
IBM IBM 4758 PCI Cryptographic Coprocessor

CCA Support Program Installation Manual
for IBM 4758 Models 002 and 023 with Release 2.30

 Note!

Before using this information and the product it supports, be sure to read the general information printed under Appendix F,
“Notices” on page F-1.

Eighth Edition (September, 2000)

This is the eighth edition. It applies to:

| � IBM 4758 Models 002 and 023 (and not to Models 001 and 013).
| � Release 2.3.0.0 of the licensed CCA Cryptographic Coprocessor Support Program feature for IBM AIX.*
| � Release 2.30 of the licensed CCA Cryptographic Coprocessor Support Program feature for IBM Operating System/2 Warp.*
| � Release 2.30 of the licensed CCA Cryptographic Coprocessor Support Program feature for Microsoft Windows NT.**
| � Release 2.30 of the licensed CCA Cryptographic Coprocessor Support Program feature for Microsoft Windows 2000.**

Each feature is designed to provide software support for an IBM 4758 PCI Cryptographic Coprocessor, Model 002 or Model 023,
installed into a computer running the accompanying operating system.

Changes are made periodically to the information herein; before using this publication in connection with the operation of IBM
systems, please check the IBM 4758 product website for an updated version of this publication.

IBM does not stock publications at the address given below. This and other publications related to the IBM 4758 Coprocessor can
be obtained in PDF format from the Library page at http://www.ibm.com/security/cryptocards.

Readers’ comments can be communicated to IBM by using the question and suggestion form on the product website at
http://www.ibm.com/security/cryptocards, or by sending a letter to:

Department VM9A, MG81/204-3
IBM Corporation
8501 IBM Drive
Charlotte, NC 28262-8563
USA

IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any obligation to you.

Several different revision codes may appear in this book and indicate:

| � Major items that have changed in the eighth revision for Release 2.30.

 Copyright International Business Machines Corporation 1997-2000. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

About This Publication . vii
Audience . vii
Prerequisite Knowledge . vii
Organization of This Publication . viii
Related Publications . viii

IBM 4758 PCI Cryptographic Coprocessor Publications viii
Summary of Changes . ix

Chapter 1. Installation Process Overview . 1-1
Summary . 1-1

Chapter 2. Obtaining Coprocessor Hardware and Software 2-1
How to Choose Product Features . 2-1
How to Order and Obtain the IBM 4758 Hardware 2-2
How to Install Your IBM 4758 Hardware . 2-3
How to Download the Software . 2-3

Chapter 3. Installing the Support Program 3-1
Support Program Components . 3-1
How to Install and Remove Coprocessor Host Software 3-1

How to Install and Remove the Support Program for AIX 3-2
AIX Requirements . 3-2
How to Install the Support Program Base Release 2.3.0.0 3-2
How to Configure the Support Program . 3-3
CCA Support Program and AIX File Permissions 3-4
Where to Locate RS/6000 Coprocessor Hardware Errors 3-5
How to Remove the Support Program . 3-5

How to Install and Remove the Support Program for OS/2 3-6
OS/2 Requirements . 3-6
How to Install the Support Program . 3-6
How to Install Manually . 3-7
How to Configure the Support Program . 3-8
How to Remove the Support Program . 3-8

| How to Install and Remove the Support Program for Windows NT and
| Windows 2000 . 3-10
| Windows NT and Windows 2000 Requirements 3-10

How to Install the Support Program . 3-10
| How to Configure the Support Program 3-12

How to Remove the Support Program 3-12
| What to Do When Migrating from Windows NT to Windows 2000 . . . 3-13

Chapter 4. Loading Software into the Coprocessor 4-1
How to Load Coprocessor Software . 4-1

Changing the Default Directory and Running CLU 4-2
Determining Coprocessor Software Segment Contents 4-3
Changing Software Segment Contents . 4-4
Validating the Coprocessor Segment Contents 4-5

How to Unload Coprocessor Software and Zeroize the CCA Node 4-5
Coprocessor Load Utility Reference . 4-6

Coprocessor Memory Segments . 4-6

 Copyright IBM Corp. 1997-2000 iii

Validation of Coprocessor Software Loads 4-6
Coprocessor Load Utility Syntax . 4-8

Coprocessor Load Utility Commands . 4-9
Coprocessor Load Utility Return Codes . 4-11

Chapter 5. Using the CNM and CNI Utilities to Manage the Cryptographic
Node . 5-1

Overview . 5-1
Cryptographic Node Management Utility Overview 5-2
Cryptographic Node Initialization Utility Overview 5-2

How to Use the Utilities, Sample Scenarios . 5-3
How to Establish a Test Node . 5-3
How to Establish Nodes in a Production Environment 5-5

Access-Control-Administrator Procedure 5-5
Key-Management-Officer Procedures . 5-6

How to Use the CNM Administrative Functions 5-7
| How to Choose a Coprocessor . 5-7

How to Initialize (Zeroize) the Node . 5-7
How to Log On and Off the Node . 5-8
How to Load the Function-Control Vector . 5-8
How to Configure the Cryptographic Node Management Utility 5-8
How to Synchronize the Clock-Calendars . 5-8
How to Obtain Status Information . 5-9

How to Create and Manage Access-Control Data 5-9
Access-Control Overview . 5-10
Initial State of the Access-Control System 5-10
How to Define a Role . 5-11
How to Edit Existing Roles . 5-12

How to Edit a Disk-Stored Role . 5-12
How to Edit a Coprocessor-Stored Role 5-12
How to Delete a Coprocessor-Stored Role 5-12

How to Define a User Profile . 5-13
How to Edit Existing User Profiles . 5-14

How to Edit a Disk-Stored User Profile 5-14
How to Edit a Coprocessor-Stored User Profile 5-14
How to Delete a Coprocessor-Stored User Profile 5-14
How to Reset the User Profile Failure Count 5-14

How to Initialize the Access-Control System 5-15
How to Manage Cryptographic Keys . 5-15

How to Manage the Master Key . 5-16
How to Verify an Existing Master Key . 5-16

| How to Auto-Set or Randomly Generate the Master Key 5-17
How to Load a New Master-Key from Key Parts 5-17
How to Clone a Master Key . 5-18

Managing Key Storage . 5-21
How to Create or Initialize Key Storage 5-21
How to Reencipher Stored Keys . 5-22
How to Delete a Stored Key . 5-22
How to Create a Key Label . 5-23

How to Create and Store Primary KEKs . 5-23
Using the CNI Utility to Establish Other Nodes 5-24

Chapter 6. Observations on Secure Operations 6-1
Ensuring Code Levels Match and IBM CCA Code is Installed 6-1

iv IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

Access Controls . 6-1
Locking the Access-Control System . 6-2
Passphrase Considerations . 6-2
Roles and Profiles . 6-2

Cryptographic Keys . 6-4
CCA Asymmetric DES keys . 6-4
Clear-Key Parts . 6-5
Key Export . 6-6
Operations with Clear Keys . 6-6

| Using Replicated Keys . 6-7
PIN Data . 6-7
Status Data . 6-8

| RS-232 Port . 6-8
Master-Key Cloning . 6-8
Sample Access-Control Regimes . 6-8

Simple-CA Capability . 6-9

Chapter 7. Building Applications to Use with the CCA API 7-1
Overview . 7-1
How to Call Verbs in C Program Syntax . 7-1
How to Compile and Link Application Programs 7-2

Compiling Applications for AIX . 7-2
Sample Routine . 7-2
Enhancing Throughput with CCA and the 4758 Models 002 and 023 7-8

Multi-threading and Multi-processing . 7-8
Caching DES and RSA Keys . 7-9

Appendix A. CCA Access-Control Commands A-1

Appendix B. Initial DEFAULT-Role Commands B-1

Appendix C. Machine-Readable-Log Contents C-1

Appendix D. Migration Considerations, Version 1 to 2 D-1

Appendix E. Device Driver Error Codes . E-1

Appendix F. Notices . F-1
License . F-1
Copying and Distributing Softcopy Files . F-2
Trademarks . F-2

| Appendix G. Master-Key Cloning Procedure G-1
| Phase 1: Establish the Share Administration Node G-4
| Phase 2: Establish the Source Node . G-5
| Phase 3: Establish Target Node and Clone Master Key G-6

List of Abbreviations and Acronyms . X-1

Glossary . X-3

Index . X-9

 Contents v

 Figures

4-1. Typical CLU Status Response . 4-3
| 4-2. Typical CLU System Status Response 4-10

5-1. The Role Definition Panel . 5-11
5-2. The User Profile Definition Panel . 5-13
5-3. The Load Master Key Panel . 5-17
5-4. The CNI Editor Panel . 5-24
7-1. Syntax, Sample Routine . 7-4

| G-1. Cloning Responsibilities, Profiles and Roles G-2
| G-2. Cloning Information Worksheet . G-3

vi IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

About This Publication

| This installation and operation guide describes Release 2.30 (AIX: 2.3.0.0) of the
| IBM 4758 CCA Support Program for the IBM 4758 PCI Cryptographic Coprocessor,
| Models 002 and 023. The Support Program includes device drivers, utilities, and
| the IBM Common Cryptographic Architecture (CCA) Coprocessor code.

| You can obtain Support Program editions to use with AIX, OS/2, Windows NT, and
| Windows 2000 operating systems.

Use this manual to help with the following tasks:

� Obtain the Support Program through the Internet
� Load the software onto a host computer and into the Coprocessor(s)
� Use the utilities supplied with the Support Program to:

– Load the Coprocessor function-control vector (FCV)
– Initialize one or more Coprocessors
– Create and manage access-control data
– Create a master key and primary key-encrypting keys (KEKs)
– Manage key storage at the cryptographic node
– Create node-initialization file lists to set up and configure other

cryptographic nodes
� Link your application software to the CCA libraries
� Obtain guidance for security consideration in application development and

operational practices.

 Audience
The audience for this publication includes:

� System administrators who install the software
� Security officers responsible for the Coprocessor access-control system
� System programmers and application programmers who determine how the

software is to be used.

 Prerequisite Knowledge
Before you use this publication, familiarize yourself with the contents of the IBM
4758 PCI Cryptographic Coprocessor General Information Manual, available as a
PDF file on the Library page of the IBM 4758 website,
http://www.ibm.com/security/cryptocards. This manual describes the IBM 4758 PCI
Cryptographic Coprocessor hardware and the CCA Cryptographic Coprocessor
Support Program feature.

 Copyright IBM Corp. 1997-2000 vii

Organization of This Publication
� Chapter 1, “Installation Process Overview” summarizes the installation and the

operation of the CCA Cryptographic Coprocessor Support Program.
� Chapter 2, “Obtaining Coprocessor Hardware and Software” describes how to

obtain the PCI cryptographic Coprocessor hardware and the CCA
Cryptographic Coprocessor Support Program.

� Chapter 3, “Installing the Support Program” describes how to install the
software onto the host computer.

� Chapter 4, “Loading Software into the Coprocessor” describes how to load the
operating system and the CCA software into the PCI Cryptographic
Coprocessor.

� Chapter 5, “Using the CNM and CNI Utilities to Manage the Cryptographic
Node” describes how to use the Cryptographic Node Management and the
Cryptographic Node Initialization utilities to set up and manage cryptographic
nodes.

� Chapter 6, “Observations on Secure Operations” offers guidance in operating
the CCA implementation with increased security.

� Chapter 7, “Building Applications to Use with the CCA API” explains how to
build applications for CCA, and how to link them to CCA libraries.

� Appendix A, “CCA Access-Control Commands” lists the commands used by the
CCA API as it requests service from the PCI Cryptographic Coprocessor.

� Appendix B, “Initial DEFAULT-Role Commands” details the permissions
granted to the DEFAULT role when the access-control system is initialized.

� Appendix C, “Machine-Readable-Log Contents” details the content of the
machine readable log created by the Coprocessor Load Utility.

� Appendix D, “Migration Considerations, Version 1 to 2” provides guidance
concerning migration for CCA customers from IBM 4758-001/013 to IBM
4758-002/023.

� Appendix E, “Device Driver Error Codes” provides error code information that
can be observed when operating the CLU utility.

� Appendix F, “Notices” includes product and publication notices.
| � Appendix G, “Master-Key Cloning Procedure” provides a procedure for
| master-key cloning.

� A list of abbreviations, a glossary, and an index complete the manual.

 Related Publications
The list below reflects source information regarding the PCI Cryptographic
Coprocessor and commercial cryptographic applications in general. Publications
regarding other IBM cryptographic products that utilize the CCA application program
interface (API) are listed in the IBM 4758 PCI Cryptographic Coprocessor General
Information Manual.

IBM 4758 PCI Cryptographic Coprocessor Publications
For availability of these publications, check the Library page of the product website
at http://www.ibm.com/security/cryptocards. From the website, you can download,
view, and print publications available in the Adobe Acrobat** portable document
format (PDF):

� IBM 4758 CCA Basic Services Reference and Guide

� IBM 4758 PCI Cryptographic Coprocessor General Information Manual

viii IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

� IBM 4758 PCI Cryptographic Coprocessor Installation Manual

� AIX users should also obtain and reference the PCI Cryptographic Coprocessor
Installation and Using Guide.

Summary of Changes

| Release 2.30 (2.3.0.0)
| This edition of the IBM 4758 PCI Cryptographic Coprocessor CCA Support
| Program Installation Manual contains product information that is current with:

| � Release 2.3.0.0 of the licensed CCA Cryptographic Coprocessor Support
| Program feature for AIX
| � Release 2.30 of the licensed CCA Cryptographic Coprocessor Support Program
| feature for OS/2
| � Release 2.30 of the licensed CCA Cryptographic Coprocessor Support Program
| feature for Windows NT and Windows 2000.

| New or changed items with Release 2.30:

| � Support for AIX (this was first available for 2.2.1.0 in October, 2000).

| � Support for Windows 2000.

| � CCA support for multiple Coprocessors.

| � Modifications on the Coprocessor Load Utility (CLU) status report and addition
| of the “SS” command to report on all installed Coprocessors.

| � Inclusion of the Function Control Vector (FCV) in each individual distribution
| without the need to specify a specific feature code for the level of FCV. All
| customers are now entitled to use an RSA key length of 1024 bits when
| performing key management.

| � Appendix G, “Master-Key Cloning Procedure” is added for additional guidance
| on cloning a master key.

| Note: Version 2 (Release 2.30, 2.3.0.0) does not support IBM 4758 models 001
| and 013.

 Release 2.20/2.21
This edition of the IBM 4758 PCI Cryptographic Coprocessor CCA Support
Program Installation Manual contains product information that is current with:

� Release 2.2.1.0 of the licensed CCA Cryptographic Coprocessor Support
Program feature for AIX

� Release 2.20 of the licensed CCA Cryptographic Coprocessor Support Program
feature for OS/2

� Release 2.20 of the licensed CCA Cryptographic Coprocessor Support Program
feature for Windows NT.

This edition also incorporates new procedures for downloading of the CCA Support
Programs. You no longer need to obtain License Keys to decrypt the downloaded
software. When downloading software, you will need to complete a registration
process.

 About This Publication ix

 Release 2.20
This edition of the IBM 4758 PCI Cryptographic Coprocessor CCA Support
Program Installation Manual contains product information that is current with:

� Release 2.20 of the licensed CCA Cryptographic Coprocessor Support Program
feature for OS/2.

� Release 2.20 of the licensed CCA Cryptographic Coprocessor Support Program
feature for Windows NT.

Release 2.20 provides:

� Support of the IBM 4758 Models 002 and 023
� Additional function including triple-DES encryption for general data

Notes:

1. Release 2.20 does not support IBM 4758 Models 001 and 013.

2. Logon to a profile has been supported from a thread in Release 1.31; this
support is continued in Release 2.20. See “How to Log On and Off the Node”
on page 5-8.

x IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

Chapter 1. Installation Process Overview

This chapter summarizes the installation and operation procedures discussed in this
manual and provides a checklist for you to use while installing the PCI
Cryptographic Coprocessor and the CCA Cryptographic Coprocessor Support
Program. See Table 1-1 on page 1-2.

 Summary
The CCA Cryptographic Coprocessor Support Program consists of several
components, and includes:

� Device drivers and an operating system for the PCI Cryptographic Coprocessor
hardware

� Support for the IBM Common Cryptographic Architecture (CCA) application
program interface (API)

� A function-control vector
� Utility applications that run on the host RS/6000 machine or on the personal

computer (PC) into which the Coprocessor has been installed.

A function-control vector is a signed value provided by IBM; its use originated to
enable the CCA application within the Coprocessor to yield a level of cryptographic
service consistent with applicable cryptographic implementation import and export
regulations.

To install these components and to establish a CCA cryptographic node, perform
the following steps described in this manual:

1. Obtain the Hardware and Software: Chapter 2, “Obtaining Coprocessor
Hardware and Software” describes how to order the hardware from IBM, how to

| download the software through the Internet, and how to unpack the
| downloaded files.

| Note: Customers no longer need to obtain License Keys, but instead are
| guided through a registration process prior to downloading the code. This
| process is described in “How to Download the Software” on page 2-3. Also,
| the downloaded code is no longer encrypted.

2. Install the Software onto the Host: Chapter 3, “Installing the Support
Program” describes how to install the downloaded software onto the
Coprocessor host computer.

3. Load the Coprocessor Software: Chapter 4, “Loading Software into the
Coprocessor” describes how to load both the CP/Q++ embedded operating
system, and the CCA application program.

 Copyright IBM Corp. 1997-2000 1-1

4. Set Up the Cryptographic Node: You can establish a CCA cryptographic node
using the utilities provided with the support program, or by linking your
application programs to the CCA API. You should also verify the access
control and other setup requirements imposed by application software you plan
to use with the IBM 4758. The Cryptographic Node Management utility
described in Chapter 5, “Using the CNM and CNI Utilities to Manage the
Cryptographic Node” includes setup and management functions needed to:

� Load the Function-Control Vector
� Create and edit the access-control data
� Manage the Coprocessor master key
� Manage primary KEKs
� Manage the storage of data keys
� Create lists (“scripts”) for the Cryptographic Node Initialization utility.

5. Link Application Programs to the CCA Libraries: Chapter 7, “Building
Applications to Use with the CCA API” describes how to build applications for
CCA and how to link them to the CCA libraries.

Table 1-1. Activity Checklist, CCA Cryptographic Coprocessor Support Program Installation

Step Task Reference √

1 Decide which platform support packages are appropriate to your
setup:

AIX () OS/2 () Windows NT/2000 ().

“How to Choose
Product Features”
on page 2-1

2 Place an order with IBM or your IBM Business Partner.
(OEM sales are processed by the IBM OEM Sales office.)

“How to Order and
Obtain the IBM
4758 Hardware” on
page 2-2

3 Receive Coprocessor hardware.

4 Install Coprocessor hardware.

“How to Install Your IBM 4758 Hardware” on page 2-3 discusses
which must be installed first, the hardware or the device driver.

“How to Install
Your IBM 4758
Hardware” on
page 2-3

5 Download the support program for your operating system. “How to Download
the Software” on
page 2-3

6 Install the support program onto the Coprocessor host computer. Chapter 3,
“Installing the
Support Program”

7 Load Coprocessor software. Chapter 4,
“Loading Software
into the
Coprocessor”

8 Set up a CCA test node. Review the first pages in Chapter 5,
“Using the CNM and CNI Utilities to Manage the Cryptographic
Node.” Then set up a test node.

“How to Establish a
Test Node” on
page 5-3

9 Run test programs that utilize the CCA libraries.

1-2 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

Chapter 2. Obtaining Coprocessor Hardware and Software

The CCA Cryptographic Coprocessor Support Program feature is available for
download through the Internet on the Order page at
http://www.ibm.com/security/cryptocards. This chapter describes how to:

� Choose the product features you need
� Order the hardware
� Download the software.

How to Choose Product Features
The Coprocessor is manufactured in several models, each with different
capabilities. Models 002 and 023 incorporate triple-DES and faster hardware than
the earlier models 001 and 013. Only models 002 and 023 will operate with the
Version 2 CCA software. Model 002 includes advanced physical penetration
detection and the product has been certified under FIPS 140-1 at level four. The
Model 023 incorporates a different approach to physical penetration detection but is
in other respects the same as the Model 002. The Model 023 is certified under
FIPS 140-1 at level three.

| IBM manufactures two variations of the Models 002 and 023. The first variations
| incorporate two batteries, operate on a 5.0 volt PCI bus, and are supplied when
| you order an IBM 4758. The second variations incorporate four batteries, operate
| on 3.3 and 5.0 volt PCI bus systems, and are supplied as features in IBM eServer
| iSeries (AS/400), pSeries (RS/6000), and zSeries (S/390) server systems.

Models 002 and 023 can be installed in personal computer PCI slots that accept
| full-height, two-thirds-length, PCI boards. There are additional feature codes in
| IBM's ordering system relating to the operating system with which you plan to use
| the Coprocessor, and relating to the Function Control Vector. Use of these feature
| codes is no longer required when you order a Coprocessor from IBM.

| IBM eServer pSeries (RS/6000) users order Coprocessor Model-023-class
| technology using feature code 4958. See Table 2-1 on page 2-2 for a list of
| supported machines. (A possibly more up-to-date list of machines and feature
| codes can be found on the IBM 4758 product website,
| http://www.ibm.com/security/cryptocards.)

| Note: IBM 4758 (two-battery, 5.0 volt) Model 002 or Model 023 Coprocessors
| should not be installed in pSeries systems.

pSeries wide and high nodes support use of the Coprocessor feature; however, thin
nodes do not support the feature.

� Wide nodes support up to 4 Coprocessor features in the I/O side
� High nodes support one or two Coprocessor features in slots 4 and/or 5
� Machine type 9076, Models 20x, 30x, 40x, 2Ay, 3Ay, 3By, and 500, 550, 50H,

and 55H all support the feature where:
“x” = 2, 3, 4, 5, 6, 7, 8, 9, A
“y” = 2, 3, 4, 5, 7, 8, 9, A.

Review the Tested Systems page of the product website for server systems in
which the IBM 4758 technology has been tested.

 Copyright IBM Corp. 1997-2000 2-1

The battery kit contains two batteries and a temporary-battery tray. The shelf-life of
the batteries in the kit is nearly the same as the useful life of batteries mounted in
an IBM 4758 that is continuously powered on. A battery kit should be ordered and
the batteries changed as a planned maintenance activity every three to five years.
The actual life of the batteries is anticipated to be in excess of five years. When
you do change batteries, be sure that they are fresh and have not been in inventory
for a long period.

From the table below, choose the Coprocessor and the (optional) battery kit:

Table 2-1. Order Numbers

Description Machine Type Model No. Feature Code

Personal Computer and Netfinity Servers
(You order an IBM 4758 machine type.)

PCI Cryptographic Coprocessor
FIPS 140-1, level 4

4758 002

PCI Cryptographic Coprocessor
FIPS 140-1, level 3

4758 023

Replacement-Battery Kit 1008

IBM eServer pSeries (RS/6000) Systems
(You order a feature for the indicated IBM pSeries machine type.)

See the IBM pSeries website for the current list of machines that support the PCI
Cryptographic Coprocessor and the PCI slots that cannot be used to host a
Coprocessor.

pSeries PCI Cryptographic
Coprocessor

7025 F50
F80

4958

pSeries PCI Cryptographic
Coprocessor

7026 H80
M80

4958

pSeries PCI Cryptographic
Coprocessor

7043 270 4958

pSeries PCI Cryptographic
Coprocessor

7044 170
270

4958

pSeries SP PCI Cryptographic
Coprocessor

9076 See
discussion
on page

2-1

4958

Notes:

1. This list of machines can become outdated over time. Please check the PCI
Cryptographic Coprocessor website for more complete information.

2. In certain machine types, there are limitations on the use of specific PCI bus slots.
Check the website.

How to Order and Obtain the IBM 4758 Hardware
To order the Coprocessor hardware, contact your local IBM Representative or your
IBM Business Partner, and order the models and features you have chosen.

Customers in the U.S.A. can also contact IBM Direct at 1-800-IBM-CALL.
Specifically mention “IBM 4758” so that you can discuss your order with the group
that processes IBM 4758 orders.

2-2 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

How to Install Your IBM 4758 Hardware
The IBM 4758 is installed in a manner similar to other PCI boards.

� Personal computer users should follow the process described in the IBM 4758
PCI Cryptographic Coprocessor Installation Manual.

� pSeries users should follow the process described in the PCI Cryptographic
Coprocessor Installation and Using Guide. (This book can be obtained in
Adobe PDF format from http://www.rs6000.ibm.com/resource/hardware_docs/;
find “PCI Cryptographic” in the list of books.) Note that the order of installation
between the hardware and the device driver is important in an AIX installation;
follow the guidance in the book.

Be certain that you never remove the Coprocessor batteries except as outlined in
the battery-replacement procedure in the IBM 4758 PCI Cryptographic Coprocessor
Installation Manual or, for pSeries users, the PCI Cryptographic Coprocessor
Installation and Using Guide. The Coprocessor is certified at the factory. If it ever
detects tampering, or if both battery power and system power are simultaneously
removed, the factory certification will be zeroized and the Coprocessor will be
rendered non-functional. There is no recovery from this situation.

It is possible to inadvertently cause a tamper event if you cause some of the
Coprocessor circuitry to short circuit. Remember that the batteries on the
Coprocessor supply power to tamper sensors. If in handling the Coprocessor you
cause a short circuit in this circuitry, this could result in a tamper event. This is
very unlikely to occur, but you should be careful when installing the Coprocessor to
keep the circuitry on the board from contacting conductive portions of the host
machine or adjacent boards.

How to Download the Software
You download the support program software through the Internet.

Tip: To be sure you receive the latest version of the support program, wait to
download until you have received your Coprocessor. At that time you should also
check the website for any available fixes. See the Software Updates section of the
IBM 4758 product website at http://www.ibm.com/security/cryptocards.

| Select the software that you require by operating-system platform, release level,
| and support program as indicated on the Software Download page of the product
| website, http://www.ibm.com/security/cryptocards. You are prompted to complete a
| registration procedure following which you are presented with a page from which
| you choose items to download.

pSeries users should download both the CCA-PKCS#11 Common Support and the
CCA Support. The Cryptographic Coprocessor device driver for AIX can also be
downloaded if it is at a higher level than already installed on your system or
available on the AIX system CD. These three items together comprise the CCA
Support Program for AIX.

If you plan to use the support program on multiple host computers, you can copy
the downloaded files to the other hosts.

 Chapter 2. Obtaining Coprocessor Hardware and Software 2-3

Now you are able to install the support program; see Chapter 3, “Installing the
Support Program.”

2-4 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

Chapter 3. Installing the Support Program

After downloading the software as described in Chapter 2, “Obtaining Coprocessor
Hardware and Software,” follow the procedures in this chapter to install the CCA
Cryptographic Coprocessor Support Program onto the Coprocessor host computer.

| (Loading software into the Coprocessor is described in Chapter 4, “Loading
| Software into the Coprocessor” and initializing the CCA application within the
| Coprocessor is described in Chapter 5, “Using the CNM and CNI Utilities to
| Manage the Cryptographic Node.”)

This chapter:

� Lists the support program components you are installing
� Lists system prerequisites to installing the software
� Describes how to install the software
� Describes how to remove the software

| � Describes what to do when migrating from Windows NT to Windows 2000.

Support Program Components
The procedures in this chapter install the following support program components
onto the host computer:

� Device drivers for the IBM 4758 PCI Cryptographic Coprocessor
� The shared libraries or DLLs necessary to link the CCA application program

interface (API) to the Coprocessor driver
� The Coprocessor load utility and software files necessary to load the CP/Q++.

operating system and the CCA application program into the Coprocessor; the
utility is described in Chapter 4, “Loading Software into the Coprocessor”

� The Cryptographic Node Management utility necessary to load the
function-control vector (FCV) into the Coprocessor and to set up a
cryptographic node; the utility is described in Chapter 5, “Using the CNM and
CNI Utilities to Manage the Cryptographic Node.”

How to Install and Remove Coprocessor Host Software
For each operating system, the following sections:

� List the requirements for the support program
� Describe how to install the support program
� Describe how to remove the support program.

After you have installed the platform-specific software as described in this chapter,
you are ready to install software into the Coprocessor; see Chapter 4, “Loading
Software into the Coprocessor.”

 Copyright IBM Corp. 1997-2000 3-1

How to Install and Remove the Support Program for AIX
This section includes a description of the support program system requirements

| and procedures necessary to install and remove the base release 2.3.0.0 software.

Important: The installation process requires root-level authority; it must be
performed by a system administrator with that authority.

 AIX Requirements
Before you install the support program, make sure your system meets the following
requirements:

 Hardware:

An IBM eServer pSeries (RS/6000) server with an available PCI Cryptographic
Coprocessor feature.

During installation of the software, the driver interacts with the Coprocessor to
arbitrate interrupt settings, DMA channels, and other system resources. For
installation instructions regarding the Coprocessor hardware and device driver,
refer to the PCI Cryptographic Coprocessor Installation and Using Guide.

 Software:

| AIX Version 4.3.3 (32-bit mode only) (it is possible that a later version of AIX
| will work, but it has not been tested by IBM).

| Java** runtime environment 1.1.8 through 1.2 (it is possible that a later release
| of Java will work, but it has not been tested by IBM), available from

http://www.ibm.com/java/jdk/download. This is required to use the
Cryptographic Node Management utility.

| Release 2.3.0.0 CCA-PKCS#11 Common Support, file csuf.cca.

| Release 2.3.0.0 CCA Support, file csuf.com.

| Release 2.3.0.0 PCI Cryptographic Coprocessor device driver, file
| devices.pci.14109f00.rte.

 Disk Space:

4 MB in the /usr file system.

How to Install the Support Program Base Release 2.3.0.0
To install the support program:

1. Log on as root.

2. Enter the command smitty cfgmgr; press Enter. You are prompted to enter
the location of the software to be loaded.

3. Enter the location of the install images you obtained using the procedure
described in “How to Download the Software” on page 2-3; press Enter. The
software is installed.

4. Exit from smitty using the F10 key.

5. To confirm successful installation of the driver, enter the command lsdev -C -l
| crypt0; the system message should reflect status Available. Repeat this
| command for each CCA Coprocessor installed, changing crypt0 to crypt1,
| crypt2, and so forth as needed.

3-2 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

6. Enter the command smitty install_latest.

7. Enter the location of the install images you obtained using the procedure
described in “How to Download the Software” on page 2-3; press Enter. The
software is installed.

8. When requested, enter csuf.cca as the package name for the software to
install; press Enter. Press Enter again to continue when prompted ARE YOU
SURE.

9. Exit from smitty using the F10 key.

10. Read or print /usr/lpp/csuf/README; this file contains the latest information
about the support program product.

11. Use the configuration utilities to configure the software. Those utilities are
described in the next section, “How to Configure the Support Program.”

How to Configure the Support Program
| The following utilities and system command are available to configure the software.

For more detail, refer to the AIX man page for each item.

csufadmin Specifies the system-access permissions associated with the csufkeys,
csufappl, csufclu (Coprocessor Load Utility), csufcnm (Cryptographic
Node Management), and csufcni (Cryptographic Node Initialization)
utilities.

Default permissions restrict use of these utilities to the root user and to
users in the system group. Use the csufadmin utility to modify these
permissions.

csufappl Specifies the system-access permissions associated with the CCA
libraries.

The default permissions restrict use of the CCA libraries to the root user
and members of the system group. Use the csufappl utility to permit
other groups to use the services furnished by the CCA API.

csufkeys Creates and identifies the file and directory names of the locations
wherein the cryptographic keys and key lists are stored. The install
program defines, in the AIX object data manager (ODM), the following
default directories:

DES key-storage file: /usr/lpp/csuf/csufkeys/des.keys
PKA key-storage file: /usr/lpp/csuf/csufkeys/pka.keys
DES key-record-list directory: /usr/lpp/csuf/csufkeys/deslist
PKA key-record-list directory: /usr/lpp/csuf/csufkeys/pkalist

Use the csufkeys utility to change the storage locations.

Note: When you initialize key storage using the Cryptographic Node
Management utility, ensure that you specify the ODM directories defined
by this utility; see “How to Create or Initialize Key Storage” on
page 5-21.

odmget Verifies key-storage file names with the odmget system command.

You can verify the key-storage names used by the CCA Support
Program by entering the following command:

 odmget csufodm

The four parmname attributes specify the following four values:

 Chapter 3. Installing the Support Program 3-3

� csudesds - The file containing the DES key-records
� csupkads - The file containing the PKA key-records
� csudesld - The directory containing the DES key-record-list files
� csupkald - The directory containing the PKA key-record-list files

When initializing CCA key-storage with either the CNM utility or with the
CSNBKSI CCA verb, you must use the file names returned from the
ODM. Use the CSUFKEYS utility to change these file names.

The DES_Key_Record_List verb and PKA_Key_Record_List verb produce files in
the /usr/lpp/csuf/csufkeys/deslist and /usr/lpp/csuf/csufkeys/pkalist directories.
These are the default directory names. Depending on your installation, these
directory names may have been changed from their default names. These list files
are created under the ownership of the environment of the user that requests the
list service. Make sure the files created keep the same group ID as your
installation requires. This can also be achieved by setting the
"set-group-id-on-execution" bit on these two directories. See the g+s flags in the
chmod command for full details. Not doing this may cause errors to be returned on
key-record-list verbs.

| To assign a default CCA Coprocessor, use the EXPORT command to set the
| environment variable CSU_DEFAULT_ADAPTER to CRP0n, where n = 1, 2, ..., or
| 8, depending on which installed CCA Coprocessor you want as the default. If this
| environment variable is not set when the first CCA verb of a process is called, the
| CCA software sets Coprocessor CRP01 as the default. If this environment variable
| is set to an invalid value, you will get an error until the environment variable is set
| to a valid value.

CCA Support Program and AIX File Permissions
The CCA Support Program relies on file permissions at the “group” level to function
correctly. This means that the users and administrators of the CCA support
program must have the correct group file permissions on the CCA shared libraries,
utilities, and key-storage files and directories in order to be fully functional and run
without errors. The csufadmin, csufappl, and csufkeys utilities are provided to aid
in this task during installation, but other issues can arise after installation, especially
with the key-storage files and directories.

Note: “Key-storage files and directories” are defined as those files and directories
contained in the key-storage directory including the top level key-storage directory.
That is, in the default configuration, all the files and directories below the
/usr/lpp/csuf/csufkeys directory, and the /usr/lpp/csuf/csufkeys directory itself.

For proper operation, the key-storage files and directories must have a group ID of
the application user group. That is, the “groupname” parameter used when the
csufappl utility was run.

Also, as a general rule, all key-storage directories should have file permissions of
770 (drwxrwx---) and be "owned" by root. All key-storage files should have file
permissions of 660 (-rw-rw----).

3-4 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

Where to Locate RS/6000 Coprocessor Hardware Errors
Errors occurring in the Coprocessor hardware are recorded in the AIX error log. To
process and view the log, enter the command

| errpt -a -N cryptn,libscc.a | more

| where n is 0, 1, 2, 3, 4, 5, 6, or 7 (for example, crypt0), depending on which CCA
| Coprocessor log you wish to view.

How to Remove the Support Program
If your key-storage files are located in the default directories, back up or save them
before you remove the support program; removing the software deletes those
key-storage files located in the default directories. For a list of the default
directories, see “How to Configure the Support Program” on page 3-3.

To remove the support program:

1. Logon as root.

2. Enter the command rmdev -dl crypt0; the Coprocessor device driver and
| related information are removed. Repeat this command for each CCA
| Coprocessor you plan to remove or relocate, changing crypt0 to crypt1,
| crypt2, and so forth as needed.

3. Enter the command smitty install_remove; you are prompted to enter the
product names.

4. Enter the product names csuf.cca, csuf.com, and devices.pci.14109f00.rte.

5. Verify that the “REMOVE dependent software” value is NO. Also, verify that
the “Preview Only” value is NO.

6. Press the Enter key.

 Chapter 3. Installing the Support Program 3-5

How to Install and Remove the Support Program for OS/2
This section includes a description of the support program system requirements
and procedures necessary to install and remove the software for OS/2.

 OS/2 Requirements
Before you install the support program, make sure your system meets the following
requirements:

 Hardware:

An IBM-compatible PC with an IBM 4758 PCI Cryptographic Coprocessor
installed. During installation of the software, the driver interacts with the
Coprocessor to arbitrate interrupt settings, DMA channels, and other system
resources. For installation instructions regarding the Coprocessor hardware,
refer to the IBM 4758 PCI Cryptographic Coprocessor Installation Manual.

 Software:

OS/2 WARP Version 4.0, WARP 4.0 Server, and WARP 4.0 Server SMP are
supported.

| Java runtime environment 1.1.6 through 1.2 (it is possible that a later release of
| Java will work, but it has not been tested by IBM), available from

http://www.ibm.com/java/jdk/download. This is required to use the
Cryptographic Node Management utility.

Netscape Navigator** for OS/2 Warp Version 2.02 or higher, available from
http://www.internet.ibm.com/browsers/netscape/warp. This is required to use
the install program.

| Release 2.30 CCA Support Program for OS/2.

 Disk Space:

 6.7 MB.

How to Install the Support Program
To install the support program:

1. From the OS/2 window, go to the directory containing the Coprocessor software
package you obtained as described in “How to Download the Software” on
page 2-3.

2. Enter the command 4758230o.exe; the program files are unpacked and
installed into the current directory.

3. If the OS/2 Feature Installer version 1.2 is not on your system, enter the
command fisetup; the Feature Installer is installed on your system.

4. Enter the command install; both the OS/2 Feature Installer and the Netscape
Navigator programs are launched.

5. To install the support program, follow the online directions.

When prompted to choose the directory location of the software, accept the
default or choose your own.

3-6 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

How to Install Manually
In the event of problems with the automatic installation process, you can follow this
procedure to manually install the software.

1. In an OS/2 window, change to the directory containing the Coprocessor
software package you obtained as described in “How to Download the
Software” on page 2-3. If this is not a temporary directory, copy the file
4758230o.exe to a temporary directory and change to that directory.

2. Run the 4758230o.exe program to unpack the software into your temporary
directory.

3. Copy the Support Program software to the working directories. Choose a drive
for the working directories and substitute the drive letter for x in the following
xcopy commands. If you do not already have the working directories, answer
D, Directory, to the xcopy query about file name or directory name.

xcopy �.dll x:\ibm4758

xcopy �.sys x:\ibm4758

xcopy csuecnm.cmd x:\ibm4758\cnm

xcopy readme.os2 x:\ibm4758\clu

xcopy csueincl.h x:\ibm4758\include

xcopy csuesapi.lib x:\ibm4758\lib

xcopy mac.c x:\ibm4758\samples

xcopy makefile.os2 x:\ibm4758\samples

xcopy �.clu x:\ibm4758\clu

xcopy csueclu.exe x:\ibm4758\clu

xcopy hikm.zip x:\ibm4758\cnm

| xcopy cca52"3.fcv x:\ibm4758\cnm

4. Make a backup copy of your config.sys file. Then make the following changes
to config.sys, and reboot your system. You can use the OS/2 tedit editor.
Substitute the drive letter for x in the following commands.

� Extend the LIBPATH variable with ;x:\ibm4758
� Add a line with device=x:\ibm4758\crypto.sys
� Add a line with set csudesds=x:\ibm4758\desstore.dat
� Add a line with set csupkads=x:\ibm4758\pkastore.dat
� Add a line with set csudesld=x:\ibm4758\deslist
� Add a line with set csupkald=x:\ibm4758\pkalist
� If the CLASSPATH variable is present, add ;x:\ibm4758\cnm\HIKM.zip to

the CLASSPATH variable
� If the CLASSPATH variable is not present, add the line

CLASSPATH=.;x:\ibm4758\cnm\HIKM.zip
| � Add a line with set CSU_DEFAULT_ADAPTER=CRP0n, where n = 1, 2, ...,
| or 8, depending on which installed CCA Coprocessor you want as the
| default (this command is optional, the default is CRP01).

There are two optional switches that you can use on the
device=x:\ibm4758\crypto.sys command, namely /q and /i.

� The /q switch suppresses the writing of the device driver logo to the console
output device.

� The /i switch suppresses activation of the PCI bus “extra cycle bypass logic.”
The PCI bus interface chip used in some IBM 4758s may be incompatible with
the PCI bus logic used in some personal computer systems. Normally, the
device driver activates additional problem-work-around logic contained on some
IBM 4758 Coprocessors. A few system types (for example, the IBM Netfinity

 Chapter 3. Installing the Support Program 3-7

5000) will hang within 10 minutes if the work-around logic is activated. If you
experience a system hang condition within 15 minutes after booting the system,
add the /i switch to the device= statement and reboot. If the hang problems
persist, contact IBM through the support form on the product website.

How to Configure the Support Program
The support program does not require additional configuration; however, you may
change the environment variables listed in this section. The environment variables
determine the location of the key-storage files and the key-record-list files used by

| CCA applications, and the default CCA Coprocessor.

To change an environment variable, enter on the command line:

set variable_name = new_directory_and_name

Note: You can also use set within a command file.

In the list below, current_directory represents the directory within which the
application calling the CCA library resides, and x represents the current drive.

CSUDESDS Specifies the name of the DES key-storage file. The default value
is x:\current_directory\DESSTORE.DAT.

CSUPKADS Specifies the name of the PKA key-storage file. The default value
is x:\current_directory\PKASTORE.DAT.

CSUDESLD Specifies the directory where the key-record-list files are created for
the DES_Key_Record_List verb. The default value is x:\KEYDIR.

CSUPKALD Specifies the directory where the key-record-list files are created for
the PKA_Key_Record_List verb. The default value is x:\PKADIR.

The environment variables are read by the CCA library at the beginning of the first
request sent to the CCA library after the library is loaded by the operating system.
Changes to the variables do not take effect until the operating system unloads and
then re-loads the library.

Note: When you initialize key storage using the Cryptographic Node Management
utility, ensure that you specify the directories defined by these variables; see “How
to Create or Initialize Key Storage” on page 5-21.

| To assign a default CCA Coprocessor, set the environment variable
| CSU_DEFAULT_ADAPTER to CRP0n, where n = 1, 2, ..., or 8, depending on
| which installed CCA Coprocessor you want as the default. If this environment
| variable is not set when the first CCA verb of a process is called, the CCA software
| sets Coprocessor CRP01 as the default. If this environment variable is set to an
| invalid value, you will get an error until the environment variable is set to a valid
| value.

How to Remove the Support Program
To remove the support program:

1. From the OS/2 window, go to the directory containing the support program
software.

2. Enter the command uninstal; the OS/2 Feature Installer and Netscape
Navigator programs are launched.

3-8 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

3. Follow the online directions; the software is removed from the operational
directories. (You must manually remove the distribution file and the files in the
temporary directory in which you unpacked the distribution file.)

Note: If you are unable to remove the IBM 4758 CCA software using the above
procedure, you can manually remove the software by following these steps. (These
instructions assume the software is on the C: drive, substitute the correct drive
letter as required.)

1. Modify the config.sys file:

a. Remove or comment out the “device=c:\ibm4758\crypto.sys” device driver
statement

b. Remove “c:\ibm4758” from the LIBPATH statement
c. Remove or comment out any of these lines:

 � “set csudesds=...”
 � “set csupkads=...”
 � “set csudesld=...”
 � “set csupkald=...”

| � “set CSU_DEFAULT_ADAPTER=...”
d. Remove “c:\ibm4758\cnm\HIKM.zip” from the CLASSPATH statement.

2. Erase the files in the “c:\ibm4758” directory structure and remove the directory
structure.

 Chapter 3. Installing the Support Program 3-9

| How to Install and Remove the Support Program for Windows NT and
| Windows 2000

This section includes a description of the support program system requirements
| and procedures necessary to install and remove the software for Windows NT and
| Windows 2000. “What to Do When Migrating from Windows NT to Windows 2000”
| on page 3-13 explains steps you must perform when migrating from
| Windows NT 4.0 to Windows 2000.

| If you migrate from Windows NT to Windows 2000 (as opposed to performing a
| new install of Windows 2000) and you are replacing an existing release of the
| support program with release 2.30, follow the installation procedure described in
| “What to Do When Migrating from Windows NT to Windows 2000” on page 3-13.
| You should also use this procedure if you are not sure which installation method
| was used to install Windows 2000 prior to installing release 2.30 of the support
| program.

Important: The installation process modifies the system registry; it must be
performed by a user with the administrator privilege.

| Windows NT and Windows 2000 Requirements
Before you install the support program, make sure your system meets the following
requirements:

 Hardware:

An IBM-compatible PC with an IBM 4758 PCI Cryptographic Coprocessor
installed. During installation of the software, the driver interacts with the
Coprocessor to arbitrate interrupt settings, DMA channels, and other system
resources. For installation instructions regarding the Coprocessor hardware,
refer to the IBM 4758 PCI Cryptographic Coprocessor Installation Manual.

 Software:

| Windows NT Version 4.0 or Windows 2000.

| Java runtime environment 1.1.6 through 1.2 (it is possible that a later release of
| Java will work, but it has not been tested by IBM), available from
| http://java.sun.com/j2se. This is required to use the Cryptographic Node

Management utility.

| Release 2.30 CCA Support Program for Windows NT/Windows 2000.

 Disk Space:

 2 MB.

How to Install the Support Program
To install the support program:

1. Enter the command 4758230w.exe.

2. Follow the online directions.

You have the choice of a typical or custom installation. With a custom
installation, you can choose which of these components you wish installed:
shared DLLs, samples, device driver, CLU utility, and/or CNM utility.

3-10 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

When prompted to choose the directory location of the software and of the
key-storage files used by the Cryptographic Node Management utility and other
CCA applications, you can accept the defaults or choose your own directory
locations.

| 3. Adjust the Windows NT/Windows 2000 System Time.

You must set the Windows NT “TZ,” time zone, environment variable. The
CCA access-control-system logon function requires that the system clock and
the Coprocessor clock-calendar be in close synchronization. The CCA Support
Program presumes that the system clock and the time zone settings have been
correctly established.

You issue a console command to temporarily set the TZ variable. For example,
for the Eastern time zone in the U.S.A.:

SET TZ=EST5EDT,4,1,",36"",1",-1,",72"",36""

For proper operation, you must completely set the TZ environment variable.

SET TZ=SSSh[:m[:s]]DDD,sm,sw,sd,st,em,ew,ed,et,shift

Variable Description Default
Value

SSS Standard-timezone identifier. It must be three characters,
must begin with a letter, and can contain spaces. Zone
names are determined by local or country convention. For
example, EST stands for Eastern Standard Time and applies
to parts of North America.

(none)

h, m, s The variable h specifies the difference (in hours) between the
standard time zone and Coordinated Universal Time (CUT),
formerly Greenwich mean time (GMT). You can optionally use
m to specify minutes after the hour, and s to specify seconds
after the minute. A positive number denotes time zones west
of the Greenwich meridian; a negative number denotes time
zones east of the Greenwich meridian. The number must be
an integer value.

(none)

DDD Daylight Savings Time (DST) zone identifier. It must be three
characters, must begin with a letter, and can contain spaces.

(none)

sm Starting month (1 to 12) of DST. 0

sw Starting week (-4 to 4) of DST. Use negative numbers to
count back from the last week of the month (-1) and positive
numbers to count from the first week (1).

0

sd Starting day of DST.
0 to 6 if sw != 0
1 to 31 if sw = 0

0

st Starting time (in seconds) of DST. 0

em Ending month (1 to 12) of DST. 0

ew Ending week (-4 to 4) of DST. Use negative numbers to count
back from the last week of the month (-1) and positive
numbers to count from the first week (1).

0

ed Ending day of DST.
0 to 6 if ew != 0
1 to 31 if ew = 0

0

et Ending time of DST (in seconds). 0

 Chapter 3. Installing the Support Program 3-11

To make the Windows NT TZ setting automatic, go to the Windows NT Control
| Panel, open the System folder, then select the Environment tab. In the box
| labeled Variable, enter TZ, and in the box labeled Value, enter the TZ
| parameters as defined for the SET TZ statement. Activate the OK button when
| done.

| To make the Windows 2000 TZ setting automatic, go to the Windows 2000
| Control Panel, open the System folder, then select the Advanced tab.
| Activate the Environment Variables... button followed by the New... button. In
| the box labeled Variable Name, enter TZ, and in the box labeled Variable
| Value, enter the TZ parameters as defined for the SET TZ statement. Activate
| the OK button when done.

4. The device driver invokes Coprocessor “PCI-bus chip-set mismatch logic.”
Netfinity 5000 machines, and possibly some machines from other
manufacturers, are incompatible with the chip-set mismatch logic. If you are
using a Netfinity 5000, or if you encounter a hung system within 15 minutes of
installing the Coprocessor, you should deactivate the chip-set mismatch logic.

| To deactivate the chip-set mismatch logic, use Windows NT/Windows 2000
| Explorer and double-click the IdSelect1.reg file (Windows NT) or the
| idselw21.reg file (Windows 2000) found in the c:\program files\IBM\4758

directory.1

Variable Description Default
Value

shift Amount of time change (in seconds). 0

| How to Configure the Support Program
| To assign a default CCA Coprocessor, use the SET command to set the
| environment variable CSU_DEFAULT_ADAPTER to CRP0n, where n = 1, 2, ..., or
| 8, depending on which installed CCA Coprocessor you want as the default. If this
| environment variable is not set value when the first CCA verb of a process is
| called, the CCA software sets Coprocessor CRP01 as the default. If this
| environment variable is set to an invalid value, you will get an error until the
| environment variable is set to a valid value.

How to Remove the Support Program
| To remove the Support Program in Windows NT:

| 1. Go to the Windows NT Control Panel.

| 2. Open the Add/Remove Programs folder; IBM 4758 PCI Cryptographic
| Coprocessor is displayed in the list of software.

| 3. Highlight IBM 4758 PCI Cryptographic Coprocessor.

| 4. Activate the Add/Remove... button; you are prompted to confirm file deletion.

| 5. Activate the Yes button; the software is removed.

| To remove the Support Program in Windows 2000:

1 Drive c: is the normal location for the \program files directory tree; your system can differ. If you subsequently need to reactivate
the mismatch logic, you can double-click the IdSelect0.reg file.

3-12 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

| 1. Go to the Windows 2000 Control Panel.

| 2. Open the Add/Remove Programs folder; IBM 4758 PCI Cryptographic
| Coprocessor is displayed in the list of software.

| 3. Highlight IBM 4758 PCI Cryptographic Coprocessor.

| 4. Activate the Change/Remove... button; you are prompted to confirm file
| deletion.

| 5. Activate the Yes button; the software is removed.

| What to Do When Migrating from Windows NT to Windows 2000
| If the Support Program Release 2.30 was installed under Windows NT, then when
| you migrate from Windows NT to Windows 2000, you must remove and re-install
| the support program to ensure the correct program files are copied and all entries
| in the Registry are properly updated. Follow this procedure:

| 1. Uninstall the support program following the directions for Windows NT/2000
| under “How to Remove the Support Program” on page 3-12.

| 2. Migrate from Windows NT to Windows 2000 if you have not done so already.

| 3. From the Windows 2000 Control Panel, open the Add/Remove Hardware
| folder and perform the Add/Remove Hardware Wizard to uninstall the
| “Coprocessor” entry in the hardware device list.

| 4. If you have multiple Coprocessors installed on the system, repeat step 3 until
| all of the “Coprocessor” entries in the hardware device list are removed.

| 5. Now install the Support Program Release 2.30, following the directions under
| “How to Install the Support Program” on page 3-10.

 Chapter 3. Installing the Support Program 3-13

3-14 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

Chapter 4. Loading Software into the Coprocessor

After installing the support program onto the host computer—as described in
Chapter 3, “Installing the Support Program”—use the Coprocessor Load Utility
(CLU) to load the Coprocessor operating system and CCA application into the
Coprocessor.

If you obtain updates to the support program, use the CLU utility to reload the
necessary program segments. You can also load software from other vendors
using the CLU utility.

This chapter includes:

| � Instructions for using the CLU utility to understand what Coprocessors are
| installed and their status, and to install and uninstall the software that runs

within the Coprocessor

� A reference section describing:

– The Coprocessor memory segments
– Validating the Coprocessor status
– The syntax used to invoke the CLU utility
– CLU utility return codes.

For a deeper understanding of the code loading controls and the security
considerations implemented by the Coprocessor, see the research paper Building a
High-Performance Programmable, Secure Coprocessor that is available on the IBM
4758 product website Library page.

Notes:

1. The file locations referenced in this chapter are the default directory paths.

| 2. Appendix E, “Device Driver Error Codes” describes error codes returned by the
| Coprocessor device driver. These are often presented in the form of a
| hexadecimal number such as X'8040xxxx'. You may encounter some of these
| error situations, especially when you first use the CLU utility and are less
| familiar with the product and its procedures.

3. The Coprocessor function-control vector (FCV) is loaded by the Cryptographic
Node Management utility described in Chapter 5, “Using the CNM and CNI
Utilities to Manage the Cryptographic Node.”

How to Load Coprocessor Software
This section provides the procedures you use in loading software into the
Coprocessor. You will need to refer to the README file that accompanies the
software distribution you are installing for specific .CLU file names. The README
file may also provide additional information that amplifies or modifies these general
procedures.

You will be instructed to follow this sequence of steps:

1. At a command prompt, change to the directory with the CLU files
2. Determine the software currently resident within the Coprocessor
3. Change the contents of software segments 1, 2, and 3 as appropriate

 Copyright IBM Corp. 1997-2000 4-1

4. Validate the final contents of the software segments.

Changing the Default Directory and Running CLU
You will need to locate the directory that contains the Coprocessor code files
(*.CLU) and possibly the CLU utility. At a command prompt, change to the
directory for the code files. If the CLU utility is not in this directory, ensure that

| your operating system can locate the CLU utility. On OS/2 and Windows NT/2000
| systems platforms, the CLU utility must either be located in the default directory or

be included in the path statement. The default Coprocessor code directories are:

AIX /usr/lpp/csuf/clu
OS/2 \IBM4758\CLU

| Windows NT/2000 \Program Files\IBM\4758\CLU

| On Windows NT/2000 systems you can issue a change directory command that
includes a space character by enclosing the parameter in quotation marks, for
example:

cd "\Program Files\IBM\4758\CLU"

To run the CLU utility, you enter the program name at the command prompt,
CSUxCLU where “x” is different for the three operating systems:

AIX CSUFCLU
OS/2 CSUECLU

| Windows NT/2000 CSUNCLU

You can provide parameters interactively to the CLU utility, or you can include
these on the command line input. (Details are provided at “Coprocessor Load
Utility Syntax” on page 4-8.) Each time that you use CLU you will need to specify
a log file name. This is the first parameter and can be included on the command

| line. In general, when working with a specific Coprocessor, it is strongly
recommended you use the Coprocessor serial number as the log file name. You
can obtain the serial number from the label on the bracket at the end of the
Coprocessor. By always naming the log file with the serial number, you can keep a
complete history of status and code changes for the contents of each Coprocessor.

CLU will append information to two log files. If the log files do not exist, they will
be created. One log file contains the same information that is normally displayed
on your console. The second log file, to which CLU will assign MRL as the file
name extension, contains a “machine-readable log.” The MRL file is intended for
use with an analysis utility.

Subsequent instructions in this section assume that you use CLU interactively.
Change to the directory that contains the Coprocessor code files. Start CLU with
the name appropriate to your operating system. Respond to the prompts as
requested.

| CLU obtains the number of installed Coprocessors from the device driver. If you
| have more than one installed Coprocessor, CLU will interactively ask you for the
| “number” of the Coprocessor with which you intend to interact. These numbers
| (“cop.#”) range from 0 to 7. To correlate these numbers to a particular
| Coprocessor, use the System Status (“SS”) command to learn the number for each
| of the installed Coprocessors. (See Figure 4-2 on page 4-10.)

4-2 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

| Note: The CLU utility can only operate with a Coprocessor when it can obtain
| exclusive control of the Coprocessor. If any other application (thread) is running
| that has performed CCA verb calls, all of the Coprocessors that are loaded with
| CCA will be “busy” and unusable by CLU.

| Important: When trying to use CLU, no applications that use CCA or PKCS #11
| should be running.

Determining Coprocessor Software Segment Contents
The Coprocessor has three “segments” called segment 1, segment 2, and
segment 3. Each segment:

� Has a status
 � Holds software
� Holds a validation public key
� Has an owner identifier (except segment 1).

.
Segment Content
1 “Miniboot,” contains diagnostics and code loading controls
2 CP/Q++ embedded control program
3 CCA, or another application.

You determine the current content and status of the Coprocessor segments using
the ST command. Figure 4-1 shows a typical ST response. Information in bold
text is discussed next.

| ==

| CSUNCLU V2.3" 23"test.nt.log ST " begun Thu Jul 2" 14:49:38 2"""

| ����������� Command ST started. ---- Thu Jul 2" 14:49:38 2"""

| ��� VPD data; PartNum = "4K9127

| ��� VPD data; EC Num = F72272A

| ��� VPD data; Ser Num = 41-""""4
| ��� VPD data; Description = IBM 4758-""2 5."V FIPS 14" LVL 4
| ��� VPD data; Mfg. Loc. = IBM"41

| ��� VPD data; Flags = 24""5"""2"""""""

| ��� ROM Status; PIC ver: 21"", ROM ver: 11"2

| ��� ROM Status; INIT: INITIALIZED
| ��� ROM Status; SEG2: RUNNABLE , OWNER2: 2
| ��� ROM Status; SEG3: RUNNABLE , OWNER3: 2
| ��� Page 1 Certified: YES

| ��� Segment 1 Image: CCA 2.3" & PKCS#11 SEGMENT-1
| ��� Segment 1 Revision: 23"

| ��� Segment 1 Hash: """" 1111 2222 3333 4444 5555 6666 7777 8888 9999

| ��� Segment 2 Image: CCA 2.3" & PKCS#11 SEGMENT-2
| ��� Segment 2 Revision: 23"

| ��� Segment 2 Hash: """" 1111 2222 3333 4444 5555 6666 7777 8888 9999

| ��� Segment 3 Image: CCA 2.3" SEGMENT-3
| ��� Segment 3 Revision: 23"

| ��� Segment 3 Hash: """" 1111 2222 3333 4444 5555 6666 7777 8888 9999

| ��� Query Adapter Status successful ���

| Obtain Status ended successfully!

| ����������� Command ST ended. ---- Thu Jul 2" 14:5":54 2"""

Figure 4-1. Typical CLU Status Response

 Chapter 4. Loading Software into the Coprocessor 4-3

Item Discussion

Ser Num The serial number of the Coprocessor, for example, 41-00004.

Description A statement that describes the type of Coprocessor in general terms.
Auditors should review this and other status information to confirm that
an appropriate Coprocessor is in use.

ROM Status The Coprocessor must always be in an INITIALIZED state. If the
status is ZEROIZED, the Coprocessor has detected a possible tamper
event and is in an unrecoverable, non-functional state. (Unintended
“tamper” events can be created by improper handling of the
Coprocessor. Only remove the batteries when following the
recommended battery changing procedure, maintain the Coprocessor in
the safe temperature range, and so forth. See the IBM 4758 PCI
Cryptographic Coprocessor Installation Manual.)

ROM Status SEG2 / SEG3 Several status conditions for SEGment 2 and
SEGment 3 exist, including:

� Unowned: currently not in use, no content
� Runnable: contains code and is in a generally usable state.

Owner identifiers are also shown. The standard CCA Support Program
is assigned identifier 02 for both segments 2 and 3. Any other owner
identifier indicates that the software is not the standard IBM CCA
product code. In all cases, be certain that the proper software is loaded
in your Coprocessor. Unauthorized or unknown software can represent
a security risk to your installation.

Segment 1 Image The name and description of the software content of segment 1.
For a factory-fresh Coprocessor, the name will include “Factory.” This
image and associated validation key will need to be changed.

For a previously loaded Coprocessor, the segment 1 name will probably
include “CCA.” Be sure to observe the revision level.

Segment 2 and 3 Images If these segments have Owned status, observe the
image name and the revision level. IBM incorporates “CCA” in the
image name to indicate that the image is provided as part of the CCA
Support Program. Be sure to observe the revision level.

Changing Software Segment Contents
Generally the software within the Coprocessor must be at the same release level
as the CCA software in the hosting system. Do not attempt to mix-and-match
different release levels except with specific instructions from IBM.

Start the CLU utility and enter the parameters interactively (see “Changing the
Default Directory and Running CLU” on page 4-2).

� Enter the log file name (########.LOG, where ######## is the serial number
of the Coprocessor).

� Enter the command, PL.
| � If there are multiple Coprocessors, enter the Coprocessor number.

� Enter the CLU file name as indicated in the README file.

Repeat as required so that the proper software is loaded for segments 1, 2, and 3.

4-4 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

Validating the Coprocessor Segment Contents
After you have loaded or replaced the code in segments 1, 2, and 3, use the CLU
VA command to confirm the segment contents and validate the digital signature on
the response created by the Coprocessor. Depending on the IBM 4758 model in
use,1 issue one of these commands:

� For a Model 002:

| CSUxCLU ########.LOG VA [cop.#] "4K9127V.CLU

| � For a Model 023:

| CSUxCLU ########.LOG VA [cop.#] "4K9132V.CLU

| The README file describes the Image Names that you should observe. “[cop.#]” is
| the optionally required designator for a particular Coprocessor and defaults to zero.

How to Unload Coprocessor Software and Zeroize the CCA Node
When you use CLU to process a file that surrenders ownership of segment 2, both
segment 2 and the subordinate segment 3 are cleared: the code is removed, the
validating public key for the segment is cleared, the security-relevant data items
held within the Coprocessor for the segment are zeroized, the owner identifiers are
cleared, and the segment's status is set to “UNOWNED.”

Refer to the README file that accompanies the software distribution you are using
for the specific .CLU file name used to surrender ownership of segments 2 and 3.
The README file may also provide additional information that amplifies or modifies
this general procedure.

Perform these actions:

� Change to the directory that contains the CLU files.
� Start the CLU utility, CSUxCLU.
� Respond to the prompts and use the serial number of the Coprocessor in the

log file name.
� Use the PL command to surrender segment 2 as indicated in the README file

for your platform.

Notes:

1. You can also zeroize CCA without removing the software by using the CCA
reinitialize process. See “How to Initialize (Zeroize) the Node” on page 5-7.

2. IBM does not normally make available a file to restore the factory segment 1
validating key to put the Coprocessor into a condition similar to a factory-fresh
product. Segment 1 can only be changed a limited number of times before the
available Device Key certificate space is exhausted and the Coprocessor is
potentially rendered unusable. If you require a capability to restore the
segment 1 factory validating key, and are willing to expose your Coprocessor to
a possible lock-up condition, you can obtain the required file from IBM by
submitting a query via the Support Form on the IBM 4758 product website,
http://www.ibm.com/security/cryptocards.

1 You can refer to the IBM 4758 product website (http://www.ibm.com/security/cryptocards) FAQ section for the procedure to
validate Coprocessor integrity. That topic carries the current list of class-key certificate files.

 Chapter 4. Loading Software into the Coprocessor 4-5

Coprocessor Load Utility Reference
If you are interested in additional details concerning the Coprocessor code loading
process, continue reading this section. Otherwise, continue reading at Chapter 5,
“Using the CNM and CNI Utilities to Manage the Cryptographic Node.”

This reference section describes:

� The Coprocessor memory segments into which you load the software
� The way in which the Coprocessor validates software loads
� The syntax used to invoke the CLU utility
� CLU utility return codes.

Coprocessor Memory Segments
Coprocessor memory segments are organized as follows:

Segment 0 Basic code

The basic code manages Coprocessor initialization and the
hardware component interfaces. This code cannot be changed
after the Coprocessor leaves the factory.

Segment 1 Software administration and cryptographic routines

Software in this segment:

� Administers the replacement of software already loaded to
Segment 1.

� Administers the loading of data and software to segments 2
and 3.

� Is loaded at the factory, but can be replaced using the CLU
utility.

Segment 2 Embedded operating system

The Coprocessor support program includes the CP/Q++

operating system; the operating system supports applications
loaded into Segment 3. Segment 2 is empty when the
Coprocessor is shipped from the factory.

Segment 3 Application software

The Coprocessor support program includes a CCA application
program that can be installed into Segment 3. The application
functions according to the IBM CCA and performs access
control, key management, and cryptographic operations.
Segment 3 is empty when the Coprocessor is shipped from the
factory.

Validation of Coprocessor Software Loads
When the Coprocessor is shipped from the factory, it has within it the public key
needed to validate replacement software for segment one.

Loading code into Coprocessor segment 2 and segment 3 is a two-step process
for each segment.

1. First, an “owner identifier” for a segment is sent to the Coprocessor using an
Establish Owner command. The owner identifier is only accepted if the digital
signature associated with this identifier can be validated by the public key

4-6 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

residing with the immediately lower segment. Once established, ownership
remains in effect until a Surrender Owner command is processed by the
Coprocessor.

2. Second, a “code load” for a segment is sent to the Coprocessor. Two different
commands are available.

a. Initially use the Load command. Load command data includes a public-key
certificate that must be validated by the public key already residing with the
next-lower segment. If the certificate is validated, and if the owner identifier
in the Load command data matches the current ownership held by the
Coprocessor for the segment, and if the complete Load command data can
be validated by the public key in the just-validated certificate, the
Coprocessor will accept the code and retain the validated public-key for the
segment.

b. If a segment already has a public key, a Reload command can be used to
replace the code in a segment. The Coprocessor actions are the same as
for a Load command, except that the included certificate must be validated
by the public key associated with the target segment rather than the key
associated with the next-lower segment2.

The CP/Q++ embedded operating system, working with the Coprocessor hardware,
can store security-relevant data items (SRDI) on behalf of itself and an application
in segment 3. The SRDIs are zeroized upon tamper detection, loading of segment
software, or a Surrender Owner of a segment. Note that the SRDIs for a segment
are not zeroized when using the Reload command. The CCA application stores the
master keys, the function-control vector, the access control tables, and retained
RSA private keys as SRDI information associated with segment 3.

IBM signs its own software. Should another vendor intend to supply software for
the Coprocessor, that vendor’s Establish Owner command and code-signing
public-key-certificate must have been signed by IBM under a suitable contract.
These restrictions ensure that:

� Only authorized code can be loaded into the Coprocessor
� Government restrictions are met relating to the import and export of

cryptographic implementations.

2 In this publication the terms “load” and “reload” are employed. Other documentation may refer to these operations as “emergency
burn” (EmBurn), and “regular burn” or “remote burn” (RemBurn), respectively.

 Chapter 4. Loading Software into the Coprocessor 4-7

Coprocessor Load Utility Syntax
This section details the syntax used to invoke the load utility, and describes each
function available in it. Use the utility to:

| � Ensure that the Coprocessor(s) is not “busy” by ending any application(s) that
| might have used a Coprocessor. For example, end all applications that use
| either or both the CCA and PKCS #11 APIs.

� Obtain the release level and the status of software currently installed in the
Coprocessor memory segments

� Confirm the validity of digitally signed messages returned by the Coprocessor
� Load and re-load portions of the Coprocessor software
� Reset the Coprocessor.

To invoke the utility:

1. Log on as required by your operating system.

2. Go to the command line.

3. Change directory to the directory containing the CLU utility files. The default
directories are:

AIX /usr/lpp/csuf/clu
OS/2 \IBM4758\clu
NT \Program Files\IBM\4758\clu

4. Enter the utility name followed by the parameters described below. The utility
names are:

AIX csufclu
OS/2 csueclu
NT csunclu

If you do not supply the necessary parameters, the utility will prompt you as
information is required. Optional parameters are enclosed in brackets. The syntax
for the parameters following the utility name is:

| [logfile_name cmd [cop.#] [datafile_name] [-q]]

| “[” and “]” enclose optional items.

| Example: To obtain the Coprocessor status and save the results to the logfile,
| enter:

csufclu ########.log va datafile_name.clu

where:

| ########.log Identifies the logfile name, and it is recommended that
######## should be the serial number of the Coprocessor. It is
not mandatory to use the serial number, but it can be of value to
retain a history of all software changes made to each specific
Coprocessor. The utility appends entries to this ASCII text file
as it performs the operations requested. A second “machine
readable” log file, with a file name of logfile_name.MRL, is also
created. This log file can be processed by a program and
contains the binary-encoded responses from the Coprocessor.
For information about the contents of this log file, see
Appendix C, “Machine-Readable-Log Contents.”

4-8 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

cmd A two-letter abbreviation representing the command to be run.
See “Coprocessor Load Utility Commands” on page 4-9.

cop.# Provides the Coprocessor number as established by the device
driver. This parameter defaults to zero. Coprocessors are

| designated to the device driver as numbers 0, 1, ..., 7. You
| can use the serial number information that you obtain with the
| status or validate commands and the serial number printed on
| the end-bracket of the Coprocessor to correlate a particular
| Coprocessor to the cop.#. The utility supports up to eight
| Coprocessors per machine.

datafile_name Identifies the data file (drive, directory, and filename) used for
the operation requested.

� For software loads and re-loads it is the filename of the
software image you are loading into the Coprocessor. The
CCA Support Program README file provides the
datafile_name.

| � When obtaining Coprocessor status with the VA command,
| it is the class-key certificate filename used to validate the
| Coprocessor response. The IBM 4758 product website
| (http://www.ibm.com/security/cryptocards) Frequently Asked
| Questions (FAQ) area contains a description of the
| procedure for validating the Coprocessor and its code. This
| description also contains a list of all of the current class-key
| certificate file names. You can download any required
| certificate file from the website.

-q Suppresses (quiets) the CLU program output to the standard
output device. The status information is nonetheless appended
to the log files.

Coprocessor Load Utility Commands
The Coprocessor load utility supports these commands:

| SS: System Status
| Obtains the part number, serial number, and a portion of the segment-3
| software image name for each of the installed Coprocessors provided
| that these are not being used by some application such as CCA or
| PKCS #11. See Figure 4-2 on page 4-10.

ST: Obtain Status
Obtains the status of loaded software and the release level of other
components. The status is appended in the log files.

VA: Obtain Status with Validation
Obtains the status of loaded software and the release level of other
components. The data is transmitted in a message signed by the
Coprocessor device key, and then stored in the utility logfile.

The utility uses its built-in public key to validate the one-or-more
class-key certificates contained in datafile_name. One of these
certificates should validate the public key—or chain of public
keys—obtained from the Coprocessor, and confirm that the Coprocessor
has not been tampered.

 Chapter 4. Loading Software into the Coprocessor 4-9

PL: Package Load3
Processes a series of the commands as directed by the contents of the
data file to establish segment ownership and to load or reload segment
software.

RS: Reset Coprocessor
Resets the Coprocessor. Generally you will not use this command. The
command causes the Coprocessor to perform a power-on reset. You
may find this command helpful should the Coprocessor and the
host-system software lose synchronization. You should end all
host-system software processes that are operating with the Coprocessor
prior to issuing this command to enable the complete cryptographic
subsystem to get to a reset state.

In general, the utility can be invoked by a script file or a command file. When
creating a script file or a command file to invoke the utility on an unattended
system, add “quiet” syntax -q (or -Q, /q, or /Q) to request that nothing be output to
the display. By default, the utility returns prompts and messages to the display.

| CSUNCLU V2.3" rrm.log ss begun Fri Nov 17 14:18:45 2"""

| ����������� Command ss started. ---- Fri Nov 17 14:18:45 2"""

| Card # P/N S/N Segment 3 Description

| ------ ------- -------- ------------------------------------

| " "4K9127 41-""""8 CCA 2.3" Segment-3

| 1 "4K9127 41-""""7 PKCS #11 Application 2"""111415""

| 2 "4K9434 PR-"1337 CCA 2.3" Segment-3

| 3 "4K9127 41-F""61 CCA 2.3" Segment-3

| 4 "4K9"41 PR-"12"" CCA 2.3" Segment-3

| 5 "4K9434 PR-"1331 PKCS #11 Application 2"""111415""

| 6 "4K9132 41-""164 CCA 2.3" Segment-3

| 7 "4K9434 PR-"1"52 CCA 2.3" Segment-3

| ��� Query System Status successful ���

| System Status ended successfully!

| ����������� Command ss ended. ---- Fri Nov 17 14:21:42 2"""

| ����������� Command ss exited. ---- Fri Nov 17 14:22:42 2"""

| Figure 4-2. Typical CLU System Status Response

| 3 The CLU utility packaged with the CCA Support Program Version 1 used additional commands to control ownership and code
loading into the Coprocessor: commands R1, E2, L2, R2, S2, E3, L3, R3, and S3. With this release, these commands are
inferred from information contained in the data files that you use with the PL command. A single “PL” file can incorporate
information for multiple ownership and loading commands.

4-10 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

Coprocessor Load Utility Return Codes
When the utility finishes processing, it returns a value able to be tested in a script
file or in a command file. The returned values and their meanings are:

0 OK.

1 Command line parameters not valid.

2 Cannot access the Coprocessor. Be sure that the Coprocessor and its driver
have been properly installed.

3 Check the utility logfile for an abnormal condition report.

4 No Coprocessor installed. Be sure that the Coprocessor and its driver have
been properly installed.

5 Invalid Coprocessor number specified.

6 A data file is required with this command.

7 The data file specified with this command is incorrect or invalid.

 Chapter 4. Loading Software into the Coprocessor 4-11

4-12 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

Chapter 5. Using the CNM and CNI Utilities to Manage the
Cryptographic Node

A computer that provides cryptographic services, such as key generation and digital
signature support, is defined here as a cryptographic node. The Cryptographic
Node Management (CNM) utility and the Cryptographic Node Initialization (CNI)
utility provided with the Support Program are tools to set up and manage the CCA
cryptographic services provided by a node.

This chapter includes:

� Overview: What the utilities are and how to start them

� How to use the utilities: Three sample scenarios you should consider.

And several sections with details on specific utility topics:

� How to use the CNM utility administrative functions: Things that you should be
aware of in the Cryptographic Node Management utility. You should review
this material after working through the topic “How to Establish a Test Node” on
page 5-3.

� How to create and manage access-control data: Some details about the
access-control portion of the Cryptographic Node Management utility.

� How to manage cryptographic keys: Some of the key management things you
can accomplish with the Cryptographic Node Management utility.

� Using the CNI utility to establish other nodes: How you can automate use of
the Cryptographic Node Management utility using encapsulated procedures.

Note: This chapter describes the major functions of the Cryptographic Node
Management utility. For additional information about specific panels and fields,
refer to the online help panels included with the utility.

These utilities are written in Java** and require use of a Java runtime environment
(JRE). You can also use the Java Development Kit (JDK). For a description of the
system setup required to run these utilities, see:

“AIX Requirements” on page 3-2
“OS/2 Requirements” on page 3-6
“Windows NT and Windows 2000 Requirements” on page 3-10.

 Overview
Typical users of the Cryptographic Node Management utility and the Cryptographic
Node Initialization utility are security administration personnel, application
developers, system administrators, and, in some cases, production-mode operators.

Notes:

1. The Cryptographic Node Management utility furnishes a limited set of the CCA
API services. After becoming familiar with the utility, you can determine
whether it meets your needs or whether you require a custom application to
achieve more comprehensive administrative control and key management.

2. Files that you create through use of the CNM utility may be dependent on the
release of the Java runtime environment. If you change the release of the Java

 Copyright IBM Corp. 1997-2000 5-1

runtime environment that you use, files that you have created with the CNM
utility might not function correctly with the new release.

3. Files that you create through use of the CNM utility do not operate with the
Java runtime environment on other operating system platforms. You must
create the CNM-produced files that you use on a machine with the same
operating system, and generally with the same release of the Java runtime
environment.

4. The CNM utility has been designed for use with a mouse. Use the mouse click
instead of the Enter key for consistent results.

5. No help panels are provided for the Master Key Cloning portion of the utility.
See “How to Clone a Master Key” on page 5-18.

6. These utilities use the IBM Common Cryptographic Architecture (CCA) API to
request services from the Coprocessor. The IBM 4758 CCA Basic Services
Reference and Guide contains a comprehensive list of the verbs (also known
as “callable services” or “procedure calls”) provided by the CCA API. You will
need to refer to this book and the individual services described herein to
understand which commands may require authorization in the various roles that
you will define using the procedures described in this chapter.

Cryptographic Node Management Utility Overview
The Cryptographic Node Management utility is a Java application that provides a
graphical user interface to use in the setup and configuration of IBM 4758 CCA
cryptographic nodes. The utility functions primarily to set up a node, create and
manage access-control data, and manage the CCA master-keys necessary to
administer a cryptographic node.

You can load data objects directly into the Coprocessor or save them to disk. The
data objects are usable at other IBM 4758 CCA nodes that use the same operating
system and a compatible level of Java.

How to Start the Cryptographic Node Management Utility: To start the CNM
utility:

� On AIX systems, enter csufcnm on the command line.

� On OS/2 systems:

– Change directory to \ibm4758\cnm
– Enter csuecnm on the command line.

| � On Windows NT/2000 systems:

– Change directory to \program files\ibm\4758\cnm
– Enter csuncnm on the command line.

The CNM utility logo and then the main panel are displayed.

Cryptographic Node Initialization Utility Overview
The Cryptographic Node Initialization utility runs scripts that you create using the
CNI Editor within the Cryptographic Node Management utility. These scripts are
known as CNI lists. The CNI utility can run the Cryptographic Node Management
utility functions necessary to set up a node; for example, it can be used to load
access control roles and profiles.

5-2 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

As you create a CNI list, you specify the disk location of the data objects that the
Cryptographic Node Initialization utility will load into the target nodes. After creating
a CNI list, you can distribute the CNI list and any accompanying data files (for
roles, profiles, and so forth) to nodes where the CNI utility will be used for an
“automated” setup. The source node and all nodes running the distributed CNI list
must employ the same operating system and a compatible level of Java.

The Cryptographic Node Initialization utility is further explained in “Using the CNI
Utility to Establish Other Nodes” on page 5-24.

How to Use the Utilities, Sample Scenarios
The following scenarios illustrate how to use the utilities:

1. Establish a test node to be used to develop applications or establish
procedures for using the Cryptographic Node Management utility. First-time
users should follow this procedure to begin experimentation with the utility and
the Coprocessor.

2. Establish nodes for a production environment using key parts. This scenario
employs CNI lists to automate establishment of “target” production nodes.

3. Clone a master key from one Coprocessor to another Coprocessor. This is a
procedure of interest to very-high-security installations that employ multiple
Coprocessors.

The purpose of the scenarios is to illustrate how the procedures described in this
chapter can be used. Where appropriate, a scenario cross-refers to sections with
more detailed information.

If you are not familiar with the Coprocessor's CCA access-control system, see
“Access-Control Overview” on page 5-10 and “Initial State of the Access-Control
System” on page 5-10. Here you will find an explanation of terms like role,
initial-DEFAULT role, and user profile. The scenarios assume that the
access-control system is in its initial state.

Note: These scenarios are instructional only. You are encouraged to determine
| the procedures best suited for your specific environment. Be sure to review the
| contents of Chapter 6, “Observations on Secure Operations.”

How to Establish a Test Node
In this scenario, a single developer sets up a node to allow unlimited access to
cryptographic services.

Important: The resulting cryptographic node should not be considered secure
because under this scenario many sensitive commands are permitted unrestricted
use.

1. Install the Coprocessor and the CCA Cryptographic Coprocessor Support
Program as described in the previous chapters. Start the Cryptographic Node
Management utility as described at “How to Start the Cryptographic Node
Management Utility” on page 5-2.

Remember that you must have installed an appropriate level of the Java
Runtime Environment (JRE) or the Java Development Kit (JDK).

 Chapter 5. Using the CNM and CNI Utilities to Manage the Cryptographic Node 5-3

| 2. If you have more than one Coprocessor with CCA installed, specify to the CNM
| utility which Coprocessor you want to use. From the Crypto Node pull-down
| menu, select Select Adapter. You will see a drop-down list of available
| adapter numbers (ranging from one up to a maximum of eight). Choose an
| adapter (Coprocessor) from the list. If you do not use the Select Adapter
| pull-down to choose an adapter, the default adapter (Coprocessor) is used.

3. Synchronize the clock within the Coprocessor and host computer. From the
Crypto Node pull-down menu, select Time; a sub-menu is displayed. From
the sub-menu, select Set; the clocks are synchronized.

4. Use the CNM utility to permit all commands in the DEFAULT role. From the
Access Control pull-down menu, select Roles. Highlight the DEFAULT entry
and select Edit. You will see a screen that shows which commands are
already enabled and which commands are not enabled by the DEFAULT role.
Select Permit All. Then load the modified role back into the Coprocessor by
selecting Load and then OK.

Before selecting Cancel, you could have saved a copy of this
“all-commands-enabled” role to your file system using the Save button and
assigning a file name. You must also select the folder (directory, library) where
you will save the role.

For more detail, see “How to Define a Role” on page 5-11.

Finish this task by selecting Cancel.

5. Load the function-control vector into the Coprocessor. From the Crypto Node
pull-down menu, select Authorization; a sub-menu is displayed. From the
sub-menu, select Load to specify and load the function-control vector.

The FCV file that you need to specify is the one that you downloaded from the
Web. FCVs usually have file names such as “CCA5203.FCV” and can be
found by using the file search utility available with your operating system.

6. Install a master key. From the Master Key pull-down menu, select Auto Set...;
you are prompted to verify the command. Select Yes; the Coprocessor
generates and sets a master key.

The master key installed with Auto Set has actually passed through the main
memory of your system processor as key parts. For production purposes, you
should use a more secure method of establishing a master key such as
random generation or installation of known key-parts entered by two or more
individuals. These options are also accessed from the Master Key pull-down
menu.

For more detail, see “How to Auto-Set or Randomly Generate the Master Key”
on page 5-17.

7. Key storage is a CCA term that describes a place where the support program
can store DES and RSA cryptographic keys under names that you (or your
applications) define. If you will use key storage, one or both of the DES and
the RSA (“PKA”) key-storage files must be initialized. See “How to Create or
Initialize Key Storage” on page 5-21.

5-4 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

How to Establish Nodes in a Production Environment
In this scenario, the responsibility for establishing cryptographic nodes is divided
among three individuals: an access-control administrator and two key-management
officers. The administrator sets up the node and its access-control system, then
the key-management officers load a master key and any required key-encrypting
key(s). The key-encrypting keys can be used as transport keys to convey other
keys between nodes.

Note that this scenario is focused on installing master keys and high-level,
inter-node DES key-encrypting keys from key parts. The CCA implementation
supports alternatives such as random master-key generation and distribution of
DES keys using techniques based on RSA public-key technology. The key-part
technique assumes that there are two key-management officers who can be trusted
to perform their tasks and to not share their key-part information. This implements
a split knowledge policy. The access-control system is set up to enforce dual
control by separating the tasks of the first and second officers.

In this scenario, the access-control administrator uses the Cryptographic Node
Management utility to prepare CNI lists for the target node(s). The CNI lists
automate the process of using the Cryptographic Node Management utility at the
target node. The administrator prepares a CNI list for the tasks performed by the
target node access-control administrator and the two key-management officers.
The administrator must know what commands require authorization in the target
node under different conditions, including:

� Normal, limited operation (when the default role is used)
� When performing the access-control-administrator tasks
� When performing each of the key-management-officer tasks
� And under any other special circumstances using additional roles and profiles.

The administrator authorizes commands in the various roles to ensure that only
those commands actually required are enabled. Sensitive commands, such as
loading a first key part or loading subsequent key part(s), are only enabled in roles
for users with the responsibility and authority to utilize those commands. It is
important to separate the responsibilities so that policies such as “split knowledge”
and “dual control” are enforceable by the Coprocessor's access-control system.

For more detail, see “How to Create and Manage Access-Control Data” on
page 5-9.

 Access-Control-Administrator Procedure
In this task, the access-control administrator uses the Cryptographic Node
Management utility to prepare CNI lists for the target node(s). To set up the node
and create its access-control data, the access-control administrator can:

1. On an established node, start the Cryptographic Node Management utility

2. Create and save to disk the access-control data for the target node, including:

� Supervisory roles and user profiles for the access-control administrator and
the key-management officers

� A DEFAULT role to replace the initial-DEFAULT role.

For more detail, see “How to Create and Manage Access-Control Data” on
page 5-9. For information about creating a CNI list, see “Using the CNI Utility
to Establish Other Nodes” on page 5-24.

 Chapter 5. Using the CNM and CNI Utilities to Manage the Cryptographic Node 5-5

a. Create a Cryptographic Node Initialization list to:

1) Synchronize the clock-calendar within the Coprocessor and host
computer

2) Load the access-control data
3) Log on as an access-control administrator
4) Load the replacement DEFAULT role
5) Load the function-control vector

 6) Log off.

b. Create a CNI list for the first key-management officer:

1) Log on for the first key-management officer
2) Load a first master-key key-part
3) As required, load first-part key-encrypting-key information

 4) Log off.

c. Create a CNI list for the second key-management officer:

1) Log on for the second key-management officer
2) Load a second master-key key-part
3) As required, load second-part key-encrypting-key information

 4) Log off.

3. Install the Coprocessor and the support program onto the target node(s).

Note to AIX Users: By default, use of support program utilities is restricted to
the root user and the system group. See “How to Configure the Support
Program” on page 3-3 for information about setting the permissions associated
with the utilities.

4. Transport to the target nodes the access-control data and the function-control
vector specified in the CNI list.

5. With the involvement of the key-management officers, on each target node run
the CNI lists developed in steps 2a, b, and c. See “Using the CNI Utility to
Establish Other Nodes” on page 5-24.

The target nodes are now ready to provide cryptographic service.

 Key-Management-Officer Procedures
The key-management officers have two tasks:

� Prepare the key parts for eventual use at the target node(s)
� Load the key parts at the target nodes.

You have to decide how the key parts will be transported from the point of
generation to the point of installation. There are several reasonable scenarios:

1. Generate the key parts at a central place and transport these on diskettes

2. Generate the key parts at a central place and transport these on paper forms

3. Generate the key parts at the point and time of (first) installation. If the key
parts will be needed at another time, either to reload or to share with another
node, then how the key parts will be transported has to be decided.

You should review the specific capabilities of the Cryptographic Node Management
utility by working with the utility. Then review the specific approach that you select
and test the Cryptographic Node Initialization that has been prepared in conjunction
with the access-control administrator.

5-6 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

For more detail, see “How to Manage Cryptographic Keys” on page 5-15.

How to Use the CNM Administrative Functions
This section describes how to use the Cryptographic Node Management utility to:

| � Optionally choose among multiple Coprocessors
� Initialize (or “zeroize”) the Coprocessor
� Log on to and off of the Coprocessor
� Load the Coprocessor function-control vector
� Configure the utility defaults
� Synchronize the clock-calendars within the Coprocessor and the host computer
� Poll status information about the Coprocessor and the CCA application.

| How to Choose a Coprocessor
| If your system has multiple Coprocessors loaded with the CCA code, generally you
| will need to select the specific Coprocessor with which you wish to operate upon. If
| you do not make a selection, you will operate with the default Coprocessor. Once
| you make a Coprocessor selection, that selection remains in effect for the current
| utility session or until you make a different selection within the utility session.

| To select an adapter (Coprocessor) you want to use, from the Crypto Node
| pull-down menu, select Select Adapter. You will see a drop-down list of available
| adapter numbers (ranging from one up to a maximum of eight). Choose an adapter
| (Coprocessor) from the list. If you do not use the Select Adapter pull-down to
| choose an adapter, the default adapter (Coprocessor) is used.

| Notes:

| 1. When using the CLU utility, Coprocessors are referenced as 0, 1, ..., 7. Any
| particular Coprocessor may or may not have the CCA application installed.
| (For example, some Coprocessors may have the PKCS #11 application
| installed.) With the CNM utility (and other applications that use the CCA API),
| the Coprocessors loaded with the CCA application are designated 1, 2, ..., 8.
| These new identifiers are assigned by CCA as it scans all of the installed
| Coprocessors for those loaded with the CCA application.

| 2. When coding a CCA application, keywords CRP01, CRP02, ..., CRP08 are
| used to “allocate” a Coprocessor. These correspond to the numbers 1, 2, ..., 8
| used in the CNM utility pull-down.

How to Initialize (Zeroize) the Node
You can restore the CCA node to its initial state, provided that the role you are
operating under (the default role or a logged-on role) permits use of the Initialize
Device command (offset X'0111'). Use of this command causes clearing of all:

 � master-key registers
� retained and registered keys
� roles and profiles and restoring the access control to its initial state (see “Initial

State of the Access-Control System” on page 5-10).

To initialize the CCA node, select Initialize from the Crypto Node pull-down menu.
You will be asked to confirm your intent to perform this major action.

 Chapter 5. Using the CNM and CNI Utilities to Manage the Cryptographic Node 5-7

How to Log On and Off the Node
To log on, select Logon from the File pull-down menu. To log off, select Logoff
from the File pull-down menu.

Note: With the exception of the DEFAULT role, access to the Coprocessor is
restricted by passphrase authentication.

How to Load the Function-Control Vector
| A function-control vector (FCV) is a signed value provided by IBM to enable the
| CCA application in the Coprocessor to provide a level of cryptographic service
| consistent with applicable import and export regulations. Under the current
| regulations all users are entitled to the same level of cryptographic functionality.
| Therefore, IBM now supplies a single FCV with the CCA Support Program.

| You use the CNM utility to load the function-control vector into the Coprocessor.
| The FCV file is named “CCA5203.FCV.” You can locate this file using the file-name
| search tool provided with your operating system.

To load the function-control vector:

1. From the Crypto Node pull-down menu, select Authorization; a sub-menu is
displayed.

2. From the sub-menu, select Load to specify the function-control vector file on
disk; the utility loads the function-control vector.

How to Configure the Cryptographic Node Management Utility
| The configuration panel of the CNM utility allows you to indicate directory paths for
| the files you create with the utility. However, the utility generally does not use the
| paths that you store in the configuration panel. Instead, the default paths are
| stored in environment variables (OS/2), in the Registry (Windows NT/2000), or in
| the AIX ODM. You may find the configuration panel a useful place to record where
| you intend to keep the various classes of data items.

How to Synchronize the Clock-Calendars
The Coprocessor uses its clock-calendar to record time and date and to prevent
replay attacks in passphrase-based profile authentication. After installing the
Coprocessor, synchronize its clock-calendar with that of the host system.

To synchronize the clock-calendars:

1. From the Crypto Node pull-down menu, select Time; a sub-menu is displayed.

2. From the sub-menu, select Set; the clock-calendars are synchronized.

3. Answer Yes to synchronize the clock-calendars with the host.

4. Finish this task by selecting OK.

5-8 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

How to Obtain Status Information
You can use the Cryptographic Node Management utility to obtain the status of the
Coprocessor and the CCA application. The following status panels are available:

� CCA Application: Displays the version and the build date of the application.
Also displays the status of the master-key registers. For information about
these registers, see “How to Manage the Master Key” on page 5-16.

� Adapter: Displays the Coprocessor serial number, ID, and hardware level.

� Command History: Displays the five most recent commands and
subcommands sent to the Coprocessor.

� Diagnostics: Indicates whether any of the Coprocessor tamper-sensors have
been triggered, whether any errors have been logged, and reflects the status of
the Coprocessor batteries. To view the AIX Coprocessor log, see “How to
Configure the Support Program” on page 3-3.

� Export Control: Displays the maximum strength of the cryptographic keys used
by the node, as defined by the function-control vector resident within the
Coprocessor.

To view the status panels:

1. From the Crypto Node pull-down menu, select Status. The CCA Application
status is displayed.

2. To select other status information, use the buttons at the bottom. The new
panel is displayed.

3. Finish this task by selecting Cancel.

How to Create and Manage Access-Control Data
The access-control system of the CCA Cryptographic Coprocessor Support
Program defines the circumstances under which the Coprocessor can be used. It
does this by restricting the use of CCA commands. For a list of these commands,
see Appendix A, “CCA Access-Control Commands.” Also see Required Commands
at the end of each verb description in the IBM 4758 CCA Basic Services Reference
and Guide.

An administrator can give users differing authority, so that some users can use
CCA services not available to others. This section includes an overview of the
access-control system and instructions for managing your access-control data. You
need to know which commands are required and under what circumstances. You
also need to consider that some commands should be authorized only for selected,
trusted individuals, or for certain programs that operate at specific times.
Generally, you should only authorize those commands that are required so as not
to inadvertently enable a capability that could be used to weaken the security of
your installation(s). You will obtain the information about command use from the
documentation for the applications that you intend to support. See Chapter 6,
“Observations on Secure Operations” for additional guidance on this topic.

 Chapter 5. Using the CNM and CNI Utilities to Manage the Cryptographic Node 5-9

 Access-Control Overview
The access-control system restricts or permits the use of commands based on
roles and user profiles. Use the Cryptographic Node Management utility to create
roles that correspond to the needs and privileges of assigned users.

To access the privileges assigned to a role (those that are not authorized in the
default role), a user must log on to the Coprocessor using a unique user profile.
Each user profile is associated with a role. (Multiple profiles can use the same
role.) The Coprocessor authenticates logons using the passphrase associated with
the profile that identifies the user.

Note: The term “user” applies to both humans and programs.

The Coprocessor always has at least one role—the DEFAULT role. Use of the
DEFAULT role does not require a user profile. Any user can use the services
permitted by the DEFAULT role without logging onto or being authenticated by the
Coprocessor.

For example, a basic system might include the following roles:

� Access-Control Administrator: Can create new user profiles and modify the
access rights of current users.

� Key-Management Officer: Can change the cryptographic keys. (This
responsibility is best shared by two or more individuals making use of rights to
enter “first” or “subsequent” key parts.)

� General User: Can use cryptographic services to protect his or her work, but
has no administrative privileges. If your security plan does not require logon
authentication for general users, address their requirements in the DEFAULT
role.

Note: Few individuals would be assigned the roles of key-management officer or
access-control administrator. Generally, the larger population would not log on and
thus would have rights granted in the DEFAULT role.

Initial State of the Access-Control System
After you have loaded the CCA software support into segment 3 of the
Coprocessor—or after the access-control system is initialized—no access-control
data exists except for an initial-DEFAULT role that allows unauthenticated users to
create and load access-control data. For a full description of this role, see
Appendix B, “Initial DEFAULT-Role Commands” on page B-1.

After creating the roles and profiles needed for your environment—including the
supervisory roles necessary to load access-control data and to manage
cryptographic keys—remove all permissions assigned to the DEFAULT role. Then,
add only those permissions you want to grant to unauthenticated users.

Important: The cryptographic node and the data it protects are not secure while
the DEFAULT role is permitted to load access-control data.

5-10 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

How to Define a Role
A role defines permissions and other characteristics of the users assigned to that
role. To define a role:

1. From the Access Control pull-down menu, select Roles; a list of currently
defined roles is displayed.

2. Select New to display the Role Definition panel; see Figure 5-1. At any time in
the process, select List to return to the list of currently defined roles.

Figure 5-1. The Role Definition Panel

3. Define the role:

Role ID
A character string that defines the name of the role. This name is
contained in each user profile associated with this role.

Comment
An optional character string.

Required Authentication Strength
When a user logs on, the strength of the authentication provided is
compared to the strength level required for the role. If the authentication
strength is less than that required, the user cannot log on. Currently only
the passphrase authentication method is supported; use a strength of 50.

Valid Time and Valid Days of the Week
These values determine when the user can log on. Note that these times
are Coordinated Universal Time. If you are not already familiar with the
access-control system, you may refer to chapter 2 of the CCA Basic
Services Reference and Guide.

Restricted Operations and Permitted Operations
A list defining the commands the role is allowed to use.

Each CCA API verb requires one or more commands to obtain service
from the Coprocessor. The user requesting service must be assigned to a
role that permits those commands needed to run the verb.

 Chapter 5. Using the CNM and CNI Utilities to Manage the Cryptographic Node 5-11

For more information about CCA verb calls and commands, refer to the
IBM 4758 CCA Basic Services Reference and Guide. For a list of the
commands, and suggestions for their use, see Appendix A, “CCA
Access-Control Commands.”

4. Select Save... to save the role to disk.

5. Select Load to load the role into the Coprocessor.

How to Edit Existing Roles
Use the Cryptographic Node Management utility to:

� Edit a disk-stored role
� Edit a Coprocessor-stored role
� Delete a Coprocessor-stored role.

Tip: Any existing role can be used as a template to create a new role. When you
open a saved role, the existing information is displayed in the Role Definition panel.
You need only modify or enter information specific to the new role; then, give it a
new Role ID and load or save it.

How to Edit a Disk-Stored Role
To edit a role stored on disk:

1. From the Access Control pull-down menu, select Roles; a list of currently
defined roles is displayed.

2. Select Open...; you are prompted to choose a file.

3. Open a file; data is displayed in the Role Definition panel.

4. Select Save... to save the role to disk; select Load to load the role into the
Coprocessor.

How to Edit a Coprocessor-Stored Role
To edit a role stored in the Coprocessor:

1. From the Access Control pull-down menu, select Roles; a list of currently
defined roles is displayed.

2. Highlight the role you want to edit.

3. Select Edit; data is displayed in the Role Definition panel.

4. Edit the role.

5. Select Save... to save the role to disk; select Load to load the role into the
Coprocessor.

How to Delete a Coprocessor-Stored Role
Important: When you delete a role, the Cryptographic Node Management utility
does not automatically delete or re-assign the user profiles associated with that
role. Be sure to delete or re-assign the user profiles associated with a role before
you delete the role.

To delete a role stored in the Coprocessor:

1. From the Access Control pull-down menu, select Roles; a list of currently
defined roles is displayed.

2. Highlight the role you want to delete.

5-12 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

3. Select Delete...; the role is deleted.

How to Define a User Profile
A user profile identifies a specific user to the Coprocessor. To define a user profile:

1. From the Access Control pull-down menu, select Profiles; a list of currently
defined profiles is displayed.

2. Select New to display the User Profile Definition panel; see Figure 5-2.

Figure 5-2. The User Profile Definition Panel

3. Define the user profile:

User ID
The “name” given to a user of the PCI Cryptographic Coprocessor.

Passphrase
The character string that the user must enter to gain access to the
cryptographic node.

Passphrase Expiration Date
The expiration date for the passphrase. The utility will set this by default to
90 days from the current date. Every passphrase contains an expiration
date, which defines the lifetime of that passphrase. This is different from
the expiration date of the profile itself.

Comment
An optional character string.

Activation and Expiration Dates
These values determine the first and last dates when the user can log on.

Role
The name of the role that defines the permissions granted to the profile.

4. Select Save... to save the profile to disk; select Load to load the profile into the
Coprocessor.

5. Select List to return to the list of currently defined profiles.

 Chapter 5. Using the CNM and CNI Utilities to Manage the Cryptographic Node 5-13

How to Edit Existing User Profiles
Use the Cryptographic Node Management utility to:

� Edit a disk-stored user profile
� Edit a Coprocessor-stored user profile
� Delete a Coprocessor-stored user profile
� Reset the user profile failure count.

How to Edit a Disk-Stored User Profile
To edit a profile stored on disk:

1. From the Access Control pull-down menu, select Profiles; a list of currently
defined profiles is displayed.

2. Select Open...; you are prompted to choose a file.

3. Open a file; data is displayed in the User Profile Definition panel.

4. Edit the profile.

5. Select Save... to save the profile to disk; select Load to load the profile into the
Coprocessor.

How to Edit a Coprocessor-Stored User Profile
To edit a profile stored in the Coprocessor:

1. From the Access Control pull-down menu, select Profiles; a list of currently
defined profiles is displayed.

2. Highlight the profile you want to edit.

3. Select Edit; data is displayed in the User Profile Definition panel.

4. Edit the profile.

5. Select Save... to save the profile to disk; select Replace to load the profile into
the Coprocessor.

How to Delete a Coprocessor-Stored User Profile
To delete a profile stored in the Coprocessor:

1. From the Access Control pull-down menu, select Profiles; a list of currently
defined profiles is displayed.

2. Highlight the profile you want to delete.

3. Select Delete...; the profile is deleted.

How to Reset the User Profile Failure Count
To prevent unauthorized logons, the access-control system maintains a
logon-attempt-failure count for each user profile. If the number of failed attempts
for a profile exceeds the limit defined in the profile, the offending profile is disabled.
To reset the failure count:

1. From the Access Control pull-down menu, select Profiles; a list of currently
defined profiles is displayed.

2. Highlight the profile.

3. Select Reset FC; a confirmation dialog box is displayed.

4. Select Yes to confirm; the logon-attempt-failure count is set to zero.

5-14 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

How to Initialize the Access-Control System
When you initialize the access-control system, the Cryptographic Node
Management utility:

� Clears the access-control data in the Coprocessor
� Furnishes the DEFAULT role with the commands required to load

access-control data.

Important: The cryptographic node and the data it protects are not secure while
the DEFAULT role is permitted to load access-control data.

Successfully performing this action removes installation-installed access controls
and keys and is therefore a very sensitive operation that could render your node
inoperable for production. Some installations will choose to remove authorization
for this function from their Coprocessor's roles. In this event, if you wish to initialize
the CCA cryptographic node you must remove the CCA software from the
Coprocessor and re-install the CCA software.

To initialize the access-control system:

1. From the Access Control pull-down menu, select Initialize...; a confirmation
dialog box is displayed.

2. Select Yes to confirm; the utility initializes the access-control system.

How to Manage Cryptographic Keys
This section describes how to use the Cryptographic Node Management utility to:

� Manage the master key
� Manage primary key-encrypting keys (KEKs)
� Reset and manage DES and PKA key-storage.

Key types are defined as follows:

The master key is a special KEK stored in the clear (not enciphered) and kept
within the Coprocessor secure module. It is used to encipher other keys so
that those keys can be stored outside of the secure module. The master key is
a 168-bit key formed from three 56-bit parts.

Primary key-encrypting keys are DES keys shared by cryptographic nodes
and are sometimes referred to as transport keys. They are used to encipher
other keys shared by the nodes. Primary keys, like the master key, are
installed from key parts. Knowledge of the key parts can be shared in part by
two people to effect a split-knowledge, dual-control security policy.

Other DES keys and PKA keys are enciphered keys used to provide
cryptographic services. They include MAC keys and private RSA keys.

Note: When exchanging clear key parts, ensure that each party understands how
the exchanged data is to be used, since the management of key parts varies
among different manufacturers and different encryption products.

 Chapter 5. Using the CNM and CNI Utilities to Manage the Cryptographic Node 5-15

How to Manage the Master Key
A master key is used to encrypt local-node working keys while they are stored
external to the Coprocessor. CCA defines three master-key registers:

� The current-master-key register stores the master key currently used by the
Coprocessor to encrypt and decrypt local keys

� The old-master-key register stores the previous master key and is used to
decrypt keys enciphered by that master key

� The new-master-key register is an interim location used to store master key
information as accumulated to form a new master key.

The CCA Version 2 Support Program uses two sets of master key registers, one
set for encrypting DES (symmetric) keys, and one set for encrypting public-private
(asymmetric) keys.

For information about checking the contents of these registers, see “How to Obtain
Status Information” on page 5-9.

| Notes:

| 1. Programs that use the Version 2 CCA API master-key-administration verbs,
| Master_Key_Process and Master_Key_Distribution, can use a keyword to steer
| operations to the asymmetric master-key registers, to the symmetric master-key
| registers, or both sets of master-key registers. The Cryptographic Node
| Management utility uses the both option. If you use another program to load
| master keys, and if this program specifically operates on either the symmetric
| or asymmetric master-key registers, in general you will no longer be able to use
| the Cryptographic Node Management utility to administer master keys.

| 2. If your installation has multiple Coprocessors loaded with CCA, you will need to
| independently administer the master keys in each Coprocessor.

This section describes how to:

� Verify the current master-key
� Load a master key automatically
� Load a new master-key from parts
� Clone a master key.

How to Verify an Existing Master Key
The utility generates a verification number for each master key stored in the
master-key registers. This number identifies the key, but does not reveal
information about the actual key value.

To view a master-key-verification number:

1. From the Master Key pull-down menu, select Verify; a sub-menu is displayed.

2. From the sub-menu, select a master-key register; the verification number for
the key stored in that register is displayed.

5-16 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

| How to Auto-Set or Randomly Generate the Master Key
| The Cryptographic Node Management utility can auto-set a master key into the
| Coprocessor; its key value cannot be viewed from the utility.

| Important: If a master key of unknown value is lost, you cannot recover the keys
| enciphered under it.

| To automatically load the master key:

| 1. From the Master Key pull-down menu, select Auto Set... or select Random
| you are prompted to verify the command.

| 2. Select Yes; the Coprocessor generates and sets a master key.

Notes:

1. Use of Random is preferred since the Auto-Set option passes clear key-parts
through host-system memory.

2. When you set or auto-set a master key, you must reencipher all keys
enciphered under the former key. See “How to Reencipher Stored Keys” on
page 5-22.

How to Load a New Master-Key from Key Parts
To set a new master-key into the Coprocessor, load the first, any middle, and last
key parts into the new-master-key register, and then set the new master-key. To
effect this:

1. From the Master Key pull-down menu, select Parts; the Load Master Key
panel is displayed; see Figure 5-3.

Figure 5-3. The Load Master Key Panel

2. Select the radio button for the key_part you are editing (first, middle, or last).

3. Enter data by one of the following:

� Select New to clear data entered in error.

 Chapter 5. Using the CNM and CNI Utilities to Manage the Cryptographic Node 5-17

� Select Open... to retrieve pre-existing data.

� Select Generate to fill the fields with Coprocessor-generated random
numbers.

� Manually enter data into the “Master Key Part” fields; each field accepts
four hexadecimal digits.

4. Select Load to load the key_part into the new-master-key register; select
Save... to save the key_part to disk.

Important: Key_parts saved to disk are not enciphered. Consider storing the
key parts on diskettes that are locked in safes.

Note: When you create a key from parts, you must have both a first part and
a last part; middle part(s) are optional.

5. Repeating the preceding steps, load into the new-master-key register the
remaining key_parts.

Note: For split-knowledge security policy, different people must enter the
separate key parts. To enforce a dual-control security policy, the
access-control system should assign the right to enter a first key part to one
role and the right to enter subsequent key part(s) to another role. Then
authorized users log on and perform the loading of their respective key part.

6. From the Master Key pull-down menu, select Set...; the utility:

a. Transfers the data in the current-master-key register to the old-master-key
register, and deletes the former old-master key.

b. Transfers the data in the new-master-key register to the current-master-key
register.

After setting a new master-key, reencipher the keys currently in storage. See “How
to Reencipher Stored Keys” on page 5-22.

How to Clone a Master Key
This scenario explains the steps involved in cloning a master key from one
Coprocessor to another Coprocessor. The term cloning is used rather than copying
since the master key will be split into shares for transport between the
Coprocessors. The technique is explained at some length in “Understanding and
Managing Master Keys” in Chapter 2 of the CCA Basic Services Reference and

| Guide.Appendix G, “Master-Key Cloning Procedure” on page G-1 provides a
| step-by-step procedure that you can follow. The material in this chapter provides
| background information that can permit you to vary the procedure.

Cloning of the master key involves two or three nodes:

� The master-key source node
� The master-key target node
� The “share administration” (SA) node.

(The SA node can also be either
the source or the target node.)

The Cryptographic Node Management utility can store various data items involved
in this process in a “data base” that you can carry on diskette or FTP between the
different nodes. One data base is, by default, known as 'sa.db' and contains the
information about the SA key and keys that have been certified. The target node

5-18 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

where the master key will be cloned also has a data base known by default as the
'csr.db'.

You can to accomplish these tasks using the Cryptographic Node Management
utility:

1. Set up the nodes in a secure manner with access-control roles and profiles and
master keys.

You will need a role and profile(s) at the source and target nodes for each user
who will obtain or store sharei, 1≥i≥n. Processing of sharei is a separate
command so that, if you wish, your roles can insure that independent
individuals are involved with obtaining and installing the different shares.

Consider the use of random master-key generation. Also consider roles that
enforce a dual-control security policy; for example, permit one individual/role to
register a hash and another individual/role to register a public key, have
different individuals/roles for obtaining and installing the individual shares of the
master key, and so forth.

See the guidance portion of Chapter 2 in the IBM 4758 CCA Basic Services
Reference and Guide and the description of the Master_Key_Process and the
Master_Key_Distribute verbs in the same chapter.

2. Install a unique 1- to 16-byte Environment ID (EID) of your choice into each
node.

From the Crypto Node pull-down menu, select Set Environment ID, enter the
identifier, and select Load. Use only these characters in an environment
identifier (EID): A...Z, a...z, 0...9, and “@” (X'40'), space character (X'20'),
“&” (X'26'), and “=” (X'3D').

| You should enter a full 16-character identifier. For ‘short’ identifiers, complete
| the entry with space characters.

3. Initialize the master-key-sharing “m” and “n” values in the source and target
nodes. These values must be the same in the source and the target node. “n”
is the maximum number of shares while “m” is the minimum number of shares
that must be installed to reconstitute the master key in the target node.

From the Crypto Node pull-down menu, select Share Administration, and
then select Set number of shares, enter the values, and select Load.

4. At the different nodes, generate these keys and have each public key certified
by the Share-Administration (SA) key. You can use the utility's sa.db data base
to transport the keys and the certificates.

Share Administration (SA)
This key is used to certify itself and the following keys. You must register
the hash of the SA public-key, and the public key itself, in the SA, the
source, and the target nodes.

When the SA key is created, the utility will supply an 8-byte/16-hex-character
value that is a portion of the hash of the SA key. Be sure to retain a copy of
this value. You will need this value to confirm the hash value recorded in
the data base to register the SA public-key at the source and target nodes.

Coprocessor Share Signing (CSS)
This key is used to sign shares distributed from the source node. The
private key is retained within the source node.

 Chapter 5. Using the CNM and CNI Utilities to Manage the Cryptographic Node 5-19

Coprocessor Share Receiving (CSR)
This key is used to receive a share-encrypting key into the target node. The
SA-certified public CSR key is used at the source node to wrap (encrypt) the
share-encrypting key that is unique for each share. The private key is
retained within the target node.

Generate the Key Pairs: SA, CSS, and CSR
From the Crypto Node pull-down menu, select Share Administration,
select Create Keys, and one of Share Administration, C... S... S... Key,
or C... S... R... Key, then select Create.

You also will need to supply key labels for the CSS and CSR keys that are
retained in the source and target nodes. For example,
'IBM4758.CLONING.CSS.KEY’ and 'IBM4758.CLONING.CSR.KEY'; the
labels that you use must not conflict with other key labels used in your
applications.

When generating the CSR key at the share-receiving node, also obtain the
serial number of the Coprocessor. From the Crypto Node pull-down menu,
select Status. You must enter the serial-number value when certifying the
CSR key.

5. Register the SA public-key in the Coprocessor at the SA, source, and target
nodes. This is a two-step process that should be done under a dual-control
security policy.

One individual should install the SA public-key hash. From the Crypto Node
pull-down menu, select Share Administration, select Register share
administration, and select SA key hash. You will enter the hash value
obtained during SA key creation.

The other individual should install the actual SA public-key. From the Crypto
Node pull-down menu, select Share Administration, select Register share
administration, and select SA key. By default, the public-key information is in
the sa.db file.

6. Take the CSS key and the CSR key to the SA node and have the keys
certified.

From the Crypto Node pull-down menu, select Share Administration, select
Certify Keys, and one of C... S... S..., or C... S... R....

For the CSR key, you will need to supply the serial number of the target
Coprocessor as a procedural check that an appropriate key is being certified.
Your procedures should include communicating this information in a reliable
manner.

7. At the source node, have authorized individuals sign on to the role that permits
each of them to obtain their share. At least “m” shares must be obtained.
These will be shares of the current master key.

From the Crypto Node pull-down menu, select Share Administration, select
Get share, and select the share number to be obtained. Observe the serial
numbers and data base identifiers and when these are agreed to be correct,
select Get Share. The share information will be placed by default into the
csr.db file and will obtain the CSR key-certificate, by default, from the sa.db file.

Obtain current-master-key validation information for use later at the target node.
From the Master Key pull-down menu, select Verify, select Current.

5-20 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

8. At the target node, have authorized individuals sign on to the role that permits
each of them to install his or her share. At least “m” shares must be installed
to reconstitute the master key into the new-master-key register.

From the Crypto Node pull-down menu, select Share Administration, select
Load share, and select the share number to be installed. Observe the serial
numbers and data base identifiers and when these are agreed to be correct,
select Install share. The share information will be obtained by default from the
csr.db file and the CSS key certificate will be obtained by default from the sa.db
file.

When “m” shares have been loaded, verify that the key in the new-master-key
register is the same as the current master-key in the source node (when the
shares were obtained). On the target node, from the Master Key pull-down
menu, select Verify, select New.

9. When it is confirmed through master-key verification that the master key has
been cloned, an authorized individual can set the master key. This action
deletes any old master-key and moves the current master-key to the
old-master-key register. Application programs that use keys encrypted by the
master key can be impacted by this change, so be certain that setting of the
master key is coordinated with the needs of your application programs. From
the Master Key pull-down menu, select Set.

Managing Key Storage
The Cryptographic Node Management utility allows basic key-storage management
for keys. These utility functions do not form a comprehensive key-management
system. Application programs are better-suited to perform repetitive
key-management tasks.

Key storage is a repository of keys that you access by key label using labels that
you or your applications define. DES keys and “PKA” (RSA) keys are held in
separate storage systems. Also, the Coprocessor has a very limited internal
storage for RSA keys. The Coprocessor-stored keys are not considered part of key
storage in this discussion.

This section describes how to:

� Create or initialize key storage
� Reencipher stored keys
� Delete a stored key
� Create a key label.

Note: The utility displays a maximum of 1,000 key labels. If you have more than
1,000 key labels in key storage, use an application program to manage them.

How to Create or Initialize Key Storage
To create or initialize key storage for your DES or PKA keys:

1. From the Key Storage pull-down menu, select DES Key Storage or PKA Key
Storage; a sub-menu is displayed.

2. From the sub-menu, select Initialize; the Initialize DES Key Storage or the
Initialize PKA Key Storage panel is displayed.

3. Enter a description for the key-storage file, if desired.

4. Select Initialize; you are prompted to enter a name for the key-storage file.

 Chapter 5. Using the CNM and CNI Utilities to Manage the Cryptographic Node 5-21

Note to AIX Users: The location you set for key storage must match the
location defined in the AIX object data manager (ODM). See “How to
Configure the Support Program” on page 3-3 and the use of the ODMGET and
CSUFKEYS utilities.

Note to OS/2 Users: The location you set for key storage must match the
location defined by the environment variables described in the section “How to
Configure the Support Program” on page 3-8.

| Note to Windows NT/Windows 2000 Users: The location you enter for key
storage must match the information that you provided during loading of the
CCA support program software. These locations are recorded in the

| Windows NT/Windows 2000 Registry. Look in the Registry for DES.KEY and
PKA.KEY.

5. Enter a name for the file and save it. The key-storage file is created on the
host.

Note: If a file with the same name exists, you are prompted to verify your
choice because initializing the key storage modifies the file, and if it had any
keys, these would be erased.

How to Reencipher Stored Keys
To reencipher the keys in storage under a new master-key:

1. From the Key Storage pull-down menu, select DES Key Storage or PKA Key
Storage; a sub-menu is displayed.

2. From the sub-menu, select Manage; the DES Key Storage Management or the
PKA Key Storage Management panel is displayed. The panel lists the labels of
the keys in storage.

3. Select Reencipher...; the keys are reenciphered using the key in the current
master-key register.

How to Delete a Stored Key
To delete a stored key:

1. From the Key Storage pull-down menu, select DES Key Storage or PKA Key
Storage; a sub-menu is displayed.

2. From the sub-menu, select Manage; the DES Key Storage Management or the
PKA Key Storage Management panel is displayed. The panel lists the labels of
the keys in storage.

You can set the filter criteria to list a subset of keys within storage. For
example, entering “*.mac” as the filter criterion and refreshing the list limits it to
keys with labels that end in “.mac.” (The asterisk is a wildcard character.)

3. Highlight the key label for the key to be deleted.

4. Select Delete...; a confirmation dialog box is displayed.

5. Select Yes to confirm; the stored key is deleted.

5-22 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

How to Create a Key Label
To create a key label:

1. From the Key Storage pull-down menu, select DES Key Storage or PKA Key
Storage; a sub-menu is displayed.

2. From the sub-menu, select Manage; the DES Key Storage Management or the
PKA Key Storage Management panel is displayed. The panel lists the labels of
the keys in storage.

You can set the filter criteria to list a subset of keys within storage. For
example, entering “*.mac” as the filter criterion and refreshing the list limits it to
keys with labels that end in “.mac.” (The asterisk is a wildcard character.)

3. Select New; you are prompted to enter a key label.

4. Select Load; the key label is loaded into storage.

How to Create and Store Primary KEKs
Key-encrypting keys (KEKs) are encrypted under the master key and stored in key
storage for local use. Key parts used to create a KEK can be randomly generated
or entered as clear information. The parts can also be saved to disk or diskette in
the clear for transport to other nodes or for re-creating the local KEK.

Note: The Cryptographic Node Management utility supports DES KEKs only for
the transport of keys between nodes. Applications can use the CCA API to furnish
the services needed for public-key-based key distribution.

To work with a KEK:

1. From the Keys pull-down menu, select Primary DES Key-Encrypting Keys;
the Primary DES Key-Encrypting Keys panel is displayed.

2. Select the radio button for the first key-part.

3. Enter data in the Key Part by using one of the following processes:

� Select New to clear data entered in error.

� Select Open... to retrieve pre-existing data.

� Select Generate to fill the fields with Coprocessor-generated random
numbers.

� Manually enter data into the “Key Part” fields; each field accepts four
hexadecimal digits.

4. Select a control vector for the key:

� To use the default control-vector for importer keys or exporter keys, select
the appropriate radio button.

� To use a custom control-vector, select the Custom radio button and enter
a control vector. For information about control vectors, refer to Appendix C
of the IBM 4758 CCA Basic Services Reference and Guide.

5. Enter a key label to identify the key in storage. You must use the same key
label name for all three parts of the KEK that you generate.

6. Select Load to load the key part into the Coprocessor; select Save... to save it
to disk.

7. Save or load the remaining key parts by following Step 2 to Step 6. Be sure to
use the same key label for each part of a single key.

 Chapter 5. Using the CNM and CNI Utilities to Manage the Cryptographic Node 5-23

Using the CNI Utility to Establish Other Nodes
By creating a CNI list for the Cryptographic Node Initialization (CNI) utility, you can
load keys and access-control data stored on disk into other cryptographic nodes
without running the Cryptographic Node Management utility on those target nodes.

To set up a node using the CNI utility:

1. Start the Cryptographic Node Management utility on an established node.

2. Save to the host or portable media (like a floppy disk) the access control and
keys you want to install on other nodes. When you run the CNI utility on the
target node (Step 10), it searches the identical directory path for each file. For
example:

� If you save a user profile to the established node directory
c:\IBM4758\profiles, the CNI utility will search the target node directory
c:\IBM4758\profiles.

� If you save a user profile to the floppy disk directory a:\profiles, the CNI
utility will search the target node directory a:\profiles.

3. From the File pull-down menu, select CNI Editor; the CNI Editor panel is
displayed. See Figure 5-4.

Figure 5-4. The CNI Editor Panel

The list in the top portion of the panel displays the functions able to be added
to the CNI list; the bottom portion lists the functions included in the current CNI
list. The CNI list can perform the following functions:

� Initialize the cryptographic facility (Coprocessor)
� Synchronize the clock-calendar
� Load or delete roles and user profiles
� Logon and logoff to the cryptographic node
� Load master-key parts
� Generate a random master-key
� Set the master-key registers
� Auto-set the master-key registers

5-24 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

� Clear the new-master-key register
� Load primary KEK parts
� Initialize storage for DES keys and PKA keys.

4. Add the functions you want. To add a function to the CNI list:

 a. Highlight it.

b. Select Add; the function is added to the CNI list.

Note: If the function you choose loads a data object—like a key part,
key-storage file, user profile, or role—you are prompted to enter the file
name or the ID of the object to be loaded.

5. Using the Move Up and Move Down buttons, organize the functions to reflect
the same order you follow when using the Cryptographic Node Management
utility. For example, if you are loading access-control data, you must first log
on as a user with the authority to load access-control data.

6. Select Verify to confirm that objects have been created correctly.

7. Select Save...; you are prompted to choose a name and directory location for
the CNI-list file.

8. Save the CNI-list file; the list file does not contain the data objects specified in
the CNI list.

9. Copy the files needed by the Cryptographic Node Initialization utility onto target
host directory locations that mirror their location on the source host. If you
saved the files to portable media, insert the media into the target node.

10. From the target node, run the list using the Cryptographic Node Initialization
utility:

� On AIX systems, enter csufcni listfile_name on the command line.

� On OS/2 systems:

– Change directory to \ibm4758\cnm
– Enter csuecni listfile_name on the command line.

| � On Windows NT/Windows 2000 systems:

– Change directory to \program files\ibm\4758\cnm
– Enter csuncni listfile_name on the command line.

If the CNI list includes a logon, enter csufcni, csuecni, or csuncni on the
command line (without specifying a filename). The utility Help text describes
the syntax for entering an ID and passphrase.

The Cryptographic Node Initialization utility loads files to the Coprocessor from
the host or portable media, as specified by the CNI list.

 Chapter 5. Using the CNM and CNI Utilities to Manage the Cryptographic Node 5-25

5-26 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

Chapter 6. Observations on Secure Operations

This chapter offers a series of observations about the setup and use of the IBM
4758 CCA cryptographic node that you may consider in order to enhance secure
operations. The observations are found under these headings:

� Ensuring code levels match and IBM CCA code is installed
 � Access controls
 � Cryptographic keys
 � PIN data
 � Status data
 � RS-232 port
 � Master-key cloning
� Sample access-control regimes.

Ensuring Code Levels Match and IBM CCA Code is Installed
The level of the CCA code in the host system should match that used within the
Coprocessor. You can download code from IBM's website. See Chapter 2,
“Obtaining Coprocessor Hardware and Software” and Chapter 3, “Installing the
Support Program” for details.

Following the instructions in Chapter 4, “Loading Software into the Coprocessor”
and the README information for your copy of Coprocessor code, install the code
into the IBM 4758. Use the VA command of the CLU utility to obtain and validate a
signed Coprocessor response. Be sure that the segment 2 and segment 3 owner
identifiers are valued to 2. A segment 3 owner identifier other than 2 indicates that
the code is not the IBM CCA code. (If your code incorporates a User-Defined
Extension (UDX, custom code), an extended form of CCA could be present.) If
segment 2 has an owner identifier of 6, there is the possibility of loading a
code-debugging probe that can compromise the security of any code running in
segment 3.

 Access Controls
The access-control system and the grouping of permissible commands1 that you
can employ are designed to support a variety of security policies. In particular, you
can set up the CCA node to enforce a dual-control, split-knowledge policy. Under
this policy, once the node is fully activated, no one person should be able to cause
detrimental actions other than a denial-of-service attack. To implement this policy,
and many other approaches, you will necessarily have to limit your use of certain
commands. Therefore, as you design your application, you should consider the
commands you must enable or restrict in the access-control system and the
implications to your security policy. See also Appendix A, “CCA Access-Control
Commands” for a table of commands with general guidance in the right-hand
columns.

1 Commands, verbs, and the access-control system are described in the first chapters of the IBM 4758 CCA Basic Services
Reference and Guide.

 Copyright IBM Corp. 1997-2000 6-1

The following sections describe:

� Locking the access-control system
� Changing a passphrase
� Defining roles and profiles.

Locking the Access-Control System
For secure operation after initializing processes, consider “locking” the
access-control system. You can lock the access-control system by removing any
profile that would allow use of Access_Control_Initialization command (offset
X'0112', invoked by the INIT-AC keyword) on the Access_Control_Initialization
verb (CSUAACI), thereby preventing further changes to the access controls.

Before the CCA node is put into normal operation, the access-control setup can be
audited through the use of the Access_Control_Maintenance and
Cryptographic_Facility_Query verbs. If for any reason the status response is not as
anticipated, the node should not be activated for application purposes.

 Passphrase Considerations
The passphrase used to authenticate access to a profile is not communicated out
of the DLL or shared library you call with the logon verb. Rather, the passphrase is
hashed to form a cryptographic key that is used to pass the profile identifier and
other information to permit the Coprocessor to validate access to the profile.

When you change a passphrase with the Access_Control_Initialization verb, use
the PROTECTD keyword. This causes the passphrase to be encrypted within the

| DLL or shared-library layer before it is communicated to the Coprocessor. This can
| block a lower-level sniffer program, or the CCA trace facility2 from capturing the
| new, clear passphrase.

In the current implementation, if a role has permission to change a passphrase, the
passphrase of any profile can be changed. You should consider if passphrase
changing should be permitted and, if so, which role(s) should have this authority.

If any user reports an inability to log on, this should be reported to someone other
than (or certainly in addition to) an individual with passphrase-changing permission.

Roles and Profiles
The access-control system, which is discussed in the opening pages of Chapter 2
of IBM 4758 CCA Basic Services Reference and Guide, permits users to define
roles and profiles as suits their operation and security needs. Roles and profiles
you might consider include:

| 2 The IBM CCA Support Program incorporates a trace facility that can be used by IBM product development in aiding the diagnosis
| of obscure problems. This trace facility can capture the clear-key-part information as it flows in the host system. This and other
| techniques could be used by an adversary to capture clear-key-part information.

6-2 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

Table 6-1 (Page 1 of 2). Example Roles

Setup A Setup role can be defined that enables loading of
required roles, profiles, and other special values such as
the Environment ID (EID), Function Control Vector
(FCV), set up of the master-key shares-cloning m-of-n
values, and registration of a public key(s) for later use in
key distribution.

Administrator You can establish an Administrator role(s) with extensive
supervisory capabilities. The administrative roles could
be permitted to:

� Change the passphrase of any profile and reset the
failure count of any profile
(Access_Control_Initialization verb).

An individual entrusted with these responsibilities can log
on to any role by changing the passphrase of an
associated profile and thereby gain the permissions of
any role. However, he would not be able to restore the
passphrase of the normal user of the profile since in a
secure installation he should not know another user's
passphrase. You can address this problem in these
ways:

� Disabling a role that permits passphrase changing,
or

� At a minimum, ensuring that any suspected
authentication problems are reported to someone
other than the administrator(s) having use of roles
permitting passphrase changing.

Note: You are advised to set up a duplicate
administrator role and associated profiles with a different
expiration date to insure that you will have access to
those services appropriate to the administrator. This
may give you an opportunity to recover should the
primary administrator make an error that cannot be
rectified.

SO1, Security Officer 1 Security Officer 1's role(s) could be permitted to:

� Randomly generate a master key
� Import a key-encrypting key.

SO2, Security Officer 2 Security Officer 2's role(s) could be permitted to:

� Set a master key
 � Import keys.

Note: If you employ introduction of keys in parts
(Key_Part_Import and/or Master_Key_Process verbs;
see “Cryptographic Keys” on page 6-4), the first-part
and second-part permissions should be assigned to
SO1 and SO2, respectively.

Default You must have a Default role. When a host thread is
not logged on, requests from such a process thread are
performed based on the permissions set in the default
role. You should enable only those control points
necessary for normal operations. At a maximum, only
those functions specifically required should be enabled.
All sensitive or unusual requirements should be
processed following a logon to an appropriate profile
(and thus its role).

 Chapter 6. Observations on Secure Operations 6-3

In all cases, only those control points actually needed to accommodate the
permitted applications should be enabled.

Table 6-1 (Page 2 of 2). Example Roles

Application Usern As required, “n” application-specific roles and associated
profiles should be established for processing portions of
applications with security requirements different from
those permitted under the Default role.

For example, enabling any of the key export verbs could
lead to the possibility that keys are released to an
adversary. Such operations are candidates for selective
enablement under control of a specific role.

 Cryptographic Keys
Cryptographic keys are generally passed across the CCA interface as encrypted
objects in key-token data structures. Rogue processes on your host system might
be able to capture a copy of such keys, or the contents of the key-storage data set
may be copied. You must rely on your operating-system security,
system-operational security, and physical security to counter any threat from an
encrypted-key copy. Be careful that a rogue process not be able to make use of
the encrypted key.

Keys are further discussed under these topics:

� CCA “asymmetric” DES keys
 � Clear-key parts
 � Key export
� Operations with clear keys
� Using replicated keys.

CCA Asymmetric DES keys
With CCA, you can often make use of a unique capability afforded through the CCA
control vector and command architecture. CCA permits DES keys to have
asymmetric properties. Using MAC/MACVER, ENCIPHER/DECIPHER,
IMPORTER/EXPORTER, PINGEN/PINVER, and IPINENC/OPINENC keys, you can
separate which systems and processes can “reverse” various cryptographic
functions.

MAC/MACVER
A node that has a MAC-class key can both generate and verify a DES MAC
value. A CCA node only having the key in the MACVER class is unable to
create a MAC with the key. Thus, data recipients (who also receive only a
MACVER key) can be enabled to validate data but are prevented from producing
a MAC on data potentially altered to their advantage.

Note also that a DES MAC is computed by enciphering the cleartext data. You
also need to ensure that an adversary is denied access to enciphering
processes with the key used in the MAC computations. For this reason,
consider use of the MAC and MACVER keys rather than the DATA class keys.
DATA-class keys by default are enabled to perform in encipher and MAC
operations.

6-4 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

ENCIPHER/DECIPHER
You can separate the ability to reverse a DES ciphering process between nodes.

You may also find uses for enciphering data where you want to disallow the
possibility that the data is ever deciphered. You can determine the equivalence
of two copies of source data by comparing their enciphered value. Thus you can
store an enciphered copy of data and determine later that other data is not
equivalent without revealing the clear value of the original data. Of course a
hash process can give the same effect, but the IBM 4758 can perform DES
encryption at up to 22.5 megabytes per second.

IMPORTER/EXPORTER
You use a key in these key classes to set up a one-way key-distribution channel.
In fact, it is generally considered inappropriate to have the same key-value
encrypted as both an IMPORTER and as an EXPORTER on the same CCA
node. You can use the functionality of the Key_Generate verb and the one-way
key-distribution channel to distribute CCA “asymmetric” DES keys to node pairs.

For example, a data originator can encipher data and be sure that no one can
decipher the data on his node through the use of an ENCIPHER-class key. The
DECIPHER-class copy of the key, probably with the CCA export-allowed control
vector bit turned off, can be sent over the one-way key-distribution channel to
another node. Only there can the data be deciphered.

As another example, a key-distribution center can originate and distribute a
no-export-allowed MAC key to one node and the matching MACVER key, also
with the no-export-allowed attribute, can be sent to another node. In this
scenario (and if the CCA master keys are managed and audited in a secure
manner), the MAC verification node has no means of producing a valid MAC on
altered data.

PINGEN/PINVER
You can segregate the ability to create a PIN value from the ability to validate a
PIN value (and PIN offsets, PVV values, and so forth).

OPINENC/IPINENC
As with one-way key-distribution channels, you can set up one-way encrypted
PIN-block distribution channels. This can enable you to further segregate which
nodes in your network can perform various forms of PIN processing.

 Clear-Key Parts
A traditional means for instantiating a cryptographic key is to have two or more
users each install a “key part.” The key parts are exclusive-ORed together to form
the final key. CCA supports this option with the Key_Part_Import and
Master_Key_Process verbs. You can force the separation of key-part installation
into two groups by enabling the first-part capability and the key-part-combine
capability in different roles. (And you can use different roles for processing master
keys versus other key types.)

Note however that the key-part information flows in the clear through your host
system.3 In some cases you may view this as an unacceptable risk. In these cases
consider alternatives such as:

3 The IBM CCA Support Program incorporates a trace facility that can be used by IBM product development in aiding the diagnosis
of obscure problems. This trace facility can capture the clear-key-part information as it flows in the host system. This and other
techniques could be used by an adversary to capture clear-key-part information.

 Chapter 6. Observations on Secure Operations 6-5

Random generation of master keys.
If you need to backup the master key or have the same master key in an
additional Coprocessor(s), use master-key cloning to securely transfer the value
of the master key to additional Coprocessors.

Random key-generation and RSA-based key-distribution.
Distribute RSA-encrypted, randomly generated DES data or key-encrypting keys
to the node where the key should be instantiated. With CCA and this strategy,
you will not need key parts and you will not need secrecy. (You should,
however, continue to use two-channel distribution techniques to ensure integrity
of the public-key distribution. This is true even when certificates are in use; you
need to provide integrity for the top-level public key.)

| Pre-Exclusive-OR: When using the Key_Part_Import verb, institute procedures to
| ensure that keys are created with only appropriate values. Appendix C in the IBM
| 4758 CCA Basic Services Reference and Guide contains a section entitled
| “Changing Control Vectors With the Pre-Exclusive-OR Technique.” If you permit an
| adversary to enter a key-part that has been altered to his advantage, he may be
| able create a variation of a legitimate key that can be used to recover other keys or
| PIN values.

 Key Export
You should have a concern for the export of keys from your system. Take special
care in the enablement of the three key-export verbs, Data_Key_Export,
Key_Export, and PKA_Symmetric_Key_Export, and the
PKA_Symmetric_Key_Generate verb. Note especially that the verbs
PKA_Symmetric_Key_Export and PKA_Symmetric_Key_Generate permit the export
of selected classes of keys under “any” public key. You need to ensure that the
target nodes are legitimate and that only appropriate processes have use of these
verbs, EXPORTER keys, and public keys. Consider taking maximum advantage of
the export-allowed control-vector bit. By switching this bit off, you can prevent a
key from being exported.

Note: Master-key encrypted RSA private keys or retained RSA private keys
cannot be exported from a CCA node.

Operations with Clear Keys
Remember that the following CCA verbs operate with keys in the clear. Their use
should be carefully considered.

CSNDSYX
PKA_Symmetric_Key_Export

A clear, unprotected public key is entered under which
DATA keys can be enciphered. This request can be
disallowed through the access-control system.

This is a potentially insecure operation in that any DATA
key having the EXPORT-ALLOWED bit on can be
exported to the owner of the associated private key.

CSNDSYG
PKA_Symmetric_Key_Generate

A clear, unprotected public key is entered under which a
freshly generated KEK or DATA key can be created.
This request can be disallowed through the
access-control system.

This is a potentially insecure operation if you set up a
key-distribution channel with an inappropriate public key.
Be sure that you know who has access to the associated
private key.

6-6 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

CSNBCKI
Clear_Key_Import
CSNBCKM
Multiple_Clear_Key_Import

Either 8 or 16 bytes of clear information can be accepted
to be returned as an encrypted DATA key. This request
can be disallowed through the access-control system.
The clear-key information could be intercepted as it is
transmitted to the Coprocessor. Consider freshly
generating a key using Key_Generate.

CSNBKPI
Key_Part_Import

This verb requires use of two commands (using the
FIRST, MIDDLE, or LAST keywords) to complete the
establishment of a productive key of any type. The key
information is passed in the clear. These requests can
be disallowed through the access-control system.

The access controls can enforce a dual-control policy,
but the key components (parts) still pass across the
general interface in the clear. As an alternative, consider
use of PKA_Symmetric_Key_Import and Key_Import to
receive keys from another source.

Note that an adversary might be able to change the
value of a key by employing use of the MIDDLE
keyword. If the key were for an IMPORTER or
EXPORTER, this could be used later to alter the control
vector of an imported or exported key. This technique is
sometimes viewed as a legitimate means for altering
control vectors and is referred to as the pre-XOR
technique. (See “Pre-Exclusive-OR.”)

CSNBMKP
Master_Key_Process

Use of the FIRST, MIDDLE, and LAST keywords
employs clear data to establish the value of a master
key. These requests can be disallowed through the
access-control system. The preferred means to
establish a master key is through random generation
(RANDOM keyword) or through the master-key cloning
process.

| Using Replicated Keys
| A “replicated key” is defined as a a double-length DES key having equal left and
| right halves. Such a key performs as a single length key. Since CCA always uses
| double-length key-encrypting keys and PIN-processing keys, it is sometimes
| advantageous to generate or install replicated keys in order to inter-operate with
| non-CCA systems.

| Be careful in permitting the generation and use of replicated keys as overcoming
| the work-factor to attack single-length DES keys may be within the capability of
| certain adversaries. You can block the generation of replicated DES keys in the
| Key_Generate and the Diversified_Key_Generate verbs by not enabling optional
| commands.

 PIN Data
A Personal Identification Number (PIN) is generally passed across the interface as
an encrypted object in an encrypted-PIN-block. Generally all verbs protect PIN
values through encryption. The exceptions are:

 Chapter 6. Observations on Secure Operations 6-7

CSNBCPE
Clear_PIN_Encrypt

Encrypts a clear-PIN value and returns the result under
an OPINENC class key. This request can be disallowed
through the access-control system.

Unrestricted usage can permit the construction of a
dictionary of encrypted PIN values.

CSNBPGN
Clear_PIN_Generate

Generates the PIN for a given account number. This
request can be disallowed through the access-control
system.

Unrestricted usage permits the generation of PIN
numbers for the specified account number(s), using
information that can be well known to an adversary.

 Status Data
Status is returned from the CCA application through the use of the
Access_Control_Maintenance and Cryptographic_Facility_Query verbs. An
adversary with access to the computing system could alter Coprocessor status
responses.

Note also that certain status information can be obtained from the Miniboot
component of the Coprocessor through the use of the Coprocessor Load Utility
(CLU). This response is signed and can be validated using the CLU utility.

| RS-232 Port
| All CCA input and output is via CP/Q++. With release 2.30, the embedded control
| program, CP/Q++, provides a device driver for the communications port. However,
| the standard CCA application program makes no use of the port and therefore the
| port is functionally inert. No information from or to CCA will pass over this port
| interface.

 Master-Key Cloning
If master-key cloning will be employed, then the distribution of shares needs to be
accommodated, perhaps with a unique role and profile for the individual permitted
to process sharen. Registering the public key of the authorization node should be
split between two users such as SO1 and SO2, see Table 6-1 on page 6-3.

Sample Access-Control Regimes
The CCA access-control system is quite flexible so as to accommodate a wide
variety of needs. Your task is to balance simplicity of operation against the
requirements for a secure installation. This section discusses a very simple case
as an introduction to establishing your access-control regime. Before continuing
with this material, you should understand the introductory material in Chapter 2 of
IBM 4758 CCA Basic Services Reference and Guide and familiarize yourself with
Chapter 2 of IBM 4758 CCA Basic Services Reference and Guide and Appendix A,
“CCA Access-Control Commands” in this book.

6-8 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

 Simple-CA Capability
A certification authority (CA) is a function within a public-key infrastructure (PKI)
environment responsible for creating a certificate on a user's public key. To
support CA functionality, at a minimum a Coprocessor would need to create a
digital signature. Many CA operators may require that the private signing key be
retained within the Coprocessor, so RSA key generation should be supported. Use
of the signing key should be enabled by a positive action from someone
responsible for the key. If no other capabilities are required, then establishing a
master key is not required. Table 6-2 on page 6-10 describes possible roles and
appropriate permissions.

The suggested roles might be used as follows:

Initial Default Use this or a similar default role to checkout the Coprocessor
installation and CCA software. See “How to Establish a Test Node” on
page 5-3.

At the conclusion of this testing, zeroize the node. See “How to Initialize
(Zeroize) the Node” on page 5-7.

Setup Use this role for application testing exclusive of RSA key generation and
digital signature generation. This role permits modifications to the
access-control system, and therefore should be deleted prior to normal
operations so as to lock the access-control system.

Auditor Use this role prior to the start of normal operations, and later as required,
to confirm the access-control system settings and the names of retained keys.

The auditor should confirm that the roles and profiles within the Coprocessor
are appropriate. The auditor can also list the labels of retained keys held in
the Coprocessor.

The auditor might also be assigned the right(s) to zeroize the entire
cryptographic node and/or the right to zeroize a retained private signing key.

Signer An individual (or process) authorized to generate an RSA key and to sign a
certificate signs on to a profile linked to this role.

Note that there could be more than one profile accessing the Signer role in
order to create keys and signatures, possibly for diverse purposes. Under the
current CCA implementation, a role grants permission to the digital signature
generation capability without regard to which private key is involved. Using
retained private keys, there is no protection against one user employing the
private key of another user.

 Chapter 6. Observations on Secure Operations 6-9

Table 6-2. Roles and Permissions for a Simple CA Case

Roles Permissions

Initial Default

This role is used to verify
reasonable operation of the
installed hardware and
software. Once initial
checkout is complete, this role
is replaced by the Operational
Default role and the other
roles described next.

All

(Use the enable all button in the CNM utility.)

Setup

This role can be used during
initial application testing and
establishment of test roles.
Once proper operation is
confirmed, this role should be
deleted because it can be
used to alter and extend the
access-control regime.

X'0101', (DSV) Digital_Signature_Verify†
X'0107', (OWH) One-Way Hash, SHA-1†
X'010F', (CFC) Reset Intrusion Latch
X'0110', (CFC) Cryptographic_Facility_Control
X'0111', (CFC) Reinitialize Device
X'0112', (ACI) Initialize Access-Control System
X'0113', (ACI) Change User Profile Expiration Date
X'0114', (ACI) Change User Profile Authentication Data
X'0115', (ACI) Reset User Profile Logon-Attempt-Failure Count
X'0116', (ACM) Read Public Access-Control Information
X'0119', (CFC) Load Function-Control Vector†
X'011A', (CFC) Clear Function-Control Vector†
X'011C', (CFC) Set EID†
X'011D', (CFC) Initialize Master Key Cloning†
X'0203', (RKD) Retained_Key_Delete
X'0230', (RKL) List Retained Keys

Operational Default

(Replaces Initial Default.)

This role is in effect if any call
is made to the CCA
Coprocessor function from a
caller who has not
successfully logged on to the
Coprocessor.

X'0101', (DSV) Digital_Signature_Verify†
X'0107', (OWH) One-Way Hash, SHA-1†
X'0116', (ACM) Read Public Access-Control Information

Auditor

This role is used to query the
access-controls setup and to
confirm that the setup-role
and retained keys generated
during testing have been
deleted prior to sanctioning
start-up of normal operations.

X'0101', (DSV) Digital_Signature_Verify†
X'0107', (OWH) One-Way Hash, SHA-1†
X'0111', (CFC) Reinitialize Device‡
X'0116', (ACM) Read Public Access-Control Information
X'0203', (RKD) Delete Retained Key‡
X'0230', (RKL) List Retained Keys

Signer X'0100', (DSG) Digital_Signature_Generate
X'0101', (DSV) Digital_Signature_Verify
X'0103', (PKG) PKA_Key_Generate
X'0107', (OWH) One-Way Hash, SHA-1
X'0203', (RKD) Delete Retained Key
X'0230', (RKL) List Retained Keys

(...), the last three letters in the verb entry-point name

† An optional command

‡ Possibly an auditor should be able to disable use of the cryptographic facility or a specific key.
Enablement of these commands for the auditor is an application-design issue.

6-10 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

Chapter 7. Building Applications to Use with the CCA API

This chapter includes the following:

� An overview of the way in which applications obtain service from the Common
Cryptographic Architecture (CCA) application program interface (API)

� The procedure for calling a CCA verb in the C programming language
� The procedure for compiling applications and linking them to the CCA API
� A sample routine written in the C programming language
� Enhancing throughput with CCA and the 4758 Models 002 and 023.

Source code for the sample routine is shipped with the software. You can use
the sample included to test the Coprocessor and the support program.

Note: The file locations referenced in this chapter are the default directory paths.

 Overview
Application and utility programs issue service requests to the PCI Cryptographic

| Coprocessor by calling the CCA API verbs1. The OS/2 and Windows NT/2000
environments link CCA API requests to their dynamic link library (DLL) code, and
AIX links requests to its shared library code. The operating system code in turn
calls the Coprocessor physical device driver (PDD). The hardware and software
accessed through the API are themselves an integrated subsystem.

Verb calls are written in the standard syntax of the C programming language, and
include an entry_point_name, verb parameters, and the variables for those
parameters. The same entry_point_name, parameters, and variables are used in

| AIX, OS/2, and Windows NT/2000 environments, so code can be ported between
them with minimal change.

For a detailed listing of the verbs, variables, and parameters you can use when
programming for the CCA API, refer to the IBM 4758 CCA Basic Services
Reference and Guide.

How to Call Verbs in C Program Syntax
In every operating system environment, you can code verb calls using standard C
programming language syntax.

Function call prototypes for all CCA API verbs are contained in the include-file.
The files and their default distribution locations are:

AIX /usr/include/csufincl.h
OS/2 \IBM4758\include\csueincl.h

| Windows NT/2000 \Program Files\IBM\4758\include\csunincl.h

To include these verb declarations, use the following compiler directive in your
program:

1 The term “verb” implies an action that an application program can initiate. Some systems and publications use the term “callable
service.”

 Copyright IBM Corp. 1997-2000 7-1

AIX #include <csufincl.h>
OS/2 #include "csueincl.h"

| Windows NT/2000 #include "csunincl.h"

When you issue a call to a CCA API verb, code the verb entry_point_name in
uppercase characters. Separate the parameter identifiers with commas and
enclose them in parentheses. End the call with a semicolon character. For
example:

 CSNBCKI (&return_code,

 &reason_code,

&exit_data_length, /� exit_data_length �/

 exit_data, /� exit_data �/

 clear_key,

 key_token);

Note: The third and fourth parameters of a CCA call, exit_data_length and
exit_data, are not currently supported by the support program. Code null address
pointers for these parameters, or specify a long integer valued to zero with the
exit_data_length parameter.

How to Compile and Link Application Programs
The support program includes the C Language source code and the make-file for a
sample program. The file and its default distribution location is:

AIX /usr/lpp/csuf/samples/c
OS/2 \IBM4758\samples

| Windows NT/2000 \Program Files\IBM\4758\samples

To compile application programs which use CCA, you can use the IBM VisualAge
C compiler tools, or similar tools from other vendors.

Link the compiled program to the CCA library. The library and its default
distribution location is:

AIX /usr/lib/libcsufsapi.a
OS/2 \IBM4758\lib\csuesapi.lib

| Windows NT/2000 \Program Files\IBM\4758\lib\csunsapi.lib

Compiling Applications for AIX
When compiling your applications for AIX, use the _r suffixed version of the
compiler. The _r suffixed compiler supports multi-threaded operation. For
example, xlc_r.

 Sample Routine
To illustrate the practical application of CCA verb calls, this section describes the
sample routine included with the support program. For reference, a hard copy of

| the sample routine is shown in Figure 7-1 on page 7-4. (There is also a sample
| program on the product website. That sample program can help you understand
| the performance of the CCA implementation.)

The sample routine generates a message authentication code (MAC) on a text
string and then verifies the MAC. To effect this, the routine:

7-2 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

1. Calls the Key_Generate (CSNBKGN) verb to create a MAC/MACVER key pair.

2. Calls the MAC_Generate (CSNBMGN) verb to generate a MAC on a text string
with the MAC key.

3. Calls the MAC_Verify (CSNBMVR) verb to verify the text string MAC with the
MACVER key.

As you review the sample routine shown in Figure 7-1 on page 7-4, refer to the
IBM 4758 CCA Basic Services Reference and Guide for descriptions of the called
verbs and their parameters. These verbs are listed in Table 7-1.

Table 7-1. Verbs Called by the Sample Routine

Verb Entry_Point_Name

Key_Generate CSNBKGN

MAC_Generate CSNBMGN

MAC_Verify CSNBMVR

 Chapter 7. Building Applications to Use with the CCA API 7-3

/���/

/� Module Name: mac.c �/

/� DESCRIPTIVE NAME: Cryptographic Coprocessor Support Program �/

/� C language source code example �/

/�---�/

/� Licensed Materials - Property of IBM �/

/� (C) Copyright IBM Corp. 1997 All Rights Reserved �/

/� US Government Users Restricted Rights - Use duplication or �/

/� disclosure restricted by GSA ADP Schedule Contract with �/

/� IBM Corp. �/

/�---�/

/� NOTICE TO USERS OF THE SOURCE CODE EXAMPLES �/

/� The source code examples provided by IBM are only intended to �/

/� assist in the development of a working software program. The �/

/� source code examples do not function as written: additional �/

/� code is required. In addition, the source code examples may �/

/� not compile and/or bind successfully as written. �/

/� �/

/� International Business Machines Corporation provides the source �/

/� code examples, both individually and as one or more groups, �/

/� "as is" without warranty of any kind, either expressed or �/

/� implied, including, but not limited to the implied warranties of �/

/� merchantability and fitness for a particular purpose. The entire �/

/� risk as to the quality and performance of the source code �/

/� examples, both individually and as one or more groups, is with �/

/� you. Should any part of the source code examples prove defective, �/

/� you (and not IBM or an authorized dealer) assume the entire cost �/

/� of all necessary servicing, repair or correction. �/

/� �/

/� IBM does not warrant that the contents of the source code �/

/� examples, whether individually or as one or more groups, will �/

/� meet your requirements or that the source code examples are �/

/� error-free. �/

/� �/

/� IBM may make improvements and/or changes in the source code �/

/� examples at any time. �/

/� �/

/� Changes may be made periodically to the information in the �/

/� source code examples; these changes may be reported, for the �/

/� sample code included herein, in new editions of the examples. �/

/� �/

/� References in the source code examples to IBM products, programs, �/

/� or services do not imply that IBM intends to make these �/

/� available in all countries in which IBM operates. Any reference �/

/� to the IBM licensed program in the source code examples is not �/

/� intended to state or imply that IBM's licensed program may be �/

/� used. Any functionally equivalent program may be used. �/

/� �/

/�---�/

/� �/

/� This example program: �/

/� �/

/� 1) Calls the Key Generate verb (CSNBKGN) to creates a MAC key �/

/� token and a MACVER key token. �/

/� �/

/� 2) Calls the MAC Generate verb (CSNBMGN) using the MAC key token �/

/� from step 1 to generate a message authentication code (MAC) �/

/� on the supplied text string (INPUT_TEXT). �/

/� �/

/� 3) Calls the MAC Verify verb (CSNBMVR) to verify the message �/

/� authentication code (MAC) for the same text string, using the �/

/� MACVER key token created in step 1. �/

/� �/

/���/

Figure 7-1 (Part 1 of 5). Syntax, Sample Routine

7-4 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

#include <stdio.h>

#include <string.h>

#ifdef _AIX

 #include <csufincl.h>

#elif __WINDOWS__

 #include "csunincl.h"

#else

 #include "csueincl.h"

#endif

/� Defines �/

#define INPUT_TEXT "abcdefhgijklmn"987654321"

#define MAC_PROCESSING_RULE "X9.9-1 "

#define SEGMENT_FLAG "ONLY "

#define MAC_LENGTH "HEX-9 "

#define MAC_BFR_LENGTH 1"

#define KEY_FORM "OPOP"

#define KEY_LENGTH "SINGLE "

#define KEY_TYPE_1 "MAC "

#define KEY_TYPE_2 "MACVER "

void main()

{

 static long return_code;

 static long reason_code;

 static long exit_data_length;

static unsigned char exit_data[4];

static unsigned char kek_key_id_1[64];

static unsigned char kek_key_id_2[64];

static unsigned char mac_key_id[64];

static unsigned char macver_key_id[64];

static unsigned char key_form[4];

static unsigned char key_length[8];

static unsigned char mac_key_type[8];

static unsigned char macver_key_type[8];

 static long text_length;

static unsigned char text[26];

 static long rule_array_count;

static unsigned char rule_array[8][8];

static unsigned char chaining_vector[18];

static unsigned char mac_value[MAC_BFR_LENGTH];

/� Print a banner �/

printf("Cryptographic Coprocessor Support Program example program.\n");

Figure 7-1 (Part 2 of 5). Syntax, Sample Routine

 Chapter 7. Building Applications to Use with the CCA API 7-5

memset (mac_value, "x"", sizeof(mac_value)); /� Clear the mac value. �/

memcpy (key_form, KEY_FORM, 4); /� Set up initial values. �/

 memcpy (key_length, KEY_LENGTH, 8);

 memcpy (mac_key_type, KEY_TYPE_1, 8);

memcpy (macver_key_type, KEY_TYPE_2, 8);

/� Generate a key. �/

 CSNBKGN(&return_code,

 &reason_code,

 &exit_data_length,

 exit_data,

 key_form,

 key_length,

 mac_key_type,

 macver_key_type,

 kek_key_id_1,

 kek_key_id_2,

 mac_key_id,

 macver_key_id);

/� Check the return/reason code. Terminate if there is an error. �/

if (return_code != " ││ reason_code != ") {

printf ("Key Generate Failed\n"); /� Print failing verb. �/

printf ("Return_code = %ld\n", return_code); /� Print return code. �/

printf ("Reason_code = %ld\n", reason_code); /� Print reason code. �/

 return;

 }

else { /� No error occurred. �/

printf ("Key Generate Successful\n");

Figure 7-1 (Part 3 of 5). Syntax, Sample Routine

7-6 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

memcpy (text, INPUT_TEXT, sizeof (INPUT_TEXT) - 1); /� Get the input text�/

text_length = sizeof (INPUT_TEXT) - 1; /� Set the text length. �/

rule_array_count = 3; /� Set rule array �/

memcpy (rule_array["], MAC_PROCESSING_RULE, 8);

memcpy (rule_array[1], SEGMENT_FLAG, 8);

memcpy (rule_array[2], MAC_LENGTH, 8);

memset (chaining_vector, "x"", 18); /� Clear the chaining vector.�/

/� Call MAC_Generate. �/

 CSNBMGN (&return_code,

 &reason_code,

 &exit_data_length,

 exit_data,

 mac_key_id,

 &text_length,

 text,

 &rule_array_count,

 &rule_array["]["],

 chaining_vector,

 mac_value);

/� Check the return/reason code. Terminate if there is an error. �/

if (return_code != " ││ reason_code != ") {

printf ("MAC Generate Failed\n"); /� Print failing verb �/

printf ("Return_code = %ld\n", return_code); /� Print return code �/

printf ("Reason_code = %ld\n", reason_code); /� Print reason code �/

 return;

 }

else { /� No error occurred �/

printf ("MAC Generate Successful\n");

printf ("MAC_value = %s\n", mac_value); /� Print MAC value �/

Figure 7-1 (Part 4 of 5). Syntax, Sample Routine

 Chapter 7. Building Applications to Use with the CCA API 7-7

/� Set the rule array for the MAC Verify. Use the default MAC �/

/� Ciphering Method and Segmenting Control. �/

rule_array_count = 1; /� Set the rule array �/

memcpy (rule_array["], MAC_LENGTH, 8);

/� Call MAC_Verify �/

 CSNBMVR (&return_code,

 &reason_code,

 &exit_data_length,

 exit_data,

 macver_key_id,

 &text_length,

 text,

 &rule_array_count,

 &rule_array["]["],

 chaining_vector,

 mac_value);

/� Check the return/reason code. Terminate if there is an error. �/

if (return_code != " ││ reason_code != ") {

printf ("MAC Verify Failed\n"); /� Print failing verb. �/

printf ("Return_code = %ld\n",return_code); /� Print return code. �/

printf ("Reason_code = %ld\n",reason_code); /� Print reason code. �/

 return;

 }

else { /� No error occurred. �/

printf ("MAC Verify Successful\n");

 }

 }

 }

}

Figure 7-1 (Part 5 of 5). Syntax, Sample Routine

Enhancing Throughput with CCA and the 4758 Models 002 and 023
When you use the CCA API, the characteristics of your host application program
will affect performance and throughput of the 4758-002 and 4758-023. There are
two areas you should understand in order to evaluate performance and design your
application to obtain the best performance from the 4758 Coprocessor.

Multi-threading and Multi-processing
The CCA application running inside the 4758 models 002 and 023 can process
several CCA requests simultaneously. The Coprocessor contains several
independent hardware elements, such as the RSA engine, DES engine, CPU,
random number generator, and PCI communications interface. These can all be
working at the same time, processing parts of different CCA verbs. By working on
several verbs at the same time, the 4758 can keep all of its hardware elements
busy, maximizing the overall system throughput.

In order to take advantage of this capability, your host system must send multiple
CCA requests to the 4758 without waiting for each one to finish before sending the
next one. The best way to accomplish this is to design a multi-threaded host
application program, in which each thread can independently send CCA requests to
the 4758. For example, a web server can start a new thread for each request it
receives over the network. Each of these threads will send the required

7-8 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

cryptographic requests to the 4758, independent of what the other threads are
doing. By doing this, you guarantee that the 4758 is not under utilized. Another
option is to have several independent host application programs all using the 4758
at the same time.

Caching DES and RSA Keys
| The CCA software for the 4758 models 002 and 023 keeps copies of recently used

DES and RSA keys in caches, inside the secure module. The keys are stored in a
form that has been decrypted and validated, and is ready for use. If the same key
is reused in a later CCA request, the 4758 can use the cached copy and avoid the
overhead associated with decrypting and validating the key token. In addition, for
retained RSA keys, the cache eliminates the overhead of retrieving the key from
the internal flash EPROM memory.

As a result, applications that reuse a common set of keys can run much faster than
those which use different keys for each transaction. Most common applications use
a common set of DES keys and RSA private keys, and the caching is very effective
in improving throughput. RSA public keys, which have very little processing
overhead, are not cached.

 Chapter 7. Building Applications to Use with the CCA API 7-9

7-10 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

Appendix A. CCA Access-Control Commands

The table in this appendix lists the CCA access-control commands (“control points”)
supported by the CCA Cryptographic Coprocessor Support Program. The role to
which a user is assigned determines the commands available to that user.

Important: By default, you should disable commands. Do not enable a command
unless you know why you are enabling it.

The table includes the following columns:

Offset The hexadecimal offset for the command; offsets between
X'0000' and X'FFFF' not listed in this table are reserved.

Command Name The name of the command required by the following verbs.

Verb Name The names of the verbs that require that command to be
enabled; for example, the Encipher (CSNBENC) verb will fail
without permission to use the Encipher command.

Entry The entry_point_name of the verb.

Usage Usage recommendations for the command. The
abbreviations in this column are explained at the bottom of
the page.

For information about the verbs and the functions they call, refer to the IBM 4758
CCA Basic Services Reference and Guide.

 Copyright IBM Corp. 1997-2000 A-1

Table A-1 (Page 1 of 4). Supported CCA Commands

Code Command Name Verb Name Entry Usage

X'000E' Encipher Encipher CSNBENC O

X'000F' Decipher Decipher CSNBDEC O

X'0010' Generate MAC MAC_Generate CSNBMGN O

X'0011' Verify MAC MAC_Verify CSNBMVR O

X'0012' Re-encipher to Master Key Key_Import CSNBKIM O

X'0013' Re-encipher from Master Key Key_Export CSNBKEX O

X'0018' Load First Master Key Part Master_Key_Process† SNBMKP SC, SEL

X'0019' Combine Master Key Parts Master_Key_Process† CSNBMKP SC, SEL

X'001A' Set Master Key Master_Key_Process† CSNBMKP SC, SEL

X'001B' Load First Key Part Key_Part_Import† CSNBKPI SC, SEL

X'001C' Combine Key Parts Key_Part_Import† CSNBKPI SC, SEL

X'001D' Compute Verification Pattern Key_Test
Key_Storage_Initialization
DES_Key_Record_Create
DES_Key_Record_Delete
DES_Key_Record_List
DES_Key_Record_Read
DES_Key_Record_Write
PKA_Key_Record_Create
PKA_Key_Record_Delete
PKA_Key_Record_List
PKA_Key_Record_Read
PKA_Key_Record_Write

CSNBKYT
CSNBKSI
CSNBKRC
CSNBKRD
CSNBKRL
CSNBKRR
CSNBKRW
CSNDKRC
CSNDKRD
CSNDKRL
CSNDKRR
CSNDKRW

R

X'001F' Translate Key Key_Translate CSNBKTR O

X'0020' Generate Random Master Key Master_Key_Process† CSNBMKP O, SEL

X'0032' Clear New Master Key Master_Key_Process† CSNBMKP O, SUP

X'0033' Clear Old Master Key Register Master_Key_Process† CSNBMKP O, SUP

| X'0040'| Generate Diversified Key (CLR8-ENC)| Diversified_Key_Generate‡| CSNBDKG| O, SEL

| X'0041'| Generate Diversified Key (TDES-ENC)| Diversified_Key_Generate‡| CSNBDKG| O, SEL

| X'0042'| Generate Diversified Key (TDES-DEC)| Diversified_Key_Generate‡| CSNBDKG| O, SEL

| X'0043'| Generate Diversified Key (SESS-XOR)| Diversified_Key_Generate‡| CSNBDKG| O, SEL

| X'0044'| Enable DKG Single Length Keys and Equal
| Halves for TDES-ENC, TDES-DEC
| Diversified_Key_Generate‡| CSNBDKG| SC, SEL

X'0053' Load First Asymmetric Master Key Part Master_Key_Process† CSNBMKP SC, SEL

X'0054' Combine PKA Master Key Parts Master_Key_Process† CSNBMKP SC, SEL

X'0057' Set Asymmetric Master Key Master_Key_Process† CSNBMKP SC, SEL

X'0060' Clear New Asymmetric Master Key Buffer Master_Key_Process† CSNBMKP SC, SEL

X'0061' Clear Old Asymmetric Master Key Master_Key_Process† CSNBMKP SC, SEL

| X'008A'| Generate MDC| Generate_Modification_Detection_Code| CSNBMDG| R

X'008C' Generate Key Set Key_Generate‡ CSNBKGN O

X'008E' Generate Key Key_Generate‡

Random_Number_Generate
CSNBKGN
CSNBRNG

R

X'0090' Re-encipher to Current Master Key Key_Token_Change CSNBKTC R

The following codes are used in this table:

ID Initial default.
O Usage of this command is optional; enable it as required for authorized usage.
R Enabling this command is recommended.
NR Enabling this command is not recommended.
SC Usage of this command requires special consideration.
SEL Usage of this command is normally restricted to one or more selected roles.
SUP This command is normally restricted to one or more supervisory roles.

† This verb performs more than one function, as determined by the keyword in the rule_array parameter of the verb call. Not all

functions of the verb require the command in this row.
‡ This verb does not always require the command in this row. Use as determined by the control vector for the key and the action

being performed.

A-2 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

Table A-1 (Page 2 of 4). Supported CCA Commands

Code Command Name Verb Name Entry Usage

X'00A0' Generate Clear 3624 PIN Clear_PIN_Generate CSNBPGN O

X'00A4' Generate Clear 3624 PIN Offset Clear_PIN_Generate_Alternate† CSNBCPA O

X'00AB' Verify Encrypted 3624 PIN Encrypted_PIN_Verify† CSNBPVR O

X'00AC' Verify Encrypted German Bank Pool PIN Encrypted_PIN_Verify† CSNBPVR O

X'00AD' Verify Encrypted VISA PVV Encrypted_PIN_Verify† CSNBPVR O

X'00AE' Verify Encrypted Interbank PIN Encrypted_PIN_Verify† CSNBPVR O

X'00AF' Format and Encrypt PIN Clear_PIN_Encrypt CSNBCPE O

X'00B1' Generate Formatted and Encrypted German
Bank Pool PIN

Encrypted_PIN_Generate† CSNBEPG O

X'00B2' Generate Formatted and Encrypted Interbank
PIN

Encrypted_PIN_Generate† CSNBEPG O

X'00B3' Translate PIN with No Format-Control to No
Format-Control

Encrypted_PIN_Translate† CSNBPTR O

X'00B7' Reformat PIN with No Format-Control to No
Format-Control

Encrypted_PIN_Translate† CSNBPTR O

X'00BB' Generate Clear VISA PVV Alternate Clear_PIN_Generate_Alternate† CSNBCPA O

X'00C3' Encipher Under Master Key Clear_Key_Import
Multiple_Clear_Key_Import

CSNBCKI
CSNBCKM

| SC

X'00CD' Lower Export Authority Prohibit_Export CSNBPEX O

X'00D6' Translate Control Vector Translate_Control_Vector CSNBCVT SC

X'00D7' Generate Key Set Extended Key_Generate‡ CSNBKGN SC, SUP

X'00DA' Encipher/Decipher Cryptovariable Cryptographic_Variable_Encipher CSNBCVE O, SUP,
CDM

X'00DB' Replicate Key Key_Generate‡ CSNBKGN| SC, NR

X'00DF' Generate CVV CVV_Generate CSNBCSG O

X'00E0' Verify CVV CVV_Verify CSNBCSV O

X'0100' PKA96 Digital Signature Generate Digital_Signature_Generate CSNDDSG O, SC

X'0101' PKA96 Digital Signature Verify Digital_Signature_Verify CSNDDSV O

X'0102' PKA96 Key Token Change PKA_Key_Token_Change CSNDKTC O

X'0103' PKA96 PKA Key Generate PKA_Key_Generate† CSNDPKG O, SUP

X'0104' PKA96 PKA Key Import PKA_Key_Import CSNDPKG O, SUP

X'0105' PKCS-1.2 Symmetric Key Export PKA_Symmetric_Key_Export CSNDSYX SC

X'0106' PKCS-1.2 PKA Symmetric Key Import PKA_Symmetric_Key_Import† CSNDSYI O

X'0107' One-Way Hash, SHA-1 One_Way_Hash CSNBOWH R

X'0109' Data Key Import Data_Key_Import CSNBDKM O

X'010A' Data Key Export Data_Key_Export CSNBDKX O

X'010B' Compose SET Block SET_Block_Compose CSNDSBC O

X'010C' Decompose SET Block SET_Block_Decompose CSNDSBD O

X'010D' PKA Symmetric Key Generate PKA_Symmetric_Key_Generate† CSNDSYG SC

X'010E' NL-EPP-5 Symmetric Key Generate PKA_Symmetric_Key_Generate† CSNDSYG O

X'010F' Reset Intrusion Latch Cryptographic_Facility_Control† CSUACFC SUP

The following codes are used in this table:

ID Initial default.
O Usage of this command is optional; enable it as required for authorized usage.
R Enabling this command is recommended.
NR Enabling this command is not recommended.
SC Usage of this command requires special consideration.
SEL Usage of this command is normally restricted to one or more selected roles.
SUP This command is normally restricted to one or more supervisory roles.

† This verb performs more than one function, as determined by the keyword in the rule_array parameter of the verb call. Not all

functions of the verb require the command in this row.
‡ This verb does not always require the command in this row. Use as determined by the control vector for the key and the action

being performed.

 Appendix A. CCA Access-Control Commands A-3

Table A-1 (Page 3 of 4). Supported CCA Commands

Code Command Name Verb Name Entry Usage

X'0110' Set Clock Cryptographic_Facility_Control† CSUACFC SUP, ID

X'0111' Reinitialize Device Cryptographic_Facility_Control† CSUACFC SUP, ID

X'0112' Initialize Access-Control System Access_Control_Initialization† CSUAACI SUP, ID

X'0113' Change User Profile Expiration Date Access_Control_Initialization† CSUAACI SUP, ID

X'0114' Change User Profile Authentication Data Access_Control_Initialization† CSUAACI SUP, ID

X'0115' Reset User Profile Logon-Attempt-Failure Count Access_Control_Initialization† CSUAACI SUP, ID

X'0116' Read Public Access-Control Information Access_Control_Maintenance† CSUAACM O, ID

X'0117' Delete User Profile Access_Control_Maintenance† CSUAACM SUP, ID

X'0118' Delete Role Access_Control_Maintenance† CSUAACM SUP, ID

X'0119' Load Function-Control Vector Cryptographic_Facility_Control† CSUACFC SUP, ID

X'011A' Clear Function-Control Vector Cryptographic_Facility_Control† CSUACFC NR, ID

X'011B' Force User Logoff Logon_Control† CSUALCT O, SUP

X'011C' Set EID Cryptographic_Facility_Control† CSUACFC O, SUP

X'011D' Initialize Master Key Cloning Cryptographic_Facility_Control† CSUACFC O, SUP

X'011E' RSA Encipher Clear Key PKA_Key_Encipher CSNDPKE O, SEL

X'011F' RSA Decipher Clear Key PKA_Key_Decipher CSNDPKD O, SEL

X'0120' Generate Random Asymmetric Master Key Master_Key_Process† CSNBMKP SC, SEL

| X'0121'| SET PIN Encrypt with IPINENC| SET_Block_Decompose†| CSNBSBD| O

| X'0122'| SET PIN Encrypt with OPINENC| SET_Block_Decompose†| CSNBSBD| O

X'0200' PKA Register Public Key Hash PKA_Public_Key_Hash_Register CSNDPKH O

X'0201' PKA Public Key Register with Cloning PKA_Public_Key_Register† CSNDPKR O, SEL

X'0202' PKA Public Key Register PKA_Public_Key_Register† CSNDPKR O, SEL

X'0203' Delete Retained Key Delete Retained Key CSNDRKD O, SEL

X'0204' PKA Clone Key Generate PKA_Key_Generate† CSNDPKG O, SUP

X'0205' PKA Clear Key Generate PKA_Key_Generate† CSNDPKG O, SUP

X'0211'
through
X'021F'

Clone-info (Share) Obtain Master_Key_Distribution† CSNBMKD O, SUP

X'0221'
through
X'022F'

Clone-info (Share) Install Master_Key_Distribution† CSNBMKD O, SUP

X'0230' List Retained Key List Retained Keys CSNDRKL O

X'0231' Generate Clear NL-PIN-1 Offset Clear_PIN_Generate_Alternate† CSNBCPA O

X'0232' Verify Encrypted NL-PIN-1 Encrypted_PIN_Verify† CSNBPVR O

X'0235' PKA92 PKA Symmetric Key Import PKA_Symmetric_Key_Import† CSNDSYI O

| X'0236'| PKA92 PKA Symmetric Key Import with PIN
| Keys
| PKA_Symmetric_Key_Import†| CSNDSYI| O

X'023C' ZERO-PAD Symmetric Key Generate PKA_Symmetric_Key_Generate† CSNDSYG O

X'023D' ZERO-PAD Symmetric Key Import PKA_Symmetric_Key_Import† CSNDSYI O, SC

X'023E' ZERO-PAD Symmetric Key Export PKA_Symmetric_Key_Export† CSNDSYX O, SC

X'023F' PKCS-1.2 Symmetric Key Generate PKA_Symmetric_Key_Generate† CSNDSYG O, SC

The following codes are used in this table:

ID Initial default.
O Usage of this command is optional; enable it as required for authorized usage.
R Enabling this command is recommended.
NR Enabling this command is not recommended.
SC Usage of this command requires special consideration.
SEL Usage of this command is normally restricted to one or more selected roles.
SUP This command is normally restricted to one or more supervisory roles.

† This verb performs more than one function, as determined by the keyword in the rule_array parameter of the verb call. Not all

functions of the verb require the command in this row.
‡ This verb does not always require the command in this row. Use as determined by the control vector for the key and the action

being performed.

A-4 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

Table A-1 (Page 4 of 4). Supported CCA Commands

Code Command Name Verb Name Entry Usage

| X'0290'| Generate Diversified Key (DALL with
| DKYGENKY keytype)
| Diversified_Key_Generate‡| CSNDDKG| O, SC

| X'0291'| Generate CSC-5, 4 and 3 Values| Transaction_Validate†| CSNBTRV| O, SEL

| X'0292'| Verify CSC-3 Values| Transaction_Validate†| CSNBTRV| O

| X'0293'| Verify CSC-4 Values| Transaction_Validate†| CSNBTRV| O

| X'0294'| Verify CSC-5 Values| Transaction_Validate†| CSNBTRV| O

The following codes are used in this table:

ID Initial default.
O Usage of this command is optional; enable it as required for authorized usage.
R Enabling this command is recommended.
NR Enabling this command is not recommended.
SC Usage of this command requires special consideration.
SEL Usage of this command is normally restricted to one or more selected roles.
SUP This command is normally restricted to one or more supervisory roles.

† This verb performs more than one function, as determined by the keyword in the rule_array parameter of the verb call. Not all

functions of the verb require the command in this row.
‡ This verb does not always require the command in this row. Use as determined by the control vector for the key and the action

being performed.

 Appendix A. CCA Access-Control Commands A-5

A-6 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

Appendix B. Initial DEFAULT-Role Commands

This appendix describes the characteristics of the DEFAULT role after the
Coprocessor is initialized and when no other access-control data exists:

� The role ID is DEFAULT.
� The required authentication strength is zero.
� It is valid at all times of the day and on all days of the week.
� The only functions permitted are those necessary to load access-control data.

 Important

The cryptographic node is not secure when unauthenticated users can load
access-control data using the DEFAULT role. Restrict these commands to
selected supervisory roles.

Table B-1 lists the access-control commands enabled in the DEFAULT role when
the CCA software is initially loaded and when the CCA node is initialized.

Table B-1. Initial DEFAULT-Role Commands

Code Command Name

X'0107' One-Way Hash

X'0110' Set Clock

X'0111' Reinitialize Device

X'0112' Initialize Access-Control System

X'0113' Change User Profile Expiration Date

X'0114' Change User Profile Authentication Data (Passphrase)

X'0115' Reset User Profile Logon-Attempt-Failure Count

X'0116' Read Public Access-Control Information

X'0117' Delete User Profile

X'0118' Delete Role

X'0119' Load Function Control Vector

X'011A' Clear Function Control Vector

 Copyright IBM Corp. 1997-2000 B-1

B-2 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

 Appendix C. Machine-Readable-Log Contents

The CLU utility creates two log files, one intended for reading and the other for
possible input to a program. This latter log file, the machine-readable log or MRL
file, contains the binary outputs from the Coprocessor in response to various
commands input to the Coprocessor.

Detailed information about the contents of the MRL is available from IBM 4758
Development. Contact IBM 4758 Development through use of the Support form on
the IBM 4758 website.

 Copyright IBM Corp. 1997-2000 C-1

C-2 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

Appendix D. Migration Considerations, Version 1 to 2

Version 1 of the CCA Support Program supports the IBM 4758 Models 001 and
013, while Version 2 of the CCA Support Program supports the IBM 4758 Models
002 and 023. Version 2 support is designed with greater consistency to the CCA
implementation now available on S/390 through the Integrated Cryptographic
Support Feature of OS/390. Certain of the design-point changes between Versions
1 and 2 are likely to cause some recoding of your application programs as you
move to Version 2.

For an overview of the changes between the two Versions, see “Revision History”
in the introductory material at the front of the IBM 4758 CCA Basic Services
Reference and Guide manual.

Separate master key registers for both symmetric and asymmetric key encryption
are provided. It is possible to independently operate on the register sets. Or, you
can operate concurrently on the register sets in which case the results are
comparable to the single set of registers used in the Version 1 CCA
implementation. At any point if you operate only on one set of registers, all
subsequent operations should operate independently on the two sets of master key
registers.

The master key verification pattern used in the Version 2 implementation is eight
bytes in length versus two bytes in the prior support. Also, the information that
represents an RSA private key in CRT form is changed. While Version 2 will
accept both Version 1 and Version 2 key tokens, it will only output key tokens in
the Version 2 format. To the extent that your application is sensitive to the format
of key tokens, some recoding may be required.

Routines that generate RSA-CRT keys will need to modify the keyword used in the
PKA_Key_Generate verb. Use the new keyword RSA-CRT.

The Key_Token_Build for DES keys moves the information related to the master
key verification pattern. Application programming recoding is required.

Most other changes are related to additional capabilities available with Version 2.

All applications that are functional with Version 1 must be thoroughly retested to
confirm proper operation with Version 2 support.

 Copyright IBM Corp. 1997-2000 D-1

D-2 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

Appendix E. Device Driver Error Codes

Each time that the Coprocessor is reset, and the reset is not caused by a fault or
tamper event, the Coprocessor runs through “Miniboot,” its power-on self-test
(POST), code-loading, and status routines. During this process the Coprocessor
attempts to coordinate with a host-system device driver. Coprocessor resets can
occur because of power-on, a reset command sent from the device driver, or
because of Coprocessor internal activity such as completion of code updates.

The Coprocessor can also reset if the Coprocessor's fault or tamper detection
circuitry reset the Coprocessor.

The Coprocessor device driver monitors the status of its communication with the
Coprocessor and the Coprocessor hardware status registers. Programs such as

| the Coprocessor Load Utility (CLU), and the CCA and PKCS #11 Support
| Programs can receive unusual status in the form of a 4-byte return code from the

device driver.

| There are a very large number of possible 4-byte codes, all of which are of the
| form X'8xxxxxxx'. The most likely codes that may be encountered are described

in Table E-1 on page E-2. If you encounter codes of the form X'8340xxxx' or
| X'8440xxxx', and the code is not in the Table, contact the IBM 4758 Support

organization for advice via the question form on the IBM 4758 product website
(http://www.ibm.com/security/cryptocards).

 Copyright IBM Corp. 1997-2000 E-1

Table E-1. Device Driver Error Codes in the Class X'8xxxxxxx'

4-byte
Return
Code
(hex)

Reason Considerations

8040FFBF External intrusion Arises due to optional electrical connection to the Coprocessor.
This condition can be reset.

8040FFDA Dead battery The batteries have been allowed to run out of sufficient power, or
have been removed. The Coprocessor is zeroized and is no longer
functional.

8040FFDB X-ray tamper The Coprocessor is zeroized and is no longer functional.

8040FFEB Temperature tamper High or low temperature has been exceeded. The Coprocessor is
zeroized and is no longer functional.

8040FFF3 Voltage tamper The Coprocessor is zeroized and is no longer functional.

8040FFF9 Mesh tamper The Coprocessor is zeroized and is no longer functional.

8040FFFE Battery warning Battery power is marginal. The battery changing procedure
described in the IBM 4758 Installation Manual should be followed
to replace the batteries.

804xxxxx
(e.g.
80400005)

General communication
problem

Except for the prior X'8040xxxx' codes, there are additional
conditions that arise in host-Coprocessor communication.
Determine that the host system in fact has a Coprocessor. Try
removing and reinserting the Coprocessor into the PCI bus. Run
the CLU status command (ST). If problem persists, contact IBM
4758 Support via the website.

8340xxxx Miniboot-0 codes This class of return code arises from the lowest-level of reset
testing.

8340038F Random number
generation fault

Continuous monitoring of the random number generator has
detected a possible problem. There is a small statistical probability
of this event occurring without indicating an actual ongoing
problem.

The CLU status (ST) command should be run at least twice to
determine if the condition can be cleared.

8440xxxx Miniboot-1 codes This class of return code arises from the replaceable POST and
code-loading code.

| 844006B2| Invalid signature| The signature on the data sent from the CLU utility to Miniboot
| could not be validated by Miniboot. Be sure that you are using an
| appropriate file (for example, CR1xxxxx.CLU versus
| CE1xxxxx.CLU). If the problem persists, obtain the output of a
| CLU status report and forward this and a description of what you
| are trying to accomplish to Customer Support using the IBM 4758
| website reporting process.

E-2 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

 Appendix F. Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM’s product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM’s
intellectual property rights, or other legally protectable rights, may be used instead
of the IBM product, program, or service. Evaluation and verification of operation in
conjunction with other products, programs, or services, except those expressly
designated by IBM, are the user’s responsibility.

Licensors of this program who wish to have information about it for the purpose of
enabling (i) the exchange of information between independently created programs
and other programs (including this one), and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Department VM9A, MG39/201
8501 IBM Drive
Charlotte, NC 28262-8563
U.S.A.

Such information may be available—subject to appropriate terms and
conditions—including, in some cases, the payment of a fee.

IBM may have patents or pending-patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Commercial Relations, IBM Corporation, Purchase, NY 10577.

 License
You can obtain the files for the CCA Cryptographic Coprocessor Support Program
feature by downloading from the product website at
http://www.ibm.com/security/cryptocards.

� Feature Code 4374 identifies the AIX workstation software
� Feature Code 4372 identifies the OS/2 workstation software
� Feature Code 4376 identifies the Windows NT and Windows 2000 workstation

software.

The CCA Cryptographic Coprocessor Support Program must be used in
accordance with the IBM System Program License Agreement.

 Copyright IBM Corp. 1997-2000 F-1

Copying and Distributing Softcopy Files
For online versions of this book, we authorize you to:

� Copy, modify, and print the documentation contained on the media, for use
within your enterprise, provided you reproduce the copyright notice, all warning
statements, and other required statements on each copy or partial copy.

� Transfer the original unaltered copy of the documentation when you transfer the
related IBM product (which may be either machines you own, or programs, if
the program's license terms permit a transfer). You must, at the same time,
destroy all other copies of the documentation.

You are responsible for payment of any taxes, including personal property taxes,
resulting from this authorization.

THERE ARE NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING THE
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Some jurisdictions do not allow the exclusion of implied warranties, so the above
exclusion may not apply to you.

Your failure to comply with the terms above terminates this authorization. Upon
termination, you must destroy your machine readable documentation.

 Trademarks
The following terms, denoted by an asterisk (*) in this publication, are trademarks of
the IBM Corporation in the United States or other countries or both:

The following terms, denoted by a double asterisk (**) in this publication, are the
trademarks of other companies:

AIX AIX/6000
IBM IBM net.commerce
IBM Registry IBM World Registry
Operating System/2 Operating System/390
OS/2 OS/390
RS/6000

Adobe Acrobat Adobe Systems, Inc.
Netscape Navigator Netscape Communications Corp.
RSA RSA Data Security, Inc.
UNIX UNIX Systems Laboratories, Inc.
VISA VISA International Service Association
Windows 2000 Microsoft Corp.
Windows NT Microsoft Corp.
Java Sun Microsystems, Inc.
SET and

Secure Electronic Transaction
Trademarks and service marks owned by

SET Secure Electronic Transaction LLC

F-2 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

| Appendix G. Master-Key Cloning Procedure

| The following procedure outlines how to clone a master key from one Coprocessor
| to another Coprocessor using the CNM utility. Before using this procedure, you
| should familiarize yourself with the material presented at “How to Clone a Master
| Key” on page 5-18 and “Understanding and Managing Master Keys” in Chapter 2
| of the CCA Basic Services Reference and Guide manual.

| The master-key cloning procedure that follows makes no assumption about which
| computer contains the Coprocessors used for:

| � Share administration (“SA node”)
| � Master-key source (“CSS” Coprocessor Share-Signing node)
| � Master-key target (“CSR” Coprocessor Share-Receiving node).

| The SA key can reside in the same Coprocessor as either the CSS or the CSR
| key, or it can reside in a separate Coprocessor node. Any of the Coprocessors can
| reside together in the same computer if multiple Coprocessors with CCA are
| available.

| The procedure ignores operator actions to:

| � Logon and logoff, as these steps will depend on the specific roles in use at
| your installation

| � Switch between Coprocessors when you are using more than one Coprocessor
| within a computer.

| The procedure is broken down into several phases as outlined in Table G-1.

| Before undertaking the procedure, it is recommended that you complete the forms
| found on the following pages.

| Table G-1. Master-Key Cloning Procedure Phase Overview

| Phase| Node| Task

| 1 | SA | Establish the Share Administration node; create the SA database,
| generate the SA key and store its public key and hash into the
| SA database.

| 2a| Source| Establish the source node; generate the “CSS” key and add the
| public key to the SA database; install the SA public key.

| 2b| SA | Certify the CSS key and store the certificate into the SA database

| For each target node, repeat the phase 3 procedures.

| 3a| Target| Establish the target node; create a CSR database, generate a
| “CSR” key and add the public key to the CSR database for this
| node; install the SA public-key.

| 3b| SA | Certify the CSR key and store the certificate into the CSR
| database for the target node.

| 3c| Source| Obtain shares and current master-key verification information.

| 3d| Target| Install shares and confirm new master-key; set the master key.

 Copyright IBM Corp. 1997-2000 G-1

| ┌────────────────────────────┬──────────┬────────────┬──────────┬──────────────────────────────┐

| │Task │Node │Profile │Role │Responsible Individual │

| ├────────────────────────────┼──────────┼────────────┼──────────┼──────────────────────────────┤

| │Audit Access Controls │SA │ │ │ │

| ├────────────────────────────┼──────────┼────────────┼──────────┼──────────────────────────────┤

| │Generate SA Key │SA │ │ │ │

| ├────────────────────────────┼──────────┼────────────┼──────────┼──────────────────────────────┤

| │Register SA Key Hash │SA │ │ │ │

| ├────────────────────────────┼──────────┼────────────┼──────────┼──────────────────────────────┤

| │Register SA Key │SA │ │ │ │

| ├────────────────────────────┼──────────┼────────────┼──────────┼──────────────────────────────┤

| │Audit Access Controls │CSS │ │ │ │

| ├────────────────────────────┼──────────┼────────────┼──────────┼──────────────────────────────┤

| │Generate CSS Key │CSS │ │ │ │

| ├────────────────────────────┼──────────┼────────────┼──────────┼──────────────────────────────┤

| │Obtain CSS Master Key │CSS │ │ │ │

| ├────────────────────────────┼──────────┼────────────┼──────────┼──────────────────────────────┤

| │Register SA Key Hash │CSS │ │ │ │

| ├────────────────────────────┼──────────┼────────────┼──────────┼──────────────────────────────┤

| │Register SA Key │CSS │ │ │ │

| ├────────────────────────────┼──────────┼────────────┼──────────┼──────────────────────────────┤

| │Certify CSS Key │SA │ │ │ │

| ├────────────────────────────┼──────────┼────────────┼──────────┼──────────────────────────────┤

| ├────────────────────────────┼──────────┼────────────┼──────────┼──────────────────────────────┤

| │Audit Access Controls │CSR1 │ │ │ │

| ├────────────────────────────┼──────────┼────────────┼──────────┼──────────────────────────────┤

| │Generate CSR Key │CSR1 │ │ │ │

| ├────────────────────────────┼──────────┼────────────┼──────────┼──────────────────────────────┤

| │Register SA Key Hash │CSR1 │ │ │ │

| ├────────────────────────────┼──────────┼────────────┼──────────┼──────────────────────────────┤

| │Register SA Key │CSR1 │ │ │ │

| ├────────────────────────────┼──────────┼────────────┼──────────┼──────────────────────────────┤

| │Certify CSR1 Key │SA │ │ │ │

| ├────────────────────────────┼──────────┼────────────┼──────────┼──────────────────────────────┤

| │Obtain Shares │CSS │ │ │ │

| ├────────────────────────────┼──────────┼────────────┼──────────┼──────────────────────────────┤

| │Install Shares │CSR1 │ │ │ │

| ├────────────────────────────┼──────────┼────────────┼──────────┼──────────────────────────────┤

| │Verify CSR New │CSR1 │ │ │ │

| ├────────────────────────────┼──────────┼────────────┼──────────┼──────────────────────────────┤

| │Set CSR Master-Key │CSR1 │ │ │ │

| ├────────────────────────────┼──────────┼────────────┼──────────┼──────────────────────────────┤

| ├────────────────────────────┼──────────┼────────────┼──────────┼──────────────────────────────┤

| │Audit Access Controls │CSR2 │ │ │ │

| ├────────────────────────────┼──────────┼────────────┼──────────┼──────────────────────────────┤

| │Generate CSR Key │CSR2 │ │ │ │

| ├────────────────────────────┼──────────┼────────────┼──────────┼──────────────────────────────┤

| │Register SA Key Hash │CSR2 │ │ │ │

| ├────────────────────────────┼──────────┼────────────┼──────────┼──────────────────────────────┤

| │Register SA Key │CSR2 │ │ │ │

| ├────────────────────────────┼──────────┼────────────┼──────────┼──────────────────────────────┤

| │Certify CSR2 Key │SA │ │ │ │

| ├────────────────────────────┼──────────┼────────────┼──────────┼──────────────────────────────┤

| │Obtain Shares │CSS │ │ │ │

| ├────────────────────────────┼──────────┼────────────┼──────────┼──────────────────────────────┤

| │Install Shares │CSR2 │ │ │ │

| ├────────────────────────────┼──────────┼────────────┼──────────┼──────────────────────────────┤

| │Verify CSR New │CSR2 │ │ │ │

| ├────────────────────────────┼──────────┼────────────┼──────────┼──────────────────────────────┤

| │Set CSR Master-Key │CSR2 │ │ │ │

| └────────────────────────────┴──────────┴────────────┴──────────┴──────────────────────────────┘

| Figure G-1. Cloning Responsibilities, Profiles and Roles

G-2 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

| ┌─────────┬───────────────────────┬────────┬─────────────┬────────────────────────┐

| NODE │Node │Machine │Selector│Coprocessor │Data Base Path and Name │

| INFORMATION │ │ │Number │Serial Number│ │

| ├─────────┼───────────────────────┼────────┼─────────────┼────────────────────────┤

| │SA Node │ │ │ │(sa.db) │

| │Control │ │ │ │ │

| ├─────────┼───────────────────────┼────────┼─────────────┼────────────────────────┤

| │CSS Node │ │ │ │(sa.db) │

| │Source │ │ │ │ │

| ├─────────┼───────────────────────┼────────┼─────────────┼────────────────────────┤

| │CSR Node │ │ │ │(csr1.db) │

| │Target 1 │ │ │ │ │

| ├─────────┼───────────────────────┼────────┼─────────────┼────────────────────────┤

| │CSR Node │ │ │ │(csr2.db) │

| │Target 2 │ │ │ │ │

| └─────────┴───────────────────────┴────────┴─────────────┴────────────────────────┘

| ┌───────┬───────┬───────┬───────┐

| SA KEY HASH │ │ │ │ │

| │ │ │ │ │

| └───────┴───────┴───────┴───────┘

| ┌──────────────┬──────────────┐

| NUMBER OF │Minimum: │Maximum: │

| SHARES │ "m" │ "n" │

| └──────────────┴──────────────┘

| ┌─────────────────────┬───┐

| SHARES │Obtained from: │1 2 3 4 5 6 7 8 9 1" 11 12 13 14 15 │

| DISTRIBUTION│ │ │

| ├─────────────────────┼───┤

| │Installed into CSR-1:│1 2 3 4 5 6 7 8 9 1" 11 12 13 14 15 │

| │ │ │

| └─────────────────────┴───┘

| ┌─────────────────────┬───┐

| │Obtained from: │1 2 3 4 5 6 7 8 9 1" 11 12 13 14 15 │

| │ │ │

| ├─────────────────────┼───┤

| │Installed into CSR-2:│1 2 3 4 5 6 7 8 9 1" 11 12 13 14 15 │

| │ │ │

| └─────────────────────┴───┘

| Figure G-2. Cloning Information Worksheet

 Appendix G. Master-Key Cloning Procedure G-3

| Phase 1: Establish the Share Administration Node
| Using the Coprocessor designated as the Share Administration (SA) “node,” follow
| the steps in Table G-2. Note that this Coprocessor can also serve as the
| master-key source or a master-key target node.

| Table G-2. Master-Key Cloning Procedure: Establish SA Node

| Phase| Task| √

| 1.1| Audit the appropriateness of the access controls.

| 1.2| Perform time synchronization and insure that the authorization (CCA5203.FCV) is installed.

| 1.3| Confirm (or install) the master key.

| 1.4| Using the facilities of your operating system, erase any prior SA database from the SA database
| media.

| 1.5| If not already established, enter the Environment ID (EID):

| � Crypto Node, Set Environment ID.
| � Enter the EID, Load.

| 1.6| Generate the SA key:

| � Crypto Node, Share Administration, Create Keys, Share Administration Key.
| � Accept the default SA public-key and private-key labels, and enter the location and name of
| the SA database (“sa.db”).
| � Create.
| � Record the hash value for use later in the procedure.

G-4 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

| Phase 2: Establish the Source Node
| Using the Coprocessor designated as the master-key source node, follow the steps
| in Table G-3. Note that this Coprocessor can also serve as the SA node.

| Table G-3. Master-Key Cloning Procedure: Establish Source (CSS) Node

| Phase| Task| √

| 2a.1| Audit the appropriateness of the access controls.

| 2a.2| Perform time synchronization and insure that the authorization (CCA5203.FCV) is installed.

| 2a.3| Confirm the Coprocessor serial number:

| � Crypto Node, Status.
| � Adapter.
| � Note the serial number, Cancel.

| 2a.4| Confirm (or install) the master key.

| 2a.5| Obtain the current master-key-verification information:

| � Master Key, Verify, Current.
| � Save to transport media, Cancel.

| 2a.6| If not already established, enter the Environment ID (EID):

| � Crypto Node, Set Environment ID.
| � Enter the EID, Load.

| 2a.7| If not already established, set the number of shares values, “m” and “n”:

| � Crypto Node, Share Administration, Set Number of Shares.
| � Set the maximum and minimum number of required shares, Load.

| 2a.8| Generate the CSS key:

| � Crypto Node, Share Administration, Create Keys, CSS Key.
| � Enter the CSS key label (for example, “CSS.KEY”).
| � Confirm the Coprocessor serial number.
| � Confirm or enter the SA database name and location.
| � Create.

| 2a.9| Register the SA public-key hash:

| � Crypto Node, Share Administration, Register Share Administration Key, SA Key Hash.
| � Enter the SA database file name and location, Next.
| � Enter the SA public-key label (or accept the default).
| � Enter the SA-key hash, Register.

| 2a.10| Register the SA public-key:

| � Crypto Node, Share Administration, Register Share Administration, SA Key.
| � Enter the SA database file name and location, Next.
| � Enter the SA public-key label (or accept the default), Register.

 Appendix G. Master-Key Cloning Procedure G-5

| Phase 3: Establish Target Node and Clone Master Key
| Using the designated Nodes, establish the target node and clone the master key
| following the steps in Table G-4. Note that this Coprocessor can also serve as the
| SA node.

| Table G-4 (Page 1 of 3). Master-Key Cloning Procedure: Establish CSR Node, Clone Master Key

| Phase| Node| Task| √

| At the Target Node...

| 3a.1| Target| Audit the appropriateness of the access controls.

| 3a.2| Target| Perform time synchronization and insure that the authorization (CCA5203.FCV) is
| installed.

| 3a.3| Target| Confirm the Coprocessor serial number:

| � Crypto Node, Status.
| � Adapter.
| � Note the serial number, Cancel.

| 3a.4| Target| Ensure the existence of a (temporary) master key.

| 3a.5| Target| If not already established, enter the Environment ID (EID):

| � Crypto Node, Set Environment ID.
| � Enter the EID (for example, “CSR1 NODE” and extend with spaces to 16
| entered characters).
| � Load.

| 3a.6| Target| If not already established, set the number of shares values, “m” and “n”:

| � Crypto Node, Share Administration, Set Number of Shares.
| � Set the maximum and minimum number of required shares.
| � Load.

| 3a.7| Target| Using the facilities of your operating system, erase the csr.db data file.

| 3a.8| Target| Generate the CSR key:

| � Crypto Node, Share Administration, Create Keys, CSR Key.
| � Enter the CSR key label (for example, “CSR1.KEY”).
| � Confirm the Coprocessor serial number.
| � Select the key size.
| � Provide the CSR database name and location (for example, “CSR1.DB”).
| � Create.

| 3a.9| Target| Register the SA public-key hash:

| � Crypto Node, Share Administration, Register Share Administration,
| SA Key Hash.
| � Enter the SA database file name and location, Next.
| � Enter the SA public-key label (or accept the default).
| � Enter the SA-key hash, Register.

| 3a.10| Target| Register the SA public-key:

| � Crypto Node, Share Administration, Register Share Administration Key,
| SA Key
| � Enter the SA database file name and location, Next.
| � Enter the SA public-key label (or accept the default), Register.

G-6 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

| Table G-4 (Page 2 of 3). Master-Key Cloning Procedure: Establish CSR Node, Clone Master Key

| Phase| Node| Task| √

| At the SA Node...

| 3b.1| SA| Certify the CSS key (as required):

| � Crypto Node, Share Administration, Certify Keys, CSS Key.
| � Enter the name and path for the SA database, Next.
| � Confirm the CSS key label, the Coprocessor serial number, and the SA
| Environment ID.
| � Certify.

| 3b.2| SA| Certify the CSR key:

| � Crypto Node, Share Administration, Certify Keys, CSR Key.
| � Enter the name and path for the SA and CSR databases.
| � Next.
| � Confirm the SA key label, CSR key label, and the SA Environment ID.
| � Enter the CSR serial number.
| � Certify.

| At the Source Node...

| 3c.1| Source| Obtain at least “m” of “n” shares. Perform the following for each share. Note that
| logon and logoff may be required to obtain each share.

| � Crypto Node, Share Administration, Get Share.
| � Select the share. Note that if you are obtaining an additional set(s) of shares,
| the “Distributed” messages may not be meaningful.
| � Enter the name and path for the SA and CSR databases.
| � Next.
| � Confirm the CSS key label, CSS Coprocessor serial number, and the CSR
| Coprocessor serial number.
| � Get Share.

| Repeat as required.

 Appendix G. Master-Key Cloning Procedure G-7

| Table G-4 (Page 3 of 3). Master-Key Cloning Procedure: Establish CSR Node, Clone Master Key

| Phase| Node| Task| √

| At the Target Node...

| 3d.1| Target| Install “m” (of “n”) shares. Perform the following for each share and observe the
| response. The response indicates when enough shares have been installed to form
| the new master-key. Note that logon and logoff may be required to install each
| share.

| � Crypto Node, Share Administration, Load Share.
| � Select the share.
| � Enter the name and path for the CSR and SA databases.
| � Next.
| � Confirm the CSS key label, the CSS Coprocessor serial number, and the CSR
| Coprocessor serial number.
| � Load Share.

| Observe the response. Loading sufficient shares completes the new master key.

| Repeat as required.

| 3d.2| Target| Confirm the new master-key:

| � Master Key, Verify, New.
| � Compare, select the file, OK, Cancel

| 3d.3| Target| Using the facilities of your operating system, erase the csr.db data file. This is not a
| security issue but rather to avoid complications should you perform another
| master-key cloning operation.

| 3d.4| Target| As appropriate, set the master key:

| � Master Key, Set
| � OK

G-8 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

List of Abbreviations and Acronyms

ANSI american national standards institute

AIX advanced interactive executive
(operating system)

API application programming interface

ASCII american national standard code for
information interchange

C celsius

CA certification authority

CBC cipher block chain

CCA common cryptographic architecture

CDMF commercial data masking facility

CDSA cryptographic data security
architecture

CLU coprocessor load utility

CNM cryptographic node management
utility

CP/Q++ control program/q with 4758
extensions

CPU central processing unit

CSP cryptographic service provider

CV control vector

DEA data encryption algorithm

DES data encryption standard

DMA direct memory access

ECB electronic codebook

EPROM erasable programmable read only
memory

FCC federal communications commission

FCV function-control vector

FIPS federal information processing
standard

IBM international business machines

ICSF integrated cryptographic service
facility

I/O input/output

IPL initial program load

ISO international organization for
standardization

KEK key-encrypting key

LU logical unit

MB megabyte

MAC message authentication code

MD5 message digest 5 (hashing algorithm)

MDC modification detection code

MHz megahertz

ODM object data manager

OEM original equipment manufacturer

OS/2 operating system/2

PC personal computer

PCI peripheral component interconnect

PDD physical device driver

PDF portable document format

PIN personal identification number

PKA public-key algorithm

PKCS public-key cryptography standard

POST power-on self-test

PPD program proprietary data

RAM random access memory

RNG random number generator

ROM read-only memory

RSA rivest, shamir, and adleman
(algorithm)

SAA systems application architecture

SCC secure cryptographic coprocessor

SHA secure hashing algorithm

SKA secret key authentication

 Copyright IBM Corp. 1997-2000 X-1

X-2 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

 Glossary

This glossary includes some terms and definitions from
the IBM Dictionary of Computing, New York: McGraw
Hill, 1994. This glossary also includes some terms and
definitions taken from:

� The American National Standard Dictionary for
Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standards Institute
(ANSI). Copies may be purchased from the
American National Standards Institute, 11 West
42nd Street, New York, New York 10036.
Definitions are identified by the symbol (A) following
the definition.

� The Information Technology Vocabulary, developed
by Subcommittee 1, Joint Technical Committee 1, of
the International Organization for Standardization
and the International Electrotechnical Commission
(ISO/IEC JTC1/SC1). Definitions of published parts
of this vocabulary are identified by the symbol (I)
following the definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) following
the definition, indicating that final agreement has not
yet been reached among the participating National
Bodies of SC1.

A
access. In computer security, a specific type of
interaction between a subject and an object that results
in the flow of information from one to the other.

access control. Ensuring that the resources of a
computer system can be accessed only by authorized
users and in authorized ways.

access method. A technique for moving data between
main storage and input/output devices.

advanced interactive executive (AIX) operating
system. IBM's implementation of the UNIX** operating
system.

american national standard code for information
interchange (ASCII). The standard code, using a
coded character set consisting of seven-bit characters
(eight bits including parity check), that is used for
information interchange among data processing
systems, data communication systems, and associated
equipment. The ASCII set consists of control
characters and graphic characters. (A)

american national standards institute (ANSI). An
organization consisting of producers, consumers, and

general interest groups that establishes the procedures
by which accredited organizations create and maintain
voluntary industry standards for the United States. (A)

application program interface (API). A functional
interface supplies by the operating system or by a
separate program that allows an application program
written in a high-level language to use specific data or
functions of the operating system or the separate
program.

authentication. (1) A process used to verify the
integrity of transmitted data, especially a message. (T)
(2) In computer security, a process used to verify the
user of an information system or protected resource.

authorization. (1) In computer security, the right
granted to a user to communicate with or make use of a
computer system. (T) (2) The process of granting a
user either complete or restricted access to an object,
resource, or function.

authorize. To permit or give authority to a user to
communicate with or make use of an object, resource,
or function.

authorized program facility (APF). A facility that
permits identification of programs authorized to use
restricted functions.

B
bus. In a processor, a physical facility along which
data is transferred.

C
card. (1) An electronic circuit board that is plugged
into an expansion slot of a system unit. (2) A plug-in
circuit assembly.

CDMF algorithm. An algorithm for data confidentiality
applications; it is based on the DES algorithm and
possesses 40-bit key strength.

ciphertext. (1) Text that results from the encipherment
of plaintext. (2) See also plaintext.

cipher block chain (CBC). A mode of operation that
cryptographically connects one block of ciphertext to the
next plaintext block.

cleartext. (1) Text that has not been altered by a
cryptographic process. (2) Synonym for plaintext.
(3) See also ciphertext.

 Copyright IBM Corp. 1997-2000 X-3

common cryptographic architecture (CCA) API. The
application program interface described in the IBM 4758
CCA Basic Services Reference and Guide, SC31-8609.

control_vector. (1) In the CCA, a 16-byte string that
is exclusive-ORed with a master key or a KEK to create
another key that is used to encipher and decipher data
or data keys. A control_vector determines the type of
key and restrictions on its use. (2) See also
key_token.

coprocessor. (1) A supplementary processor that
performs operations in conjunction with another
processor. (2) A microprocessor on an expansion card
that extends the address range of the processor in the
host system, or adds specialized instructions to handle
a particular category of operations; for example, an I/O
coprocessor, math coprocessor, or a network
coprocessor.

cryptographic coprocessor (IBM 4758). An
expansion board that provides to a workstation a
comprehensive set of cryptographic functions.

cryptographic key data set (CKDS). A data set that
contains the encryption keys used by an installation.

cryptographic node. A node that provides
cryptographic services, such as key generation and
digital signature support.

cryptography. (1) The transformation of data to
conceal its meaning. (2) In computer security, the
principles, means, and methods used to so transform
data.

D
data encrypting key. (1) A key used to encipher,
decipher, or authenticate data. (2) Contrast with key
encrypting key.

data encryption algorithm (DEA). A 64-bit block
cipher that uses a 64-bit key, of which 56 bits are used
to control the cryptographic process and eight bits are
used to check parity.

data encryption standard (DES). The National
Institute of Standards and Technology (NIST) Data
Encryption Standard, adopted by the U.S. government
as Federal Information Processing Standard (FIPS)
Publication 46 which allows only hardware
implementations of the data encryption algorithm.

decipher. (1) To convert enciphered data into clear
data. (2) Contrast with encipher.

direct memory access (DMA). The transfer of data
between memory and input/output units without
processor intervention.

driver. A program that contains the code needed to
attach and use a device.

E
electronic codebook (ECB). A mode of operation
used with block-cipher cryptographic algorithms in which
plaintext or ciphertext is placed in the input to the
algorithm and the result is contained in the output of the
algorithm.

encipher. (1) To scramble data or to convert data to a
secret code that masks the meaning of the data.
(2) Contrast with decipher.

enciphered data. (1) Data whose meaning is
concealed from unauthorized users or observers.
(2) See also ciphertext.

expansion board. Synonym for expansion card.

expansion card. (1) A circuit board that a user can
install in an expansion slot to add memory or special
features to a computer. (2) Synonym for card.

expansion slot. One of several receptacles in a PC or
RS/6000 machine into which a user can install an
expansion card.

exporter key. (1) In the CCA, a type of DES KEK that
can encipher a key at a sending node. (2) Contrast
with importer key.

F
feature. A part of an IBM product that can be ordered
separately.

federal information processing standard (FIPS). A
standard that is published by the US National Institute
of Science and Technology.

first in first out (FIFO). A queuing technique in which
the next item to be retrieved is the item that has been in
the queue for the longest time. (A)

flash EPROM. A specialized version of erasable
programmable read only memory (EPROM) commonly
used to store code in small computers.

function-control vector. A signed value provided by
IBM to enable the CCA application in the IBM 4758 PCI
Cryptographic Coprocessor to yield a level of
cryptographic service consistent with applicable
export-and-import regulations.

X-4 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

H
host computer. In regard to the CCA Cryptographic
Coprocessor Support Program, the workstation into
which the IBM 4758 PCI Cryptographic Coprocessor is
installed.

I
importer key. (1) In CCA products, a type of DES
KEK that can decipher a key at a receiving node.
(2) Contrast with exporter key.

initial program load (IPL). (1) The initialization
procedure that causes an operating system to
commence operation. (2) The process by which a
configuration image is loaded into storage. (3) The
process of loading system programs and preparing a
system to run jobs.

inline code. In a program, instructions that are
executed sequentially, without branching to routines,
subroutines, or other programs.

integrated cryptographic service facility (ICSF). An
IBM-licensed program that supports the cryptographic
hardware feature in the MVS environment for the
high-end System/390* processor.

interface. (1) A boundary shared by two functional
units, as defined by functional characteristics, signal
characteristics, or other characteristics as appropriate.
The concept includes specification of the connection
between two devices having different functions. (T)
(2) Hardware, software, or both, that links systems,
programs, and devices.

international organization for standardization (ISO).
An organization of national standards bodies
established to promote the development of standards to
facilitate the international exchange of goods and
services, and to foster cooperation in intellectual,
scientific, technological, and economic activity.

J

K
key. In computer security, a sequence of symbols
used with an algorithm to encipher or decipher data.

key encrypting key (KEK). (1) A key used to cipher
and decipher other keys. (2) Contrast with data
encrypting key.

key_label. In CCA products, an indirect identifier for a
key_token record in key storage.

key storage. In CCA products, a data file that contains
cryptographic keys.

key_token. In CCA products, a data structure that can
contain a cryptographic key, its control_vector, and
other information related to the key.

L

M
master key. In the 4758's CCA implementation, the
key used to encrypt keys to process other keys or data
at the node.

megabyte (MB). 1 048 576 bytes.

message authentication code (MAC). In computer
security, (1) a number or value derived by processing
data with an authentication algorithm, (2) the
cryptographic result of block-cipher operations on text or
data using the cipher block chain (CBC) mode of
operation.

multi-user environment. A computer system that
supports terminals and keyboards for more than one
user at the same time.

N
national institute of science and technology (NIST).
Current name for the US National Bureau of Standards.

node. (1) In a network, a point at which one or more
functional units connects channels or data circuits. (I)
(2) The endpoint of a link or a junction common to two
or more links in a network. Nodes can be processors,
communication controllers, cluster controllers, or
terminals. Nodes can vary in routing and other
functional capabilities.

O
operating system/2 (OS/2). An IBM operating system
for personal computers.

P
passphrase. In computer security, a string of
characters known to the computer system and to a
user; the user must specify it to gain full or limited
access to the system and the data stored therein.

plaintext. (1) Data that has not been altered by a
cryptographic process. (2) Synonym for cleartext.
(3) See also ciphertext.

 Glossary X-5

power on self test (POST). A series of diagnostic
tests that runs automatically when device power is
turned on.

private key. (1) In computer security, a key that is
known only to the owner and used with a public key
algorithm to decipher data. Data is enciphered using the
related public key. (2) Contrast with public key.
(3) See also public key algorithm.

procedure call. In programming languages, a
language construct for invoking execution of a
procedure. (I) A procedure call usually includes an
entry name and the applicable parameters.

profile. Data that describes the significant
characteristics of a user, a group of users, or
one-or-more computer resources.

programmed cryptographic facility (PCF). An
IBM-licensed program that provides facilities for
enciphering and deciphering data, and for creating,
maintaining, and managing cryptographic keys.

public key. (1) In computer security, a key that is
widely known and used with a public key algorithm to
encipher data. The enciphered data can be deciphered
only with the related private key. (2) Contrast with
private key. (3) See also public key algorithm.

public key algorithm (PKA). (1) In computer security,
an asymmetric cryptographic process that uses a public
key to encipher data and a related private key to
decipher data. (2) Contrast with data encryption
algorithm and data encryption standard algorithm.
(3) See also RSA algorithm.

R
random access memory (RAM). A storage device
into which data is entered and from which data is
retrieved in a non-sequential manner.

read only memory (ROM). Memory in which stored
data cannot be modified routinely.

reduced instruction set computer (RISC). A
computer that processes data quickly by using only a
small, simplified instruction set.

RSA algorithm. A public key encryption algorithm
developed by R. Rivest, A. Shamir, and L. Adleman.

S
secret key authentication (SKA) certificate. The
SKA certificate contains enciphered values that could
allow IBM to re-initialize a Coprocessor after its
tamper-sensors have been triggered. Without a copy of
the certificate, there is no way to recover the
Coprocessor.

security. The protection of data, system operations,
and devices from accidental or intentional ruin, damage,
or exposure.

session level encryption (SLE). A Systems Network
Architecture (SNA) protocol that provides a method for
establishing a session with a key unique to that session.
This protocol establishes a cryptographic key, and the
rules for deciphering and enciphering information in a
session.

system administrator. The person at a computer
installation who designs, controls, and manages the use
of the computer system.

systems network architecture (SNA). The
description of the logical structure, formats, protocols,
and operational sequences for transmitting information
units through, and controlling the configuration and
operation of, networks. Note: The layered structure of
SNA allows the ultimate origins and destinations of
information, that is, the end users, to be independent of
and unaffected by the specific SNA network services
and facilities used for information exchange.

T
throughput. (1) A measure of the amount of work
performed by a computer system over a given period of
time; for example, number of jobs-per-day. (A) (I)
(2) A measure of the amount of information transmitted
over a network in a given period of time; for example, a
network's data-transfer-rate is usually measured in
bits-per-second.

token. (1) A string of characters treated as a single
entity. (2) A particular message or bit pattern that
signifies permission to transmit. (3) See also
key_token.

U
utility program. A computer program in general
support of computer processes. (T)

X-6 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

V
verb. A function possessing an entry_point_name and
a fixed-length parameter list. The procedure call for a
verb uses the syntax standard to programming
languages.

W
Windows (NT). A Microsoft operating system for
personal computers.

workstation. A terminal or microcomputer, usually one
that is connected to a mainframe or a network, from
which a user can perform applications.

Numerics
4758. IBM 4758 PCI Cryptographic Coprocessor.

 Glossary X-7

X-8 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

 Index

A
access-control system

examples 6-8
initial state 5-10
initialization 5-15
list A-1
overview 5-10
role 5-11
security concepts 6-1
user profile 5-13

access-control system, locking 6-2
adjusting the windows NT system time 3-11
AIX

configuration utilities 3-3
CSUFADMIN utility 3-3
CSUFAPPL utility 3-3
CSUFKEYS utility 3-3
file permissions 3-4
file permissions, default 3-3
key-storage locations, default 3-3
ODM 3-3
ODMGET command 3-3

AIX utility, odmget 3-3
application programs

compile 7-2
link to CCA 7-2

auditor 4-4
auto-set, master key 5-17

B
batteries, coprocessor

removal 2-3
replacement kit 2-2
status 5-9

C
C programming language

sample routine 7-4
verb calls 7-1

CCA cryptographic Coprocessor support program
See support program

CCA node initialization utility
See NIU (node initialization utility)

CCA node management utility
See NMU (node management utility)

choosing among Coprocessors 5-7
clock-calendars, synchronization 5-8
CLU (coprocessor load utility)

commands 4-9
overview 4-1

CLU (coprocessor load utility) (continued)
return codes 4-11
software validation 4-6
syntax 4-8

CNI list 5-2
code identifiers 6-1
code levels 6-1
commands, access control

See access-control system
compile, application programs 7-2
components, support program 3-1
configuration utilities, AIX 3-3
configure

environment variables, OS/2 3-8
NMU 5-8
permissions, AIX 3-3

coprocessor
installation 2-3
load, software 4-1
memory segments 4-6
polling information 5-9
replacement kit, batteries 2-2
status, batteries 5-9

Coprocessor load utility
See CLU (coprocessor load utility)

Coprocessor support program
See support program

create
KEK 5-23
key label 5-23
key storage 5-21
master key 5-17
role 5-11
user profile 5-13

cryptographic key management 5-15
cryptographic keys 6-4
csufadmin utility 3-3
csufappl utility 3-3
csufkeys utility 3-3

D
DEFAULT role

description 5-10
initial use 5-10, B-1

defaults
environment variables, OS/2 3-8
key-storage locations, AIX 3-3
key-storage locations, OS/2 3-8
NMU 5-8
permissions, AIX 3-3

 Copyright IBM Corp. 1997-2000 X-9

define
role 5-11
user profile 5-13

delete
role 5-12
user profile 5-14

description
DEFAULT role 5-10
KEKs 5-15
master key 5-15

download, support program 2-3

E
edit

role 5-12
user profile 5-14

environment ID, EID 6-3
environment variables, OS/2 3-8
establish owner command 4-6

F
features, product 2-2
file permissions, AIX 3-4
function control vector 6-3
function-control vector

load 5-8

H
host install, support program

See install host software
host uninstall, support program

See uninstall host software

I
initial state, access-control system 5-10
initial use, DEFAULT role 5-10, B-1
initialization

access-control system 5-15
key storage 5-21

initialization of the CCA node 5-7
install host software

AIX 3-2
NT 3-10
OS/2 3-6

installation, support program
checklist 1-2
into Coprocessor 4-1
onto host computer 3-1
overview 1-1

K
KEKs

create 5-23
description 5-15
primary 5-15
storage 5-23

key label, create 5-23
key management, cryptographic 5-15
key storage

create 5-21
delete keys 5-22
initialization 5-21
key label, create 5-23
locations, AIX 3-3
locations, OS/2 3-8
management 5-21
reencipher 5-22

key-encrypting keys
See KEKs

key-storage names, verifying in AIX 3-3

L
link to CCA, application programs 7-2
list, access-control commands A-1
load command 4-7
load Coprocessor software

commands 4-9
establish owner command 4-6
load command 4-7
owner identifier 4-6
reload command 4-7
surrender owner command 4-7

logon-attempt-failure count, reset 5-14

M
machine readable log 4-8
machine-readable log C-1
make-file 7-2
management

cryptographic key 5-15
key storage 5-21
master key 5-16

master key
auto-set 5-17
create 5-17
description 5-15
management 5-16
new, set 5-17
registers 5-16
verification 5-16

master key cloning 6-7
master-key administration 5-16

X-10 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

master-key cloning procedure G-1
memory segments, Coprocessor 4-6
migrating from Windows NT to 2000 3-13
migration, version 1 to 2 D-1

N
NIU (node initialization utility)

overview 5-2
using, node setup 5-24

NMU (node management utility)
configure 5-8
defaults 5-8
overview 5-2

node
setup, production-environment 5-5
setup, test 5-3

O
object data manager (ODM) 3-3
ODM (object data manager) 3-3
odmget AIX utility 3-3
ODMGET command 3-3
order, support program 2-2
OS/2 environment variables 3-8
overview

access-control system 5-10
CLU 4-1
CNI 5-2
CNM 5-2
installation, support program 1-1

owner identifier 4-6

P
PCI Cryptographic Coprocessor

See coprocessor
performance, enhancing 7-8
permissions, AIX 3-3
permit, access-control commands 5-11
PIN data 6-7
polling information, Coprocessor 5-9
pre-XOR technique 6-6, 6-7
primary KEKs

See KEKs
product

features 2-2
production-environment, node setup 5-5
profile

See user profile
programs

See application programs

R
reencipher stored keys 5-22
registers, master key 5-16
reload command 4-7
remove host software

See uninstall host software
replacement kit, Coprocessor batteries 2-2
replicated key 6-7
reset logon-attempt-failure count 5-14
restrict, access-control commands 5-11
return codes, CLU 4-11
role

create 5-11
define 5-11
delete 5-12
edit 5-12

roles and profiles 6-2

S
sample routine, C programming language

make-file 7-2
source code 7-2
syntax 7-2

secret key authentication (SKA) certificate
See SKA (secret key authentication) certificate

security advice 6-1
security-relevant data item (SRDI) 4-7
set new master-key 5-17
setup

production-environment node 5-5
test node 5-3

SKA (secret key authentication) certificate
software load, Coprocessor

See load Coprocessor software
software validation, CLU 4-6
SRDI, security-relevant data item 4-7
status data 6-8
status, Coprocessor batteries 5-9
storage, KEKs 5-23
stored keys, reencipher 5-22
support program

components 3-1
configuration utilities, AIX 3-3
Coprocessor load 4-1
download 2-3
host install 3-1
host remove 3-1
overview, installation 1-1

surrender owner command 4-7
synchronization, clock-calendars 5-8
syntax

CLU 4-8
verb calls, C programming language 7-1

 Index X-11

T
test setup, node 5-3
throughput, enhancing 7-8
TZ, setting Windows time zone 3-11

U
uninstall host software

AIX 3-5
NT/2000 3-12
OS/2 3-8

usage security observations 6-1
user profile

create 5-13
define 5-13
delete 5-14
edit 5-14
reset logon-attempt-failure count 5-14

utilities
CLU 4-1
CNI 5-2
CNM 5-2
csufadmin 3-3
CSUFAPPL 3-3
CSUFKEYS 3-3
NIU 5-24
odmget 3-3

V
validation, Coprocessor software 4-6
vector, function-control

See function-control vector
verb calls, C programming language 7-1
verification, master key 5-16
verifying key-storage names with AIX 3-3

W
Windows install and remove 3-10

Z
zeroization of the CCA node 5-7

X-12 IBM 4758 PCI Cryptographic Coprocessor CCA Support Program

IBM

Printed in U.S.A.

	Contents
	About
	1. Overview
	2. Obtaining
	3. Installing
	4. Coprocessor Loading
	5. CNM/CNI Utilities
	6. Secure Operations
	7. Building Applications
	A. Access Controls
	B. Initial Defaults
	C. MRL File
	D. Migration V1 to V2
	E. DD Error Codes
	F. Notices
	G. Cloning Procedure
	Abbreviations
	Index

