return Codes
Common return codes generated by this routine are:

DMGood (i.e., 0) The operation was successful.

DMNotAuth The coprocessor application is not authorized to perform
DES operations (for example, because it has not called
sccSignOn).

DMBadFlags The options argument is not valid.

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

17 The return code from the call to sccDES8bytesAsync indicates whether or not the initial message to the DES Manager was
successfully enqueued.

 Chapter 3. Coprocessor-Side API 3-27

 19-SEP-01, 15:06 Release 2.40

sccDES - Encipher/Decipher Data or Generate MAC
sccDES enciphers or deciphers an arbitrary amount of data using a DES or CDMF
key. Both CBC and ECB modes are supported. sccDES can also generate a
message authentication code (MAC).

 Function Prototype
 long sccDESAsync(sccDES_RB_t �pDESRB,

 unsigned long �pMsgID);

 #define sccDES(p) sccDESAsync(p,NULL)

 Input
On entry to this routine:

pDESRB must contain the address of a DES operation request block structure whose
fields are initialized as follows:

� options controls the operation of the function and must be set to the logical OR
of constants from the following categories:

Requested Function

options must include one of the following constants:

DES_ENCRYPT Encrypt the input.
DES_DECRYPT Decrypt the input.
DES_MAC Generate a message authentication code for the input.

If DES_MAC is specified, DES_USE_KEY must also specified and
DES_CBC_MODE is forced.

Key Transformation

options must include one of the following constants:

DES_TRANSFORM_KEY
Perform the requested operation using a CDMF key derived
from the DES key passed in the key field. (The key field is not
changed.)

DES_USE_KEY
Perform the requested operation using the DES or CDMF key
passed in the key field.

If options specifies DES_MAC, DES_USE_KEY must also be specified. If
DES_TRANSFORM_KEY is specified, the key field should not already contain a
CDMF key.

DES Mode

options must include one of the following constants:

DES_CBC_MODE Use CBC mode.
DES_ECB_MODE Use ECB mode.

DES_CBC_MODE is forced if options specifies DES_MAC. In this case,
DES_ECB_MODE must not be specified. DES_CBC_MODE may be specified
but need not be.

3-28 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

Source of Input

options must include one of the following constants:

DES_INTERNAL_INPUT
Read input data from an internal buffer.

DES_EXTERNAL_INPUT
Read input data from an external buffer.

See “Internal and External Buffers” on page 3-25 for details.

Destination of Output

options must include one of the following constants:

DES_INTERNAL_OUTPUT
Write output data to an internal buffer.

DES_EXTERNAL_OUTPUT
Write output data to an external buffer.

See “Internal and External Buffers” on page 3-25 for details.

If options specifies DES_MAC, the “Destination of Output” options are ignored.

Padding Options

options may include the following constants:

DES_PREPAD Prepad the input with eight bytes of data.
DES_PAD_WITH_8 Pad the input with eight bytes of data.
DES_PAD_WITH_16 Pad the input with sixteen bytes of data.

DES_PREPAD is ignored unless options specifies DES_MAC. Either
DES_PAD_WITH_8 or DES_PAD_WITH_16 may be specified, but not both.

� key is the encryption/decryption key. If key is a DES key, options should
specify DES_USE_KEY to encrypt/decrypt using the DES algorithm and should
specify DES_TRANSFORM_KEY to encrypt/decrypt using the CDMF algorithm.
If key is a CDMF key (for example, the value returned in the key_out output
from a call to sccTransformCDMFKey), options should specify
DES_USE_KEY.

� init_v is the initialization vector for the operation. init_v is not used if
options specifies DES_ECB_MODE.

� source describes the location of the buffer containing the input data. If options
specifies DES_INTERNAL_INPUT, source.internal defines an internal buffer
that contains the input. If options specifies DES_EXTERNAL_INPUT,
source.external defines an external buffer that contains the input. See
“Internal and External Buffers” on page 3-25 for details.

� destination describes the location of the buffer to which the output is to be
written. If options specifies DES_INTERNAL_OUTPUT, destination.internal

defines an internal buffer to which to write the output. If options specifies
DES_EXTERNAL_OUTPUT, destination.external defines an external buffer
to which to write the output. See “Internal and External Buffers” on page 3-25
for details.

If options specifies DES_MAC, destination is not used.

� prePadding contains eight bytes of data to which the input (including any
padding) is appended before the requested cryptographic operation is
performed. prePadding is not used unless options specifies DES_MAC.

 Chapter 3. Coprocessor-Side API 3-29

 19-SEP-01, 15:06 Release 2.40

� postPadding contains data that is appended to the input (including any
prepadding) before the requested cryptographic operation is performed. If
options specifies DES_PAD_WITH_8, postPadding[2] through postPadding[7]
are appended to the input. If options specifies DES_PAD_WITH_16, the entire
postPadding field is appended to the input. If options specifies neither
DES_PAD_WITH_8 nor DES_PAD_WITH_16, postPadding is not used.

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until the requested cryptographic operation is complete.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the DES Manager instructing it
to perform the desired operation. In this case, the caller must not modify,
deallocate, or reuse any portion of the request block referenced by pDESRB or
the buffers described by pDESRB->source and pDESRB->destination before the
operation is complete.

 Output
On successful exit from this routine:

If pMsgID is NULL, pDESRB->term_v contains

� the message authentication code for the input if options specifies DES_MAC,
� the value to use for the initialization vector in the next call to sccDESAsync if

options specifies DES_CBC_MODE, and
� garbage if options specifies DES_ECB_MODE.

The buffer described by pDESRB->destination contains

� the contents of the buffer described by pDESRB->source encrypted with
pDESRB->key if options specifies DES_ENCRYPT and

� the contents of the buffer described by pDESRB->source decrypted with
pDESRB->key if options specifies DES_DECRYPT.

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
DES Manager to initiate the desired operation. When the operation is complete,
the DES Manager will send the coprocessor application a message whose type
field (MSG.h.msg_type) contains this identifier and whose first (and only) data item
(MSG.msg_data[2]) contains the return code generated by the routine.18 If the
operation was successful, pDES8RB->term_v and pDESRB->destination contain the
results as previously described. The message is placed on the default CP/Q
message queue for the task that called sccDESAsync.

 Notes
Notes on Source and Destination Buffers

The length of the input data (including the length of the input buffer described by
pDESRB->source and any pad bytes) may be less than the length of the output

18 The return code from the call to sccDESAsync indicates whether or not the initial message to the DES Manager was successfully
enqueued.

3-30 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

buffer described by pDESRB->destination. In this case, any excess bytes at the
end of the output buffer are not affected by sccDESAsync.

If destination is used, the buffers described by source and destination should
either be the same buffer or not overlap at all.

 Return Codes
Common return codes generated by this routine are:

DMGood (i.e., 0) The operation was successful.

DMNotAuth The coprocessor application is not authorized to perform DES
operations (for example, because it has not called sccSignOn).

DMBadFlags The options argument is not valid.

DMBadParm The length of the input data or the output data is invalid (for
example, not a multiple of 8) or the length of the input data
exceeds the length of the output buffer, or an internal buffer is not
aligned on a 4-byte boundary.

DMBadAddr The input buffer is an internal buffer and is not readable or the
output buffer is an internal buffer and is not writeable.

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

 Chapter 3. Coprocessor-Side API 3-31

 19-SEP-01, 15:06 Release 2.40

sccDES3Key - Wrap/Unwrap Cryptographic Key
sccDES3Key performs three successive encryptions or decryptions (or both
encryptions and decryptions) on eight bytes of data using a distinct DES or CDMF
key on each pass. Each operation is performed in ECB mode.

sccDES3Key is typically used to triple-encipher (wrap) or triple-decipher (unwrap) a
cryptographic key as part of key management. The interface to sccDES3Key is
completely flexible, however, and so permits encryption and decryption of eight
bytes of data with an effective key length of up to 168 bits.

 Function Prototype
 long sccDES3KeyAsync(sccDES3Key_RB_t �pDES3RB,

 unsigned long �pMsgID);

 #define sccDES3Key(p) sccDES3KeyAsync(p,NULL)

 Input
On entry to this routine:

pDES3RB must contain the address of a DES triple operation request block structure
whose fields are initialized as follows:

� options determines the nature of each of the three operations the function
performs. options must be set to the logical OR of one of each of the
following pairs of constants:
– DES3_1_ENCRYPT or DES3_1_DECRYPT - Encrypt input on first pass or

decrypt input on first pass, respectively.
– DES3_2_ENCRYPT or DES3_2_DECRYPT - Encrypt input on second pass

or decrypt input on second pass, respectively.
– DES3_3_ENCRYPT or DES3_3_DECRYPT - Encrypt input on third pass or

decrypt input on third pass, respectively.
� key_in contains eight bytes of input data.
� key1, key2, and key3 are the encryption/decryption keys for pass 1, pass 2, and

pass 3, respectively. Each key may be a regular DES key or a CDMF key (for
example, the value returned in the key_out output from a call to
sccTransformCDMFKey).19

19

If three keys are used to encrypt eight bytes of data, the same keys must be used in the opposite order to decrypt the data. For
example, the after the following code is executed, DES3RB.key_in contains “abcdefgh”:

unsigned char k1[8],k2[8],k3[8];

sccDES3Key_RB_t DES3RB;

DES3RB.options = DES3_1_ENCRYPT | DES3_2_DECRYPT | DES3_3_ENCRYPT;

memcpy(DES3RB.key_in,"abcdefgh",8);

memcpy(DES3RB.key1,k1,8);

memcpy(DES3RB.key2,k2,8);

memcpy(DES3RB.key3,k3,8);

sccDES3Key(&DES3RB);

DES3RB.options = DES3_1_DECRYPT | DES3_2_ENCRYPT | DES3_3_DECRYPT;

memcpy(DES3RB.key1,k3,8);

memcpy(DES3RB.key2,k2,8);

memcpy(DES3RB.key3,k1,8);

3-32 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until all three encryptions/decryptions are complete.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the DES Manager instructing it
to perform the desired operations. In this case, the caller must not modify,
deallocate, or reuse any portion of the request block referenced by pDES3RB
before the operations are complete.

 Output
On successful exit from this routine:

If pMsgID is NULL, pDES3RB->key_out contains the contents of pDES3RB->key_in
encrypted or decrypted with pDES3RB->key1, pDES3RB->key2, and pDES3RB->key3 as
dictated by the value of options.

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
DES Manager to initiate the desired operation. When the operation is complete,
the DES Manager will send the coprocessor application a message whose type
field (MSG.h.msg_type) contains this identifier and whose first (and only) data item
(MSG.msg_data[2]) contains the return code generated by the routine.20 If the
operation was successful, pDES3RB->key_out contains the result. The message is
placed on the default CP/Q message queue for the task that called
sccDES3KeyAsync.

 Return Codes
Common return codes generated by this routine are:

DMGood (i.e., 0) The operation was successful.

DMNotAuth The coprocessor application is not authorized to perform
DES operations (for example, because it has not called
sccSignOn).

DMBadFlags The options argument is not valid.

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

sccDES3Key(&DES3RB);

20 The return code from the call to sccDES3KeyAsync indicates whether or not the initial message to the DES Manager was
successfully enqueued.

 Chapter 3. Coprocessor-Side API 3-33

 19-SEP-01, 15:06 Release 2.40

sccTDES - Triple DES (4758 Model 002/023 Only)
 Note

This function is not available on the 4758 model 001/013.

sccTDES enciphers or deciphers an arbitrary amount of data using triple-DES with
three DES keys. Both outer CBC and ECB modes are supported. sccTDES can
also generate a message authentication code (MAC).

 Function Prototype
 long sccTDESAsync(sccTDES_RB_t �pTDESRB,

 unsigned long �pMsgID);

 #define sccTDES(p) sccTDESAsync(p,NULL)

 Input
On entry to this routine:

pTDESRB must contain the address of a triple-DES operation request block structure
whose fields are initialized as follows:

� options controls the operation of the function and must be set to the logical OR
of constants from the following categories:

TDES Selection

options must include DES_TRIPLE_DES and DES_USE_KEY.

Requested Function

options must include one of the following constants:

DES_ENCRYPT Encrypt the input.
DES_DECRYPT Decrypt the input.
DES_MAC Generate a message authentication code for the input.

If DES_MAC is specified, DES_CBC_MODE is forced.

DES Mode

options must include one of the following constants:

DES_CBC_MODE Use outer CBC mode.
DES_ECB_MODE Use ECB mode.

DES_CBC_MODE is forced if options specifies DES_MAC. In this case,
DES_ECB_MODE must not be specified. DES_CBC_MODE may be specified
but need not be.

3-34 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

Source of Input

options must include one of the following constants:

DES_INTERNAL_INPUT
Read input data from an internal buffer.

DES_EXTERNAL_INPUT
Read input data from an external buffer.

See “Internal and External Buffers” on page 3-25 for details.

Destination of Output

options must include one of the following constants:

DES_INTERNAL_OUTPUT
Write output data to an internal buffer.

DES_EXTERNAL_OUTPUT
Write output data to an external buffer.

See “Internal and External Buffers” on page 3-25 for details.

If options specifies DES_MAC, the “Destination of Output” options are ignored.

Padding Options

options may include the following constants:

DES_PREPAD Prepad the input with eight bytes of data.
DES_PAD_WITH_8 Pad the input with eight bytes of data.
DES_PAD_WITH_16 Pad the input with sixteen bytes of data.

DES_PREPAD is ignored unless options specifies DES_MAC. Either
DES_PAD_WITH_8 or DES_PAD_WITH_16 may be specified, but not both.

� key1, key2, and key3 are the keys to use in the operation. If options specifies
DES_ENCRYPT or DES_MAC, the input is encrypted with key1, decrypted with
key2, and encrypted with key3. If options specifies DES_DECRYPT, the input
is decrypted with key3, encrypted with key2, and decrypted with key1.

� init_v is the initialization vector for the operation. init_v is not used if
options specifies DES_ECB_MODE.

� source describes the location of the buffer containing the input data. If options
specifies DES_INTERNAL_INPUT, source.internal defines an internal buffer
that contains the input. If options specifies DES_EXTERNAL_INPUT,
source.external defines an external buffer that contains the input. See
“Internal and External Buffers” on page 3-25 for details.

� destination describes the location of the buffer to which the output is to be
written. If options specifies DES_INTERNAL_OUTPUT, destination.internal

defines an internal buffer to which to write the output. If options specifies
DES_EXTERNAL_OUTPUT, destination.external defines an external buffer
to which to write the output. See “Internal and External Buffers” on page 3-25
for details.

If options specifies DES_MAC, destination is not used.

� prePadding contains eight bytes of data to which the input (including any
padding) is appended before the requested cryptographic operation is
performed. prePadding is not used unless options specifies DES_MAC.

 Chapter 3. Coprocessor-Side API 3-35

 19-SEP-01, 15:06 Release 2.40

� postPadding contains data that is appended to the input (including any
prepadding) before the requested cryptographic operation is performed. If
options specifies DES_PAD_WITH_8, postPadding[2] through postPadding[7]
are appended to the input. If options specifies DES_PAD_WITH_16, the entire
postPadding field is appended to the input. If options specifies neither
DES_PAD_WITH_8 nor DES_PAD_WITH_16, postPadding is not used.

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until the requested cryptographic operation is complete.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the DES Manager instructing it
to perform the desired operation. In this case, the caller must not modify,
deallocate, or reuse any portion of the request block referenced by pTDESRB or
the buffers described by pTDESRB->source and pTDESRB->destination before the
operation is complete.

 Output
On successful exit from this routine:

If pMsgID is NULL, pTDESRB->term_v contains

� the message authentication code for the input if options specifies DES_MAC,
� the value to use for the initialization vector in the next call to sccTDESAsync if

options specifies DES_CBC_MODE, and
� garbage if options specifies DES_ECB_MODE.

The buffer described by pTDESRB->destination contains

� the contents of the buffer described by pTDESRB->source triple-DES encrypted
with the keys in �pTDESRB if options specifies DES_ENCRYPT and

� the contents of the buffer described by pTDESRB->source triple-DES decrypted
with the keys in �pTDESRB if options specifies DES_DECRYPT.

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
DES Manager to initiate the desired operation. When the operation is complete,
the DES Manager will send the coprocessor application a message whose type
field (MSG.h.msg_type) contains this identifier and whose first (and only) data item
(MSG.msg_data[2]) contains the return code generated by the routine.21 If the
operation was successful, pTDES8RB->term_v and pTDESRB->destination contain the
results as previously described. The message is placed on the default CP/Q
message queue for the task that called sccTDESAsync.

 Notes
Notes on Source and Destination Buffers

The length of the input data (including the length of the input buffer described by
pTDESRB->source and any pad bytes) may be less than the length of the output

21 The return code from the call to sccTDESAsync indicates whether or not the initial message to the DES Manager was successfully
enqueued.

3-36 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

buffer described by pTDESRB->destination. In this case, any excess bytes at the
end of the output buffer are not affected by sccTDESAsync.

If destination is used, the buffers described by source and destination should
either be the same buffer or not overlap at all.

 Return Codes
Common return codes generated by this routine are:

DMGood (i.e., 0) The operation was successful.

DMNotAuth The coprocessor application is not authorized to perform DES
operations (for example, because it has not called sccSignOn).

DMBadFlags The options argument is not valid.

DMBadParm The length of the input data or the output data is invalid (for
example, not a multiple of 8) or the length of the input data
exceeds the length of the output buffer, or an internal buffer is not
aligned on a 4-byte boundary.

DMBadAddr The input buffer is an internal buffer and is not readable or the
output buffer is an internal buffer and is not writeable.

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

 Chapter 3. Coprocessor-Side API 3-37

 19-SEP-01, 15:06 Release 2.40

sccEDE3_3DES - Perform EDE3 Mode Triple-DES Operation
sccEDE3_3DES performs an EDE3 mode triple-DES operation. EDE3 mode is
defined in Appendix D of the IBM 4758 CCA Basic Services Reference and Guide.

 Note

EDE3 mode is an “inner-CBC” mode of triple DES and thus is not compliant
with the ANSI X9.52 3DES standard.

 Function Prototype
 long sccEDE3_3DESAsync(sccEDE3DES_RB_t �pEDE3DESRB,

 unsigned long �pMsgID);

 #define sccEDE3_3DES(p) sccEDE3_3DESAsync(p,NULL)

 Input
On entry to this routine:

pEDE3DESRB must contain the address of an EDE3 operation request block
structure whose fields are initialized as follows:

� options determines the nature of each of the operations the function performs
and must be DES_ENCRYPT for Encipher-Decipher-Encipher or
DES_DECRYPT for Decipher-Encipher-Decipher.

� input must contain the address of the data to be transformed by the operation.
� output must contain the address of a buffer to hold the transformed data.
� count must contain the length in bytes of the input data and the output buffer.

count must be a multiple of 8.
� key1, key2, and key3 are the encryption/decryption keys for pass 1, pass 2, and

pass 3, respectively.

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until the operation is complete.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the DES Manager instructing it
to perform the desired operation. In this case, the caller must not modify,
deallocate, or reuse any portion of the request block referenced by pEDE3DESRB

or the buffers referenced by pEDE3DESRB->input and pEDE3DESRB->output before
the operation is complete.

 Output
On successful exit from this routine:

If pMsgID is NULL, �(pEDE3DESRB->output) contains the contents of
�(pEDE3DESRB->input) as transformed by the EDE3 mode triple DES operation
using pEDE3DESRB->key1, pEDE3DESRB->key2, and pEDE3DESRB->key3 as dictated by
the value of options.

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
DES Manager to initiate the desired operation. When the operation is complete,

3-38 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

the DES Manager will send the coprocessor application a message whose type
field (MSG.h.msg_type) contains this identifier and whose first (and only) data item
(MSG.msg_data[2]) contains the return code generated by the routine.22 If the
operation was successful, �(pEDE3DESRB->output) contains the result. The
message is placed on the default CP/Q message queue for the task that called
sccEDE3_3DESAsync.

 Notes
Additional Sources of Information

Refer to Appendix C of the IBM 4758 CCA Basic Services Reference and Guide for
a detailed description of the operation of and restrictions imposed by this function.

 Return Codes
Common return codes generated by this routine are:

DMGood (i.e., 0) The operation was successful.

DMNotAuth The coprocessor application is not authorized to perform DES
operations (for example, because it has not called sccSignOn).

DMBadFlags The options argument is not valid.

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

22 The return code from the call to sccEDE3_3DESAsync indicates whether or not the initial message to the DES Manager was
successfully enqueued.

 Chapter 3. Coprocessor-Side API 3-39

 19-SEP-01, 15:06 Release 2.40

sccTransformCDMFKey - Transform DES Key to CDMF Key
sccTransformCDMFKey transforms a 56-bit DES key into a 56-bit key suitable for
use with the Commercial Data Masking Facility (CDMF) algorithm. The
transformed key provides the same level of cryptographic security as a 40-bit DES
key.

 Function Prototype
 long sccTransformCDMFKeyAsync(sccDES_key_t keyIn

 sccDES_key_t keyOut

 unsigned long �pMsgID);

#define sccTransformCDMFKey(ki,ko) sccTransformCDMFKeyAsync(ki,ko,NULL)

 Input
On entry to this routine:

keyIn must contain the 56-bit DES key to be transformed.

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until the operation is complete.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the DES Manager instructing it
to perform the desired operation. In this case, the caller must not modify,
deallocate, or reuse any portion of keyOut before the operation is complete.

 Output
On successful exit from this routine:

If pMsgID is NULL, keyOut contains a 56-bit CDMF key derived from keyIn.

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
DES Manager to initiate the desired operation. When the operation is complete,
the DES Manager will send the coprocessor application a message whose type
field (MSG.h.msg_type) contains this identifier and whose first (and only) data item
(MSG.msg_data[2]) contains the return code generated by the routine.23 If the
operation was successful, keyOut contains the result. The message is placed on
the default CP/Q message queue for the task that called
sccTransformCDMFKeyAsync.

23 The return code from the call to sccTransformCDMFKeyAsync indicates whether or not the initial message to the DES Manager
was successfully enqueued.

3-40 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

 Notes
Serial Transformation Discouraged

A CDMF key should not be passed as the keyIn input to sccTransformCDMFKey.

 Return Codes
Common return codes generated by this routine are:

DMGood (i.e., 0) The operation was successful.

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

 Chapter 3. Coprocessor-Side API 3-41

 19-SEP-01, 15:06 Release 2.40

3-42 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

Public Key Algorithm Functions
The functions described in this section allow a coprocessor application to request
services from the Public Key Algorithm (PKA) Manager, which uses the
coprocessor’s large integer modular math hardware to support public key
cryptographic algorithms. Currently, the following algorithms are supported:

� RSA (Rivest-Shamir-Adleman) encryption, decryption, and X.931 digital
signature support

� DSA (Digital Signature Algorithm) digital signature

RSA Key Tokens
The interface to the PKA Manager defines the sccRSAKeyToken_t type to hold
information about RSA public and private keys. The interface for the 4758 model
002/023 also defines the sccPKCSKeyToken_t type to hold information about RSA
private keys stored in PKCS#1 CRT form. An item of either type has a variable
length and consists of a descriptive header followed by a buffer containing the
values of the various elements of the key. (For example, the key token for an RSA
public key contains the values of the modulus n and the public exponent e.) The
header indicates which elements are present and gives the length and offset within
the token of the first byte of each element. Elements are stored in big-endian
order: the byte at the lowest address contains the most significant byte of the
element.24

The fields of the key token for an RSA public key are set as follows:

� type is RSA_PUBLIC_MODULUS_EXPONENT.
� tokenLength is the length in bytes of the key token. Note that this value is

typically larger than sizeof(sccRSAKeyToken_t) because the sccRSAKeyToken_t

structure maps only the first byte of the buffer that contains the elements of the
key.

� n_BitLength is the length in bits of the modulus n.25

� n_Length is the length in bytes of n.
� n_Offset is the offset in bytes from the start of the key token to the first byte of

n.26

� e_Length is the length in bytes of the public exponent e.27

� e_Offset is the offset in bytes from the start of the token to the first byte of e.26

� tokenData marks the beginning of the buffer that contains the values of n and
e.

The remaining length and offset fields are ignored and should be set to zero.

The PKA Manager supports six kinds of key token for an RSA private key. The
PKA Manager uses a straightforward modular exponentiation approach to decrypt
ciphertext or wrap an X9.31 encapsulated hash, as appropriate, using a
sccRSAKeyToken_t key token whose fields are set as follows:

24 Fields in the header are normal arithmetic items and are stored in little-endian order.

25 n is the product of two prime numbers, p and q.

26 That is, if t is the key token and x is an element of the key, the first byte of x is ((char �) &t) [t.x_Offset].

27 e is the inverse of the private exponent d modulo (p-1)(q-1).

 Chapter 3. Coprocessor-Side API 3-43

 19-SEP-01, 15:06 Release 2.40

� type is RSA_PRIVATE_MODULUS_EXPONENT (decrypt ciphertext) or
RSA_X931_PRIVATE_MODULUS_EXPONENT (wrap encapsulated hash).

� tokenLength is the length in bytes of the key token. Note that this value is
typically larger than sizeof(sccRSAKeyToken_t) because the sccRSAKeyToken_t

structure maps only the first byte of the buffer that contains the elements of the
key.

� n_BitLength is the length in bits of the modulus n. If type is
RSA_X931_PRIVATE_MODULUS_EXPONENT, n_BitLength must be 1024,
1280, 1536, 1792, or 2048.

� n_Length is the length in bytes of n.
� n_Offset is the offset in bytes from the start of the key token to the first byte of

n.30

� e_Length is the length in bytes of the public exponent e.
� e_Offset is the offset in bytes from the start of the key token to the first byte of

e.30

� x.d_Length is the length in bytes of the private exponent d.28

� y.d_Offset is the offset in bytes from the start of the key token to the first byte
of d.30

� r_Length is the length in bytes of the blinding value r.29

� r_Offset is the offset in bytes from the start of the key token to the first byte of
r.30

� r1Length is the length in bytes of the inverse of the blinding value, r -1.29

� r1Offset is the offset in bytes of the first byte of r -1 within the key token.30

� tokenData marks the beginning of the buffer that contains the values of n, e, d,
r, and r-1.

The remaining length and offset fields are not used and should be set to zero.

The PKA Manager uses an approach based on the Chinese Remainder Theorem to
decrypt ciphertext or wrap an X9.31 encapsulated hash, as appropriate, using a
sccRSAKeyToken_t key token whose fields are set as follows:

� type is RSA_PRIVATE_CHINESE_REMAINDER (decrypt ciphertext) or
RSA_X931_PRIVATE_CHINESE_REMAINDER (wrap encapsulated hash).

� tokenLength is the length in bytes of the key token. Note that this value is
typically larger than sizeof(sccRSAKeyToken_t) because the sccRSAKeyToken_t

structure maps only the first byte of the buffer that contains the elements of the
key.

� n_BitLength is the length in bits of the modulus n. If type, is
RSA_X931_PRIVATE_CHINESE_REMAINDER, n_BitLength must be 1024,
1280, 1536, 1792, or 2048.

� n_Length is the length in bytes of n.
� n_Offset is the offset in bytes from the start of the key token to the first byte of

n.30

� e_Length is the length in bytes of the public exponent e.
� e_Offset is the offset in bytes from the start of the key token to the first byte of

e.30

� x.p_Length is the length in bytes of the prime number p.

28 d is the inverse of the public exponent e modulo (p-1)(q-1).

29 r = R e mod n and r -1 = R -1 mod n, where R is a random number less than the modulus n.

30 That is, if t is the key token and x is an element of the key, the first byte of x is ((char �) &t) [t.x_Offset].

3-44 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

� y.p_Offset is the offset in bytes from the start of the key token to the first byte
of p.30

� q_Length is the length in bytes of the prime number q.
� q_Offset is the offset in bytes from the start of the key token to the first byte of

q.31

� dp_Length is the length in bytes of dp = d mod(p-1).

 Important

The value of p must be greater than the value of q.

� dp_Offset is the offset in bytes from the start of the key token to the first byte
of dp.31

� dq_Length is the length in bytes of dq = d mod(q-1).
� dq_Offset is the offset in bytes from the start of the key token to the first byte

of dq.31

� ap_Length is the length in bytes of ap = q p-1 mod n.
� ap_Offset is the offset in bytes from the start of the key token to the first byte

of ap.31

� aq_Length is the length in bytes of aq = n + 1 - ap.
� aq_Offset is the offset in bytes from the start of the key token to the first byte

of aq.31

� r_Length is the length in bytes of the blinding value r.
� r_Offset is the offset in bytes from the start of the key token to the first byte of

r.31

� r1Length is the length in bytes of the inverse of the blinding value, r -1.
� r1Offset is the offset in bytes of the first byte of r -1 within the key token.31

� tokenData marks the beginning of the buffer that contains the values of n, e, p,
q, dp, dq, ap, aq, r, and r -1.

The PKA Manager on the 4758 model 002/023 also uses an approach based on
the Chinese Remainder Theorem to decrypt ciphertext or wrap an X9.31
encapsulated hash, as appropriate, using a sccPKCSKeyToken_t key token whose
fields are set as follows:

� type is RSA_PKCS_PRIVATE_CHINESE_REMAINDER (decrypt ciphertext) or
RSA_PKCS_X931_PRIVATE_CHINESE_REMAINDER (wrap encapsulated
hash).

� tokenLength is the length in bytes of the key token. Note that this value is
typically larger than sizeof(sccRSAKeyToken_t) because the sccRSAKeyToken_t

structure maps only the first byte of the buffer that contains the elements of the
key.

� n_BitLength is the length in bits of the modulus n. If type, is
RSA_PKCS_X931_PRIVATE_CHINESE_REMAINDER, n_BitLength must be
1024, 1280, 1536, 1792, or 2048.

� n_Length is the length in bytes of n.
� n_Offset is the offset in bytes from the start of the key token to the first byte of

n.31

� e_Length is the length in bytes of the public exponent e.
� e_Offset is the offset in bytes from the start of the key token to the first byte of

e.31

� x.p_Length is the length in bytes of the prime number p.

31 That is, if t is the key token and x is an element of the key, the first byte of x is ((char �) &t) [t.x_Offset].

 Chapter 3. Coprocessor-Side API 3-45

 19-SEP-01, 15:06 Release 2.40

� y.p_Offset is the offset in bytes from the start of the key token to the first byte
of p.31

� q_Length is the length in bytes of the prime number q.
� q_Offset is the offset in bytes from the start of the key token to the first byte of

q.31

� dp_Length is the length in bytes of dp = d mod(p-1).
� dp_Offset is the offset in bytes from the start of the key token to the first byte

of dp.31

� dq_Length is the length in bytes of dq = d mod(q-1).
� dq_Offset is the offset in bytes from the start of the key token to the first byte

of dq.32

� qInvLength is the length in bytes of q-1 mod p.
� qInvOffset is the offset in bytes of the first byte of q-1 mod p within the key

token.
� notDefined and notDefined2 are reserved and should be set to zero.
� r_Length is the length in bytes of the blinding value r.
� r_Offset is the offset in bytes from the start of the key token to the first byte of

r.32

� r1Length is the length in bytes of the inverse of the blinding value, r -1.
� r1Offset is the offset in bytes of the first byte of r -1 within the key token.32

� tokenData marks the beginning of the buffer that contains the values of n, e, p,
q, dp, dq, q-1 mod p, r, and r -1.

Use of a private key of type RSA_PRIVATE_CHINESE_REMAINDER,
RSA_X931_PRIVATE_CHINESE_REMAINDER,
RSA_PKCS_PRIVATE_CHINESE_REMAINDER, or
RSA_PKCS_X931_PRIVATE_CHINESE_REMAINDER can improve performance
with no loss of security.

Note that an RSA private key token includes information about the corresponding
RSA public key. The public portion need not be present when the token is used as
a private key.

The n_BitLength field of an RSA key token cannot exceed 2048. If it is not a
multiple of 8, any excess high-order bits in the modulus are treated as zeros (that
is, n is essentially padded on the left with zeros, regardless of the actual bits that
appear in the key token).

32 That is, if t is the key token and x is an element of the key, the first byte of x is ((char �) &t) [t.x_Offset].

3-46 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

sccRSAKeyGenerate - Generate RSA Key Pair
sccRSAKeyGenerate generates a key token for an RSA private key. The token
includes information that defines the corresponding RSA public key.

 Function Prototype
 long sccRSAKeyGenerateAsync(sccRSAKeyGen_RB_t �pRSAKGRB,

 unsigned long �pMsgID);

#define sccRSAKeyGenerate(p) sccRSAKeyGenerateAsync(p, NULL)

 Input
On entry to this routine:

pRSAKGRB must contain the address of an RSA key generate request block whose
fields are initialized as follows:

� key_type specifies which kind of private key token is generated and must be
one of the following constants:
 – RSA_PRIVATE_MODULUS_EXPONENT
 – RSA_PRIVATE_CHINESE_REMAINDER
 – RSA_X931_PRIVATE_MODULUS_EXPONENT
 – RSA_X931_PRIVATE_CHINESE_REMAINDER
 – RSA_PKCS_PRIVATE_CHINESE_REMAINDER
 – RSA_PKCS_X931_PRIVATE_CHINESE_REMAINDER
key_type may not be RSA_PKCS_PRIVATE_CHINESE_REMAINDER or
RSA_PKCS_X931_PRIVATE_CHINESE_REMAINDER on the 4758 model
001/013.

� mod_size specifies the desired length in bits of the modulus n. mod_size must
be less than or equal to 2048. If key_type specifies
RSA_X931_PRIVATE_MODULUS_EXPONENT,
RSA_X931_PRIVATE_CHINESE_REMAINDER, or
RSA_PKCS_X931_PRIVATE_CHINESE_REMAINDER mod_size must be 1024,
1280, 1536, 1792, or 2048.

� public_exp determines how the value of the public exponent e is chosen and
must be one of the following constants:
RSA_EXPONENT_RANDOM Choose a pseudo-random number containing

mod_size bits that meets the standards
described in the ANSI X9.31 specification.

RSA_EXPONENT_FIXED Use the value of e in the RSA key token
referenced by key_token.

RSA_EXPONENT_2 Use 2.
RSA_EXPONENT_3 Use 3.
RSA_EXPONENT_65537 Use 65537.

RSA_EXPONENT_3 and RSA_EXPONENT_65537 provide support for certain
standards that require specific public exponents (for example, SET).

If RSA_EXPONENT_FIXED is specified, the public exponent must be odd
unless key_type is RSA_X931_PRIVATE_MODULUS_EXPONENT,
RSA_X931_PRIVATE_CHINESE_REMAINDER, or
RSA_PKCS_X931_PRIVATE_CHINESE_REMAINDER.

If RSA_EXPONENT_2 is specified, key_type must be
RSA_X931_PRIVATE_MODULUS_EXPONENT,

 Chapter 3. Coprocessor-Side API 3-47

 19-SEP-01, 15:06 Release 2.40

RSA_X931_PRIVATE_CHINESE_REMAINDER, or
RSA_PKCS_X931_PRIVATE_CHINESE_REMAINDER.

� key_token must contain the address of a buffer in which an item of type
sccRSAKeyToken_t can be stored. If public_exp is RSA_EXPONENT_FIXED,
key_token.tokenlength, key_token->e_Length, key_token->e_Offset, and
key_token->tokenData must describe the public exponent e.

� key_size must contain the address of a variable in which an item of type
unsigned long can be stored. �key_size must be the length in bytes of the
buffer referenced by key_token.

� regen_data points to a string of bits used to seed the PKA Manager’s
pseudo-random number generator, which is used to generate the prime
numbers p and q (and the public exponent e if public_exp is
RSA_EXPONENT_RANDOM). Use of regen_data ensures reproducible results
and thus assists testing and benchmarking. regen_data should be NULL when
generating keys in the course of normal operations. In that case, the PKA
Manager obtains its random numbers from the RNG Manager. If regen_data is
not NULL, the string it references should contain at least 160 bits of entropy to
ensure the keys generated from the seed are cryptographically sound.33

� regen_size must contain the length in bytes of the string referenced by
regen_data. If regen_data is NULL, regen_size must be zero.

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until the key token has been generated.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the PKA manager instructing it
to perform the desired operation. In this case, the caller must not modify,
deallocate, or reuse any portion of the request block referenced by pRSAKGRB or
the areas of memory referenced by pRSAKGRB->key_token, pRSAKGRB->key_size,
and pRSAKGRB->regen_data before the operation is complete.

 Output
On successful exit from this routine:

If pMsgID is NULL, �(pRSAKGRB->key_token) contains a key token for an RSA
private key. pRSAKGRB->key_token->type is equal to pRSAKGRB->key_type and the
remaining fields of the key token are set appropriately. �(pRSAKGRB->key_size)

contains the length in bytes of the key token.

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
PKA Manager to initiate the desired operation. When the operation is complete,
the PKA Manager will send the coprocessor application a message whose type
field (MSG.h.msg_type) contains this identifier and whose first (and only) data item
(MSG.msg_data[2]) contains the return code generated by the routine.34 If the
operation was successful, �(pRSAKGRB->key_token) and �(pRSAKGRB->key_size)

33 Entropy is a measure of the uncertainty, unpredictability, and randomness in data output from a source. For a clearer explanation
of entropy and suggestions on how to obtain random seeds with sufficient entropy see
http://www.rsa.com/rsa/developers/random.htm.

34 The return code from the call to sccRSAKeyGenerateAsync indicates whether or not the initial message to the PKA Manager was
successfully enqueued.

3-48 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

contain the result. The message is placed on the default CP/Q message queue for
the task that called sccRSAKeyGenerateAsync.

 Notes
Generating Public Keys

A key token for an RSA public key can be generated from the key token for the
corresponding RSA private key by copying n, e, and n_BitLenth from the private
key token and setting the public key token’s type field to
RSA_PUBLIC_MODULUS_EXPONENT.

 Return Codes
Common return codes generated by this routine are:

PKAGood (i.e., 0) The operation was successful.

PKABadParm An argument is not valid.

PKANoSpace The operation failed due to lack of space (for example, the
buffer referenced by pRSAKGRB->key_token is not large
enough to hold the token generated by the call or there is no
free memory available to the PKA manager).

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

 Chapter 3. Coprocessor-Side API 3-49

 19-SEP-01, 15:06 Release 2.40

sccRSA - Encipher/Decipher Data or Wrap/Unwrap X9.31 Encapsulated
Hash

sccRSA enciphers or deciphers a block of data using the RSA algorithm or wraps
or unwraps an X9.31 encapsulated hash.

 Function Prototype
 long sccRSAAsync(sccRSA_RB_t �pRSARB,

 unsigned long �pMsgID);

 #define sccRSA(p) sccRSAAsync(p, NULL)

 Input
On entry to this routine:

pRSARB must contain the address of an RSA operation request block whose fields
are initialized as follows:

� options controls the operation of the function and must be set to the logical OR
of constants from the following categories:

Public or Private Key

options must include one of the following constants:
RSA_PUBLIC Perform the operation using the public key from the

key token (that is, output = inpute mod n).
RSA_PRIVATE Perform the operation using the private key from the

key token (for example, output = inputd mod n).

If RSA_PRIVATE is specified, key_token->type must not be
RSA_PUBLIC_MODULUS_EXPONENT.

If RSA_PRIVATE is specified, RSA_DECRYPT must also be specified. If
RSA_PUBLIC is specified, RSA_ENCRYPT must also be specified.

RSA_PRIVATE must be specified to wrap an X9.31 encapsulated hash.
RSA_PUBLIC must be specified to unwrap an X9.31 encapsulated hash.

Blinding Operation

sccRSA’s implementation of the RSA algorithm may be vulnerable to a timing
attack.35 That is, an adversary can use differences in the amount of time it
takes to process various messages with a particular private key to defeat the
cryptographic security provided by the key. The blinding values in a key token,
r and r -1, are used to defeat timing attacks. options may include one of the
following constants:
RSA_DONT_BLIND Perform the operation without using the blinding

values.
RSA_BLIND_NO_UPDATE Perform the operation using the blinding values

and replace the blinding values in the key
token.36

35 IBM believes certain features of the IBM 4758 Model 002/023 eliminate this vulnerability.

36 The names RSA_BLIND_NO_UPDATE and RSA_BLIND_UPDATE are somewhat confusing. RSA_BLIND_NO_UPDATE means
the caller is not going to replace the blinding values (so the PKA Manager does so). RSA_BLIND_UPDATE means the caller is
going to replace the blinding values (so the PKA Manager refrains from doing so).

3-50 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

RSA_BLIND_UPDATE Perform the operation using the blinding values
but do not replace the blinding values in the key
token.

RSA_DONT_BLIND yields the best performance, but makes the operation
vulnerable to timing attacks. RSA_BLIND_NO_UPDATE requires the most
time. RSA_BLIND_UPDATE uses a fast blinding scheme but is secure only if
the coprocessor application replaces the blinding values in the key token (for
example, by calling sccComputeBlindingValues) before calling sccRSA again.

RSA_BLIND_NO_UPDATE is the default.

ANSI X9.31 Operation

options must include RSA_X931_OPERATION if key_token_->key_type is
RSA_X931_PRIVATE_MODULUS_EXPONENT,
RSA_X931_PRIVATE_CHINESE_REMAINDER, or
RSA_PKCS_X931_PRIVATE_CHINESE_REMAINDER.

� �key_token is the RSA key token for the key to be used in the operation.
� key_size is the length in bytes of the RSA key token referenced by key_token

(that is, key_token->tokenLength).
� data_in points to a buffer that contains the input data. If options specifies

RSA_X931_OPERATION, the buffer referenced by data_in is assumed to
contain a valid X9.31 encapsulated hash. The encapsulated hash should be
wrapped if options specifies RSA_PUBLIC and should not be wrapped if
options specifies RSA_PRIVATE.

� data_out points to a buffer that is to contain the result of the operation.
� data_size is the length in bits of the buffers referenced by data_in and

data_out. data_size should be equal to key_token->n_BitLength.

Note: The data_size field for sccRSA is the length in bits of the input and
output buffers, whereas the data_size field for sccDSA is the length in bytes
of the input buffer.

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until the requested operation has been performed.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the PKA manager instructing it
to perform the desired operation. In this case, the caller must not modify,
deallocate, or reuse any portion of the request block referenced by pRSARB or
the areas of memory referenced by pRSARB->key_token, pRSARB->data_in, and
pRSARB->data_out before the operation is complete.

 Output
On successful exit from this routine:

If pMsgID is NULL, �(pRSARB->data_out) contains

� �(pRSARB->data_in) transformed using the public key (n and e) from
�(pRSARB->key_token) if pRSARB->options specifies RSA_PUBLIC and

� �(pRSARB->data_in) transformed using the private key from
�(pRSARB->key_token) if pRSARB->options specifies RSA_PRIVATE.

The blinding values r and r -1 in �(pRSARB->key_token) are replaced if
pRSARB->options specifies RSA_BLIND_NO_UPDATE.

 Chapter 3. Coprocessor-Side API 3-51

 19-SEP-01, 15:06 Release 2.40

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
PKA Manager to initiate the desired operation. When the operation is complete,
the PKA Manager will send the coprocessor application a message whose type
field (MSG.h.msg_type) contains this identifier and whose first (and only) data item
(MSG.msg_data[2]) contains the return code generated by the routine.37 If the
operation was successful, �(pRSARB->data_out) and the blinding values in
�(pRSARB->key_token) contain the result. The message is placed on the default
CP/Q message queue for the task that called sccRSAAsync.

 Notes
Buffer Overlap

The buffers referenced by pRSARB->data_in and pRSARB->data_out should either be
the same buffer or not overlap at all.

Buffer Length Not Equal to Modulus Length

If the length of the input and output buffers is less than the length of the modulus n
(that is, if pRSARB->data_size < pRSARB->key_token->n_BitLength), sccRSAAsync
returns PKABadParm.

If the length of the input and output buffers is greater than the length of the
modulus n (that is, if pRSARB->data_size > pRSARB->key_token->n_BitLength),
sccRSAAsync processes the rightmost bytes of the input buffer and places its result
in the rightmost bytes of the output buffer. For example,

char inbuffer[256];

char outbuffer[256];

sccRSA_RB_t RSARB;

sccRSAKeyToken_t �pToken;

...

pToken->n_BitLength = 1224;

sccRSAKeyGenerate(...); /� Generate 1224-bit RSA keypair �/

...

RSARB.data_in = inbuffer;

RSARB.data_out = outbuffer;

RSARB.data_size = 256�8; /� Input data and output buffer are 2248 bits �/

sccRSA(&RSARB);

/�

� sccRSA processes inbuffer[128] through inbuffer[255]

� and places the result in outbuffer[128] through outbuffer[255]

�/

X9.31 Support

The X9.31 signature generation process incorporates three steps:

1. The message is hashed.
2. The hash is encapsulated.
3. The encapsulated hash is wrapped to generate the signature.

37 The return code from the call to sccRSAAsync indicates whether or not the initial message to the PKA Manager was successfully
enqueued.

3-52 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

sccRSAAsync performs the third step as dictated by the X9.31 specification38 if

� options includes RSA_PRIVATE and RSA_X931_OPERATION,
� �key_token->key_type is RSA_X931_PRIVATE_MODULUS_EXPONENT,

RSA_X931_PRIVATE_CHINESE_REMAINDER, or
RSA_PKCS_X931_PRIVATE_CHINESE_REMAINDER (and had that value
when the key was generated), and

� the buffer referenced by data_in contains a valid X9.31 encapsulated hash.

The first two steps are the application’s responsibility.

Similarly, the signature verification process incorporates four steps:

1. The signature is opened (or unwrapped) to produce an encapsulated hash.
2. The format of the encapsulated hash is verified.
3. The hash value is extracted from the encapsulated hash.
4. The message is hashed and the value is compared to the extracted hash.

sccRSAAsync performs the first step as dictated by the X9.31 specification39 if

� options includes RSA_PUBLIC and RSA_X931_OPERATION,
� �key_token->key_type is RSA_PUBLIC (and the key itself corresponds to the

private key used to generate the signature), and
� the buffer referenced by data_in contains a valid X9.31 signature.

The last three steps are the application’s responsibility.

 Return Codes
Common return codes generated by this routine are:

PKAGood (i.e., 0) The operation was successful.

PKABadAddr The offset and length for an element in a key token are
invalid (that is, the element described does not fit within
the key token buffer).

38 In particular, sccRSAAsync assumes pRSARB->data_in describes the “intermediate integer IR” defined by the specification.
sccRSAAsync then computers RR, the “representative element of IR with respect to n,” as follows:
RR = IR

if (the Jacobi symbol of RR with respect to n is 1)

RR = RR / 2

signature = RRd mod n, where d is the private exponent

if (the high-order bit of signature is set)

signature = n - signature

39 In particular, sccRSAAsync assumes pRSARB->data_in describes the signature defined by the specification. sccRSAAsync then
computes IS, the “resulting integer,” and IR', the “recovered intermediate integer,” as follows:
IS = signaturee mod n, where e is the public exponent

IR' = IS

if (e is odd)

{

if (IR' is not congruent to 12 modulo 16)

IR' = n - IR'

}

else

{

if (IR' is congruent to 1 modulo 8)

IR' = n - IR'

else if (IR' is congruent to 6 modulo 8)

IR' = 2�IR'

else if (IR' is congruent to 7 modulo 8)

IR' = 2�(n - IR')

}

 Chapter 3. Coprocessor-Side API 3-53

 19-SEP-01, 15:06 Release 2.40

PKABadParm An argument is not valid. Many structural deficiencies in
the request block or key token can generate this error,
including:

� pRSARB->data_size < RSARB->key_token->n_BitLength.
� A private key operation has been requested using a

PKCS#1 CRT private key in which prime p < prime q.

PKANoSpace The operation failed due to lack of space (for example, the
buffer referenced by pRSARB->key_token is not large
enough to hold the blinding values generated by the call).

PKARangeOverflow The last pRSARB->key_token->n_Length bytes of
�(pRSARB->data_in), when interpreted as a big-endian
integer, exceed the value of the modulus n.

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

3-54 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

sccComputeBlindingValues - Compute Blinding Values for RSA Key
sccRSA’s implementation of the RSA algorithm may be vulnerable to a timing
attack.40 That is, an adversary can use differences in the amount of time it takes to
process various messages with a particular private key to defeat the cryptographic
security provided by the key. sccComputeBlindingValues generates two large
integers that can be used to defeat timing attacks.

 Function Prototype
 long sccComputeBlindingValuesAsync(sccCBV_RB_t �pCBVRB,

 unsigned long �pMsgID) ;

 #define sccComputeBlindingValues(p) sccComputeBlindingValuesAsync(p,NULL)

 Input
On entry to this routine:

pCBVRB must contain the address of an RSA blinding value request block whose
fields are initialized as follows:

� n must contain the address of the most significant byte of the modulus n.
� nsize is the length in bits of n.
� e must contain the address of the most significant byte of the public exponent

e.
� esize is the length in bytes of e, which contains the same number of bits as n.

If the length of e in bits is not a multiple of eight, any excess high-order bits in
the public exponent are treated as zeros (that is, e is essentially padded on the
left with zeros, regardless of the actual bits that appear in the buffer).

� r_e must contain the address of a buffer large enough to contain the blinding
value r generated by the call. This value has the same number of bits as the
modulus n.

� rinv must contain the address of a buffer large enough to contain the inverse
of the blinding value r -1 generated by the call. This value has the same
number of bits as the modulus n.

The modulus, public exponent, and blinding values are stored in big-endian order:
the byte at the lowest address contains the most significant byte of the value.

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until the blinding values have been generated.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the RSA manager instructing it
to perform the desired operation. In this case, the caller must not modify,
deallocate, or reuse any portion of the request block referenced by pCBVRB or
the areas of memory referenced by pCBVRB->n, pCBVRB->e, pCBVRB->r_e, and
pCBVRB->rinv before the operation is complete.

40 IBM believes certain features of the IBM 4758 Model 002/023 eliminate this vulnerability.

 Chapter 3. Coprocessor-Side API 3-55

 19-SEP-01, 15:06 Release 2.40

 Output
On successful exit from this routine:

If pMsgID is NULL, �(pCBVRB->r_e) and �(pCBVRB->rinv) contain the blinding
values generated by the call.

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
PKA Manager to initiate the desired operation. When the operation is complete,
the PKA Manager will send the coprocessor application a message whose type
field (MSG.h.msg_type) contains this identifier and whose first (and only) data item
(MSG.msg_data[2]) contains the return code generated by the routine.41 If the
operation was successful, the blinding values referenced by pCBVRB->r_e and
pCBVRB->r_inv contain the result. The message is placed on the default CP/Q
message queue for the task that called sccComputeBlindingValuesAsync.

 Return Codes
Common return codes generated by this routine are:

PKAGood (i.e., 0) The operation was successful.

PKABadParm An argument is not valid.

PKANoSpace The buffer referenced by pCBVRB->r_e or pCBVRB->rinv is
not large enough to hold the updated blinding values
generated by the call.

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

41 The return code from the call to sccComputeBlindingValuesAsync indicates whether or not the initial message to the PKA Manager
was successfully enqueued.

3-56 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

DSA Key Tokens
The interface to the PKA Manager defines the sccDSAKeyToken_t type to hold
information about DSA public and private keys. An item of type sccDSAKeyToken_t
has a variable length and consists of a descriptive header followed by a buffer
containing the values of the various elements of the key. (For example, the key
token for a DSA public key contains the values of the large prime p, the small
prime q, the generator g, and the public exponent y.) The header indicates which
elements are present and gives the length and offset within the token of the first
byte of each element. Elements are stored in big-endian order: the byte at the
lowest address contains the most significant byte of the element.42

The fields of the key token for a DSA public key are set as follows:

� key_type is DSA_PUBLIC_KEY_TYPE.
� key_token_length is the length in bytes of the key token. Note that this value

is typically larger than sizeof(sccDSAKeyToken_t) because the
sccDSAKeyToken_t structure maps only the first byte of the buffer that contains
the elements of the key.

� prime_p_bit_length is the length in bits of the large prime p.
prime_p_bit_length must be a multiple of 64 between 512 and 1024, inclusive.

� p_length is the length in bytes of p.
� p_offset is the offset in bytes from the start of the key token to the first byte of

p.43

� q_length is the length in bytes of the small prime q. q_length must be 20.
� q_offset is the offset in bytes from the start of the key token to the first byte of

q.43

� g_length is the length in bytes of the generator g.44

� g_offset is the offset in bytes from the start of the key token to the first byte of
g.43

� y_length is the length of the public exponent y.45

� y_offset is the offset in bytes from the start of the key token to the first byte of
y.43

� keydata_start marks the beginning of the buffer that contains the values of p,
q, g, and y.

The remaining length and offset fields are ignored and should be set to zero.

The fields of the key token for a DSA private key are set as follows:

� key_type is DSA_PRIVATE_KEY_TYPE.
� key_token_length is the length in bytes of the key token. Note that this value

is typically larger than sizeof(sccDSAKeyToken_t) because the
sccDSAKeyToken_t structure maps only the first byte of the buffer that contains
the elements of the key.

� prime_p_bit_length is the length in bits of the large prime p.
prime_p_bit_length must be a multiple of 64 between 512 and 1024, inclusive.

� p_length is the length in bytes of p.

42 Fields in the header are normal arithmetic items and are stored in little-endian order.

43 That is, if t is the key token and x is an element of the key, the first byte of x is ((char �) &t) [t.x_offset].

44 g is h (p-1)/q modulo p where h is a number less than p-1 chosen at random so that g is greater than 1.

45 y is g x modulo p, where x is the private exponent corresponding to the DSA public key defined by p, q, g, and y.

 Chapter 3. Coprocessor-Side API 3-57

 19-SEP-01, 15:06 Release 2.40

� p_offset is the offset in bytes from the start of the key token to the first byte of
p.46

� q_length is the length in bytes of the small prime q. q_length must be 20.
� q_offset is the offset in bytes from the start of the key token to the first byte of

q.46

� g_length is the length in bytes of the generator g.
� g_offset is the offset in bytes from the start of the key token to the first byte of

g.46

� y_length is the length of the public exponent y.
� y_offset is the offset in bytes from the start of the key token to the first byte of

y.46

� x_length is the length of the private exponent x.47

� x_offset is the offset in bytes from the start of the key token to the first byte of
x.46

� keydata_start marks the beginning of the buffer that contains the values of p,
q, g, y, and x.

Note that a DSA private key token includes information about the corresponding
DSA public key. The public portion need not be present when the token is used as
a private key.

DSA Signature Tokens
The interface to the PKA Manager defines the sccDSASignatureToken_t type to
hold a digital signature generated by the DSA algorithm. An item of type
sccDSASignatureToken_t consists of a descriptive header followed by a fixed-length
buffer containing the various elements of the signature. The header gives the
length and offset within the token of the first byte of each element. Elements are
stored in big-endian order: the byte at the lowest address contains the most
significant byte of the element.48

The fields of a DSA signature token are set as follows:

� signature_token_length is the length in bytes of the signature token. Note that
this value is typically larger than sizeof(sccDSASignatureToken_t) because the
sccDSASignatureToken_t structure maps only the first byte of the buffer that
contains the elements of the signature.

� r_length is the length in bytes of the first half of the signature r.49 r_length

must be less than or equal to 20.
� r_offset is the offset in bytes from the start of the signature token to the first

byte of r.46

� s_length is the length in bytes of the second half of the signature s.50 s_length

must be less than or equal to 20.
� s_offset is the offset in bytes from the start of the signature token to the first

byte of s.46

� signature_data_start marks the start of the buffer that contains the values of r
and s.

46 That is, if t is the key token and x is an element of the key, the first byte of x is ((char �) &t) [t.x_offset].

47 x is a number less than q chosen at random.

48 Fields in the header are normal arithmetic items and are stored in little-endian order.

49 r = (gk mod p) mod q where k is a number less than q chosen at random.

50 s = (H(m) + xr)/k mod q where H(m) is the value generated by the Secure Hash Algorithm when applied to the data to be signed.

3-58 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

sccDSAKeyGenerate - Generate DSA Key Pair
sccDSAKeyGenerate generates a key token for a DSA private key. The token
includes information that defines the corresponding DSA public key. The user may
specify values for certain portions of the DSA private key.

 Function Prototype
long sccDSAKeyGenerateAsync(sccDSAKeyGen_RB_t �pDSAKGRB,

 unsigned long �pMsgID);

#define sccDSAKeyGenerate(p) sccDSAKeyGenerateAsync(p,NULL)

 Input
On entry to this routine:

pDSAKGRB must contain the address of a DSA key generate request block whose
fields are initialized as follows:

� prime_p_size specifies the desired length in bits of the large prime p.
prime_p_size must be a multiple of 64 between 512 and 1024, inclusive.

� key_token must contain the address of a buffer in which an item of type
sccDSAKeyToken_t can be stored.

The values of the large prime p, the small prime q, and the generator g used to
generate the DSA private key may be specified in �key_token. If
key_token->p_length, key_token->q_length, and key_token->g_length are all
nonzero, sccDSAKeyGenerateAsync does not generate random values for p, q,
and g but instead uses the values in the key token.

In this case, key_token->p_length and key_token->g_length must be equal to
prime_p_size/8 and key_token->q_length must be 20. key_token->p_offset,
key_token->q_offset, and key_token->g_offset specify the locations of the first
bytes of p, q, and g, respectively. The remaining fields of �key_token need not
be initialized.

� key_token_size must be the length in bytes of the buffer referenced by
key_token.

� random_seed points to a string of bits used to seed the PKA Manager’s
pseudo-random number generator, which is used to generate the prime
numbers p and q and the generator g.51 random_seed should be NULL when
generating keys in the course of normal operations. In that case, the PKA
Manager obtains its random numbers from the RNG Manager. If random_seed
is not NULL, the string it references should contain at least 160 bits of entropy
to ensure the keys generated from the seed are cryptographically sound.52

random_seed is not used if the values of the large prime p, the small prime q,
and the generator g are specified in �key_token.

� random_seed_size must contain the length in bytes of the string referenced by
random_seed. If random_seed is NULL, random_seed_size must be zero.

51 Although sccDSAKeyGenerate does use the value provided in random_seed to generate p, q, and g, it does not use that value to
generate x. Instead, it always chooses x at random. Thus, use of random_seed does not ensure reproducible results.

52 Entropy is a measure of the uncertainty, unpredictability, and randomness in data output from a source. For a clearer explanation
of entropy and suggestions on how to obtain random seeds with sufficient entropy see
http://www.rsa.com/rsa/developers/random.htm.

 Chapter 3. Coprocessor-Side API 3-59

 19-SEP-01, 15:06 Release 2.40

random_seed_size is not used if the values of the large prime p, the small prime
q, and the generator g are specified in �key_token.

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until the key token has been generated.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the PKA Manager instructing it
to perform the desired operation. In this case, the caller must not modify,
deallocate, or reuse any portion of the request block referenced by pDSAKGRB or
the areas of memory referenced by pDSAKGRB->key_token and
pDSAKGRB->random_seed before the operation is complete.

 Output
On successful exit from this routine:

If pMsgID is NULL, �(pDSAKGRB->key_token) contains a key token for a DSA private
key.

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
PKA Manager to initiate the desired operation. When the operation is complete,
the PKA Manager will send the coprocessor application a message whose type
field (MSG.h.msg_type) contains this identifier and whose first (and only) data item
(MSG.msg_data[2]) contains the return code generated by the routine.53 If the
operation was successful, �(pDSAKGRB->key_token) contains the result. The
message is placed on the default CP/Q message queue for the task that called
sccDSAKeyGenerateAsync.

If the caller specified values for p, q, and g, those values remain in �key_token, but
they may have moved from their original positions within the token (that is,
key_token->p_offset, key_token->q_offset, and key_token->g_offset may have
changed).

 Notes
Generating Public Keys

A key token for a DSA public key can be generated from the key token for the
corresponding DSA private key by copying everything but x from the private key
token and setting the public key token’s type field to DSA_PUBLIC_KEY_TYPE.

 Return Codes
Common return codes generated by this routine are:

PKAGood (i.e., 0) The operation was successful.

PKADSAKeyGenFailed pDSAKGRB->prime_p_size is not a multiple of 64
between 512 and 1024, inclusive.

PKABadParm An argument is not valid.

53 The return code from the call to sccDSAKeyGenerateAsync indicates whether or not the initial message to the PKA Manager was
successfully enqueued.

3-60 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

PKANoSpace The buffer referenced by pDSAKGRB->key_token is not
large enough to hold the token generated by the call.

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

 Chapter 3. Coprocessor-Side API 3-61

 19-SEP-01, 15:06 Release 2.40

sccDSA - Sign Data or Verify Signature for Data
sccDSA generates a digital signature for or verifies that a specified digital signature
is correct for an arbitrary amount of data using the DSA algorithm.

 Function Prototype
long sccDSAAsync(sccDSA_RB_t �pDSARB,

 unsigned long �pMsgID);

#define sccDSA(p) sccDSAAsync(p,NULL)

 Input
On entry to this routine:

pDSARB must contain the address of a DSA operation request block whose fields are
initialized as follows:

� options controls the operation of the function and must be set to the logical OR
of constants from the following categories:

Sign or Verify

options must include one of the following constants:

DSA_SIGNATURE_SIGN Compute the DSA signature for the input data.

DSA_SIGNATURE_VERIFY Verify that the signature for the input data is
correct.

If DSA_SIGNATURE_SIGN is specified, key_token->key_type must be
DSA_PRIVATE_KEY_TYPE. If DSA_SIGNATURE_VERIFY is specified,

| key_token->key_type must be DSA_PUBLIC_KEY_TYPE.54

Pre-Digested Data

options may include DSA_PRE_DIGESTED_DATA. If this option is specified,
the PKA Manager assumes the input data has already been hashed using the
SHA-1 algorithm and does not hash the data a second time. In this case,
data_size must be 20.

� �key_token is the DSA key token for the key to be used in the operation.
� key_token_size is the length in bytes of the DSA key token referenced by

key_token (that is, key_token->key_token_length).
� sig_token must contain the address of a buffer in which an item of type

sccDSASignatureToken_t can be stored. If options specifies
DSA_SIGNATURE_SIGN, the buffer must be at least 60 bytes long. If options
specifies DSA_SIGNATURE_VERIFY, �sig_token must contain the signature
that is to be checked against the block of data.

� sig_token_size is the length in bytes of the DSA signature token referenced by
sig_token.

� data points to a buffer that contains the input data (that is, a SHA-1 hash if
options specifies DSA_PRE_DIGESTED_DATA or an arbitrary block of data
otherwise).

� data_size is the length in bytes of the buffer referenced by data.

| 54 This means that one cannot generate a signature then immediately verify it using the same key, even though the private key
| incorporates all the information needed to perform the verification.

3-62 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

Note: The data_size field for sccDSA is the length in bytes of the input
buffer, whereas the data_size field for sccRSA is the length in bits of the input
and output buffers.

 Chapter 3. Coprocessor-Side API 3-63

 19-SEP-01, 15:06 Release 2.40

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until the signature has been generated or verified, as appropriate.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the PKA Manager instructing it
to perform the desired operation. In this case, the caller must not modify,
deallocate, or reuse any portion of the request block referenced by pDSARB or
the areas of memory referenced by pDSARB->key_token, pDSARB->sig_token,
and pRSARB->data before the operation is complete.

 Output
On successful exit from this routine:

If pMsgID is NULL and pDSARB->options specifies DSA_SIGNATURE_SIGN,
�(pDSARB->sig_token) contains the digital signature produced by signing
�(pDSARB->data) with the private key (g and x) from �(pDSARB->key_token).

If pMsgID is NULL and pDSARB->options specifies DSA_SIGNATURE_VERIFY, a
return code of zero implies that the signature in �(pDSARB->sig_token) was
produced by signing �(pDSARB->data) with the private key corresponding to the
public key (p, q, g, and y) from �(pDSARB->key_token).

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
PKA Manager to initiate the desired operation. When the operation is complete,
the PKA Manager will send the coprocessor application a message whose type
field (MSG.h.msg_type) contains this identifier and whose first (and only) data item
(MSG.msg_data[2]) contains the return code generated by the routine.55 If
pDSARB->options specified DSA_SIGNATURE_SIGN and the operation was
successful, �(pDSARB->sig_token) contains the result. The message is placed on
the default CP/Q message queue for the task that called sccDSAAsync.

 Notes
Order of Elements in Generated Signature

r precedes s in digital signatures generated by sccDSA when pDSARB->options
specifies DSA_SIGNATURE_SIGN. That is, on successful exit
pDSARB->sig_token->r_offset is less than pDSARB->sig_token->s_offset.

 Return Codes
Common return codes generated by this routine are:

PKAGood (i.e., 0) The operation was successful.

PKADSASigIncorrect pDSARB->options specifies DSA_SIGNATURE_VERIFY
but the signature in �(pDSARB->sig_token) was not
produced by signing �(pDSARB->data) with the private
key corresponding to the public key (p, q, g, and y)
from �(pDSARB->key_token).

55 The return code from the call to sccDSAAsync indicates whether or not the initial message to the PKA Manager was successfully
enqueued.

3-64 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

PKABadParm An argument is not valid.

PKANoSpace The operation failed due to lack of space.

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

 Chapter 3. Coprocessor-Side API 3-65

 19-SEP-01, 15:06 Release 2.40

Large Integer Modular Math Functions
The functions described in this section allow a coprocessor application to direct the
PKA Manager to perform specific modular operations on large integers. Currently,
the following operations are supported:

� Modular multiplication (C = A x B mod N)
� Modular exponentiation (C = AB mod N)
� Modular reduction (C = A mod N)

 Large Integers
A large integer is described by a structure of type sccModMath_Int_t. The fields of
this structure are:

� bytesize, which specifies the length in bytes of the buffer that contains the
integer. bytesize must be less than or equal to MODM_MAXBYTES.

� bitsize, which specifies the number of bits in the integer. bitsize must be
less than or equal to 8�bytesize.

� buffer, which is the address of the first byte in the buffer that contains the
integer.

The integer occupies the first (bitsize + 7)/8 bytes of the buffer. Both big-endian
(buffer[2] is the most significant byte of the integer), and little-endian (buffer[2] is
the least significant byte of the integer) byte orders are supported. Large integers
are always nonnegative (that is, there is no sign bit).

Large integers that are passed as input arguments to the large integer modular
math functions may contain leading zero bits (that is, the most significant bit of the
integer may be zero). Any bits in the most significant byte that are not part of the
large integer are ignored.56

Large integers that are generated as outputs by the large integer modular math
functions do not contain leading zero bits (that is, the most significant bit of the
integer is one). Any bits in the most significant byte that are not part of the large
integer are zero.56

56 That is, if bitsize is not a multiple of 8, the high-order 8-(bitsize mod 8) bits in the most significant byte are ignored on input and
zeroed on output.

3-66 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

sccModMath - Perform Modular Computations
sccModMath performs one of the following operations on large integers:

� Modular multiplication (C = A x B mod N)
� Modular exponentiation (C = AB mod N)
� Modular reduction (C = A mod N)

 Function Prototype
long sccModMathAsync(unsigned long options,

 unsigned long numInts,

 sccModMath_Int_t aInts[],

 unsigned long �pMsgID);

 #define sccModMath(c,n,a) sccModMathAsync(c,n,a,NULL)

 Input
On entry to this routine:

options controls the operation of the function and must be set to the logical OR of
constants from the following categories:

Requested Function

options must include one of the following constants:

MODM_MULT Compute C = (A x B) mod N
MODM_EXP Compute C = AB mod N
MODM_MOD Compute C = A mod N

Large Integer Byte Order

options must include one of the following constants:

MODM_BIG Large integers received as input and generated as output are
big-endian (the byte at the lowest address is the most significant
byte of the integer).

MODM_LITTLE Large integers received as input and generated as output are
little-endian (the byte at the lowest address is the least significant
byte of the integer).

numInts is the number of elements in the aInts array. If options specifies
MODM_MULT or MODM_EXP, numInts must be at least 4. If options specifies
MODM_MOD, numInts must be at least 3.

aInts must contain the address of an array of large integer descriptors. Its
elements are as follows:

� aInts[MODM_C] is the descriptor for C, the result. The buffer defined by
aInts[MODM_C].bytesize and aInts[MODM_C].buffer must be large enough to
hold the result of the operation. aInts[MODM_C].bitsize is not used.

� aInts[MODM_N] is the descriptor for N, the modulus.
� aInts[MODM_A] is the descriptor for A, the first (or only) operand. If options

specifies MODM_MULT or MODM_EXP, A must be less than N.
� aInts[MODM_B] is the descriptor for B, the second operand. If options specifies

MODM_MULT, B must be less than N. If options specifies MODM_MOD,
aInts[MODM_B] is not used.

 Chapter 3. Coprocessor-Side API 3-67

 19-SEP-01, 15:06 Release 2.40

pMsgID determines whether the function is performed synchronously or
asynchronously.

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until the requested operation is complete.

� If pMsgID is not NULL, the function is perform asynchronously. The call returns
as soon as a message has been sent to the PKA Manager instructing it to
perform the desired operation. In this case, the caller must not modify,
deallocate, or reuse any portion of the aInts array or the buffers referenced by
the elements of that array before the operation is complete.

 Output
On successful exit from this routine:

If pMsgID is NULL, aInts[MODM_C].bitsize contains the number of bits in the result
and aInts[MODM_C].buffer contains the value of the result. If options specifies
MODM_BIG, the value is in big-endian order. If options specifies MODM_LITTLE,
the value is in little-endian order. See “Large Integers” on page 3-66 for a
description of the format of the value.

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
PKA Manager to initiate the desired operation. When the operation is complete,
the PKA Manager sends the coprocessor application a message whose type field
(Msg.h.msg_type) contains this identifier and whose first (and only) data item
(Msg.msg_data[2]) contains the return code generated by the routine. If the
operation was successful, aInts[MODM_C].bitsize and aInts[MODM_C].buffer

contain the result as previously described. The message is placed on the default
CP/Q message queue for the task that called sccModMathAsync.

 Return Codes
Common return codes generated by this routine are:

PKAGood (i.e., 0) The operation was successful.

PKABadParm An argument is not valid. (for example, options does
not specify MODM_MULT, MODM_EXP, or
MODM_MOD or specifies both MODM_BIG and
MODM_LITTLE) or an invalid operation was requested
(that is, 00 mod N).

PKANoSpace The operation failed due to lack of space.

PKABadAddr One of the large integers supplied as inputs is invalid
(for example, bitsize or bytesize exceeds the
maximum or buffer is NULL).

PKARangeOverflow The buffer provided to hold the result of the operation
is not large enough.

3-68 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

 Chapter 3. Coprocessor-Side API 3-69

 19-SEP-01, 15:06 Release 2.40

Random Number Generator Functions
The functions described in this section allow a coprocessor application to request
services from the RNG Manager, which obtains random bits from the coprocessor’s
hardware noise source or from a pseudo-random number generator.

sccGetRandomNumber - Generate Random Number
sccGetRandomNumber generates a 64-bit random number based on a hardware
noise source. The bits meet the standards described in FIPS Publication 140-1,
section 4.11.

 Function Prototype
long sccGetRandomNumberAsync(unsigned char �pRandom,

 unsigned long options,

 unsigned long �pMsgID);

 #define sccGetRandomNumber(pr,opt) sccGetRandomNumberAsync(pr,opt,NULL)

 Input
On entry to this routine:

pRandom must contain the address of a variable in which an 8-byte string of bits can
be stored.

options controls the operation of the function and must be set to the logical OR of
constants from the following categories:

Parity Bits

options must include one of the following constants:

RANDOM_RANDOM Generate 64 bits of random data.
RANDOM_ODD_PARITY Generate 64 bits of random data, then set or clear the

least significant bit of each byte so that the number of
bits set in each byte is odd.

RANDOM_EVEN_PARITY Generate 64 bits of random data, then set or clear the
least significant bit of each byte so that the number of
bits set in each byte is even.

Source of Bits

options may include one or both of the following constants:

RANDOM_HW Obtain random bits from the coprocessor’s hardware noise
source.

RANDOM_SW Obtain random bits from a pseudo-random number generator
(PRNG). The PRNG uses a FIPS-approved algorithm and is
periodically reseeded with random bits from the hardware noise
source. See “Reseeding the Pseudo-Random Number
Generator” on page 3-72 for details.

If options specifies both RANDOM_HW and RANDOM_SW, the function returns a
block of random bits from the coprocessor’s hardware noise source if such a block
is available immediately. Otherwise the function returns a block of random bits
from the PRNG.

3-70 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

If options specifies neither RANDOM_HW nor RANDOM_SW, RANDOM_SW is
assumed.

Filter DES Weak Keys

options may include RANDOM_NOT_WEAK. If this option is specified, random
numbers that are weak, semi-weak, or possibly weak when used as DES keys will
not be returned. The number is checked after any requested parity bits are
generated. See Appendix B, “DES Weak, Semi-Weak, and Possibly Weak Keys”
on page B-1 for a list of DES weak, semi-weak, or possibly weak keys.

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until a random number is available.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the RNG Manager instructing it
to obtain a random number. In this case, the caller must not modify,
deallocate, or reuse any portion of the buffer referenced by pRandom before the
operation is complete.

 Output
On successful exit from this routine:

If pMsgID is NULL, �pRandom contains a 64-bit random number, with parity bits set
as requested in options.

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
RNG Manager to initiate the desired operation. When the operation is complete,
the RNG Manager will send the coprocessor application a message whose type
field (MSG.h.msg_type) contains this identifier and whose first (and only) data item
(MSG.msg_data[2]) contains the return code generated by the routine.57 If the
operation was successful, �pRandom contains the result. The message is placed on
the default CP/Q message queue for the task that called
sccGetRandomNumberAsync.

 Notes
Output Buffer Must Be Writeable

If the memory referenced by the pRandom argument is not writeable by the task that
called sccGetRandomNumberAsync, the function causes that task to take an
exception.

Outstanding Request Limits

A single task can only have one request for a random number outstanding at a
time. This prevents a denial-of-service condition in which one requestor floods the
RNG Manager with requests to the exclusion of all others. The RNG Manager also
limits the number of simultaneous requests pending from all sources.

57 The return code from the call to sccGetRandomNumberAsync indicates whether or not the initial message to the RNG Manager
was successfully enqueued.

 Chapter 3. Coprocessor-Side API 3-71

 19-SEP-01, 15:06 Release 2.40

Reseeding the Pseudo-Random Number Generator

sccGetRandomNumberAsync reseeds the PRNG with random bits from the
coprocessor’s hardware noise source if

� options specifies both RANDOM_HW and RANDOM_SW and there are exactly
three 8-byte blocks of random bits from the coprocessor’s hardware noise
source available. The random bits returned in this case are then taken from
the PRNG.

� options specifies RANDOM_SW (but not RANDOM_HW) and the number of
pseudo-random numbers generated since the PRNG was last reseeded is a
multiple of eight and there are at least three 8-byte blocks of random bits from
the coprocessor’s hardware noise source available.

 Return Codes
Common return codes generated by this routine are:

random_success (i.e., 0) The operation was successful.

no_random_generator The RNG Manager is not present in the system

random_invalid The options argument is not valid.

random_already_waiting The task that called sccGetRandomNumberAsync has
already requested a random number and that request
is still outstanding.

random_Qfull The maximum number of simultaneous requests is
pending.

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

3-72 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

sccTestRandomNumber - Test Random Number Generator (4758 Model
002/023 Only)

 Note

This function is not available on the 4758 model 001/013.

sccTestRandomNumber verifies that the bits returned by sccGetRandomNumber
meet the standards described in FIPS Publication 140-1, section 4.11.

 Function Prototype
 long sccTestRandomNumberAsync(sccRNG_test_RB_t �pRNGTRB,

 unsigned long �pMsgID);

 #define sccTestRandomNumber(p) sccTestRandomNumberAsync(p,NULL)

 Input
On entry to this routine:

pRNGTRB must contain the address of a RNG test request block structure whose
fields are initialized as follows:

� options determines whether output from the coprocessor’s hardware noise
source or from the pseudo-random number generator (PRNG) is tested.
options must be either RNG_TEST_HRNG (test hardware noise source) or
RNG_TEST_PRNG (test PRNG).

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until the test is complete.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the RNG Manager instructing it
to perform the test.

 Output
On successful exit from this routine:

If pMsgID is NULL, the test is complete. See “Interpretation of Test Results” on
page 3-74 for details.

If pMsgID not NULL, �pMsgID uniquely identifies the message that was sent to the
RNG Manager to initiate the desired operation. When the operation is complete,
the RNG Manager will send the coprocessor application a message whose type
field (MSG.h.msg_type) contains this identifier and whose first (and only) data item
(MSG.msg_data[2]) contains the return code generated by the routine.58 The
message is placed on the default CP/Q message queue for the task that called
sccTestRandomNumberAsync.

58 The return code from the call to sccTestRandomNumberAsync indicates whether or not the initial message to the RNG Manager
was successfully enqueued.

 Chapter 3. Coprocessor-Side API 3-73

 19-SEP-01, 15:06 Release 2.40

 Notes
Interpretation of Test Results

If the high-order bit of the return code from the function is zero, all tests were
completed. If the return code is zero, all tests passed. Other possibilities are:

� (rc & 1) != 2: The ratio of one bits to zero bits in a large sample of random
bits is not within allowable limits.

� (rc & 2) != 2: The sum of the squares of the number of times each hex digit
appears in a large sample of random bits is not within allowable limits.

� (rc & 4) != 2: The number of times consecutive bits of the same value
appear in sequence and the length of such sequences in a large sample of
random bits is not within allowable limits.

 Return Codes
Common return codes generated by this routine are:

random_success (i.e., 0) The operation was successful.

no_random_generator The RNG Manager is not present in the system

random_invalid The options argument is not valid.

random_already_waiting The task that called sccGetRandomNumberAsync has
already requested a random number and that request
is still outstanding.

random_Qfull The maximum number of simultaneous requests is
pending.

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference

3-74 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

 Chapter 3. Coprocessor-Side API 3-75

 19-SEP-01, 15:06 Release 2.40

Nonvolatile Memory Functions
The functions described in this section allow a coprocessor application to request
services from the Program Proprietary Data (PPD) Manager, which controls access
to the coprocessor’s flash and battery-backed RAM (BBRAM) storage.

Information saved in nonvolatile memory is not lost when the coprocessor is
rebooted or when it is removed from its host.

The coprocessor clears BBRAM to zeros if it detects an attempt to tamper with the
coprocessor hardware. If is therefore unnecessary (although permissible) to
encrypt data stored in BBRAM. The coprocessor does not clear flash memory if it
detects a tamper event, however, so sensitive data stored in flash should always be
encrypted. An application may encrypt the data itself or may direct the PPD
Manager to perform the encryption.

Information saved in nonvolatile memory should be saved in flash whenever
possible because the coprocessor has a very limited amount of BBRAM. However,
items that are frequently updated should be placed in BBRAM since writing to
BBRAM is faster than writing to flash and since there is a limit to the number of
times a particular flash memory cell can be written.

Information may be written to nonvolatile memory as often as required, but for
reasons of efficiency information should be read from nonvolatile memory only
infrequently. An application that needs to read information in nonvolatile memory
frequently should keep an updated copy of the information in (regular) RAM and
refer to the copy.

Names and Namespaces
Associated with each block of data (or item) saved in nonvolatile memory is a name
chosen by the application that owns the data. The name is assigned when the item
is first saved or when space to hold the item is allocated and subsequent requests
to read, write, update or delete the item refer to it by name. The interface to the
PPD Manager defines the ppd_name_t type to hold a name. An item of type
ppd_name_t is eight bytes long. Names stored in a variable of type ppd_name_t
should be padded if necessary to occupy the entire variable.

The PPD Manager maintains a separate namespace for each coprocessor
application that uses nonvolatile memory.59 All the tasks within an application share
the application’s namespace. Thus, an item written by one application cannot
overwrite an item owned by another application, even if both applications use the
same name to refer to the items, but one task in an application can manipulate an
item originally saved by another task in the same application.

59 That is, each CP/Q process has a separate namespace.

3-76 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

sccQueryPPDSpace - Count Free Space in Nonvolatile Memory
sccQueryPPDSpace determines the amount of free space in the coprocessor’s
flash memory or BBRAM. The value this function returns does not include space
occupied by deleted items that has not yet been reclaimed by the PPD Manager.

 Function Prototype
long sccQueryPPDSpace(unsigned long �pSpace,

 unsigned long options);

 Input
On entry to this routine,

pSpace must contain the address of a variable in which an item of type unsigned
long can be stored.

options determines whether the amount of free space in flash or the amount of free
space in BBRAM is returned and must be either PPD_FLASH (flash) or
PPD_BBRAM (BBRAM).

 Output
On successful exit from this routine,

�pSpace contains the number of bytes of flash that are unused if options is
PPD_FLASH and the number of bytes of BBRAM that are unused if options is
PPD_BBRAM. Since other applications may use nonvolatile memory, this number
is a snapshot and may not reflect the amount of space actually available.

 Notes
Deleted Items and Free Space

The amount of free space returned by sccQueryPPDSpace does not include space
occupied by deleted items that has not yet been reclaimed by the PPD Manager.

Items Saved in BBRAM Use Free Space in Flash

Any time a new item is stored in nonvolatile memory (flash or BBRAM) using
sccSavePPD or sccCreate4UpdatePPD a certain amount of flash memory is
allocated to hold a directory entry for the item.

 Return Codes
Common return codes generated by this routine are:

PPDGood (i.e., 0) The operation was successful.

PPD_NOT_AUTHORIZED The coprocessor application is not authorized to
request services from the PPD Manager (for example,
because it has not called sccSignOn).

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference

 Chapter 3. Coprocessor-Side API 3-77

 19-SEP-01, 15:06 Release 2.40

sccCreate4UpdatePPD - Allocate Space in Nonvolatile Memory
sccCreate4UpdatePPD allocates a block of BBRAM and optionally stores an item
(a block of data) in the allocated space.

 Function Prototype
 long sccCreate4UpdatePPDAsync(ppd_name_t name,

 void �pbuffer

 unsigned long len

 unsigned long �pMsgID);

#define sccCreate4UpdatePPD(n,p,l) sccCreate4UpdatePPDAsync(n,p,l,NULL)

 Input
On entry to this routine,

name is the name assigned to items stored in the block of BBRAM the function
allocates. See “Names and Namespaces” on page 3-76 for details. If the name is
already in use, the PPD Manager deletes the item with which the name is
associated and reassigns the name.

pBuffer may contain the address of a block of data to be stored in BBRAM or may
be NULL. See the description of the len argument for a discussion of how pBuffer
is used.

len is the length in bytes of the block of BBRAM to allocate. If pBuffer is not NULL,
the PPD Manager copies len bytes of data from pBuffer to BBRAM. If pBuffer is
NULL, the PPD Manager fills the block of BBRAM with binary zeros.

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until the block of BBRAM has been allocated and the item referenced by
pBuffer (if pBuffer is not NULL) has been saved in BBRAM.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the PPD Manager instructing it
to perform the desired operation. In this case, the caller must not modify,
deallocate, or reuse any portion of the block of data referenced by pBuffer (if
pBuffer is not NULL) before the operation is complete.

 Output
This function returns no output. On successful exit from this routine:

If pMsgID is NULL, len bytes of BBRAM have been allocated and the item
referenced by pBuffer (if pBuffer is not NULL) has been saved in BBRAM.

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
PPD Manager to initiate the desired operation. When the operation is complete,
the PPD Manager sends the coprocessor application a message whose type field
(MSG.h.msg_type) contains this identifier and whose first (and only) data item
(MSG.msg_data[2]) contains the return code generated by the routine.60 The

60 The return code from the call to sccCreate4UpdatePPDAsync indicates whether or not the initial message to the PPD Manager
was successfully enqueued.

3-78 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

message is placed on the default CP/Q message queue for the task that called
sccCreate4UpdatePPDAsync.

 Notes
Effects on Flash

This function always writes to flash (to create or delete (or both) a directory entry).

Garbage Collection

The PPD Manager may need to reclaim space in flash or BBRAM (or both)
occupied by items that have been deleted in order to create the new item. This
activity is transparent to the caller except for the additional time it requires.

Atomic Operation

This function is an atomic operation - it either succeeds in full or fails without saving
any part of the data block referenced by pBuffer (if pBuffer is not NULL) or
changing an existing item with the same name.

Faults Stop System

If the PPD Manager encounters a hardware problem when writing to flash memory
or to BBRAM the PPD Manager traps to the CP/Q fault handler (which stops the
system).

 Return Codes
Common return codes generated by this routine are:

PPDGood (i.e., 0) The operation was successful.

PPD_NOT_AUTHORIZED The coprocessor application is not authorized to
request services from the PPD Manager (for example,
because it has not called sccSignOn).

PPD_NO_SPACE There is not enough space in the requested region of
nonvolatile memory to hold the data block to be
stored.

PPD_NO_DIR_SPACE There is not enough space in flash memory to hold the
directory entry for the data block to be stored.

PPD_NO_DES The caller asked that the item be encrypted but there
is no DES Manager installed in the system.

PPD_ILLEGAL_MEM The buffer defined by pBuffer and len is not readable.

PPD_NO_PRIVS The buffer defined by pBuffer and len is not readable
by the calling task.

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

 Chapter 3. Coprocessor-Side API 3-79

 19-SEP-01, 15:06 Release 2.40

sccSavePPD - Store Item in Nonvolatile Memory
sccSavePPD stores an item (a block of data) in flash memory or BBRAM.

This function always writes to flash, even when the item is stored in BBRAM. See
“sccUpdatePPD - Update Item in BBRAM” on page 3-83 for an alternative that
does not.

 Function Prototype
 long sccSavePPDAsync(ppd_name_t name,

 void �pBuffer,

 unsigned long len,

 unsigned long options,

 unsigned long �pMsgID);

#define sccSavePPD(n,b,l,o) sccSavePPDAsync(n,b,l,o,NULL)

 Input
On entry to this routine:

name is the name assigned to the item. See “Names and Namespaces” on
page 3-76 for details. If an item with this name does not exist, the PPD Manager
allocates the required amount of space and creates the item. If an item with the
same name does exist, the PPD Manager replaces it with the block of data
referenced by pBuffer.

pBuffer must contain the address of the block of data that is to be saved.

len is the length in bytes of the block of data referenced by pBuffer.

options controls the operation of the function and must be set to the logical OR of
constants from the following categories:

Nonvolatile Memory Region

options must include one of the following constants:

PPD_FLASH Store item in flash memory.
PPD_BBRAM Store item in BBRAM.

Items saved in nonvolatile memory should be saved in flash whenever possible
because the coprocessor has a very limited amount of BBRAM.

 Encryption Options

The PPD Manager can be directed to encrypt the block of data before it is
saved in nonvolatile memory.61 options may include one of the following
constants:

PPD_SINGLE Encrypt using DES (CBC mode) and a single key.
PPD_TRIPLE Encrypt using DES (CBC mode) and three distinct keys.
PPD_NONE Do not encrypt.
PPD_USE_PREV Encrypt using the method that was most recently used to

encrypt the item.

61 Sensitive data stored in flash should always be encrypted, either by the application or by the PPD Manager.

3-80 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

If PPD_USE_PREV is specified and name does not refer to an item already
saved in nonvolatile memory, no encryption is performed.

The PPD Manager uses its own keys to encrypt the item.

Items in BBRAM that have been encrypted by the PPD Manager cannot be
modified by the sccUpdatePPD function.

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until the block of data has been saved in nonvolatile memory.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the PPD Manager instructing it
to perform the desired operation. In this case, the caller must not modify,
deallocate, or reuse any portion of the block of data referenced by pBuffer
before the operation is complete.

 Output
This function returns no output. On successful exit from this routine:

If pMsgID is NULL, the block of data referenced by pBuffer has been saved in flash
memory if options specifies PPD_FLASH and has been saved in BBRAM if
options specifies PPD_BBRAM.

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
PPD Manager to initiate the desired operation. When the operation is complete,
the PPD Manager will send the coprocessor application a message whose type
field (MSG.h.msg_type) contains this identifier and whose first (and only) data item
(MSG.msg_data[2]) contains the return code generated by the routine.62 The
message is placed on the default CP/Q message queue for the task that called
sccSavePPDAsync.

 Notes
Effect on Flash

This function always writes to flash (to create or delete [or both] a directory entry).

Garbage Collection

The PPD Manager may need to reclaim space in flash or BBRAM (or both)
occupied by items that have been deleted in order to create the new item. This
activity is transparent to the caller except for the additional time it requires.

Atomic Operation

This function is an atomic operation - it either succeeds in full or fails without saving
any part of the data block or changing an existing item with the same name.

62 The return code from the call to sccSavePPDAsync indicates whether or not the initial message to the PPD Manager was
successfully enqueued.

 Chapter 3. Coprocessor-Side API 3-81

 19-SEP-01, 15:06 Release 2.40

Faults Stop System

If the PPD Manager encounters a hardware problem when writing to flash memory
or to BBRAM, the PPD Manager traps to the CP/Q fault handler (which stops the
system).

 Return Codes
Common return codes generated by this routine are:

PPDGood (i.e., 0) The operation was successful.

PPD_NOT_AUTHORIZED The coprocessor application is not authorized to
request services from the PPD Manager (for example,
because it has not called sccSignOn).

PPD_NO_SPACE There is not enough space in the requested region of
nonvolatile memory to hold the data block to be
stored.

PPD_NO_DIR_SPACE There is not enough space in flash memory to hold the
directory entry for the data block to be stored.

PPD_NO_DES The caller asked that the item be encrypted but there
is no DES Manager installed in the system.

PPD_ILLEGAL_MEM The buffer defined by pBuffer and len is not readable.

PPD_NO_PRIVS The buffer defined by pBuffer and len is not readable
by the calling task.

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

3-82 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

sccUpdatePPD - Update Item in BBRAM
sccUpdatePPD updates an arbitrary portion of an item (a block of data) in BBRAM.

 Function Prototype
 long sccUpdatePPDAsync(ppd_name_t name,

 void �pBuffer,

 unsigned long len,

 unsigned long offset,

 unsigned long �pMsgID);

#define sccUpdatePPD(n,b,l,o) sccUpdatePPD(n,b,l,o,NULL)

 Input
On entry to this routine:

name is the name of the item to be updated. See “Names and Namespaces” on
page 3-76 for details. The item must reside in BBRAM and must not have been
encrypted by the PPD Manager.63

pBuffer contains the address of a buffer of data that is to be written over a portion
of the item.

len is the length in bytes of the buffer referenced by pBuffer.

offset is the offset within the item at which the first byte of the buffer referenced by
pBuffer is to be written.

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until the item has been updated by the contents of the bufffer referenced
by pBuffer.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the PPD Manager instructing it
to perform the desired operation. In this case, the caller must not modify,
deallocate, or reuse any portion of the block of data referenced by pBuffer
before the operation is complete.

 Output
This function returns no output. On successful exit from this routine:

If pMsgID is NULL, len bytes of the item named by name (beginning with the byte at
offset) have been replaced by the contents of the buffer referenced by pBuffer.

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
PPD Manager to initiate the desired operation. When the operation is complete,
the PPD Manager sends the coprocessor application a message whose type field
(MSG.h.msg_type) contains this identifier and whose first (and only) data item
(MSG.msg_data[2]) contains the return code generated by the routine.64 The

63 That is, if the item was created by a call to sccSavePPD, the options on the call must have been PPD_BBRAM | PPD_NONE.

64 The return code from the call to sccUpdatePPDAsync indicates whether or not the initial message to the PPD Manager was
successfully enqueued.

 Chapter 3. Coprocessor-Side API 3-83

 19-SEP-01, 15:06 Release 2.40

message is placed on the default CP/Q message queue for the task that called
sccUpdatePPDAsync.

 Notes
Effect on Flash

This function does not write to flash.

Nonatomic Operation

This function is not an atomic operation. If the coprocessor is reset after the
operation begins but before it completes, a partial update may occur.

Faults Stop System

If the PPD Manager encounters a hardware problem when writing to BBRAM, the
PPD Manager traps to the CP/Q fault handler (which stops the system).

 Return Codes
Common return codes generated by this routine are:

PPDGood (i.e., 0) The operation was successful.

PPD_NOT_AUTHORIZED The coprocessor application is not authorized to
request services from the PPD Manager (for example,
because it has not called sccSignOn).

PPD_NOT_FOUND The coprocessor application does not own an item in
nonvolatile memory named name.

PPD_BAD_PARM The length of the buffer referenced by pBuffer and the
offset specified by offset extend past the end of the
item to be updated.

PPD_ILLEGAL_MEM The buffer defined by pBuffer and len is not readable.

PPD_NO_PRIVS The buffer defined by pBuffer and len is not readable
by the calling task.

PPD_NOT_UPDATABLE The item to be updated is in flash (rather than
BBRAM) or was encrypted by the PPD Manager when
it was last saved.

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

3-84 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

sccGetPPDDir - Count Items in Nonvolatile Memory
sccGetPPDDir determines the total number of items stored in nonvolatile memory
that belong to the coprocessor application of which the task that calls
sccGetPPDDir is a part. The names of all such items can also be retrieved.

 Function Prototype
long sccGetPPDDirAsync(unsigned long �pCount,

 void �pBuffer,

 unsigned long �pLen,

 unsigned long �pMsgID);

#define sccGetPPDDir(pc,pb,pl) sccGetPPDDirAsync(pc,pb,pl,NULL)

 Input
On entry to this routine:

pCount must contain the address of a variable in which an item of type unsigned
long can be stored.

pBuffer must contain the address of a buffer in which the names of some or all of
the items the calling task’s application owns can be returned if this information is
desired and must be NULL otherwise.

pLen must contain the address of a variable that contains the length in bytes of the
buffer referenced by pBuffer. If pBuffer is NULL, �pLen must be zero.

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until the requested information has been returned.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the PPD Manager instructing it
to perform the desired operation. In this case, the caller must not modify,
deallocate, or reuse any portion of the areas of memory referenced by pCount,
pBuffer, or pLen before the operation is complete.

 Output
On successful exit from this routine:

If pMsgID is NULL, �pCount is the number of items in nonvolatile memory owned by
the coprocessor application of which the task that called sccSavePPDAsync is a
part. If pBuffer is not NULL, the buffer it references contains an array of items of
type ppd_name_t. Each entry in the array contains the name of an item owned by
the coprocessor application. �pLen is the total length in bytes of the entries in the
array (that is, �pLen is sizeof(ppd_name_t) times the number of entries in the
array). �pLen will be less than or equal to the value of �pLen on entry to the
routine.

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
PPD Manager to initiate the desired operation. When the operation is complete,
the PPD Manager will send the coprocessor application a message whose type
field (MSG.h.msg_type) contains this identifier and whose first (and only) data item

 Chapter 3. Coprocessor-Side API 3-85

 19-SEP-01, 15:06 Release 2.40

(MSG.msg_data[2]) contains the return code generated by the routine.65 If the
operation was successful, �pCount (and �pBuffer and �pLen, if appropriate) contain
the result. The message is placed on the default CP/Q message queue for the
task that called sccGetPPDDirAsync.

 Return Codes
Common return codes generated by this routine are:

PPDGood (i.e., 0) The operation was successful.

PPD_NOT_AUTHORIZED The coprocessor application is not authorized to
request services from the PPD Manager (for example,
because it has not called sccSignOn).

PPD_NOT_FOUND The coprocessor application does not own any items
in nonvolatile memory.

PPD_ILLEGAL_MEM The buffer defined by pBuffer and �pLen is not
readable or writeable.

PPD_NO_PRIVS The buffer defined by pBuffer and len is not readable
by the calling task.

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

65 The return code from the call to sccGetPPDDirAsync indicates whether or not the initial message to the PPD Manager was
successfully enqueued.

3-86 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

sccGetPPDLen - Get Length of Item in Nonvolatile Memory
sccGetPPDLen obtains the length of an item stored in flash memory or BBRAM.

 Function Prototype
 long sccGetPPDLen(ppd_name_t name,

 unsigned long �pLen);

 Input
On entry to this routine:

name is the name of the item whose length is desired. See “Names and
Namespaces” on page 3-76 for details.

pLen must contain the address of a variable in which an item of type unsigned long

can be stored.

 Output
On successful exit from this routine:

�pLen is the length in bytes of the item whose name is name.

 Return Codes
Common return codes generated by this routine are:

PPDGood (i.e., 0) The operation was successful.

PPD_NOT_AUTHORIZED The coprocessor application is not authorized to
request services from the PPD Manager (for example,
because it has not called sccSignOn).

PPD_NOT_FOUND The coprocessor application does not own an item in
nonvolatile memory named name.

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

 Chapter 3. Coprocessor-Side API 3-87

 19-SEP-01, 15:06 Release 2.40

sccGetPPD - Retrieve Item from Nonvolatile Memory
sccGetPPD reads an item (a block of data) from flash memory or BBRAM.

 Function Prototype
 long sccGetPPDAsync(ppd_name_t name,

 void �pBuffer,

 unsigned long len,

 unsigned long �pMsgID);

#define sccGetPPD(n,b,l) sccGetPPDAsync(n,b,l,NULL)

 Input
On entry to this routine:

name is the name of the item to retrieve. See “Names and Namespaces” on
page 3-76 for details.

pBuffer must contain the address of a buffer to which the item can be copied.

len is the length in bytes of the buffer referenced by pBuffer.

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until the item has been retrieved from nonvolatile memory.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the PPD Manager instructing it
to perform the desired operation. In this case, the caller must not modify,
deallocate, or reuse any portion of the buffer referenced by pBuffer before the
operation is complete.

 Output
On successful exit from this routine:

If pMsgID is NULL, the item named name has been retrieved from nonvolatile
memory, decrypted (if it was encrypted by the PPD Manager when it was last
saved), and copied to the buffer referenced by pBuffer.

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
PPD Manager to initiate the desired operation. When the operation is complete,
the PPD Manager will send the coprocessor application a message whose type
field (MSG.h.msg_type) contains this identifier and whose first (and only) data item
(MSG.msg_data[2]) contains the return code generated by the routine.66 If the
operation was successful, the item named name has been copied to the buffer
referenced by pBuffer. The message is placed on the default CP/Q message
queue for the task that called sccGetPPDAsync.

66 The return code from the call to sccGetPPDAsync indicates whether or not the initial message to the PPD Manager was
successfully enqueued.

3-88 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

 Notes
sccGetPPD and sccUpdatePPD

There is an asymmetry between the sccUpdatePPD function, which can be directed
to write only a portion of a block of data saved in BBRAM, and the sccGetPPD
function, which can only read an entire block. This asymmetry is intentional. The
latest copy of data that has been written to BBRAM will presumably be available in
regular RAM and should be read from regular RAM - using sccGetPPD to do so
would be a much more expensive operation.

In other words, the intent is that changes be written to PPD as often as desired, but
that data be read from PPD only infrequently.

 Return Codes
Common return codes generated by this routine are:

PPDGood (i.e., 0) The operation was successful.

PPD_NOT_AUTHORIZED The coprocessor application is not authorized to
request services from the PPD Manager (for example,
because it has not called sccSignOn).

PPD_NOT_FOUND The coprocessor application does not own an item in
nonvolatile memory named name.

PPD_SMALL_BUF The buffer defined by pBuffer and len is not large
enough to hold the desired item.

PPD_ILLEGAL_MEM The buffer defined by pBuffer and len is not writeable.

PPD_NO_PRIVS The buffer defined by pBuffer and len is not readable
by the calling task.

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

 Chapter 3. Coprocessor-Side API 3-89

 19-SEP-01, 15:06 Release 2.40

sccDeletePPD - Delete Item from Nonvolatile Memory
sccDeletePPD deletes an item (a block of data) from flash memory or BBRAM.

 Function Prototype
 long sccDeletePPDAsync(ppd_name_t name,

 unsigned long �pMsgID);

 #define sccDeletePPD(n) sccDeletePPDAsync(n,NULL)

 Input
On entry to this routine:

name is the name of the item to delete. See “Names and Namespaces” on
page 3-76 for details.

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until the item has been deleted from nonvolatile memory.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the PPD Manager instructing it
to perform the desired operation.

 Output
This function returns no output. On successful exit from this routine:

If pMsgID is NULL, the item named name has been deleted from nonvolatile memory.

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
PPD Manager to initiate the desired operation. When the operation is complete,
the PPD Manager will send the coprocessor application a message whose type
field (MSG.h.msg_type) contains this identifier and whose first (and only) data item
(MSG.msg_data[2]) contains the return code generated by the routine.67 The
message is placed on the default CP/Q message queue for the task that called
sccDeletePPDAsync.

 Notes
Item Deleted Even if Caller Terminates or Coprocessor Resets

Once the PPD Manager has accepted a request to delete an item, the item will be
deleted even if the task or application that sent the request terminates without
waiting for a response and even if the operation is interrupted by a coprocessor
reset. However, an application cannot easily determine the point at which the
request has been accepted—the PPD Manager must dequeue and validate the
request, find the item to be deleted, and mark its directory entry in flash. If the
application that sent the request terminates before these steps are complete, the
call will fail and items that should have been removed may be left in nonvolatile
memory. An application that is about to end should therefore use the synchronous

67 The return code from the call to sccDeletePPDAsync indicates whether or not the initial message to the PPD Manager was
successfully enqueued.

3-90 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

form of this call to delete any items in nonvolatile memory that are no longer
needed.

 Return Codes
Common return codes generated by this routine are:

PPDGood (i.e., 0) The operation was successful.

PPD_NOT_AUTHORIZED The coprocessor application is not authorized to
request services from the PPD Manager (for example,
because it has not called sccSignOn).

PPD_NOT_FOUND The coprocessor application does not own an item in
nonvolatile memory named name.

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

 Chapter 3. Coprocessor-Side API 3-91

 19-SEP-01, 15:06 Release 2.40

sccDeleteAllPPD - Delete All Items from Nonvolatile Memory
sccDeleteAllPPD deletes from flash memory and BBRAM all items (blocks of data)
that belong to the coprocessor application of which the task that calls
sccDeleteAllPPD is a part.

 Function Prototype
long sccDeleteAllPPDAsync(unsigned long �pMsgID);

 #define sccDeleteAllPPD() sccDeleteAllPPDAsync(NULL)

 Input
On entry to this routine:

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until all items belonging to the calling application have been deleted
from nonvolatile memory.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the PPD Manager instructing it
to perform the desired operation.

 Output
This function returns no output. On successful exit from this routine:

If pMsgID is NULL, all items belonging to the calling application have been deleted
from nonvolatile memory.

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
PPD Manager to initiate the desired operation. When the operation is complete,
the PPD Manager will send the coprocessor application a message whose type
field (MSG.h.msg_type) contains this identifier and whose first (and only) data item
(MSG.msg_data[2]) contains the return code generated by the routine.68 The
message is placed on the default CP/Q message queue for the task that called
sccDeleteAllPPDAsync.

 Notes
Items Deleted Even if Caller Terminates or Coprocessor Resets

Once the PPD Manager has accepted a request to delete all items belonging to an
application, the items will be deleted even if the task or application that sent the
request terminates without waiting for a response and even if the operation is
interrupted by a coprocessor reset. However, an application cannot easily
determine the point at which the request has been accepted—the PPD Manager
must dequeue and validate the request, find the items to be deleted, and mark their
directory entries in flash. If the application that sent the request terminates before
these steps are complete, the call will fail and items that should have been
removed may be left in nonvolatile memory. An application that is about to end

68 The return code from the call to sccDeleteAllPPDAsync indicates whether or not the initial message to the PPD Manager was
successfully enqueued.

3-92 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

should therefore use the synchronous form of this call to delete any items in
nonvolatile memory that are no longer needed.

 Return Codes
Common return codes generated by this routine are:

PPDGood (i.e., 0) The operation was successful.

PPD_NOT_AUTHORIZED The coprocessor application is not authorized to
request services from the PPD Manager (for example,
because it has not called sccSignOn).

PPD_NOT_FOUND The coprocessor application does not own any items
in nonvolatile memory.

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

 Chapter 3. Coprocessor-Side API 3-93

 19-SEP-01, 15:06 Release 2.40

 Configuration Functions
The functions described in this section allow a coprocessor application to interact
with the SCC Manager and other CP/Q++ device managers to configure certain
processor features or obtain information about the coprocessor.

 Privileged Operations
Some of the functions described in this section can only be performed by the first
application that is loaded and run when the coprocessor boots. That application is
deemed to “own” the coprocessor. Refer to the IBM 4758 PCI Cryptographic
Coprocessor Custom Software Developer’s Toolkit Guide for an explanation of how
to control the order in which applications are loaded when the coprocessor boots.

sccGetConfig - Get Coprocessor Configuration
sccGetConfig obtains information about the coprocessor from the SCC Manager.

 Function Prototype
 long sccGetConfig(sccAdapterInfo_t �pInfo

 unsigned long �pLength);

 Input
On entry to this routine:

pInfo must contain the address of a buffer into which information about the
coprocessor is to be stored.

�pLength must be the length in bytes of the buffer referenced by pInfo.

 Output
On successful exit from this routine:

�pInfo contains as much information about the coprocessor as could be returned in
the buffer provided. If the buffer was sufficiently large, this will be a full
sccAdapterInfo_t structure whose fields are set as indicated below. If the buffer
was too small, the structure will be truncated.

�pLength contains the length of the full sccAdapterInfo_t structure. If this is larger
than the buffer originally provided, the application can acquire a suitably-sized
buffer and repeat the call.

The fields of the sccAdapterInfo_t structure are set as follows (all constants are
current as of the date of publication of this document):

� sid identifies the structure and contains its length in bytes. sid.ID is
STRUCT_sccAdapterInfo.

� AMCC_EEPROM contains a copy of the values copied into the AMCC S5933 PCI
Controller chip when power is first supplied to the coprocessor.

� VPD contains the coprocessor Vital Product Data. Its fields are set as follows:
– signature contains the null-terminated string “VPD”.
– vpd_length is the length in bytes of the VPD field.
– crc contains a CRC covering the fields in VPD from pn_tag to ds, inclusive.
– pn_tag contains the characters “*PN”.

3-94 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

– pn_length is 6 (the number of bytes in the pn_tag, pn_length, and pn fields
divided by 2).

– pn contains the part number for the IBM 4758 PCI Cryptographic
Coprocessor (for example, 69H6479) and is padded with blanks to its full
length.

– ec_tag contains the characters “*EC”.
– ec_length is 6 (the number of bytes in the ec_tag, ec_length, and ec fields

divided by 2).
– ec contains the engineering change level for the IBM 4758 PCI

Cryptographic Coprocessor (for example, C75554C) and is padded with
blanks to its full length.

– sn_tag contains the characters “*SN”.
– sn_length is 6 (the number of bytes in the sn_tag, sn_length, and sn fields

divided by 2).
– sn contains the serial number for the cryptographic coprocessor (of the

form 41-xxxxx) and is padded with blanks to its full length.
– fn_tag contains the characters “*FN”.
– fn_length is 6 (the number of bytes in the fn_tag, fn_length, and fn fields

divided by 2).
– fn contains the FRU number for the IBM 4758 PCI Cryptographic

Coprocessor (for example, 09J8193) and is padded with blanks to its full
length.

– mf_tag contains the characters “*MF”.
– mf_length is 6 (the number of bytes in the mf_tag, mf_length, and mf fields

divided by 2).
– mf identifies the location at which the cryptographic coprocessor was

manufactured and is padded with blanks to its full length.
– ds_tag contains the characters “*DS”.
– ds_length is 6 (the number of bytes in the ds_tag, ds_length, and ds fields

divided by 2).
– ds contains a description of the cryptographic coprocessor (IBM 4758 PCI

Cryptographic Coprocessor) and is padded with blanks to its full length.
– reserved contains garbage.

� EC_Level is not used.
� POST_Version indicates which version of the coprocessor power-on self test

microcode is installed. This microcode operates in two phases (POST0 and
POST1), so POST_Version contains two fields.

� MiniBoot_Version indicates which version of the coprocessor microcode that
initializes the coprocessor operating system and controls updates to software in
flash memory is installed. This microcode also operates in two phases
(MiniBoot0 and MiniBoot1), so MiniBoot_Version contains two fields.

� OS_Name contains the characters “CP/Q++”.
� OS_Version indicates which version of the operating system is installed.
� CPU_Speed is the speed in megahertz of the coprocessor CPU.
� HardwareOptions provides information about the coprocessor hardware:

– HardwareOptions.DES_level indicates the speed of the coprocessor’s DES
chip. Possible values are:

- CMOS_DES_ABSENT - No DES chip is present.
- CMOS_DES_25MB - Peak encryption/decryption rate is 25MB/second.

CMOS_DES_30MB - Peak encryption/decryption rate is 30MB/second.
– HardwareOptions.RSA_level indicates the RSA keylength supported by the

coprocessor’s large-integer modular math hardware. Possible values are:
- CMOS_RSA_ABSENT - No modular math hardware is present.
- CMOS_RSA_1024 - 1024 bits.

 Chapter 3. Coprocessor-Side API 3-95

 19-SEP-01, 15:06 Release 2.40

- CMOS_RSA_2048 - 2048 bits.
� HardwareStatus contains the current state (active high) of the hardware tamper

bits (refer to scc_types.h).
� AdapterID is a unique serial number incorporated in the coprocessor chip that

implements the real-time clock and the BBRAM. It can be used to distinguish
the physical coprocessor card from all others but is unrelated to the serial
number in VPD.sn.

� flashSize is the size of the coprocessor’s flash memory. The unit of
measurement is 64K, that is, flashSize == 1 implies 64K of EEPROM.

� bbramSize is the size of the coprocessor’s BBRAM. The unit of measurement
is 1K, that is, bbramSize == 16 implies 16K BBRAM.

� dramSize is the size of the coprocessor’s regular (non-battery-backed) random
access memory (RAM). The unit of measurement is 1K, that is, dramSize =
128 implies 128K RAM.

� reserved contains garbage.

 Notes
Format of Return Information May Change

The format and type of information returned by this function may be altered or
extended in the future. The returned information will always include an
sccAdapterInfo_t structure (although the definition of the sccAdapterInfo_t data
type may change over time). The sccAdapterInfo_t structure may be followed by
additional structures, each of which will contain a structure of type structId_t as its
first element. A structID_t structure contains a code that identifies its parent
structure and the length of the parent structure.

 Return Codes
Common return codes generated by this routine are:

SCCGood (i.e., 0) The operation was successful.

QSVCsmallbuff The buffer provided was not large enough to receive
the entire structure returned by the SCC Manager.
The returned structure has been truncated.

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

3-96 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

sccSetClock - Set Coprocessor Time-Of-Day Clock
sccSetClock sets the coprocessor time-of-day (TOD) clock and updates the system
time.

 Function Prototype
long sccSetClock(unsigned long day,

 unsigned long month,

 unsigned long year,

 unsigned long hour,

 unsigned long minute,

 unsigned long second);

 Input
This function forwards its first three arguments to CPSetDate and its last three
arguments to CPSetTime. Refer to the descriptions of these functions in the IBM
4758 PCI Cryptographic Coprocessor CP/Q Operating System Application
Programming Reference for an explanation of what these arguments contain and
how they are used.

 Output
On successful exit from this routine, the coprocessor TOD clock and the system
time maintained by CP/Q have been set to the requested time and date.

 Notes
Privileged Operation

This function is privileged and can only be performed by the application that owns
the coprocessor. See “Privileged Operations” on page 3-94 for details.

 Return Codes
Common return codes generated by this routine are:

PPDGood (i.e., 0) The operation was successful.

PPD_NOT_AUTHORIZED The caller is not authorized to set the clock (for
example, because it does not own the coprocessor or
has not called sccSignOn).

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

 Chapter 3. Coprocessor-Side API 3-97

 19-SEP-01, 15:06 Release 2.40

sccClearILatch - Clear Coprocessor Intrusion Latch
The IBM 4758 PCI Cryptographic Coprocessor hardware provides an input pin (the
“intrusion latch”) to which an external device can be connected. For example, the
user might connect a sensor that detects unauthorized attempts to open the case of
the host in which the coprocessor is installed.

The application that owns the coprocessor can determine the state of the intrusion
latch by calling sccGetConfig. The host device driver can also determine the state
of the intrusion latch (see Chapter 4, “Coprocessor Interface for Host Device
Drivers” on page 4-1 for details). Neither the coprocessor operating system nor the
microcode that monitors attempts to compromise the coprocessor’s secure
environment take any action when the intrusion latch is triggered. sccClearILatch
resets the coprocessor intrusion latch.

 Function Prototype
 long sccClearILatch(void);

 Input
This function takes no input.

 Output
On successful exit from this routine, the coprocessor intrusion latch (defined by
HW_ILATCH in scctypes.h) is reset.

 Notes
Privileged Operation

This function is privileged and can only be performed by the application that owns
the coprocessor. See “Privileged Operations” on page 3-94 for details.

 Return Codes
Common return codes generated by this routine are:

SCCGood (i.e., 0) The operation was successful.

PPD_NOT_AUTHORIZED The caller is not authorized to clear the coprocessor
intrusion latch (for example, because it does not own
the coprocessor or has not called sccSignOn).

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

3-98 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

sccClearLowBatt - Clear Coprocessor Low Battery Warning Latch
The IBM 4758 PCI Cryptographic Coprocessor hardware includes two batteries that
allow the coprocessor to detect certain attempts to compromise its physical
integrity. If the batteries are allowed to drain completely, the coprocessor clears its
secrets and resets itself as if it had detected an attempt to tamper with the secure
hardware. The coprocessor therefore monitors the battery voltage and triggers the
low battery warning latch if it drops below a certain value69.

The application that owns the coprocessor can determine the state of the low
battery warning latch by calling sccGetConfig. The host device driver can also
determine the state of the low battery warning latch (see Chapter 4, “Coprocessor
Interface for Host Device Drivers” on page 4-1 for details). Neither the coprocessor
operating system nor the microcode that monitors attempts to compromise the
coprocessor’s secure environment takes any action when the low battery warning is
triggered. sccClearLowBatt resets the coprocessor low battery warning latch.

 Function Prototype
 long sccClearLowBatt(void);

 Input
This function takes no input.

 Output
On successful exit from this routine, the coprocessor low battery warning latch
(defined by HW_BATTERYLOW in scctypes.h) is reset.

 Notes
Privileged Operation

This function is privileged and can only be performed by the application that owns
the coprocessor. See “Privileged Operations” on page 3-94 for details.

 Return Codes
Common return codes generated by this routine are:

SCCGood (i.e., 0) The operation was successful.

PPD_NOT_AUTHORIZED The caller is not authorized to clear the coprocessor
low battery latch (for example, because it does not
own the coprocessor or has not called sccSignOn).

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

69 The precise value is chosen to provide a reasonable expectation that the low battery warning latch will be triggered at least one
month before the batteries are exhausted.

 Chapter 3. Coprocessor-Side API 3-99

 19-SEP-01, 15:06 Release 2.40

Outbound Authentication Functions (4758 Model 002/023 Only)
The functions described in this section allow a coprocessor application to request
services from the Outbound Authentication (OA) Manager, which supports
cryptographic operations and data structures that allow the coprocessor application
to authenticate itself to another agent70 and to engage in a wide range of
cryptographic protocols. In particular, a coprocessor application can use these
functions to:

� Prove to another agent that the coprocessor on which the application is running
has not been tampered with

� Provide another agent a list of all the software that has ever been loaded on
the coprocessor that could have revealed the application’s secrets or
compromised the authentication scheme

� Report in a manner that cannot be forged (unless the authentication scheme
has been compromised) the status of the coprocessor, including its serial
number and the identity of the software it contains

� Perform general cryptographic operations (encryption, decryption, signing, and
verification) and engage in cryptographic protocols (for example, key exchange)
using keys whose validity is assured by the authentication scheme

The remainder of this introduction describes certain aspects of the coprocessor
architecture that form the basis of the authentication scheme and provides an
overview of the authentication scheme. For a thorough overview of the
coprocessor’s security goals and a description of the security architecture, refer to
Building a High-Performance, Programmable Secure Coprocessor, Research
Report RC21102 published by the IBM T.J. Watson Research Center in February,
1998. A revised version of this paper appeared in Computer Networks 31:831-860,
April 1999.

 Coprocessor Architecture
The nonvolatile memory on a coprocessor is partitioned into four “segments,” each
of which can contain program code and sensitive data:

� Segment 0 contains one portion of “Miniboot,” the most privileged software in
the coprocessor. Miniboot implements, among other things, the protocols that
ensure nothing is loaded into the coprocessor without the proper authorization.
The code in segment 0 is in ROM.

� Segment 1 contains another portion of Miniboot. The code in segment 1 is
saved in flash. The division of Miniboot into a ROM portion and a flash portion
preserves flexibility while guaranteeing a basic level of security.

� Segment 2 contains the coprocessor operating system (CP/Q++). This code is
saved in flash.

� Segment 3 contains the coprocessor application. This code is saved in flash.

A segment’s sensitive data is either saved in battery-backed RAM (BBRAM) or is
encrypted71 and saved in flash. The coprocessor incorporates special hardware
(independent of the CPU and whose operation cannot be affected by software) that

70 The other agent could be an entity on a host or another coprocessor anywhere in the world or could be a newer version of the
same application subsequently loaded into the same coprocessor. Authenticating to a later version of oneself demonstrates the
utility of Epoch Keypairs (see “Changes to Segments 2 and 3” on page 3-102).

71 The encryption key is saved in BBRAM.

3-100 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

prevents the operating system and any application (that is, code in segments 2 and
3) from modifying sensitive information in flash or reading secrets in BBRAM.

One of the data items Miniboot saves in BBRAM in segment 0 is a 32-bit “boot
counter.” The boot counter is initialized to zero during manufacture; the Miniboot
code in segment 0 increments the boot counter each time the coprocessor boots.
The authentication scheme uses the boot counter as a timestamp in many
contexts.72

Information that identifies the code loaded in a segment is also saved in the
segment. This information includes:

� The identity of the owner of the segment, that is, the party responsible for the
software that is loaded in the segment. Owner identifiers are two bytes long.
IBM owns segment 1 and issues an owner identifier to any party that is
developing code to be loaded into segment 2. An owner of segment 2 issues
an owner identifier to any party that is developing code that is to be loaded into
segment 3 under the segment 2 owner’s authority (that is, while the segment 2
owner owns segment 2).

� The name (an arbitrary string no longer than 80 bytes), revision number (a
two-byte integer), and SHA-1 hash of the software in the segment. The hash
that covers a segment is computed by the software in segment 1.

Overview of the Authentication Scheme

 Initialization
During manufacture, a coprocessor generates a random RSA keypair73 (the “Device
Keypair”) and exports the public key. The factory incorporates the Device Public
Key into a certificate and signs the certificate using the private half of a keypair
owned and controlled by the factory (an “IBM Class Root Keypair”). The
coprocessor imports and saves this certificate and a certificate containing the IBM
Class Root Public Key. The latter certificate is signed using the private half of a
keypair owned and controlled by IBM (an “IBM Root Keypair”).74

Updates to Segment 1
Whenever the software in segment 1 is updated, the software in segment 1 that is
about to be replaced:

1. Generates a new random RSA keypair (a “Transition Keypair”).
2. Incorporates the new Transition Public Key and information that identifies the

new segment 1 software into a certificate and signs the certificate using the
private half of the active segment 1 keypair. If this is the first time the software
in segment 1 has been updated, the active segment 1 keypair is the Device
Keypair. Otherwise the active segment 1 keypair is the Transition Keypair
created the last time segment 1 was updated.

3. Deletes the private half of the active segment 1 keypair and makes the new
Transition Keypair the active segment 1 keypair.

72 The coprocessor’s real-time clock cannot be used to generate timestamps because it can be changed by the application and
because there is no way to synchronize it with an external clock in a reliable manner that is guaranteed to work in all scenarios.

73 The coprocessor generates an RSA keypair or a DSA keypair, as directed by Officer 1. The IBM Officer 1 currently specifies an
RSA keypair.

74 The value of the IBM Root Public Key appears in Appendix C, “The IBM Root Public Key” on page C-1.

 Chapter 3. Coprocessor-Side API 3-101

 19-SEP-01, 15:06 Release 2.40

The result is a chain of certificates that links the IBM Class Root Certificate and the
most recently created Transition Certificate. If an adversary tampers with the
coprocessor, the coprocessor clears the active segment 1 private key. Any
subsequent attempt to assert the coprocessor has not been tampered with fails
because the adversary does not possess any of the private keys used to create the
certificate chain. The adversary also does not possess the IBM Root Private Key
and so cannot forge an IBM Class Root Certificate. The adversary therefore
cannot sign a nonce with an existing key or create a new key that is linked to the
IBM Class Root Certificate to do so.

The certificate chain also identifies every piece of software that has ever been
loaded into segment 1. Although a malicious or defective program loaded into
segment 1 can reveal its own Transition Private Key (and so compromise any
certificates that are subsequently generated), such a program cannot mask its
presence because its identity is incorporated into a certificate using a private key
whose value the program never knows. Once the program’s behavior is
recognized, a host can treat a certificate chain that includes the program with the
suspicion it warrants.75

Changes to Segments 2 and 3
The software in segment 1 also manipulates the certificate chain when changes are
made to segment 2 or to segment 3. The specific actions segment 1 performs
depend on whether the changes affect the sensitive data saved in segment 3
BBRAM. Certain operations dictate that segment 1 clear segment 3 BBRAM;
others do not.76

The authentication scheme defines an “epoch” to be the maximum possible lifetime
of a piece of sensitive data in segment 3 BBRAM. An epoch begins when an event
occurs that loads runnable code into segment 3 (or leaves any code that is already
in segment 3 in a runnable state) and causes segment 1 to erase the contents of
segment 3 BBRAM. An epoch ends the next time segment 3 BBRAM is cleared for
any reason (for example, because the software in segment 3 or the software in
segment 2 has been unloaded or has been reloaded in a manner that clears
BBRAM).

The authentication scheme defines a “configuration” to be a period of time during
which the software in a coprocessor does not change. A configuration begins when
an event occurs that changes the software in any segment and that either loads
runnable code into segment 3 or leaves any code that is already in segment 3 in a
runnable state. A configuration ends the next time the software in any segment
changes or when the code in segment 3 is no longer runnable. A configuration
also ends if the epoch in which the configuration started ends.77

75 Note that although a malicious program can attempt to hide by adopting the name and revision number of a benign program, the
SHA-1 hash that is saved in segment 1 is computed by the previous occupant of segement 1 and cannot be forged.

76 Refer to “Appendix F. Using Signer and Packager” in the IBM 4758 PCI Cryptographic Coprocessor Custom Software Developer’s
Toolkit Guide for a discussion of which operations clear segment 3 BBRAM.

77 The notions of “epoch” and “configuration” are actually more general than these definitions indicate. For example, certain actions
can cause the sensitive data in segment 3 BBRAM to be erased without affecting any sensitive data in segment 2 BBRAM. In
that case, the current “segment 3” epoch ends while the current “segment 2” epoch continues. Similarly, a change to the software
in segment 3 begins a new “segment 3” configuration but does not affect the current “segment 2” configuration. The only context
in which these distinctions might be of interest to an application on the host is when interpreting the epoch_start, config_start,
and config_count fields in a layer name. See “Layer Names and Layer Descriptors” on page 3-119 for details.

3-102 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

An application can ask the OA Manager to create one or more keypairs the
application can use to perform general cryptographic operations. The application
can specify that the private half of the keypair in question is to be used only during
the current configuration (a “Configuration Keypair”) or is to be used for the duration
of the current epoch (an “Epoch Keypair”). The OA Manager also creates a
certificate for the keypair and signs it using the private half of an “Operating
System” keypair.

 Configuration Start
When a configuration begins, the software in segment 1 creates:

1. An operating system keypair
2. A certificate that contains the public half of the keypair

The certificate is signed using the private half of the active segment 1 keypair.

 Configuration End
When a configuration ends, the software in segment 1 erases:

1. The private half of any configuration keypairs the application has caused to be
created

2. The private half of the current operating system keypair

The certificates for such keypairs are retained (since there may still be sensitive
data that was encrypted using the private half of one of the keypairs) but they are
marked “inactive.”

 Epoch End
When an epoch ends, the software in segment 1 erases:

1. Any configuration keypairs and epoch keypairs the application has caused to
be created

2. Any operating system keypairs that have been created

The software in segment 2 subsequently erases the certificates that contain the
public halves of the keypairs that the software in segment 1 erased.

 Chapter 3. Coprocessor-Side API 3-103

 19-SEP-01, 15:06 Release 2.40

 Examples
Figure 3-1 shows the certificate chain after an application has been loaded into a
coprocessor for the first time and has asked the OA Manager to create an Epoch
Keypair. Figure 3-1 also indicates which certificates contain a public key whose
corresponding private key is also stored on the coprocessor (the Device Private
Key is deleted when the first Transition Keypair is created).

IBM Class Root
Certificate

Device Key
Certificate

Operating System
Key Certificate

(Private Key)

Epoch Key
Certificate

(Private Key)

Transition
Certificate

(Private Key)

Figure 3-1. Initial Certificate Chain

3-104 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

The coprocessor application then asks the OA Manager to create a Configuration
Keypair. The OA Manager adds a new Configuration Key Certificate to the chain,
as shown in Figure 3-2.

Transition
Certificate

IBM Class Root
Certificate

Device Key
Certificate

Operating System
Key Certificate

Configuration
Key Certificate

Epoch Key
Certificate

(Private Key)

(Private Key)

(Private Key) (Private Key)

Figure 3-2. Application Generates Configuration Key

 Chapter 3. Coprocessor-Side API 3-105

 19-SEP-01, 15:06 Release 2.40

A new version of the operating system is loaded into the coprocessor in a manner
that does not clear segment 3 BBRAM. This changes the configuration and so the
private keys in the Operating System Keypair and the Configuration Keypair are
deleted. This is appropriate since the configuration the Operating System Key
Certificate names is no longer current and because Configuration Keypairs are by
definition effective only during a single configuration. The private key in the Epoch
Keypair is retained since the data in segment 3 BBRAM remains the same. The
software in segment 1 creates a new Operating System Keypair and signs its
certificate. The resulting certificate chain is shown in Figure 3-3.

Transition
Certificate

IBM Class Root
Certificate

Device Key
Certificate

Operating System
Key Certificate

Operating System
Key Certificate

(Private Key)

(Private Key)

Configuration
Key Certificate

Epoch Key
Certificate

(Private Key)

Figure 3-3. Operating System Updated

3-106 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

Since the existing Configuration Keypair no longer has a private key, the application
asks the OA Manager to create a new Configuration Keypair. Figure 3-4 shows
the new certificate chain. The application could generate another Epoch Keypair
(whose certificate would be signed by the new Operating System Private Key),
even though the epoch has not changed. One reason to do so (and to discontinue
use of the original Epoch Private Key or delete the original Epoch Keypair entirely)
is that it is easier to locate the current Operating System Key Certificate using the
new Epoch Key Certificate rather than the old one, and the current Operating
System Key Certificate is the one that identifies the new software in segment 2.

Operating System
Key Certificate

Configuration Key
Certificate

(Private Key)

Transition
Certificate

IBM Class Root
Certificate

Device Key
Certificate

(Private Key)

Epoch Key
Certificate

(Private Key)

Configuration Key
Certificate

Operating System
Key Certificate

(Private Key)

Figure 3-4. Application Generates New Configuration Key

 Chapter 3. Coprocessor-Side API 3-107

 19-SEP-01, 15:06 Release 2.40

The software in segment 1 is updated in a manner that does not clear segment 3
BBRAM. The existing Configuration Private Key and Operating System Private Key
are deleted. A new Transition Certificate and Operating System Certificate are
added to the certificate chain and new private keys are created, as shown in
Figure 3-5.

Transition
Certificate

IBM Class Root
Certificate

Device Key
Certificate

Configuration Key
Certificate

Operating System
Key Certificate

Operating System
Key Certificate

Transition
Certificate

(Private Key)

(Private Key)

Operating System
Key Certificate

Epoch Key
Certificate

(Private Key)

Configuration Key
Certificate

Figure 3-5. Miniboot Updated

3-108 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

The application asks the OA Manager to create a new Epoch Keypair and a new
Configuration Keypair. The application then asks the OA Manager to delete the
original Epoch Keypair and the certificate that contains the public half of the
keypair. Figure 3-6 shows the certificate chain after these requests are processed.

Transition
Certificate

IBM Class Root
Certificate

Device Key
Certificate

Operating System
Key Certificate

Operating System
Key Certificate

Configuration Key
Certificate

Transition
Certificate

(Private Key)

(Private Key)

Operating System
Key Certificate

(Private Key)

Epoch Key
Certificate

(Private Key)

Configuration
Key CertificateConfiguration Key

Certificate

Figure 3-6. Configuration Keypair and Epoch Keypair Created

 Chapter 3. Coprocessor-Side API 3-109

 19-SEP-01, 15:06 Release 2.40

An application from another vendor is loaded into segment 3. This operation
perforce clears segment 3 BBRAM. This ends the current epoch, so all existing
Operating System Certificates and any certificates created on behalf of the old
application are deleted, as are any private keys that correspond to the public keys
in those certificates. The start of a new epoch also marks the beginning of a new
configuration, so the software in segment 1 creates a new Operating System
Keypair and the corresponding certificate. The resulting certificate chain is shown
in Figure 3-7. Note that the current Operating System Certificate and private key
are not the same as the current Operating System Certificate and private key in
Figure 3-6 on page 3-109 even though the two certificates have the same parent.
The items shown in Figure 3-6 on page 3-109 are deleted at the end of the
epoch.

Transition
Certificate

IBM Class Root
Certificate

Device Key
Certificate

Transition
Certificate

(Private Key)

(Private Key)

Operating System
Key Certificate

Figure 3-7. Foreign Application Loaded

3-110 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

 OA Certificates
The interface to the Outbound Authentication (OA) Manager defines the
sccOA_CKO_Head_t and sccOA_CKO_Body_t types to hold information about an OA
certificate. An OA certificate has a variable length and consists of two descriptive
headers followed by a buffer containing the various elements of the certificate.
Figure 3-8 shows the general structure of an OA certificate.

sccOA_CKO_Head_t

vData

vSig

sccOA_CKO_Body_t

vDescB

vDescA

vPublic

Public key

Descriptor field A

Descriptor field B

Signature

(&vData) + vData.offset

vData.len

(&vSig) + vSig.offset

vSig.len

(&vPublic) + vPublic.offset

vPublic.len

(&vDescA) + vDescA.offset

vDescA.len

(&vDescB) + vDescB.offset

vDescB.len

Figure 3-8. Structure of an OA Certificate

 Chapter 3. Coprocessor-Side API 3-111

 19-SEP-01, 15:06 Release 2.40

For convenience, the following fields appear both in the sccOA_CKO_Head_t header
and in the sccOA_CKO_Body_t header. The fields in the first header are easier to
locate, but only the fields in the second header are part of the body of the
certificate and hence covered by the cryptographic signature for the certificate. The
following discussion describes the fields only once, with the understanding that they
should have the same values in both headers.

 � cko_name

 � cko_type

 � parent_name

Fields Common to All Certificates
The first descriptive header is an item of type sccOA_CKO_Head_t. Certain fields in
this header are either constant or interpreted in the same manner regardless of the
type of certificate the header defines:

� struct_id.name is SCCOA_CKO_HEAD_T.
� struct_id.version is the value to which SCCOA_CKO_HEAD_VER is defined

in the header file that defines the version of sccOA_CKO_Head_t that maps the
header.78

� padbytes is two bytes of zeros.
� tData is OA_NEW_CERT.
� vData specifies the offset and length of the body of the certificate:

– vData.offset is the offset in bytes from the start of the vData field to the
first byte of the body of the certificate, which begins with the second
descriptive header (an item of type sccOA_CKO_Body_t).79

– vData.len is the length in bytes of the body of the certificate.80

� vSig specifies the offset and length of the cryptographic signature that covers
the body of the certificate. The format of the signature depends on the value of
the tsig field (see below).
– vSig.offset is the offset in bytes from the start of the vSig field to the first

byte of the signature.79

– vSig.len is the length in bytes of the signature.80

� tSig specifies how the cryptographic signature that covers the body of the
certificate is generated. The name of the keypair whose private key is used to
generate the signature and whose public key is used to verify the signature
appears in the parent_name field.

– If tSig is SHA1_ISO_RSA, an RSA private key is used to generate the
signature. The body of the certificate is hashed using the SHA-1 algorithm.
The hash is extended according to the ISO 9796 standard to the full length
of the modulus of the key. The extended hash is then decrypted using the
RSA private key to give the signature.

– If tSig is SHA1_ISO_COMPLEMENT_RSA, the cryptographic signature is
computed in the same manner as in the SHA1_ISO_RSA case. If the

78 For example, if the struct_id.version field in a structure of type SCCOATime_t is not equal to SCCOATIME_VER, the definition of
SCCOATime_t used to build the code that performs the comparison does not match the definition used to build the code that created
the structure, and the code that performs the comparison must not attempt to parse the structure unless it has another way to
know how the structure is mapped.

79 If v is an item of type var_t, the address of the item v describes is ((char �)&(v)) + v.offset. By convention, if v.offset is
zero, the item v describes is empty or missing. Also by convention if x and y are var_t structures and y is a part of the item x
describes, the item y describes is also a part of the item x describes (that is, “nested” var_t structures describe nested items).

80 If v is an item of type var_t, the careful programmer will check that the region defined by v.offset and v.len is completely
contained within the buffer or object that allegedly contains it.

3-112 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

signature is congruent to 6 modulo 16, it is then complemented with
respect to the modulus of the key. Otherwise the signature is used as-is.

– If tSig is DSS_COMPLIANT, a DSA private key is used to generate the
signature. The body of the certificate is processed as dictated by the
Digital Signature Standard.

A signature generated using an RSA private key is stored as a simple (but
potentially very large) binary integer. The block of data whose offset and
length are specified in vSig contains the signature, which is stored in
big-endian order: the byte at the lowest address is the most significant byte of
the signature.

A signature generated using a DSA private key is stored in a DSA signature
token. The block of data whose offset and length are specified in vSig begins
with a structure of type sccDSASignatureToken_t. This structure defines the
elements of the signature (as described in “DSA Signature Tokens” on
page 3-58), which appear following the sccDSASignatureToken_t structure.

� cko_status is OA_CKO_ACTIVE if the coprocessor knows the value of the
private key corresponding to the public key contained in the certificate and is
OA_CKO_INACTIVE otherwise.

The contents of the cko_type, cko_name, and parent_name fields should be copies of
the corresponding fields in the sccOA_CKO_Body_t header.

The second descriptive header (which appears at the beginning of the body of the
certificate) is an item of type sccOA_CKO_Body_t. Certain fields in this header are
either constant or interpreted in the same manner regardless of the type of
certificate the header defines:

� struct_id.name is SCCOA_CKO_BODY_T.
� struct_id.version is the value to which SCCOA_CKO_BODY_VER is defined

in the header file that defines the version of sccOA_CKO_Body_t that maps the
header.81

� padbytes is two bytes of zeros.
� tPublic specifies which type of public key the certificate contains:

– If tPublic is OA_RSA, the public key is an RSA public key. The block of
data whose offset and length are specified in vPublic begins with a
structure of type sccRSAKeyToken_t. This structure defines the elements of
the public key (as described in “RSA Key Tokens” on page 3-43), which
appear following the sccRSAKeyToken_t structure.

– If tPublic is OA_DSS, the public key is a DSA public key. The block of
data whose offset and length are specified in vPublic begins with a
structure of type sccDSAKeyToken_t. This structure defines the elements of
the public key (as described in “DSA Key Tokens” on page 3-57), which
appear following the sccDSAKeyToken_t structure.

81 For example, if the struct_id.version field in a structure of type SCCOATime_t is not equal to SCCOATIME_VER, the definition of
SCCOATime_t used to build the code that performs the comparison does not match the definition used to build the code that created
the structure, and the code that performs the comparison must not attempt to parse the structure unless it has another way to
know how the structure is mapped.

 Chapter 3. Coprocessor-Side API 3-113

 19-SEP-01, 15:06 Release 2.40

� vPublic specifies the offset and length of the public key the certificate contains:
– vPublic.offset is the offset in bytes from the start of the vPublic field to

the first byte of the public key.82

– vPublic.len is the length in bytes of the public key.83

� cko_name identifies the keypair whose public key is contained in the certificate.
This name is unique if the keypair is an IBM Root Keypair or an IBM Class
Root Keypair. Keypairs of other types are generated by a coprocessor. Two
keypairs generated by different coprocessors may have the same name but
can be distinguished by using the device_name field. See “Keypair Names” on
page 3-117 for details.

� parent_name identifies the keypair whose private key was used to create the
cryptographic signature that covers the body of the certificate. This name is
unique if the keypair is an IBM Root Keypair or an IBM Class Root Keypair.
Keypairs of other types are generated by a coprocessor. Two keypairs
generated by different coprocessors may have the same name but can be
distinguished by using the device_name field. See “Keypair Names” on
page 3-117 for details.

The contents of the remaining fields in the sccOA_CKO_Body_t header depend on
which type of certificate the header defines.

IBM Class Root Certificates
The type-dependent fields in the sccOA_CKO_Body_t header for an IBM Class Root
Certificate are set as follows:

� cko_type is OA_CKO_IBM_ROOT.
� cko_name names an IBM Class Root Keypair. See “Keypair Names” on

page 3-117 for details.
� parent_name names an IBM Root Keypair. See “Keypair Names” on

page 3-117 for details.
� device_name is undefined.
� vDescA specifies the offset and length of a timestamp that indicates when the

IBM Class Root Keypair whose public key is contained in the certificate was
created. See “Timestamps” on page 3-120 for details.

– vDescA.offset is the offset in bytes from the start of the vDescA field to the
first byte of the timestamp.82

– vDescA.len is the length in bytes of the timestamp.83

� vDescB specifies the offset and length of a structure that describes the IBM
Class Root Keypair whose public key is contained in the certificate. See “Class
Root Descriptions” on page 3-121 for details.
– vDescB.offset is the offset in bytes from the start of the vDescB field to the

first byte of the description.82

– vDescB.len is the length in bytes of the description.83

82 If v is an item of type var_t, the address of the item v describes is ((char �)&(v)) + v.offset. By convention, if v.offset is
zero, the item v describes is empty or missing. Also by convention if x and y are var_t structures and y is a part of the item x
describes, the item y describes is also a part of the item x describes (that is, “nested” var_t structures describe nested items).

83 If v is an item of type var_t, the careful programmer will check that the region defined by v.offset and v.len is completely
contained within the buffer or object that allegedly contains it.

3-114 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

Device Key Certificates
The type-dependent fields in the sccOA_CKO_Body_t header for a Device Key
Certificate are set as follows:

� cko_type is OA_CKO_MB.
� cko_name names a coprocessor-generated keypair. See “Keypair Names” on

page 3-117 for details.
� parent_name names an IBM Class Root Keypair. See “Keypair Names” on

page 3-117 for details.
� device_name uniquely identifies the coprocessor that generated the keypair

whose public key is contained in the certificate. See “Device Names and
Device Descriptors” on page 3-118 for details.

� vDescA specifies the offset and length of a description of the coprocessor that
generated the keypair whose public key is contained in the certificate that was
created. See “Device Names and Device Descriptors” on page 3-118 for
details.
– vDescA.offset is the offset in bytes from the start of the vDescA field to the

first byte of the device description.84

– vDescA.len is the length in bytes of the device description.85

� vDescB specifies the offset and length of a layer descriptor that describes the
miniboot software (that is, the software in segment 1) that was present in the
coprocessor identified by device_name when that coprocessor created the
keypair whose public key is contained in the certificate. See “Layer Names and
Layer Descriptors” on page 3-119 for details.
– vDescB.offset is the offset in bytes from the start of the vDescB field to the

first byte of the layer descriptor.84

– vDescB.len is the length in bytes of the layer descriptor.85

 Transition Certificates
The type-dependent fields in the sccOA_CKO_Body_t header for a Transition
Certificate are set as follows:

� cko_type is OA_CKO_MB.
� cko_name names a coprocessor-generated keypair. See “Keypair Names” on

page 3-117 for details.
� parent_name names a keypair whose public key is contained in a Device Key

Certificate or in a Transition Certificate. See “Keypair Names” on page 3-117
for details.

� device_name uniquely identifies the coprocessor that generated the keypair
whose public key is contained in the certificate. See “Device Names and
Device Descriptors” on page 3-118 for details.

� vDescA specifies the offset and length of a description of the coprocessor that
generated the keypair whose public key is contained in the certificate. See
“Device Names and Device Descriptors” on page 3-118 for details.

– vDescA.offset is the offset in bytes from the start of the vDescA field to the
first byte of the device description.84

– vDescA.len is the length in bytes of the device description.85

84 If v is an item of type var_t, the address of the item v describes is ((char �)&(v)) + v.offset. By convention, if v.offset is
zero, the item v describes is empty or missing. Also by convention if x and y are var_t structures and y is a part of the item x
describes, the item y describes is also a part of the item x describes (that is, “nested” var_t structures describe nested items).

85 If v is an item of type var_t, the careful programmer will check that the region defined by v.offset and v.len is completely
contained within the buffer or object that allegedly contains it.

 Chapter 3. Coprocessor-Side API 3-115

 19-SEP-01, 15:06 Release 2.40

� vDescB specifies the offset and length of a layer descriptor that describes the
miniboot software (that is, the software in segment 1) that was present in the
coprocessor identified by device_name when that coprocessor created the
keypair whose public key is contained in the certificate. See “Layer Names and
Layer Descriptors” on page 3-119 for details.
– vDescB.offset is the offset in bytes from the start of the vDescB field to the

first byte of the layer descriptor.86

– vDescB.len is the length in bytes of the layer descriptor.87

Operating System Key Certificates
The type-dependent fields in the sccOA_CKO_Body_t header for an Operating System
Key Certificate are set as follows:

� cko_type is OA_CKO_SEG2_SEG3.
� cko_name names a coprocessor-generated keypair. See “Keypair Names” on

page 3-117 for details.
� parent_name names a keypair whose public key is contained in a Device Key

Certificate or in a Transition Certificate. See “Keypair Names” on page 3-117
for details.

� device_name uniquely identifies the coprocessor that generated the keypair
whose public key is contained in the certificate. See “Device Names and
Device Descriptors” on page 3-118 for details.

� vDescA specifies the offset and length of a layer descriptor that describes the
operating system (that is, the software in segment 2) that was present in the
coprocessor identified by device_name when that coprocessor created the
keypair whose public key is contained in the certificate. See “Layer Names and
Layer Descriptors” on page 3-119 for details.
– vDescA.offset is the offset in bytes from the start of the vDescA field to the

first byte of the layer descriptor.86

– vDescA.len is the length in bytes of the layer descriptor.87

� vDescB specifies the offset and length of a layer descriptor that describes the
application (that is, the software in segment 3) that was present in the
coprocessor identified by device_name when that coprocessor created the
keypair whose public key is contained in the certificate. See “Layer Names and
Layer Descriptors” on page 3-119 for details.
– vDescB.offset is the offset in bytes from the start of the vDescB field to the

first byte of the layer descriptor.86

– vDescB.len is the length in bytes of the layer descriptor.87

Application Key Certificates
The type-dependent fields in the sccOA_CKO_Body_t header for an Application Key
Certificate are set as follows:

� cko_type is OA_CKO_SEG3_CONFIG if the public key the certificate contains
is part of a Configuration Keypair and OA_CKO_SEG3_EPOCH if the public
key is part of an Epoch Keypair.

86 If v is an item of type var_t, the address of the item v describes is ((char �)&(v)) + v.offset. By convention, if v.offset is
zero, the item v describes is empty or missing. Also by convention if x and y are var_t structures and y is a part of the item x
describes, the item y describes is also a part of the item x describes (that is, “nested” var_t structures describe nested items).

87 If v is an item of type var_t, the careful programmer will check that the region defined by v.offset and v.len is completely
contained within the buffer or object that allegedly contains it.

3-116 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

� cko_name names a coprocessor-generated keypair. See “Keypair Names” on
page 3-117 for details.

� parent_name names a keypair whose public key is contained in an Operating
System Key Certificate. See “Keypair Names” for details.

� device_name uniquely identifies the coprocessor that generated the keypair
whose public key is contained in the certificate. See “Device Names and
Device Descriptors” on page 3-118 for details.

� vDescA is reserved.
� vDescB specifies the offset and length of a block of data supplied by the

application to be associated with the certificate when the keypair was created.
See “ sccOAGenerate - Generate Application Keypair and OA Certificate (4758
Model 002/023 Only)” on page 3-127 for details.
– vDescB.offset is the offset in bytes from the start of the vDescB field to the

first byte of the block of data supplied by the application.88

– vDescB.len is the length in bytes of the block of data supplied by the
application.89

 Keypair Names
The interface to the OA Manager defines the sccOA_CKO_Name_t type to hold the
name of a keypair. The contents of the fields in a sccOA_CKO_Name_t structure
depend on which type of keypair the structure names.

IBM Root Keypairs
The fields in a sccOA_CKO_Name_t structure that names an IBM Root Keypair are set
as follows:

� name_type is OA_IBM_ROOT.
� index is an integer that distinguishes the IBM Root Keypair named by the

structure from all other IBM Root Keypairs.
� creation_boot is not used.

IBM Class Root Keypairs
The fields in a sccOA_CKO_Name_t structure that names an IBM Class Root Keypair
are set as follows:

� name_type is OA_IBM_CLASS_ROOT.
� index is an integer that distinguishes the IBM Class Root Keypair named by the

structure from all other IBM Class Root Keypairs.
� creation_boot is not used.

88 If v is an item of type var_t, the address of the item v describes is ((char �)&(v)) + v.offset. By convention, if v.offset is
zero, the item v describes is empty or missing. Also by convention if x and y are var_t structures and y is a part of the item x
describes, the item y describes is also a part of the item x describes (that is, “nested” var_t structures describe nested items).

89 If v is an item of type var_t, the careful programmer will check that the region defined by v.offset and v.len is completely
contained within the buffer or object that allegedly contains it.

 Chapter 3. Coprocessor-Side API 3-117

 19-SEP-01, 15:06 Release 2.40

 Coprocessor-Generated Keypairs
The fields in a sccOA_CKO_Name_t structure that names a keypair that was generated
on a coprocessor (that is, any keypair except an IBM Root Keypair or an IBM Class
Root Keypair) are set as follows:

� name_type is OA_STANDARD_NAME.
� index is an integer that distinguishes the keypair named by the structure from

all other keypairs generated by the same coprocessor that have the same
value for creation_boot.

� creation_boot is the value the boot counter on the coprocessor that generated
the keypair that the structure names had when the keypair was generated.
See “Coprocessor Architecture” on page 3-100 for details.

Note that the names of two keypairs generated on a single coprocessor are distinct,
but that the name a keypair generated on one coprocessor may match the name of
a keypair generated on another coprocessor. In general, the device_name field in
an OA certificate must be used to distinguish keys generated on one coprocessor
from keys generated on another coprocessor.

Device Names and Device Descriptors
The interface to the OA Manager defines the sccOADeviceName_t type to hold the
name of a particular coprocessor. The fields in a sccOADeviceName_t structure are
set as follows:

� struct_id.name is SCCOADEVICENAME_T.
� struct_id.version is the value to which SCCOADEVICENAME_VER is defined

in the header file that defines the version of sccOADeviceName_t that maps the
header.90

� padbytes is two bytes of zeros.
� adapterID is a serial number that uniquely identifies the coprocessor. It

matches the value of the AdapterID field returned by sccGetConfig. See
“sccGetConfig - Get Coprocessor Configuration” on page 3-94 for details.

� when_certified is a timestamp that indicates when the Device Key Certificate
was loaded into the coprocessor during manufacture. See “Timestamps” on
page 3-120 for details.

The interface to the OA Manager defines the sccOADeviceDesc_t type to hold a
description of a particular coprocessor. The fields in a sccOADeviceDesc_t structure
are set as follows:

� struct_id.name is SCCOADEVICEDESC_T.
� struct_id.version is the value to which SCCOADEVICEDESC_VER is defined in the

header file that defines the version of sccOADeviceDesc_t that maps the
header.90

� padbytes is two bytes of zeros.

90 For example, if the struct_id.version field in a structure of type SCCOATime_t is not equal to SCCOATIME_VER, the definition of
SCCOATime_t used to build the code that performs the comparison does not match the definition used to build the code that created
the structure, and the code that performs the comparison must not attempt to parse the structure unless it has another way to
know how the structure is mapped.

3-118 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

� vpd is a description of the coprocessor. The first 128 bytes match the value of
the AMCC_EEPROM field returned by sccGetConfig and the next 128 bytes match
the value of the VPD field returned by sccGetConfig. See “sccGetConfig - Get
Coprocessor Configuration” on page 3-94 for details.

� device_name is the coprocessor’s name.

Layer Names and Layer Descriptors
The interface to the OA Manager defines the sccOALayerName_t type to hold an
identifier that uniquely identifies the software loaded into a particular segment of a
particular coprocessor. The fields of a layer name are set as follows:

� struct_id.name is SCCOALAYERNAME_T.
� struct_id.version is the value to which SCCOALAYERNAME_VER is defined

in the header file that defines the version of sccOALayerName_t that maps the
timestamp.91

� padbytes is two bytes of zeros.
� epoch_start marks the beginning of the epoch in which the software that the

structure names was loaded. In particular, epoch_start is
– the value of the boot counter
– on the coprocessor into which the software that the structure names was

loaded
– at the point the epoch in which the software that the structure names was

loaded began.

See “Overview of the Authentication Scheme” on page 3-101 for details.92

� config_start marks the start of the configuration that includes the software that
the structure names. In particular, config_start is
– the value the boot counter
– on the coprocessor into which the software the structure names was loaded
– at the point the software that the structure names was loaded.

See “Overview of the Authentication Scheme” on page 3-101 for details.92

91 For example, if the struct_id.version field in a structure of type SCCOATime_t is not equal to SCCOATIME_VER, the definition of
SCCOATime_t used to build the code that performs the comparison does not match the definition used to build the code that created
the structure, and the code that performs the comparison must not attempt to parse the structure unless it has another way to
know how the structure is mapped.

92 As mentioned in footnote 77 on page 3-102, epochs and configurations are measured with respect to a particular segment. Thus,
the values of the recorded boot counter values in a layer 2 descriptor in an Operating System Certificate may differ from the
corresponding values in the layer 3 descriptor in the same certificate. Consider the following sequence of operations:
1. The operating system is loaded into an empty coprocessor when the boot counter is 0x60c. This begins a new segment 2

epoch and a new segment 2 configuration. The segment 2 configuration count is initialized to 1.
2. An application is loaded into segment 3 for the first time when the boot counter is 0x60d. This begins a new segment 3 epoch

and a new segment 3 configuration. The segment 3 configuration count is initialized to 1.
3. The debug kernel is loaded into the coprocessor when the boot counter is 0x612. This begins a new segment 2 configuration

and a new segment 3 configuration. Both configuration counts are incremented.
4. A new application is loaded into the coprocessor when the boot counter is 0x620. This begins a new segment 3 configuration

and the segment 3 configuration count is incremented.

The Operating System Certificate created during step 4 will have a layer descriptor for segment 2 whose fields have the following
values:
– epoch_start = 0x60c
– config_start = 0x612
– config_count = 2

and a layer descriptor for segment 3 whose fields have the following values:
– epoch_start = 0x60d
– config_start = 0x620
– config_count = 3

 Chapter 3. Coprocessor-Side API 3-119

 19-SEP-01, 15:06 Release 2.40

� config_count specifies how many configurations there have been during the
epoch whose beginning epoch_start defines. This figure includes the
configuration that began when the software the structure names was loaded.
See “Overview of the Authentication Scheme” on page 3-101 for details.92

The interface to the OA Manager defines the sccOALayerDesc_t type to hold a
description of the software loaded into a particular segment of a particular
coprocessor. The fields of a layer description are set as follows:

� struct_id.name is SCCOALAYERDESC_T.
� struct_id.version is the value to which SCCOALAYERDESC_VER is defined

in the header file that defines the version of sccOALayerDesc_t that maps the
layer description.93

� padbyte is one byte of zeros.
� layer_number is 1 if the software the structure describes is loaded into segment

1, 2 if the software is loaded into segment 2, and 3 if the software is loaded
into segment 3.

� ownerID is the owner identifier associated with the segment into which the
software is loaded. See “Overview of the Authentication Scheme” on
page 3-101 for details.

� image_name is the name associated with the software. See “Overview of the
Authentication Scheme” on page 3-101 for details.

� image_revision is the revision number associated with the software. See
“Overview of the Authentication Scheme” on page 3-101 for details.

� image_hash is the SHA-1 hash of the software. See “Overview of the
Authentication Scheme” on page 3-101 for details.

� layer_name uniquely identifies the software.

 Timestamps
The interface to the OA Manager defines the sccOATime_t type to hold a timestamp.
The fields of a timestamp are set as follows:

� struct_id.name is SCCOATIME_T.
� struct_id.version is the value to which SCCOATIME_VER is defined in the

header file that defines the version of sccOATime_t that maps the timestamp.93

� year is a BCD representation of the year (for example, 0x2000 represents the
year 2000).94

� month is a BCD representation of the month (for example, 0x12 represents
December).

� day is a BCD representation of the day of the month (for example, 0x10
represents the 10th).

� hour is a BCD representation of the hour using a 24-hour clock (for example,
0x17 represents 5 p.m.).

� minute is a BCD representation of the minute (for example, 0x25 represents 25
minutes past the hour).

93 For example, if the struct_id.version field in a structure of type SCCOATime_t is not equal to SCCOATIME_VER, the definition of
SCCOATime_t used to build the code that performs the comparison does not match the definition used to build the code that created
the structure, and the code that performs the comparison must not attempt to parse the structure unless it has another way to
know how the structure is mapped.

94 year is a normal arithmetic item and is stored in little-endian order. For example, if t is a timestamp for a date in the year 2000,
((char �)&(t.year))[2] is 0 and ((char t.year))[1] is 0x20.

3-120 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

Timestamps created on a coprocessor are set to the date and time provided by the
coprocessor’s real-time clock, which should be synchronized with an external clock
if an accurate timestamp is required.

Class Root Descriptions
The interface to the OA Manager defines the sccOA_CKO_Descr_t type to hold the
description of an IBM Class Root Keypair. The fields in the sccOA_CKO_Descr_t
structure are set as follows:

� struct_id.name is SCCOA_CKO_DESCR_T.
� struct_id.version is the value to which SCCOA_CKO_DESCR_VER is

defined in the header file that defines the version of sccOA_CKO_Descr_t that
maps the description.95

� cert_qualifier is an integer that identifies the keypair. Recognized values are
listed in scc_oa.h.

� descr is a text description of the keypair.

95 For example, if the struct_id.version field in a structure of type SCCOATime_t is not equal to SCCOATIME_VER, the definition of
SCCOATime_t used to build the code that performs the comparison does not match the definition used to build the code that created
the structure, and the code that performs the comparison must not attempt to parse the structure unless it has another way to
know how the structure is mapped.

 Chapter 3. Coprocessor-Side API 3-121

 19-SEP-01, 15:06 Release 2.40

sccOAGetDir - Count and List OA Certificates (4758 Model 002/023
Only)

 Note

This function is not available on the 4758 model 001/013.

sccOAGetDir determines the total number of OA Certificates the OA Manager has
saved. Information about the certificates can also be retrieved.

 Function Prototype
long sccOAGetDirAsync(unsigned long �pCount,

 void �pBuffer,

unsigned long �pLen,

unsigned long �pMsgID);

#define sccOAGetDir(pc,pb,pl) sccOAGetDirAsync(pc,pb,pl,NULL)

 Input
On entry to this routine:

pCount must contain the address of a variable in which an item of type unsigned

long can be stored.

pBuffer must contain the address of a buffer in which information about all of the
OA Certificates the OA Manager has saved can be returned if this information is
desired and must be NULL otherwise.

pLen must contain the address of a variable in which an item of type unsigned long

can be stored. If pBuffer is not NULL, �pLen must be the length in bytes of the
buffer referenced by pBuffer.

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until the requested information has been retrieved.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the OA Manager instructing it
to perform the desired operation. In this case, the caller must not modify,
deallocate, or reuse any portion of the areas of memory referenced by pCount,
pBuffer, or pLen before the operation is complete.

 Output
On successful exit from this routine:

If pMsgID is NULL, �pCount is the number of OA Certificates the OA Manager has
saved. If pBuffer is not NULL, the buffer it references contains an array of items of
type sccOA_DirItem_t and �pLen is the length in bytes of this array. The fields of
the i th entry in the array are set as follows:

� struct_id.name is SCCOA_DIRITEM_T.

3-122 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

� struct_id.version is the value to which SCCOA_DIRITEM_VER is defined in
the header file that defines the version of sccOA_DirItem_t that maps the
entry.96

� padbytes is two bytes of zeros.
� cko_name identifies the keypair whose public key is contained in the OA

Certificate the i th entry describes. See “Keypair Names” on page 3-117 for
details.97

� algorithm is OA_RSA if the keypair identified by cko_name is an RSA keypair
| and is OA_DSS if the keypair is a DSA keypair.

� cko_status is OA_CKO_ACTIVE if the private key in the keypair identified by
cko_name exists and is OA_CKO_INACTIVE if the private key does not exist (for
example, because the software configuration has changed since the keypair
was created).

� length is the length in bytes of the OA Certificate the i th entry describes (that
is, the minimum size of a buffer that could hold the OA Certificate).

� parent_index is the index within the array referenced by pBuffer of the entry
that describes the OA Certificate that contains the public key corresponding to
the private key that was used to create the cryptographic signature that covers
the body of the OA Certificate the i th entry describes. If parent_index is
negative, there is no such entry in the array referenced by pBuffer (for
example, because the certificate is for an IBM Class Root key).

If pBuffer is NULL, �pLen is the length in bytes of a buffer that is just large enough
to hold an array of items of type sccOA_DirItem_t that contains an entry for each
OA Certificiate the OA Manager has saved.

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
OA Manager to initiate the desired operation. When the operation is complete, the
OA Manager will send the coprocessor application a message whose type field
(Msg.h.msg_type) contains this identifier and whose first (and only) data item
(Msg.msg_data[2]) contains the return code generated by the routine.98 If the
operation was successful, �pCount and �pLen (and �pBuffer, if appropriate) contain
the result. The message is placed on the default CP/Q message queue for the
task that called sccOAGetDirAsync.

 Return Codes
Common return codes generated by this routine are:

OAGood (i.e., 0) The operation was successful.

OABadParm An argument is not valid.

OANoSpace The operation failed due to lack of space. (for example, �pLen
is too small).

96 For example, if the struct_id.version field in a structure of type SCCOATime_t is not equal to SCCOATIME_VER, the definition of
SCCOATime_t used to build the code that performs the comparison does not match the definition used to build the code that created
the structure, and the code that performs the comparison must not attempt to parse the structure unless it has another way to
know how the structure is mapped.

97 Since the keypair in question was perforce generated on the coprocessor on which the application that calls sccOAGetDir is
running, cko_name is unambiguous regardless of what kind of keypair it names. There is no need for a Device Name.

98 The return code from the call to sccOAGetDirAsync indicates whether or not the initial message to the OA Manager was
successfully enqueued.

 Chapter 3. Coprocessor-Side API 3-123

 19-SEP-01, 15:06 Release 2.40

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

3-124 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

sccOAGetCert - Retrieve an OA Certificate (4758 Model 002/023 Only)

 Note

This function is not available on the 4758 model 001/013.

sccOAGetCert either returns the length of an OA Certificate the OA Manager has
saved or retrieves the certificate itself.

 Function Prototype
long sccOAGetCertAsync(sccOA_CKO_Name_t �pName,

 void �pBuffer,

 unsigned long �pLen,

 unsigned long �pMsgID);

#define sccOAGetCert(pn,pb,pl) sccOAGetCertAsync(pn,pb,pl,NULL)

 Input
On entry to this routine:

�pName is the name of the keypair whose public key is contained in the OA
Certificate that is to be retrieved or whose length is to be returned. See “Keypair
Names” on page 3-117 for details.

pBuffer must contain the address of a buffer in which the OA Certificate identified
by �pName can be returned if the OA Certificate is to be retrieved and must be
NULL otherwise.

pLen must contain the address of a variable in which an item of type unsigned long

can be stored. If pBuffer is not NULL, �pLen must be the length in bytes of the
buffer referenced by pBuffer.

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until the requested information has been retrieved.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the OA Manager instructing it
to perform the desired operation. In this case, the caller must not modify,
deallocate, or reuse any portion of the areas of memory referenced by pName,
pBuffer, or pLen before the operation is complete.

 Output
On successful exit from this routine:

If pMsgID is NULL, �pLen is the length in bytes of the OA Certificate. If pBuffer is
not NULL, the buffer pBuffer references contains a copy of the desired OA
Certificate. See “OA Certificates” on page 3-111 for details.

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
OA Manager to initiate the desired operation. When the operation is complete, the
OA Manager will send the coprocessor application a message whose type field
(Msg.h.msg_type) contains this identifier and whose first (and only) data item

 Chapter 3. Coprocessor-Side API 3-125

 19-SEP-01, 15:06 Release 2.40

(Msg.msg_data[2]) contains the return code generated by the routine.99 If the
operation was successful, �pLen (and �pBuffer, if appropriate) contain the result.
The message is placed on the default CP/Q message queue for the task that called
sccOAGetCertAsync.

 Return Codes
Common return codes generated by this routine are:

OAGood (i.e., 0) The operation was successful.

OABadParm An argument is not valid.

OANoSpace The operation failed due to lack of space.

OANotFound �pName does not identify an OA Certificate that the OA
Manager has saved.

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

99 The return code from the call to sccOAGetCertAsync indicates whether or not the initial message to the OA Manager was
successfully enqueued.

3-126 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

sccOAGenerate - Generate Application Keypair and OA Certificate
(4758 Model 002/023 Only)

 Note

This function is not available on the 4758 model 001/013.

sccOAGenerate generates a new Application Keypair and an OA Certificate that
contains the keypair’s public key.

 Function Prototype
long sccOAGenerateAsync(sccOAGen_RB_t �pOAGRB,

 unsigned long OAGRBlen,

 void �pKGRB,

 unsigned long KGRBlen,

unsigned long �pMsgID);

#define sccOAGenerate(po,ol,pk,kl) sccOAGenerateAsync(po,ol,pk,kl,NULL)

 Input
On entry to this routine:

pOAGRB must contain the address of an OA Generate request block whose fields are
initialized as follows:

� struct_id.name is SCCOAGEN_RB_T.
� struct_id.version is the value to which SCCOAGEN_RB_VER is defined in

the header file that defines the version of sccOAGen_RB_t that maps the
request block.100

� padbytes is two bytes of zeros.
� algorithm specifies the cryptosystem used to generate the keypair and must be

either OA_RSA (to generate an RSA keypair) or OA_DSA (to generate a DSA
keypair).

� cko_type specifies what kind of Application Keypair is generated and must be
either OA_CKO_SEG3_CONFIG (to generate a configuration key) or
OA_CKO_SEG3_EPOCH (to generate an epoch key).

� vSeg3Field specifies the offset and length of a block of data to be stored in the
new OA Certificate. The block is copied to the body of the certificate and the
certificate’s vDescB field describes the block’s location and length.
– vSeg3Field.offset is the offset in bytes from the start of the vSeg3Field

field to the first byte of the block of data.101

– vSeg3Field.len is the length in bytes of the block of data.102

100 For example, if the struct_id.version field in a structure of type SCCOATime_t is not equal to SCCOATIME_VER, the definition of
SCCOATime_t used to build the code that performs the comparison does not match the definition used to build the code that created
the structure, and the code that performs the comparison must not attempt to parse the structure unless it has another way to
know how the structure is mapped.

101 If v is an item of type var_t, the address of the item v describes is ((char �)&(v)) + v.offset. By convention, if v.offset is
zero, the item v describes is empty or missing. Also by convention if x and y are var_t structures and y is a part of the item x
describes, the item y describes is also a part of the item x describes (that is, “nested” var_t structures describe nested items).

102 If v is an item of type var_t, the careful programmer will check that the region defined by v.offset and v.len is completely
contained within the buffer or object that allegedly contains it.

 Chapter 3. Coprocessor-Side API 3-127

 19-SEP-01, 15:06 Release 2.40

� pCKO_name must contain the address of a buffer in which an item of type
sccOA_CKO_Name_t can be stored.

OAGRBlen is the length in bytes of the request block referenced by pOAGRB.
OAGRBlen includes the length of the block of data whose offset and length are
specified in OAGRB->vSeg3Field.

pKGRB must contain the address of a public key algorithm key generate request
block:

� If pOAGRB->algorithm is OA_RSA, �pKGRB must be an RSA key generate
request block (an item of type sccRSAKeyGen_RB_t) whose key_type,
mod_size, and public_exp fields are initialized as required by
sccRSAKeyGenerate (see “sccRSAKeyGenerate - Generate RSA Key Pair” on
page 3-47 for details). public_exp must not be RSA_EXPONENT_FIXED.
The remaining fields in �pKGRB are ignored.

� If pOAGRB->algorithm is OA_DSS, �pKGRB must be a DSA key generate request
block (an item of type sccDSAKeyGen_RB_t) whose prime_p_size field is
initialized as required by sccDSAKeyGenerate (see “sccDSAKeyGenerate -
Generate DSA Key Pair” on page 3-59 for details). The remaining fields in
�pKGRB are ignored.

KGRBlen is the length in bytes of the request block referenced by pKGRB (that is,
sizeof(sccRSAKeyGen_RB_t) if pOAGRB->algorithm is OA_RSA and
sizeof(sccDSAKeyGen_RB_t) if pOAGRB->algorithm is OA_DSS).

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until the requested information has been retrieved.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the OA Manager instructing it
to perform the desired operation. In this case, the caller must not modify,
deallocate, or reuse any portion of the areas of memory referenced by pOAGRB,
pOAGRB->pCKO_name, or pKGRB before the operation is complete.

 Output
On successful exit from this routine:

If pMsgID is NULL, �pCKO_name identifies the newly generated Application Keypair.
See “Keypair Names” on page 3-117 for details.

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
OA Manager to initiate the desired operation. When the operation is complete, the
OA Manager will send the coprocessor application a message whose type field
(Msg.h.msg_type) contains this identifier and whose first (and only) data item
(Msg.msg_data[2]) contains the return code generated by the routine.103 If the
operation was successful, �pCKO_name contains the result. The message is placed
on the default CP/Q message queue for the task that called sccOAGenerateAsync.

103 The return code from the call to sccOAGenerateAsync indicates whether or not the initial message to the OA Manager was
successfully enqueued.

3-128 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

 Notes
Signature on New OA Certificate

The cryptographic signature for the OA Certificate generated by sccOAGenerate is
created using the private key from the current Operating System Keypair (that is,
the private key corresponding to the public key contained in the unique OA
Certificate whose cko_type field is OA_CKO_SEG2_SEG3 and whose cko_status
field is CKO_ACTIVE).

Use Separate Keys to Encrypt and to Sign

It is recommended that an RSA private key be used solely to encrypt or solely to
create cryptographic signatures, and not for both purposes. If an application needs
to perform both operations, the application should create separate Application
Keypairs and set a flag in the block of data whose offset and location are specified
in pOAGRB->vSeg3Field be used to indicate in which operation a particular
Application Keypair is to be used. The application should check the flag prior to
calling sccOAPrivOp to ensure the private key is being used in the intended
manner.

 Return Codes
Common return codes generated by this routine are:

OAGood (i.e., 0) The operation was successful.

OABadParm An argument is not valid.

OANotAllowed pOAGRB->cko_type is neither OA_CKO_SEG3_CONFIG nor
OA_CKO_SEG3_EPOCH.

OANoSpace The operation failed due to lack of space.

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

 Chapter 3. Coprocessor-Side API 3-129

 19-SEP-01, 15:06 Release 2.40

sccOADelete - Delete Application Keypair and OA Certificate (4758
Model 002/023 Only)

 Note

This function is not available on the 4758 model 001/013.

sccOADelete deletes an Application Keypair and the OA Certificate that contains the
keypair’s public key.

 Function Prototype
long sccOADeleteAsync(sccOA_CKO_Name_t �pName,

 unsigned long �pMsgID);

#define sccOADelete(p) sccOADeleteAsync(p,NULL)

 Input
On entry to this routine:

�pName is the name of the keypair to delete. �pName must identify an Application
Keypair. See “Keypair Names” on page 3-117 for details.

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until the requested information has been retrieved.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the OA Manager instructing it
to perform the desired operation. In this case, the caller must not modify,
deallocate, or reuse any portion of the area of memory referenced by pName
before the operation is complete.

 Output
On successful exit from this routine:

If pMsgID is NULL, the keypair identified by �pName and the OA Certificate that
contains the keypair’s public key have been deleted.

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
OA Manager to initiate the desired operation. When the operation is complete, the
OA Manager will send the coprocessor application a message whose type field
(Msg.h.msg_type) contains this identifier and whose first (and only) data item
(Msg.msg_data[2]) contains the return code generated by the routine.104 If the
operation was successful, the keypair and OA Certificate that contains the keypair’s
public key have been deleted. The message is placed on the default CP/Q
message queue for the task that called sccOADeleteAsync.

104 The return code from the call to sccOADeletetAsync indicates whether or not the initial message to the OA Manager was
successfully enqueued.

3-130 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

 Return Codes
Common return codes generated by this routine are:

OAGood (i.e., 0) The operation was successful.

OABadParm An argument is not valid.

OANotAllowed �pName does not identify an Application Keypair.

OANotFound �pName does not identify an OA Certificate that the OA
Manager has saved.

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

 Chapter 3. Coprocessor-Side API 3-131

 19-SEP-01, 15:06 Release 2.40

sccOAPrivOp - Perform Cryptographic Operation with an Application
Key (4758 Model 002/023 Only)

 Note

This function is not available on the 4758 model 001/013.

sccOAPrivOp directs the OA Manager to perform a cryptographic operation with an
Application Key. The private key can be used to decrypt or sign a block of data,
and the public key can be used to encrypt a block of data or verify a cryptographic
signature.

 Function Prototype
long sccOAPrivOpAsync(sccOA_CKO_Name_t �pName,

 void �pPKARB,

 unsigned long PKARBlen,

 unsigned long �pMsgID);

#define sccOAPrivOp(pn,pp,pl) sccOAPrivOpAsync(pn,pp,pl,NULL)

 Input
On entry to this routine:

�pName is the name of the keypair to be used in the cryptographic operation.
�pName must identify an Application Keypair. See “Keypair Names” on page 3-117
for details.

pPKARB must contain the address of a public key algorithm operation request block:

� If the keypair identified by �pName is an RSA keypair, �pPKARB must be an RSA
operation request block (an item of type sccRSA_RB_t) whose options, data_in,
data_out, and data_size fields are initialized as required by sccRSA (see
“sccRSA - Encipher/Decipher Data or Wrap/Unwrap X9.31 Encapsulated Hash”
on page 3-50 for details). options must include RSA_DONT_BLIND. The
remaining fields in �pPKARB are ignored.

� If the keypair identified by �pName is a DSA keypair, �pPKARB must be a DSA
operation request block (an item of type sccDSA_RB_t) whose options,
sig_token, sig_token_size, data, and data_size fields are initialized as
required by sccDSA (see “sccDSA - Sign Data or Verify Signature for Data” on
page 3-62 for details). The remaining fields in �pPKARB are ignored.

The options field of the request block determines whether the cryptographic
operation is performed using the public half of the keypair or the private half. The
request block must conform to the key used in the operation as required by
sccRSA or sccDSA, as appropriate.

PKARBlen is the length in bytes of the request block referenced by pPKARB (that is,
sizeof(sccRSA_RB_t) if the keypair identified by �pName is an RSA keypair and
sizeof(sccDSA_RB_t) if the keypair identified by �pName is a DSA keypair).

pMsgID determines whether the function is performed synchronously or
asynchronously:

3-132 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until the requested information has been retrieved.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the OA Manager instructing it
to perform the desired operation. In this case, the caller must not modify,
deallocate, or reuse any portion of the area of memory referenced by pName,
pPKARB, or ((sccRSA_RB_t �)pPKARB)->data_in and
((sccRSA_RB_t �)pPKARB)->data_out or ((sccDSA_RB_t �)pPKARB)->sig_token
and ((sccDSA_RB_t �)pPKARB)->data, as appropriate, before the operation is
complete.

 Output
On successful exit from this routine:

If pMsgID is NULL,

� if the keypair identified by �pName is an RSA keypair,
�(((sccRSA_RB_t �)pPKARB)->data_out) contains
– �(((sccRSA_RB_t �)pPKARB)->data_in) transformed using the public half of

the keypair identified by �pName if ((sccRSA_RB_t �)pPKARB)->options

specifies RSA_PUBLIC and
– �(((sccRSA_RB_t �)pPKARB)->data_in) transformed using the private half of

the keypair identified by �pName if ((sccRSA_RB_t �)pPKARB)->options

specifies RSA_PRIVATE.
� if the keypair identified by �pName is a DSA keypair and

((sccDSA_RB_t �)pPKARB)->options specifies DSA_SIGNATURE_SIGN,
�(((sccDSA_RB_t �)pPKARB)->sig_token) contains the digital signature
produced by signing �(((sccDSA_RB_t �)pPKARB)->data) with the private half of
the keypair identified by �pName.

� if the keypair identified by �pName is a DSA keypair and
((sccDSA_RB_t �)pPKARB)->options specifies DSA_SIGNATURE_VERIFY, a
return code of zero implies that the signature in
�(((sccDSA_RB_t �)pPKARB)->sig_token) was produced by signing
�(((sccDSA_RB_t �)pPKARB)->data) with the private half of the keypair identified
by �pName.

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
OA Manager to initiate the desired operation. When the operation is complete, the
OA Manager will send the coprocessor application a message whose type field
(Msg.h.msg_type) contains this identifier and whose first (and only) data item
(Msg.msg_data[2]) contains the return code generated by the routine.105 If the
operation was successful, �(((sccRSA_RB_t �)pPKARB)->data_in) or
�(((sccDSA_RB_t �)pPKARB)->sig_token) contains the result (if appropriate). The
message is placed on the default CP/Q message queue for the task that called
sccOAPrivOpAsync.

105 The return code from the call to sccOAPrivOpAsync indicates whether or not the initial message to the OA Manager was
successfully enqueued.

 Chapter 3. Coprocessor-Side API 3-133

 19-SEP-01, 15:06 Release 2.40

 Return Codes
Common return codes generated by this routine are:

OAGood (i.e., 0) The operation was successful.

OABadParm An argument is not valid.

OANotAllowed �pName does not identify an Application Keypair.

OANotFound �pName does not identify an OA Certificate that the OA
Manager has saved.

OANoSpace The operation failed due to lack of space.

PKADSASigIncorrect The keypair identified by �pName is a DSA keypair and
((sccDSA_RB_t �)pPKARB)->options specifies
DSA_SIGNATURE_VERIFY but the signature in
�(((sccDSA_RB_t �)pPKARB)->sig_token) was not
produced by signing �(((sccDSA_RB_t �)pPKARB)->data)

with the private half of the keypair identified by �pName.

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

3-134 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

sccOAVerify - Verify OA Certificate Chain (4758 Model 002/023 Only)

 Note

This function is not available on the 4758 model 001/013.

sccOAVerify verifies that the cryptographic signature that covers the body of one
OA Certificate was generated using the private key corresponding to the public key
contained in another OA Certificate.

 Function Prototype
long sccOAVerify(void �pParent,

 unsigned long ParentLen,

 void �pChild,

 unsigned long ChildLen);

 Input
On entry to this routine:

pParent must contain the address of a buffer occupied by the OA Certificate that
contains the public key that purportedly corresponds to the private key that was
used to generate the cryptographic signature that covers the body of the OA
Certificate referenced by pChild. See “OA Certificates” on page 3-111 for details.

ParentLen is the length in bytes of the OA Certificate referenced by pParent.

pChild must contain the address of a buffer occupied by the OA Certificate whose
cryptographic signature was purportedly generated by the private key that
corresponds to the public key contained in the OA Certificate referenced by
pParent. See “OA Certificates” on page 3-111 for details.

ChildLen is the length in bytes of the OA Certificate referenced by pChild.

 Output
On successful exit from this routine:

A return code of zero implies that the cryptographic signature that covers the body
of the OA Certificate referenced by pChild was generated by the private key that
corresponds to the public key contained in the OA Certificate referenced by
pParent.

A nonzero return code implies that the cryptographic signature that covers the body
of the OA Certificate referenced by pChild was not generated by the private key
that corresponds to the public key contained in the OA Certificate referenced by
pParent.

 Notes
SHA1_ISO_COMPLEMENT_RSA Signatures Not Supported

At present, sccOAVerify will not verify the signature in an OA Certificate whose
tSig field is SHA1_ISO_COMPLEMENT_RSA.

Using sccOAVerify

 Chapter 3. Coprocessor-Side API 3-135

 19-SEP-01, 15:06 Release 2.40

A number of e-commerce (the part of e-business that focuses on transactions) and
other applications require that an application inside the coprocessor authenticate a
message from the host. It is critical that the application perform all the required
computations inside the coprocessor. sccOAVerify performs the requisite
computations on a coprocessor if the message was signed by the OA Manager on
another coprocessor and if that coprocessor’s OA Certificate chain is available.
(The IBM Class Root Certificate on the two coprocessors must contain the same
public key.)

In addition to verifying signatures, an application should examine the various fields
in each certificate before concluding that a valid signature implies that the certificate
to which the signature attests is meaningful.

 Return Codes
Common return codes generated by this routine are:

OAGood (i.e., 0) The signature is valid.

OASigFail The signature is not valid.

OABadParm An argument is not valid.

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

3-136 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

sccOAStatus - Get Coprocessor Status (4758 Model 002/023 Only)

 Note

This function is not available on the 4758 model 001/013.

sccOAStatus either returns information about the status of the coprocessor and the
software (if any) that is loaded into each segment or returns the amount of space
this status information would occupy.

 Function Prototype
long sccOAStatusAsync(void �pBuffer,

unsigned long �pLen,

unsigned long �pMsgID);

#define sccOAStatus(pb,pl) sccOAStatusAsync(pb,pl,NULL)

 Input
On entry to this routine:

pBuffer must contain the address of a buffer in which information about the status
of the coprocessor can be returned if this information is desired and must be NULL
otherwise.

pLen must contain the address of a variable in which an item of type unsigned long

can be stored. If pBuffer is not NULL, �pLen must be the length in bytes of the
buffer referenced by pBuffer.

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until the requested information has been retrieved.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the OA Manager instructing it
to perform the desired operation. In this case, the caller must not modify,
deallocate, or reuse any portion of the area of memory referenced by pBuffer
or pLen before the operation is complete.

 Output
On successful exit from this routine:

If pMsgID is NULL, �pLen is the length in bytes of the status information. If pBuffer
is not NULL, the buffer it references contains a header of type sccOAStatus_t
followed by undefined. The fields of the header are set as follows:

� struct_id.name is SCCOASTATUS_T.
� struct_id.version is the value to which SCCOASTATUS_VER is defined in

the header file that defines the version of sccOAStatus_t that maps the entry.106

106 If v is an item of type var_t, the address of the item v describes is ((char �)&(v)) + v.offset. By convention, if v.offset is
zero, the item v describes is empty or missing. Also by convention if x and y are var_t structures and y is a part of the item x
describes, the item y describes is also a part of the item x describes (that is, “nested” var_t structures describe nested items).

 Chapter 3. Coprocessor-Side API 3-137

 19-SEP-01, 15:06 Release 2.40

� padbytes is two bytes of zeros.
� rom_status contains information about the basic health of the coprocessor and

the state of each segment. The fields of rom_status are set as follows:
– struct_id.name is zero.
– struct_id.version is zero.
– pic_version is a version number stored in the coprocessor’s programmable

interrupt controller. This number matches the value of “PIC ver” reported
by the CLU ST command.

– rom_version is a version number stored in the coprocessor’s ROM. This
number matches the value of “ROM ver” reported by the CLU ST
command.

– page1_certified is nonzero, indicating that the coprocessor possesses a
Device Keypair and an OA Certificate for the keypair signed by the
appropriate IBM Class Root private key.

– boot_count_left should be zero, indicating that the coprocessor has never
wiped all nonvolatile memory upon detection of a tamper event.

– boot_count_right is the current value of the coprocessor’s boot counter.
See “Coprocessor Architecture” on page 3-100 for details.

– adapterID is a serial number that uniquely identifies the coprocessor. It
matches the value of the AdapterID field returned by sccGetConfig.
 See “sccGetConfig - Get Coprocessor Configuration” on page 3-94 for
details.

– vpd is a description of the coprocessor. The first 128 bytes match the
value of the AMCC_EEPROM field returned by sccGetConfig and the next 128
bytes match the value of the VPD field returned by sccGetConfig. See
“sccGetConfig - Get Coprocessor Configuration” on page 3-94 for details.

– init_state is 0x01.
– seg2_state and seg3_state indicate the status of segment 2 and segment

3, respectively. Possible values are 0 (UNOWNED), 1
(OWNED_BUT_UNRELIABLE), 2 (RUNNABLE), and 3
(RUNNABLE_BUT_UNRELIABLE). Refer to Appendix F, Using Signer and
Packager of the IBM 4758 PCI Cryptographic Coprocessor Custom
Software Developer’s Toolkit Guide for details.

– owner2 and owner3 are the owner identifiers associated with segment 2 and
segment 3, respectively. An owner identifier is undefined if the
corresponding segment is UNOWNED. Refer to “Appendix F, Using Signer
and Packager” in the IBM 4758 PCI Cryptographic Coprocessor Custom
Software Developer’s Toolkit Guide for details.

– active_seg1 indicates which half of the memory dedicated to segment 1 will
be overwritten the next time the software in segment 1 is reloaded. (This
scheme permits segment 1 to be reloaded in an atomic fashion.)

 � vSeg_ids undefined.
� free_space indicates the amount of free code and system space in each

segment. This is the total size in bytes of the segment minus the size in bytes
of the code, public key, and other information that the system software in
segment 1 has saved in the segment. The first entry in the array (that is,
free_space[2]) specifies the amount of free space in segment 1, the second
entry in the array specifies the amount of free space in segment 2, and the
third entry in the array specifies the amount of free space in segment 3.

The figure for segment 3 has no relation to the amount of space in flash
available to hold data items the PPD Manager stores on behalf of an
application unless the figure is negative. In that case, the system software in
segment 1 has found it necessary to “borrow” some space that would ordinarily

3-138 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

be at the disposal of the PPD Manager. The absolute value of the figure for
segment 3 is the number of bytes that were borrowed in this manner.

� layer_name is an array of identifiers that uniquely identify the software loaded
into each segment of the coprocessor. See “Layer Names and Layer
Descriptors” on page 3-119 for details.

The first entry in the array (that is, layer_name[2]) identifies the software in
segment 1, the second entry in the array identifies the software in segment 2,
and the third entry in the array identifies the software in segment 3.

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
OA Manager to initiate the desired operation. When the operation is complete, the
OA Manager will send the coprocessor application a message whose type field
(Msg.h.msg_type) contains this identifier and whose first (and only) data item
(Msg.msg_data[2]) contains the return code generated by the routine.107 If the
operation was successful, �pLen (and �pBuffer, if appropriate) contain the result.
The message is placed on the default CP/Q message queue for the task that called
sccOAStatusAsync.

 Return Codes
Common return codes generated by this routine are:

OAGood (i.e., 0) The operation was successful.

OABadParm An argument is not valid.

OANoSpace The operation failed due to lack of space (for example, �pLen
is too small to hold the entire status structure)

Refer to scc_err.h and the IBM 4758 PCI Cryptographic Coprocessor CP/Q
Operating System Application Programming Reference for a comprehensive list of
return codes.

107 The return code from the call to sccOAStatusAsync indicates whether or not the initial message to the OA Manager was
successfully enqueued.

 Chapter 3. Coprocessor-Side API 3-139

 19-SEP-01, 15:06 Release 2.40

Serial Communication Functions
The functions described in this section allow a coprocessor application to transmit
and receive information via the coprocessor’s serial port. Data is transferred
asynchronously (that is, each character transmitted is preceded by a start bit and
followed by one or more stop bits).

ASYNopen - Open Serial Port (IBM 4758 Model 002/023 Only)
 Note

This function is not available on the 4758 model 001/013.

ASYNopen opens the serial port, allowing it to be used to transmit and receive
data.

 Function Prototype
 long ASYNopen(int port,

 int baud,

 unsigned char databits,

 unsigned char parity,

 unsigned char stopbits,

 int bufsize,

 unsigned long options,

 char �pName,

unsigned long �pSVID,

unsigned long �pMsgID);

 Input
On entry to this routine:

port must be 1.108

baud specifies the baud rate at which communications occur. The following baud
rates are supported: 50, 75, 110, 150, 300, 600, 1200, 1800, 2000, 2400, 3600,
4800, 7200, 9600, 19200, 38400, 57600, and 115200.

databits specifies the number of bits transmitted per character and must be
EIGHTBITS (eight bits per character) or SEVENBITS (seven bits per character).

parity specifies whether a parity bit is computed and transmitted with each
character and must be NOPARITY (no parity bit is computed or transmitted),
ODDPARITY, (the value of the parity bit is computed so that the total number of 1
bits in the value transmitted is odd), or EVENPARITY. (the value of the parity bit is
computed so that the total number of 1 bits in the value transmitted is even).

stopbits specifies the number of stop bits transmitted per character and must be
ONESTOP (one stop bit) or TWOSTOP (two stop bits).

bufsize specifies the size in bytes of a buffer the serial port driver allocates to hold
data that has been received from the serial port but not yet read by the application

108 port specifies which COM port to open, and the serial port on the coprocessor is COM1.

3-140 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

and data that the application has written to the serial port but that has not yet been
transmitted. bufsize must be a multiple of 4096.

options specifies certain communication parameters and must be set to the logical
OR of constants from the following categories:

FIFO Trigger Level

options may include one of the following constants:

ASYNFLG1FIFO Trigger when FIFO reaches 1 byte.
ASYNFLG4FIFO Trigger when FIFO reaches 4 bytes.
ASYNFLG8FIFO Trigger when FIFO reaches 8 bytes.
ASYNFLG14FIFO Trigger when FIFO reaches 14 bytes.

If no FIFO trigger level is specified, ASYNopen behaves as though
ASYNFLG8FIFO had been specified.

RTS/DTR Initialization

options may include one of the following constants:

ASYNFLGFORCEMODEM Force RTS and DTR inactive when the port is
opened, then force RTS and DTR active.

ASYNFLGNOFORCEMODEM Force RTS and DTR active when the port is
opened. Do not force RTS and DTR inactive first.

If no RTS/DTR initialization behavior is specified, ASYNopen behaves as though
ASYNFLGFORCEMODEM had been specified.

Port Status Messages

options may include one of the following constants:

ASYNFLGNOSTAT Do not generate asynchronous messages when certain
events occur during serial communication.

ASYNFLGSTAT Generate asynchronous messages when certain events
occur during serial communication.

If neither value is specified, ASYNopen behaves as though ASYNFLGNOSTAT had
been specified. See the notes for more details on the use of ASYNFLGSTAT and
the serial port driver’s subsequent behavior.

pName must be NULL.

If pSVID is not NULL, it must contain the address of a variable in which an item of
type unsigned long can be stored.

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until the serial port driver has opened the serial port and initialized it as
directed.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the serial port driver instructing
it to open the serial port. In this case pSVID is ignored.

 Chapter 3. Coprocessor-Side API 3-141

 19-SEP-01, 15:06 Release 2.40

 Output
On successful exit from this routine:

If pMsgID is NULL, the serial port has been opened and initialized as directed. If
pSVID is not NULL, �pSVID contains the SVID of the serial port driver, which can be
used to identify the asynchronous messages generated when options includes
ASYNFLGSTAT. See the notes for more details.

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
serial port driver to initiate the open of the serial port. When the operation is
complete, the serial port driver will send the coprocessor application a message
whose type field (h.msg_type) contains this identifier.109 The message includes the
following information:

MSG.msg_data[2] is ASYNopenport.
MSG.msg_data[1] is the serial port index (1).
MSG.msg_data[2] is the return code generated by the open request.
MSG.msg_data[3] is the SVID of the serial port driver (that is, the value returned
in �pSVID in the synchronous case).

 Notes
Serial Port Driver Buffer

The buffer the serial port driver allocates (and whose size is specified by bufsize)
is divided into three regions: 96 bytes are reserved for use by the serial port driver
itself. The remainder of the buffer is divided in half - one half holds data that has
been received by the UART but not yet read by the application and the other half
holds data that the application has written to the serial port but that has not yet
been sent to the UART for transmission.

Asynchronous Event Notifications

If options specifies ASYNFLGSTAT, the serial port driver sends a message to the
coprocessor application when certain events occur.109 The coprocessor application
can distinguish such messages by the sender id in the message (Msg.h.send_id),
which will match the value returned by ASYNopen in �pSVID.

At present, the serial port driver only generates a single kind of message. A
Modem Status message is sent when there is a change in the UART’s Modem
Status Register. This message indicates the status of the transmission line and
can be used to determine when the remote host has opened or closed its end of
the serial line.

Once an application receives a modem status message, the serial port driver will
not send another modem status message until the application has called one of the
serial communications functions. This ensures the serial port driver does not
overwhelm the application with messages.

109 The message is placed on the default CP/Q message queue for the task that called ASYNopen.

3-142 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

A modem status message includes the following information:

MSG.msg_data[2] is ASYNmsrmsg.
MSG.msg_data[1] is the serial port index (1).
MSG.msg_data[2] is the value of the Modem Status Register:
� Bit 0 (0x01): Delta Clear to Send (DTCS) indicator. If this bit is set, the

clear-to-send (CTS) modem control input has changed state since the last
time it was read.

� Bit 1 (0x02): Delta Data Set Ready (DDSR) indicator. If this bit is set, the
data-set-ready (DSR) modem control input has changed state since the last
time it was read.

� Bit 2 (0x04): Trailing Edge of Ring (TER) indicator. If this bit is set, the
ring-indicator (RI) modem control input has changed state since the last
time it was read.

� Bit 3 (0x08): Delta Data Carrier Detect (DDCD) indicator. If this bit is set,
the data-carrier-detect (DCD) modem control input has changed state since
the last time it was read.

� Bit 4 (0x10): Clear to Send (CTS) indicator. This bit is the complement of
the clear-to-send (CTS) modem control input (which is active low; hence if
the bit is set the signal is asserted or active).

� Bit 5 (0x20): Data Set Ready (DSR) indicator. This bit is the complement
of the data-set-ready (DSR) modem control input (which is active low;
hence if the bit is set the signal is asserted or active).

� Bit 6 (0x40): Ring Indicator (RI). This bit is the complement of the
ring-indicator (RI) modem control input (which is active low; hence if the bit
is set the signal is asserted or active).

� Bit 7 (0x80): Data Carrier Detect (DCD) indicator. This bit is the
complement of the data-carrier-detect (DCD) modem control input (which is
active low; hence if the bit is set the signal is asserted or active).

Handshaking

The serial port device driver does not use any hardware handshaking support.
Data to transmit is written to the Transmit Holding Register, and data to receive is
read from the Receive Buffer Register.

 Return Codes
Common return codes generated by this routine are:

ASYNgood (i.e., 0) The operation was successful.

ASYNbadport port was not 1.

ASYNportopen The serial port is already open.

QMbad_size bufsize is zero.

QMproc_limit bufsize is too large.

QMno_block bufsize is too large.

 Chapter 3. Coprocessor-Side API 3-143

 19-SEP-01, 15:06 Release 2.40

ASYNioctl - Change Serial Communication Parameters (IBM 4758
Model 002/023 Only)

 Note

This function is not available on the 4758 model 001/013.

ASYNioctl changes the behavior of the (open) serial port.

 Function Prototype
 long ASYNioctl(int port,

 unsigned int function,

 unsigned int �pArgs,

 unsigned int argsize,

unsigned long �pMsgID);

 Input
On entry to this routine:

port must be 1.

function specifies the operation to perform. See the notes for recognized values.

pArgs must contain the address of an array that provides arguments specific to the
desired operation. See the notes for details.

argsize is the length in bytes of the array referenced by pArgs. If pArgs is NULL,
argsize must be zero.

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until the serial port driver has completed the requested operation.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the serial port driver instructing
it to perform the desired operation. In this case if pArgs is not NULL, the
coprocessor application must not modify, deallocate, or reuse any portion of the
array referenced by pArgs before the operation is complete.

 Output
On successful exit from this routine:

If pMsgID is NULL, the serial port driver has completed the requested operation.
See the notes for details.

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
serial port driver to initiate the desired operation. When the operation is complete,
the serial port driver will send the coprocessor application a message whose type
field (MSG.h.msg_type) contains this identifier.110 The message includes the following
information:

MSG.msg_data[2] is ASYNioctlport.
MSG.msg_data[1] is the serial port index (1).

3-144 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

MSG.msg_data[2] is the return code generated by the request.
MSG.msg_data[3] is reserved.

 Notes
IOCTL Functions

The following table summarizes the operations ASYNioctl may effect.

Table 3-2.

Description function argsize pArgs

Set baud rate ASYNIOBAUD 4 [0]: New baud rate

Set communication parameters ASYNIOCOMPARM 12 [0]: Parity
[1]: Number of data bits
[2]: Number of stop bits

Force RTS/DTR active when port is closed ASYNIOMODEMCLOSEUP 0 NULL

Force RTS/DTR inactive when port is
closed

ASYNIOMODEMCLOSEDN 0 NULL

Set value of OUT1 bit in the UART Modem
Control register

ASYNIOOUT1 4 [0]: Value for OUT1 bit

For ASYNIOBAUD, pArgs[2] must have one of the values permitted for the baud
argument to the ASYNopen function.

For ASYNIOCOMPARM, pArgs[2] must have one of the values permitted for the
parity argument to the ASYNopen function, pArgs[1] must have one of the values
permitted for the databits argument to the ASYNopen function, and pArgs[2] must
have one of the values permitted for the stopbits argument to the ASYNopen
function.

For ASYNIOOUT1, pArgs[2] must be zero to clear the bit. Otherwise the bit is set.

The default serial port driver behavior is to force RTS/DTR inactive when the serial
port is closed.

 Return Codes
Common return codes generated by this routine are:

ASYNgood (i.e., 0) The operation was successful.

ASYNbadport port was not 1 or the serial port is not open.

ASYNbufsmall argsize is smaller than the value dictated by function.

ASYNinvalid function is not a recognized value.

QMbad_offset pArgs is invalid.

110 The message is placed on the default CP/Q message queue for the task that called ASYNioctl.

 Chapter 3. Coprocessor-Side API 3-145

 19-SEP-01, 15:06 Release 2.40

ASYNread - Read Data from the Serial Line (IBM 4758 Model 002/023
Only)

 Note

This function is not available on the 4758 model 001/013.

ASYNopen reads data received on the serial line.

 Function Prototype
 long ASYNread(int port,

 unsigned int �pCount,

 int timeout,

 void �pBuffer,

unsigned long �pMsgID);

 Input
On entry to this routine:

port must be 1.

�pCount specifies the number of bytes to read from the serial line.

timeout specifies the number of seconds to wait for the requested number of bytes
to be received. If timeout is -1, the function waits forever.

pBuffer must contain the address of a buffer large enough to hold �pCount bytes.

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until the requested number of bytes has been read or until the requested
timeout has expired.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the serial port driver instructing
it to read data from the serial line. In this case, pCount is ignored and the
coprocessor application must not modify, deallocate, or reuse any portion of the
buffer referenced by pBuffer before the operation is complete.

 Output
On successful exit111 from this routine:

If pMsgID is NULL, either the requested number of bytes has been received and
copied to the buffer referenced by pBuffer or the specified timeout has expired. In
either case, �pCount contains the number of bytes actually received. If the timeout
expires, ASYNread returns ASYNnoread. Otherwise it returns zero.

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
serial port driver to initiate the read operation. When the operation is complete, the
serial port driver will send the coprocessor application a message whose type field

111 “Successful exit” in this case means the routine either returns zero or returns ASYNnoread.

3-146 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

(MSG.h.msg_type) contains this identifier.112 The message includes the following
information.

MSG.msg_data[2] is ASYNreadport.
MSG.msg_data[1] is the serial port index (1).
MSG.msg_data[2] is the return code generated by the read operation.
MSG.msg_data[3] is the number of bytes read (that is, the value returned in
�pCount in the synchronous case).

The bytes received have been placed in the buffer referenced by pBuffer.

 Notes
Limit on Outstanding Read Requests

Only one read operation can be pending at any time.

 Return Codes
Common return codes generated by this routine are:

ASYNgood (i.e., 0) The operation was successful.

ASYNbadport port was not 1 or the serial port is not open.

ASYNnoread The requested number of bytes was not received
before the requested timeout expired. (Any bytes that
were received are returned, and �pCount is set
accordingly.)

QMbad_offset pBuffer is invalid.

112 The message is placed on the default CP/Q message queue for the task that called ASYNread.

 Chapter 3. Coprocessor-Side API 3-147

 19-SEP-01, 15:06 Release 2.40

ASYNwrite - Write Data to the Serial Line (IBM 4758 Model 002/023
Only)

 Note

This function is not available on the 4758 model 001/013.

ASYNwrite enqueues data to be transmitted on the serial line.

 Function Prototype
 long ASYNwrite(int port,

 unsigned int �pCount,

 int timeout,

 void �pBuffer,

unsigned long �pMsgID);

 Input
On entry to this routine:

port must be 1.

�pCount specifies the number of bytes to write to the serial line. �pCount must not
exceed the size of the transmit buffer established when ASYNopen was called.113

timeout specifies the number of seconds to wait for the requested number of bytes
to be enqueued for transmission. If timeout is -1, the function waits forever.

pBuffer must contain the address of the buffer that contains the data to be written.
The buffer must be at least �pCount bytes long.

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until the requested number of bytes has been enqueued for transmission
or until the requested timeout has expired.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the serial port driver instructing
it to enqueue data for transmission. In this case, pCount is ignored and the
coprocessor application must not modify, deallocate, or reuse any portion of the
buffer referenced by pBuffer before the operation is complete.

 Output
On successful exit from this routine:

If pMsgID is NULL, the requested number of bytes has been copied to the transmit
buffer (and should shortly be transmitted on the serial line if this has not already
occurred) and �pCount contains the number of bytes enqueued for transmission.

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
serial port driver to initiate the write operation. When the operation is complete, the

113 See page 3-140.

3-148 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

serial port driver will send the coprocessor application a message whose type field
(MSG.h.msg_type) contains this identifier.114 The message includes the following
information.

MSG.msg_data[2] is ASYNwriteport.
MSG.msg_data[1] is the serial port index (1).
MSG.msg_data[2] is the return code generated by the write operation.
MSG.msg_data[3] is the number of bytes written (that is, the value returned in
�pCount in the synchronous case).

 Notes
Limit on Outstanding Write Requests

Only one write operation can be pending at any time.

Timeout

If the serial port driver cannot copy the data to be written to the transmit buffer
within the time specified by timeout, the function returns ASYNwrbufoflo. In this
case, none of the data is written to the transmit buffer (even though there may be
room for some of it) or sent, and the number of bytes written (that is, the value of
�pCount on return in the synchronous case) is zero.

A write request for a buffer that is smaller than the transmit buffer may still cause
the buffer to overflow if the buffer already contains data that has been enqueued
but not transmitted.

 Return Codes
Common return codes generated by this routine are:

ASYNgood (i.e., 0) The operation was successful.

ASYNbadport port was not 1 or the serial port is not open.

ASYNwrbufoflo The size of the data to send exceeds the size of the
transmit buffer.

ASYNdrainpending A prior call to ASYNdrain is pending; the write request
has been discarded.

QMbad_offset pBuffer is invalid.

114 The message is placed on the default CP/Q message queue for the task that called ASYNwrite.

 Chapter 3. Coprocessor-Side API 3-149

 19-SEP-01, 15:06 Release 2.40

ASYNdrain - Wait for Serial Operation to Complete (IBM 4758 Model
002/023 Only)

 Note

This function is not available on the 4758 model 001/013.

ASYNdrain waits until a pending serial operation is complete (that is, waits until any
data enqueued for transmission has actually been transmitted).

 Function Prototype
 long ASYNdrain(int port,

 int direction,

unsigned long �pMsgID);

 Input
On entry to this routine:

port must be 1.

direction specifies whether the function waits for a pending serial write to
complete (ASYNWRBUFFER) or waits for a pending serial read to complete
(ASYNRDBUFFER).115

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until the transmit buffer is empty (that is, until any data that has been
enqueued for transmission has been sent).

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the serial port driver instructing
it to drain the transmit buffer.

 Output
On successful exit from this routine:

If pMsgID is NULL, the transmit buffer is empty.

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
serial port driver to initiate the desired operation. When the operation is complete,
the serial port driver will send the coprocessor application a message whose type
field (MSG.h.msg_type) contains this identifier.116 The message includes the following
information.

MSG.msg_data[2] is ASYNdrainport.
MSG.msg_data[1] is the serial port index (1).

115 ASYNdrain with ASYNRDBUFFER currently does nothing.

3-150 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

MSG.msg_data[2] is the return code generated by the request.
MSG.msg_data[3] is reserved.

If the operation was successful, the transmit buffer is empty.

 Notes
Limit on Outstanding Drain Requests

Only one drain operation can be pending at any time.

ASYNdrain Blocks Subsequent ASYNwrite

A call to ASYNwrite made while a drain operation is in progress will fail.

 Return Codes
Common return codes generated by this routine are:

ASYNgood (i.e., 0) The operation was successful.

ASYNbadport port was not 1 or the serial port is not open.

ASYNdrainpending A prior call to ASYNdrain is pending; the drain request
has been discarded.

116 The message is placed on the default CP/Q message queue for the task that called ASYNdrain.

 Chapter 3. Coprocessor-Side API 3-151

 19-SEP-01, 15:06 Release 2.40

ASYNflush - Purge Serial Buffer (IBM 4758 Model 002/023 Only)
 Note

This function is not available on the 4758 model 001/013.

ASYNflush discards any data that has been received but not yet read by the
application or that has been written by the application but not yet transmitted.

 Function Prototype
 long ASYNflush(int port,

 int direction,

unsigned long �pMsgID);

 Input
On entry to this routine:

port must be 1.

direction specifies whether the function flushes the receive buffer
(ASYNRDBUFFER) or the transmit buffer (ASYNWRBUFFER).

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until the specified buffer has been purged.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the serial port driver instructing
it to flush the specified buffer.

 Input
On successful exit from this routine:

If pMsgID is NULL, the buffer specified by direction is empty.

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
serial port driver to initiate the desired operation. When the operation is complete,
the serial port driver will send the coprocessor application a message whose type
field (MSG.h.msg_type) contains this identifier.117 The message includes the following
information.

MSG.msg_data[2] is ASYNflushport.
MSG.msg_data[1] is the serial port index (1).
MSG.msg_data[2] is the return code generated by the request.
MSG.msg_data[3] is reserved.

If the operation was successful, the buffer specified by direction is empty.

117 The message is placed on the default CP/Q message queue for the task that called ASYNflush.

3-152 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

 Notes
Effect on Outstanding Serial Operations

If the receive buffer is flushed, any pending serial read is canceled. If the transmit
buffer is flushed, any pending serial write is canceled and any pending drain
request completes.

Synchronous versus Asynchronous Flush of Receive Buffer

An asynchronous invocation of ASYNflush to clear the receive buffer simply purges
the receive buffer.

A synchronous invocation purges the receive buffer and then repeatedly calls
ASYNread with a 1 second timeout. The call to ASYNflush does not return until
ASYNread returns ASYNnoread. This purges any characters that arrived while the
flush request was being serviced.

 Return Codes
Common return codes generated by this routine are:

ASYNgood (i.e., 0) The operation was successful.

ASYNbadport port was not 1 or the serial port is not open.

 Chapter 3. Coprocessor-Side API 3-153

 19-SEP-01, 15:06 Release 2.40

ASYNclose - Close Serial Port (IBM 4758 Model 002/023 Only)
 Note

This function is not available on the 4758 model 001/013.

ASYNclose closes the serial port.

 Function Prototype
 long ASYNclose(int port,

unsigned long �pMsgID);

 Input
On entry to this routine:

port must be 1.

pMsgID determines whether the function is performed synchronously or
asynchronously:

� If pMsgID is NULL, the function is performed synchronously. The call does not
return until the serial port driver has closed the serial port.

� If pMsgID is not NULL, the function is performed asynchronously. The call
returns as soon as a message has been sent to the serial port driver instructing
it to close the serial port.

 Output
On successful exit from this routine:

If pMsgID is NULL, the serial port has been closed.

If pMsgID is not NULL, �pMsgID uniquely identifies the message that was sent to the
serial port driver to initiate the close of the serial port. When the operation is
complete, the serial port driver will send the coprocessor application a message
whose type field (MSG.h.msg_type) contains this identifier.118 The message includes
the following information.

MSG.msg_data[2] is ASYNcloseport.
MSG.msg_data[1] is the serial port index (1).
MSG.msg_data[2] is the return code generated by the close request.
MSG.msg_data[3] is reserved.

 Notes
Serial Port Driver Buffer

Closing the serial port frees the buffer the serial port driver allocates when the
serial port is opened.

118 The message is placed on the default CP/Q message queue for the task that called ASYNclose.

3-154 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

 Return Codes
Common return codes generated by this routine are:

ASYNgood (i.e., 0) The operation was successful.

ASYNbadport port was not 1 or the serial port is not open.

 Chapter 3. Coprocessor-Side API 3-155

 19-SEP-01, 15:06 Release 2.40

3-156 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

Chapter 4. Coprocessor Interface for Host Device Drivers

The coprocessor provides an interface that allows a host device driver to initialize
the coprocessor, test its operation, and transfer data from a host application to the
coprocessor and from the coprocessor to a host application. The device driver and
coprocessor communicate across the host’s PCI bus using the facilities provided by
the AMCC S5933 PCI Controller chip (or AMCC).1 This chapter describes the
events that occur when the coprocessor is reset, and the protocol the host device
driver uses to send commands and data to the coprocessor and to obtain results
and status information from the coprocessor. The functions, types, and constants
described in this chapter are contained in scctypes.h, scc_host.h, scc_int.h,
scc_dd.h, or knownans.h. These files are included in the IBM 4758 Application
Program Development Toolkit. Refer to the IBM 4758 PCI Cryptographic
Coprocessor Custom Software Developer’s Toolkit Guide for details.

 PCI Communication
The host issues commands to the coprocessor and the coprocessor issues
commands and notifications to the host via a set of registers (called mailboxes)
provided by the AMCC. Each side of the interface has four 32-bit read/write
outgoing mailboxes and four 32-bit read-only incoming mailboxes. The outgoing
mailboxes on one side of the interface are connected to the incoming mailboxes on
the other side of the interface, as shown in the following illustration.

Host Coprocessor

Host
Writes

Coprocessor
Reads

Incoming MailboxOutgoing Mailbox

OMB1

OMB2

OMB3

OMB4

AIMB1

AIMB2

AIMB3

AIMB4

Incoming Mailbox Outgoing Mailbox

IMB1

IMB2

IMB3

IMB4

AOMB1

AOMB2

AOMB3

AOMB4

Coprocessor
Writes

Host
Reads

Figure 4-1. AMCC Mailbox Registers

1 See “Custom Software Publications” on page ix for information on how to obtain technical details about the AMCC S5933.

 Copyright IBM Corp. 1998, 2001 4-1

 19-SEP-01, 15:06 Release 2.40

On the host side mailboxes are byte-, word-, and dword-addressable. That is, the
host device driver can write to or read from each byte in a mailbox, either of the
16-bit words in a mailbox, or the entire 32-bit mailbox in a single operation. On the
coprocessor side, mailboxes are word- and dword-addressable.

The coprocessor may ask the host to send a block of data (for example, the
contents of a buffer a host application has made available in a call to sccRequest)
or may send a block of data to the host (for example, the contents of a buffer a
coprocessor application has passed to sccPutBufferData). The data is exchanged
using the AMCC’s FIFOs. The host side of the transfer may be effected by
configuring the AMCC to act as initiator on the PCI bus (busmastering) or by direct
reads from or writes to the FIFOs (programmed I/O). The coprocessor side of the
transfer may be effected by reading from or writing to the AMCC FIFOs using
programmed I/O or the 2KB IBM 4758 FIFOs2 using DMA or programmed I/O.3

Refer to chapter 11 of the AMCC S5933 PCI Controller Data Book for details. The
remainder of this chapter assumes that the host uses busmastering.

The host operating system determines how the host device driver reads and writes
mailboxes, FIFOs, and control and status registers on the AMCC. For example, the
operating system may allow the device driver direct access to the hardware, or the
operating system may supply a system call for this purpose.

2 See Figure 4-2 on page 4-13.

3 Software on the coprocessor normally accesses the AMCC FIFOs indirectly through the IBM 4758 FIFOs because DMA and the
associated interrupts are available only when using the IBM 4758 FIFOs.

4-2 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

Use of the Mailboxes
The host writes commands to the coprocessor into OMB4 byte 2.4 Arguments
associated with the command are written into the remaining OMB registers. 16-bit
arguments are written into the outgoing mailboxes in the following order:

1. OMB4 low-order word (bytes 1 and 0)
2. OMB3 high-order word (bytes 3 and 2)
3. OMB3 low-order word
4. OMB2 high-order word
5. OMB2 low-order word
6. OMB1 high-order word
7. OMB1 low-order word

32-bit arguments are written into the outgoing mailboxes in the following order:
OMB3, OMB2, OMB1. If a command has both 16-bit and 32-bit arguments, the
arguments are written in the required order, which may cause the low-order word of
an outgoing mailbox to be unused. For example, the arguments for a command
whose first two arguments are 16 bits and whose third argument is 32 bits would
be written into OMB4 low-order word, OMB3 high-order word, and OMB2,
respectively. OMB3 low-order word would be unused in this case.

Similarly, the coprocessor writes commands and notifications into AOMB4 byte 2.
Additional information associated with the command or notification is written into the
remaining AOMB registers in the same order that the host uses for arguments. For
example:

� a single 16-bit piece of information is written into AOMB4 low-order word, and
� two 16-bit pieces and a 32-bit piece are written into AOMB4 low-order word,

AOMB3 high-order word, and AOMB2.

Tamper Status Bits
IMB4 byte 3 and AIMB4 byte 3 always reflect the status of the tamper status bits.
Values written into OMB4 byte 3 and AOMB4 byte 3 are ignored. The host should
check the value of these bits at the start of initialization and any time the host
writes a command into OMB4 byte 2 and the coprocessor fails to read AIMB4 byte
2 within a reasonable period. (The device drivers supplied by IBM timeout after
three seconds.)

The bits are active low and from most significant to least significant are: 5

� 0x80 - (always zero)
� 0x40 - Intrusion Latch
� 0x20 - X-ray Tamper or Dead Battery
� 0x10 - Temperature Tamper
� 0x08 - Overvoltage Tamper
� 0x04 - Coprocessor reset signal asserted6

4 The low order byte is byte 0.

5 The values given are for the initial version of the coprocessor and may change as changes are made to the design of the
hardware.

6 This bit is asserted if the Add-on reset pin (SYSRST#) is asserted. It is also asserted whenever any of the “Tamper” bits is
asserted.

 Chapter 4. Coprocessor Interface for Host Device Drivers 4-3

 19-SEP-01, 15:06 Release 2.40

� 0x02 - Mesh Tamper
� 0x01 - Low Battery Warning Latch

Only the “Tamper” bits (0x3A) need be examined, since the other conditions do not
reset the coprocessor.

 Mailbox Overrun
After writing a command into OMB4 byte 2, the device driver must not write a
second command until the coprocessor has finished reading the first. By
convention, outgoing mailbox 4 byte 2 (OMB4 byte 2 or AOMB4 byte 2) is always
written last and incoming mailbox 4 byte 2 (IMB4 byte 2 or AIMB4 byte 2) is always
read last.7 Thus, once the device driver determines that OMB4 byte 2 has been
read, the driver may write another command into the OMB registers.

The device driver may either use the AMCC Interrupt Control/Status Register
(INTCSR) to configure the AMCC to generate an interrupt when OMB4 byte 2 is
read or may poll the Mailbox Empty/Full Status Register (MBEF) to determine when
OMB4 byte 2 has been read. The remainder of this chapter assumes that the
driver has adopted the first approach.

Use of the FIFOs
When a host application sends a request to a coprocessor application, the host
application can supply as many as four buffers of data that the coprocessor
application may read by calling sccGetBufferData and as many as four buffers to
which the coprocessor application may write data by calling sccPutBufferData or
sccEndRequest.8 When a coprocessor application requests a transfer (in either
direction), the coprocessor issues a request to the host device driver that identifies
the buffer to be transferred and indicates the direction of transfer. The host device
driver writes the physical address of the buffer and the number of bytes to transfer
to the appropriate AMCC PCI Controlled Bus Master registers (MWAR and MWTC
for transfers from the coprocessor to the host and MRAR and MRTC for transfers
from the host to the coprocessor). The transfer takes place when the host device
driver sets the Read Transfer Enable bit or the Write Transfer Enable bit (whichever
applies) in the AMCC Master Control/Status Register (MCSR).9

A buffer may be arbitrarily long, so the host device driver typically breaks each
buffer into a number of fixed-sized pieces and transfers each piece. The device
driver must ensure that each piece is paged in (that is, pinned in physical memory)
during the entire time transfer of the piece is taking place.

The coprocessor may ask to transfer several buffers in a single request or may
issue a request before a transfer initiated by a previous request has been
completed. The host device driver must ensure that it transfers buffers in the order
they are requested. However, transfers to the host and transfers from the host are

7 Reading or writing mailboxes in sequence and as dwords ensures this convention is followed.

8 This assumes the coprocessor operating system is CP/Q++. If another operating system is used, a coprocessor application will
likely use different functions to exchange data with a host application.

9 It appears bits 8 and 12 of the MCSR must both be set (that is, the transfer priority must alternate between reads and writes) in
order for busmaster transfers to work properly. This may be due to a bug in the AMCC.

4-4 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

independent operations, so the host device driver may maintain two queues of
pending transfers - one for incoming buffers and one for outgoing buffers.

 Host-Generated Commands
This section describes the commands the host device driver issues when a host
application wants to send a request to a coprocessor application and when the
device driver finds it necessary to abort a request before it is complete.

GOT_HEADERS - Signal Pending Requests
The host device driver sends a GOT_HEADERS command to the coprocessor to
indicate the host device driver has one or more requests from one or more host
applications that have not yet been sent to the coprocessor. This command takes
a single 16-bit argument: the number of requests pending.

When a host application calls sccRequest, the host device driver uses the
information in the request block to construct a request header (of type
sccRequestHeader_t), which then awaits transmission to the coprocessor just like
any other outgoing data buffer. Most of the request header fields are simply copied
directly from the request block (of type sccRB_t). However, the host device driver
does stamp each header with a RequestID (RID), a number that uniquely identifies
the request.

The device driver sets the RequestID field of the request header to an arbitrary
number that must distinguish the request from any other outstanding request (both
currently outstanding requests and requests that may be issued before the
coprocessor completes its reply to this request). The low-order four bits of this
value must be zeros.10

The device driver sets the rsvd field of the request header as follows:

� The low-order bit is a flag (IGNORE_REQUEST) that indicates the request
header and the request to which it applies are no longer valid. This bit may be
used during abort processing. See “Abort Processing” on page 4-9 for details.

� The remaining bits of the field are reserved and must be zero.

The coprocessor copies the request header when a coprocessor application calls
sccGetNextHeader and so the host device driver must ensure all arithmetic fields in
the request header (RequestID, rsvd, UserDefined, and each element of
OutBufferLength and InBufferLength) are in little-endian order (low order byte at
lowest address) before the request header is sent to the coprocessor.

Once the host device driver has sent a GOT_HEADERS command to the
coprocessor, the host device driver may not send another GOT_HEADERS
command until the coprocessor has sent a START_BUFFERS command to tell the
host device driver to transfer one or more headers for pending requests. The host
device driver may then send another GOT_HEADERS command (even before the
first header is transferred); in this case, the count of pending requests passed as

10 The host device driver may find it expedient to use an index into a table of active requests to identify each request. It is unlikely,
however, that the table will contain 4096 entries, so several of the bits in the high-order word will be unused. In this case, the
unused bits could be used as an “incarnation” count, starting at zero and incrementing each time the index is reused. This will
allow the host device driver to detect an erroneous attempt to transfer a buffer associated with a request that has already ended.

 Chapter 4. Coprocessor Interface for Host Device Drivers 4-5

 19-SEP-01, 15:06 Release 2.40

an argument must not include the requests whose headers are to be sent to the
coprocessor in response to its START_BUFFERS command.

The host device driver must transmit request headers to the coprocessor in the
order in which the associated requests were received from host applications.

ABORT_REQUEST - Abort a Specific Request
The host device driver sends an ABORT_REQUEST command to the coprocessor
to abort a specific request. It takes a single 16-bit argument: the identifier of the
request to be aborted (as passed in the RequestID field of the request header for
the request). See “Abort Processing” on page 4-9 for details on the use of this
command.

ABORT_END - Signal End of Abort Requests
The host device driver sends an ABORT_END command to the coprocessor to
notify the coprocessor that the host device driver has no more requests to abort. It
takes no arguments. See “Abort Processing” on page 4-9 for details on the use of
this command.

Coprocessor - Generated Commands and Notifications
This section describes the commands and notifications information the coprocessor
sends to the host device driver.

START_BUFFERS - Transfer Data Buffers
The coprocessor sends a START_BUFFERS command to the host device driver to
tell the device driver to schedule the transfer of one or more buffers of data
between the host and the coprocessor. The device driver adds each buffer to the
appropriate transmission queue (incoming or outgoing) and writes the appropriate
values to the appropriate AMCC PCI Controlled Bus Master registers to effect the
transfer of each buffer after all its predecessors on the queue have been
transferred.

This command is actually a family of commands, since the low-order nibble of the
command indicates how many buffers the coprocessor wants to transfer.
START_BUFFERS is #defined to be 0x20 in scc_dd.h. The coprocessor writes
0x21 into AOMB4 byte 2 if it wants to transfer a single buffer, 0x22 to transfer two
buffers, and so on. A single START_BUFFERS command may schedule the
transfer of as many as seven buffers.

Associated with a START_BUFFERS command are the buffer IDs (BIDs) for each
of the buffers to be transferred. The number of bytes to transfer is also provided
for transfers from the coprocessor to the host.

A BID is a 16-bit quantity that uniquely identifies a buffer. The low-order 4 bits of a
BID indicate whether the transfer is from the host to the coprocessor or from the
coprocessor to the host and identify the data to be transferred, as shown below:

� (BID & 0x0C) == 0x00 - Transfer outgoing buffer

The coprocessor sets the top half of the low-order nibble of a BID to zero to
schedule the transfer of a data buffer from the host. The high-order 12 bits of
the BID contain the high-order 12 bits of the RID of the request with which the

4-6 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

buffer is associated.11 The bottom half of the low-order nibble of the BID is the
index of the desired buffer (that is, the value passed by the coprocessor
application in the bufIdx argument in the call to sccGetBufferDataAsync that
caused the transfer to be requested).

The number of bytes transferred is the number of bytes in the buffer as
specified by the host application in the pRequestBlock->OutBufferLength[BID &

2x23] argument in the call to sccRequest that made the buffer available to the
coprocessor application.

� (BID & 0x0C) == 0x04 - Transfer incoming buffer

The coprocessor sets the top half of the low-order nibble of a BID to binary 01
to schedule the transfer of a data buffer to the host. The high-order 12 bits of
the BID contain the high-order 12 bits of the RID of the request with which the
buffer is associated. The bottom half of the low-order nibble of the BID is the
index of the desired buffer (that is, the value passed by the coprocessor
application in the bufIdx argument in the call to sccPutBufferDataAsync that
caused the transfer to be requested).

The number of bytes to transfer (a 32-bit quantity) is passed immediately
following the BID. Thus, a BID of this type cannot appear in IMB1. The
number of bytes to transfer will be greater than zero and less than or equal to
the number of bytes in the buffer as specified by the host application in the
pRequestBlock->InBufferLength[BID & 2x23] argument in the call to
sccRequest that made the buffer available to the coprocessor application.

� (BID & 0x0C) == 0x0C - Transfer final incoming buffer

The coprocessor sets the top half of the low-order nibble of a BID to binary 11
to schedule the transfer of a data buffer that marks the end of a request to the
host. The high-order 12 bits of the BID contain the high-order 12 bits of the
RID of the request with which the buffer is associated. The bottom half of the
low-order nibble of the BID is the index of the desired buffer (that is, the value
passed by the coprocessor application in the bufIdx argument in the call to
sccEndRequest that caused the transfer to be requested).

The number of bytes to transfer (a 32-bit quantity) is passed immediately
following the BID and the request status12 (a 32-bit quantity) is passed
immediately following the number of bytes to transfer. Thus, a BID of this type
cannot appear in IMB1 or IMB2. The number of bytes to transfer will be
greater than or equal to zero and less than or equal to the number of bytes in
the buffer as specified by the host application in the
pRequestBlock->InBufferLength[BID & 2x23] argument in the call to
sccRequest that made the buffer available to the coprocessor application. If
the number of bytes to transfer is zero, the bottom half of the low-order nibble
of the BID should be ignored.

11 Recall that the low-order 4 bits of a RID must be zero.

12 The value passed by the coprocessor application in the status argument in the call to sccEndRequest that caused the transfer to
be requested.

 Chapter 4. Coprocessor Interface for Host Device Drivers 4-7

 19-SEP-01, 15:06 Release 2.40

� (BID & 0x0C) == 0x08 - Special case transfers

The coprocessor sets the top half of the low-order nibble of a BID to binary 10
for certain special case transfers. The bottom half of the low-order nibble of
the BID identifies the desired operation, as follows:

– (BID & 0x03) == 0x00 - Send headers

The coprocessor sets the low-order nibble of a BID to 0x08 to schedule the
transfer of a buffer from the host containing one or more request headers.
The high-order byte of the BID contains the number of headers to send and
will be less than or equal to the number of pending requests argument in
the GOT_HEADERS command most recently sent by the host device
driver. The remaining bits of the BID are reserved and set to zero.

– (BID & 0x03) != 0x00 - Reserved

The other special case transfer constants (0x09, 0x0A, and 0x0B) are
reserved.

Buffers are added to the appropriate queue in the order their BIDs appear in the
START_BUFFERS request as described in “Use of the FIFOs” on page 4-4.

For example, the following command schedules the transfer of outgoing buffer 1
from request 0x220, 0x12345678 bytes to incoming buffer 2 from request 0x1120,
and outgoing buffer 0 from request 0x3320:

IMB4 - 2xtt232221 (tt are the Tamper Status bits)
IMB3 - 2x11262222

IMB2 - 2x12345678

IMB1 - 2x33222222

The device driver must send request 0x220 outgoing buffer 1 before it sends
request 0x3320 outgoing buffer 0. The transfer of data for request 0x1120
incoming buffer 2 is scheduled independently.

The following command schedules the transfer of 0x00112233 bytes to incoming
buffer 0 of request 0x1230 (and signifies the end of the request and returns a
status of 0xDEAD0BAD), the next five request headers, and outgoing buffer 2 from
request 0x4560:

IMB4 - 2xtt23123C (tt are the Tamper Status bits)
IMB3 - 2x22112233

IMB2 - 2xDEAD2BAD

IMB1 - 2x25284562

The device driver must send the request headers before it sends request 0x4560
outgoing buffer 2. Again, the transfer of data for request 0x1230 incoming buffer 0
is scheduled independently.

INVALID_MB_CMD - Command Not Recognized
The coprocessor sends an INVALID_MB_CMD notification to the host device driver
if the coprocessor reads a command it does not recognize in AIMB4 byte 2. The
notification is sent before the coprocessor reads any other commands from the
host. Associated with this notification is the command that was not recognized

4-8 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

(which is written into AOMB4 byte 0).13 The coprocessor ignores the unrecognized
command.

Upon receipt of this notification, the host device driver should evaluate the problem
and proceed accordingly. In general, the device driver should mark the
coprocessor as “bad” and discontinue use of the coprocessor.

ABORT_COMPLETE - Request Successfully Aborted
The coprocessor sends an ABORT_COMPLETE notification to the host device
driver after the coprocessor has finished processing an ABORT_REQUEST
command. Associated with this notification is the 16-bit request identifier passed as
an argument in the ABORT_REQUEST command.13 See “Abort Processing” for
details on the use of this notification.

GOODNIGHT_JUAN - System Error Occurred
The coprocessor sends a GOODNIGHT_JUAN notification to the host device driver
if an unhandled exception occurs in one of the CP/Q++ extensions. Possible
causes include hardware failure and breach of security. The coprocessor then
halts and will not respond to further commands until it is reset. The host device
driver must cancel all pending requests.

The following status information is supplied with this notification:

� CP/Q fault type and task stop code (16 bits)
� Final coprocessor status code (32 bits)
� Reserved (32 bits)
� CP/Q supervisor ID (SVID) of the task in which the exception occurred (32 bits)

CPQ_ABEND - Kernel Error Occurred
The coprocessor sends a CPQ_ABEND notification to the host device driver if a
problem in the CP/Q++ kernel makes continued operation of the coprocessor
infeasible. Possible causes include hardware failure and exhaustion of kernel
resources. The coprocessor then halts and will not respond to further commands
until it is reset. The host device driver must cancel all pending requests.

The following status information is supplied with this notification:

� CP/Q abend code (32 bits)
� CP/Q supervisor ID (SVID) of the kernel component in which the exception

occurred (32 bits)

 Abort Processing
The host device driver may find it necessary to abort a request from a host
application, either because the host application terminates before the result of the
request can be delivered or because the device driver encounters a problem while
processing the request. There are several possibilities:

If the host device driver has not yet notified the coprocessor that the request is
outstanding (that is, has not yet sent the coprocessor a GOT_HEADERS command

13 Some of the first IBM 4758 coprocessors produced do not supply this information.

 Chapter 4. Coprocessor Interface for Host Device Drivers 4-9

 19-SEP-01, 15:06 Release 2.40

whose argument includes the request in the count of outstanding requests), the
host device driver can simply discard the request. No interaction with the
coprocessor is necessary.

If the host device driver has notified the coprocessor that the request is outstanding
but has not yet sent the request header associated with the request to the
coprocessor, the host device driver can either set the IGNORE_REQUEST flag in
the header’s rsvd field or replace the request header with the header for another
outstanding request whose existence has not already been announced to the
coprocessor. No further interaction with the coprocessor is necessary.

If the host device driver has sent the request header to the coprocessor and the
response to the request has not yet been transferred to the host from the
coprocessor (that is, no START_BUFFERS command has been received that
includes a “transfer final incoming buffer” BID containing the request’s identifier or
such a request has been received but the transfer has not yet begun), the host
device driver must wait until any buffer transfer from the host to the coprocessor
presently underway is complete (that is, must wait for the current busmaster read to
complete), then send an ABORT_REQUEST command containing the identifier of
the request to abort. The coprocessor will respond with an ABORT_COMPLETE
notification. The coprocessor will not subsequently issue any START_BUFFERS
command containing a BID that refers to the aborted request.

Once the coprocessor receives an ABORT_REQUEST command, it enters an
“abort processing” mode. While in this mode, the coprocessor will not issue any
START_BUFFERS commands and expects the host to issue either additional
ABORT_REQUEST commands or an ABORT_END command. Upon receipt of an
ABORT_END command from the host, the coprocessor resumes normal
operations.

If the host device driver encounters a problem while sending a buffer to the
coprocessor, the host device driver can simply stop the busmaster read (that is,
clear the Read Transfer Enable bit in the AMCC Master Control/Status Register
(MCSR)) and send an ABORT_REQUEST command for the request with which the
buffer is associated. In other words, transfers from the host to the coprocessor
need not be completed. (Upon receipt of an ABORT_REQUEST command, the
coprocessor continues to read data from the FIFOs until the FIFOs are empty.
Only then does the coprocessor begin its abort processing.)

However, the host cannot exercise such fine control over transfers from the
coprocessor to the host. Once the coprocessor has written data to the FIFOs, the
transfer cannot be stopped or interrupted. After sending an ABORT_REQUEST
command, the host must continue to read data from the coprocessor according to
the pre-existing schedule until an ABORT_COMPLETE notification is received.

If a buffer provided by the host application to receive data from the coprocessor
proves unsuitable (for example, cannot be pinned in memory), the host device
driver must supply a buffer of its own of the appropriate size so that the data may
be read from the FIFOs, and the FIFOs allowed to drain.

Once the host device driver has successfully aborted a request (for example, upon
receipt of an ABORT_COMPLETE notification), the host device driver can cancel
any scheduled transfers of buffers associated with the request.

4-10 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

 Initialization
Following power-on or reset, the coprocessor performs a four-phase power-on self
test (POST) and initialization sequence. The host device driver must interact with
the coprocessor during this time to test the data path between the host to the
coprocessor and to enable the transition from one phase to the next. The
sequence is as follows:

� The coprocessor is reset, either by hardware power-on or by the host device
driver using bits 24 through 27 of the AMCC Master Control/Status Register
(MSCR). The host device driver should start a timer anytime the coprocessor
is reset in order to detect problems encountered during the first phase of the
power-on self test (POST 0). Due to testing of the random number generator,
it takes approximately 25 seconds from the removal of reset before POST 0
sends the first notification to the host device driver.

In the remainder of this section we will assume that the host device driver sets
the appropriate bits in the AMCC Interrupt Control/Status Register (INTCSR) to
cause an interrupt on the host whenever the coprocessor writes into AOMB4
byte 2.

� Upon reset, the coprocessor begins the first phase of the power-on self test
(POST 0). POST 0 initializes the CPU chipset, including the interrupt controller
and CPU clock generator, and ensures the coprocessor hardware can perform
its basic functions properly. Among the items tested are the CPU (including
cache), the interrupt controller, the realtime clock, the DES chip, the serial
UART, the onboard RAM, and the random number generator. POST 0 also
verifies the ROM and CMOS checksums and clears all the mailboxes to zero,
which may generate an interrupt on the host. The host device driver should
ignore this notification if it occurs.14

� Upon completion of all its standalone tests, POST 0 writes 0x600D into AOMB4
low-order word and a POST0_ACTION notification into AOMB4 byte 2, which
should generate an interrupt on the host. If the timer started by the host device
driver when the coprocessor is reset expires before an interrupt occurs, POST
0 has failed. POST 0 writes a checkpoint identifier into AOMB4 low-order word
at the completion of each stand-alone test, so if the timer expires the host
device driver can examine IMB4 low-order word to determine the point at which
the failure occurred.15

After writing the POST0_ACTION notification, POST 0 monitors AOMB4 byte 2
and waits for the host device driver to read the notification. Once this occurs,
POST 0 delays 100 milliseconds and then begins a “walking 1’s” test of the
AMCC mailboxes, as follows:

1. POST 0 writes 0x00000001 to AOMB1.
2. The host device driver determines that IMB1 has changed, either by polling

the AMCC Mailbox Empty/Full Status Register (MBEF), configuring the
AMCC to generate an interrupt when AOMB1 is written, or using a

14 Some of the first IBM 4758 coprocessors produced also write 0x34 into AOMB4 byte 2. The last device driver should ignore this
notification if it occurs.

15 A bug may cause POST 0 to halt at checkpoint 0x000C. If this occurs, the device driver should reset the coprocessor and try
again. If the problem persists, the coprocessor is defective.

 Chapter 4. Coprocessor Interface for Host Device Drivers 4-11

 19-SEP-01, 15:06 Release 2.40

timeout.16 The device driver then reads IMB1, ensures that the proper value
(0x00000001) was read, and writes the same value into OMB1.17

3. When POST 0 determines that AIMB1 has changed, it reads AIMB1 and
ensures that the proper value was read. Steps 1, 2, and 3 are then
repeated for each bit in mailbox 1 (that is, POST 0 writes 0x00000002, then
0x00000004, then 0x00000008, and so on).

4. Once all the bits in mailbox 1 have been tested, steps 1 through 4 are
repeated for mailboxes 2, 3, and 4 in that order. Only 24 bits of mailbox 4
can be tested since the upper 8 bits always reflect the state of the tamper
status bits.

If the walking 1’s test is successful, POST 0 writes 0x600E into AOMB4
low-order word and waits for the host device driver to begin testing the AMCC
FIFO registers. The entire walking 1’s test should take no more than 3
seconds.

� To test the AMCC FIFO registers, the host device driver writes the following
eight 32-bit patterns into the AMCC FIFO Register Port (FIFO), delaying 10
milliseconds between each pattern: 0x55AA55AA, 0xAA55AA55, 0x12345678,
0x9ABCDEF0, 0x5A5A5A5A, 0xA5A5A5A5, 0x5555AAAA, and 0xAAAA5555.
POST 0 validates each pattern as it is received and sends it back through the
FIFOs.

After the host device driver writes the last of the patterns, it reads data from the
FIFOs and validates each pattern received. The host device driver continues
reading data until the AMCC MCSR indicates the Add-on to PCI FIFO is empty.
The host device driver then writes 0x00000000 to the FIFO twice. This notifies
POST 0 that the FIFO test is complete.

The host device driver then waits 10 milliseconds, resets the AMCC Add-on to
PCI FIFO, waits another 10 milliseconds, and resets the AMCC PCI to Add-on
FIFO.

� After POST 0 reads from the FIFO the two zeros that mark the end of the FIFO
tests, POST 0 writes a POST_WARNING notification into AOMB 4 byte 2. This
indicates the end of POST 0. POST 0 then monitors AOMB4 byte 2 and waits
for the host device driver to read the notification. Once all the mailboxes are
empty, POST 0 transfers control to the first phase of system initialization,
Miniboot 0. Miniboot 0 should communicate with the host within 3 seconds.

� Miniboot 0 writes zeros into AOMB4 low-order word and MBOOT_0_ACTION
into AOMB4 byte 2 to notify the host device driver that Miniboot 0 has started.
The host device driver should respond by writing 0x00000000 to OMB4.18

Miniboot 0 proceeds to initialize the system to the point that the status of the
coprocessor can be obtained, the code that implements POST 1 and Miniboot
1 can be updated if appropriate, and the coprocessor can be re-enabled after it
has detected an attempt to tamper with the hardware and shut down. If
Miniboot 0 encounters a problem, it writes a halt code into AOMB4 low-order
word, writes GOODNIGHT_DAVE into AOMB4 byte 2, and halts. No further
activity occurs until the coprocessor is reset. If Miniboot 0 completes its work

16 A timeout is required in any event to verify that the MBEF register or interrupt generation logic is functioning properly.

17 The device driver should also verify that IMB2, IMB3, and IMB4 are zero, although the drivers supplied by IBM do not do so.

18 The host device driver may enter “Miniboot mode” by sending a command rather than zeros. See “Miniboot Mode” on page 4-16
for details.

4-12 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

successfully, it writes 0xFFFF into AOMB4 low-order word and
MBOOT_0_ACTION into AOMB4 byte 2. Miniboot 0 then transfers control to
the second phase of the power-on self test, POST 1.

Upon receipt of notification of the end of Miniboot 0, the host device driver
should start a timer in order to detect problems encountered during POST 1,
which should communicate with the host within 30 seconds.

� POST 1 tests the coprocessor hardware that POST 0 did not including
interrupts, DMA, and the RSA chip.

� Upon completion of all its stand-alone tests, POST 1 writes 0x600F into
AOMB4 low-order word and a POST1_ACTION notification into AOMB4 byte 2,
which should generate an interrupt on the host. If the timer started by the host
device driver at the end of Miniboot 0 expires before the POST1_ACTION
notification is received, POST 1 has failed. Like POST 0, POST 1 writes a
checkpoint identifier into AOMB4 low-order word at the completion of each
stand-alone test, so if the timer expires the host device driver can examine
IMB4 low-order word to determine the point at which the failure occurred.

� Upon receipt of the POST1_ACTION notification with 0x600F in IMB4 low-order
word, the host device driver should write 0x600F into OMB4 low-order word
and 0x00 into OMB4 byte 2 as an acknowledgement. The host device driver
may then test the data paths shown in Figure 4-2.

Host
Device
Driver

PCI Bus

AMCC

PCI to
Add-on
FIFOs

Add-on
to PCI
FIFOs

S
W
I
T
C
H

S
W
I
T
C
H

S
W
I
T
C
H

IBM 4758
Output
FIFOs

S
W
I
T
C
H

IBM 4758
Input
FIFOs

DES
Chip

CP/Q++
Device

Managers

1

2

3

4

5

6

7

8

9

ISA Bus

Figure 4-2. Host-Coprocessor Data Paths

The host device driver initiates a test by ensuring the AMCC FIFOs are empty.
The host device driver then writes the number of words of data to transfer (that
is, the number of bytes of data divided by 2) into OMB1, the number of times
POST1 is to perform the test into OMB2, and values that depend on the test to
be performed into OMB3 and OMB4. The host device driver then waits for

 Chapter 4. Coprocessor Interface for Host Device Drivers 4-13

 19-SEP-01, 15:06 Release 2.40

POST1 to read OMB4 byte 2 (which should happen almost immediately) and
waits for POST1 to write an acknowledgement of zeros into AOMB4 (which
should happen within 500 milliseconds). If POST1 fails to perform either of
these operations there is a problem. The host device driver then performs the
following actions the number of times POST1 is to perform the test:

1. Sets up the AMCC PCI Controlled Bus Master registers to transfer data to
the coprocessor (if the host requires data to be transferred to the
coprocessor) via a busmaster read and to transfer data from the
coprocessor (if the test requires data to be transferred from the
coprocessor) via a busmaster write.

2. Sets the Read Transfer Enable bit in the MCSR (if the host requires data to
be transferred to the coprocessor) and the Write Transfer Enable bit (if the
test requires data to be transferred from the coprocessor) to initiate the
busmaster operations.

3. Waits for the AMCC to assert the PCI to Add-on Transfer Count Equals
Zero bit in the MCSR (if the host requires data to be transferred to the
coprocessor) and the Add-on to PCI Transfer Count Equals Zero bit (if the
test requires data to be transferred from the coprocessor), signifying that all
data transfers are complete.

4. Clears the MCSR bits set in step 2.
5. Waits for POST1 to write a final completion code into AOMB4 and verifies

that the final completion code is zero.
6. Verifies that any data transferred from the coprocessor matches the

expected results.

The following tests are supported:

Bypass Test

The Bypass Test transfers data from the host to the coprocessor, through the
IBM 4758 Input FIFOs to the IBM 4758 Output FIFOs, and back to the host
(path 1-4-7 in Figure 4-2 on page 4-13). At least 4160 bytes of data should be
transferred and the host device driver should verify that the data received
matches the data sent.

The host device driver initiates this test by writing POST1_BYPASS_CMD into
OMB4. OMB3 is not used.

Packet Mode Test

The Packet Mode Test transfers data from the host to the coprocessor, through
the IBM 4758 Input FIFOs, across the IBM 4758’s ISA bus to the
Communications Manager and back to the IBM 4758 Output FIFOs, and back
to the host (path 1-2-3-7 in Figure 4-2 on page 4-13). At least 4160 bytes of
data should be transferred and the host device driver should verify that the data
received matches the data sent.

The host device driver initiates this test by writing POST1_PACKET_CMD into
OMB4. OMB3 is not used.

DES Tests

The DES tests transfer data through the IBM 4758 Input FIFOs to the DES chip
and thence to the IBM 4758 Output FIFOs. The input data may be read from
the host or from the IBM 4758’s ISA bus and the output data may be written to
the host or to the IBM 4758’s ISA bus. The input data may be encrypted or
decrypted using 0xFEDCBA9876543210 as the key and
0xD776D2F27992341D as the initial vector.

4-14 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

For encryption, the input should be a 1024-byte buffer containing the
little-endian 16-bit numbers 0 through 511 in sequence (that is, 0x0000 0100
0200 0300 ... FC0 FD0 FE0 FF0). The expected output appears in
knownans.h.

For decryption, the input should be a 1024-byte buffer containing the value
specified in knownans.h. The expected result is the little-endian 16-bit numbers
0 through 511 in sequence (that is, 0x0000 0100 0200 0300 ... FC0 FD0 FE0
FF0).

The host device driver initiates this test by writing a value that identifies the
input and output paths into OMB3 and POST1_DES_ENCRYPT_CMD (to
encrypt the input data) or POST1_DES_DECRYPT_CMD (to decrypt the input
data) into OMB4. Recognized values for OMB3 are:

– POST1_P2P - PCI-to-PCI

Input data is read from the host and output data is written to the host (path
1-5-6-7 in Figure 4-2 on page 4-13).

– POST1_P2I - PCI-to-ISA

Input data is read from the host and output data is written to the ISA bus
(path 1-5-6-9 in figure xx). POST1 verifies that the result matches the
expected result in knownans.h and writes a nonzero final completion code if
it does not.

– POST1_I2P - ISA-to-PCI

Input data is read from the ISA bus and output data is written to the host
(path 8-5-6-7 in Figure 4-2 on page 4-13).

– POST1_I2I - ISA-to-ISA

Input data is read from the ISA bus and output data is written to the ISA
bus (path 8-5-6-9 in Figure 4-2 on page 4-13). POST1 verifies that the
result matches the expected result in knownans.h and writes a nonzero
final completion code if it does not.

When the host device driver has completed all desired tests, it writes
POST1_JUMP_MB1_CMD into OMB4. POST1 responds by writing zeros into
AOMB4 low-order word and into AOMB4 byte 2, then transfers control to the
second phase of system initialization, Miniboot 1.

� Miniboot 1 writes zeros into AOMB4 low-order word and MBOOT_1_ACTION
into AOMB4 byte 2 to notify the host device driver that Miniboot 1 has started.19

If Miniboot 1 encounters a problem, it writes a halt code into AOMB4 low-order
word, writes GOODNIGHT_DAVE into AOMB4 byte 2, and halts. No further
activity occurs until the coprocessor is reset. If Miniboot 1 completes its work
successfully, it writes 0xFFFF into AOMB4 low-order word and
MBOOT_1_ACTION into AOMB4 byte 2. Miniboot 1 then transfers control to
the operating system loaded in segment 2.

19 If the coprocessor is in Miniboot mode, Miniboot 1 writes a START_BUFFERS request for the final transfer of a single buffer (that
is, the low-order nibble of the BID in AOMB4 low-order word is 0xC). The host device driver may then issue additional Miniboot
commands. See “Miniboot Mode” on page 4-16 for details.)

 Chapter 4. Coprocessor Interface for Host Device Drivers 4-15

 19-SEP-01, 15:06 Release 2.40

� When the coprocessor is sufficiently initialized and is prepared for normal
interaction with the host (for example, GOT_HEADERS/START_BUFFERS), it
writes GOOD_MORNING into AOMB4 byte 2.

 Miniboot Mode
A host application may interact with the Miniboot software on the coprocessor
during initialization. The host library that exports the functions in the host-side
portion of the SCC API also exports two functions that support this interaction:
sccMBOpenAdapter and sccMBRequest. These two functions take the same
arguments and behave in the same manner as sccOpenAdapter and sccRequest,
respectively, but direct the requests to the Miniboot software rather than to an
application running on the coprocessor.

A call to sccMBOpenAdapter can be allowed to succeed only if there are no active
applications that have called sccOpenAdapter or sccMBOpenAdapter and have not
yet called sccCloseAdapter. Once the host device driver has placed the
coprocessor in Miniboot mode, the host device driver must return a bad return code
(for example, HDDDeviceBusy) if an application subsequently calls
sccOpenAdapter or sccMBOpenAdapter.

The commands that may be issued to the Miniboot software and its response to
them are proprietary to IBM and can only be described under the terms of an
appropriate contract; this section describes the protocol the host device driver uses
to pass Miniboot commands to the coprocessor.

To cause the coprocessor to enter Miniboot mode (or to return to Miniboot mode
after a reset), the host device driver writes a GOT_HEADERS command with a
count of 1 into OMB4 after receiving the MBOOT_0_ACTION notification that
indicates Miniboot 0 has started. The host device driver and Miniboot software
then exchange commands and requests and transfer buffers using the same
protocol that applies when a host application interacts with a coprocessor
application. (that is, GET_HEADERS/START_BUFFERS)

Certain Miniboot commands may cause Miniboot 0 to transfer control to POST 1, at
which time the normal testing of the coprocessor continues. The host device driver
must be able to handle interaction with POST 1 while in Miniboot mode.
Furthermore, certain Miniboot commands may cause the Miniboot phase that
currently has control (Miniboot 0 or Miniboot 1) to halt and shut down the
coprocessor. In this case, Miniboot writes GOODNIGHT_DAVE into AOMB4 byte 2
before halting. Before sending the GOT_HEADERS command for a request, the
host device driver must check to see whether Miniboot has halted and, if so, reset
the coprocessor and perform the normal POST 0 sequence until Miniboot 0 again
gets control.

If a Miniboot phase halts in this manner, the host device driver informs the host
application that a halt has occurred.

If Miniboot 1 starts before the coprocessor has sent a START_BUFFERS command
to the host for the final transfer for the Miniboot command (that is, Miniboot 1 starts
while a Miniboot command is outstanding), Miniboot 1 sends the
START_BUFFERS command for the final transfer. The host device driver may
then send a GOT_HEADERS command to forward the next request to Miniboot 1.

4-16 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

Note that in order to enter Miniboot Mode the host device driver must send a
GOT_HEADERS command at the beginning of Miniboot 0. It is the host
application’s responsibility to cause the coprocessor to proceed to Miniboot 1 if the
host application wants to interact with Miniboot 1 rather than Miniboot 0.

Host - POST/Miniboot Interaction Flow Diagrams

 Normal Mode
 HOST/4758 INTERACTION DURING POST/MINIBOOT - Normal flow

(No Miniboot requests)

 ==

 Host Device Driver IBM 4758

 ------------------ -----------------------------

--- Reset -->

 POST 2

 <- MB4 -- checkpoints

<- Irpt MB4 -- xx34xxxx (POST2 message)��

 <- MB4 -- checkpoints

<- Irpt MB4 -- xx12622D (POST2_ACTION [Start Walking 1's Test])

do Walking 1's Test�

<- MB4 -- xxxx622E (Start AMCC FIFO Test)

do AMCC FIFO Test�

<- Irpt MB4 -- xx127222 (POST_WARNING [end POST 2])

 MiniBoot 2

<- Irpt MB4 -- xx182222 (MBOOT_2_ACTION [Miniboot 2 starting])

xx222222 (No MB cmds) -- Irpt MB4 ->

<- Irpt MB4 -- xx18FFFF (MBOOT_2_ACTION [Miniboot 2 ending])

 POST 1

 checkpoints

<- Irpt MB4 -- xx11622F (POST1_ACTION [Start host demand tests])

 xx22622F (ack) -- MB4 ->

(execute host demand ���

 tests)

 22222222 -- MB1 ->

 22222222 -- MB2 ->

 22222222 -- MB3 ->

 xx22222A

(POST1_DONE_END [end tests]) -- MB4 ->

<- Irpt MB4 -- xx222222 (POST 1 ending)����

 MiniBoot 1

<- Irpt MB4 -- xx192222 (MBOOT_A_ACTION [Miniboot 1 starting])

 Chapter 4. Coprocessor Interface for Host Device Drivers 4-17

 19-SEP-01, 15:06 Release 2.40

<- Irpt MB4 -- xx19FFFF (MBOOT_1_ACTION [Miniboot 1 ending])

 CP/Q++

<- Irpt MB4 -- xx222222 (GOOD_MORNING)

(start normal request

 transfers)

* The sequences for the Walking 1’s test and AMCC FIFO test are in “Walking
1’s Test” and “AMCC FIFO Test” on page 4-19.

** May not occur.
*** This will change when we include POST 1 Interactive Tests.
**** This may change to to xx11FFFF.

Walking 1’s Test
Test each bit of each 32-bit Mailbox. (MB4 has only 24 testable bits.)

The following example uses host interrupts to detect when the IBM 4758 writes
data. For this method, the host driver must enable host interrupts for each Mailbox
as it is being tested.

Host Device Driver IBM 4758

 ------------------ ------------------

wait 122+ ms

 <- MB1 -- 22222221

enable MB1 Irpts

 22222221 -- MB1 ->

<- Irpt MB1 -- 22222222

 22222222 -- MB1 ->

<- Irpt MB1 -- 22222224

 22222224 -- MB1 ->

 . . .

 . . .

 . . .

<- Irpt MB1 -- 22222222

 22222222 -- MB1 ->

<- Irpt MB1 -- 42222222

 42222222 -- MB1 ->

<- Irpt MB1 -- 82222222

enable MB2 Irpts

 82222222 -- MB1 ->

<- Irpt MB2 -- 22222221

 22222221 -- MB2 ->

<- Irpt MB2 -- 22222222

 22222222 -- MB2 ->

<- Irpt MB2 -- 22222224

 22222224 -- MB2 ->

 . . .

 . . .

 . . .

<- Irpt MB2 -- 22222222

 22222222 -- MB2 ->

<- Irpt MB2 -- 42222222

 42222222 -- MB2 ->

<- Irpt MB2 -- 82222222

4-18 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

enable MB3 Irpts

 82222222 -- MB2 ->

<- Irpt MB3 -- 22222221

 22222221 -- MB3 ->

<- Irpt MB3 -- 22222222

 22222222 -- MB3 ->

<- Irpt MB3 -- 22222224

 22222224 -- MB3 ->

 . . .

 . . .

 . . .

<- Irpt MB3 -- 22222222

 22222222 -- MB3 ->

<- Irpt MB3 -- 42222222

 42222222 -- MB3 ->

<- Irpt MB3 -- 82222222

enable MB4 Irpts

 82222222 -- MB3 ->

<- Irpt MB4 -- xx222221

 xx222221 -- MB4 ->

<- Irpt MB4 -- xx222222

 xx222222 -- MB4 ->

<- Irpt MB4 -- xx222224

 xx222224 -- MB4 ->

 . . .

 . . .

 . . .

<- Irpt MB4 -- xx222222

 xx222222 -- MB4 ->

<- Irpt MB4 -- xx422222

 xx422222 -- MB4 ->

<- Irpt MB4 -- xx822222

 xx822222 -- MB4 ->

AMCC FIFO Test
Test by sending any data pattern to the IBM 4758 through the AMCC PCI to
Add-on FIFO. The IBM 4758 sends the data received back through the AMCC
Add-on to PCI FIFO. The host then reads the data coming back and compares it
to the original pattern to make sure the data path is good.

Finally, the host writes to the AMCC FIFO two more times, clears the addon-to-PCI
FIFO flags, and then clears the PCI-to-addon FIFO flag. This is done so the IBM
4758 can test the FIFO full/empty flags and other status bits.

The entire test is paced via timer. Each step is separated by 10 ms.

 Chapter 4. Coprocessor Interface for Host Device Drivers 4-19

 19-SEP-01, 15:06 Release 2.40

Host Device Driver IBM 4758

 ------------------ -----------------------------

Reset FIFO flags

Set FIFO R/W priorities

wait 12 ms

 12345678 -- FIFO ->

wait 12 ms

 9ABCDEF2 -- FIFO ->

wait 12 ms

 5A5A5A5A -- FIFO ->

wait 12 ms

 A5A5A5A5 -- FIFO ->

wait 12 ms

 55AA55AA -- FIFO ->

wait 12 ms

 AA55AA55 -- FIFO ->

wait 12 ms

 5555AAAA -- FIFO ->

wait 12 ms

 AAAA5555 -- FIFO ->

wait 12 ms

<- FIFO -- 12345678 (returns same data pattern)

wait 12 ms

 <- FIFO -- 9ABCDEF2

wait 12 ms

 <- FIFO -- 5A5A5A5A

wait 12 ms

 <- FIFO -- A5A5A5A5

wait 12 ms

 <- FIFO -- 55AA55AA

wait 12 ms

 <- FIFO -- AA55AA55

wait 12 ms

 <- FIFO -- 5555AAAA

wait 12 ms

 <- FIFO -- AAAA5555

 22222222 -- FIFO ->

 22222222 -- FIFO ->

wait 12 ms

clear Add-on to PCI FIFO flags

wait 12 ms

clear PCI to Add-on FIFO flags

4-20 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

 Miniboot Mode
HOST/IBM 4758 INTERACTION DURING POST/MINIBOOT - Miniboot flow

(with Miniboot requests)

 ==

Host Device Driver IBM 4758

 ------------------ -----------------------------

 sccMBOpenAdapter()

 sccMBRequest()

--- Reset -->

 POST 2

 <- MB4 -- checkpoints

<- Irpt MB4 -- xx34xxxx (POST2 message)��

 <- MB4 -- checkpoints

<- Irpt MB4 -- xx12622D (POST2_ACTION [Start Walking 1's Test])

do Walking 1's Test�

<- MB4 -- xxxx622E (Start AMCC FIFO Test)

do AMCC FIFO Test�

<- Irpt MB4 -- xx127222 (POST_WARNING [end POST 2])

 MiniBoot 2

<- Irpt MB4 -- xx182222 (MBOOT_2_ACTION [Miniboot 2 starting])

xx222221 (GOT_HEADERS) -- Irpt MB4 ->

<- Irpt MB4 -- xx212128 (START_BUFFERS- send headers)

send header data -- FIFO ->

(execute MiniBoot 2 commands)

(transfer data as required)

if cmd == query command

<- Irpt MB4 -- xx21xxxC (MB-request ending)

get next command (loop)

 or

if cmd != CONTINUE

<- Irpt MB4 -- xx21xxxC (MB-request ending)

 halt

 or

<- Irpt MB4 -- xx18FFFF (MBOOT_2_ACTION [Miniboot 2 ending])

 POST 1

 checkpoints

<- Irpt MB4 -- xx11622F (POST1_ACTION [Start host demand tests])

 xx22622F (ack) -- MB1 ->

(execute host demand ���

 tests)

 22222222 -- MB1 ->

 22222222 -- MB2 ->

 22222222 -- MB3 ->

 xx22222A

(POST1_DONE_CMD [end tests]) -- MB4 ->

<- Irpt MB4 -- xx222222 (POST 1 ending)����

 Chapter 4. Coprocessor Interface for Host Device Drivers 4-21

 19-SEP-01, 15:06 Release 2.40

 MiniBoot 1

<- Irpt MB4 -- xx192222 (MBOOT_1_ACTION [Miniboot 1 starting])

<- Irpt MB4 -- xx21xxxC (CONTINUE request ending)

return to application

 sccMBRequest()

xx222221 (GOT_HEADERS) -- Irpt MB4 ->

<- Irpt MB4 -- xx212128 (START_BUFFERS-send headers)

send header data -- FIFO ->

(execute MiniBoot 1 commands)

(transfer data as required)

<- Irpt MB4 -- xx21xxxC (request ending)

 or

if cmd == query command

<- Irpt MB4 -- xx21xxxC (request ending)

get next command (loop)

 or

if cmd != CONTINUE

<- Irpt MB4 -- xx21xxxC (request ending)

 halt

 or

<- Irpt MB4 -- xx19FFFF (MBOOT_1_ACTION [Miniboot 1 ending])

 CP/Q++

<- Irpt MB4 -- xx222222 (GOOD_MORNING)

 sccCloseAdapter()

--- Reset -->

(Start over with POST 2,

following normal flow.

See “Normal Mode” on page 4-17.)

* The sequences for the “Walking 1’s Test” on page 4-18 and “AMCC FIFO
Test” on page 4-19.

** May not occur.
*** This will change when we include POST 1 Interactive Tests.
**** This may change to xx11FFFF.

4-22 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

Host - IBM 4758 Normal Interaction
Host Device Driver IBM 4758

 ------------------ -----------------------------

<- Irpt MB4 -- xx222222 (GOOD_MORNING)

 sccOpenAdapter()

 Loop:

 sccRequest()

xx222221 (GOT_HEADERS) -- Irpt MB4 ->

 sccGetBufferData ()

<- Irpt MB4 -- xx212128 (START_BUFFERS- send header)

send header data -- FIFO ->

(application receives the header and

starts processing the request, which

will usually result in one or more

requests for host buffer data

 transfers.)

(zero or more ...)

 sccPutBufferData ()

<- Irpt MB4 -- xx21???? (START_BUFFERS request)

 sccEndRequest ()

<- Irpt MB4 -- xx21???C (START_BUFFERS request

 with ending)

 goto Loop

 Chapter 4. Coprocessor Interface for Host Device Drivers 4-23

 19-SEP-01, 15:06 Release 2.40

4-24 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

Appendix A. Error Code Formatting

Return codes for function calls follow the normal CP/Q format:

0xWXYYzzzz

where:

W Eight indicates a negative number; an error has occurred

X Used by the error-generating module; usually zero

YY Code number of the error-generating module

zzzz Actual error code determined by the entity detecting the error

Common code combinations for WXYY:

CP/Q Error Codes

8001 SVC Handler
8002 Memory Manager
8003 Resource Manager
8004 Session Manager
8006 Loader
8007 File API Stubs
8107 File Router
8207 File System
8240 POST Error
8307 Device Router
8407 Device Driver
8507 Server File Router
8607 Client File Router

SCC Error Codes

8041 SCC Manager
8042 Comm Manager
8043 PPD Manager
8044 DES Manager
8045 PKA Manager
8046 RNG Manager

Reserved for IBM Use

806x CCA modules

Programmer Defined

8X8x Used by applications

Note: A return code of zero indicates a successful operation.

 Copyright IBM Corp. 1998, 2001 A-1

 19-SEP-01, 15:06 Release 2.40

A-2 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

Appendix B. DES Weak, Semi-Weak, and Possibly Weak
Keys

sccGetRandomNumber (on page 3-70) will not return any of the 64-bit numbers in
the following list if the options argument specifies RANDOM_NOT_WEAK.

21212121 21212121

21211F1F 21212E2E

2121E2E2 2121F1F1

2121FEFE 2121FEFE

211F211F 212E212E

211F1F21 212E2E21

211FE2FE 212EF1FE

211FFEE2 212EFEF1

21E221E2 21F121F1

21E21FFE 21F12EFE

21E2E221 21F1F121

21E2FE1F 21F1FE2E

21FE21FE 21FE21FE

21FE1FE2 21FE2EF1

21FEE21F 21FEF12E

21FEFE21 21FEFE21

1F21211F 2E21212E

1F211F21 2E212E21

1F21E2FE 2E21F1FE

1F21FEE2 2E21FEF1

1F1F2121 2E2E2121

1F1F1F1F 2E2E2E2E

1F1FE2E2 2E2EF1F1

1F1FFEFE 2E2EFEFE

1FE221FE 2EF121FE

1FE21FE2 2EF12EF1

1FE2E21F 2EF1F12E

1FE2FE21 2EF1FE21

1FFE21E2 2EFE21F1

1FFE1FFE 2EFE2EFE

1FFEE221 2EFEF221

1FFEFE1F 2EFEFE2E

E22121E2 F12121F1

E2211FFE F1212EFE

E221E221 F121F121

E221FE1F F121FE2E

E21F21FE F12E21FE

E21F1FE2 F12E2EF1

E21FE21F F12EF12E

E21FFE21 F12EFE21

E2E22121 F1F12121

E2E21F1F F1F12E2E

E2E2E2E2 F1F1F1F1

E2E2FEFE F1F1FEFE

E2FE211F F1FE212E

E2FE1F21 F1FE2E21

E2FEE2FE F1FEF1FE

E2FEFEE2 F1FEFEF1

FE2121FE FE2121FE

FE211FE2 FE212EF1

 Copyright IBM Corp. 1998, 2001 B-1

 19-SEP-01, 15:06 Release 2.40

FE21E21F FE21F12E

FE21FE21 FE21FE21

FE1F21E2 FE2E21F1

FE1F1FFE FE2E2EFE

FE1FE221 FE2EF121

FE1FFE1F FE2EFE2E

FEE2211F FEF1212E

FEE21F21 FEF12E21

FEE2E2FE FEF1F1FE

FEE2FEE2 FEF1FEF1

FEFE2121 FEFE2121

FEFE1F1F FEFE2E2E

FEFEE2E2 FEFEF1F1

FEFEFEFE FEFEFEFE

B-2 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

Appendix C. The IBM Root Public Key

As of the date of this document, the key IBM uses to sign the certificates for the
class keys used with the IBM 4758 model 002/023 is a 1024-bit RSA key whose
public exponent is 65537 (decimal) and whose modulus in hex is as follows:

82222222 22222222

22222222 22222212

2CACBAED FCEB4A2D

1FCE8B2F 42AA12DE

B9425685 C822156C

222D4635 811F34D4

375F17F2 3445EC7B

C2516182 22F75391

D2F91FE6 AA52CA9A

463FE87B F78FF842

A772EEC4 B8B27FD5

55BC54DF 194F3FC6

CE1B4936 EE2BAA1E

4E7E6D57 494E8334

26185CD3 6442ED2B

23963DBC 432DF717

The most significant byte of the modulus is 0x80 and the least significant byte is
0x17.

 Copyright IBM Corp. 1998, 2001 C-1

 19-SEP-01, 15:06 Release 2.40

C-2 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

 Appendix D. Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM’s product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM’s
intellectual property rights or other legally protectable rights may be used instead of
the IBM product, program, or service. Evaluation and verification of operation in
conjunction with other products, programs, or services, except those expressly
designated by IBM, are the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, North Castle Drive, Armonk, NY, 10504-1785, USA.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

Copying and Distributing Softcopy Files
For online versions of this book, we authorize you to:

� Copy, modify, and print the documentation contained on the media, for use
within your enterprise, provided you reproduce the copyright notice, all warning
statements, and other required statements on each copy or partial copy.

� Transfer the original unaltered copy of the documentation when you transfer the
related IBM product (which may be either machines you own, or programs, if
the program's license terms permit a transfer). You must, at the same time,
destroy all other copies of the documentation.

You are responsible for payment of any taxes, including personal property taxes,
resulting from this authorization.

THERE ARE NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING THE
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Some jurisdictions do not allow the exclusion of implied warranties, so the above
exclusion may not apply to you.

Your failure to comply with the terms above terminates this authorization. Upon
termination, you must destroy your machine readable documentation.

 Copyright IBM Corp. 1998, 2001 D-1

 19-SEP-01, 15:06 Release 2.40

 Trademarks
The following terms are trademarks of the IBM Corporation in the United States, or
other countries, or both:

Windows and Windows NT are trademarks or registered trademarks of Microsoft
Corporation in the United States, or other countries, or both.

Other company, product, and service names may be trademarks or service marks
of others.

AIX
IBM
OS/2
Operating System/2

D-2 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

List of Abbreviations and Acronyms

AIX Advanced Interactive Executive
(operating system)

API application program interface

BBRAM battery-backed random access
memory

CBC cipher block chain

CCA Common Cryptographic Architecture

CDMF Commercial Data Masking Facility

CP/Q Control Program/Q

DES Data Encryption Standard

DMA direct memory access

EPROM erasable programmable read-only
memory

FIFO first-in-first-out

FIPS Federal Information Processing
Standard

IBM International Business Machines

MB megabyte

MAC message authentication code

ODM object data manager

OS/2 Operating System/2

PCI peripheral component interconnect

PDF portable document format

PKA public key algorithm

POST power-on self-test

PPD program proprietary data

RAM random access memory

RNG random number generator

ROM read-only memory

RSA Rivest-Shamir-Adleman (algorithm)

SCC secure cryptographic coprocessor

TOD time-of-day (clock)

 Copyright IBM Corp. 1998, 2001 X-1

 19-SEP-01, 15:06 Release 2.40

X-2 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

 Glossary

This glossary includes terms and definitions from the
IBM Dictionary of Computing, New York: McGraw Hill,
1994. This glossary also includes terms and definitions
taken from:

� The American National Standard Dictionary for
Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standards Institute
(ANSI). Copies may be purchased from the
American National Standards Institute, 11 West 42
Street, New York, New York 10036. Definitions are
identified by the symbol (A) following the definition.

� The Information Technology Vocabulary, developed
by Subcommittee 1, Joint Technical Committee 1, of
the International Organization for Standardization
and the International Electrotechnical Commission
(ISO/IEC JTC1/SC1). Definitions of published parts
of this vocabulary are identified by the symbol (I)
following the definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) following
the definition, indicating that final agreement has not
yet been reached among the participating National
Bodies of SC1.

A
access. In computer security, a specific type of
interaction between a subject and an object that results
in the flow of information from one to the other.

access control. Ensuring that the resources of a
computer system can be accessed only by authorized
users and in authorized ways.

access method. A technique for moving data between
main storage and input/output devices.

Advanced Interactive Executive (AIX) operating
system. The IBM implementation of the UNIX**
operating system.

agent. (1) An application that runs within the IBM
4758 PCI Cryptographic Coprocessor. (2) Synonym for
secure cryptographic coprocessor application.

AIX operating system. Advanced Interactive
Executive operating system.

American National Standards Institute (ANSI). An
organization consisting of producers, consumers, and
general interest groups that establishes the procedures
by which accredited organizations create and maintain
voluntary industry standards for the United States. (A)

ANSI. American National Standards Institute.

API. Application program interface.

application program interface (API). A functional
interface supplied by the operating system, or by a
separate program, that allows an application program
written in a high-level language to use specific data or
functions of the operating system or that separate
program.

authentication. (1) A process used to verify the
integrity of transmitted data, especially a message. (T)
(2) In computer security, a process used to verify the
user of an information system or protected resource.

authorization. (1) In computer security, the right
granted to a user to communicate with or make use of a
computer system. (T) (2) The process of granting a
user either complete or restricted access to an object,
resource, or function.

authorize. To permit or give authority to a user to
communicate with or make use of an object, resource,
or function.

B
battery-backed random access memory (BBRAM).
Random access memory that uses battery power to
retain data while the system is powered off. The IBM
4758 PCI Cryptographic Coprocessor uses BBRAM to
store persistent data for SCC applications, as well as
the coprocessor device key.

BBRAM. Battery-backed random access memory.

bus. In a processor, a physical facility along which
data is transferred.

C
call. The action of bringing a computer program, a
routine, or a subroutine into effect, usually by specifying
the entry conditions and jumping to an entry point.
(I) (A)

card. (1) An electronic circuit board that is plugged
into an expansion slot of a system unit. (2) A plug-in
circuit assembly. (3) See also expansion card.

CBC. Cipher block chain.

CCA. Common Cryptographic Architecture.

 Copyright IBM Corp. 1998, 2001 X-3

 19-SEP-01, 15:06 Release 2.40

CDMF algorithm. Commercial Data Masking Facility
algorithm.

ciphertext. (1) Data that has been altered by any
cryptographic process.

cipher block chain (CBC). A mode of operation that
cryptographically connects one block of ciphertext to the
next plaintext block.

cleartext. (1) Data that has not been altered by any
cryptographic process. (2) See also ciphertext.

Commercial Data Masking Facility (CDMF)
algorithm. An algorithm for data confidentiality
applications; it is based on the DES algorithm and has
an effective key strength of 40 bits.

Comm_Mgr. Communications Manager.

Common Cryptographic Architecture (CCA). A
comprehensive set of cryptographic services that
furnishes a consistent approach to cryptography on
major IBM computing platforms. Application programs
can access these services through the CCA application
program interface.

Common Cryptographic Architecture (CCA) API.
The application program interface used to call Common
Cryptographic Architecture functions; it is described in
the IBM 4758 CCA Basic Services Reference and
Guide, &frefform..

Communications Manager (Comm_Mgr). A CP/Q++

extension for the IBM 4758 PCI Cryptographic
Coprocessor that manages communication among the
host device driver, SCC applications, and CP/Q++. It
handles the receipt and delivery of request headers,
and the inbound and outbound data buffers.

Control Program/Q (CP/Q). The operating system
embedded within the IBM 4758 PCI Cryptographic
Coprocessor. The version of CP/Q used by the
coprocessor—including extensions to support
cryptographic and security-related functions—is known
as CP/Q++.

coprocessor. (1) A supplementary processor that
performs operations in conjunction with another
processor. (2) A microprocessor on an expansion card
that extends the address range of the processor in the
host system, or adds specialized instructions to handle
a particular category of operations; for example, an I/O
coprocessor, math coprocessor, or a network
coprocessor.

CP/Q. Control Program/Q.

Cryptographic Coprocessor (IBM 4758). An
expansion card that provides a comprehensive set of
cryptographic functions to a workstation.

cryptographic node. A node that provides
cryptographic services such as key generation and
digital signature support.

cryptography. (1) The transformation of data to
conceal its meaning. (2) In computer security, the
principles, means, and methods used to so transform
data.

D
data encrypting key. (1) A key used to encipher,
decipher, or authenticate data. (2) Contrast with
key-encrypting key.

Data Encryption Standard (DES). The National
Institute of Standards and Technology (NIST) Data
Encryption Standard, adopted by the U.S. government
as Federal Information Processing Standard (FIPS)
Publication 46, which allows only hardware
implementation of the data encryption algorithm.

Data Encryption Standard Manager (DES_Mgr). A
CP/Q++ extension that manages the IBM 4758 PCI
Cryptographic Coprocessor DES processing hardware.

decipher. (1) To convert enciphered data into clear
data. (2) Contrast with encipher.

DES. Data Encryption Standard.

DES_Mgr. Data Encryption Standard Manager.

device driver. (1) A file that contains the code needed
to use an attached device. (2) A program that enables
a computer to communicate with a specific peripheral
device; for example, a printer, videodisc player, or a CD
drive.

direct memory access (DMA). The transfer of data
between memory and input/output units without
processor intervention.

DMA. Direct memory access.

E
encipher. (1) To scramble data or convert it to a
secret code that masks its meaning. (2) Contrast with
decipher.

enciphered data. (1) Data whose meaning is
concealed from unauthorized users or observers.
(2) See also ciphertext.

EPROM. Erasable programmable read-only memory.

X-4 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

erasable programmable read-only memory
(EPROM). Programmable read-only memory that can
be erased by a special process and reused.

expansion board. Synonym for expansion card.

expansion card. A circuit board that a user can plug
into an expansion slot to add memory or special
features to a computer.

expansion slot. One of several receptacles in a PC or
RS/6000 machine into which a user can install an
expansion card.

F
feature. A part of an IBM product that can be ordered
separately from the essential components of the
product.

Federal Information Processing Standard (FIPS). A
standard that is published by the US National Institute
of Science and Technology.

FIFO. First-in-first-out.

FIPS. Federal Information Processing Standard

first-in-first-out (FIFO). A queuing technique in which
the next item to be retrieved is the item that has been in
the queue for the longest time. (A)

flash memory. A specialized version of erasable
programmable read-only memory (EPROM) commonly
used to store code in small computers.

H
hertz (Hz). A unit of frequency equal to one cycle per
second. Note: In the United States, line frequency is
60 Hz, a change in voltage polarity 120 times per
second; in Europe, line frequency is 50 Hz, a change in
voltage polarity 100 times per second.

host. As regards to the IBM 4758 PCI Cryptographic
Coprocessor, the workstation into which the
coprocessor is installed.

I
inline code. In a program, instructions that are
executed sequentially without branching to routines,
subroutines, or other programs.

interface. (1) A boundary shared by two functional
units, as defined by functional characteristics, signal
characteristics, or other characteristics as appropriate.
The concept includes specification of the connection
between two devices having different functions. (T)

(2) Hardware, software, or both that links systems,
programs, and devices.

intrusion latch. A software-monitored bit that can be
triggered by an external switch connected to a jumper
on the IBM 4758 PCI Cryptographic Coprocessor. This
latch can be used, for example, to detect when the
cover of the coprocessor host workstation has been
opened. The intrusion latch does not trigger the
destruction of data stored within the coprocessor.

J
jumper. A wire that joins two unconnected circuits.

K
key. In computer security, a sequence of symbols
used with an algorithm to encipher or decipher data.

M
MAC. Message authentication code.

master key. In computer security, the top-level key in
a hierarchy of KEKs.

message authentication code (MAC). In computer
security, (1) a number or value derived by processing
data with an authentication algorithm, (2) the
cryptographic result of block cipher operations, on text
or data, using the cipher block chain (CBC) mode of
operation.

miniboot. Software within the IBM 4758 PCI
Cryptographic Coprocessor designed to initialize the
CP/Q++ operating system and to control updates to flash
memory.

multi-user environment. A computer system that
supports terminals and keyboards for more than one
user at the same time.

N
National Institute of Science and Technology
(NIST). Current name for the US National Bureau of
Standards.

NIST. National Institute of Science and Technology.

node. (1) In a network, a point at which one or more
functional units connects channels or data circuits. (I)
(2) The endpoint of a link or junction common to two or
more links in a network. Nodes can be processors,
communication controllers, cluster controllers, or
terminals. Nodes can vary in routing and other
functional capabilities.

 Glossary X-5

 19-SEP-01, 15:06 Release 2.40

NT. See Windows NT.

O
object data manager (ODM). In the AIX operating
system, a data manager intended for the storage of
system data.

ODM. Object data manager.

Operating System/2 (OS/2). An IBM operating system
for personal computers.

OS/2. Operating System/2.

P
passphrase. In computer security, a string of
characters known to the computer system and to a
user; the user must specify it to gain full or limited
access to the system and to the data stored therein.

PKA. Public key algorithm.

PKA_Mgr. Public Key Algorithm Manager.

POST. Power-on self-test.

power-on self-test (POST). A series of diagnostic
tests that runs automatically when device power is
turned on.

PPD. Program proprietary data.

PPD_Mgr. Program Proprietary Data Manager.

private key. (1) In computer security, a key that is
known only to the owner and used with a public key
algorithm to decipher data. Data is enciphered using the
related public key. (2) Contrast with public key.
(3) See also public key algorithm.

procedure call. In programming languages, a
language construct for invoking execution of a
procedure. (I) A procedure call usually includes an
entry name and the applicable parameters.

program proprietary data (PPD). Persistent data
stored within the IBM 4758 PCI Cryptographic
Coprocessor flash memory or battery-backed RAM that
is associated with a particular agent.

Program Proprietary Data Manager (PPD_Mgr). A
CP/Q++ extension for the IBM 4758 PCI Cryptographic
Coprocessor that manages the persistent data
associated with a particular SCC application. Persistent

data is stored in flash memory or battery-backed RAM,
and is protected from other SCC applications.

public key. (1) In computer security, a key that is
widely known and used with a public key algorithm to
encipher data. The enciphered data can be deciphered
only with the related private key. (2) Contrast with
private key. (3) See also public key algorithm.

public key algorithm (PKA). (1) In computer security,
an asymmetric cryptographic process that uses a public
key to encipher data and a related private key to
decipher data. (2) See also RSA algorithm.

Public Key Algorithm Manager (PKA_Mgr). A
CP/Q++ extension that manages the IBM 4758 PCI
Cryptographic Coprocessor PKA processing hardware.

R
RAM. Random access memory.

random access memory (RAM). A storage device
into which data is entered and from which data is
retrieved in a non-sequential manner.

random number generator (RNG). A system
designed to output values that cannot be predicted.
Since software-based systems generate predictable,
pseudo-random values, the IBM 4758 PCI
Cryptographic Coprocessor uses a hardware-based
system to generate true random values for
cryptographic use.

Random Number Generator Manager (RNG_Mgr). A
CP/Q++ extension that manages the IBM 4758 PCI
Cryptographic Coprocessor hardware-based random
number generator.

read-only memory (ROM). Memory within which
stored data cannot be modified routinely.

reduced instruction set computer (RISC). A
computer that processes data quickly by using only a
small, simplified instruction set.

return code. (1) A code used to influence the
execution of succeeding instructions. (A) (2) A value
returned to a program to indicate the results of an
operation requested by that program.

RNG. Random number generator.

RNG_Mgr. Random Number Generator Manager.

ROM. Read-only memory.

RSA algorithm. A public key encryption algorithm
developed by R. Rivest, A. Shamir, and L. Adleman.

X-6 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

S
SCC. Secure cryptographic coprocessor.

SCC_Mgr. Secure Cryptographic Coprocessor
Manager.

secure cryptographic coprocessor (SCC). An
alternate name for the IBM 4758 PCI Cryptographic
Coprocessor. The abbreviation “SCC” is used within
the product software code.

secure cryptographic coprocessor (SCC)
application. (1) An application that runs within the
IBM 4758 PCI Cryptographic Coprocessor.
(2) Synonym for agent.

Secure Cryptographic Coprocessor Manager
(SCC_Mgr). A CP/Q++ extension that provides
high-level management of all agents running within a
IBM 4758 PCI Cryptographic Coprocessor. As the
“traffic cop”, the SCC_Mgr identifies agents and and
controls the delivery of their messages and data.

security. The protection of data, system operations,
and devices from accidental or intentional ruin, damage,
or exposure.

system administrator. The person at a computer
installation who designs, controls, and manages the use
of the computer system.

T
time-of-day (TOD) clock. A hardware feature that is
incremented once every microsecond, and provides a
consistent measure of elapsed time suitable for
indicating date and time. The TOD clock runs
regardless of whether the processing unit is in a
running, wait, or stopped state.

throughput. (1) A measure of the amount of work
performed by a computer system over a given period of

time; for example, number of jobs-per-day. (A) (I)
(2) A measure of the amount of information transmitted
over a network in a given period of time; for example, a
network data-transfer-rate is usually measured in
bits-per-second.

TOD clock. Time-of-day clock.

U
utility program. A computer program in general
support of computer processes. (T)

V
verb. A function possessing an entry_point_name and
a fixed-length parameter list. The procedure call for a
verb uses the syntax standard to programming
languages.

vital product data (VPD). A structured description of a
device or program that is recorded at the manufacturing
site.

VPD. Vital product data.

W
Windows NT. A Microsoft operating system for
personal computers.

workstation. A terminal or microcomputer, usually one
that is connected to a mainframe or a network, and
from which a user can perform applications.

Numerics
IBM 4758. IBM 4758 PCI Cryptographic Coprocessor.

 Glossary X-7

 19-SEP-01, 15:06 Release 2.40

X-8 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

 Index

A
abort processing 4-9
agent

AgentID
message queue
sign-on function 3-9

allocate space in nonvolatile memory 3-78
API (application program interface)

See SCC API
application generates configuration key 3-105
application generates new configuration key 3-107
application key certificates 3-116
application sign-on function 3-9
applications, sample 1-4

compiling and linking sample programs 1-9
coprocessor application code 1-5
header file 1-5
host application code 1-7

architecture, coprocessor 3-100
asynchronous calls 1-3
ASYNclose 3-154
ASYNdrain 3-150
ASYNflush 3-152
ASYNioctl 3-144
ASYNopen 3-140
ASYNread 3-146
ASYNwrite 3-148
authentication scheme overview 3-101

changes to segments 2 and 3 3-102
configuration end 3-103
configuration start 3-103
epoch end 3-103
examples 3-104
initialization 3-101
updates to segment 1 3-101

B
blinding values 3-55
buffer data, get 3-14
buffer data, put 3-16
buffers, internal and external 3-21
bypass test 4-14

C
calls

asynchronous 1-3
synchronous 1-3

categories, coprocessor API functions 3-1
CDMF (Commercial Data Masking Facility) 3-2

CDMF function 3-40
certificates, OA 3-111
changes to segments 2 and 3 3-102
class root certificates, IBM 3-114
class root descriptions 3-121
class root keypairs, IBM 3-117
clear coprocessor intrusion latch 3-98
clear intrusion latch function 3-98
clear low battery warning latch 3-99
clock, set 3-97
close channel to coprocessor 2-12
close coprocessor function 2-12
coding, defensive 1-4
commands, host-generated 4-5
Commercial Data Masking Facility (CDMF) 3-2
common fields, all certificates 3-112
communication functions

See functions
communication, host and coprocessor

start-up procedure xii
termination procedure xii

communication, PCI 4-1
communications protocol, host-coprocessor 4-1
compiling, sample programs 1-9
compute blinding values for RSA key 3-55
compute blinding values function 3-55
configuration and epoch keypairs created 3-109
configuration end 3-103
configuration functions 3-94

sccClearILatch 3-98
sccClearLowBatt 3-99
sccGetConfig 3-94
sccSetClock 3-97

configuration information, coprocessor 3-94
configuration start 3-103
coprocessor

API 3-1
application code sample 1-5
device manager priority 3-6
generated commands 4-6

ABORT_COMPLETE 4-9
CPQ_ABEND 4-9
GOODNIGHT_JUAN 4-9
INVALID_MB_CMD 4-8
START_BUFFERS 4-6

get configuration function 3-94
handle 2-6, 2-12
interaction with host 1-3
interface for host device drivers 4-1

coprocessor API
function categories 3-1
introduction 3-1

 Copyright IBM Corp. 1998, 2001 X-9

 19-SEP-01, 15:06 Release 2.40

coprocessor architecture 3-100
coprocessor interface for host device drivers 4-1

FIFOs 4-4
generated commands and notifications,

coprocessor 4-6
host-generated commands 4-5
host/coprocessor normal interaction 4-23
initialization 4-11
mailbox overrun 4-4
mailboxes, using 4-3
PCI communication 4-1
tamper status bits 4-3

coprocessor-generated keypairs 3-118
coprocessor-side API functions 3-1
count coprocessors function 2-3
count free space in nonvolatile memory 3-77
count installed coprocessors 2-3
count items in nonvolatile memory 3-85
CP/Q (Control Program/Q)

asynchronous calls 1-3
interfaces 1-3
messages 1-3
synchronous calls 1-3

CP/Q++

See CP/Q (Control Program/Q)

D
data paths, host-coprocessor 4-13
decipher functions

DES 3-28
DES eight-byte 3-26
RSA 3-50
TDES 3-34
triple 3-32

defensive coding 1-4
delete all items from nonvolatile memory 3-92
delete all PPD function 3-92
delete item from nonvolatile memory 3-90
delete PPD item function 3-90
DES functions

See functions
DES tests 4-14
DES weak keys B-1
DES weak, semi-weak, possibly weak keys B-1
descriptions, class root 3-121
device key certificates 3-115
device manager priority 3-6
device names and device descriptors 3-118

E
EDE3 triple-DES function 3-38
eight-byte decipher function 3-26
eight-byte encipher function 3-26

encipher functions
DES 3-28
DES eight-byte 3-26
RSA 3-50
TDES 3-34

encipher/decipher data or generate MAC 3-28
encipher/decipher data or wrap/unwrap X9.31

encapsulated hash 3-50
encipher/decipher eight bytes of data 3-26
end request function 3-19
epoch end 3-103
error code formatting A-1
examples, overview of authentication scheme 3-104

application generates configuration key 3-105
application generates new configuration key 3-107
configuration and epoch keypairs created 3-109
foreign application loaded 3-110
initial certificate chain 3-104
miniboot updated 3-108
operating system updated 3-106

exponent types, RSA 3-49

F
fields common to all certificates 3-112
FIFOs 4-4
flash memory 3-3
flow diagrams, host - POST/miniboot interaction 4-17

AMCC FIFO test 4-19
host/coprocessor normal interaction 4-23
miniboot mode 4-21
normal mode 4-17
Walking 1’s test 4-18

foreign application loaded 3-110
format, return code A-1
functions

application sign-on 3-9
communication-related

end request 3-19
get buffer data 3-14
get next header 3-12
put buffer data 3-16

configuration, coprocessor 3-94
DES-related

decipher 3-28, 3-34
EDE3 support 3-38
eight-byte decipher 3-26
eight-byte encipher 3-26
encipher 3-28, 3-34
transform key 3-40
triple-DES 3-32

get random number 3-70
host API

close coprocessor 2-12
count coprocessors 2-3
open coprocessor 2-6
send request 2-8

X-10 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

functions (continued)
PKA-related

compute blinding values 3-55
decipher 3-50
encipher 3-50
RSA key pair generate 3-47

PPD-related
delete all PPD 3-92
delete PPD item 3-90
get free memory space 3-77
get PPD 3-88
get PPD directory information 3-85
get PPD length 3-87
save PPD 3-80

 privileged operations
clear intrusion latch 3-98
set TOD clock 3-97

random number generate 3-70

G
generate DSA key pair 3-59
generate MAC 3-28, 3-34
generate random number 3-70
generate random number function 3-70
generate RSA key pair 3-47
generated commands and notifications,

coprocessor 4-6
get buffer data function 3-14
get coprocessor configuration 3-94
get coprocessor configuration function 3-94
get coprocessor identification 2-4
get free memory space function 3-77
get length of item in nonvolatile memory 3-87
get next header function 3-12
get next request from host 3-12
get PPD directory information function 3-85
get PPD function 3-88
get PPD length function 3-87
get random number function 3-70

H
handle, coprocessor 2-6, 2-12
HDDSecurityTamper 2-2
header file sample 1-5
host

application code sample 1-7
generated commands 4-5

ABORT_END 4-6
ABORT_REQUEST 4-6
GOT_HEADERS 4-5

interaction with coprocessor 1-3
host-side API functions 2-1
HOST_OS_ERR 2-2

host/coprocessor normal interaction 4-23

I
IBM class root certificates 3-114
IBM class root keypairs 3-117
IBM root keypairs 3-117
initial certificate chain 3-104
initialization 4-11
initialization, overview of authentication scheme 3-101
interaction, host and coprocessor 1-3
intrusion latch, clear 3-98

K
key pair generate function 3-47
key_token format, RSA 3-49
key_token types, RSA 3-47
keypair names 3-117

L
linking, sample programs 1-9

M
mailbox overrun 4-4
mailboxes, using 4-3
message authentication code (MAC) 3-28, 3-34
miniboot mode 4-16
miniboot updated 3-108

N
nonvolatile memory 3-76

allocate space 3-78
count free space 3-77
count items 3-85
delete all items 3-92
delete item 3-90
get length of item 3-87
names and namespaces 3-76
retrieve item 3-88
store item 3-80
update item in BBRAM 3-83

O
OA certificates 3-111
OA functions 3-100

application key certificates 3-116
authentication scheme, overview 3-101
certificates 3-111
coprocessor architecture 3-100
coprocessor-generated keypairs 3-118
device key certificates 3-115
device names and device descriptors 3-118

 Index X-11

 19-SEP-01, 15:06 Release 2.40

OA functions (continued)
fields common to all certificates 3-112
IBM class root certificates 3-114
IBM class root keypairs 3-117
IBM root keypairs 3-117
keypair names 3-117
operating system key certificates 3-116
timestamps 3-120
transition certificates 3-115

open channel to coprocessor 2-6
open coprocessor function 2-6
operating system key certificates 3-116
operating system updated 3-106
outbound authentication (OA) functions 3-100
overview 1-1
overview authentication scheme 3-101

P
packet mode test 4-14
packing conventions, structure 1-4, 1-9
PCI communication 4-1
perform EDE3 mode triple-DES operation 3-38
perform modular computations 3-67
PKA functions

See functions
possibly weak keys B-1
POST_ERR 2-2
PPD functions

See functions
privileged operations

See functions
public root key C-1
put buffer data function 3-16

R
random number generate function 3-70
random number generator (RNG) 3-3
read data from host 3-14
reference section

coprocessor API
register to receive requests 3-9
request header, get next 3-12
retrieve item from nonvolatile memory 3-88
return code format A-1
return result of request to host 3-19
Rivest-Shamir-Adleman (RSA) 3-3
RNG (random number generator) 3-3
RNG function 3-70
root key, public C-1
root keypairs, IBM 3-117
routing, requests
RSA (Rivest-Shamir-Adleman) 3-3
RSA key generate

exponent types 3-49

RSA key generate (continued)
key_token format 3-49
key_token types 3-47

S
sample programs

compiling 1-9
coprocessor 1-5
coprocessor and host 1-4
header 1-5
host 1-7
linking 1-9

save PPD function 3-80
SCC (secure cryptographic coprocessor)

See coprocessor
SCC API

coprocessor 3-1
authentication functions 3-127
Communications functions 3-9
Configuration functions 3-94
DES functions 3-25
Hash functions 3-21
Large Integer Modular Math functions 3-66
Nonvolatile Memory functions 3-76
Public Key Algorithm functions 3-43
Random Number Generator functions 3-70

host 2-1
functions 2-1

SCC application
See agent

SCC_Mgr
get coprocessor configuration function 3-94

sccAdapterCount function 2-3
sccClearILatch function 3-98
sccClearLowBatt 3-99
sccCloseAdapter function 2-12
sccComputeBlindingValues function 3-55
sccCreate4UpdatePPD 3-78
sccDeleteAllPPD function 3-92
sccDeletePPD function 3-90
sccDES function 3-28
sccDES3Key function 3-32
sccDES8bytes function 3-26
sccDSA 3-62
sccDSAKeyGenerate 3-59
sccEDE3_3DES function 3-38
sccEndRequest function 3-19
sccGetAdapterID 2-4
sccGetBufferData function 3-14
sccGetConfig function 3-94
sccGetNextHeader function 3-12
sccGetPPD function 3-88
sccGetPPDDir function 3-85
sccGetPPDLen function 3-87

X-12 IBM 4758 Custom Software Interface

 19-SEP-01, 15:06 Release 2.40

sccGetRandomNumber function 3-70
sccOpenAdapter function 2-6
sccPutBufferData function 3-16
sccQueryPPDSpace function 3-77
sccRequest function 2-8
sccRSA function 3-50
sccRSAKeyGenerate function 3-47
sccSavePPD function 3-80
sccSetClock function 3-97
sccSHA1 3-22
sccSignOn function 3-9
sccTestRandomNumber 3-73
sccTransformCDMFKey function 3-40
sccUpdatePPD 3-83
scheme, authentication overview 3-101
semi-weak keys B-1
send request function 2-8
send request to coprocessor application 2-8
serial communication functions

ASYNclose 3-154
ASYNdrain 3-150
ASYNflush 3-152
ASYNioctl 3-144
ASYNopen 3-140
ASYNread 3-146
ASYNwrite 3-148

set coprocessor TOD clock 3-97
set TOD clock function 3-97
SHA-1 hash 3-22
sign data or verify signature for data 3-62
software architecture 1-1
software attacks and defensive coding 1-4
store item in nonvolatile memory 3-80
structure packing conventions 1-4, 1-9
synchronous calls 1-3

T
tamper event 3-3
tamper status bits 4-3
terminate connection 2-12
time of day (TOD) clock

See TOD (time of day) clock
timestamps 3-120
timing attacks 3-55
TOD (time of day) clock

definition 3-97
setting 3-97

transform DES key to CDMF key 3-40
transform key function 3-40
transition certificates 3-115
triple DES (4758 model 002/023 only) 3-34
triple-DES function 3-32, 3-34, 3-38

U
update item in BBRAM 3-83
updates to segment 1 3-101

W
weak keys B-1
work request routing
wrap/unwrap cryptographic key 3-32
write data to host 3-16

 Index X-13

	Contents
	About This Book
	Prerequisite Knowledge
	Organization of This Book
	Typographic Conventions
	Related Publications
	General Interest
	CCA Support Program Publications
	PKCS #11 Support Program Publications
	Custom Software Publications
	Cryptography Publications
	Other IBM Cryptographic Product Publications

	Summary of Changes

	Chapter 1. Overview
	Software Architecture
	Host and Coprocessor Interaction
	Synchronous and Asynchronous Calls
	Software Attacks and Defensive Coding
	Sample Applications
	Header File
	Coprocessor Application Code
	Host Application Code

	How to Compile and Link the Sample Programs

	Chapter 2. Host-Side API
	General Information
	Host-Side API Functions
	Header Files
	Sample Code
	Error Codes

	sccAdapterCount - Count Installed Coprocessors
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	sccGetAdapterID - Get Coprocessor Identification
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	sccOpenAdapter - Open Channel to Coprocessor
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	sccRequest - Send Request to Coprocessor Application
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	sccCloseAdapter - Close Channel to Coprocessor
	Function Prototype
	Input
	Output
	Return Codes

	Chapter 3. Coprocessor-Side API
	General Information
	Coprocessor-Side API Functions
	Header Files
	Sample Code
	Serialization of Requests
	Error Codes

	Host Communication Functions
	sccSignOn - Register to Receive Requests
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	sccGetNextHeader - Get Next Request from Host
	Function Prototype
	Input
	Output
	Return Codes

	sccGetBufferData - Read Data from Host
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	sccPutBufferData - Write Data to Host
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	sccEndRequest - Return Result of Request to Host
	Function Prototype
	Input
	Output
	Return Codes

	Hash Functions
	Internal and External Buffers
	sccSHA1 - SHA-1 Hash
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	DES Functions
	Keys
	Internal and External Buffers
	sccDES8bytes - Encipher/Decipher Eight Bytes of Data
	Function Prototype
	Input
	Output
	Return Codes

	sccDES - Encipher/Decipher Data or Generate MAC
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	sccDES3Key - Wrap/Unwrap Cryptographic Key
	Function Prototype
	Input
	Output
	Return Codes

	sccTDES - Triple DES (4758 Model 002/023 Only)
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	sccEDE3_3DES - Perform EDE3 Mode Triple-DES Operation
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	sccTransformCDMFKey - Transform DES Key to CDMF Key
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	Public Key Algorithm Functions
	RSA Key Tokens
	sccRSAKeyGenerate - Generate RSA Key Pair
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	sccRSA - Encipher/Decipher Data or Wrap/Unwrap X9.31 Encapsulated Hash
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	sccComputeBlindingValues - Compute Blinding Values for RSA Key
	Function Prototype
	Input
	Output
	Return Codes

	DSA Key Tokens
	DSA Signature Tokens
	sccDSAKeyGenerate - Generate DSA Key Pair
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	sccDSA - Sign Data or Verify Signature for Data
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	Large Integer Modular Math Functions
	Large Integers
	sccModMath - Perform Modular Computations
	Function Prototype
	Input
	Output
	Return Codes

	Random Number Generator Functions
	sccGetRandomNumber - Generate Random Number
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	sccTestRandomNumber - Test Random Number Generator (4758 Model 002/023 Only)
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	Nonvolatile Memory Functions
	Names and Namespaces
	sccQueryPPDSpace - Count Free Space in Nonvolatile Memory
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	sccCreate4UpdatePPD - Allocate Space in Nonvolatile Memory
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	sccSavePPD - Store Item in Nonvolatile Memory
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	sccUpdatePPD - Update Item in BBRAM
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	sccGetPPDDir - Count Items in Nonvolatile Memory
	Function Prototype
	Input
	Output
	Return Codes

	sccGetPPDLen - Get Length of Item in Nonvolatile Memory
	Function Prototype
	Input
	Output
	Return Codes

	sccGetPPD - Retrieve Item from Nonvolatile Memory
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	sccDeletePPD - Delete Item from Nonvolatile Memory
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	sccDeleteAllPPD - Delete All Items from Nonvolatile Memory
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	Configuration Functions
	Privileged Operations
	sccGetConfig - Get Coprocessor Configuration
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	sccSetClock - Set Coprocessor Time-Of-Day Clock
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	sccClearILatch - Clear Coprocessor Intrusion Latch
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	sccClearLowBatt - Clear Coprocessor Low Battery Warning Latch
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	Outbound Authentication Functions (4758 Model 002/023 Only)
	Coprocessor Architecture
	Overview of the Authentication Scheme
	Initialization
	Updates to Segment 1
	Changes to Segments 2 and 3
	Configuration Start
	Configuration End
	Epoch End
	Examples

	OA Certificates
	Fields Common to All Certificates
	IBM Class Root Certificates
	Device Key Certificates
	Transition Certificates
	Operating System Key Certificates
	Application Key Certificates
	Keypair Names
	IBM Root Keypairs
	IBM Class Root Keypairs
	Coprocessor-Generated Keypairs
	Device Names and Device Descriptors
	Layer Names and Layer Descriptors
	Timestamps
	Class Root Descriptions
	 sccOAGetDir - Count and List OA Certificates (4758 Model 002/023 Only)
	Function Prototype
	Input
	Output
	Return Codes

	 sccOAGetCert - Retrieve an OA Certificate (4758 Model 002/023 Only)
	Function Prototype
	Input
	Output
	Return Codes

	 sccOAGenerate - Generate Application Keypair and OA Certificate (4758 Model 002/023 Only)
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	 sccOADelete - Delete Application Keypair and OA Certificate (4758 Model 002/023 Only)
	Function Prototype
	Input
	Output
	Return Codes

	 sccOAPrivOp - Perform Cryptographic Operation with an Application Key (4758 Model 002/023 Only)
	Function Prototype
	Input
	Output
	Return Codes

	 sccOAVerify - Verify OA Certificate Chain (4758 Model 002/023 Only)
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	 sccOAStatus - Get Coprocessor Status (4758 Model 002/023 Only)
	Function Prototype
	Input
	Output
	Return Codes

	Serial Communication Functions
	ASYNopen - Open Serial Port (IBM 4758 Model 002/023 Only)
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	ASYNioctl - Change Serial Communication Parameters (IBM 4758 Model 002/023 Only)
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	ASYNread - Read Data from the Serial Line (IBM 4758 Model 002/023 Only)
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	ASYNwrite - Write Data to the Serial Line (IBM 4758 Model 002/023 Only)
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	ASYNdrain - Wait for Serial Operation to Complete (IBM 4758 Model 002/023 Only)
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	ASYNflush - Purge Serial Buffer (IBM 4758 Model 002/023 Only)
	Function Prototype
	Input
	Input
	Notes
	Return Codes

	ASYNclose - Close Serial Port (IBM 4758 Model 002/023 Only)
	Function Prototype
	Input
	Output
	Notes
	Return Codes

	Chapter 4. Coprocessor Interface for Host Device Drivers
	PCI Communication
	Use of the Mailboxes
	Tamper Status Bits
	Mailbox Overrun
	Use of the FIFOs
	Host-Generated Commands
	GOT_HEADERS - Signal Pending Requests
	ABORT_REQUEST - Abort a Specific Request
	ABORT_END - Signal End of Abort Requests

	Coprocessor - Generated Commands and Notifications
	START_BUFFERS - Transfer Data Buffers
	INVALID_MB_CMD - Command Not Recognized
	ABORT_COMPLETE - Request Successfully Aborted
	GOODNIGHT_JUAN - System Error Occurred
	CPQ_ABEND - Kernel Error Occurred

	Abort Processing
	Initialization
	Miniboot Mode
	Host - POST/Miniboot Interaction Flow Diagrams
	Normal Mode
	Walking 1's Test
	AMCC FIFO Test
	Miniboot Mode
	Host - IBM 4758 Normal Interaction

	Appendix A. Error Code Formatting
	Appendix B. DES Weak, Semi-Weak, and Possibly Weak Keys
	Appendix C. The IBM Root Public Key
	Appendix D. Notices
	Copying and Distributing Softcopy Files
	Trademarks

	List of Abbreviations and Acronyms
	Glossary
	Index

