IBM SecureWay Cryptographic Products

IBM 47758 CCA Basic Services
Reference And Guide

SC31-8609-00

Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page xi.

First Edition (August, 1997)
This is the first edition of IBM 4758 CCA Basic Services, SC31-8609-00.

Changes are made periodically to the information herein; before using this publication in connection with the operation of IBM
systems, consult your IBM representative to be sure you have the latest edition and any Technical Newsletter.

IBM does not stock publications at the address given below; requests for IBM publications should be made to your IBM
representative or to the IBM branch office that serves your location.

Reader’'s comments can be communicated on the form for reader's comments provided at the back of this publication, or the
comments can be addressed to the IBM Corporation, Department 57QC, MG81/204, 8501 IBM Drive, Charlotte, NC 28262-8563,
U.S.A. IBM employees can send comments to TSSWS FORUM on the IBMPC conference disk. IBM may use or distribute whatever
information you supply in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

NOLICES . . . o e Xi
Trademarks Xi
About This Publication Xiii
Related Publications Xiv
Chapter 1. Introduction to Programming for the IBM CCA 1-1
What Services Are Available With CCA and the Products 11
An Overview of the CCA Environment 1-1
How Applications Programs Obtain Service 1-3
The Security API, Programming Fundamentals 1-4
Verbs, Variables, and Parameters L. 1-5
Commonly-Encountered Parameters 1-7
Parameters Common to All Verbs oL 1-7
Rule_Array and Other Keyword Parameters 1-9
Key_ldentifiers, Key Labels, and Key Tokens 1-9

How Are the Verbs Organized in the Remainder of the Book 1-10
Chapter 2. CCA Node Management and Access Control 2-1
CCA Access Control 2-1
Understanding Access Control 2-1
Role-based Access Control 2-1
Understanding Roles 2-2
Understanding Profiles 2-3
Initializing and Managing the Access Control System 2-4
The Access Control Management and Initizlization Verbs 2-4
Permitting Changes to the Configuration 2-5
Configuration and Greenwich Mean Time (GMT) 2-5
Logging On and Logging Off 2-6
Protecting Your Transaction Information 2-6
Access_Control_Initialization(CSUAACI) 2-8
Access_Control_Maintenance (CSUAACM) 2-11
Cryptographic_Facility Control (CSUACFC) 2-17
Cryptographic_Facility_Query (CSUACFQ) 2-20
Logon_Control (CSUALCT) e e 2-27
The use of Logon Context information 2-29
Master_Key Process (CSNBMKP) 2-31
Chapter 3. RSA Key Administration 3-1
RSA Key Management 3-1
Key Generation 3-1
Key Import e 34
Re-enciphering a Private Key Under an Updated Master Key 3-4
Using the RSA Keys e 3-4
Using the Private Key at Multiple Nodes 3-5
PKA _Key Generate (CSNDPKG) 3-6
PKA_Key Import (CSNDPKI) 3-9
PKA_Key_Token_Build (CSNDPKB) 3-11
PKA _Key Token_Change (CSNDKTC) 3-17
PKA_Public_Key_ Extract (CSNDPKX) 3-19

© Copyright IBM Corp. 1997 ili

iv

Chapter 4. Hashing and Digital Signatures 4-1

Hashing 4-1
Digital Signatures 4-2
Digital_Signature_Generate (CSNDDSG) 4-4
Digital_Signature_Verify (CSNDDSV) 4-7
One_Way_Hash (CSNBOWH) 4-10
Chapter 5. Basic CCA DES Key Management 5-1
Understanding CCA DES Key Management 5-1
Control Vectors 5-3
Checking a Control Vector Before Processing a Cryptographic Command . 5-4
Key TYpes e e 5-5
Key Usage Restrictions 5-7
Key Tokens, Key Labels, and Key Identifiers 5-8
Key Tokens 5-8
Key Labels e 5-10
Key Identifiers 5-10
Using the Key Processing and Key Storage Verbs 5-11
Installing and Verifying Keys, 5-11
Generating Keys e 5-12
Exporting and Importing Keys oo 5-13
Storing Keys in Key Storage 5-14
Security Precautions 5-15
Clear_Key Import (CSNBCKID) 5-16
Data_Key_ Export (CSNBDKX) 5-18
Data_Key_Import (CSNBDKM) 5-20
Key Export (CSNBKEX) 5-22
Key Generate (CSNBKGN) 5-24
Key Type Specifications 5-27

Key Length Specification 5-28

Key Import (CSNBKIM) 5-29
Key Part_Import (CSNBKPI) 5-31
Key Test (CSNBKYT) e e 5-33
Key_Token_Build (CSNBKTB) 5-36
Key Token_Change (CSNBKTC) 5-39
Key Translate (CSNBKTR) 5-41
Random_Number_Generate (CSNBRNG) 5-43
PKA_Symmetric_Key Export (CSNDSYX) 5-45
PKA_Symmetric_Key_Import (CSNDSYI) 5-47
Chapter 6. Data Confidentiality and Data Integrity 6-1
Encryption and Message Authentication Codes 6-1
Ensuring Data Confidentiality 6-1
Ensuring Data Integrity 6-2
MACing Segmented Data 6-3
Decipher (CSNBDEC) 6-4
Encipher (CSNBENC) e 6-7
MAC_Generate (CSNBMGN) 6-10
MAC_Verify (CSNBMVR) 6-13
Chapter 7. Key Storage Verbs, 7-1
Key Labels and Key Storage Management 7-1
Key Label Content 7-2
DES_Key Record Create (CSNBKRC) 7-4

IBM 4758 CCA Services

DES_Key Record_Delete (CSNBKRD) 7-5

DES _Key Record_List (CSNBKRL) 7-7
DES_Key Record Read (CSNBKRR) 7-9
DES Key Record Write (CSNBKRW) 7-10
PKA_Key Record Create (CSNDKRC) 7-11
PKA_Key_Record_Delete (CSNDKRD) 7-13
PKA Key Record List (CSNDKRL) 7-15
PKA_Key Record Read (CSNDKRR) 7-17
PKA_Key_Record_Write (CSNDKRW) 7-19
Chapter 8. Financial Services Support Verbs 8-1
SET _Block_Compose (CSNDSBC) i 8-2
SET_Block_Decompose (CSNDSBD) 8-5
Appendix A. Return Codes and Reason Codes A-1
Return Codes e A-1
Reason Codes A-1
Return Code O e A-2
Return Code 4 A-3
Return Code 8 A-5
Return Code 12 e A-12
Return Code 16 e A-13
Return Code 24 A-14
Additional Information about Selected Reason Codes A-14
Appendi x B. Data Structures B-1
Key Tokens e B-1
Master Key Verification Pattern B-1
Token-Validation Value and Record-Validation Value B-2
Null Key Token B-2
Internal DES Key Token B-3
External DES Key Token B-4
DES Key Token Flag Byte 1, B-4
DES Key Token Flag Byte 2 B-4
RSA Key Token Formats B-5
RSA Key Token Sections, B-6
Chaining Vector Records B-10
Key Storage Records B-11
Key Record List Data Set B-13
Access Control Data Structures B-15
Role Structure B-15
Basic Structure ofaRole B-15
Aggregate Role Structure B-16

The Access Control Point List B-16
Contents of the Default Role B-17
Profile Structure B-18
Basic Structure of a Profile B-18
Aggregate Profile Structure B-19

The Authentication Data Structure B-19

Appendix C. CCA Control Vector Definitions and Key Encrypton C-1

DES Control Vector Values C-1
Specifying a Control Vector Base Value C-3
CCA Key Encryption and Decryption Process C-5

Contents V

CCA DES Key Encryption and Decryption Process C-5

CCA RSA Private Key Encryption and Decryption Process C-8
Changing Control Vectors C-12
Appendix D. Algorithms and Processes D-1
Cryptographic Key Verification Techniques D-1

Master Key Verification Algorithm D-1

DES Key Verification Algorithm, D-1
Ciphering Methods D-3

ANSI X3.106 Cipher Block Chaining (CBC) Method D-3

ANSI X9.23 . . D-5
MAC Calculation Method D-7
Access Control Algorithms D-8

Passphrase Verification Protocol D-8

Design Criteria D-8
Description of the Protocol D-8
Appendix E. Verb List E-1
List of Abbreviations X-1
Glossary . .. X-3
INdeX . . . X-15

Vi IBM 4758 CCA Services

Figures

© Copyright IBM Corp. 1997

1-1.
1-2.

2-2.
2-3.
2-4.
2-5.

2-7.
2-8.
2-9.
2-10.
2-11.
2-12.
2-13.
2-14.

5-10.
5-11.
5-12.
5-13.
5-14.
5-15.
5-16.
5-17.
5-18.
5-19.

6-2.
6-3.
6-4.

Security API, Access Layer, Cryptographic Engine
Security APl and Lower Software Components
CCA Node, Access Control and Master Key Management Verbs . . .
CSUAACI Rule_Array Input Keywords
Contents of the verb_data_1 field
Contents of the verb_data 2 field
CSUAACM Rule_Array Input Keywords
Contents of the name field for CSUAACM
Contents of the output_data field for CSUAACM
Cryptographic_Facility Control Rule_Array Input Keywords
Cryptographic_Facility_Query Rule_Array Input Keywords
Cryptographic_Facility_Query Rule_Array Output Keywords
CSUALCT Rule_Array Input Keywords
Contents of the authentication parameters field
Contents of the authentication data field
Master_Key_Process Rule_Array Keywords
Public-Key Key-Administration Services
PKA96 Verbs with Key Token Flow
PKA_Key GenerateRule_Array Keywords
PKA_Key_Token_Build Rule_Array Keywords
PKA_Key_Token_Build Key Values Structures
PKA_Key Token_ Change Rule_Array Keywords
Hashing and Digital Signature Services
Digital_Signature_Generate Rule_Array Keywords
Digital_Signature_Verify Rule_Array Keywords
One_Way Hash Rule_Array Keywords
Basic CCA DES Key Management Verbs
Flow of Cryptographic Command Processing in a Cryptographic
Facility
Generic Key Types and Verb Usage
Key_Token_Build Keyword Combinations
Control Vector Key-Usage Keywords
Key_Token Contents
Key Identifier, Key Tokens, and Key Labels
Key Processing Verbs
Key Exporting and Importing
Key_Type and Key_Form Keywords for One Key
Key Type and Key Form Keywords for a Key Pair
Key Lengths by Key Type
Key Part_Import Rule_Array Keywords
Key Test Rule_Array Keywords
Key Token_Build Rule_Array Keywords
Key_Token_Change Rule_Array Keywords
Key Token_Build Form Keywords
Key_Token_Build Rule_Array Keywords
PKA_Symmetric_Key Import Rule_Array Keywords
Data Confidentiality and Data Integrity Verbs
Decipher Rule_Array Keywords
Encipher Rule_Array Keywords
MAC_Generate Rule_Array Keywords

Vil

viii

B-9.
B-10.
B-11.
B-12.
B-13.
B-14.
B-15.
B-16.
B-17.
B-18.
B-19.
B-20.
B-21.
B-22.
B-23.
B-24.
B-25.

C-1.

C-2.

C-3.

C-4.

C-5.

C-6.

C-7.

C-8.

C-9.

D-1.

D-2.

D-3.

D-4.

D-5.

D-6.

IBM 4758 CCA Services

MAC_Verify Rule_Array Keywords 6-14

Key Storage Record Services 7-1
Key Token BuildRule_Array Keywords 7-5
Key Token_BuildRule_Array Keywords 7-13
Key Token_BuildRule_Array Keywords 7-20
Financial Services Support Verbso 8-1
Key Token BuildRule_Array Keywords 8-6
Return Code Values A-1
Reason Codes for Return Code O A-2
Reason Codes for Return Code 4 A-3
Reason Codes for Return Code 8 A-5
Reason Codes for Return Code 12 A-12
Reason Codes for Return Code 16 A-13
Reason Codes for Return Code 24 A-14
PKA Null Key Token Format B-2
Internal Key Token Format B-3
External Key Token Format B-4
Key Token FlagByte 1 B-4
Key Token Flag Byte 2 B-4
RSA Token Header B-6
RSA Private Key, 1024-Bit Modular-Exponentiation Format B-7
Private Key, 2048-Bit Chineese-Remainder Format B-8
RSA PublicKey B-9
RSA Private-key Name B-10
RSA Private-key Blinding Information B-10
Cipher, MAC_Generate, and MAC_Verify Chaining Vector Format . B-10
Key Storage File Header, Record1 B-11
Key Storage File Header, Record 2 B-12
Key Record Format in Key Storage B-12
Key Record List Data Set Format B-13
Role layout B-15
Aggregate role structure with header B-16
Access control point structure B-17
Functions permitted in Default Role B-18
Profile layout B-18
Layout of profile Activation and Expiration dates B-18
Aggregate profile structure with header B-19
Layout of the Authentication Data field B-20
Authentication Data for each authentication mechanism B-20
Control Vector Default Values for Generic Key Types C-2
Control Vector Base BitMap, C-3

Multiply Enciphering and Multiply Deciphering a Single-Length Key C-6
Multiply-Enciphering and Multiply-Deciphering a Double-Length Key C-7

EDE2 Algorithm C-8
DED2 Algorithm C-9
EDE3 Algorithm C-10
DED3 Algorithm C-11
Exchanging a Key with a Non-Control-Vector System C-13
Enciphering Using the CBC Method D-4
Deciphering Using the CBC Method D-4
Enciphering Using the ANSI X9.23 Method D-6
Deciphering Using the ANSI X9.23 Method D-6
MAC Calculation Method D-7
Example of logon key computation D-8

E-1.

Security APl Verbs in Supported Environments

Figures

iX

X IBM 4758 CCA Services

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only IBM’s product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM's
intellectual property rights or other legally protectable rights may be used instead of
the IBM product, program, or service. Evaluation and verification of operation in
conjunction with other products, programs, or services, except those expressly
designated by IBM, are the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY, 10594, USA.

Trademarks

The following terms, denoted by an asterisk (*) in this publication, are trademarks of
the IBM Corporation in the United States or other countries or both:

3090
AIX

Application System/400

CICSs

Enterprise System/9000

ES/3090
ES/9370

IBM Registry
Micro Channel
MVS/ESA
MVS/XA

0s/2

0S/400
Personal System/2
PS/ValuePoint
POWERstation
RS/6000
System/360
System/390
S/390 Multiprise
XGA

© Copyright IBM Corp. 1997

ACF/VNTAM

AIX/6000

AS/400

Enterprise System/3090
Enterprise System/9370
ES/9000

IBM

IBM World Registry
MVS/DFP

MVS/SP

Operating System/2
Operating System/400
Personal Security

PS/2

POWERserver

RACF

SecureWay

System/370

S/390 G3 Enterprise Server
Systems Application Architecture

Xi

The following terms, denoted by a double asterisk (**) in this publication, are the
trademarks of other companies:

Diebold Diebold Incorporated

Docutel Docutel

MASTERCARD MasterCard International, Incorporated
Pentium Intel Corporation

NCR National Cash Register Corporation

RSA RSA Data Security, Inc.

UNIX UNIX Systems Laboratories, Incorporated
VISA VISA International Service Association

Xii IBM 4758 CCA Services

About This Publication

The manual is intended for systems and applications analysts and application
programmers who will evaluate or create programs for the IBM 4758 Common
Cryptographic Architecture (CCA) support.

Prerequisite to using this manual is familiarity with the contents of the IBM 4758
PCI Cryptographic Coprocessor General Information Manual, IBM form number
GC31-8608-00, that discusses topics important to the understanding of the
information presented in this manual:

e The IBM 4758 PCI Cryptographic Coprocessor

e An overview of cryptography

e Supported cryptographic functions

¢ Function sets implemented by various IBM CCA products
¢ Organization of the relevant publications.

This is the first edition of the IBM 4758 CCA Basic Services Reference and Guide,
IBM form number SC31-8609.

This manual includes:

e Chapter 1, “Introduction to Programming for the IBM CCA” presents an
introduction to programming for the CCA application programming interface and
products.

e Chapter 2, “CCA Node Management and Access Control” provides a basic
explanation of the access control system implemented within the hardware.
The chapter also explains the master key concept and administration, and
introduces CCA DES key management.

e Chapter 3, “RSA Key Administration” explains how to generate and distribute
RSA keys between CCA nodes and with other RSA implementations.

e Chapter 4, “Hashing and Digital Signatures” explains how to protect and
confirm the integrity of data using data hashing and digital signatures.

e Chapter 5, “Basic CCA DES Key Management” explains basic DES key
management services available with CCA.

* Chapter 6, “Data Confidentiality and Data Integrity” explains how to encipher
data using DES and how to verify the integrity of data using the DES-based
Message Authentication Code (MAC) process. The ciphering and MACing
services are described.

e Chapter 7, “Key Storage Verbs” explains how to use key labels and how to
employ key storage managed by the accesses software.

e Chapter 8, “Financial Services Support Verbs” explains services for the
cryptographic portions of the Secure Electronic Transaction (SET) protocol.

These appendices are included:

e Appendix A, “Return Codes and Reason Codes” describes the return codes
issued by the TSS products.

e Appendix B, “Data Structures” describes the various data structures for key
token, chaining vector records, key storage records, and the key record list
data set.

© Copyright IBM Corp. 1997 Xiii

e Appendix C, “CCA Control Vector Definitions and Key Encryption” describes
the control vector bits and provides rules for the construction of a control
vector.

* Appendix D, “Algorithms and Processes” describes, in further detail, the
algorithms and processes mentioned in this book

Related Publications

In addition to the manuals listed below, you may wish to refer to other CCA product
publications which may be of use with applications and systems you might develop
for use with the IBM 4758 product. While there is substantial commonality in the
API supported by the CCA products, and while this manual seeks to guide you to a
common subset supported by all CCA products, other individual product
publications may provide further insight into potential issues of compatibility.

IBM 4758 PCI Cryptographic Coprocessor General Information Manual, GC31-8608
TSS General Information Manual, GA34-2137

XV IBM 4758 CCA Services

Chapter 1. In

troduction to Programming for the IBM CCA

This chapter will introduce you to the IBM Common Cryptographic Architecture
(CCA) application programming interface (API). This chapter explains some basic
concepts you use to obtain cryptographic and other services from the Fortress
Product Family. Before continuing to read this manual, please review the “About
This Publication” on page xiii and first become familiar with prerequisite information
as described in that section.

In this chapter you can read about:

¢ What services are available with CCA and the products
e An overview of the CCA environment
e The Security API, programming fundamentals

What Services Are Available With CCA and the Products

The CCA products provide a variety of cryptographic processes and data security
techniques. Your application program can invoke the product to perform these
types of functions:

e Encrypt and decrypt information, generally using the DES algorithm in the
cipher block chaining mode to enable data confidentiality

e Hash data to obtain a digest, or process the data to obtain a message
authentication code that is useful in demonstrating data integrity

e Form and validate digital signatures to demonstrate both data integrity and
non-repudiation

e Manage the various keys necessary to perform the above operations. CCA is
especially strong and versatile in this area; inadequate key-management
techniques are a major source of weakness in cryptographic implementations.

¢ Administrative services for controlling the initialization and operation of the CCA
node.

This book describes the many available services in the following chapters. The
services are grouped by topic and within a chapter are listed in alphabetical order
by name. Each chapter opens with an introduction to the services found in that
chapter.

The remainder of this chapter provides an overview of the structure of a CCA
cryptographic node and introduces some important concepts and terms.

An Overview of

© Copyright IBM Corp. 1997

the CCA Environment

Figure 1-1 on page 1-2 provides a conceptual framework for positioning the CCA
API. Application programs make procedure calls to the API to obtain cryptographic
and related I/O services. The CCA API is designed so that a call can be issued
from essentially any high level programming language. The call, or request, is
forwarded to the cryptographic services access layer and will receive a
synchronous response. That is, your application program will lose control until the
access layer returns a response at the conclusion of processing your request.

1-1

Application and Utility Programs

Security AP

Cryptographic Services

Access Layer Requestor

Server
Cryptographic Engine

Cryptographic Adapter,
Security Interface Unif,

Personal Security card, ete.

Figure 1-1. Security API, Access Layer, Cryptographic Engine

The products that implement the CCA API consist of both hardware and software
components. The software consists of application development support and
runtime software components.

* The application development support software primarily consists of language
bindings that can be included in new applications to assist in accessing
services available at the API. Language bindings are provided for the C
programming language.

e The runtime software can be divided into the following categories:

— Service-requesting programs, including utility programs and application
programs

— An “agent” function that is logically part of the calling application program or
utility

— An environment-dependent request routing function
— The server environment that gives access to the cryptographic engine.

Generally, the cryptographic engine is implemented in a hardware device that
includes a general purpose processor and often also includes specialized
cryptographic electronics. These components are encapsulated in a protective
environment to enhance security.

The utility programs include support for administering the hardware access controls,
administering DES and public-key cryptographic keys, and configuring the software
support. See the IBM 4758 PCI Cryptographic Coprocessor CCA Services,
Installation and I/0 Guide, SC31-8610., for a description of the utility programs
provided with the Cryptographic Adapter Services licensed software.

You can create application programs that use the products via the CCA API, or you
can purchase applications from IBM or other sources. This book is the primary

1-2 IBM 4758 CCA Services

source of information for designing systems and application programs that use the
CCA APL.

How Applications Programs Obtain Service

Application programs and utility programs (requestors) obtain services from the
products by issuing service requests (verb calls) to the runtime subsystem of
software and hardware. These requests are in the form of procedure calls that
must be programmed according to the rules of the language in which the
application is coded. The services that are available are collectively described as
the security API. All of the software and hardware accessed through the security
API should be considered an integrated subsystem.

The cryptographic services access layer can receive requests concurrently from
multiple application programs, will serialize the requests, and return a response to
each requestor. There are other multi-processing implications arising from the
existence of a common master key and a common key storage facility -- these
topics are covered later in this book.

The way in which application programs and utilities are linked to the API services
depends on the computing environment. In the OS/2, AlX, and NT environments,
the operating systems dynamically link application security API requests to the
subsystem DLL code. Details for linking to the API are covered in the I/O Guide
books for the individual software products, IBM 4758 PCI Cryptographic
Coprocessor CCA Setrvices, Installation and I/0 Guide, SC31-8610..

Together, the security API stub code or DLL and the environment-dependent
request routing mechanism act as an agent on behalf of the application and present
a request to the server. In the OS/2, AIX and NT environments, the requests can
be issued by one or more programs. Each request is processed by the server as a
self-contained unit of work from a first-in, first-out queue. The programming
interface can be called concurrently by applications running as different processes.
The API is also thread safe; that is, use of the API by more than one thread within
a process is permitted and the application programmer need not take any special
precautions to serialize use of the cryptographic API. Both 16-bit and 32-bit entry
point service is provided. You control the choice of entry point through your use of
the import library portion of the cryptographic adapter services software; see the
IBM 4758 PCI Cryptographic Coprocessor CCA Services, Installation and I/0
Guide, SC31-8610.. (The cryptographic adapter services software is implemented
as 32-bit support.)

In each server environment, a device driver provided by IBM supplies low-level
control of the hardware and passes the request to the hardware device. Requests
can require one or more I/O commands from the security server to the device driver
and hardware.

The security server and a directory server manage key storage. Applications can
store locally-used cryptographic keys in a key storage facility. This is especially
useful for long-life keys. Keys stored in key storage are referenced through the use
of a key label. Before deciding whether to use the key storage facility or to let the
application retain the keys, you must consider system design trade-off factors, such
as key backup, the impact of master key changing, the lifetime of a key, and so
forth.

Chapter 1. Introduction to Programming for the IBM CCA 1-3

Application and Ufility Programs

[Security AP]

[. . A
Cryptographic Services
Access Layer

Directory R
SecurHy Server, DES 3
Server Directory
| Server, PKA)
~ —
Device Driver |
L) J
[A
Cryptographic Engine
L J

Figure 1-2. Security APl and Lower Software Components

A major characteristic of the IBM SecureWay cryptographic hardware is that
security-critical services are performed in tamper-resistant environments. Each
device has an access-control system enforced by the hardware. This
access-control system permits you to control when programs or persons can use
the various cryptographic and data storage services. Thus, although the general
workstation environment can be considered to be open, the specialized processing
environments provided by the SecureWay hardware components can be secured

The Security API, Programming Fundamentals

1-4

The security application programming interface (API) is the interface for accessing
the services provided by the SecureWay cryptographic products in OS/2, AlX, and
NT workstations.

Most of the services provided are considered an implementation of the IBM
Common Cryptographic Architecture (CCA). Most of the extensions that differ from
other IBM CCA implementations are in the area of the access control services. If
your application program will be used with other CCA products, you should
compare the other product literature for differences.

IBM 4758 CCA Services

Your application program requests a service through the security API by using a
procedure call for a verb.* The procedure call for a verb uses the standard syntax
of a programming language, including the entry-point name of the verb, the
parameters of the verb, and the variables for the parameters. Each verb has an
entry-point name and a fixed-length parameter list; see Appendix E, “Verb List” for
a list of supported verbs and where information about the verb is published.

The security API is designed for use with high-level languages, such as C,
COBOL, PL/I, or Pascal, and for low-level languages, such as assembler. It is also
designed to enable you to use the same verb entry-point names and variables in
the various supported environments. Therefore, application code that you write for
use in one environment generally can be ported to additional environments with
minimal change.

Verbs, Variables, and Parameters

This section explains how each verb (service) is described in the reference material
and provides an explanation of the characteristics of the security API.

Each callable service, or verb, has an entry-point name and a fixed-length
parameter list. The reference material describes each verb and includes the
following information for each verb:

¢ Pseudonym (general language name)

e Entry-point name (computer language name)
e Supported environments

e Description

e Restrictions

e Format

» Selected parameters

e Hardware command requirements.

Entry-Point Name: Each verb has an entry-point name that is used in your
program to call the verb. Each verbs entry point name begins with one of the
following:

CSNB generally the DES services
CSND RSA public key services (PKA96)
CSUA Cryptographic-node and hardware control services.

The last three letters in the entry point name identify the specific service in a
group and are often the first letters of the principal words in the verb
pseudonym.

You use the entry point name in the call statement in your application program
to call the verb.

Format Section: The format section in each verb description lists the
entry-point name on the first line in bold type. This is followed by the list of
parameters for the verb. Generally the direction in which the variable identified
by the parameter is passed is listed along with the type of variable (integer or
string), and the size, number, or other special information about the variable.

1 The term verb implies an action that an application program can initiate; other systems and publications might use the term
callable service instead of verb.

Chapter 1. Introduction to Programming for the IBM CCA 1-5

The format section for each verb lists the parameters after the entry-point name
in the sequence in which they must be coded.

Parameters: All information that is exchanged between your application
program and a verb is through the variables that are identified by the
parameters in the procedure call. These parameters are pointers to the
variables contained in application program storage that contain information to be
exchanged with the verb. Each verb has a fixed-length parameter list, and
though all parameters are not always used by the verb, they must be included in
the call. The entry-point name and the parameters for each verb are shown in
the following format:

Parameter name Direction Data Type Length of Data

entry_point_name

return_code Output Integer

reason_code Output Integer

exit_data_length Input Integer

exit_data Input String exit_data_length bytes
Parameter_5 Direction Data Type Length

Parameter_6 Direction Data Type Length

Parameter_n Direction Data Type Length

The first four parameters are the same for all of the verbs. For a description of
these parameters, see “Parameters Common to All Verbs” on page 1-7. The
remaining parameters (parameter_5, parameter_6, ... parameter_n), are unique
for each verb. For descriptions of these parameters, see the definitions with the
individual verbs.

Variable Direction: The parameter descriptions use the following terms to
identify the flow of information:

Input The application program sends the variable to the verb (to the
called routine).

Output The verb returns the variable to the application program.

Inp/Outp The application program sends the variable to the verb, or the
verb returns the variable to the application program, or both.

Variable Type: A variable that is identified by a verb parameter can be a single
value or a one-dimensional array. If a parameter identifies an array, each data
element of the array is of the same data type. If the number of elements in the
array is variable, a preceding parameter identifies a variable that contains the
actual number of elements in the associated array. Unless otherwise stated, a
variable is a single value, not an array.

For each verb, the parameter descriptions use the following terms to describe
the type of variable:
Integer A 4-byte (32-bit), signed, twos-complement binary number.

In the AIX environment, integer values are presented in 4 bytes in
the sequence high-order to low-order. In the personal computer
(Intel) environments, integer values are presented in 4 bytes in the
sequence low-order to high-order.

1-6 IBM 4758 CCA Services

String A series of bytes where the sequence of the bytes must be
maintained. Each byte can take on any bit configuration. The
string consists only of the data bytes. No string terminators,
field-length values, or type-casting parameters are included.
Individual verbs can restrict the byte-values within the string to
characters or numerics.

Character data must be encoded in the native character set of the
computer where the data is used. Exceptions to this rule are noted
where necessary.

Array An array of values, which can be integers or strings. Only
one-dimensional arrays are permitted. For information about the
parameters that use arrays, see “Rule_Array and Other Keyword
Parameters” on page 1-9 below.

Variable Length: This is the length, in bytes, of the variable identified by the
parameter being described. This length may be expressed as a specific number
of bytes or it may be expressed in terms of the contents of another variable.

For example, the lengths of the exit_data variable is expressed in this manner.
The length of the exit_data string variable is specified in the exit_data_length
variable. This length is shown in the parameter tables as “exit_data_length
bytes,” The rule_array variable, on the other hand, is an array whose elements
are eight-byte strings. The number of elements in the rule array is specified in
the rule_array_count variable and its length is shown as “rule_array_count * 8
bytes.”

Note: Variable lengths (integer, for example) that are implied by the variable
data type are not shown in these tables.

Commonly-Encountere d Parameters

Some parameters are common to all verbs, other parameters are used with
many of the verbs. This section describes several groups of these parameters:

e Parameters common to all verbs
¢ Rule_array and other keyword parameters
¢ Key identifiers, key labels, and key_tokens.

Parameters Common to All Verbs
The first four parameters (return_code, reason_code, exit_data_length, and
exit_data) are the same for all verbs. Each parameter contains pointer to an
address in application data storage that contain a variable of the appropriate

type.
Entry_point_name
return_code Output Integer
reason_code Output Integer
exit_data_length Input Integer
exit_data Input String exit_data_length bytes

Return_Code
The return_code parameter is a pointer to an integer value that expresses
the general results of processing. See “Return Code and Reason Code
Overview” on page 1-8 for more information about return codes

Chapter 1. Introduction to Programming for the IBM CCA 1-7

1-8

Reason_Code
The reason_code parameter is a pointer to an integer value that expresses
the specific results of processing. Each possible result is assigned a unique
reason code value. See “Return Code and Reason Code Overview” for
more information about reason codes

Exit_Data_Length
The exit_data_length paramater is a pointer to an integer value containing
the length of the string (in bytes) that is returned by the exit_data parameter.
The exit_data length parameter should be set to zero to ensure
compatibility with any future extension or other operating environment.

Exit_Data
The exit_data parameter is a pointer to a variable length string that contains
installation-exit-dependent data that is exchanged with a preprocessing user
exit or a post-processing exit.

Note: The workstation environments do not support user exits. Although
the verbs in the procedure call do not examine the information in these
parameters in these environments, exit_data_length and exit_data must be
declared in the parameter list. The exit _data length parameter should be
set to zero to ensure compatibility with any future extension or other
operating environment.

Return Code and Reason Code Overview: The return code provides a
general indication of the results of verb processing and is the value that your
application program should use in determining the course of further processing.
The reason code provides more specific information about the outcome of verb
processing. Note that reason code values generally differ between CCA product
implementations. Therefore, the reason code values should generally be
returned to individuals who can understand the implications in the context of
your application on a specific platform.

The return codes have these general meanings:

Value Meaning

IBM 4758 CCA Services

0 Normal completion; a few nonzero reason codes are associated with this return
code.

4 The verb processing completed, but without full success. For example, this
return code can signal that a supplied PIN was found to be invalid.

8 Indicates that the verb stopped processing. Generally the application
programmer will need to investigate the problem and will need to know the
associated reason code.

12 Indicates that the verb stopped processing. The reason is most likely related to
a problem in the setup of the hardware or in the configuration of the software.

16 Indicates that the verb stopped processing. A processing error occurred in a
Transaction Security System product. If these errors persist, a repair of the
Transaction Security System hardware or a correction to the Transaction
Security System software may be required.

See Appendix A, “Return Codes and Reason Codes” for a detailed discussion
of return codes and a complete list of all return and reason codes.

Rule_Array and Other Keyword Parameters
Rule_array parameters and some other parameters use keywords to transfer
information. Generally, a rule array consists of data elements that contain
keywords that direct specific details of the verb process. Almost all keywords, in
a rule array or otherwise, are 8 bytes in length, and should be uppercase,
left-justified, and padded with space characters. While some implementations
can fold lower-case characters to upper case, you should always code the
keywords in upper case.

The number of keywords in a rule array is specified by a rule_array count
variable, an integer that defines the number of (8-byte) elements in the array.

In some cases, a rule_array is used to convey information other than keywords
between your application and the server, this is however an exception.

Key lIdentifiers, Key Labels, and Key_ Tokens
Essentially all cryptographic operations employ one or more keys. In CCA, keys
are retained within a structure called a key token. A verb parameter can point to
a variable that contains a key token. Generally you do not need to be
concerned with the details of a key token and can deal with it as an entity; see
“Key Tokens” on page B-1 for a detailed description of the key token structures.

Keys are described as one of:

Internal a key that is encrypted for local use. The cryptographic engine will
decrypt (unwrap) an internal key to use the key in a local
operation. Once a key is entered into the system it is always
encrypted (wrapped) if it appears outside of the protected
environment of the cryptographic engine. The engine has a
special key-encrypting key designated a master key. This key is
held within the engine to wrap and unwrap locally used keys.

Operational an internal key that is complete and ready for use. During entry of
a key, the internal key token can contain a flag that indicates the
key information is incomplete --only this type of internal key is
other than operational.

External a key that is either in the clear, or is encrypted (wrapped) by some
key-encrypting key. Generally, when a key is to be transported
from place to place, or is to be held for a significant period of time,
it is required to encrypt the key with a transport key. A key
wrapped by a transport key-encrypting key is designated External.

RSA public keys are not encrypted values (in PKA96), and when
not accompanied by private key information, are retained in an
external key token.

Internal key tokens can be stored in a flat file that is maintained by the directory
server. These key tokens are referenced by use of a key label. A key label is
an alphanumeric string that you place in a variable and reference with a verb
parameter.

Verb descriptions specify how you can provide a key using these terms:

Key token The variable must contain a proper key token structure

Chapter 1. Introduction to Programming for the IBM CCA 1-9

Key label The variable must contain a key label string that will be used to

locate a key record in key storage

Key identifier The variable can contain either a key token or a key label. The

first byte in the variable defines if the variable contains a key token
or a key label. When the first byte is in the range X'20' through
X'FE', the variable will be processed as a key label. There are
additional restrictions on the value of a key label, see “Key Label
Content” on page 7-2. The first byte in all key token structures is
in the range of X'01' to X'1F'. X'FF' as the first byte of a
key-related variable passed to the API raises an error condition.

How Are the Verbs Organized in the Remainder of the Book

Now that you have a basic understanding of the API, you can find these topics
in the remainder of the book:

1-10

IBM 4758 CCA Services

e Chapter 2, “CCA Node Management and Access Control” explains how the

cryptographic engine and the rest of the cryptographic node is administered.
There are two topics:

— Master key administration
— Access control administration.

Keeping cryptographic keys private or secret can be accomplished by
retaining them in secure hardware. Keeping the keys in secure hardware
can be inconvenient or impossible if there are a potentially a large number
of keys, or the key has to be usable with more than one hardware device.
In the CCA implementation, a master key is used to encrypt (wrap)
locally-used keys. The master key itself is securely installed within the
cryptographic engine and can not be retrieved from the engine.

As you examine the verb descriptions throughout this book, you will see
reference to “Required Commands .” Almost all of the verbs request the
cryptographic engine (the “adapter”) to perform one or more commands in
the performance of the verb. Each of these commands have to be
authorized for use. Access control administration concerns managing those
authorizations.

Chapter 3, “RSA Key Administration” explains how you can generate and
protect an RSA key-pair. The chapter also explains how you can control the
distribution of the RSA private key for backup and archive purposes and to
enable multiple cryptographic engines to use the key for performance or
availability considerations. Related services for creating and parsing RSA
key tokens are also described.

When you wish to backup an RSA private key, or supply the key to another
node, you will use a double-length DES key-encrypting key, a transport key.
You will find it useful to have a general understanding of the DES key
management concepts found in chapter Chapter 5, “Basic CCA DES Key
Management.”

¢ Chapter 4, “Hashing and Digital Signatures” explains how you can

— Provide for demonstrations of the integrity of data --demonstrate that
data has not been changed
— Attribute data uniquely to the holder of a private key.

These problems can be solved through the use of a digital signature. The
chapter explains how you can hash data (obtain a number that is
characteristic of the data, a digest) and how you can use this to obtain and
validate a digital signature.

Chapter 5, “Basic CCA DES Key Management” explains the many services
that are available to manage the generation, installation, and distribution of
DES keys.

An important aspect of DES key management is the means by which these
keys can be restricted to selected purposes. Deficiencies in key
management are the main means by which a cryptographic system can be
broken. Controlling the use of a key and its distribution is almost as
important as keeping the key a secret. CCA employs a non-secret quantity,
the control vector to determine the use of a key and thus improve the
security of a node. Control vectors are described in detail in Appendix C,
“CCA Control Vector Definitions and Key Encryption.”

Chapter 6, “Data Confidentiality and Data Integrity” explains how you can
encrypt data. The chapter also describes how you can use DES to
demonstrate the integrity of data through the production and verification of
message authentication codes.

Chapter 7, “Key Storage Verbs” explains how you can label, store, retrieve,
and locate keys in the cryptographic-services access-layer managed key
storage.

Chapter 8, “Financial Services Support Verbs” explains how you can
cryptographically process keys and information related to the Secure
Electronic Transaction (SET) protocol.

Chapter 1. Introduction to Programming for the IBM CCA 1-11

1-12 IBM 4758 CCA Services

Chapter 2. CCA Node Management and Access Control

Figure 2-1. CCA Node, Access Control and Master Key Management Verbs

Verb Page | Service Entry Svc
Point Len

Access_Control_Initialization 2-8 Initialize or update access control tables in the CSUAACI E
COprocessor.

Access_Control_Maintenance 2-11 Query or control installed roles and user CSUAACM E
profiles.

Cryptographic_Facility_Control 2-17 Reinitializes the CCA application, sets the CSUACFC E
adapter clock, and resets the intrusion latch.

Cryptographic_Facility_Query 2-20 Retrieves information about the coprocessor. CSUACFQ

Logon_Control 2-27 Logs on or off the cryptographic adapter. CSUALCT

Master_Key_Process

2-31 Enables the introduction of a master key into the CSNBMKP
COprocessor.

Svc Len: Service location: E: Engine, S: Software

CCA Access Control

This section describes the CCA Access Control system.

Understanding Access Control

Access Control is the process that determines which services of the 4758
Cryptographic Coprocessor are available to a user at any given time. The
system administrator can give users differing authority, so that some users have
the ability to use CCA services that are not available to others. In addition, a
given user's authority may be limited by parameters such as the time of day, or
the day of the week.

Role-based Access Control

© Copyright IBM Corp. 1997

The IBM 4758 Cryptographic Coprocessor uses Role-based access control. In a
role-based system, the administrator defines a set of roles, which correspond to
the classes of coprocessor users. Each user will be enrolled by defining a user
profile, which will map the user to one of the available roles. Profiles are
described in “Understanding Profiles” on page 2-3.

Note: For the purposes of this discussion, a user is defined as either a human
user or an automated, computerized process.
As an example, a simple system might have the following three roles.

General User The user class which includes all coprocessor users who do not
have any special privileges.

Key Management Officer Those people who have the authority to change
cryptographic keys for the coprocessor.

Access Control Administrator Those people who have the authority to enroll
new users into the coprocessor environment, and modify the
access rights of those users who are already enrolled.

2-2

There would be only a few people who hold the role of Key Management Officer
or Access Control Administrator, but there would be a large population of people
with the role of General User.

A role-based system is more efficient than one in which the authority is assigned
individually for each user. In general, the users can be separated into just a few
different categories of access rights. The use of roles allows the administrator
to define each of these categories just once, in the form of a role.

Understandin g Roles

IBM 4758 CCA Services

Each Role defines the permissions and other characteristics associated with
users having that Role. The role contains the following information.

Role ID A character string which defines the name of the role. This
name is referenced in user profiles, to show which role defines
the user's authority.

Permitted Operations A list defining which restricted operations the user will be
allowed to perform in the coprocessor. Each command
corresponds to one of the primitive functions that make up the
access control system.

Required User Authentication Strength Level The access control system is
designed to allow a variety of user authentication mechanisms.
Although the only one supported today is passphrase
authentication, the design is ready for others that may be used
in the future.

All user authentication mechanisms are given a strength rating,
an integer value where zero is the minimum strength,
corresponding to no authentication at all. If the strength of the
user's authentication mechanism is less than the required
strength for the role, the user is not permitted to log on.

Valid Time and Valid Days-of-Week These values define the times of the day,
and the days of the week when the users with this role will be
permitted to log on. If the current time is outside the values
defined for the role, logon will not be allowed. It is possible to
choose values that will let users log on at any time on any day
of the week.

Note: Times must be specified in Greenwich Mean Time
(GMT).

In addition, the role contains control and error checking fields. The detailed
layout of the role data structure can be found in “Role Structure” on page B-15.

The Default Role: Every coprocessor must have at least one role, called the
default role. Any user who has not logged on and been authenticated will
operate with the capabilities and restrictions defined in the default role.

Note: Since unauthenticated users have authentication strength equal to zero,
the Required User Authentication Strength Level of the Default Role must also
be zero.

The coprocessor can have a variable number of additional roles, as needed by
the customer. For simple applications, the default role by itself may be

sufficient. Any number of roles can be defined, as long as the coprocessor has
enough available storage to hold them.

Understanding Profiles
Any user who needs to be authenticated to the coprocessor must have a user
profile. Users who only need the capabilities defined in the default role do not
need a profile.

A profile defines a specific user to the card. Each profile contains the following

information:

User ID This is the “name” used to identify the user to the coprocessor.
The User ID is an eight byte value, with no restrictions on its
content. Although it will typically be an unterminated ASCII
character string, any 64-bit string is acceptable.*

Role ID This character string identifies the role that contains the user's

authorization information. The authority defined in the role takes
effect after the user successfully logs on to the coprocessor.

Activation and Expiration Dates These values define the first and last date on
which this user is permitted to log on to the coprocessor. An
administrator whose role has the necessary authority can reset
these fields to extend the user's access period.

All four digits of the year are stored, so that there will be no
problem at the turn of the century.

Logon failure count This field contains a count of the number of consecutive
times the user has failed a logon attempt, due to incorrect
authentication data. The user will no longer be allowed to log
on after three consecutive failures. This lockout condition can
be reset by an administrator whose role has sufficient authority.

Authentication Data The authentication data is the information used to verify
the identity of the user. It is a self-defining structure, which can
accommodate many different authentication mechanisms. In the
current coprocessor, user identification is accomplished by
means of a passphrase entered by the user at the client
workstation.

The profile's authentication data field can hold data for more
than one authentication mechanism. If more than one is present
in a user's profile, any of the mechanisms can be used to log
on. Different mechanisms, however, may have different
strengths.

The structure of the authentication data is described in “The
Authentication Data Structure” on page B-19.

1 In many cases, a utility program will be used to enter the user ID. That utility may restrict the ID to ASCII characters.

Chapter 2. CCA Node Management and Access Control ~ 2-3

In addition to these fields, the profile contains a header which contains the
following information.

Profile structure version This is a two-byte structure which defines the version
of the profile data structure that follows. For release 1.0 of the CCA
Support Program, the structure version is 10. This is specified with a
version field containing 1 in the first byte, and 0 in the second byte.

Profile length This two-byte structure contains the number of bytes contained in
the remainder of the profile, following the header.

When the user enrolls, the profile is stored in non-volatile memory inside the
secure module on the coprocessor. When the user logs on, this stored profile is
used to authenticate the information presented to the coprocessor. In most
applications, the majority of the users will operate under the default role, and will
not have user profiles; only the security officers and other special users will
need profiles.

In addition, the profile contains other control and error checking fields. The
detailed layout of the profile data structure can be found in “Profile Structure” on
page B-18.

Initializing and Managing the Access Control System

2-4

Before you can use a coprocessor with a newly loaded CCA Support Program, it
must be initialized with roles, profiles, and other data. You will also need to
update some of these values from time to time. Access control initialization and
management are the processes you will use to accomplish this.

You can initialize and manage the access control system in either of two ways.

¢ You can use the Node Management Utility program

e You can write programs that use the access control verbs.
The verbs allow you to write programs that do more than the utility program
included with the CCA Support Program. If your needs are simple, however, the
utility program may do everything you need. The Node Managemaent Utility is

desctibed in the IBM 4758 Cryptographic Coprocessor; CCA Services;
Installation and I/O Guide, SC31-8610.

The Access Control Management and Initizlization Verbs

IBM 4758 CCA Services

Two verbs provide all of the access control management and initialization
functions.

CSUAACI Perform access control initialization functions.

CSUAACM Perform access control management functions.

With Access_Control_lInitialization, you can perform functions such as:
¢ Loading roles and user profiles
e Changing the expiration date for a user profile
e Changing the authentication data in a user profile

¢ Resetting the authentication failure count in a user profile.

With Access_Control_Maintenance, you can perform functions such as:
e Getting a list of the installed roles or user profiles
¢ Retrieving the non-secret data for a selected role or user profile
¢ Deleting a selected role or user profile from the coprocessor.

¢ Get a list of the users who are logged on to the coprocessor.

These two verbs are fully described on pages 2-8 and 2-11 respectively.

Permitting Changes to the Configuration
It is possible to initialize the coprocessor so no one is authorized to perform any
functions, including further initialization. It is also possible to program the
coporcessor where operational commands are available, but not initialization
commands; meaning you could never change the configuration of the
coprocessor. This happens if you initialize the coprocessor with no roles
haveing the authority to perform initialization functions.

Take care to ensure that you define roles that have the authority to perform
initialization, including the RQ-TOKEN and RQ-REINT options of the
Cryptographic_Facility _Control (CSUACFC) verb.

You must also ensure there are active profiles that use these roles.

If you accidentally configure your coprocessor so that initialization is not allowed,
you can recover by reloading the coprocessor firmware. This will delete all
information previously loaded, and resotre the coprocessor to its new state.

Configuration and Greenwich Mean Time (GMT)
The coprocessor always operates with GMT time. This means that the time,
date, and day-of-the-week values in the coprocessor are measured according to
GMT. This can be confusing because of its effect on access control checking.

Each user has operating time limits, based on values in their role and profile.
These include:

¢ Profile activation and expiration dates
¢ Time-of-day limits

¢ Day-of-the-week limits.

All of these limits are measured using time in the coprocessor’s frame of
reference, not the user's. If your role says that you are authorized to use the
coprocessor on days Monday through Friday, it means Monday through Friday
in the GMT time zone, not your local time zone. In like manner, if your profile
expiration date is December 31, it means December 31 in GMT.

In the Eastern United States, your time differs from GMT by four hours during
the part of the year daylight savings time in in effect. At noon local time, it is
4:00 PM GMT. At 8:00 PM local time, it is midnight GMT which is the time the
coprocessor increments its date and day-of-the-week to the next day.

For example, at 7:00 PM on Tuesday, December 30 local time, it is 11:00 PM,
Tuesday, December 30 to the coprocessor. Two hours later, however, at 9:00
PM, Tuesday, December 30 local time, it is 1:00 AM Wednesday, December 31

Chapter 2. CCA Node Management and Access Control ~ 2-5

to the coprocessor. If your role only allows you to use the coprocessor on
Tuesday, you would have access until 8:00 PM on Tuesday; after that, it would
be Wednesday in the GMT time frame used by the coprocessor.

This happens because the coprocessor does not know where you are located,
and how much your time differs from GMT. Time zone information could be
obtained from your local workstation, but this information could not be trusted by
the coprocessor; it could be forged in order to obtain access at times the system
administrator intended to keep you from using the coprocessor.

Note: During the portions of the year when Daylight savings time is not in
effect, the time difference between Eastern Standard Time and GMT is 5 hours.

Logging On and Logging Off

A user must log on to the coprocessor in order to activate a user profile. This is
the only way to use a role other than the default role. You log on and log off
using the Logon_Control verb, which is described in detail on 2-27.

When you successfully log on, you establish a session with the coprocessor. As
part of that session, you establish a randomly derived session key which is
subsequently used to protect information you interchange with the coprocessor.
This protection is described in detail in the next section. The logon process and
its algorithms are described in “Passphrase Verification Protocol” on page D-8.

In order to log on, you must prove your identity to the coprocessor. This is
accomplished using a passphrase, a string of up to 64 characters which are
known only to you and the coprocessor. A good passphrase should not be too
short, and it should contain a mixture of alphabetic characters, numeric
characters, and special symbols such as “*,” “+,” “I,” and others. It should not
be comprised of familiar words or other information which someone might be
able to guess.

When you log on, no part of your passphrase ever travels over any interface to
the coprocessor. This ensures that it is safe, as long as you do not disclose it
yourself.

When you have finished your work with the coprocessor, you must log off in
order to end your session. This invalidates the session key you established
when you logged on, and frees resources you were using in the host system
and in the coprocessor.

Protecting Your Transaction Information

2-6

IBM 4758 CCA Services

When you are logged on to the coprocessor, the information transmitted to and
from the CCA coprocessor application is cryptographically protected using your
session key. A message authentication code is used to ensure that the data
was not altered during transmission. Since this code is calculated using your
session key, it also verifies that you are the originator of the request, not
someone else attempting to impersonate you.

For some verbs, it is also important to keep the information secret. This is
especially important with the Access_Control_Initialization verb, which is used to
send new role and profile data to the coprocessor. To ensure secrecy, some
verbs offer a special protected option, which causes the data to be encrypted

using your session key. This prevents disclosure of the critical data, even if the
message is intercepted during transmission to the coprocessor.

Chapter 2. CCA Node Management and Access Control ~ 2-7

Access_Control_Initialization

Access_Control_Initialization(CSUAACI)

Platform/ DOS 0S/2 AIX NT 0S/400 MVS Verb Subset
Product
Fortress X X X

The Access_Control_Initialization verb is used to initialize or update parameters
and tables for the Access Control system in the 4758 Cryptographic
Coprocessor.
You can use this verb to perform the following services:

¢ Load roles and user profiles

e Change the expiration date for a user profile

¢ Change the authentication data in a user profile

¢ Reset the authentication failure count in a user profile

You select which service to perform by specifying the corresponding keyword in
the input rule array. You can only perform one of these services per verb call.

Restrictions

None.
Format
CSUAACI
return_code Output Integer
reason_code Output Integer
exit_data_length Input Integer
exit_data Input String exit_data_length bytes
rule_array _count Inp/Outp Integer
rule_array Inp/Outp String array rule_array_count * 8 bytes
name Input String 8 bytes
verb_data_1_length Input Integer
verb_data_1 Input String verb_data_1_length bytes
verb_data_2_length Input Integer
verb_data_2 Input String verb_data_2_length bytes
Parameters

For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

rule_array_count
The rule_array count parameter is a pointer to an integer containing the
number of elements in the rule_array variable.

On input, this contains the number of elements you provide in the input rule
array. On output, the verb will set this to the number of rule array elements
it returns to the application program.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters.

2-8 IBM 4758 CCA Services

Access_Control_Initialization

On input, the keywords in the rule array specify the operation being
performed. The rule array keywords are shown below:

Figure 2-2. CSUAACI Rule_Array Input Keywords

Keyword Meaning

Keywords used to select which function to perform

INIT-AC Initializes roles and user profiles.

CHGEXPDT Changes the expiration date in a user profile.

CHG-AD Changes authentication data in a user profile or a user's
passphrase.

Note: The PROTECTD keyword must also be used
whenever you use CHG-AD. You must authenticate
yourself before you are allowed to change authentication
data, and the use of protected mode verifies that you have
been authenticated.

RESET-FC Resets the count of consecutive failed logon attempts for a
user. Clearing the count permits a user to log on again,
after being locked out due to too many failed attempts.

Keywords used to select options

PROTECTD Specifies that the verb should operate in protected mode.
Data sent to the card is protected by encrypting the data
with the user's session key, Kag.

If the user has not successfully logged on, there will be no
session key in effect, and the PROTECTD keyword will
result in an error.

REPLACE Specifies that a new role or profile can replace an existing
role or profile with the same name. This keyword applies
only when the rule array contains the INIT-AC keyword.

Without the REPLACE keyword, any attempt to load a role
or profile which already exists will be rejected. This
protects against acacientally overlaying a user's profile with
one for a different user, who has chosen the same profile
ID as one that is already on the card. Although less likely,
it also protects against the same kind of problem with
duplicate role IDs.

verb_data_length_1
The verb_data_length_1 parameter is a pointer to an integer vairable
containing the length (in bytes) of the data in the verb_data_1 field.

verb_data 1
The verb_data_1 parameter is a pointer to a string variable containing data
used by the verb.

This field is used differently depending on the function being performed.
Figure 2-3 shows the content for each of the rule array keywords that
selects a different function.

Chapter 2. CCA Node Management and Access Control 2-9

Access_Control_Initialization

Figure 2-3. Contents of the verb_data_1 field

Keyword

Contents of verb_data_1 field

INIT_AC

The field contains a list of zero or more user profiles to be
loaded into the coprocessor.

CHGEXPDT,
CHG-AD, or
RESET-FC

The field contains the eight-character profile ID for the user
profile that is to be modified.

verb_data_length 2

The verb_data_length_1 parameter is a pointer to an integer vairable
containing the length (in bytes) of the data in the verb_data_2 field.

verb_data 2

The verb_data_2 parameter is a pointer to a string variable containing data

used by the verb.

This field is used differently depending on the function being performed.
Figure 2-4 shows the content for each of the rule array keywords that
selects a different function.

Figure 2-4. Contents of the verb_data_2 field

Keyword

Contents of verb_data 2 field

INIT_AC

The field contains a list of zero or more roles to be loaded
into the coprocessor.

CHGEXPDT

The field contains the new expiration date to be stored in
the specified user profile. The expiration date is an eight
character string, in the form YYYYMMDD.

CHG-AD

The field contains the new authentication data, to be used
in the specified user profile.

If the profile currently contains authentication data for the
same authentication mechanism, that data is replaced by
the new data. If the profile does not contain authentication
data for the mechanism, the new data is added to the data
currently stored for the specified profile.

RESET-FC

The verb_data_2 field is empty. Its length is zero.

Required Commands

The Access_Control_lInitialization verb requires the following commands to be

enabled:

¢ |nitialize the access control system roles and profiles (offset X'0112') with

the INIT-AC keyword

e Change the expiration date in a user profile (offset X'0113") with the
CHGEXPDT keydword

¢ Change the authentication data in a user profile (offset X'0114"') with the

CHG-AD keyword

¢ Reset the logon failure count in a user profile (offset X'0115"') with the

RESET-FC keyword.

2-10 IBM 4758 CCA Services

Access_Control_Maintenance

Access_Control_Maintenanc e (CSUAACM)

Platform/ DOS 0S/2 AIX NT 0S/400 MVS Verb Subset
Product
Fortress X X X

Restrictions

Format

Parameters

The Access_Control_Maintenance verb is used to query or control installed roles
and user profiles.
You can use this verb to perform the following services:

¢ Get a list of the installed roles or user profiles

¢ Retrieve the non-secret data for a selected role or user profile

¢ Delete a selected role or user profile from the cryptographic coprocessor

¢ Get a list of the users who are logged on to the coporcessor.

You select which service to perform by specifying the corresponding keyword in
the input rule array. You can only perform one of these services per verb call.

None.
CSUAACM
return_code Output Integer
reason_code Qutput Integer
exit_data_length Input:c,Integer
exit_data Input String exit_data_length bytes
rule_array_count Inp/Outp Integer
rule_array Inp/Outp Striing rule_array_count * 8 bytes
array
name Input String 8 bytes
output_data_length Output Integer
output_data Output String output_data_length bytes

For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

rule_array_count
The rule_array _count parameter is a pointer to an integer containing the
number of elements in the rule_array variable.

On input, this contains the number of elements you provide in the input rule
array. On output, the verb will set this to the number of rule array elements
it returns to the application program.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords
are shown below:

Chapter 2. CCA Node Management and Access Control 2-11

Access_Control_Maintenance

On input, the keywords in the rule array specify the operation being
performed. The rule array keywords are shown below:

On input, you put keywords into the rule array to specify what The rule array
keywords are shown below:

Figure 2-5. CSUAACM Rule_Array Input Keywords

Keyword Meaning

Keywords used to select which function to perform

LSTPROFS Retrieves a list of the user profiles currently installed in the
coprocessor.

Keyword Q-NUM-RP shows how to determine how much
data this request will return to the application program.

LSTROLES Retrieves a list of the roles currently installed in the
coprocessor

Keyword xph.Q-NUM-RP . shows how to determine how
much data this request will return to the application

program.
GET-PROF Reads the non-secret part of a specified user profile.
GET-ROLE Reads the non-secret part of a role definition from the
coprocessor
DEL-PROF Deletes a specified user profile.
DEL-ROLE Deletes a specified role definition from the coprocessor
Q-NUM-RP Queries the number of roles and profiles presently installed

in the coprocessor. This allows the application program to
know how much data will be returned with the LSTROLES
or LSTPROFS keywords.

Q-NUM-UR Queries the number of users who are currently logged on
to the coprocessor. It can be used to predict the amount
of data that will be returned with the LSTUSERS keyword.

Users may log on or log off between the time you use
Q-NUM-UR and the time you use LSTUSERS, so the list
of users may not always contain exactly the number the
coprocessor reported were logged on.

LSTUSERS Retrieves a list of the profile IDs for all users who are
currently logged on to the coprocessor.

name
The name parameter is a pointer to a string variable containing the eight
byte name of a role or user profile which is the target of the request.

This field is used differently depending on the function being performed.
Figure 2-6 shows the content of this field for each of the possible rule array
keywords.

2-12 IBM 4758 CCA Services

Access_Control_Maintenance

Figure 2-6. Contents of the name field for CSUAACM

Keyword Contents of name field

LSTPROFS, The name field is unused.

LSTROLES,

Q-NUM-RP,

Q-NUM-UR, or

LSTUSERS

GET-PROF or The name field contains the eight-character profile 1D for
DEL-PROF the user profile that is to be retrieved or deleted.
GET-ROLE or The name field contains the eight-character role ID for the
DEL-ROLE role that is to be retrieved or deleted.

output_data_length

The output_data length parameter is a pointer to an integer variable
containing the number of bytes of data in the output_data field.

On input, this parameter must be set to the total size of the buffer pointed to
by the output_data parameter. On output, it will contain the number of bytes
of data returned by the verb in the output_data field.

output_data

The output_data parameter is a pointer to a string vairable containing data

returned by the verb.

This field is used differently depending on the function being performed.
Figure 2-7 shows the content for each of the rule array keywords.

Figure 2-7 (Page 1 of 3). Contents of the output_data field for CSUAACM

Keyword Contents of verb_data 2 field

LSTPROFS The output_data field contains a list of the profile IDs for all
the user profiles stored in the coprocessor.

LSTROLES The output_data field contains a list of the role IDs for all

the roles stored in the coprocessor.

Chapter 2. CCA Node Management and Access Control ~ 2-13

Access_Control_Maintenance

2-14

IBM 4758 CCA Services

Figure 2-7 (Page 2 of 3). Contents of the output_data field for CSUAACM

Keyword

Contents of verb_data_2 field

GET-PROF

The output_data field contains the non-secret portion of
the selected user profile. This includes the following data,
in the order listed.

Profile version Two bytes containing two one-byte integer
values, where the first byte contains the major
version number and the second byte contains
the minor version number.

Comment A 20-character field containing a comment
which describes the profile.

Role The eight character name of the user's
assigned Role.

Logon failure count A one-byte integer containing he
number of consecutive failed logon attempts by
the user.

Pad A one-byte padding value, which will contain
X'00'.

Activation date The first date on which the profile is valid.
The date consists of a two-byte integer
containing the year, followed respectively by a
one-byte integer for the month and a one-byte
integer for the day of the month.

Expiration date The last date on which the profile is valid
The format is the same as the Activation date
described above.

List of enrolled authentication mechanism information
For each authentication mechanism associated
with the profile, the verb returns a series of
three integer values:

1. The two-byte Mechanism ID.
2. The two-byte Mechanism Strength.

3. The four-byte authentication data Expiration
Date, which has the same form as the
Activation date described above.

Note that the authentication data itself is not returned; only
the IDs, strength, and expiration date of the data are
returned.

Access_Control_Maintenance

Figure 2-7 (Page 3 of 3). Contents of the output_data field for CSUAACM

Keyword Contents of verb_data_2 field

GET-ROLE The field contains the non-secret portion of the selected
role. This includes the following data, in the order listed.

Role version Two bytes containing integer values, where
the first byte contains the major version number
and the second byte contains the minor version
number.

Comment A 20-character field containing a comment
which describes the role. This field is
non-terminated.

Required authentication strength level A two-byte
integer defining how secure the user
authentication must be in order to authorize this
role.

Lower time limit The earliest time of day that this role can
be used. The time limit consists of two integer
values, a one-byte hour, followed by a one-byte
minute. The hour can range from 0-23, and the
minute can range from 0-59.

Upper time limit The latest time of day that this role can
be used. The format is the same as the Lower
time limit.

Valid days of the week A one-byte field defining which
days of the week this role can be used. Seven
bits of the byte are used to represent Sunday
through Saturday, where a '1' bit means that
the day is allowed, while a '0' bit means it is
not.

The first bit (MSB) is for Sunday, and the last
bit (LSB) is unused and will be set to zero.

Access control point list The access control point bit
map, defining which functions a user with this
role is permitted to execute.

DEL-PROF or The output_data field is empty. Its length is zero.
DEL-ROLE
Q-NUM-RP The output_data field contains an array of two four-byte

integers. the first element is the number of roles currently
defined on the &cccrdcop.. while the second is the
number of user profiles.

Q-NUM-UR The output_data field contains a single integer value,
which indicates the number of users currently logged on to
the coprocessor.

LSTUSERS The output_data field contains an array of eight-character
profile IDs, one for each user currently logged on to the
coprocessor. The list is not in any meaningful order.

Chapter 2. CCA Node Management and Access Control 2-15

Access_Control_Maintenance

Required Commands

The Access_Control_Maintenance verb requires the following commands be
enabled in the hardware:

¢ Read public access control information (offset X'0116') with the
LSTPROFS, LSTROLES, GET-PROF, GET-ROLE, , and Q-NUM-RP
keywords

¢ Delete a user profile (offset X'0117") with the DEL-PROF keyword
¢ Delete a role (offset X'0118") with the DEL-ROLE keyword,

2-16 IBM 4758 CCA Services

Cryptographic_Facility_Control

Cryptographic_Facility Contro | (CSUACFC)

Platform/ 0S/2 AIX NT 0S/400 MVS Verb Subset
Product
Fortress X X X X

Use the Cryptographic_Facility _Control verb to perform the following services:
¢ Reinitialize the CCA application in the coprocessor
¢ Set the time and date in the coprocessor clock
¢ Reset the coprocessor Intrusion Latch.
e Load or clear the Function Control Vector, which defines limitations on the
cryptographic functions available in the coprocessor.

Select which service to perform by specifying the corresponding keyword in the
input rule array. You can only perform one of these services per verb call.

Restrictions

None.

Format

CSUACFC

return_code Output Integer

reason_code Output Integer

exit_data_length Input Integer

exit_data Input String exit_data_length

rule_array_count Input Integer

rule_array Input String array rule_array_count * 8 bytes

verb_data_length Inp/Outp Integer

verb_data Inp/Outp String verb_data_length bytes
Parameters

For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

rule_array_count
The rule_array _count parameter is a pointer to an integer containing the
number of elements in the rule array.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters.

This verb requires two keywords in the rule array. One specifies the
coprocessor to which the request is intended, the other specifies the
function to perform. No rule array elements are set by the verb; the rule
array is empty on output. The rule_array keywords are shown below:

Chapter 2. CCA Node Management and Access Control 2-17

Cryptographic_Facility_Control

2-18

Figure 2-8. Cryptographic_Facility Control Rule_Array Input Keywords

Keyword Meaning

Specifying which adapter to use

ADAPTER1 Specifies which adapter the request will go to. ADAPTER1
is the only value supported.o

Specifying what control function to perform

RQ-TOKEN Requests a random eight-byte token from the adapter,
which is returned in the verb_data parameter. This is the
first step when reinitializing the coprocessor.

The second step for reinitialization uses RQ-REINT,
described below.

RQ-REINT For RQ-REINT, you must set the verb_data field to the
one's complement of the token that was returned by the
card when you executed the verb using the RQ-TOKEN
keyword. This is the second and final step when
reinitializing the coprocessor.

This two-step process provides protection against
accidental reinitialization of the card.

SETCLOCK Sets the date and time on the coprocessor.

You must put the date and time values in the verb_data
parameter, as described under the description of that

parameter.
RESET-IL Clears the Intrusion Latch on the coprocessor.
LOAD-FCV Loads a new Function Control Vector into the coprocessor.
CLR-FCV Deletes the Function Control Vector from the coprocessor.

Verb_Data_Length

The verb_data_length parameter is a pointer to an integer containing the
number of bytes of data in the verb_data field.

Verb_Data

IBM 4758 CCA Services

The verb_data parameter is a pointer to a string variable containing data
used by the verb on input, or generated by the verb on output.

This field is used differently depending on the value of the function selection
rule array keyword.

¢ For RQ-TOKEN, verb_data is an output parameter. It receives an
eight-byte randomly generated value, which the application uses with the
RQ-REINT keyword on a subsequent call.

On input, verb_data_length must contain the length of the buffer
addressed by the verb_data pointer. This buffer must be at least eight
bytes in length.

e For RQ-REINT, verb_data is an input parameter. You must set it to the
one's complement of the token you received as a result of the
RQ-TOKEN call.

e For SETCLOCK, verb_data is an input parameter. It must contain a
character string which contains the current GMT time and date. This
string has the form YYYYMMDDHHMMSSWW, where these fields are
defined as follows.

Cryptographic_Facility_Control

YYYY The current year.

MM The current month, from 01 to 12.

DD The current day of the month, from 01 to 31.

HH The current hour of the day, from 00 to 23.

mm The current minutes past the hour, from 00 to 59.
SS The current seconds past the minute, from 00 to 59.

WW The current day of the week, where Sunday is represented as
01, and Saturday by 07.

Required Commands

The Cryptographic_Facility_Control verb requires the following commands be
enabled in the hardware:

¢ Reinitialize Device (offset X'0111"') with the RQ-TOKEN, RQ-REINT
keywords

¢ Set Clock (offset X'0110') with the SETCLOCK keyword
¢ Reset Intrusion Latch (offset X'010F') with the RESET-IL keyword.

¢ Load a Function Control Vector (offset X'0119') with the LOAD-FCV
keyword.

¢ Delete the Function Control Vector (offset X'011A") with the CLR-FCV
keyword.

Chapter 2. CCA Node Management and Access Control 2-19

Cryptographic_Facility_Query

Cryptographic_Facility Quer y (CSUACFQ)

Platform/ 0S/2 AIX NT 0S/400 MVS Verb Subset
Product
Fortress X X X X

The Cryptographic_Facility Query verb is used to retrieve information about the
Cryptographic Coprocessor and the CCA application program in that
coprocessor. This information includes the following:

¢ General information about the coprocessor

¢ General information about the CCA application program in the coprocessor
¢ Diagnostic information from the coprocessor

¢ Export control information from the coprocessor

¢ Time and date information.

Restrictions

None.

Format

CSUACFQ

return_code Output Integer

reason_code Output Integer

exit_data_length Input Integer

exit_data Input String exit_data_length

rule_array count Input Integer

rule_array Input String array rule_array_count * 8 bytes

verb_data_length Inp/Outp Integer

verb_data Inp/Outp String verb_data_length bytes
Parameters

For the definitions of the first four parameters, see <insert reference here>.

rule_array_count
The rule_array count parameter is a pointer to an integer containing the
number of elements in the rule_array variable.

On input, this contains the number of elements you provide in the input rule
array. On output, the verb will set this to the number of rule array elements
it returns to the application program.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters.

On input, you set the rule array to specify the type of information you want
to retrieve. There are two input rule array elements, as described below.

2 |If multiple adapters are supported in the workstation, they will be referenced using ADAPTER1, ADAPTER2, and so on.

2-20 IBM 4758 CCA Services

Cryptographic_Facility_Query

Figure 2-9. Cryptographic_Facility Query Rule_Array Input Keywords

Keyword Meaning

Specifying which adapter to use

ADAPTER1 Specifies the cryptographic coprocessor for which the
request is intended. ADAPTERL1 is the only value
supported.

Specifying what information to return

STATCCA Gets CCA-related status information.

STATCARD Gets coprocessor-related basic status information.
STATDIAG Gets diagnostic information.

STATEXPT Gets function control vector-related status information.
TIMEDATE Reads the current time, date, and day of the week from

the secure clock on the card.

The format of the output rule array depends on the value of the rule array
element which identifies the information to be returned. Different sets of rule
array elements are returned depending on whether the input keyword is
STATCCA, STATCARD, STATDIAG, or STATEXPT.

For rule array elements that contain numbers, those numbers are
represented by numeric characters which are left-justified and padded on
the right with space characters. For example, a rule array element which
contains the number 2 will contain the character string “2 "

On output, the rule elements can have the values shown in the table below.

Figure 2-10 (Page 1 of 6). Cryptographic_Facility Query Rule_Array Output
Keywords

Element Name Description
Number

Output rule array for option STATCCA

1 NMK Status State of the New Master Key register.

¢ 1 means the register is clear

e 2 means the register contains a partially
complete key

e 3 means the register contains a
complete key.

2 CMK Status State of the Current Master Key register.

¢ 1 means the register is clear
¢ 2 means the register contains a key.

3 OMK Status State of the Old Master Key register.

¢ 1 means the register is clear
¢ 2 means the register contains a key.

4 CCA application An eight character string that identifies the
version version of the CCA application that is
running in the coprocessor.
5 CCA application An eight character string containing the
build date build date for the CCA application that is

running in the coprocessor.

Chapter 2. CCA Node Management and Access Control 2-21

Cryptographic_Facility_Query

Keywords

Figure 2-10 (Page 2 of 6). Cryptographic_Facility_Query Rule_Array Output

Element
Number

Name

Description

6

User Role

An eight character string containing the
Role which defines the host application
user's current authority.

Output rule array for option STATCARD

1

Number of
adapters installed

The number of active cryptographic
coprocessors installed in the machine. This
will always be 1 in the current
implementation.

DES hardware
level

A numeric character string containing an
integer value identifying the version of DES
hardware that is on the coprocessor.

RSA hardware
level

A numeric character string containing an
integer value identifying the version of RSA
hardware that is on the coprocessor.

POST version

A character string identifying the version of
the coprocessor's Power On Self Test
(POST) firmware.

The first four characters define the POSTO
version, and the last four characters define
the POST1 version.

Card Operating
System name

A character string identifying the operating
system firmware on the coprocessor.

Card Operating
System version

A character string identifying the version of
the coprocessor's operating system
firmware.

Card part number

A character string containing the
eight-character part number identifying the
version of the coprocessor.

Card EC level

A Character string containing the
eight-character EC (Engineering Change)
level for this version of the coprocessor.

Miniboot version

A character string identifying the version of
the coprocessor's Miniboot firmware. This
firmware controls the loading of programs
into the coprocessor.

The first four characters define the
MiniBootO version, and the last four
characters define the MiniBoot1 version.

10

CPU speed

a character string containing the operating
speed of the microprocessor chip, in
Megahertz.

11

Adapter ID

A unique identifier programmed into the
coprocessor. The coprocessor's Adapter ID
is an eight-byte binary value.

12

Flash memory size

A character string containing the size of the
Flash EPROM memory on the coprocessor,
in kilobytes.

2-22 IBM 4758 CCA Services

Cryptographic_Facility_Query

Figure 2-10 (Page 3 of 6). Cryptographic_Facility_Query Rule_Array Output
Keywords

Element Name Description
Number
13 DRAM memory A character string containing the size of the
size dynamic RAM (DRAM) memory on the
coprocessor, in kilobytes.
14 Battery-backed A character string containing the size of the
memory size battery-backed RAM on the coprocessor, in
kilobytes.
15 Serial Number The unique serial number of the

coprocessor. The serial number is
factory-installed.

Output rule array for option STATDIAG

1 Battery state A numeric character string containing a
value which indicates whether the battery
on the coprocessor needs to be replaced.

¢ 1 means that the battery is good
¢ 2 means that the battery should be

replaced.
2 Intrusion Latch A numeric character string containing a
state value which indicates whether the Intrusion

Latch on the coprocessor is set or cleared.

+ 1 means that the latch is cleared
¢ 2 means that the latch is set.

3 Error log status A numeric character string containing a
value which indicates whether there is data
in the coprocessor CCA error log.

¢ 1 means that the error log is empty

¢ 2 means that the error log contains
data, but is not yet full

¢ 3 means that the error log is full, and
cannot hold any more error data.

4 Mesh intrusion A numeric character string containing a
value to indicate whether the coprocessor
has detected tampering with the protective
mesh that surrounds the secure module.
This indicates a probable attempt to
physically penetrate the module.

¢ 1 means no intrusion had been detected
e 2 means an intrusion attempt detected

5 Low voltage A numeric character string containing a
detected value to indicate whether a power supply
voltage was below the minimum acceptable
level. This may indicate an attempt to
attack the security module.

¢ 1 means only acceptable voltages have
been detected

e 2 means a voltage has been detected
below the low voltage tamper threshold

Chapter 2. CCA Node Management and Access Control ~ 2-23

Cryptographic_Facility_Query

2-24

IBM 4758 CCA Services

Figure 2-10 (Page 4 of 6). Cryptographic_Facility_Query Rule_Array Output

Keywords

Element
Number

Name

Description

6

High voltage
detected

A numeric character string containing a
value to indicate whether a power supply
voltage was above the maximum acceptable
level. This may indicate an attempt to
attack the security module.

¢ 1 means only acceptable voltages have
been detected

e 2 means a voltage has been detected
above the high voltage tamper threshold

Temperature range
exceeded

A numeric character string containing a
value to indicate whether the temperature in
the secure module was outside the
acceptable limits. This may indicate an
attempt to obtain information from the
module.

¢ 1 means the temperature is acceptable
¢ 2 means the temperature has been
detected outside of acceptable limits

X-ray radiation
detected

A numeric character string containing a
value to indicate whether X-ray radiation
was detected inside the secure module.
This may indicate an attempt to obtain
information from the module.

¢ 1 means no X-ray radiation has been
detected

e 2 means X-rays radiation has been
detected

9, 11,
13, 15,
17

Last five
commands
executed

These five rule array elements contain the
last five commands that were executed by
the coprocessor CCA application. They are
in chronological order, with the most recent
command in element 9. Each element
contains the SAPI command code in the
first four characters, and the subcommand
code in the last four characters.

10, 12,
14, 16,
18

Last five return
codes

These five rule array elements contain the
SAPI return codes and reason codes
corresponding to the five commands in rule
array elements 9, 11, 13, 15, and 17. Each
element contains the return code in the first
four characters, and the reason code in the
last four characters.

Output rule array for option STATEXPT

Cryptographic_Facility_Query

Figure 2-10 (Page 5 of 6). Cryptographic_Facility_Query Rule_Array Output

Keywords
Element Name Description
Number
1 Base CCA services A numeric character string containing a
availability value to indicate whether base CCA
services are available.
¢ 0 means basic CCA srevices are not
available
¢ 1 means base CCA services are
available,
2 CDMF availability A numeric character string containing a

value to indicate whether CDMF encryption
is available.

¢ 0 means CMDF encryption is not
available
¢ 1 means CDMF encryption is available,

56-bit DES
availability

A numeric character string containing a
value to indicate whether 56-bit DES
encryption is available.

¢ 0 means 56-bit DES encryption is not
available

¢ 1 means 56-bit DES encryption is
available,

Triple-DES
availability

A numeric character string containing a
value to indicate whether Triple-DES
encryption is available.

¢ 0 means Triple-DES encryption is not
available

¢ 1 means Triple-DES encryption is
available,

SET services
availability

A numeric character string containing a
value to indicate whether SET (Secure
Electronic Transactions) services are
available.

¢ 0 means SET services are not available
* 1 means SET services are available,

Maximum modulus
for symmetric key
encryption

A numeric character string containing the
maximum modulus size that is enabled for
the encryption of symmetric keys. This
defines the longest public-key modulus that
can be used for key management of
symmetric-algorithm keys.

Output rule array for option TIMEDATE

1

Date

The current date is returned as a character
string of the form YYYYMMDD, where
YYYY represents the year, MM represents
the month (01-12), and DD represents the
day of the month (01-31).

Time

The current GMT time of day is returned as
a character string of the form HHMMSS.

Chapter 2. CCA Node Management and Access Control

2-25

Cryptographic_Facility_Query

Keywords

Figure 2-10 (Page 6 of 6). Cryptographic_Facility_Query Rule_Array Output

Element
Number

Name

Description

3

Day of the week

The day of the week is returned as a
number between 1 (Sunday) and 7
(Saturday).

verb_data_length

The verb_data length parameter is a pointer to an integer variable
containing the length (in bytes) of data in the verb_data field.

verb_data

The verb_data parameter is a pointer to a string variable contiaing data sent
to the coprocessor for this verb, or received from the coprocessor as a result
of the verb. Its use depends on the options specified by the host application

program.

The verb_data parameter is not currently used by this verb.

Required Commands

Cryptographic_Facility_Query is a universally-authorized verb. There are no
access restrictions on its use.

2-26 IBM 4758 CCA Services

Logon_Control

Logon_Contro | (CSUALCT)

Platform/ 0S/2 AIX NT 0S/400 MVS Verb Subset
Product
Fortress X X X

Restrictions

Format

Parameters

Use the Logon_Control verb to perform the following services:
e Log on to the coprocessor, using your access control profile
¢ Log off of the coprocessor.
e Save or restore logon content infoormation.

Select the service to perform by specifying the corresponding keyword in the
input rule array. Only one service is performed for each call to this verb.

If you log on to the adapter when you are already logged on, the existing logon
session is replaced with a new session.

None.
CSUALCT
return_code Output Integer
reason_code Output Integer
exit_data_length Input Integer
exit_data Input String exit_data_length
rule_array _count Input Integer
rule_array Input String array rule_array_count * 8 bytes
user_id Input String 8 bytes
auth_parm_length Input Integer
auth_parm Input String auth_parm_length bytes
auth_data_length Input Integer
auth_data Input String auth_data_length bytes

For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

rule_array_count
The rule_array count parameter is a pointer to an integer containing the
number of elements in the rule array. The value of the rule_array count
must be one for this verb.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords
are shown below:

On input, you put keywords into the rule array to specify the operation to
perform. The rule array keywords are shown below:

Chapter 2. CCA Node Management and Access Control 2-27

Logon_Control

Figure 2-11. CSUALCT Rule_Array Input Keywords

Keyword Meaning

Keywords used to log on

LOGON Tells the coprocessor that you want to log on.

PPHRASE Specifies you are going to identify yourself using a
passphrase.

Keywords used to log off

LOGOFF Tells the coprocessor you want to log off.

FORCE Tells the coprocessor that a specified user is to be logged
off. The user's profile ID is specified by the user_id
parameter.

Keywords used to save and restore logon ocntext information

GET-CNTX Obtains a copy of the logon context information that is
currently active in your session. See “The use of Logon
Context information” on page 2-29

PUT-CNTX Restores the logon context information that was saved
using the GET_CNTX keyword. See “The use of Logon
Context information” on page 2-29

user_id
The user_id parameter is a pointer to an eight-character string variable
containing the id string which identifies the user to the system. The user id
must be exactly eight characters in length; shorter user ids should be
padded on the right with space characters.

The user_id parameter is always used when logging on. It is also used
when the LOGOFF keyword used in conjunction with the FORCE keyword
to force a user off.

auth_parm_length
The auth_parm_length parameter is a pointer to an integer variable
containing the length (in bytes) of data in the auth_parm field.

On input, this field contains the length (in bytes) of the auth_parms field. On
output, this field contains the number of bytes of data returned in the
auth_parms field.

auth_parms
The auth_parms parameter is a pointer to a string variable containing data
used in the authentication process.

This field is used differently depending of the authentication method
specified in the rule array. Figure 2-12 shows the content of this field for
each of the authentication methods.

Figure 2-12. Contents of the authentication parameters field

Keyword Contents of auth_parms field
PPHRASE The authentication parameter field is empty. Its length is
zero.

2-28 IBM 4758 CCA Services

Logon_Control

auth_data_Length
The auth_data_length parameter is a pointer to an integer variable
containing the length (in bytes) of the data in the auth_data field.

On input, this field contains the length (in bytes) of the auth_data field. On
output, this field contains the number of bytes of data returned in the
auth_data field.

auth_data
The auth_data parameter is a pointer to a string variable containing data
used in the authentication process.

This field is used differently depending on the keywords specified in the
reul_array. The usa of the auth_data field for each keyword ios shown in
the table below. specified in the rule array. Figure 2-13 shows the content
of this field for each of the authentication methods.

Figure 2-13. Contents of the authentication data field

Keyword Contents of auth_data field

PPHRASE The authentication data field contains the user-provided
passphrase.

GET-CNTX The authentication data field receives the active logon

context information. The size of the buffer provided for the
auth_data field must be at least 256 bytes.

PUT-CNTX The authentication data field contains your active logon
context,

The use of Logon Context information
When logging on to the cryptographic coprocessor, a session is established
between your application program and the coprocessor's access control system.
The Security Application Program Interface (SAPI) holds the logon context
information, which contains the session information needed by the host
computer to protect and validate transactions sent to the coprocessor.

This logon context information resides in memory owned by your application and
is lost when the application ends. If your application is made up of multiple
programs wheic are separately executed, you must make this the logon context
information available to each program. The Logon Control verb offers this
capability through the GET-CNTX and PUT-CNTX keywords.

The GET-CNTX keyword is used to retrieve a copy of your logon context
information, which you can store until another program needs it. The
PUT-CNTX keyword is used to give the context information back to the API,
allowing it to continue with your logon session. If the context is not saved and
restored, the coprocessor thinks you are still logged on, but the API does not.

As an example, consider a simple application which contains two programs.

e The program LOGON logs you on to the coprocessor using your
passphrase.

e The program ENCRYPT encrypts some data. The roles defined for your
system require you to be logged on in order to use the ENCIPHER function.

Chapter 2. CCA Node Management and Access Control 2-29

Logon_Control

These programs will must use the GET-CNTX and PUT-CNTX keywords in
order to work properly. They should work as follows.

LOGON

ENCIPHER

1. Log the user on to the coprocessor using CSUALCT verb with

the PPHRASE keyword.

. Retrieve the logon context information using CSUALCT with the

GET-CNTX keyword.

. Save the logon context information in a place that will be

available to the ENCIPHER program. This could be as simple as
a disk file, or it could be something more complicated such as
shared memory or a background process.

. Retrieve the logon context information saved by the LOGON

program.

. Restore the logon context information to SAPI using the

CSUALCT verb with the PUT-CNTX keyword.

3. Encipher the data.

You only need to worry about the logon context information if you log on to the
coprocessor using one program, then make use of the coprocessor with one or
more additional programs.

CAUTION:

You should take care in storing the logon context information. Design
your software so that the saved context is protected from disclosure to
others who may be using the same computer.If someone is able to obtain
your logon context information, they may be able to impersonate you for
the duration of your logon session.

Required Commands

The Logon_Control verb requires the force logoff of a specified user command
(offset X'011B') to be enabled in the hardware for use with the FORCE

2-30

keyword.

IBM 4758 CCA Services

Master_Key_Process

Master Key Proces s (CSNBMKP)

Platform/

Product

0s/2 AlX NT 0S/400 MVS Verb Subset

Fortress

X X X Basic

The Master_Key Process verb operates on the master key registers. The verb
can clear the new master key register, or exclusive-OR a clear value as a
key-part into the new master key register. The master key is a triple length,
168-bit, 24-byte value. For IBM 4758 Cryptographic Coprocessor
implementations, the verb can also set the master key registers: the current
master key is promoted to the old master key register, the new master key is
promoted to the current master key register, and the new master key register is
set to empty.

Before starting to load new master key information, ensure that the new master
key register is cleared, by using the CLEAR keyword in the rule_array. To form
a master key from key_parts, use the verb several times to complete the
following tasks:

1. Clear the register, if it is not already clear

2. Load the first key_part

3. Load any middle key_parts, calling the verb once for each middle key part

4. Load the last key_part

5. Set the master key which transfers the current master key to the old master
key register, and the new master key to the current master key register

Each byte of the key_part should contain an odd number of one bits. If this is
not the case, a warning is issued. The low-order bit in each byte of the key is
used as parity for the remaining bits in the byte. The product maintains odd
parity on the accumulated key value.

When the LAST master key part is entered, this additional processing is
performed:

¢ [f any two of the eight-byte parts of the new master key have the same
value, a warning is issued. This warning should not be ignored and a key
with this property should not be used.

¢ The key-token master key verification pattern (MKVP) of the new master key
is compared against the key-token MKVP of the current and the old master
keys. If they are the same, the service is failed.

¢ |f any of the eight-byte parts of the new master key compares with one of
the weak DES keys, the service is failed. See page 2-33 for a list of these
“weak” keys.

As part of the SET process, if a DES and/or PKA key storage exist, the header

record of each key storage is updated with the verification pattern of the (new)
current master key.

Chapter 2. CCA Node Management and Access Control 2-31

Master_Key_ Process

Restrictions

Only the IBM 4758 implementations support the SET keyword and treat the
ADAPTER keyword as a default.

Format
CSNBMKP
return_code Output Integer
reason_code Output Integer
exit_data_length Input Integer
exit_data Input String exit_data_length bytes
rule_array_count Input Integer
rule_array Input String array rule_array_count * 8 bytes
key part Input String
Parameters

For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

rule_array_count
The rule_array count parameter is a pointer to an integer containing the
number of elements in the rule_array variable. The value of the
"pv.rule_array_count variable may be 1 or 2 for this verb.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords
are shown below:

Figure 2-14. Master_Key Process Rule_Array Keywords

Keyword Meaning

Specify a Cryptographic Component (One, required)

ADAPTER Specifies the coprocessor. This is the default for IBM
4758 implementations.

Specifying a Master Key Process (One required)

CLEAR Specifies to clear the new master key register.

FIRST Specifies to load the first key_part.

MIDDLE Specifies to XOR the second, third, or other intermediate
key part into the new master key register.

LAST Specifies to XOR the last key_part into the new master key
register.

SET Specifies to advance the current master key to the old

master key register, to advance the new master key to the
current master key register, and to clear the new master
key register. This keyword is valid only with IBM 4758
implementations.

2-32 IBM 4758 CCA Services

Master_Key_Process

key part
The key_part parameter is a pointer to a string variable containing a 168-bit
(3x56-bit, 24-byte) clear key_part.

If you have used the CLEAR or SET keywords, the information in the
variable is ignored, but you must declare the variable.

Required Commands

The Master_Key Process verb requires the following commands to be enabled
in the hardware:

¢ Clear New Master Key Register command (offset X'32"') with the CLEAR
keyword

e Load First Master Key Part command (offset X'18') with the FIRST keyword

¢ Combine Master Key Parts command (offset X'19"') with the MIDDLE or
LAST keywords.

¢ Clear New Master Key Register command (offset X'0032') with the CLEAR
keyword

e |oad First Master Key Part command (offset X'0018') with the FIRST
keyword

¢ Combine Master Key Parts command (offset X'0019"') with the MIDDLE or
LAST keywords.

¢ Set Master Key command (offset X'001A") with the SET keyword.

Related Information
The following are considered weak DES keys:

01 01 01 01 01 01 01 01

FE FE FE FE FE FE FE FE

1F 1F 1F 1F OE OE OE OE

EO EO EO EO F1 F1 F1 F1

01 FE 01 FE 01 FE 01 FE /* semi weak */
FE 01 FE 01 FE 01 FE 01 /* semi weak =/
1F EO 1F EO OE F1 OE F1 /* semi weak */
EO 1F EO 1F F1 OE F1 OE /* semi weak */
01 EO 01 EO 01 F1 01 F1 /* semi weak */
EO 01 EO 01 F1 01 F1 01 /* semi weak =/
1F FE 1F FE OFE FE OE FE /* semi weak =*/
FE 1F FE 1F FE OE FE OE /* semi weak */
01 1F 01 1F 01 OE 01 OE /* semi weak */
1F 01 1F 01 OE 01 OFE 01 /* semi weak */
EO FE EO FE F1 FE F1 FE /* semi weak */
FE EO FE EO FE F1 FE F1 /* semi weak */
1F 1F 01 01 OE OE 01 01 /* possibly =/
01 1F 1F 01 01 OE OE 01 /+* possibly =/
1F 01 01 1F OE 01 01 OE /* possibly =/
01 01 1F 1F 01 01 OE OE /* possibly =/
EO EO 01 01 F1 F1 01 01 /* possibly =/
FE FE 01 01 FE FE 01 01 / possibly =/
FE EO 1F 01 FE F1 OE 01 /* possibly =/
EO FE 1F 01 F1 FE OE 01 /* possibly =*/
FE EO 01 1F FE F1 01 OE /* possibly =/
EO FE 01 1F F1 FE 01 OE /* possibly =*/
EO EO 1F 1F F1 F1 OE OE /* possibly =*/
FE FE 1F 1F FE FE OFE OE / possibly */
FE 1F EO 01 FE OE F1 01 /* possibly =/

Chapter 2. CCA Node Management and Access Control 2-33

Master_Key_ Process

2-34

IBM 4758 CCA Services

EO
FE
EO
01
1F
1F
01
1F
01
01
1F
EO
FE
FE
EO
FE
EO
EO
FE
1F
01
1F
01
01
1F
1F
01
1F
01
01
1F
FE
EO
FE
EO

1F
01
01
EO
FE
EO
FE
EO
FE
EO
FE
01
1F
01
1F
01
1F
01
1F
FE
FE
EO
EO
01
1F
01
1F
01
1F
01
1F
FE
FE
EO
EO

FE
EO
FE
EO
EO
FE
FE
EO
EO
FE
FE
01
01
1F
1F
01
01
1F
1F
01
1F
01
1F
EO
EO
FE
FE
EO
EO
FE
FE
EO
FE
EO
FE

01
1F
1F
01
01
01
01
1F
1F
1F
1F
EO
EO
EO
EO
FE
FE
FE
FE
EO
EO
FE
FE
EO
EO
EO
EO
FE
FE
FE
FE
EO
EO
FE
FE

F1
FE
F1
01
OE
OE
01
OE
01
01
OE
F1
FE
FE
F1
FE
F1
F1
FE
EO
01
OE
01
01
OE
OE
01
OE
01
01
OE
FE
F1
FE
F1

OE
01
01
F1
FE
F1
FE
F1
FE
F1
FE
01
OE
01
OE
01
OE
01
OE
FE
FE
F1
F1
01
OE
01
OE
01
EO
01
OE
FE
FE
F1
F1

FE
F1
FE
F1
FO
FE
FE
F1
F1
FE
FE
01
01
OE
OE
01
01
OE
OE
01
OE
01
OE
F1
F1
FE
FE
F1
F1
FE
FE
F1
FE
F1
FE

01
OE
OE
01
01
01
01
OE
OE
OE
OE
F1
F1
F1
F1
FE
FE
FE
FE
F1
F1
FE
FE
F1
F1
F1
F1
FE
FE
FE
FE
F1
F1
FE
FE

possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly
possibly

Chapter 3. RSA Key Administration

Figure 3-1. Public-Key Key-Administration Services

Verb Page | Service Entry Svc
Point Len

PKA_Key_Generate 3-6 Generates a public-private RSA key-pair. CSNDPKG E

PKA_Key_Import 3-9 Imports a public-private public key key-pair. CSNDPKI E

PKA_Key_Token_Build 3-11 Builds a public key key token. CSNDPKB S

PKA_Key_Token_Change 3-17 Re-encipher an RSA private key from the old master key CSNDKTC E
to the current master key.

PKA_Public_Key_Extract 3-19 Extracts a public key from a public-private public key CSNDPKX S
token.

Service location (Svc Lcn): E=Cryptographic Engine, S=Security API software

This chapter describes the management of RSA public and private keys and
how you can:

¢ Generate keys with various characteristics
¢ How you can receive keys from other systems
e How a private key can be protected and moved from one node to another

The verbs listed in Figure 3-1 are used to perform cryptographic functions and
assist you to obtain key_token structures.

RSA Key Management

This implementation of the CCA, and many others, support a set of public key
cryptographic services that are collectively designated PKA96. The PKA96
services support the RSA public key algorithm and related hashing methods
including MD5 and SHA-1. Figure 3-2 on page 3-2 shows the relationship
among the services, the public-private key_token, and other data involved with
supporting digital signatures and symmetric (DES) key exchange.

These topics are discussed in this section:

¢ How you can generate an RSA key pair

¢ How you can receive keys from other systems

¢ How you can update a private key when the master key that protects a
private key is changed

¢ How you can use the RSA keys and provide for their protection

e How you can use a private key at multiple nodes

Key Generation
RSA public and private key-pairs can be generated with the PKA_Key_Generate
verb. When generating the key-pair you must determine:

¢ The key-length

¢ The encryption of the private key (to control where the key can be used)
¢ An association with a key name that in some systems can limit key usage
¢ Whether the key should be usable in symmetric key-exchange operations
¢ The form of the private key: modular-exponent or Chinese Remainder

© Copyright IBM Corp. 1997 3-1

‘PKA_Key_Token_Bui]d
I

PU: Clear

PR: e*MK(PR)

or e*XPORT(PR)
or Clear

\4 —]
PKA96 PU-PR Key Token

(Skeleton)

PKA_Key_Import PKA_Key_Generate

Data Data

‘One_Way_Hash ‘MDC_Generate
I |

N

(Obtain public key
information from the
private—public token.)

exMK.CV (K) (Public key)

(DES/CDMF PU Key Token
Key)

|Digita]_Signature_Generate|W

[

| PKA_Symmetric_Key_ Export
|

ePU(K),CV

(Private key)

|PKA_Symmetric_Key_Import
|

e*MK. CV (K)
(DES/CDMF Key)

Digital
Signature
[B;gita]_Signature_Verify
|
yes/no

Designates Verbl
Data Structure

Figure 3-2. PKA96 Verbs with Key Token Flow

¢ How, or if, the private key should be encrypted

All but the last item are determined by the skeleton _key token that you supply
to the verb. A skeleton_key token is prepared using the PKA_Key_ Token_Build

verb.

This PKA_Key_Generate verb outputs the generated secret key in one of three

forms so you can control where the private key is employed:

e Cleartext

Both the RSA private and public keys are returned as clear text. This option
for the private key by means other than
encryption within the key-generating step. This option is provided so the
user can test, or interface with, other systems or applications that require

requires that you provide protection

the private key to be in the clear.

¢ Enciphered by the local master key

IBM 4758 CCA Services

You can request that the key-generating service return the private key
enciphered by the master key within the cryptographic engine. Since there
is no service available to re-encrypt the private key other than the current or
a replacement master key, the generated private key is effectively locked to
the generating node.

¢ Enciphered by a transport Key-Encrypting Key

You can request the service to encrypt the generated private key under
either an IMPORTER key or an EXPORTER key. An IMPORTER key will
permit the private key to be imported and used later at the generating node.

Or, the Key-Encrypting Key can be an EXPORTER transport key. An
EXPORTER key is shared with one or more nodes. This allows you to
distribute the key to another node(s). For example, you could obtain a
private key in this form for distribution to a S/390 large server's integrated
RSA cryptographic processor, as that processor can not generate private
keys in an encrypted form.

Note: EXPORTER and IMPORTER key-encrypting “transport” keys are
discussed in Chapter 5, “Basic CCA DES Key Management.”

Because you can obtain the private key, it can be made functional on more than
one cryptographic engine and used for backup or additional throughput. Your
administration procedures control where the key can be used. The private key
can be transported securely between nodes in its encrypted form. You can set
up one-way key distribution channels between nodes and lock the private-key
receiving key to a particular node or nodes so that you can be certain where the
private key exists. This ability to replicate a key to multiple nodes is especially
important to high-throughput server systems and important for backup
processing purposes.

In systems with an access monitor like RACF on S/390 large servers, the

key _name that you associate with a private key gives you the ability to enforce
restricted key usage. These systems can determine if a requesting process has
the right to use the particular key-name that is cryptographically bound to the
private key. You specify such a key-name when you build the

skeleton_key token in the PKA_Key Token_Build verb.

You decide if the key should be returned in modular-exponent form or as a
series of numbers for use in the Chinese-Remainder-Theorem (CRT) form which
generally yields faster performance in key-using services. This decision is
represented by the form of the private key that you indicate in the

skeleton_key token. You can reuse an existing key_token having the desirable
properties, or you can build the skeleton_key token with the

PKA Key Token_Build verb. Not all systems can employ a private key in the
CRT form generated by the PKA_Key Generate verb. In particular the S/390
large server integrated cryptographic feature requires the private key in
modular-exponent form.

The characteristics of the generated key including key length are specified in a
skeleton_key token. You specify the key-length (modulus length) and decide if
the public exponent should be valued to three, 216+1, or fully random. Also, in
the PKA_Key_Token_Build verb you can indicate that the key should be usable
for both digital signature signing and symmetric key exchange, or you can
indicate that the key should be usable only for digital signature signing.

Chapter 3. RSA Key Administration ~ 3-3

Key Import

The key can be generated as a random value, or the key can be generated
based on a seed derived from regeneration data provided by the application
program.

To be useful, an RSA private key must be enciphered by a master key on the
CCA node where it will be used to sign a digital signature or to receive a
symmetric key in a key-exchange scenario. You can use the PKA_Key_Import
verb to get a private key deciphered from a transport key and enciphered by the
master key. Also, you can get a clear (unenciphered) private key enciphered by
the master key using the PKA_Key _Import verb.

The public and private RSA keys must be presented in a PKA external
key-token (see “RSA Key Token Formats” on page B-5). You can use the
PKA Key Token_Build verb to structure the key into the proper token format.

You provide or identify the operational transport key (Key-Encrypting Key) and
the encrypted private key with its associated public key to the import service.
The service will return the private key encrypted under the master key along
with the public key.

Re-enciphering a Private Key Under an Updated Master Key

When the master key at a CCA node is changed, operational keys, such as
RSA private keys enciphered by the master key, must be securely decrypted
from under the pre-existing master key and enciphered under the replacement
master key. You can accomplish this task using the PKA_Key_Token_Change
verb.

After the pre-existing master key has become the old-master key and the
replacement master key has become the current-master key, you use the

PKA _Key Token_Change verb to effect the re-encipherment of the private key.
(You use the Master_Key_Process verb to set the master key.)

Using the RSA Keys

3-4

IBM 4758 CCA Services

The RSA keys that you create (generate) or import can be used in four separate
services, two each for the private and public keys.

For Private keys, see:

¢ Digital_Signature_Generate, 4-4

¢ PKA_Symmetric_Key_Import, 5-47
For Public keys, see:

¢ Digital_Signature_Verify, 4-7

¢ PKA_Symmetric_Key Export, 5-45.

You must arrange appropriate protection for the RSA private key. A CCA node
can help ensure that the key will remain confidential. However, you must
ensure that the master key and any transport keys are protected, usually
through split-knowledge, dual-control procedures.

Besides the confidentiality of the private key, you must also ensure that only
authorized applications can use the private key. You can hold the private key in
application-managed storage and pass the key to the cryptographic services as
required. This will generally limit the access other applications might have to the

key. In systems with an access monitor, such as RACF on MVS systems, it is
possible to associate a key name with the private key.

Using the Private Key at Multiple Nodes

You can arrange to use a private key at multiple nodes if the nodes have the
same master key, or if you arrange to have the same transport key installed at
each of the target nodes. In the latter case, you need to arrange to have the
transport key under which the RSA private key is enciphered installed at each
target node.

Having the private key installed at multiple nodes enables you to provide
increased service levels for greater throughput, and to maintain operation when
a primary node goes out of service. Of course, having a private key installed at
more than one node increases the risk of someone misusing or compromising
the key. You have to weigh the advantages and disadvantages as you design
your system or systems.

Chapter 3. RSA Key Administration ~ 3-5

PKA_Key_ Generate

PKA Key Generat e (CSNDPKG)

Platform/ 0Ss/2 AlX NT 0S/400 MVS Verb Subset
Product
Fortress X X X PKA96

Restrictions

3-6

IBM 4758 CCA Services

The PKA_Key_ Generate verb is used to generate a public-private key-pair for
use with the RSA algorithm. The skeleton_key token specified by the verb
determines the following characteristics of the generated key-pair:

¢ The key type: RSA

¢ The RSA key length (modulus size)

¢ The RSA public key exponent, valued to 3, 216+1, or random

¢ Any RSA private key optimization (modulus-exponent vs. “Chinese
Remainder” form).

The skeleton_key token can be created using the PKA_Key_Token_Build verb.

The key is normally randomly generated. By providing “regeneration data,” a
seed can be derived so that the same value of the generated key can be
obtained in multiple instances. This may be useful in testing situations or where
the regeneration data can be securely held for key generation. The process for
generating a particular private key from regeneration data may vary between
product implementations, therefore you should not rely on obtaining the same
private key for a given regeneration data string between products.

The generated private key can be returned in one of three forms:

¢ In cleartext form

¢ Enciphered by the master key of the local node

e Enciphered by a transport key, either a DES IMPORTER or DES
EXPORTER Key-Encrypting Key. If the private key is enciphered by an
IMPORTER key, it can be imported to the generating node. If the private
key is enciphered by an EXPORTER key, it can be imported to a node
where the matching IMPORTER key is installed.

¢ Not all IBM implementations of PKA96 verbs may support an optimized form
of the RSA private key; check the product-specific literature. The Fortress
product family implementation of PKA96 supports an optimized RSA private
key (a key in “Chinese Remainder” form).

¢ When the private key is enciphered for use at another node, determine that
the control vector values used with the transport key are compatible with
permissible control vector values at the receiving node.

Format

Parameters

CSNDPKG

PKA_Key Generate

return_code

reason_code
exit_data_length

exit_data

rule_array count
rule_array
regeneration_data_length
regeneration_data
skeleton_key token_length
skeleton_key_token
transport_key_identifier
generated_key _identifier_length
generated_key _identifier

Output
Output
Input
Input
Input
Input
Input
Input
Input
Input
Input
In/Out
In/Out

generated_key _identifier_length bytes

Integer
Integer
Integer
String
Integer
String array
Integer
String
Integer
String
String

String

exit_data_length bytes
rule_array_count * 8 bytes
regeneration_data_length bytes

skeleton_key_token_length bytes

Integer

For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

rule_array_count

The rule_array count parameter is a pointer to an integer containing the
number of elements in the rule array. The value of the rule_array count
must be one for this verb.

rule_array

The rule_array parameter is a pointer to an array of keywords. The
keywords are eight bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords

are shown below:

Figure 3-3. PKA_Key_ GenerateRule_Array Keywords

Keyword

Meaning

Private Key Encryption (One keyword required)

MASTER The private key should be enciphered under the master
key. The transport_key_token should specify a null
key_token.

XPORT The private key should be enciphered under the key
identified by the transport_key token parameter.

CLEAR The private key is returned in cleartext.

regeneration_data_length

The regeneration_data _length parameter is a pointer to an integer variable
containing the length (in bytes) of the regeneration data. This must be a
value of zero, or in the range 8 to 256. If the value is zero, the generated
keys will be based on a random seed value. If this value is between 8 and
256, the regeneration data will be hashed to form a seed value used in the
key generation process to provide a means for recreating a public-private

key pair.

regeneration_data

The regeneration_data parameter is a pointer to a string variable containing
a string used as the basis for creating a particular public-private key pair in a
repeatable manner. The regeneration data will be hashed to form a seed

Chapter 3. RSA Key Administration ~ 3-7

PKA_Key_ Generate

Required Commands

The PKA_Key_ Generate verb requires the PKA key generate command (offset
X'0103') to be enabled in the hardware.

3-8

IBM 4758 CCA Services

value used in the key generation process and provides a means for
recreating a public-private key pair.

skeleton_key_token_length

The skeleton_key token_length parameter is a pointer to an integer variable
containing at least the length (in bytes) of the field containing the
skeleton_key token. The maximum size is 2500 bytes.

skeleton_key_token

The skeleton_key token parameter is a pointer to a string containing a
skeleton_key token. This information provides the characteristics for the
PKA key-pair to be generated. A skeleton_key token can be created using
the PKA_Key Token_Build verb.

Transport_key _identifier

The transport_key _identifier parameter is a pointer to a string containing an
internal Key-Encrypting Key token or a key label of an internal
Key-Encrypting Key token, or a null key token. If the rule_array keyword is
not XPORT, this parameter should point to a null key token. Otherwise, the
specified key enciphers the private key and can be an IMPORTER or an
EXPORTER key type. Use an IMPORTER key to encipher a private key to
be used at this node. Use an EXPORTER key to encipher a private key to
be used at another node.

Generated_key _identifier_length

The generated_key _identifier_length parameter is a pointer to an integer
variable containing at least the length (in bytes) of the field containing the
target private key token or key label. The maximum size is 2500 bytes. On
output, and if the field size is of sufficient length, the variable is updated with
the actual length of the generated key token.

Generated_key _identifier

The generated _key _identifier parameter is a pointer to a string variable
containing either a key label identifying a key storage record, or is other
information that will be overwritten. If the key label identifies a key record in
key storage, the generated key token will replace any key token associated
with the label. If the first byte of the identified string did not indicate a key
label (not in the range X'20' to X'FE"'), and the field is of sufficient length
to receive the result, then the generated key token will be returned in the
identified field.

PKA_Key_ Import

PKA_ Key Impor t (CSNDPKI)

Platform/ 0Ss/2 AlX NT 0OS/400 MVS Verb Subset
Product
Fortress X X X PKA96

Restrictions

Format

The PKA_Key_Import verb is used to import a public-private key-pair or a
public-only key. When a private key is present, the associated public key must
be present also. A source private key may be in the clear or it may be

enciphered.

Generally, the PKA_Key Generate verb will be the source of the key token
imported with this verb. The PKA Key Token_Build verb may be helpful in
creating the source_key token if the key originates in a non-CCA system.

If the source private key is enciphered, the verb will decipher the private key
using the DES IMPORTER key identified by the transport_key_identifier.

The imported keys are returned in the target_key token. A public-private
key-pair is returned in an internal key_token with the private key enciphered by
the master key. If only a public key is imported, the key is returned in an

external key_token.

¢ Not all IBM implementations of PKA96 verbs may support an optimized form
of the RSA private key; check the product-specific literature. The Fortress
product family implementation of PKA96 supports an optimized RSA private
key (a key in “Chinese Remainder” form).

¢ Not all IBM implementations of this verb support the use of a key label with
the target key identifier; check the product-specific literature.

CSNDPKI

return_code
reason_code
exit_data_length
exit_data
rule_array_count
rule_array

source_key token_length
source_key_token
transport_key _identifier
target_key _identifier_length
target_key _identifier

Input
Input
Input
Inp/Outp
Input
Input
Input
Input
Input
In/Out
In/Out

Integer
Integer
Integer
String
Integer
String array
Integer
String
String
Integer
String

exit_data_length bytes

rule_array_count * 8 bytes

source_key_token_length bytes

target_key_identifier_length
bytes

Chapter 3. RSA Key Administration ~ 3-9

PKA_Key_Import

Parameters

For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

rule_array_count
The rule_array count parameter is a pointer to an integer containing the
number of elements in the rule array. The value of the rule_array count
must be zero for this verb.

rule_array

The rule_array parameter is not presently used in this service, but must be
specified.

source_key token_length
The source_key_token_length parameter is a pointer to an integer variable
containing the length (in bytes) of the field that contains the source key
token. The maximum length is 2500 bytes.

source_key token
The source _key token parameter is a pointer to a string variable containing
a PKA96 key token. The key token must contain both public and private
RSA key information. The private key can be in cleartext or it can be
enciphered.

transport_key_identifier
The transport_key _identifier parameter is a pointer to a string variable
containing either a key encrypting key token or a key label of a key
encrypting key token, or a null key token. This key will be used to decipher
an encrypted private key; the designated DES key must be an IMPORTER
key type with IMPORT capability enabled in its control vector.

If the source key is not encrypted, a null key token must be specified (the
first byte of the key token must be X'00").

target_key_identifier_length
The target_key identifier_length parameter is a pointer to an integer variable
containing the length (in bytes) of the field containing the target key token or
key label. The maximum length is 2500 bytes. On output, the identified
variable will be updated with the actual length of the token.

target_key _identifier
The target _key identifier parameter is a pointer to a string variable
containing either a key label identifying a key storage record, is a null token
(the first byte is X'00'"), or an existing key token. The key label, null key
token, or existing key token is overwritten with the imported key.

Required Commands

The PKA_Key_Import verb requires the PKA key import command (offset
X'0104') to be enabled in the hardware.

3-10 IBM 4758 CCA Services

PKA_Key_ Token_Build

PKA Key Token_ Buil d (CSNDPKB)

Platform/ 0Ss/2 AIX NT 0S/400 MVS Verb Subset
Product
Fortress X X X PKA96
The PKA_Key Token_Build verb constructs an RSA PKA96 key token from the
information supplied.
This verb is used to create the following:
¢ A skeleton_key token for use with the PKA Key Generate verb
¢ A key token with a public key that has been obtained from another node or
source
¢ A key token with a clear private key and the associated public key if the
key-pair is supplied in this form
These key tokens support the following keys:
e 512 to 1024-bit modular-exponentiation format
e 512 to 2048-bit Chineese-remainder format.
“RSA Key Token Formats” on page B-5 provides the format and content of a
PKA96 token for both types of RSA keys. Other than a skeleton_key_token
prepared for use with the PKA_Key_Generate verb, every PKA96 token contains
public-key information. A PKA96 token can contain private-key information also.
Some implementations may provide special processing for RSA private keys that
can be used for distribution of symmetric keys. If an RSA private key will be
used to export or import a symmetric key, include the KEY-MGMT keyword in
the rule_array.
Restrictions

¢ The RSA key length is limited to 512 to 2048-hits.

e A key name can be provided only for a key token containing a private key.

Chapter 3. RSA Key Administration 3-11

PKA_Key_ Token_Build

Format

Parameters

CSNDPKB

return_code Input Integer

reason_code Input Integer

exit_data_length Input Integer

exit_data Inp/Outp String exit_data_length bytes

rule_array _count Input Integer

rule_array Input String array rule_array_count * 8 bytes

key values_structure_length Input Integer

key values_structure Input String key values_structure_length
bytes

key _name_length Input Integer

key_name Input String null

reserved_1_length Input Integer

reserved_1 Input String null

reserved_2_length Input Integer

reserved_2 Input String null

reserved_3_length Input Integer

reserved_3 Input String null

reserved_4_length Input Integer

reserved_4 Input String null

reserved_5_length Input Integer

reserved_5 Input String null

token_length In/out Integer

token Output String token_length bytes

For the definitions of the return_code, reason _code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

rule_array_count
The rule_array count parameter is a pointer to an integer containing the
number of elements in the rule array. The value of the rule_array count
must be one or two for this verb.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords
are shown below:

Figure 3-4 (Page 1 of 2). PKA_Key_Token Build Rule_Array Keywords

Keyword Meaning

Required Keyword (One Required)

RSA-PRIV Create a key token for an RSA private key in
modulus-exponent form.

RSA-PUBL Create a key token for an RSA public key in

modulus-exponent form.

RSA-OPT Create a key token for an RSA key in optimized,
Chinese-Remainder form.

RSA Key Usage Control (Select one, optional)

SIG-ONLY Indicates that an RSA private key can not be used in
symmetric key distribution. This is the default.

3-12 IBM 4758 CCA Services

PKA_Key_ Token_Build

Figure 3-4 (Page 2 of 2). PKA _Key Token Build Rule_Array Keywords

Keyword Meaning

KEY-MGMT Indicates that an RSA private key can be used in
distribution of symmetric keys, and in digital signature
services.

key values_structure_length
The key values_structure length parameter is a pointer to an integer
variable containing the length (in bytes) of the structure that contains the key
values. The maximum size of the key Values_structure variable is
2500-bytes.

key_values_structure
The key values_structure parameter is a pointer to a string that is a
structure containing the lengths and data for the components of the key or
keys. The contents of this structure is shown in Figure 3-5, and sample
data is described on page 3-16.

Figure 3-5 (Page 1 of 3). PKA_Key Token_ Build Key Values Structures

Offset Length Description
(Bytes) (Bytes)

RSA Key Values Structure, modulus-exponent form (RSA-PRIV or RSA-PUBL)
000 002 Length of the modulus in bits (512 to 2048)

002 002 Length of the modulus field, n, in bytes, “nnn.” This value must not
exceed 256 for a 2048-bit key.

This value should be zero when preparing a skeleton key token for
use with the PKA_Key_Generate verb.

004 002 Public exponent field length in bytes, “eee.”

This value should be zero when preparing a skeleton key token to
generate a random-exponent public key in the PKA_Key_Generate
verb. This value must not exceed 256.

006 002 Private exponent field length in bytes, “ddd.” This value can be zero
indicating that private key information is not provided. This value
must not exceed 256.

008 nnn Modulus, n, integer value, 1<n<22048; n=pq for prime p and prime q.

8+nnn eee Public exponent, e, integer value, 1<e<n, e must be odd. When you
are building a skeleton_key_token to control the generation of an
RSA key pair, the public key exponent can be one of three velues:
3, 65537 (216+1), or to O (zero) to indicate that a full random
exponent should be generated. The exponent field can be a
null-length field in a skeleton_key_token.

8+nnn ddd Private exponent, d, integer value, 1<d<n, d=e-Imod(p-1)(g-1).
+eee

Note:

¢ All length fields are in binary.
¢ All binary fields (exponents, lengths, etc.) are stored with the high order byte first (left,
low-address, S/390 format).

Chapter 3. RSA Key Administration 3-13

PKA_Key_ Token_Build

3-14

IBM 4758 CCA Services

Figure 3-5 (Page 2 of 3). PKA_Key Token Build Key Values Structures

Offset Length Description

(Bytes) (Bytes)

Optimized RSA Key Values Structure, Chinese Remainder form (RSA-OPT)

000 002 Length of the modulus in bits (512 to 2048)

002 002 Length of the modulus field, n, in bytes, “nnn.”
This value can be zero if the key token will be used as a
skeleton_key_token in the PKA_Key_Generate verb.
This value must not exceed 256.

004 002 Length of the public exponent, e, in bytes: “eee.” (Can be zero in a
skeleton_key_token.)

006 002 Length of the prime number, p, in bytes: “ppp.” (Can be zero in a
skeleton_key_token.)

008 002 Length of the prime number, g, in bytes: “ggq.” (Can be zero in a
skeleton_key_token.)

010 002 Length of the dp, in bytes: “rrr.” (Can be zero in a
skeleton_key_token.)

012 002 Length of the dq, in bytes: “sss.” (Can be zero in a
skeleton_key_token.)

014 002 Length of the Ap: in bytes: “ttt.” (Can be zero in a
skeleton_key_token.)

016 002 Length of the Aq, in bytes: “uuu.” (Can be zero in a
skeleton_key_token.)

018 nnn Modulus, n

018 eee Public exponent, e, integer value, 1<e<n, e must be odd.

nnn When you are building a skeleton_key_token to control the
generation of an RSA key pair, the public key exponent can one of
the following values: 3, 65537 (216+1), or 0 (zero) to indicate that a
full random exponent should be generated. The exponent field can
be a null-length field if the exponent value is zero.

018 ppp Prime number, p

+nnn

+eee

018 qqq Prime number, g

+nnn

+eee

+ppp

018 rrr dp = d mod(p-1)

+nnn

+eee

+ppp

+0qq

Note:

¢ All length fields are in binary.
¢ All binary fields (exponents, lengths, etc.) are stored with the high order byte first (left,
low-address, S/390 format).

PKA_Key_ Token_Build

Figure 3-5 (Page 3 of 3). PKA_Key Token Build Key Values Structures

Offset Length Description
(Bytes) (Bytes)

018 SSS dq =d mod(g-1)
+nnn
+eee
+ppp

+qqq
+rrr

018 ttt Ap = gpP-1 mod(n)
+nnn
+eee
+ppp

+qqq
+rrr

+SSS

018 uuu Aq = (n+1-Ap)
+nnn
+eee
+ppp

+qqq
+rrr

+SSS
+tt

Note:

¢ All length fields are in binary.
¢ All binary fields (exponents, lengths, etc.) are stored with the high order byte first (left,
low-address, S/390 format).

key name_length
The key_name_length parameter is a pointer to an integer variable
containing the length (in bytes) of the field containing the optional
key name. If this variable contains zero, the key name section is not
included in the target token. If a key name is to be included, the variable
must contain 64. A key name is permissible only in a key token that
contains a private key.

key_name
The key name parameter is a pointer to a string variable containing the
key name. The key name can consist of the characters A...Z, 0...9, #, $,
@, or period (.), and must begin with an alphabetic character.

reserved_x_length(s)
The reserved_x_length parameter is a pointer to an integer variable
containing the length (in bytes) of a field that is reserved for future use; the
variable should contain zero.

reserved_x
The reserved_x parameter is a pointer to a string variable. At present, this
variable is reserved for future use and this parameter should contain a
pointer to a null string.

token_length
The token_length parameter is a pointer to an integer variable containing the
length (in bytes) of the token field. On output, the length is the length of
token returned in the token field. The maximum length is 2500 bytes.

Chapter 3. RSA Key Administration 3-15

PKA_Key_ Token_Build

Token
The token parameter is a pointer to a string variable to contain the

assembled token.

Related Information
Three samples for the key value structure are shown below:

1. The key_value structure for a 1024-bit RSA-PRIV skeleton key token with a
public exponent value of 216+1 for use with the PKA_Key Generate verb:

e Expressed as a series of numbers: 1024, 0, 3, 0, [null], 65537, [null]
e Expressed as a hexadecimal string: X'0400 0000 0003 0000 010001'

2. The key_values structure for a 512-bit RSA-OPT skeleton key token with a
public exponent value of 216+1 for use with the PKA_Key Generate verb:

e Expressed as a series of numbers:
512, 0, 3, 0, 0, 0, 0, O, O, [null], 65537, [null], [null], [null],
[null], [null], [null]

e Expressed as a hexadecimal string:
X'0200 0000 0003 0000 0000 0000 0000 0000 0000 010001

3. The key_values structure to create a PKA96 RSA key token with a public
exponent value of 216+1 and a provided 1024-bit public key value:

e Expressed as a series of numbers: 1024, 128, 3, 0, n, 010001, [null]
e Expressed as a hexadecimal value:
e X'0400 0080 0003 0000 nnnn...nnnn 010001’

Where X'nnnn...nnnn"' represents the 128-byte modulus bit-string
expressed in hexadecimal.

Note: All values in the key values structure must be stored in “big endian”
format to ensure compatibility among different computing platforms. “big
endian” format specifies the high-order byte be stored at the low address

in the field.

Data stored by Intel architecture processors is normally stored in “little
endian” format. “Little endian” format specifies the low-order byte be
stored in the low address in the field.

Required Commands
None.

3-16 IBM 4758 CCA Services

PKA_Key_ Token_Change

PKA_ Key Token_Chang e (CSNDKTC)

Platform/ 0Ss/2 AlX NT 0OS/400 Verb Subset
Product
Fortress X X X PKA96

Restrictions

Format

Parameters

The PKA_Key Token_Change verb changes RSA keys from encipherment with
the old master key to encipherment with the current master key. You identify
the task with the rule array keyword, and the internal key token to change with

the key identifier parameter.

Note:
verb used with DES key tokens.

This verb is similar in function to the CSNBKTC Key_Token_Change

Certain implementations of CCA may not support this verb.

CSNDKTC

return_code Input
reason_code Input
exit_data_length Input
exit_data Inp/Outp
rule_array_count Input
rule_array Input
key_identifier_length In/Out
key_identifier In/Out

Integer
Integer
Integer
String
Integer
String array
Integer
String

exit_data_length bytes
rule_array_count * 8 bytes

key_identifier_length bytes

For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

rule_array_count

The rule_array count parameter is a pointer to an integer containing the
number of elements in the rule array. The value of the rule_array count

must be one for this verb.

rule_array

The rule_array parameter is a pointer to an array of keywords. The
keywords are eight bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords

are shown below:

Figure 3-6 (Page 1 of 2). PKA Key Token_Change Rule_Array Keywords

Keyword Meaning

Required Keyword

Chapter 3. RSA Key Administration 3-17

PKA_Key_Token_Change

Figure 3-6 (Page 2 of 2). PKA _Key Token_Change Rule_Array Keywords

Keyword

Meaning

RTCMK

Changes an RSA key in application data storage from
encipherment with the old master key to encipherment with
the current master key.

Notes:
1. In an OS/2 or an AIX environment, the master key
verification pattern (MKVP) is examined to determine if
the key can be re-enciphered.

¢ If the key is enciphered by the current master key,
the key will not be re-enciphered. The return code
is 0.

¢ If the key is enciphered by the old master key, the
key will be re-enciphered. The return code is 0.

¢ In all other cases the key token is considered not
valid and the key is not re-enciphered. The return
code, reason code will be 8, 48.

key_identifier_length

The key _identifier_length parameter is a pointer to an integer containing the
length in bytes of the field that contains the key token or key label. On
output, the length is the length of token returned in the updated

key identifier field a key token (not a key label) was specified. The
maximum size length is 2500 bytes.

Key_ldentifier

The key _identifier parameter is a pointer to a string variable containing an
internal key token or a key label of an internal key token record in key
storage. The key within the token is securely re-enciphered under the

current master key.

Required Commands

When you specify the re-encipher option, the PKA_ Key Token_Change verb
requires the Token Change command (offset X'0102"') to be enabled in the

hardware.

3-18 IBM 4758 CCA Services

PKA_Public_Key Extract

PKA Public_Key Extrac t (CSNDPKX)

Platform/ 0Ss/2 AlX NT 0OS/400 MVS Verb Subset
Product
Fortress X X X PKA96

Restrictions

Format

Parameters

The PKA_Public_Key_ Extract verb is used to extract a public key from a
public-private key-pair. The public key is returned in a PKA public key token.

Both the public key and the related private key must be present in the source
key token. The source private key may be in the clear or may be enciphered.

None

The entry point name and the parameters for this verb are shown in the
following table:

CSNDPKX

return_code Input Integer

reason_code Input Integer

exit_data_length Input Integer

exit_data Inp/Outp String exit_data_length bytes

rule_array _count Input Integer

rule_array Input String array rule_array_count * 8 bytes

source_key _identifier_length Input Integer

source_key _identifier Input String source_key _identifier_length
bytes

target_key token_length In/out Integer

target_key token Output String target_key_token_length bytes

For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

rule_array_count
The rule_array _count parameter is a pointer to an integer that contains the
number of elements in the rule array. The value of the rule_array count
must be zero (no rule array is currently used in this verb).

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array parameter is
not presently used by this verb, but must be specified as a parameter.

source_key identifier_length
The source_key identifier_length parameter is a pointer to an integer
variable containing the length (in bytes) of the field that contains the source
key identifier. The maximum size that should be specified is 2500 bytes.

Chapter 3. RSA Key Administration 3-19

PKA_Public_Key Extract

source_key_identifier
The source_key_identifier parameter is a pointer to a string varaiable
containing either a key label identifying a key storage record or is a PKA96
key token.

target_key_token
The target _key identifier parameter is a pointer to a string variable to
receive the PKA96 public key token.

Required Commands
None

3-20 IBM 4758 CCA Services

Chapter 4. Hashing and Digital Signatures

Figure 4-1. Hashing and Digital Signature Services

Verb Page | Service Entry Svc
Point Len
Digital_Signature_Generate 4-4 This verb generates a digital signature. CSNDDSG E
Digital_Signature_Verify 4-7 This verb verifies a digital signature. CSNDDSV E
One_Way_Hash 4-10 This verb generates a hash using either the SHA-1 or the CSNBOWH S
MD5 one-way hashing functions.

Svc Len: Service location: E: Cryptographic engine, S: Security API software

This chapter discusses the data hashing and the digital signature techniques
you can use to determine data integrity. A digital signature may also be used to
establish the non-repudiation security property. (Another approach to data
integrity based on message authentication codes is discussed in Chapter 6,
“Data Confidentiality and Data Integrity.”)

¢ Data integrity and data authentication techniques enable you to determine
that a data object (a string of bytes) has not been altered from some known
state.

¢ Non-repudiation permits you to assert that the originator of a digital
signature may not later deny having created the digital signature.

This section explains how to determine the integrity of data. Determining data
integrity involves determining whether individual values of a string of bytes have
been altered. Two techniques are described:

¢ Hashing
¢ Digital signatures

Digital signatures uses both hashing and public-key cryptography.

Hashing

© Copyright IBM Corp. 1997

Data hashing functions have long been used to determine the integrity of a block
of data. The application of a hash function to a data string produces a new
quantity called a hash value. Many different strings supplied to a given hashing
function will produce the same hash value, but because the hash value is a
large number, collisions (two stings that hash to the same value) are rare.

Hash functions for data integrity applications have a one-way property: given a
hash value, it is not likely that a second data string can be found that will hash
to the same value as the original. Consequently, if a hash value for a string is
known, you can compute the hash value for another string suspected to be the
same and compare the two. If both hash values are identical, there is a very
high probability that the strings producing them are identical.

The CAA products support the following hash functions:

Secure Hash Algorithm -1 (SHA-1) The SHA-1 is defined in FIPS 180-1 and
produces a 20-byte, 160-bit hash value. The algorithm performs best on
big-endian, general purpose computers. This algorithm is usually preferred
over MD?5 if the application designers have a choice of algorithms. SHA-1 is
also specified for use with the DSS digital signature standard.

Message Digest -5 (MD5) MD5 is specified in the Internet Engineering Task
Force RFC 1321 and produces a 16-byte, 128-bit hash value. This algorithm
performs best on little-endian (e.g. Intel), general purpose computers.

There are many different approaches to data integrity verification. In some
cases, you can simply make known the hash value for a data string. Anyone
wishing to verify the integrity of the data would recompute the hash value and
compare the result to the known-to-be-correct hash value.

In other cases, you might want someone to prove to you that they possess a
specific data string. In this case, you could randomly generate a challenge
string, append the challenge string to the string in question, and hash the result.
You would then provide the other party with the challenge string, ask them to
perform the same hashing process, and return the hash value to you. This
method forces the other party to re-hash the data. When the two hash values
are the same you can be confidant that the strings are the same, and the other
party actually possesses the data string, and not merely a hash value.

The hashing services described in this chapter allow you to divide a string of
data into parts, and compute the hash value for the entire string in a series of
calls to the appropriate verb. This can be useful if it is inconvenient or
impossible to bring the entire string into memory at one time.

Digita | Signatures

4-2

IBM 4758 CCA Services

You can protect data from undetected modification by including a
proof-of-data-integrity value. This proof of data integrity value is called a digital
signature, and relies on hashing (see “Hashing” above) and public-key

cryptography.

When you wish to sign some data you can produce a digital signature by
hashing the data and encrypting the results of the hash (the hash value) using
your private key. The encrypted hash value is called a digital signature.

Anyone with access to your public key can verify your information as follows:

1. Hash the data using the same hashing algorithm that you used to create the
digital signature.

2. Decrypt the digital signature using your public key.

3. Compare the decrypted results to the hash value obtained from hashing the
data.

An equal comparison confirms that the data they possess is the same as that
which you signed. The Digital_Signature_Generate and the
Digital_Signature_Verity verbs described in this chapter perform the hash
encrypting and decrypting operations. Their requirements are as follows:

¢ No one else may have access to your private key, and the use of the key
must be controlled so that someone else can not sign data as though they
were you.

¢ The other party must have your public key. They assure themselves that
they do have your public key through the use of one-or-more certificates
from one-or-more Certification Authorities.

Note: The verification of public keys also involves the use of digital
signatures; however, this subject is outside the scope of this manual.

¢ The value that is encrypted and decrypted using RSA public-key technology
must be the same length in bits as the modulus of the keys. This bit-length
is normally 512, 768, 1024, or 2048. Since the hash value is either 128 or
160 bits in length, some process for formatting the hash into a structure for
RSA encrypting must be selected.

Unlike the DES algorithm, the strength of the RSA algorithm is sensitive to
the characteristics of the data being encrypted. The digital signature verbs
(Verify and Generate) support several different hash-value-formatting
approaches. The rule array keywords for the digital signature verbs contain
brief descriptions of these formatting approaches.

The receiver of data signed using digital signature techniques can, in some
cases, gain non-repudiation of the data. The use of digital signatures in
legally-binding situations is gaining favor as commerce is increasingly conducted
through networked communications. The techniques described in this chapter
support the most common methods of digital signing currently in use.

Note: Non-repudiation means that the originator of the digital signature can not
later deny having originated the signature, and therefore, the data.

Chapter 4. Hashing and Digital Signatures ~ 4-3

Digital_Signature_Generate

Digital_Signature_Generat e (CSNDDSG)

Platform/ DOS 0S/2 AIX 0S/400 MVS Service
Product Group
Fortress X X PKA96

The Digital_Signature_Generate verb is used to generate a digital signature.
The hash quantity may be created by the One_Way Hash or the

MDC_Generate verbs.

When an RSA private key is specified (using the PKA key token), the hash
formatting method is selected through keywords in the rule_array. The
formatted information is then ciphered to obtain the digital signature.

Restrictions

¢ Not all IBM implementations of this verb may support an optimized form of
the RSA private key, however, the Fortress product family implementation of
this verb does support an optimized RSA private key (“Chinese Remainder”

form).

Format

CSNDDSG

return_code Input Integer

reason_code Input Integer

exit_data_length Input Integer

exit_data Inp/Outp String exit_data_length bytes

rule_array_count Input Integer

rule_array Input String array rule_array_count * 8 bytes

PKA_private_key _identifier_length Input Integer

PKA_private_key _identifier Input String PKA_private_key_identifier_length

bytes

hash_length Input Integer

hash Input String hash_length bytes

signature_field_length Inp/Outp Integer

signature_bit_length Output Integer

signature_field Output String signature_field_length bytes
Parameters

4-4

For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

rule_array_count

The rule_array _count parameter is a pointer to an integer containing the
number of elements in the rule_array variable. The value of the
rule_array count must be zero or one for this verb.

rule_array

The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords

are shown below:

IBM 4758 CCA Services

Digital_Signature_Generate

Figure 4-2. Digital_Signature_Generate Rule_Array Keywords

Keyword Meaning

RSA-based Digital Signature Hash Formatting Controls

ISO-9796 Format the hash according to the 1ISO 9796 standard and
generate the digital signature. This is the default.

PKCS-1.0 Calculate the digital signature on the string supplied in the
hash variable as specified in the RSA Data Security, Inc.,
Public Key Cryptography Standards #1 block type 00

PKCS-1.1 Calculate the digital signature on the string supplied in the
hash variable as specified in the RSA Data Security, Inc.,
Public Key Cryptography Standards #1 block type 01

ZERO-PAD Extend the hash by padding on the left with binary zero
bits to obtain a bit field with the same length as that of the
modulus; cipher the result to obtain the digital signature

Notes:

1. The hash for PKCS-1.0 and PKCS-1.1 should have been created using
MD5 or SHA-1 algorithms.

2. The hash for ZERO-PAD can be obtained by any hashing method.

PKA_private_key identifier_length
The PKA_private_key _identifier_length parameter points to an integer
variable containing the length (in bytes) of the field containing the
public-private key token or key label. The maximum length is 2500 bytes.

PKA private_key identifier
The PKA private_key identifier is a pointer to a string variable containing
either a key label identifying a key storage record or an internal
public-private PKA96 key token.

hash_length
The hash_length parameter is a pointer to an integer variable containing the
length (in bytes) of the hash variable.

hash
The hash parameter is a pointer to a string variable containing the
information to be signed.

Notes:

1. For ISO-9796, the information identified by the hash parameter must be
less-than-or-equal-to one-half of the number of bytes required to contain
the modulus of the RSA key. Although 1ISO-9796 allows messages of
arbitrary bit length up to one-half of the modulus length, this verb
requires the input text to be a byte-multiple to the correct maximum.

Chapter 4. Hashing and Digital Signatures ~ 4-5

Digital_Signature_Generate

2. For PKCS-1.0 or PKCS-1.1, the information identified by the hash
parameter must be 11 bytes shorter than the number of bytes required
to contain the modulus of the RSA key, and should be the ANS.1 BER
encoding of the hash value.

You can create the BER encoding of an MD5 or SHA-1 value by
prepending these strings to the 16 or 20-byte hash values, respectively:

MD5 X'3020300C 06082A86 4886F70D 02050500 0410
SHA-1 X'30213009 06052BOE 03021A05 000414

3. For ZERO-PAD, the information identified by the hash parameter must
be shorter-than-or-equal-to the number of bytes required to contain the
modulus of the RSA key.

signature_field_length
The signature_field length parameter is a pointer to an integer variable
containing the length (in bytes) of the field to contain the digital signature.
On output, the variable is the actual length of the digital signature. The
maximum length is 256 bytes.

signature_bit_length
The signature_bit_length is a pointer to an integer variable containing the
length (in bits) of the digital signature.

signature_field
The signature_field parameter is a pointer to the field where the digital
signature is to be stored. Unused bytes at the right of the field are
undefined and should be ignored. The digital signature bit field is in the
low-order bits of the byte string containing the digital signature.

Required Commands

The Digital_Signature_Generate verb requires the Digital Signature Generate
command (offset X'0100') to be enabled in the hardware.

4-6 IBM 4758 CCA Services

Digital_Signature_Verify

Digital_Signature_Verif y (CSNDDSV)

Platform/ DOS 0S/2 AIX NT 0S/400 MVS Service
Product Group
Fortress X X X PKA96

Restrictions

Format

Parameters

The Digital_Signature_Verify verb is used to verify a digital signature.

Provide the digital signature, the public key (in a key token), and the hash of the
data to be validated. The hash quantity may be created through use of the
One_Way_ Hash or the MDC_Generate verbs.

The supplied hash information is formatted and compared to the public-key
ciphered digital signature. The validation of the digital signature is returned as
return code and reason code values.

The hash formatting method is selected through keywords in the rule_array.

CSNDDSV

return_code

reason_code

exit_data_length

exit_data

rule_array _count

rule_array

PKA_public_key _identifier_length
PKA_public_key _identifier

hash_length

hash
signature_field_length
signature_field

Input
Input
Input
Inp/Outp
Input
Input
Input
Input

Input
Input
Input
Input

Integer
Integer
Integer
String
Integer
String array
Integer
String

Integer
String
Integer
String

exit_data_length bytes
rule_array_count * 8 bytes

PKA_public_key_identifier_length
bytes

hash_length bytes

signature_field_length bytes

For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

Rule_array_count

The rule_array countis a pointer to an integer that contains the number of
elements in the rule array. The value of the rule_array count must be zero

or one for this verb.

Rule_array

The rule_array is a pointer to an array of keywords. The keywords are eight
bytes in length, and must be uppercase, left-justified, and padded on the
right with space characters. The rule_array keywords are shown below:

Chapter 4. Hashing and Digital Signatures

4-7

Digital_Signature_Verify

Figure 4-3. Digital_Signature_Verify Rule_Array Keywords

Keyword Meaning

RSA-based Digital Signature Hash Formatting Controls

ISO-9796 Format the hash according to the 1ISO 9796 standard and
generate the digital signature. This is the default.

PKCS-1.0 Calculate the digital signature on the string supplied in the
hash variable as specified in the RSA Data Security, Inc.,
Public Key Cryptography Standards #1 block type 00

PKCS-1.1 Calculate the digital signature on the string supplied in the
hash variable as specified in the RSA Data Security, Inc.,
Public Key Cryptography Standards #1 block type 01

ZERO-PAD Extend the hash by padding on the left with binary zero
bits to obtain a bit field with the same length as that of the
modulus; cipher the result to obtain the digital signature

Notes:

1. The hash for PKCS-1.0 and PKCS-1.1 should have been created using
MD5 or SHA-1 algorithms.

2. The hash for ZERO-PAD can be obtained by any hashing method.

PKA_public_key identifier_length
The PKA_public_key _identifier_length parameter is a pointer to an integer
variable containing the length (in bytes) of the field containing the public key
token or key label. The maximum length is 2500 bytes.

PKA_ public_key identifier
The PKA public_key identifier parmaeter is a pointer to a string variable
containing either a key label identifying a key storage record, or a PKA96
key token.

hash_length
The hash_length is a pointer to an integer variable containing the length (in
bytes) of the hash variable.

hash
The hash parameter is a pointer to a string variable containing the hash
information to be verified.

Notes:

1. For ISO-9796, the information identified by the hash parameter must be
less-than-or-equal-to one-half of the number of bytes required to contain
the modulus of the RSA key. Though 1SO-9796 allows messages of
arbitrary bit length up to one half of the modulus length, this verb
requires the input text to be a byte-multiple up to the correct maximum.

IBM 4758 CCA Services

Digital_Signature_Verify

2. For PKCS-1.0 or PKCS-1.1, the information identified by the hash
parameter must be 11 bytes shorter than the number of bytes required
to contain the modulus of the RSA key, and should be the ANS.1 BER
encoding of the hash value.

You can create the BER encoding of an MD5 or SHA-1 value by
prepending these strings to the 16 or 20-byte hash values, respectively:

MD5 X'3020300C 06082A86 4886F70D 02050500 0410
SHA-1 X'30213009 06052BOE 03021A05 000414

3. For ZERO-PAD, the information identified by the hash parameter must
be shorter-than-or-equal-to the number of bytes required to contain the
modulus of the RSA key.

signature_field_length
The signature_field_length parameter is a pointer to an integer variable
containing the length, (in bytes) of the field containing the digital signature.

signature_field
The signature_field parameter is a pointer to a string variable containing the
digital signature. The digital signature bit field is in the low-order bits of the
byte string containing the digital signature.

Required Commands

The Digital_Signature_Verify verb requires the Digital Signature Verify command
(offset X'0101') to be enabled in the hardware.

Chapter 4. Hashing and Digital Signatures ~ 4-9

One_Way_ Hash

One_Way Hash (CSNBOWH)

Platform/ DOS 0S/2 AIX NT 0S/400 MVS Service
Product Group
Fortress X X X PKA96

The One_Way_Hash verb obtains a hash value from a text string using the MD5
or SHA-1 hashing method, as specified in the rule_array.

You can provide all of the data to be hashed in a single call to the verb, or you
can provide the data to be hashed using multiple calls. Keywords that you
supply in the rule_array to inform the verb of your intention.

Restrictions

If FIRST or MIDDLE calls are made, the text size must be a multiple of the
algorithm block size: 64 bytes for MD5 and SHA-1.

This verb requires that text to be hashed be a multiple of eight bits aligned in
bytes. Only data that is a byte multiple can be hashed. (These are not
requirements of the standards.)

Format
CSNBOWH
return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data Inp/Outp String exit_data_length bytes
rule_array_count Input Integer
rule_array Input String array rule_array_count * 8 bytes
text_length Input Integer
text Input String text_length bytes
chaining_vector_length Input Integer
chaining_vector Inp/Outp String chaining_vector_length bytes
hash_length Input Integer
hash Inp/Outp String hash_length bytes
Parameters

For the definitions of the return_code, reason _code, exit_data length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

rule_array_count
The rule_array count parameter is a pointer to an integer containing the
number of elements in the rule_array variable. The value of the
rule_array count must be one or two for this verb.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords
are shown below:

4-10 IBM 4758 CCA Services

One_Way_ Hash

Figure 4-4. One_Way_ Hash Rule_Array Keywords

Keyword Meaning

Hash Method (Required)

MD5 Specifies the use of the MD5 method
SHA-1 Specifies the use of the SHA-1 method.

Chaining Control (Optional)

FIRST Specifies the first in a series of calls to compute the hash;
intermediate results are stored in the hash variable.

MIDDLE Specifies this is not the first nor the last in a series of calls
to compute the hash; intermediate results are stored in the
hash variable.

LAST Specifies the last in a series of calls to compute the hash;
intermediate results are retrieved from the hash variable.
ONLY Specifies the only call made to compute the hash. This is
the default.
text_length

The text length parameter is a pointer to an integer variable containing the
length (in bytes) of the text field on which the hash is computed.

Note: If FIRST or MIDDLE calls are made, the text size must be a multiple
of the algorithm block size (64 bytes for MD5 or SHA-1).

text
The text parameter is a pointer to a string variable containing the data to be
hashed.

chaining_vector_length
The chaining_vector_length parameter is a pointer to an integer variable
containing the length (in bytes) of the chaining_vector field. The
chaining_vector field must be 128 bytes in length.

chaining_vector
The chaining_vector parameter is a pointer to a string variable used by the
verb as a work area. Application programs must not alter the contents of
this field between related FIRST, MIDDLE, and LAST calls.

hash_length
The hash_length parameter is a pointer to an integer variable containing the
length (in bytes) of the field where the hash is to be returned. This length
must be at least 16 bytes for MD5, and at least 20 bytes for SHA-1. The
maximum length is 128 bytes.

hash
The hash parameter is a pointer to a string variable that receives the hash
value. With use of the FIRST or MIDDLE keywords, the hash variable
receives intermediate results.

Chapter 4. Hashing and Digital Signatures ~ 4-11

One_Way_ Hash

Required Commands
None.

4-12 IBM 4758 CCA Services

Chapter 5. Basic CCA DES Key Management

Figure 5-1. Basic CCA DES Key Management Verbs

Verb Page | Service Entry Svc
Point Len
Clear_Key_Import 5-16 Enciphers a clear key under the master key, and updates CSNBCKI E

or creates an internal key token for a DATA key.

Data_Key_Export

5-18 Exports a DES data key and creates an external key token CSNBDKX E
that contains a null control vector.

Data_Key_Import 5-20 Imports a DES data key and creates an internal key token CSNBDKM E
for the key.
Key_Export 5-22 Exports a DES key and creates an external key token. CSNBKEX
Key_Generate 5-24 Generates a random DES key or DES key pair, enciphers CSNBKGN
the keys, and updates or creates internal or external key
tokens.
Key_Import 5-29 Imports a DES key or a key token, and updates an internal CSNBKIM E

key token . or creates an internal key token.

Key_Part_Import

5-31 Combines clear key parts, enciphers the key, and updates CSNBKPI E
an internal key token.

Key_Test 5-33 Generates or verifies a verification pattern for keys and key CSNBKYT E
parts.

Key_Token_Build 5-36 Creates a DES key token from supplied information. CSNBKTB

Key_Token_Change 5-39 Re-encipher a DES key from the old master key to the CSNBKTC

current master key.

Key_Translate 5-41 Changes the encipherment of a key from one CSNBKTR E
key-encrypting key to another key-encrypting key.

Random_Number_Generate 5-43 Generates a random number. CSNBRNG

PKA_Symmetric_Key_Export 5-45 Exports a symmetric key under an RSA public key. CSNDSYX

PKA_Symmetric_Key_Import 5-47 Imports a symmetric key under an RSA private key. CSNDSYI

Svc Len: Service location: E=Cryptographic Engine, S=Security API software

This chapter describes verbs to perform basic CCA DES key management
functions.

The material is presented under these topics:

Understanding CCA DES Key Management

Control vectors, key types, and key usage restrictions

Key tokens, key labels, and key identifiers

Using the key processing and key storage verbs

Security precautions

Basic DES key management verbs in alphabetical order by verb name.

Understanding CCA DES Key Management

The DES algorithm operates on 64 data bits at a time (8 bytes of 8-bit-per-byte
data). The results produced by the algorithm are controlled by the value of a
key that you supply. Each byte of the key contains 7 bits of key information plus
a parity bit (the low-order bit in the byte). The parity bit is set so that there are

© Copyright IBM Corp. 1997

5-1

an odd number of one-bits for each key byte. The parity bits do not participate
in the DES algorithm.

The DES algorithm is not secret. However, by using a secret key, the algorithm
can produce ciphertext that is impossible (for all practical purposes) to decrypt
without knowing the secret key. The requirement to keep a key secret, and to
have the key available at specific place(s) and time(s), produces a set of
activities known collectively as key management.

Because the secrecy and reliability of DES-based cryptography is strongly
related to the secrecy, control, and use of DES keys, the following aspects of
key management are important:

e Securing a cryptographic facility or process. The hardware provides a
secure, tamper-resistant environment for performing cryptographic
operations and for storing cryptographic keys in the clear. The hardware
provides cryptographic functions as a set of commands that are selectively
enabled under different profiles. To activate a profile and enable different
hardware capabilities, users (programs or persons) must supply identification
and a password for verification. Using these hardware capabilities, you can
control the use of sensitive key management capabilities.

e Separating key types to restrict the use of each key. A user or a process
should be restricted to performing only the processes that are required to
accomplish a specific task; therefore, a key should be limited to a set of
functions in which it can be used. The cryptographic subsystem uses a
system of control vectors! to separate the cryptographic keys into a set of
key types and restrict the use of a key. The subsystem enforces the use of
a particular key type in each part of a cryptographic command. To control
the use of a key, the control vector is combined with the key that is used to
encipher the control vector's associated key. For example, a key that is
designated a key-encrypting key can not be employed in the decipher verb
so that it can not be used to decrypt keys as though they were data.

¢ Securely installing and verifying keys. Capabilities are provided for installing
keys, either in whole or in parts, and to determine the integrity of the key or
the key part to ensure the accurate and secure entry of key information.
The hardware commands and profiles allow you to enforce a
split-knowledge, dual-control security policy in the installation of keys from
clear information.

¢ Generating keys. The system can generate random clear and enciphered
keys. The key generation service creates an extensive set of key types for
use in both CCA subsystems and other DES-based systems. Keys can be
generated for local use and for distribution to remote nodes.

e Securely distributing keys manually and electronically. The system provides
for unidirectional key distribution channels and a key translation service.

1 A control vector is a logical extension of a key variant, which is a method of key separation that some other cryptographic systems
use.

5-2 IBM 4758 CCA Services

Your application program(s) should provide procedures to perform the following
key management activities:

¢ Generating and periodically replacing keys. A key should be used for a very
limited period of time. This can minimize the possibility of an adversary
determining the value of a key.

¢ Archiving keys.
¢ Destroying keys and media used to distribute keys.

¢ Auditing the key generation, distribution, installation, archiving, and
destruction processes.

¢ Reacting to unusual occurrences in the key management process.

e Creating management controls for key management.

Before a key is removed from a CCA cryptographic facility for storage in key
storage or in application data storage, the key is multiply-enciphered under a
master key or another key-encrypting key. The master key is a triple-length
DES key composed of three 56-bit DES keys. The key-encrypting keys are
double-length DES keys composed of two halves, each half being a 56-bit DES
key. While each part of a master key (each 56-bit component) is required to be
unigue from the other parts, the halves of a key-encrypting key can be the same
value. In the latter case, the key-encrypting key operates as though it was a
single-length, 56-bit, DES key.

A key that is multiply-enciphered under the master key is an operational key
(OP). The key is operational because a cryptographic facility can use the
master key to multiply-decipher it to obtain original key value. A key that is
multiply-enciphered under a key-encrypting key other than the master key is
called an external key. Two types of external keys are used at a cryptographic
node:

¢ An importable key (IM) is enciphered under an operational key-encrypting
key (KEK) whose control vector provides key importing authority.

¢ An exportable key (EX) is enciphered under an operational key-encrypting
key whose control vector provides key exporting authority.

Contro | Vectors

The CCA cryptographic commands form a complete, consistent, secure
command set that performs within tamper-resistant hardware. The cryptographic
commands use a set of distinct key types that provide a secure cryptographic
system that blocks many attacks that can be directed against it.

The products use a control vector to separate keys into distinct key types and to
further restrict the use of a key. A control vector is a non-secret value that is
contained in the key token for the key that is cryptographically associated with
the key.

A control vector is cryptographically associated with a key by being
exclusive-ORed with a master key or another key-encrypting key to form a key
that is used to multiply-encipher or multiply-decipher the key being associated
with the control vector. This permanently binds the type and use of the key to
the key and ensures the original control vector can not be changed. If the

Chapter 5. Basic CCA DES Key Management 5-3

control vector used to decipher a key is different from the control vector that was
used to encipher the same key, the correct clear key cannot be recovered. The
key-encipherment process is described in detail at “CCA Key Encryption and
Decryption Process” on page C-5.

After a key is multiply-enciphered, the originator of the key can ensure that the
intended use of the key is preserved by giving the key-encrypting key only to a
system that implements the CCA control vector design and that is managed by
an audited organization.

Key-encrypting keys in CCA are double-length keys. A double-length DES key
consists of two (single-length) 56-bit DES keys that are used together as one
key. The first half (left half) of a double-length key, and a single length key are
multiply-enciphered using the exclusive-OR of the encrypting key and the control
vector. The second half of a double length key is multiply enciphered using the
exclusive-OR of the encrypting key and a modification of the control vector; the
modification consists of the reversal of control vector bits 41 and 42.

Appendix C, “CCA Control Vector Definitions and Key Encryption” provides
detailed information about the construction of a control vector value

Checking a Control Vector Before Processing a Cryptographic
Command

5-4

IBM 4758 CCA Services

Before a cryptographic facility processes a command that uses a
multiply-enciphered key, the facility’s logic checks the control vector associated
with the key. The control vector must indicate a valid key type for the requested
command and any control vector restriction bits must be set appropriately for the
command. If the command permits use of the control vector, the cryptographic
facility multiply-deciphers the key and uses the key to process the command.
(Alteration of the control vector value to permit use of the key in the command
would result in recovery of a different, unpredictable key value.)

Figure 5-2 on page 5-5 shows the flow of cryptographic command processing in
a cryptographic facility.

Key Types

At the CCA API...

Verb-Call Key Token Data
Cryptographic Control Enciphered Data
Command Vector Key
Control
—(Vector -]
Checking,
Software
Tamper
Resistant Control
Cryptographic |——|Vector D
Facility Checking,
Hardware
v
Master Key—|Exclusive
(or KEK) —0R v
L————————» Multiply
Decipher
A\
Clear Key
Process
Result

Figure 5-2. Flow of Cryptographic Command Processing in a Cryptographic Facility

The CCA implementation in this product defines generic DES key types as
shown in Figure 5-3 on page 5-6. The key type in a control vector determines
the use of the key, which verbs can use the key, and whether the cryptographic
facility processes a key as a symmetric or “asymmetric” DES key. By
differentiating keys with a control vector, a given key value can be
multiply-enciphered with different control vectors so as to impart different
capabilities to copies of the key. This technique creates DES keys having an
asymmetric property.

¢ Symmetric DES keys. A symmetric DES key can be used in two related
processes. The cryptographic facility can interpret the following key types
as symmetric:

— DATA. A key with this key type can be used to both encipher and
decipher data.

— MAC. A key with this key type can be used to create a MAC and to
verify a trial MAC.

e Asymmetric DES keys. An asymmetric DES key is a key in a key pair in
which the keys are used as opposites.

— MAC and MACVER
Generate and verify a MAC value versus only verify a MAC value.

The cryptographic facility also interprets key-encrypting keys with the
following key types as asymmetric keys that can be used to create one-way
key distribution channels:

Chapter 5. Basic CCA DES Key Management 5-5

— EXPORTER or OKEYXLAT. A key with this key type can encipher a
key at a node that sends a key.

— IMPORTER or IKEYXLAT. A key with this key type can decipher a key
at a node that receives the key.

EXPORTER keys are paired with an IMPORTER or an IKEYXLAT key.
IMPORTER keys are paired with an EXPORTER or an OKEYXLAT key.
These key types permit the establishment of a uni-directional key distribution
channel which is important both to preserve the asymmetric capabilities
possible with CCA systems and to further secure a key distribution system
from unintended key distribution possibilities.

For information about generating key pairs, see “Generating Keys” on
page 5-12.

Depending on the key type, a key can be a single or double-length key.
single-length keys. The data operation and cryptographic variable-enciphering
keys are A double-length key that has different values in its left and right halves
greatly increases the difficulty for an adversary to obtain the clear value of the
enciphered key. A double-length key that has the same values in its left and
right halves produces the same results as a single-length key.

Figure 5-3. Generic Key Types and Verb Usage

Generic Key Type Usable with Verbs

MAC Class (Data Operation Key)

These keys are used to generate and verify a message authentication code (MAC).
They are single-length keys. In operational form and in external form, these keys are
associated with a control vector.

MAC MAC_Generate, MAC_Verify

MACVER MAC_Verify

Compatibility Class (Data Operation Keys)

These keys are used to cipher text and to produce and verify message authentication
codes. They are single-length keys. In operational form, these keys are always
associated with a control vector. In external form, the DATA key-type keys are not
usually associated with a control vector.

DATA Encipher, Decipher, MAC_Generate,
MAC_Verify

Key-Encrypting Key Class

These keys are used to cipher other keys. They are double-length keys. In
operational form and in external form, these key-encrypting keys are associated with
a control vector.

EXPORTER Data_Key_Export, Key_Export, Key_Generate,
Key_Translate

IMPORTER Data_Key_Import, Key_Import, Key_Generate,
Key_Translate

IKEYXLAT, OKEYXLAT Key_Translate

Some verbs can create a default control vector for a generic key type. For
information about the values for these control vectors, see Appendix C, “CCA
Control Vector Definitions and Key Encryption.”

5-6 IBM 4758 CCA Services

Key Usage Restrictions

In addition to a key type, a control vector contains key-usage values that further
restrict the use of a key. The generic key types define a default set of
key-usage restrictions in a control vector. These restrictions can be varied by
using key-usage keywords when constructing control vector values using the
Key_Token_Build verb or by setting bits in the control vector.

Figure 5-4 shows the key type and key-usage keywords that can be combined
in the Key_Token_Build verb to create a control vector. The left column lists the
generic key types. To the right of the key type are the key-usage keywords that
further define a control vector. Default control-vector attributes are noted.
Figure 5-5 describes the control vector usage keywords.

For information about the control vector bits, see Appendix C, “CCA Control
Vector Definitions and Key Encryption.”

Key_Type Key_Usage Notes:

»»—DATA 1) A1l items in the list
—MAC 2) XLATE implies all previous
—MACVER IMPORTER or EXPORTER keywords.
—IMPORTER— Note 1 — 3) DOUBLE-0 is the default.

4) XPORT-OK is the default.
OPIM
IMEX—
IMIM——
IMPORT ——
—EXPORTER———Note 1 ——
OPEX
IMEX—
EXEX—
EXPORT |_Note 2
—IKEYXLAT—| XLATE
—OKEYXLAT Note 3
SINGLE
DOUBLE-0—

—Note 4
F—XPORT-0K:
—NO—XPORT
KEY—PART

Figure 5-4. Key Token_Build Keyword Combinations

Figure 5-5 (Page 1 of 2). Control Vector Key-Usage Keywords

Key-Usage

Keyword Meaning

EXPORTER and IMPORTER Key-Encrypting Keys

OPIM IMPORTER keys that have a control vector with this attribute
can be used in the Key_Generate verb when the key form is
OPIM.

IMEX IMPORTER and EXPORTER keys that have a control vector
with this attribute can be used in the Key_Generate verb when
the key form is IMEX.

IMIM IMPORTER keys that have a control vector with this attribute
can be used in the Key_Generate verb when the key form is
IMIM.

IMPORT Key-encrypting keys that have a control vector with this
attribute can be used to import a key in the Key_Import verb

Chapter 5. Basic CCA DES Key Management 5-7

Figure 5-5 (Page 2 of 2). Control Vector Key-Usage Keywords

Key-Usage

Keyword Meaning

OPEX EXPORTER keys that have a control vector with this attribute
can be used in the Key_Generate verb when the key form is
OPEX.

EXEX EXPORTER keys that have a control vector with this attribute
can be used in the Key_Generate verb when the key form is
EXEX.

EXPORT Key-encrypting keys that have a control vector with this
attribute can be used to export a key in the Key_Export verb

XLATE Importer and Exporter key-encrypting keys that have a control
vector with this attribute can be used in the Key_Translate verb

Key Lengths

DOUBLE-O Indicates that the key is formed from two different, random
8-byte values.

SINGLE Specifies the key as a single-length key.

Miscellaneous Attributes

XPORT-OK Permits the key to be exported by Key_ Export or
Data_Key_Export.

NO-XPORT Prohibits the key from being exported by Key Export or
Data_Key_Export.

KEY-PART Specifies the control vector is for a key part.

Key Tokens, Key Labels, and Key Identifiers

Key Tokens

5-8

IBM 4758 CCA Services

In CCA, a cryptographic key is generally contained within a data structure called
a key token. The key token can contain the key, a control vector, and other
information pertinent to the key. Key tokens can be null, internal or external.
Internal key tokens can be stored in key storage and are accessed using a key
label. The CCA API often permits an application to provide either a key token or
a key label, in which case the parameter description is designated as a key
identifier. Key tokens, labels, and identifiers are discussed in the following
sections

The security API operates with a key token rather than operating simply with a
key. A key token is a 64-byte data structure that includes the key and other
information frequently needed when the key is needed.

Figure 5-6 on page 5-9 shows the general format of a key token. For more
information, see Appendix B, “Data Structures.”

0 8 16 32 63
Key Flags Control Infor—| internal key |[Control Vector TV
Token mation for or

Type Using the Key | external key

Figure 5-6. Key_Token Contents.

In this figure, TVV means token-validation value. See

“External Key Token” on page 5-10 and “Internal Key Token” on page 5-10 for information
on how the internal and external keys are generated.

A key token contains the following information:

¢ The key value (multiply enciphered under a key formed by either the master
key or a key-encrypting key that is exclusive-ORed with the control vector).

¢ The control vector for the key. A control vector provides information about
the permitted uses of the key.

¢ Miscellaneous control information (token type, token version layout, and

other information).

¢ A token-validation value (TVV), which is a checksum that is used to validate

a token.

You can use the Key_Token_Build verb to assemble a key token. You can also
use application code to assemble or disassemble a key token. You should keep

in mind, however, the contents and format of key tokens are version and

implementation-sensitive. This key-token format is described in Appendix B,
“Data Structures” on page B-1.

Key_Identifier———»

External Key_Token

0 63
I
-—TX'OZ' | e*KEK.CV(KEY)| ‘
Internal Key_Token
0 63
OR —TX'OI' | exKM. CV (KEY) | ‘
Null Key_Token
0 63
T
OR —TX'OO' | ‘
Key_Label
0 63

47Name_Token_1 .Name_Token_2. -- .Name_Token_n

The first byte is
in the range of
X'20' to X'FE'.

Key Storage

1T
T

|

Key_Label T—Key_Token

Figure 5-7. Key ldentifier, Key Tokens, and Key Labels

Chapter 5. Basic CCA DES Key Management

5-9

Key Labels

Key ldentifiers

The cryptographic system uses external, internal, and null key tokens, as shown
in Figure 5-7 on page 5-9.

External Key Token: An external key token contains an external key that is
multiply enciphered under a key formed by the exclusive-OR of a key-encrypting
key and the control vector that was assigned when the key token was created or
updated.

An external key token is specified in a verb call, using a key token parameter.
An external key token resides in application data storage. An application
program obtains an external key token by calling one of the following verbs:

e Data_Key_ Export
e Key Export

e Key_Generate

e Key Token_Build

Internal Key Token: An internal key token contains an operational key that is
multiply enciphered under a key formed by the exclusive-OR of a master key
and the control vector that was used when the key token was created or
updated.

An internal key token is specified in a cryptographic verb call by using a
key_identifier parameter. These verbs produce an internal key token:

e Clear_Key_ Import

e Data_Key_Import

e Key_Import

¢ Key_ Generate

e Key Token Build

e Symmetric_Key_Import
e Key Record_Read.

Null Key Token: A null key token is a 64-byte string that begins with the
value X'00'. A null key token can reside in application data storage or in key
storage. Some verbs that create a key token with default values do so when
you identify a null key token.

A key label serves as an indirect address for a key token record in key storage.
The security server uses a key label to access key storage to retrieve or to store
the key token. A key_identifier parameter can point to either a key-label or a
key-token. Key labels are discussed further at “Key Label Content” on

page 7-2

When a verb parameter is described as some form of a key _identifier, you can
present either a key token or a key label. The key label identifies a key token
record in key storage.

5-10 1BM 4758 CCA Services

Using the Key Processing and Key Storage Verbs

Figure 5-8 on page 5-12 shows key processing and key storage verbs and how
they relate to key parts, internal and external key tokens, and key storage. You
can create keys in your application programs by using the Key_Generate,

Key Part_Import, Secure_Key Import, Clear_Key_ Import, and
Random_Number_Generate verbs.

CCA subsystems do not reveal enciphered keys and do provide significant
control over encrypted keys. Application programs can use the key processing
and storage verbs to implement a key distribution system of your design.

The HIKM utility, Key Part_Import verb, Secure_Key_Import verb, and Key_Test
verb allow you to install keys securely and verify key installation.

Installing and Verifying Keys
To keep a key secret, it can be installed as a series of key parts. Different
individuals can use an application program that loads individual key parts into
the cryptographic facility using the Key_Part_Import verb, or the Node
Management Utility to enter a key part from a keyboard or diskette.

The key-parts are single-length or double-length, based on the type of key you
are accumulating. Key-parts are exclusive-ORed as they are accumulated.
Thus, knowledge of a key-part value provides no knowledge about the final key
when it is composed of more than one part. An already-entered key-part(s) is
stored outside the cryptographic facility enciphered under the master key. When
all the key parts are accumulated, the key-part control-vector bit is removed from
the key.

A master key key-part is loaded into the new master key register. The key-part
replaces the value in the new master key register, or is exclusive-ORed with the
existing contents of the register. In a separate command, you can copy the
contents of the current master key register to the old master key register and
write over the current master key register with the contents of the new master
key register.

The commands to load (master) key parts must be individually authorized by
appropriate bits being turned on in the active profile register for the Load First
(Master) Key Part command or the Load and Combine (Master) Key Part
command.

You can use the Key Test verb to generate a verification pattern and an
associated random number. These two values are used together to verify a key
or a key part. An application program can use the Key Test verb to verify the
contents of a key-register, an enciphered key, or an enciphered key-part. The
utilities also include services to generate and use key and key-part verification
patterns.

Though you do not know the value of the key or the key part, you can test a key
register, key, or key part to ensure it has a correct value. You can provide to
the individual who loads the key parts the verification information for the parts
that should already be loaded. If the pattern does not verify, you can instruct
the individual or application not to load an additional key part or to set the
master key. This procedure can ensure that only valid key parts are used.

Chapter 5. Basic CCA DES Key Management 5-11

Random_Number_Generate

‘ Clear_Key_ ‘

Key Part_ Import Secure_
Import Key_Import
|
Symmetric_Key l— —vy — Key Record Write |K
Import Fnterna] Key Token | =Ie S
« yt
Symmetric_Key_ 4 | Key Record_Read 0
Export ‘ v r
Key Key Record Create—»> a
Key_ Import Key Record_Delete—» g
Generate Key Record_List—> e
Key_
Export
——
Key Translate |Externa1 Key Token‘l

\

Figure 5-8. Key Processing Verbs

In addition to the utilities that are supplied with the hardware, you can use the
Key Part_Import verb in an application program to load keys from individual key
parts.

Generating Keys

5-12

A CCA cryptographic facility can generate the following keys:

e A clear key. Use a clear key with the Encode, Decode, and
Secure_Key Import verbs. To generate a clear key, use the odd-parity
mode of the Random_Number_Generate verb.

e A key part. To generate a key part, use the odd-parity mode of the
Random_Number_Generate verb. You can use a key part with the
Key Part_Import verb.

¢ A multiply-enciphered key or pair of keys. To generate a random,
multiply-enciphered key, use the Key Generate verb. The Key_Generate
verb multiply-enciphers a random number using a control vector and either
the master key or a key-encrypting key. If you are generating a DES
asymmetric key type, the verb will multiply-encipher the random number a
second time with the “opposite” key type control vector. The verb restricts
the combination of control vectors used for the two encipherments and also
places restrictions on the use of master-key versus EXPORTER and
IMPORTER encryption key types. This is done to ensure a secure,
asymmetric key distribution system.

The Key_Generate verb can also do the following:

— Generate one random number for a single-length key or one or two
random numbers for a double-length key.

— Update a key token or create a key token that contains the default
control vector values for the key type. If you update a key token, you
can use your own control vector to add additional restrictions.

IBM 4758 CCA Services

Before generating a key, you should consider how the key will be archived and
recovered if unexpected events occur. Before using the Key Generate verb,
you should also consider the following aspects of key processing:

¢ The use of the key determines the key type and can determine whether you
create a key-token with the default control vector or update the key-token
with your own control vector that contains additional restrictions.

If you update a key token, first use the Key Token_Build verb to create the
control vector and the key token, then use the Key_Generate verb to
generate the key.

¢ Where and when the key will be used determines the form of the key,
whether the verb generates one key or a key-pair, and whether the verb
multiply-enciphers each key for operational, import, or export use. The verb
multiply-enciphers each key under a key that is formed by exclusive-ORing
the control vector in the new or updated key-token with one of the following
keys:

— The master key. This is the operational (OP) key form.

— An IMPORTER key-encrypting key. This is the external, importable (IM)
key form.

— An EXPORTER key-encrypting key. This is the external, exportable
(EX) key form.

If a key will be used locally, it should be enciphered in the OP key form or
IM key form. An IM key form can be saved on external media and imported
when its use is required. Saving a key locally in the IM key form ensures
that the key can be used if the master key is changed between the time the
key was generated and the time it is used. This allows you to maintain the
IMPORTER key-encrypting keys in operational form and to store keys that
are not needed immediately on external media.

If a key will be used remotely (sent to another node), it should be
enciphered in the EX key form under a local EXPORTER key. At the other
node, the key will be imported under the paired IMPORTER or IKEYXLAT
key.

¢ Use the SINGLE keyword for a key that should be single-length. Use the
SINGLE-R keyword for a double-length key that should perform as a
single-length key; this is often required when such a key will be
interchanged with a non-CCA system. Use the DOUBLE keyword for a
double-length key. Since the two halves are random numbers, it is unlikely
that the result of the DOUBLE keyword will produce two halves with the
same 64-bit value.

Exporting and Importing Keys
To operate on data with the same key at two different nodes, you must transport
the key securely between the nodes. To do this, a transport-key or
key-encrypting key must be installed at both nodes.

A key that is enciphered under a key-encrypting key other than the master key
is called an external-key. Deciphering an operational key with the master key
and enciphering the key under a key-encrypting key is called a key-export

operation and changes an operational key to an external key. The key-export

Chapter 5. Basic CCA DES Key Management 5-13

operation is performed in the cryptographic facility so that the clear value of the
key to be exported is not revealed.

Deciphering an external key with a key-encrypting key and enciphering the key
under the local master key is called a key-import operation, and changes an
external key to an operational key.

The control vector for the transport key-encrypting key at the source node must
specify the key as an EXPORTER key. The control vector at the target node
must specify the transport key-encrypting key as an IMPORTER key. The key
to be transported must be multiply-enciphered under an EXPORTER
key-encrypting key at the source node and multiply-deciphered under an
IMPORTER key-encrypting key at the target node. Figure 5-9 shows both the
key-export and key-import operations. Data operation keys, and key-encrypting
keys can be transported in this manner. The control vector specifies what kind
of keys can be enciphered by a key-encrypting key. For more information, see
Appendix C, “CCA Control Vector Definitions and Key Encryption” on page C-1.

Use the Key_Export and the Key_Import verbs to export and import keys with
key types that the control vectors associated with the EXPORTER or
IMPORTER keys permit. Use can the Data_Key_ Export verb and the
Data_Key_Import verb to export and import DATA keys; these verbs will not
import and export key-encrypting keys.

Operational Key to Be Imported Operational
Form of Key Exported Key Form of Key
at Node A at Node B
Key_Export — Key_Import
Multiply- Multiply-
Master Key ————»Decipher Encipher «— Master Key
S
Exporter Multiply- Multiply- Importer
Key-Encrypting Key —»Encipher Decipher «— Key-Encrypting Key

External Key

Figure 5-9. Key Exporting and Importing

Storing Keys in Key Storage

5-14

Only internal key tokens can be stored in key storage. Data operation keys and
key-encrypting keys can be stored in key storage.

The verbs that you use to create, write, read, delete, and list records in key
storage, and the format of the key label used to access these records, is
described in Chapter 7, “Key Storage Verbs.”

Note: To use key storage, the Compute_Verification_Pattern command must
first be authorized. This command is used to validate that the master key used

IBM 4758 CCA Services

to encipher keys within the key storage file had the same value as the master
key in the cryptographic facility when the key storage file is opened.

Securit y Precautions

In order to maintain a secure cryptographic environment, each cryptographic
node must be audited in a regular basis. This audit should be aimed at
preventing inadvertent and malicious breaches of security. Some of the things
that should be audited are listed below:

¢ The same transport-key should not be used as an EXPORTER key and
IMPORTER key on any given cryptographic node. This would destroy the
asymmetrical properties of the transport-key.

¢ Enablement of the Encipher Under Master Key command should be
avoided. The secure_key_import verb that employs this command can be
used to import any kind of key into the system including a key-encrypting
key. This verb could be used to import a key-encrypting key of known value
and install it as an EXPORTER key. The EXPORTER key could then be
used to EXPORT all keys (not protected by the NO-EXPORT bit in the
control vector) to an external location where they could be deciphered and
used for illicit purposes.

¢ The Key_Part_Import verb should be used to enter new master keys,
key-encryption keys, and data keys into the system. This verb provides for
split-knowledge (dual control) of keys by ensuring that no one person knows
the true value of a key. Each person enters part of a key and the actual key
is not assembled until the last key part is used. Neither the key nor the
partial results of the key assembly appear in the clear outside of the secure
hardware.

Chapter 5. Basic CCA DES Key Management 5-15

Clear_Key_Import

Clear_Key Import (CSNBCKI)

Platform/ DOS 0Ss/2 AIX NT 0S/400 MVS Service
Product Group
Fortress X X X Basic

Restrictions

Format

Parameters

The Clear_Key_Import verb enciphers a clear, single-length DES key under a
master key. The resulting key is a DATA key because the service requires that
the resulting internal key token have a DATA control vector. You can use this
verb to create an internal key token from a null key token, or you can update an
existing internal DATA key token with the enciphered value of the clear key.
(You can create other types of DES keys from clear key information using the
Key_Part_Import verb.)

If the clear-key value does not have odd parity in the low-order bit of each byte,
the reason_code parameter presents a warning.

None
CSNBCKI
return_code Output Integer
reason_code Output Integer
exit_data_length Input Integer
exit_data In/Out String exit_data_length bytes
clear_key Input Integer 8 bytes
target_key _identifier In/Out String 64 bytes

For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

clear_key
The clear_key parameter is a pointer to a string variable containing the clear
value of the DES key being imported as a DATA key. The key is to be
enciphered under the master key. Although not required, the low-order bit in
each byte should provide odd parity for the other bits in the byte.

target_key_identifier
The Target Key Identifier parameter is a pointer to a 64-byte string variable.
If the key token in application storage or key storage is null, then a DATA
key token containing the encrypted clear key replaces the null token.
Otherwise, the pre-existing token must be a DATA key token and the
encrypted clear key replaces the existing key value.

5-16 IBM 4758 CCA Services

Clear_Key_Import

Required Commands

The Clear_Key_Import verb requires the Encipher Under Master Key command
(command offset X'00C3"') to be enabled in the hardware.

Chapter 5. Basic CCA DES Key Management 5-17

Data_Key Export

Data Key Export (CSNBDKX)

Platform/ DOS 0S/2 AIX NT 0S/400 MVS Service
Product Group
Fortress X X X Basic

Restrictions

Format

Parameters

The Data_Key_ Export verb exports an internal DATA key. The verb can export
the key from an internal key token in key storage or application storage.

The verb overwrites the 64-byte target key token field with an external DES key
token that contains the source key now encrypted by the exporter key-encrypting
key. Only a DATA key can be exported. If the source key has a control vector
valued to the default DATA control vector, the target key will be enciphered
without any control vector (that is, an “all zero” control vector), otherwise the
source-key control vector will also be used with the target key.

None
CSNBDKX
return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data Inp/Outp String exit_data_length bytes
source_key _identifier Input String 64 bytes
exporter_key _identifier Input String 64 bytes
target_key token Output String 64 bytes

For the definitions of the return_code, reason _code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

source_key_identifier
The Source_Key Identifier parameter is a pointer to a 64 byte string variable
containing the internal key token to be exported. Only a DATA key can be
exported.

exporter_key_identifier
Exporter_Key _Identifier parameter is a pointer to a 64 byte string variable
containing the (EXPORTER) transport key used to encipher the target key.

target_key_token
Target_Key Token parameter is a pointer to a 64 byte string variable
containing the re-encrypted source key token. The target key token will
overwrite existing information.

5-18 IBM 4758 CCA Services

Data_Key_ Export

Required Commands

If you export a key from an internal key token in application data storage or in
key storage, the Data_Key Export verb requires the Data Key Export command
(command offset X'010A') to be enabled in the hardware.

Chapter 5. Basic CCA DES Key Management 5-19

Data_Key_Import

Data Key Import (CSNBDKM)

Platform/ DOS 0Ss/2 AIX NT 0S/400 MVS Service
Product Group
Fortress X X X Basic

The Data_Key Import verb imports an encrypted source DES DATA key and
creates or updates a target internal key token with the master-key enciphered
source key. The verb can import the key into an internal key token in
application storage or in key storage.

Specify the following:

¢ An external key token containing the source key to be imported. The
external key token must indicate that a control vector is present; however,
the control vector is usually valued at zero.

* An IMPORTER key-encrypting key under which the source key is
deciphered.

¢ An internal or null key token. The internal key token can be located in
application data storage or in key storage.

The verb builds the internal key token by the following:

¢ Creates a default control vector for a DATA key type in the internal key
token, if the control vector in the external key token is zero. If the control
vector is not zero, the verb copies the control vector into the internal key
token from the external key token.

¢ Multiply-deciphers the key under the keys formed by the exclusive-OR of the
key-encrypting key (identified in the importer_key _identifier) and the control
vector in the external key token, then multiply-enciphers the key under keys
formed by the exclusive-OR of the master key and the control vector in the
internal key token. The verb places the key in the internal key token.

¢ Calculates a token-validation value and stores it in the internal key token.

This verb does not adjust the key parity of the source key.

Restrictions

Format

5-20

None
CSNBDKM
return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data Inp/Outp String exit_data_length bytes
source_key_token Input String 64 bytes
importer_key _identifier Input String 64 bytes
target_key _identifier In/Out String 64 bytes

IBM 4758 CCA Services

Parameters

Data_Key_Import

For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

source_key token
The source _key token parameter is a pointer to a 64-byte string variable
containing the source key to be imported. The source key must be an
external key.

importer_key_identifier
The importer_key _identifier parameter is a pointer to a 64-byte string
variable containing the (IMPORTER) transport key used to decipher the
source key.

target_key _identifier
The target _key_identifier parameter is a pointer to a 64-byte string variable
containing a null key token, an internal key token, or the key label of an
internal key token or null key token record in key storage. The key token
receives the imported key.

Required Commands

If you import a key into an internal key token: The Data_Key Import verb
requires the Data Key Import command (offset X'0109') to be enabled in the
hardware.

Chapter 5. Basic CCA DES Key Management 5-21

Key_EXxport

Key Export (CSNBKEX)

Platform/ DOS
Product

0Ss/2 AIX NT 0S/400 MVS Service

Group

Fortress

X X Basic

The Key_Export verb exports a source key into a target external key token. The
target key token overwrites existing information. The target key is enciphered by
the exporter-key exclusive-ORd with the control vector of the source key.

Specify the following:

¢ A keyword for the key type. In General, use the TOKEN key word. To

remain compatible with older systems, you can explicitly name a key type, in
which case it must match the key type in the control vector of the source
key token.

A source-key internal key token or the key label of an internal key token
record in key storage containing the source key to be exported.

An EXPORTER key-encrypting key under which the target key is
enciphered.

e A 64-byte field to hold the target key token.

The verb builds the external key token by the following:

Restrictions

Format

5-22

¢ Copies the control vector from the internal key token to the external key

token, except when the source key has a control vector valued to the default
DATA control vector; in this case the target control vector is set to zero.

Multiply-deciphers the source key under keys formed by the exclusive-OR of
the master key and the control vector in the source key token, multiply
enciphers the key under keys formed by the exclusive-OR of the exporter
key-encrypting key and target-key control vector, and places the result in the
target key token.

Calculates a token-validation value and stores it in the target key token.

Places the external key token in the 64-byte field identified in the
target _key token parameter ignoring any preexisting data.

None
CSNBKEX
return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data Inp/Outp String exit_data_length bytes
key type Input String 8 bytes
source_key _identifier Input String 64 Bytes
exporter_key _identifier Input String 64 Bytes
target_key token Qutput String 64 Bytes

IBM 4758 CCA Services

Parameters

Key_Export

For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

key_type
key type parameter is a pointer to an 8-byte string variable containing one
of the following keywords to indicate the key type. The TOKEN keyword is
the most commonly used.

TOKEN EXPORTER IMPORTER MACVER
DATA IKEYXLAT MAC OKEYXLAT

source_key_identifier
source_key _identifier parameter is a pointer to a 64-byte string variable
containing the source key token or key label.

exporter_key_identifier
exporter_key _identifier parameter is a pointer to a 64-byte string variable
containing the exporter key-encrypting key token or key label.

target_key_token
target_key token parameter is a pointer to a 64-byte string variable
containing the target key token field.

Required Commands

The Key_Export verb requires the Re-Encipher from Master Key command
(offset X'0013') to be enabled in the hardware.

Chapter 5. Basic CCA DES Key Management 5-23

Key_Generate

Key Generate (CSNBKGN)

Platform/ DOS 0Ss/2 AIX NT 0S/400 MVS Service
Product Group
Fortress X X X Basic

Restrictions

The Key_Generate verb generates a random DES key and returns one or two
enciphered copies of the key, ready to use or distribute.

A control vector associated with each copy of the key defines the type of key
and any specific restrictions on the use of the key. Only certain combinations of
key types are permitted when you request two copies of a key. Specify the type
of key through a key-type keyword, or by providing a key token or tokens with a
control vector into which the verb can place the keys. If you specify TOKEN as
a key-type, the verb uses the pre-existing control vector from the key token.

Use of the TOKEN keyword allows you to associate other than default control
vectors with the generated keys.

Based on the key_form variable, the verb encrypts a copy or copies of the
generated key under one or more of the following:

¢ the master key
e an importer key-encrypting key

e an exporter key-encrypting key.

Request two copies of a key when you intend to distribute the key to more than
one node, or when you want a copy for immediate local use and the other copy
available for later local import.

Specify the key length of the generated key. A DES key can be either single or
double length. Generally key-length comes from the key-type specification, but
when generating a type of key that must be a double length key, choose to
request each half of the key have an identical value (specify SINGLE-R, “single
replicated”). A double-length key with equal halves performs as though the key
were a single-length key.

Specify where the generated key copy's should be returned, either to your
program, or key storage. In either case, a null key token can be overwritten by
a default key token taken from your specification of key-type. If you provide an
existing key token, the verb replaces the key value in the token.

None

5-24 1BM 4758 CCA Services

Format

Parameters

CSNBKGN

Key_Generate

return_code Input Integer

reason_code Input Integer

exit_data_length Input Integer

exit_data Inp/Outp String exit_data_length bytes
key form Input String 4 bytes
key_length Input String 8-bytes
key type 1 Input String 8-bytes
key type 2 Input String 8-bytes
KEK_key_identifier_1 Input String 64 bytes
KEK_key_identifier_2 Input String 64 bytes
generated_key_identifier_1 In/Out String 64 bytes
generated_key _identifier_2 In/Out String 64 bytes

For the definitions of the return_code, reason _code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

key form

The key form parameter is a pointer to a 4-byte string variable that defines
whether one or two copies of the key will be generated, and the type of
key-encrypting key used to encipher the key.

¢ When you want a copy of the new key to be immediately useful at the
local node, ask for an operational (OP) key. An OP key is enciphered
by the master key.

¢ When you want a copy of the new key to be imported to the local node
at a later time, ask for an importable (IM) key. An IM key is enciphered
by an IMPORTER key type at the generating node.

¢ When you want to distribute the generated key to another node or
nodes, ask for an exported (EX) key. An EX key is enciphered by an
EXPORTER key type at the generating node and it is shared with the
final destination node.

Specify one of the following key forms:

OoP

IM

EX
OPOP
OPIM

OPEX

IMIM

IMXE

EXEX

One key for operational use.

One key to be imported later to this node.

One key for distribution to another node.

Two copies of the generated key, normally with different control
vector values.

Two copies of the generated key, normally with different control
vector values; one for use now, one for later importation.

Two copies of the generated key, normally with different control
vector values; one for local use and the other for use at a remote
node.

Two copies of the generated key, normally with different control
vector values; to be imported later to the local node.

Two copies of the generated key, normally with different control
vector values; one to be imported later to the local node and the
other for a remote node.

Two copies of the generated key, sometimes with different
control vector values; to be sent to two different remote nodes.
No copy of the generated key will be available to the local node.

Chapter 5. Basic CCA DES Key Management 5-25

Key_Generate

key_length
The key length parameter is a pointer to an 8-byte string variable containing
the length of the new key. Depending on key type, you can specify a
single-length key or a double-length key. A double-length key consists of
two 8-byte values. Key length must contain one of the following:

SINGLE For a single-length key.
SINGLE-R For a double-length key with equal-valued halves.
DOUBLE For a double-length key. The key halves will be different

except when the same 56-bit key would be generated twice
in succession — a minuscule possibility.

8 spaces To allow the verb to determine key length based on the
key's control vector.

key type 1 and key_type 2
The key type 1 and key type 2 parameters are pointers to 8-byte string
variables containing keywords that specify key type for the new keys being
generated.. You can also specify key type via the control vector in the
pre-existing key token by using the TOKEN keyword; alternatively, you can
specify the key type using keywords shown in Figure 5-10 on page 5-27
and Figure 5-11 on page 5-27 This is useful when you want to create
default-value key tokens and control vectors.

e Figure 5-10 on page 5-27 lists the keywords allowed when generating a
single key copy (key_forms OP, IM, and EX). key type 2 must contain
a string of eight space characters.

e Figure 5-11 on page 5-27 lists the key type keyword combinations
allowed when requesting two copies of a key value.

kek key identifier_1 and kek_key_identifier_2
The kek_key_identifier_1 and kek_key identifier_2 parameters are pointers
to 64-byte string variables containing the key token or key label for the key
used to encipher the IM-form and EX-form keys. In general, if an OP-form
key is requested, the associated KEK identifier should point to a null key
token.

generated_key identifier_1 and generated_key_identifier_2
The generated_key identifier_1 and generated _key identifier 2 parameters
are pointers to 64-byte string variables containing the key token or key label
of the generated keys. If the parameter identifies an internal or external key
token, the verb attempts to use the information in the existing key token,
and simply replaces the key value. Using the TOKEN keyword in the
key type variables requires that key tokens already exist when the verb is
called, so the control vectors in those key tokens can be used. In general,
unless you are using the TOKEN keyword, you should identify a null key
token on input.

Required Commands

The hardware commands the Key_ Generate verb requires depends on the
combination of key type and key form keywords and whether SINGLE-R is
specified for key length.

¢ |f you use the key-form and key-type combinations shown with an X in
Figure 5-10 on page 5-27, the Key_Generate verb requires the Generate
Key command (offset X'008E') to be enabled in the hardware.

5-26 IBM 4758 CCA Services

Key_Generate

¢ If you use the key-form and key-type combinations shown with an X in
Figure 5-11 on page 5-27, the Key_Generate verb requires the Generate
Key Set command (offset X'008C') to be enabled in the hardware.

¢ |f you use the SINGLE-R key-length keyword, the Key Generate verb
requires the Replicate Key command (offset X'00DB') to be enabled in the

hardware.

Related Information

The following sections discuss the key type and key length parameters.

Key Type Specifications
Generated keys are returned multiply-enciphered by a key-encrypting key or by
a master key exclusive-ORd with the control vector associated with that copy of

the generated key.

Specify the key type of the generated key and its optional copy. If you encode
the key type of the key in the control vector of its key token, you can specify
TOKEN in the key form variable. Or, you can provide a keyword for the key
type if you want the default control vector associated with that key word. One or
two keywords are examined based on the key form variable. Figure 5-10
shows the key types for which you can generate one copy of a key.

Figure 5-10. Key_Type and Key_Form Keywords for One Key

Key_Type_1 Key_Form OP Key_Form IM Key_Form EX
MAC X X X
DATA X X X

Figure 5-11 shows the key types for which you can generate two copies of a
key. An ‘X’ indicates a permissible key type for a given key-form.

If you use the TOKEN keyword, the lower portions of the tables indicate key
type combinations permitted by the CCA architecture but not supported through

keywords.
Figure 5-11. Key_Type and Key_Form Keywords for a Key Pair
Key Type_ 1 Key Type_ 2 Key_ Key_ Key_ Key_
Form Form Form Form
OPOP, OPEX EXEX IMEX
OPIM,
IMIM
MAC MAC X X X X
MAC MACVER X X X X
DATA DATA X X X X
EXPORTER IMPORTER X X X
IMPORTER EXPORTER X X X
EXPORTER IKEYXLAT X X X
IKEYXLAT EXPORTER X X X
IKEYXLAT OKEYXLAT X X X
IMPORTER OKEYXLAT X X X
OKEYXLAT IMPORTER X X X
OKEYXLAT IKEYXLAT X X X

Chapter 5. Basic CCA DES Key Management 5-27

Key_Generate

5-28

Key Length Specification
The key length variable contains a keyword which specifies the length of a key,
single or double. The key length specified must be consistent with the key
length indicated by the control vectors associated with the generated keys. You
can specify SINGLE, SINGLE-R, or DOUBLE. The SINGLE-R keyword (single,
replicated) indicates that you want a double-length key where both halves of the
key are identical. Such a key performs as though the key were single length.

Figure 5-12 shows the valid key lengths for each key type. An ‘X’ indicates that
a key length is permitted for a key type; a ‘D’ indicates the default key length the
verb uses when you supply 8 space characters with the key length parameter.

Figure 5-12. Key Lengths by Key Type

Key Type SINGLE SINGLE-R DOUBLE
MAC X, D

MACVER X, D

DATA X, D

EXPORTER X X, D
IMPORTER X X, D
IKEYXLAT X X, D
OKEYXLAT X X, D

IBM 4758 CCA Services

Key_Import

Key Import (CSNBKIM)

Platform/ DOS 0Ss/2 AIX NT 0S/400 MVS Service
Product Group
Fortress X X X Basic

The Key_Import verb imports a source DES key enciphered by the IMPORTER
key-encrypting key into a target internal key token. The imported target key is
returned enciphered using the master key.

Specify the following:

¢ A keyword for the key type. In general, use the TOKEN key word. For
compatibility with older systems, however, you can explicitly name a key
type in which case the key type must match the key type encoded in the
control vector of the source key token.

¢ An external key to be imported or an external key token that contains the
key to be imported. When you import an enciphered key that is not in an
external key token, the key must be located at offset 16 (X'10') of a
null-key-token with the first byte set to X'00'.

¢ The key-encrypting key under which the key is deciphered.

¢ An internal or null key token or the key label of an internal key token or null
key token in key storage.

The verb builds or updates the target key token as follows:
¢ |f the source key is not in an external key token:

— You must specify an explicit key type (not TOKEN).

— The default CV for the key type is used when decrypting the source key.

— The default CV for the key type is used when encrypting the target key.

— The target key token must either be null or must contain valid,
non-conflicting information.

The key token is returned to the application or key storage with the imported
key.

e |f the source key is in an external key token:
— When an explicit key type keyword is used, it must be consistent with
the key type encoded in the source-key control vector.
— The control vector in the source key token is used to decrypt the source
key.
— The control vector in the source key token is used to encrypt the source
key under the master key.

The key token is returned to the application or key storage with the imported
key.

The Fortress product family implementations do not adjust key parity.

Chapter 5. Basic CCA DES Key Management 5-29

Key_Import

Restrictions

Format

Parameters

A SINGLE-R key-encrypting key (a KEK with equal clear-key halves) can not be

used to encipher a DOUBLE key (a double-length key with unequal clear-key
halves).

CSNBKIM

return_code Input Integer

reason_code Input Integer

exit_data_length Input Integer

exit_data Inp/Outp String exit_data_length bytes
key type Input String 8 bytes

source_key token Input String 64 bytes
importer_key_identifier Input String 64 bytes

target_key _identifier In/Out String 64 bytes

For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

key type
The key type parameter is a pointer to an 8-byte string variable containing a
keyword specifying the key type of the key to be imported. In general you
should use the TOKEN keyword.

TOKEN EXPORTER IMPORTER MACVER
DATA IKEYXLAT MAC OKEYXLAT

source_key_token
The source _key token parameter is a pointer to a 64-byte string variable
containing the source key token. Ordinarily the source key token is an
external DES key token (the first byte of the key token data structure
contains X'02'). However, if the first byte of the token is X'00', then the
encrypted source key is taken from the data at offset 16 (X'10') in the
source key token structure.

importer_key _identifier
The importer_key _identifier parameter is a pointer to a 64-byte string
variable containing the key-token or key label for the IMPORTER
key-encrypting key.

target_key _identifier
The target _key identifier parameter is a pointer to a 64-byte string variable
containing the target key token or key label.

Required Commands

¢ If you import a key into an internal key token, the key import verb requires
the Re-encipher to Master Key command (offset X'0012') to be enabled in
the hardware.

5-30 IBM 4758 CCA Services

Key_Part_Import

Key Part_Import (CSNBKPI)
Platform/ DOS 0Ss/2 AIX NT 0S/400 MVS Service
Product Group
Fortress X X X Basic

Restrictions

The Key_Part_Import verb is used to accept parts of a key and store the result
as an encrypted partial key or as the final key. Before you use the

Key Part_Import verb, use the Key_Token_Build verb to create the internal key
token into which the key will be imported. The control vector in the key token
must have the KEY-PART bit set to one.

The first key part is stored in the key token as an encrypted partial key.
Subsequent key parts are exclusive-ORd to the partial key. When the last key
part is completed, the result is returned as a complete enciphered key with the
KEY-PART bit in the control vector reset to zero.

If you use the Key_Part_Import verb to import a key without using key parts, you
must call the verb twice. In the first call, specify a key-part of all zeros with odd
parity (X'0101...") and specify the FIRST keyword in the rule array. In the
second call, specify a key part containing the clear key and specify the LAST
keyword in the rule array.

To multiply-decipher and multiply-encipher the key parts and the final key, the
verb uses a key formed by the exclusive-OR of the master key and the control
vector in the key identifier.

None

Format

CSNBKPI

return_code Input Integer

reason_code Input Integer

exit_data_length Input Integer

exit_data Inp/Outp String exit_data_length bytes

rule_array _count Input Integer

rule_array Input String array rule_array_count * 8 bytes

key part Input String 16 bytes

key _identifier In/Out String 64 bytes
Parameters

For the definitions of the return_code, reason _code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

rule_array_count
The rule_array count parameter is a pointer to an integer containing the
number of elements in the rule_array variable. The value of the
rule_array count must be one for this verb.

Chapter 5. Basic CCA DES Key Management 5-31

Key_Part_Import

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords
are shown below:

Figure 5-13. Key Part_Import Rule_Array Keywords

Keyword Meaning
FIRST Specifies that an initial key part is provided.
MIDDLE Specifies that an intermediate key part, which is neither the
first key part nor the last key part, is provided.
LAST Specifies that the last key part is provided.
key part

The key_part parameter is a pointer to a 16-byte string variable containing a
key part to be entered. The key part may be either 8 or 16-bytes in length;
however for 8-byte keys, you must place the key part in the high-order bytes
of the 16-byte key part field.

key_identifier
The key _identifier parameter is a pointer t 0 a 64-byte string variable
containing the internal DES key token or a key label for a DES key token.
The key token must not be null and does supply the control vector for the
partial key.

Required Commands
The Key_Part_Import verb requires the following commands to be enabled in the
hardware:

¢ The Load First Keypart command (offset X'001B') with the FIRST keyword.

¢ The Combine Key Parts command (offset X'001C") with the MIDDLE and
LAST keywords.

5-32 IBM 4758 CCA Services

Key_Test

Key Test (CSNBKYT)

Platform/ DOS 0Ss/2 AIX NT 0S/400 MVS Service
Product Group
Fortress X X X Basic

Restrictions

Format

Parameters

The Key_Test verb generates or verifies a verification pattern for keys and key
parts. Use this verb to verify that a clear or enciphered key or key part was
entered correctly without exposing the value of the key.

Specify in the rule array whether the verb generates or verifies a verification
pattern and whether it performs the task on a key or on a key part.

When the verb generates a verification pattern, the verb uses the key or key
part to create and cryptographically process a random number; then the verb
returns the random number and the verification pattern.

When the verb tests a verification pattern against a key or a key part, you must
supply the random number and the verification pattern from a previous
procedure call to the Key Test verb. The verb returns the verification results in
the form of a reason code.

For more information about the verification method used with DES keys, see
“Cryptographic Key Verification Techniques” on page D-1.

The Fortress product family implementations employ a “triple-length” master key
(3 DES keys). To provide for master key and master-key key-part verification, a
different algorithm is employed, see “Master Key Verification Algorithm” on

page D-1.

None
CSNBKYT
return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data Inp/Outp String exit_data_length bytes
rule_array _count Input Integer
rule_array Input String array rule_array_count * 8 bytes
key_identifier In/Out String 64 bytes
random_number In/Out String 8 bytes
verification_pattern In/Out String 8 bytes

For the definitions of the return_code, reason _code, exit_data length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

Chapter 5. Basic CCA DES Key Management 5-33

Key_Test

rule_array_count
The rule_array count parameter is a pointer to an integer variable
containing the number of elements in the rule array. The value of the
rule_array count must be two or three for this verb.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords
are shown below:

Figure 5-14. Key Test Rule_Array Keywords

Key or Key-Part Rule Specify one of the following key of key part rules

(required).

KEY-CLR Requests processing for a single-length clear key or key
part.

KEY-CLRD Requests processing for a double-length clear key or key
part. (DOS, 0OS/2, MVS, and OS/400 environments only).

KEY-ENC Requests processing for a single-length enciphered key or
key part supplied in a key token.

KEY-ENCD Requests processing for a double-length enciphered key or
key part supplied in a key token

KEY-KM Identifies the master key register

KEY-NKM Identifies the new master key register

KEY-OKM Identifies the old master key register.

Process Rule Specify one of the following process rules (required)

GENERATE Generates a verification pattern.

VERIFY Verifies a verification pattern.

Cryptographic Hardware Rule (OS/2, environments only) Specify one of the
following hardware rules (optional).

ADAPTER Specifies the Cryptographic Adapter.

DFLT-CF Specifies the default cryptographic device or process. In a
configuration with more than one cryptographic device or
process, the implementation defines which device is the
default device or process. This is the default keyword.

key_identifier
The key _identifier parameter is a pointer to a 64-byte string variable
containing an internal key token, a key label that identifies an internal key
token record in key storage, or a clear key.

The key token contains the key or the key part used to generate or verify
the verification pattern.

When you specify the KEY-CLR keyword, the clear key or key part must be
stored in bytes 0 to 7 of the key identifier. When you specify the

KEY-CLRD keyword, the clear key or key part must be stored in bytes 0 to
15 of the key identifier. When you specify the KEY-ENC or the KEY-ENCD

5-34 IBM 4758 CCA Services

Key_Test

keyword, the key or key part must be in a key token in the key identifier.
lep 7

random_number
The random_number parameter is a pointer to an 8-byte string variable
containing the binary random number the verb uses in the verification

process. When you specify the GENERATE keyword, the verb returns the

random number; when you specify the VERIFY keyword, you must supply
the random number.

verification_pattern

The verification_pattern parameter is a pointer to an 8-byte string variable
containing the binary verification pattern. When you specify the GENERATE
keyword, the verb returns the verification pattern; When you specify the
VERIFY keyword, you must supply the verification pattern.

Required Commands

The Key_Test verb requires the Compute Verification Pattern command (offset
X'001D") to be enabled in the hardware.

Chapter 5. Basic CCA DES Key Management 5-35

Key_ Token_Build

Key Token Build (CSNBKTB)

Platform/ DOS 0S/2 AIX NT 0S/400 MVS Service
Product Group
Fortress X X X Basic

The Key_Token_Build verb assembles an external or internal key token in
application storage from information you supply.

The verb can include a control vector you supply or can build a control vector
based on the key type and the control vector related keywords in the rule array.

The Key_Token_Build verb does not perform cryptographic services. You
cannot use this verb to change a key or to change the control vector related to a

key.
Restrictions
None
Format
CSNBKTB
return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data Inp/Outp String exit_data_length bytes
key_token Qutput String 64 bytes
key type Input String 8 bytes
rule_array _count Input Integer
rule_array Input String array rule_array_count * 8 bytes
key value Input String 16 bytes
master_key_verification_pattern Input String 4 bytes
reserved Input Integer value ignored
reserved Input String 8 bytes, value ignored
control_vector Input String 16 bytes
reserved Input String 8 bytes
reserved Input Integer
reserved Input String 8 bytes
reserved Input String 8 bytes
Parameters

For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

key_token
The key_token parameter is a pointer to a 64-byte string variable where the
verb returns a key token.

Note: You cannot use a key label for a key token record in key storage.

key type
The key_type parameter is a pointer to an eight-byte string variable
containing a keyword that defines the key type. The keyword must be 8
bytes in length, uppercase, left-justified, and padded on the right with space
characters. Valid key type keywords are shown in the following list:

5-36 IBM 4758 CCA Services

Key_Token_Build

DATA IKEYXLAT MAC OKEYXLAT
EXPORTER IMPORTER MACVER USE-CV

For information about key types, see Appendix C, “CCA Control Vector
Definitions and Key Encryption” on page C-1.

Specify the USE-CV keyword to indicate the key type should be obtained
from the control vector variable.

rule_array_count
The rule_array count parameter is a pointer to an integer variable
containing the number of elements in the rule array. The value of the
rule_array count must be one for this verb.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords
are shown below:

Figure 5-15. Key Token_Build Rule_Array Keywords

Keyword Meaning

Token Type Specify one of the following (required).
INTERNAL Specifies an internal key token.
EXTERNAL Specifies an external key token.

Key Status Specify one of the following (optional)

KEY Indicates the key token is to contain a key. The key_value
variable contains the key.

NO-KEY Indicates the key token is not to contain a key. This is the
default key status.

Control Vector (CV) Status Specify one of the following (optional).

cVv Obtain the control vector from the variable identified by the
control_vector parameter.

NO-CV This keyword indicates that a control vector is to be
supplied based on the key type and control vector related
keywords. This is the default.

Note: If you specify the USE-CV keyword in the key type
parameter, use the CV keyword here.

Control Vector Keywords Specify one of the following (Optional)

KEY-PART
XLATE

Note: See Appendix C, “CCA Control Vector Definitions
and Key Encryption” on page C-1 for a discussion of
control vectors and the keywords you can specify to create
a control vector value.

Chapter 5. Basic CCA DES Key Management 5-37

Key_ Token_Build

key value
The key value parameter is a pointer to a 16-byte string variable. If you
use the KEY keyword, the string variable is incorporated into the
encrypted-key portion of the key token. Single-length keys must be
left-justified in the variable and padded on the right (low-order) with
eight-bytes of X'00'.

master_key_verification_pattern
The master_key verification_pattern parameter is a pointer to a four-byte
string variable. If you use the KEY keyword, the two-byte master key
verification pattern is taken from the third and fourth bytes of the source
string. The first two bytes must be X'0000".

control_vector
The control_vector parameter is a pointer to a 16-byte string variable. If you
use the CV keyword, the variable is used as the control vector.

Reserved
Reserved parameters may contain a null address, or may point to an
address in application data storage. When an address pointer is not null,
you must identify data consistent with the parameter description in the
Format section above.

Required Commands

The Key_Token_Build verb has no required hardware commands because it is
not a cryptographic verb.

5-38 IBM 4758 CCA Services

Key_ Token_Change

Key Token Change (CSNBKTC)

Platform/ DOS 0S/2 AIX NT 0S/400 MVS Service
Product Group
Fortress X X X Basic

Restrictions

Format

Parameters

Use the Key_Token_Change verb to re-encipher a DES key from encryption
under the old master key to encryption under the current master key and to
update the keys in internal DES key tokens.

Note: An application system is responsible for keeping all of its keys in a
useable form. When the master key is changed, the Fortress product family
implementations can use an internal key that is enciphered by either the current
or the old master key. Before the master key is changed a second time, it is
important to have a key reenciphered under the current master key for continued
use of the key. Use the Key_Token_Change verb to reencipher such a key(s).

Note: Previous implementations of IBM CCA products had additional
capabilities with this verb such as deleting key records and key tokens in key
storage. Also, use of a wild card (*) was supported in those implementations

None.
CSNBKTC
return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data Inp/Outp String exit_data_length bytes
rule_array_count Input Integer
rule_array Input String array rule_array_count * 8 bytes
key _identifier In/Out String 64 bytes

For the definitions of the return_code, reason _code, exit_data length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

rule_array_count
The rule_array count parameter is a pointer to an integer variable
containing the number of elements in the rule array. The value of the
rule_array count must be one for this verb.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords
are shown below:

Chapter 5. Basic CCA DES Key Management 5-39

Key_ Token_Change

Figure 5-16. Key _Token_Change Rule _Array Keywords

Keyword Meaning

RTCMK Re-enciphers a DES key to the current master key in an
internal key token in application data storage or in key
storage If the supplied key is already enciphered under the
current master key the verb returns a positive response
(return code, reason code — 0, 0). If the supplied key is
enciphered under the old master key, the key will be
updated to encipherment by the current master key and
the verb returns a positive response (return code, reason
code — 0, 0). Other cases return some form of abnormal
response.

Key_Identifier
The key_identifier parameter is a pointer to a 64-byte string variable
containing the DES internal key token or the key label of an internal key
token record in key storage.

Required Commands

If you specify RTCMK keyword, the Key_Token_Change verb requires the
Re-Encipher to Current Master Key command (offset X'0090') to be enabled in
the hardware.

5-40 1BM 4758 CCA Services

Key_Translate

Key Translate (CSNBKTR)

Platform/ DOS 0S/2 AIX NT 0S/400 MVS Service
Product Subset
Fortress X X X Basic

The Key_Translate verb uses one key-encrypting key to decipher an input key
and then enciphers this key using another key-encrypting key within the secure
environment.

Specify the following key tokens to use this verb:

¢ The external (input) key token containing the key to be re-enciphered.

¢ The internal key token containing the IMPORTER or IKEYXLAT
key-encrypting key. (The control vector for the IMPORTER key must have
the XLATE bit set to 1.)

¢ The internal key token containing the EXPORTER or OKEYXLAT
key-encrypting key. (The control vector for the EXPORTER key must have
the XLATE bit set to 1.)

¢ A 64-byte field for the external (output) key token.

The verb builds the output key token as follows:
¢ Copies the control vector from the input key token.

¢ Verifies that the XLATE bit is set to 1 if an IMPORTER or EXPORTER
key-encrypting key is used.

¢ Multiply deciphers the key under a key formed by the exclusive-OR of the
key-encrypting key and the control vector in the input key token, multiply
enciphers the key under a key formed by the exclusive-OR of the
key-encrypting key and the control vector in the output key token; then
places the key in the output key token.

e Copies other information from the input key token.

e Calculates a token-validation value and stores it in the output key token.

Restrictions

None.
Format

CSNBKTR
return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data Inp/Outp String exit_data_length bytes
input_key_token In/Out String 64 bytes
input_KEK_key _identifier Input String 64 bytes
output KEK_key _identifier Input String 64 bytes
output_key_token Qutput String 64 bytes

Chapter 5. Basic CCA DES Key Management 5-41

Key_Translate

Parameters

Required Commands

5-42

For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

input_key token

The input_key token parameter is a pointer to a 64-byte string variable
containing an external key token The external key token contains the key to
be re-enciphered (translated).

input_KEK_key_identifier

The input KEK key_identifier parameter is a pointer to a 64-byte string
variable containing the internal key token or the key label of an internal key
token record in key storage. The internal key token contains the
key-encrypting key used to decipher the key. The internal key token must
contain a control vector that specifies an IMPORTER or IKEYXLAT key
type. The control vector for an IMPORTER key must have the XLATE bit
set to 1.

output_KEK_key_identifier

The output KEK_key identifier parameter is a pointer to a 64-byte string
variable containing the internal key token or the key label of an internal key
token record in key storage. The internal key token contains the
key-encrypting key used to encipher the key. The internal key token must
contain a control vector that specifies an EXPORTER or OKEYXLAT key
type. The control vector for an EXPORTER key must have the XLATE bit
set to 1.

output_key token

The output_key token parameter is a pointer to a 64-byte string variable
containing an external key token. The external key token contains the
re-enciphered key.

The Key_Translate verb requires the Translate Key command (offset X'001F"')
to be enabled in the hardware.

IBM 4758 CCA Services

Random_Number_Generate

Random_Number_Generate (CSNBRNG)

Platform/ DOS 0S/2 AIX NT 0S/400 MVS Service
Product Subset
Fortress X X X Basic

The Random_Number_Generate verb generates a random number for use as
an initialization vector, clear key, or clear key part.

You specify whether the random number is 64-bits or 56-bits with the low-order
bit in each byte adjusted for even or odd parity. The verb returns the random
number in an eight-byte binary field.

Because the Random_Number_Generate verb uses cryptographic processes,
the quality of the output is better than that which higher-level language compilers
typically supply.

Restrictions

None

Format

CSNBRNG

return_code Input Integer

reason_code Input Integer

exit_data_length Input Integer

exit_data Inp/Outp String exit_data_length bytes

form Input String 8 bytes

random_number Qutput String 8 bytes
Parameters

For the definitions of the return_code, reason _code, exit_data length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

form
The form parameter is a pointer to an eight-byte string variable containing a
keyword to select the characteristic of the random number. The keyword
must be 8 bytes in length, left-justified, and padded on the right with space
characters. The keywords are shown in the table below.

Figure 5-17. Key_Token_Build Form Keywords

Keyword Meaning

RANDOM Requests the generation of a 64-bit random number.

ODD Requests the generation of a 56-bit, odd parity, random
number.

EVEN Requests the generation of a 56-bit, even parity, random
number.

Chapter 5. Basic CCA DES Key Management 5-43

Random_Number_Generate

random_number
The random_number parameter is a pointer to an eight-byte string variable
containing the random number.

Required Commands

The Random_Number_Generate verb requires the Generate Key command
(offset X'0O08E"') to be enabled in the hardware.

5-44 BM 4758 CCA Services

PKA_Symmetric_Key_ Export

PKA_Symmetric_Key Expor t (CSNDSYX)

Platform/ DOS 0S/2 AIX NT 0S/400 MVS Service
Product Subset
Fortress X X X PKA96

Restrictions

Format

Parameters

The PKA_Symmetric_Key Export verb enciphers a symmetric DES or CDMF
DATA key using an RSA public key.

Specify the operational, symmetric key to be exported, the exporting RSA public
key, and a rule array keyword to define the key-formatting method. The control
vector for the DES or CDMF key must permit the key to be exported.

The method supported for formatting the exported key for RSA encipherment is
PKCS-1.2 according to the method described in the RSA DSI PKCS #1
documentation, this method only supports encipherment of a single-length key
that is encrypted with a default DATA control vector.

The RSA exporting-key modulus size (key size) can be limited to accommodate
export restrictions. The cryptographic implementation will enforce this restriction.
Generally the key size is limited to 512, 768, 1024, or 2048 bits.

CSNDSYX

return_code Input Integer

reason_code Input Integer

exit_data_length Input Integer

exit_data Inp/Outp String exit_data_length bytes

rule_array _count Input Integer

rule_array Input String array rule_array_count * 8 bytes

source_key _identifier_length Input Integer

source_key _identifier Input String source_key_identifier._length
bytes

RSA_public_key _identifier_length Input Integer

RSA_public_key _identifier Input String RSA_public_key_identifier_length
bytes

RSA_enciphered_key length In/Out Integer

RSA_enciphered_key Qutput String RSA_enciphered_key_length
bytes

For the definitions of the return_code, reason _code, exit_data length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

rule_array_count
The rule_array count parameter is a pointer to an integer variable
containing the number of elements in the rule array. The value of the
rule_array count must be one for this verb.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords
are shown below:

Chapter 5. Basic CCA DES Key Management 5-45

PKA_Symmetric_Key_ Export

Figure 5-18. Key Token_Build Rule_Array Keywords

Keyword Meaning

RSA key-encipherment process

PKCS-1.2 Specifies the method found in RSA DSI PKCS #1 block
type 02 documentation; Only single length DES or CDMF
DATA keys can be enciphered using this method.

source_key identifier_length
The source_key identifier_length parameter is a pointer to an integer
variable containing the length (in bytes) of the field containing the key label
or key token of the key to be exported. The maximum size specified is
2500 bytes.

source_key_identifier
The source_key_identifier parameter is a pointer to a string variable
containing either an operational key token or the key label of an operational
key token to be exported. The associated control vector must permit the
key to be exported.

RSA_public_key_identifier_length
The RSA_public_key identifier_length parameter is a pointer to an integer
variable containing the length (in bytes) of the variable containing the key
token or the key label of the RSA public key used to encipher the exported
DES key. The maximum size specified is 2500 bytes.

RSA_public_key_identifier
The RSA_public_key _identifier parameter is a pointer to a string variable
containing a PKA96 RSA key token with the RSA public key of the remote
node that will import the exported key.

RSA_enciphered_key_length
The RSA_enciphered_key length parameter is a pointer to an integer
variable containing the length (in bytes) of the field that to receive the
exported RSA-enciphered key. On output, the variable is updated with the
actual length of the key field. The maximum size specified is 2500 bytes.

RSA_enciphered_key
The RSA_enciphered_key parameter is a pointer to a string variable to
receive the exported RSA-enciphered key.

Required Commands

The PKA_Symmetric_Key Export verb requires the Symmetric Key Export
command (offset X'0105") to be enabled in the hardware.

5-46 1BM 4758 CCA Services

PKA_Symmetric_Key_Import

PKA_Symmetric_Key Impor t (CSNDSYI)

Platform/ DOS 0S/2 AIX NT 0S/400 MVS Service
Product Subset
Fortress X X X PKA96

Restrictions

Format

Parameters

The PKA_Symmetric_Key Import verb recovers a symmetric (DES or CDMF)
key deciphered by an RSA private key. The imported key is flagged with
permission to participate in key distribution, and is multiply-enciphered using the
master key and a control vector. A default DATA-key control vector will be
associated with the imported key.

You specify the operational importing RSA private key, the RSA-enciphered
symmetric key to be imported, and a rule array keyword to define the

key-formatting method.

The method supported for interpreting an RSA-enciphered key is selected
through a rule array key word.PKCS-1.2 according to the method described in
the RSA DSI PKCS #1 documentation. This method only supports
encipherment of a single-length DES DATA key.

The RSA exporting-key modulus size is limited according to the specific
cryptographic implementation. in general this key size limit will be one of 512,

768, 1024, or 2048 bits.

CSNDSYI

return_code

reason_code
exit_data_length

exit_data

rule_array_count

rule_array
RSA_enciphered_key _length
RSA_enciphered_key

RSA_private_key _identifier_length
RSA_private_key _identifier

target_key _identifier._length
target_key _identifier

Input
Input
Input
Inp/Outp
Input
Input
Input
Input

Input
Input

In/Out
In/Out

Integer
Integer
Integer
String
Integer
String array
Integer
String

Integer
String

Integer
String

exit_data_length bytes
rule_array_count * 8 bytes

RSA_enciphered_key_length
bytes

RSA_private_key_identifier_length
bytes

target_key_identifier_length
bytes

For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

rule_array_count

The rule_array count parameter is a pointer to an integer variable
containing the number of elements in the rule array. The value of the
rule_array count must be one for this verb.

Chapter 5. Basic CCA DES Key Management

5-47

PKA_Symmetric_Key_Import

5-48

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords
are shown below:

Figure 5-19. PKA_Symmetric_Key Import Rule_Array Keywords

Keyword Meaning

RSA key-encipherment process

PKCS-1.2 Specifies the method found in RSA DSI PKCS #1 block
type 02 documentation. Only a DATA key can be
deciphered using this method.

RSA_enciphered_key_length
The RSA _enciphered _key length parameter is a pointer to integer
containing the length (in bytes) of the field containing the key being
imported. The maximum size specified is 2500 bytes.

RSA_enciphered_key
The RSA_enciphered_key parameter is a pointer to a string variable
containing the key being imported.

RSA_private_key identifier_length
The RSA private_key identifier_length parameter is a pointer to an integer
variable containing the length (in bytes) of the field containing the RSA key
used to decipher the RSA-enciphered key, or the key label of such a key.
The maximum size specified is 2500 bytes.

RSA_private_key_identifier
The RSA private_key identifier parameter is a pointer to a string variable
containing a key label or a PKA96 key token with the internal RSA private
key to be used to decipher the RSA-enciphered key.

Target_key_identifier_length
The target_key identifier_length parameter is a pointer to an integer variable
containing the length (in bytes) of the field containing the
target_key_identifier. On output, the variable is updated with the actual
length of the key field. The maximum size specified is 2500 bytes.

Target_key_identifier
The target key_identifier parameter is a pointer to a string variable
containing either a key label, an internal key token, or a null key token.
Any identified internal key token must contain a control vector that conforms
to the requirements of the key that is imported. For example, if the
PKCS-1.2 keyword is used in the rule array, the key token must contain a
default-value, DATA key control vector. The imported key will be returned in
a key token identified through this parameter.

IBM 4758 CCA Services

PKA_Symmetric_Key_Import

Required Commands

The PKA_Symmetric_Key Import verb requires the Symmetric Key Import
command (offset X'0106') to be enabled in the hardware.

Chapter 5. Basic CCA DES Key Management 5-49

5-50 IBM 4758 CCA Services

Chapter 6. Data Confidentiality and Data Integrity

Figure 6-1. Data Confidentiality and Data Integrity Verbs
Verb Page | Service Entry Svc
Point Len
Decipher 6-4 Deciphers data. CSNBDEC E
Encipher 6-7 Enciphers data. CSNBENC E
MAC_Generate 6-10 Generates a message authentication code (MAC). CSNBMGN E
MAC_Verify 6-13 Verifies a MAC. CSNBMVR E
Svc Len: Service location: E=Engine, S=Security API software

This chapter describes the verbs that use the Data Encryption Standard (DES)
algorithm to encrypt and decrypt data and to generate and verify a message
authentication code (MAC).

Encryption and Message Authentication Codes

This section explains how to use the services described in this chapter to ensure
the confidentiality of data through encryption, and to ensure the integrity of data
through the use of Message Authentication Codes (MAC).

Note: See Chapter 4, “Hashing and Digital Signatures” on page 4-1 for
information about other ways to ensure data integrity.

Ensuring Data Confidentiality

© Copyright IBM Corp. 1997

You can use the Encipher verb to convert plaintext to ciphertext, and the
Decipher verb to reverse the process to convert ciphertext back to plaintext.
These services use the DES data encryption algorithm. DES operates on
blocks of 64 bits (8 bytes).

If you know that your data will always be a multiple of 8 bytes, you can request
the use of the cipher block chaining mode of encryption, designated CBC. In
this mode of encryption, the enciphered result of encrypting one block of
plaintext is exclusive-ORed with the subsequent block of plaintext prior to
enciphering the second block. This process is repeated through the processing
of your plaintext. The process is reversed in decryption; see “Ciphering
Methods” on page D-3.

Note that if some portion of the ciphertext is altered, the CBC decryption of that
block and the subsequent block will not recover the original plaintext; other
blocks of plaintext will be correctly recovered. CBC encryption is used to
disguise patterns in your data that could be seen if each data block was
encrypted by itself.

In general, data to be ciphered is not a multiple of 8 bytes. In this case you
need to adopt a strategy for the last block of data. The Encipher and Decipher
verbs also support the ANSI X9.23 mode of encryption. In X9.23 encryption, at
least one byte, and up to eight bytes, of data are always added to the end of
your plaintext. The last of the added bytes is a binary value equal to the

6-1

number of added bytes. In X9.23 decryption, the padding is removed from the
decrypted plaintext.

Whenever the first block of plaintext has a predictable value, it is important to
modify the first block of data prior to encryption to deny an adversary a known
plaintext-ciphertext pair. There are two common approaches:

e Use an initialization vector
¢ Prepend your data with 8 bytes of random data, an initial text sequence.

An initialization vector is exclusive-ORed with the first block of plaintext prior to
encrypting the result. The initialization vector is exclusive-ORed with the
decryption of the first block of ciphertext to correctly recover the original
plaintext. You must of course have a means of passing the value of the
initialization vector from the encryption process to the decryption process; a
common solution to the problem is to pass the initialization vector as an
encrypted quantity during key agreement between the encrypting and decrypting
processes. You specify the value of an initialization vector when you invoke the
Encipher and the Decipher verbs.

If the procedure for agreeing on a key does not readily result in passing of an
encrypted quantity that can serve as the initialization vector, then you can add 8
bytes of random data to the start of your plaintext. Of course the decrypting
process must remove this initial text sequence as it recovers your plaintext. An
initialization vector valued to binary zero is used in this case.

The key used to encrypt or decrypt your data is specified in a key token. The
control vector for the key must be of the general class DATAL.

If an invocation of the Encipher or the Decipher verb should include use of the
initialization vector value, use the keyword INITIAL. If there is more data that is
a logical extension of preceding data, you can use the keyword CONTINUE. In
this case, the initialization vector value is not used, but the enciphered value of
the last block of data from a prior ciphering verb is taken from the
chaining_vector save area that you must provide with each use of the ciphering
verbs. Each portion of your data must be a multiple of eight bytes and you must
use the CBC encryption mode. You can use X9.23 keyword with the final
invocation of the ciphering verbs if your processes use this method to
accommodate data that can be other than a multiple of eight bytes

Ensuring Data Integrity

CCA offers three classes of services for ensuring data integrity:

¢ Message authentication code (MAC) techniques based on the DES
algorithm

¢ Hashing techniques

¢ Digital signature techniques.

1 Uppercase letters are used for DATA to distinguish the meaning from a more general sense in which the term data keys means
keys used for ciphering and MACing. In this publication, DATA means the control-vector specified class of keys that can
participate in Encipher and Decipher verbs. Note that the default value of the DATA control vector also permits DATA keys to
participate in MAC_Generate and MAC_Verify operations. This is not true for all implementations of CCA.

6-2

IBM 4758 CCA Services

For information on using hashing or digital signhatures to ensure the integrity of
data, see Chapter 4, “Hashing and Digital Signatures.” This chapter describes
the MAC verbs.

The MAC_Generate and the MAC_Verify verbs support message authentication
code generation and verification consistent with ANSI standard X9.9 and

ISO DP 8731, Part I. You can employ MAC values with four, six, or eight-byte
lengths (32, 48, or 64 bits) by using the MACLEN4, MACLENG6, or MACLENS8
keywords in the rule array. MACLEN4 is the default.

When generating or verifying a 32-bit MAC, exchange the MAC in one of these
ways:

e Binary, in four bytes (the default method)
¢ Eight hexadecimal characters, invoked using the HEX-8 keyword

¢ Eight hexadecimal characters with a space character between the fourth and
fifth hex characters invoked using the HEX-9 keyword.

For details about MAC services, see the MAC_Generate verb on page 6-10 and
the MAC_Verify verb on page 6-13.

MACing Segmented Data
The MAC services described in this chapter allow you to divide a string of data
into parts, and generate or verify a MAC in a series of calls to the appropriate
verb. This can be useful when it is inconvenient or impossible to bring the entire
string into memory. For example, you might wish to MAC the entire contents of
a data set tens or hundreds of mega-bytes in length. The length of the data in
each procedure-call is restricted only by the operating environment and the
particular verb. For restrictions to a verb, see the “Restriction” section of the
verb descriptions later in this chapter.

In each procedure-call, a segmenting-control keyword indicates whether the call
contains the first, middle, or last unit of segmented data; the chaining vector
parameter specifies the work area that the verb uses. (The default
segmenting-control keyword ONLY specifies that segmenting is not used.)

Chapter 6. Data Confidentiality and Data Integrity 6-3

Decipher

Deciphe r (CSNBDEC)

Platform/ DOS 0S/2 AIX NT 0S/400 MVS Service
Product Subset
Fortress X X X Basic

Restrictions

Format

Parameters

6-4 IBM 4758 CCA Services

The Decipher verb uses the Data Encryption Standard (DES) or the Commercial
Data Masking Facility (CDMF) algorithm and a cipher key to decipher data
(ciphertext). This verb results in data called plaintext.

Performance can be enhanced if you align the start of the plaintext and
ciphertext variables on a four-byte boundary.

For information about the ciphering verbs, see “Ensuring Data Confidentiality” on
page 6-1.

The maximum text_length is restricted to 32 mega-bytes.

CSNBDEC

return_code Input Integer

reason_code Input Integer

exit_data_length Input Integer

exit_data Inp/Outp String exit_data_length bytes
key_identifier Input String 64 bytes

text_length In/Out Integer

ciphertext Input String text_length bytes
initialization_vector Input String 8 bytes
rule_array_count Input Integer

rule_array Input String array rule_array_count * 8 bytes
chaining_vector In/Out String 18 bytes

plaintext Output String text_length bytes

For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

key_identifier
The key_identifier parameter is a pointer to a string variable containing a
64-byte internal key token or a key label of an internal key token record in
key storage.

text_length
The text length parameter is a pointer to an integer variable containing the
length of the ciphertext. If the plaintext returned is a different length
because the padding was removed, the verb updates the input value to the
length of the plaintext.

ciphertext
The ciphertext parameter is a pointer to a string variable containing the text
to be deciphered.

Decipher

initialization_vector
The initialization_vector parameter is a pointer to an eight-byte string
variable containing the initialization_vector the verb uses with the input data.

rule_array_count
The rule_array _count parameter is a pointer to an integer variable
containing the number of elements in the rule array.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. If the rule array does not
specify a ciphering method, the default ciphering method is CBC.

For an adapter that supports both DES and CDMF, you can choose the
encryption process. The rule_array keywords are shown below:

Figure 6-2. Decipher Rule_Array Keywords

Keyword Meaning

Ciphering Method Selection

CBC Specifies cipher-block chaining. The data must be a
multiple of eight bytes.

X9.23 Specifies cipher-block chaining with one to eight bytes of
padding. This is compatible with the requirements in ANSI
Standard X9.23.

ICV Selection

INITIAL Specifies use of the initialization-vector from the key token
or the initialization-vector to which the initialization _vector
parameter points. This is the default.

CONTINUE Specifies use of the initialization-vector to which the
chaining_vector parameter points. The CONTINUE
keyword is not valid with with the X9.23 keyword.

Cipher Algorithm

DES Specifies use of the DES ciphering algorithm. If an
adapter does not support DES general data-decipherment,
the verb is rejected. This is the default on an adapter that
supports both DES and CDMF.

CDMF Specifies use of the CDMF ciphering algorithm.

chaining_vector
The chaining_vector parameter is a pointer to an 18-byte string variable
containing the segmented data between calls by the security server. The
output chaining vector is contained in bytes zero through seven.

Note: The application program must not change the data in this string.

plaintext
The plaintext parameter is a pointer to a string variable to contain the
plaintext the verb returns. The starting address of plaintext cannot begin
within ciphertext.

Chapter 6. Data Confidentiality and Data Integrity 6-5

Decipher

Required Commands

The Decipher verb requires the Decipher command (offset X'000F"') to be
enabled in the hardware.

6-6 IBM 4758 CCA Services

Encipher

Enciphe r (CSNBENC)

Platform/ DOS 0S/2 AIX NT 0S/400 MVS Service
Product Subset
Fortress X X X Basic
The Encipher verb uses the DES algorithm and a secret key to encipher data.
This verb returns data called ciphertext.
Ciphertext can be as many as eight bytes longer than the plaintext due to
padding. Ensure the ciphertext buffer is large enough.
Performance can be enhanced by aligning the start of the plaintext and
ciphertext variables on four-byte boundaries.
For general information about the ciphering verbs, see “Ensuring Data
Confidentiality” on page 6-1.
Restrictions
The maximum text_length is restricted to 32 mega-bytes.
Format
CSNBENC
return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data Inp/Outp String exit_data_length bytes
key _identifier In/Out String 64 bytes
text_length In/Out Integer
plaintext Input String text_length bytes
initialization_vector Input String 8 bytes
rule_array_count Input Integer
rule_array Input String array rule_array_count * 8 bytes
pad_character Input Integer
chaining_vector In/Out String 18 bytes
ciphertext Output String text_length bytes
Parameters

For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

key _identifier
The key_identifier parameter is a pointer to a 64-byte string variable
containing an internal key token or the key label of an internal key token
record in key storage.

text_length
The text length parameter is a pointer to an integer variable containing the
length of the plaintext and ciphertext. If ciphertext is longer because
padding bytes were added, the verb updates the input value to be the length
of the ciphertext.

plaintext
The plaintext parameter is a pointer to a string variable containing the text to
be enciphered.

Chapter 6. Data Confidentiality and Data Integrity 6-7

Encipher

initialization_vector
The initialization_vector parameter is a pointer to an eight-byte string
variable containing the initialization_vector the verb uses with the input data.

rule_array_count
The rule_array _count parameter is a pointer to an integer variable
containing the number of elements in the rule array.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. If the rule array does not
specify a ciphering method, the default method is CBC. The rule_array
keywords are shown below:

Figure 6-3. Encipher Rule_Array Keywords

Keyword Meaning

Ciphering Method Selection

CBC Specifies cipher-block chaining. The data must be a
multiple of eight bytes.

X9.23 Specifies cipher block chaining with one to eight bytes of
padding. This is compatible with the requirements in ANSI
Standard X9.23.

ICV Selection

INITIAL Specifies use of the initialization-vector from the key token
or the initialization-vector to which the initialization_vector
parameter points. This is the default.

CONTINUE Specifies use of the initialization-vector to which the
chaining_vector parameter points. The CONTINUE
keyword is not valid with the X9.23 keyword.

Cipher Algorithm

DES Specifies use of the DES ciphering algorithm. If an
adapter does not support DES general data encipherment,
the verb is rejected. This is the default on an adapter that
supports both DES and CDMF.

CDMF Specifies use of the CDMF ciphering algorithm.

pad_character
The pad_character parameter is a pointer to an integer containing a value
used as a padding character. The value must be in the range from 0 to
255. When you use the X9.23 ciphering method, the security server
extends the plaintext with a count byte and padding bytes as required.

chaining_vector
The chaining_vector parameter is a pointer to an 18-byte string variable that
the security server uses as a work area to carry segmented data between
procedure-calls.

Note: The application program must not change the data in this string.

6-8 IBM 4758 CCA Services

Encipher

ciphertext
The ciphertext parameter is a pointer to a string variable that receives the
enciphered text. The ciphertext field might be eight bytes longer than the
plaintext because padding. The starting address of ciphertext cannot begin
within plaintext.

Required Commands

The Encipher verb requires the Encipher command (offset X'000E") to be
enabled in the hardware.

Chapter 6. Data Confidentiality and Data Integrity 6-9

MAC_Generate

MAC_Generate (CSNBMGN)

Platform/ DOS 0S/2 AIX NT 0S/400 MVS Service
Product Subset
Fortress X X X Basic

Restrictions

Format

Parameters

The MAC_Generate verb generates a message authentication code (MAC) for a
text string supplied by the application program.

Performance can be enhanced by aligning the start of the text variable on a
four-byte boundary.

For information about using the MAC generation and verification verbs, see
“Ensuring Data Integrity” on page 6-2.

Text length must be at least eight bytes and less than 32 mega-bytes.

CSNBMGN

return_code Input Integer

reason_code Input Integer

exit_data_length Input Integer

exit_data Inp/Outp String exit_data_length bytes
key _identifier In/Out String 64 bytes

text_length Input Integer:c,

text Input String text_length bytes
rule_array_count Input Integer

rule_array Input String array rule_array_count * 8 bytes
chaining_vector In/Out String 18 bytes

MAC Output String 8 or 9 hytes

For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

key_identifier
The key_identifier parameter is a pointer to a 64-byte string variable
containing an internal key token or the key label of an internal key token
record in key storage.

text_length
The text length parameter is a pointer to an integer containing the length of
the text.

text
The text parameter is a pointer to a string variable containing the text the
hardware uses to calculate the MAC.

rule_array_count
The rule_array count parameter is a pointer to an integer variable
containing the number of elements in the rule array.

6-10 IBM 4758 CCA Services

MAC_Generate

If the rule array count value is zero, the default MAC-ciphering method is
X9.9-1, the default segmenting-control is ONLY, and the default MAC-length
is MACLEN4.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords
are shown below:

Figure 6-4. MAC_Generate Rule_Array Keywords

Keyword Meaning
MAC Ciphering Methods (Optional)
X9.9-1 Specifies the ANSI X9.9-1 and X9.19 Basic Procedure.

This is the default.

Segmenting Control (One, optional)

ONLY Specifies the application program does not use
segmenting. This is the default.

FIRST Specifies this is the first segment of data from the
application program.

MIDDLE Specifies this is an intermediate segment of data from the
application program.

LAST Specifies this is the last segment of data from the
application program.

MAC Length and Presentation (One, optional)

MACLEN4 Specifies a four-byte MAC. This is the default.

MACLENG6 Specifies a six-byte MAC.

MACLENS Specifies an eight-byte MAC.

HEX-8 Specifies a four-byte MAC and presents it as eight
hexadecimal characters.

HEX-9 Specifies a four-byte MAC and presents it as two groups of
four hexadecimal characters separated by a space
character.

chaining_vector
The chaining_vector parameter is a pointer to an 18-byte string variable the
security server uses as a work area to carry segmented data between
procedure-calls.

Note: The application program must not change the data in this string.

MAC
The MAC parameter is a pointer to a string variable that receives the
resulting MAC. The value is left-justified in the field. Allocate a field large
enough to receive the resulting eight-byte MAC value.

Note: If you specify the HEX-9 keyword, the resulting MAC is 9 bytes in
length.

Chapter 6. Data Confidentiality and Data Integrity ~6-11

MAC_Generate

Required Commands

The MAC_Generate verb requires the Generate MAC command (offset X'10")
to be enabled in the hardware.

6-12 IBM 4758 CCA Services

MAC_Verify

MAC_Verify (CSNBMVR)

Platform/ DOS 0S/2 AIX NT 0S/400 MVS Service
Product Subset
Fortress X X X Basic

Restrictions

Format

Parameters

The MAC_Verify verb verifies a message authentication code (MAC) for a text
string supplies by the application program.

Performance can be enhanced by aligning the start of the text variable on a
four-byte boundary.

For information about using the MAC generation and verification verbs, see
“Ensuring Data Integrity” on page 6-2.

Text length must be at least eight bytes and less than 32 mega-bytes.

CSNBMVR

return_code Input Integer

reason_code Input Integer

exit_data_length Input Integer

exit_data Inp/Outp String exit_data_length bytes
key _identifier In/Out String 64 bytes

text_length Input Integer

text Input String text_length bytes
rule_array_count Input Integer

rule_array Input String array rule_array_count * 8 bytes
chaining_vector In/Out String 18 bytes

MAC Input String 9 bytes

For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

key_identifier
The key_identifier parameter is a pointer to a 64-byte string variable
containing an internal key token or the key label of an internal key token
record in key storage.

text_length
The text length parameter is a pointer to an integer containing the length of
the text the hardware uses to calculate the MAC.

text
The text parameter is a pointer to a string variable containing the text the
hardware uses to calculate the MAC.

rule_array_count
The rule_array count parameter is a pointer to an integer variable
containing the number of elements in the rule array.

Chapter 6. Data Confidentiality and Data Integrity ~ 6-13

MAC_Verify

If the rule array count value is zero, the default MAC-ciphering method is
X9.9-1, the default segmenting-control is ONLY, and the default MAC-length
is MACLEN4.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords
are shown below: If the rule array does not specifies a MAC-length, the
default method is MACLENA4.

Figure 6-5. MAC_Verify Rule_Array Keywords

Keyword Meaning
MAC Ciphering Methods (Optional)
X9.9-1 Specifies the ANSI X9.9-1 and X9.19 Basic Procedures.

This is the default.

Segmenting Control (One, optional)

ONLY Specifies the application program does not use
segmenting. This is the default.

FIRST Specifies this is the first segment of data from the
application program.

MIDDLE Specifies this is an intermediate segment of data from the
application program.

LAST Specifies this is the last segment of data from the
application program.

MAC Length and Presentation (One, optional)

MACLEN4 Specifies a four-byte MAC. This is the default.

MACLENG6 Specifies a six-byte MAC.

MACLENS Specifies an eight-byte MAC.

HEX-8 Specifies a four-byte MAC and presents it as eight
hexadecimal characters.

HEX-9 Specifies a four-byte MAC and presents it as two groups of
four hexadecimal characters separated by a space
character.

chaining_vector
The chaining_vector parameter is a pointer to an 18-byte string variable the
security server uses as a work area to carry segmented data between
procedure-calls.

Note: The application program must not change the data in this string.

MAC
The MAC parameter is a pointer to a string variable containing the trial
MAC. The value must be left-justified in the field. Nine bytes are sent to
the security server. The verb verifies the MAC if you specify the ONLY or
LAST keyword for the segmenting control. Otherwise, ensure that this
parameter is a pointer to a 9-byte variable in application data storage. The
information in this variable is ignored, but the variable must be declared.

6-14 1BM 4758 CCA Services

MAC_Verify

Required Commands

The MAC_Verify verb requires the Verify MAC command (offset X'0011') to be
enabled in the hardware.

Chapter 6. Data Confidentiality and Data Integrity 6-15

6-16 IBM 4758 CCA Services

Chapter 7. Key Storage Verbs

Figure 7-1. Key Storage Record Services
Verb Page | Service Entry Svc
Point Len

DES_Key_Record_Create 7-4 Creates a key record in DES key storage. CSNBKRC S

DES_Key_Record_Delete 7-5 Deletes a key record or deletes the key token from a key CSNBKRD S
record in DES key storage.

DES_Key_Record_List 7-7 Lists the key-names of the key records in DES key CSNBKRL S
storage.

DES_Key_Record_Read 7-9 Reads a key token from DES key storage. CSNBKRR S

DES_Key_Record_Write 7-10 Writes a key token into DES key storage. CSNBKRW S

PKA_Key_Record_Create 7-11 Creates a record in the public-key key-storage. CSNDKRC S

PKA_Key_Record_Delete 7-13 Deletes a record or deletes the key token from a record in CSNDKRD S
public-key key-storage.

PKA_Key_Record_List 7-15 Lists the key-names of the records in public-key CSNDKRL S
key-storage.

PKA_Key_Record_Read 7-17 Reads a key token from public-key key-storage. CSNDKRR

PKA_Key_Record_Write 7-19 Writes a key token in public-key key-storage. CSNDKRW

Svc Len: Service location: E=Cryptographic Engine, S=Security API software

This chapter describes how you can use key-storage mechanisms and the
associated verbs for creating, writing, reading, listing, and deleting records in
key storage.

Key Labels and Key Storage Management

© Copyright IBM Corp. 1997

Use the verbs described in this chapter to manage key storage. The CCA
support software manages key storage as an indexed repository of key records.
Access key storage through the use of a key label.

There are two independent key storage systems to manage records for DES key
records and for PKA key records. DES key storage holds internal DES key
tokens and PKA key storage holds both internal and external PKA key tokens.

Key-storage must be initialized before any records are created. Before a key
token can be stored in key storage, a key-storage record must be created using
the Key_Record_Create verb.

Use the Key Record_Delete verb to delete a key token from a key record, or to
delete both the key token and the key record.

Use the Key_Record_List verb to determine the existence of key records in key
storage. The Key Record_List verb creates a key record list dataset with
information about select key records. The wildcard character (*) is used to
obtain information about multiple key records. The data set can be read using
conventional workstation-data-management services.

7-1

7-2

Individual key tokens can be read or written using the Key _Record_Read or
Key_Record_Write verbs

Key Label Content

IBM 4758 CCA Services

Use a key label to identify a record or records in key storage managed by a
CCA implementation. The key label must be left-justified in the 64-byte string
variable used as input to the verb. Some verbs specify use of a key label while
others specify use of a key identifier; calls that use a key identifier accept either
a key token or a key label.

A key label character string has the following properties:

¢ |If the first character is within the range X'20' through X'FE', the input is be
treated as a key label, even if it is otherwise not valid. (Inputs begining with
a byte valued in the range X'00' through X'1F' are considered to be some
form of key token. A first-byte valued to X'FF' is not valid.)

e The label is terminated by a space character on the right (ASCII X'20',
EBCDIC X'40'). The remainder of the 64-byte field is padded with space
characters.

e Construct a label with one to seven name_tokens, each separated by a
period (“."). The key label must not end with a period.

¢ A name_token consists of one-to-eight characters in the character set A...Z,
0...9, and three additional characters relating to different character symbols
in the various national language character sets as listed below:

ASCII EBCDIC USA Graphic
Systems Systems (for reference)
X'23' X'7B!' #

X'24' X'5B! $

X'40' xX'7C' @

The alphabetic and numeric characters and the period should be encoded in
the normal character set for the computing platform that is in use, either
ASCII or EBCDIC.

The first character of the key label can not be numeric (O, ..., 9).
Notes:

1. Some CCA implementations accept the characters a...z and fold these
to their upper case equivalents A...Z. Only use the uppercase
alphabetic characters.

2. Some implementations internally transform the EBCDIC encoding of a
key label to an ASCII string. Also, the label may be “tokenized” by
dropping the periods and formatting it into eight-byte groups padded with
space characters.

Some verbs accept a key label containing a “wildcard”; an asterisk (**")
represents the wildcard (X'2A" in ASCII; X'5C"' in EBCDIC). When a verb
permits the use of a wildcard, the wildcard can appear as the first character, as
the last character, or as the only character in a name token. Any of the name
tokens can contain a wild card.

Examples of valid key labels include the following:

A

ABCD.2.3.4.5555
ABCDEFGH

BANKSYS . XXXXX.43.*PDQ

Examples of not valid key labels include the following:

a..a (zero length token. Token names must be at least one character)
A/.B (includes an unacceptable character, */”)

ABCDEFGH9 (name token too long)

11111111.2.3.4.55555 (first character numeric)
A1111111.2.3.4.55555.6.7.8 (too many name tokens)
BANKSYS.XXXXX.*43%.D (more than one wild card in a name token).

Chapter 7. Key Storage Verbs 7-3

DES_Key_ Record_Create

DES_Key Record Create (CSNBKRC)

Platform/ 0Ss/2 AlX NT 0OS/400 MVS Verb Subset
Product
Fortress X X X Basic

The DES_Key Record Create verb adds a key record to DES key storage. Itis
identified by the key label specified using the key label parameter.

After creating a key record, you can use any of the following verbs to add or
update a key token in the key record:

e DES Key Record_Write
e Data_Key_Import

e Key_Import

e Key Part_Import

e Key_Generate

To delete a key record, you must use the DES_Key Record_Delete verb.

Restrictions

None.

Format

CSNBKRC

return_code Input Integer

reason_code Input Integer

exit_data_length Input Integer

exit_data Inp/Outp String exit_data_length bytes

key_label Input String 64 bytes
Parameters

For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

key_label
The key label parameter is a pointer to a 64-byte string variable containing
key label of the key record to be created.

Require d Commands
None.

7-4 I1BM 4758 CCA Services

DES_Key_ Record_Delete

DES_Key Record Delete (CSNBKRD)

Platform/ 0Ss/2 AlX NT 0OS/400 MVS Verb Subset
Product
Fortress X X X Basic

The DES_Key Record Delete verb does the following:

¢ Replaces the token in key record with a null token.

¢ Deletes an entire key record, including the key label, from key storage.

Identify the task with the rule_array keyword, and the key record with the
key_label. To identify multiple records, use a wildcard (*) in the key label.

Restrictions

None.

Format

CSNBKRD

return_code Input Integer

reason_code Input Integer

exit_data_length Input Integer

exit_data Inp/Outp String exit_data_length bytes

rule_array_count Input Integer

rule_array Input String array rule_array_count * 8 bytes

key label Input String 64 bytes
Parameters

For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

rule_array_count

The rule_array count parameter is a pointer to an integer containing the
number of elements in the rule array. The value of the rule_array count

must be zero or one for this verb.

rule_array

The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords

are shown below:

Figure 7-2. Key Token_BuildRule_Array Keywords

Keyword Meaning

is the default.

TOKEN-DL Deletes a key token from a key record in key storage. This

key storage.

LABEL-DL Deletes an entire key record, including the key label, from

Chapter 7. Key Storage Verbs

7-5

DES_Key_ Record_Delete

key label
The key label parameter is a pointer to a 64-byte string variable containing
the key label of a key token record in key storage. In a key label, use a wild
card (*) to identify multiple records in key storage.

Required Commands
None.

7-6 IBM 4758 CCA Services

DES_Key Record_List

DES_Key Record List (CSNBKRL)

Platform/ 0Ss/2

Product

AlX NT 0OS/400 MVS Verb Subset

Fortress

Restrictions

Format

Parameters

X

X X Basic

The DES_Key Record_List verb creates a Key Record List data set containing
information about specified key records in key storage. Information includes
whether record validation is correct, the type of key, and the date and time the
record was created and last updated.

Specify the key records to be listed using the key label variable; to identify
multiple key records, use the wildcard (*) in the key label.

Note: To list all the labels in key storage, speicfy a key_label of

ook x kXX etc.

The verb creates the list data set and returns the name of the data set and and
the length of the data set name to the calling application. This data set has a
header record, followed by 0 to n detail records, where n is the number of key
records with matching key labels. For information about the header and detail
records, see “Key Record List Data Set” on page B-13.

None.
CSNBKRL
return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data Inp/Outp String exit_data_length bytes
key_label Input String 64 bytes
data_set_name_length QOutput Integer
data_set_name Output String data_set_name_length bytes
security_server_name Output String 8 bytes

For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

key_label
The key_label parameter is a pointer to a 64-byte string variable containing
the key label of a key token record in key storage. In a key label, you can
use a wild card (*) to identify multiple records in key storage.

data_set_name_length
The data_set_name_length parameter is a pointer to an integer variable
containing the length of the name returned in the data_set name variable.

Chapter 7. Key Storage Verbs 7-7

DES_Key Record_List

data_set _name
The data_set_name parameter is a pointer to a 64-byte string variable
where the verb returns the name of the data set containing the key record
information. The data_set _name is left justified in the field.

The verb returns the data_set_name as a fully qualified file specification (for
example, C:|\PKADIR\KYRLTnnn.LST in the OS/2 environment), where nnn

is the numeric portion of the name. This value increases by one every time
you use this verb; when it reaches 999, the value is reset to 001.

Note: When the verb stores a key Record_List data set, it overlays any
older data set ith the same nnn value in its name.

security_server_name
The security_server_name parameter is a pointer to an eight-byte string
variable. The information in this variable will not be used, but you must
identify the variable.

Required Commands
None.

7-8 IBM 4758 CCA Services

DES_Key_ Record_Read

DES Key Record Read (CSNBKRR)

Platform/
Product

0Ss/2 AlX NT 0OS/400 MVS Verb Subset

Fortress

X X X Basic

The DES_Key Record_Read verb copies a key token from key storage to
application data storage. The returned key token can be null.

Restrictions

This service does not have any restrictions.

Format

CSNBKRR

return_code Input Integer

reason_code Input Integer

exit_data_length Input Integer

exit_data Inp/Outp String exit_data_length bytes

key label Input String 64 bytes

key token Output String 64 bytes
Parameters

For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

key label
The key label parameter is a pointer to a 64-byte string variable containing
the key label of the record to be read from key storage.

key_token
The key token parameter is a pointer to a 64-byte string variable to contain
the token read from key storage.

Require d Commands

None.

Chapter 7. Key Storage Verbs 7-9

DES_Key Record_Write

DES _Key Record Write (CSNBKRW)

Platform/ 0Ss/2 AlX NT 0OS/400 MVS Verb Subset
Product
Fortress X X X Basic

The DES_Key_ Record Write verb copies an internal DES key token from
application data storage into DES key storage.

Before you use the DES_Key_ Record_Write verb, use
DES_Key_Record_Create to create a key record.

Restrictions

None.

Format

CSNBKRW

return_code Input Integer

reason_code Input Integer

exit_data_length Input Integer

exit_data Inp/Outp String exit_data_length bytes

key token Output String

key_label Input String 64 bytes
Parameters

For the definitions of the return_code, reason _code, exit_data length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

key_token
The key token parameter is a pointer to a string variable containing the
DES internal key token to be written into key storage.

key_label
The key_label parameter is a pointer to a 64-byte string variable containing
the key label that identifies the record in key storage where the key token is
to be written.

Require d Commands
None.

7-10 IBM 4758 CCA Services

PKA_Key Record_Create

PKA Key Record Create (CSNDKRC)

Platform/ 0Ss/2 AlX NT 0OS/400 MVS Verb Subset
Product
Fortress X X X PKA96

Restrictions

Format

Parameters

The PKA_Key Record_Create service adds a key record to PKA key storage.
The new key record may be a null key token or a valid PKA internal or external
token. It is identified by the key label specified with the key label parameter.

After creating a key record, you can use any of the following verbs to add or
update a key token in the record:

¢ PKA_Key_Import

e PKA_Key_Generate

To delete a key record, you must use the PKA_Key Record_Delete verb.

None.
CSNDKRC
return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data Inp/Outp String exit_data_length bytes
rule_array _count Input Integer
rule_array Input String array rule_array_count * 8 bytes
key_label Input String 64 bytes
key token_length Input Integer
key_token Input String key_token_length bytes

For the definitions of the return_code, reason _code, exit_data length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

rule_array_count
The rule_array count parameter is a pointer to an integer containing the
number of elements in the rule array. The value of the rule_array count
must be zero for this verb.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. Currently this verb does not
require keywords and this field is ignored.

key_label
The key label parameter is a pointer to a 64-byte string variable containing
the key label of the key record to be created.

Chapter 7. Key Storage Verbs 7-11

PKA_Key Record_Create

key token_length
The key token length parameter is a pointer to an integer variable
containing the length (in bytes) of the key token to be written to key
storage. If key _token_length contains zero, a record with a null PKA key
token is created.

key_token
The key token parameter is a pointer to a 64-byte string variable containing
the the key token being written to key storage.

Required Commands
None.

7-12 1BM 4758 CCA Services

PKA_Key Record_Delete

PKA Key Record Delete (CSNDKRD)

Platform/ 0Ss/2 AlX NT 0OS/400 MVS Verb Subset
Product
Fortress X X X PKA96

The PKA_Key Record_Delete verb does the following:

¢ Replaces the token in key record with a null token.

¢ Deletes an entire key record, including the key label, from key storage.

Identify the task with the rule_array, and the key record with the key label. To

identify multiple records, use a wild card (*) in a key label.

Restrictions

None.
Format
CSNDKRD
return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data Inp/Outp String exit_data_length bytes
rule_array_count Input Integer
rule_array Input String array rule_array_count * 8 bytes
key label Input String
Parameters

For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

rule_array_count

The rule_array count parameter is a pointer to an integer containing the
number of elements in the rule array. The value of the rule_array count

may be zero or one for this verb.

rule_array

The rule_array parameter is a pointer to an array of keywords. The

keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords

are shown below:

Figure 7-3. Key_Token_BuildRule_Array Keywords

Keyword Meaning

This is the default.

TOKEN-DL Deletes a key token from a key record in key storage.

key storage.

LABEL-DL Deletes an entire key record, including the key label, from

Chapter 7. Key Storage Verbs

7-13

PKA_Key_Record_Delete

key label
The key label parameter is a pointer to a string variable containing the key
label of a key token record in key storage. In a key label, use a wild card (*)
to identify multiple records in key storage.

Required Commands
None.

7-14 1BM 4758 CCA Services

PKA_Key Record_List

PKA Key Record List (CSNDKRL)

Platform/ 0Ss/2 AlX NT 0S/400 MVS Verb Subset
Product
Fortress X X X PKA96

Restrictions

Format

Parameters

The PKA_Key Record_List verb creates a Key Record List data set containing
information about specified key records in key storage. Information includes
whether record validation is correct, the type of key, and the date and time when
the record was created and last updated.

Specify the key records to be listed using the key label variable; to identify
multiple key records, use the wild card (*) in a key label.

Note: To list all the labels in key storage, speicfy a key_label of

ok x O OREE etc.

The verb creates the list data set and returns the name of the data set and the
length of the data set name to the calling application. The verb also returns the
name of the security server where the data set is stored. The

PKA_Key Record_List data set has a header record, followed by 0 to n detail
records, where n is the number of key records with matching key labels. For
information about the header and detail records, see “Key Record List Data Set”
on page B-13.

None.
CSNDKRL
return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data Inp/Outp String exit_data_length bytes
rule_array_count Input Integer
rule_array Input String array rule_array_count * 8 bytes
key label Input String 64 bytes
data_set_name_length Output Integer
data_set_name Output String data_set_name_length bytes
security_server_name Output String 8 bytes

For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

rule_array_count
The rule_array _count parameter is a pointer to an integer containing the
number of elements in the rule array. The value of the rule_array count
must be zero for this verb.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,

Chapter 7. Key Storage Verbs 7-15

PKA_Key_ Record_List

and padded on the right with space characters. Currently this verb does not
require keywords and this field is ignored.

key_label
The key label parameter is a pointer to a 64-byte string variable containing
a key record in key storage. You can use a wild card (*) to identify multiple
records in key storage.

data_set _name_length
The data_set_name_length parameter is a pointer to an integer variable
containing the length of the name returned in the data_set name variable.

data_set _name
The data_set_name parameter is a pointer to 64-byte string variable where
the verb returns the name of the data set containing the key record
information. The data_set _name is left justified in the field.

The verb returns the data_set_name as a fully qualified file specification (for
example, C:\PKADIR\KYRLTnnn.LST in the OS/2 environment), where nnn

is the numeric portion of the name. This value increases by one every time
you use this verb; when it reaches 999, the value is reset to 001.

Note: When the verb stores a key Record_List data set, it overlays any
older data set ith the same nnn value in its name.

security_server_name
The security_server_name parameter is a pointer to an eight-byte string
variable. The information in this variable is not used, but it must be
identified.

Required Commands
None.

7-16 IBM 4758 CCA Services

PKA_ Key Record_Read

PKA Key Record Read (CSNDKRR)

Platform/ 0Ss/2 AlX NT 0OS/400 MVS Verb Subset
Product
Fortress X X X PKA96

Restrictions

Format

Parameters

The PKA_Key Record Read verb copies a key token from key storage to
application data storage.

The returned key token may be null. In this event, the key_length variable
contains a value of eight and the key token variable contains eight bytes of
X'00' beginning at offset zero (see “Null Key Token” on page B-2).

None.
CSNDKRR
return_code Input Integer
reason_code Input Integer
exit_data_length Input Integer
exit_data Inp/Outp String exit_data_length bytes
rule_array _count Input Integer
rule_array Input String array rule_array_count * 8 bytes
key label Input String 64 bytes
key token_length In/Out Integer
key token Output String key_token_length bytes

For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

rule_array_count
The rule_array count parameter is a pointer to an integer containing the
number of elements in the rule array. The value of the rule_array count
must be zero for this verb.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. Currently this verb does not
require keywords and this field is ignored.

key label
The key label parameter is a pointer to a 64-byte string variable containing
the key label of the the record to be read from key storage.

key_token_length
The key token length parameter is a pointer to an integer variable
containing the length (in bytes) of the key token variable. This variable
must be large enough to hold the key token beinf read. On successful
completion, key_token_length contains the actual length of the token being
returned. The maximum size is 2500 bytes.

Chapter 7. Key Storage Verbs 7-17

PKA Key Record_Read

key token
The key token parameter is a pointer to a string variable where the PKA
token being read from key storage is to be returned.

Required Commands
None.

7-18 IBM 4758 CCA Services

PKA_Key Record_Write

PKA_ Key Record Write (CSNDKRW)

Platform/ 0Ss/2 AlX NT 0OS/400 MVS Verb Subset
Product
Fortress X X X PKA96

The PKA_Key Record_ Write verb copies an internal or external PKA key token
from application data storage into key storage.

There are two processing options:

¢ Write the new token only if the old token was null.
¢ Write the new token regardless of content of the old token.

Before you use the PKA_Key Record_Write verb, use the
PKA Key Record_Create to create a key record.

Restrictions

None.

Format

CSNDKRW

return_code Input Integer

reason_code Input Integer

exit_data_length Input Integer

exit_data Inp/Outp String exit_data_length bytes

rule_array _count Input Integer

rule_array Input String array rule_array_count * 8 bytes

key label Input String 6a4 bytes

key token_length Input Integer

key token Input String key_token_length bytes
Parameters

For the definitions of the return_code, reason _code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

rule_array_count
The rule_array count parameter is a pointer to an integer containing the
number of elements in the rule array. The value of the rule_array count
must be zero or one for this verb.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight-bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords
are shown below:

Chapter 7. Key Storage Verbs 7-19

PKA_Key Record_Write

Figure 7-4. Key Token_BuildRule_Array Keywords

Keyword Meaning

CHECK Specifies that the record will be written only if a record of
the same label in key storage contains a null token. This
is the default.

OVERLAY Specifies that the record will be overwritten regardless of
the current content of the record.

key_label
The key label parameter is a pointer to a 64-byte string variable containing
the ley label that identifies the key record in key storage where the key
token is to be written.

key token_length
The key token_length parameter is a pointer to an integer variable
containing the size (in bytes) of the key_token.

key_token
The key token parameter is a pointer to a string variable containing the the
PKA key token to be written into key storage.

Required Commands
None.

7-20 IBM 4758 CCA Services

Chapter 8. Financial Services Support Verbs

Figure 8-1. Financial Services Support Verbs

Verb Page | Service Entry Svc
Point Len
SET_Block_Compose 8-2 Creates a SET-protocol RSA-OAEP block and DES CSNDSBC
encrypts the data block in support of the SET protocols.
SET_Block_Decompose 8-5 Decomposes the RSA-OAEP block and DES decrypts the CSNDSBD
data block in support of the SET protocols.

Svc Len: Service location: E=Cryptographic Engine, S=Security AP| software

© Copyright IBM Corp. 1997

The verbs in this chapter support cryptographic operations as defined in the

Secure Electronic Transaction (SET) protocol as defined by VISA International

and Mastercard; see their Web pages for a reference to the SET protocol.

8-1

SET_Block_Compose

SET_Block_Compos e (CSNDSBC)

Platform/ DOS 0S/2 AIX NT 0S/400 MVS Service
Product Subset
Fortress X X X SET

The SET_Block_Compose verb creates a SET-protocol RSA-OAEP block and
DES encrypts the data block in support of the SET protocols. Optionally the
verb will compute the SHA-1 hash of the supplied data block and include this in
the OAEP block.

Restrictions
The data block length variable is restricted to 32 mega-bytes.

In the first release, the support for a DES-ONLY process will not be
implemented. The DES_key block length parameter must point to an integer
valued to zero. The DES key block parameter should be a null address
pointer, or point to an unused 64-byte application variable.

Format
CSNDSBC
return_code Output Integer
reason_code Output Integer
exit_data_length Input Integer
exit_data Inp/Outp String exit_data_length bytes
rule_array_count Input Integer
rule_array Input String rule_array count * 8 byt
block_contents_identifier Input String 1 byte
XData_string_length Input Integer
XData_string Input String XData_string_length bytes
data_block _length Inp/Outp Integer
data_block Input String data_block_length bytes
RSA_public_key _identifier_length Input Integer
RSA_public_key _identifier Input String RSA_public_key_identifier_length
bytes
DES _key block_length Inp/Outp Integer
DES _key block Inp/Outp String DES_key_block_length bytes
RSA-OAEP_block_length Inp/Outp Integer
RSA-OAEP_block Inp/Outp String RSA-OAEP_block_length bytes
DES_encrypted_block Output String data_block_length bytes
Parameters

8-2 IBM 4758 CCA Services

For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

rule_array_count
The rule_array _count parameter is a pointer to an integer containing the
number of elements in the rule_array variable. The value of the
rule_array count must be one or two for this verb.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords
are shown below:

SET_Block_Compose

Keyword Meaning

Block Type (Required)

SET1.00 Specifies structure of the RSA-OAEP encrypted block is
defined by the SET protocol.

Formatting information (Optional)

HASH-D A SHA-1 hash of the data in data_block is to be included
in the RSA-OAEP block. This is the default.

Block_contents_identifier
The block contents_identifier parameter is a pointer to a one-byte string
variable containing a binary value that will be copied into the Block Contents
(BC) field of the SET DB data block. The BC field indicates what data is
carried in the Actual Data Block, ADB, and the format of any extra data
(XData_string).

XData_string_length
The XData_string_length parameter is a pointer to an integer variable
containing the length (in bytes) of the XData_string. The maximum length is
94 bytes.

XData_string
The XData_string parameter is a pointer to the string containing
extra-encrypted data within the OAEP-processed and RSA-encrypted block.
If Xdata_string_length is zero, this parameter is ignored, but it must still be
specified.

Data_block_length
The data_block length parameter is a pointer to an integer variable
containing the length (in bytes) of the data block. The maximum length is
the same limit as on the Encipher service. On output, and if the field is of
sufficient length, the variable is updated with the actual length of the
DES-encrypted data block.

data_block
The data_block parameter is a pointer to a string variable containing the
data to be DES-encrypted with a single-use 64-bit DES key (generated by
this service). The data will first be padded by this service according the
PKCS #5 padding rule before encryption.

RSA_public_key_identifier_length
The RSA public_key identifier_length parameter is a pointer to an integer
variable containing the length (in bytes) of the variable that contains the key
token or the key label of the PKA96 RSA public key used to encipher the
OAEP block. The maximum size that should be specified is 2500 bytes.

RSA_public_key_identifier
The RSA_public_key _identifier parameter is a pointer to a string variable
containing the PKA96 RSA key token with the RSA public key used to
perform the RSA encryption of the OAEP block.

DES_key_block_length
The DES key block length parameter is a pointer to an integer variable
containing the length (in bytes) of the variable identified by the
DES_key block parameter. The variable must be set to zero.

Chapter 8. Financial Services Support Verbs ~ 8-3

SET_Block_Compose

DES_key block
The DES_key block parameter must be a null pointer, or a pointer to an
unused 64-byte application variable.

RSA-OAEP_block_length
The RSA-OAEP_block_length parameter is a pointer to an integer variable
containing the length (in bytes) of the RSA-OAEP block variable used to
hold the RSA-OAEP block. The length must be at least 128 bytes. On
output, and if the field is of sufficient length, the variable is updated with the
actual length of the RSA-OAEP block.

RSA-OAEP_block
The RSA-OAEP_block parameter is a pointer to a string variable to contain
the RSA-OAEP block.

DES_enciphered_data_block
The DES enciphered _data_block parameter is a pointer to a string variable
to receive the DES-encrypted data block (clear text was identified with the
data_block variable). The starting address must not fall inside the
data_block area.

Required Commands

The SET_Block_Compose verb requires the x'010B' command to be enabled in
the hardware.

8-4 IBM 4758 CCA Services

SET_Block_Decompose

SET_Block_Decompos e (CSNDSBD)

Platform/ DOS 0S/2 AIX NT 0S/400 MVS Service
Product Subset
Fortress X X X SET

The SET_Block_Decompose verb decomposes the RSA-OAEP block and DES
decrypts the data block in support of the SET protocols.

Restrictions

The maximum data block that can be supplied for DES decryption is the limit on
the Decipher service.

In the first release, the support for a DES-ONLY process will not be
implemented. The DES key block length parameter must point to an integer
valued to zero. The DES key block parameter should be a null address
pointer, or point to an unused 64-byte application variable.

Format

CSNDSBD

return_code Output Integer

reason_code Output Integer

exit_data_length Input Integer

exit_data Inp/Outp String exit_data_length bytes

rule_array _count Input Integer

rule_array Input String 8 bytes

RSA-OAEP_block_length Input Integer

RSA-OAEP_block Input String RSA-OAEP_block_length bytes

DES_encrypted_data_block_length Inp/Outp Integer

DES_encrypted_block Input String DES_encrypted_data_block_length
bytes

RSA_private_key _identifier_length Input Integer

RSA_private_key _identifier Input String RSA_private_key_identifier_length
bytes

DES_key block_length Inp/Outp Integer

DES_key block Inp/Outp String DES_key_block_length bytes

block_contents_identifier Output String 1 byte

XData_string_length Inp/Outp Integer

XData_string Qutput String XData_string_length bytes

data_block Output String DES_encrypted_data_block_length
bytes

Parameters

For the definitions of the return_code, reason_code, exit_data_length, and
exit_data parameters, see “Parameters Common to All Verbs” on page 1-7.

rule_array_count
The rule_array count parameter is a pointer to an integer containing the
number of elements in the rule_array variable. The value of the
rule_array _count must be one for this verb.

rule_array
The rule_array parameter is a pointer to an array of keywords. The
keywords are eight bytes in length, and must be uppercase, left-justified,
and padded on the right with space characters. The rule_array keywords
are shown below:

Chapter 8. Financial Services Support Verbs ~ 8-5

SET_Block_Decompose

8-6

IBM 4758 CCA Services

Figure 8-2. Key Token_BuildRule_Array Keywords

Keyword Meaning

Block Type (Required)

SET1.00 Specifies structure of the RSA-OAEP encrypted block is
defined by SET protocol.

RSA-OAEP_block_length
The RSA-OAEP_block length parameter is a pointer to an integer that is the
length in bytes of the RSA-OAEP block field. This length must be 128
bytes.

RSA-OAEP_block
The RSA-OAEP_block parameter is a pointer to the string that contains
RSA-OAEP block. When the OAEP is returned, it is left justified within the
RSA-OAEP block field.

DES_encrypted_data_block_length
The DES encrypted data_block length parameter is a pointer to an integer
variable containing the length (in bytes) of the DES encrypted data_block.
On output, the variable is updated with the actual length of the decrypted
data with padding removed.

DES_encrypted_data_block
The DES_encrypted_data_block parameter is a pointer to a string variable
containing the DES-encrypted data block.

RSA_private_key identifier_length
The RSA private_key identifier_length parameter is a pointer to an integer
variable containing the length (in bytes) of the variable that contains the key
token or the key label of the PKA96 RSA private key used to decipher the
OAEP block. The maximum size that should be specified is 2500 bytes.

RSA_private_key_identifier
The RSA private_key identifier parameter is a pointer to a string variable
containing the PKA96 RSA key token with the RSA private key used to
perform the RSA decryption of the OAEP block.

DES_key block_length
The DES_key block length parameter is a pointer to an integer variable
containing the length (in bytes) of the field DES key block. The length must
be 64 bytes.

DES_key block
The DES_key block parameter is a pointer to a string variable to contain the
generated internal token of a DES DATA key. Your application must not
change the data in this string.

Block_contents_identifier
The block contents_identifier parameter is a pointer to a one-byte string
vairable to contain the the Block Contents (BC) field of the SET DB data
block. The BC field indicates what data is carried in the Actual Data Block,
ADB, and the format of any extra data (XData string).

SET_Block_Decompose

XData_string_length
The XData_string_length parameter is a pointer to an integer variable
containing the length (in bytes) of the XData_string field. The mininum
length is 94 bytes. On output, and if the field is of sufficient length, the
variable is updated with the actual length of the XData_string returned.

XData_string
The XData_string parameter is a pointer to the string variable containing the
extra-encrypted data within the OAEP-processed and RSA-decrypted block.

Data_block

The data_block parameter is a pointer to a string variable to contain the
decrypted DES encrypted data block. The starting address must not fall

inside the DES encrypted data block area. Padding characters are
removed.

Required Commands

The SET_Block_Decompose verb requires the x'010C' command to be enabled
in the hardware.

Chapter 8. Financial Services Support Verbs ~ 8-7

8-8 IBM 4758 CCA Services

Appendix A. Return Codes and Reason Codes

This appendix describes the return codes and the reason codes that a verb uses to
report the results of processing.

Each return code is associated with a reason code that supplies details about the
result of verb processing. A successful result can include return code 0 and reason
code 0 or another combination of a return code and a reason code. Generally, you
should be able to base your application program design on the return codes; the
reason codes amplify the meaning supplied by the return codes.

A verb supplies a return code and a reason code in the return_code parameter and
in the reason_code parameter.

Return Codes

A return code provides a summary of the results of verb processing. A return code
can have the values shown in Figure A-1.

Figure A-1. Return Code Values

Hex Decimal

Value Value Meaning

00 00 This return code indicates a nhormal completion of verb processing. To provide additional
information, a few nonzero reason codes are associated with this return code.

04 04 This return code is a warning that indicates that the verb completed processing; however, a
minor, unusual event occurred. The event is most likely related to a problem created by the
user, or it is a normal occurrence based on the data supplied to the verb.

08 08 This return code indicates that the verb stopped processing. Either an error occurred in the
application program or a possible recoverable error occurred in a Transaction Security
System product.

ocC 12 This return code indicates that the verb stopped processing. Either a Transaction Security
System product is not available or a processing error occurred in a Transaction Security
System product. The reason is most likely related to a problem in the setup of the hardware
or in the configuration of the software.

10 16 This return code indicates that the verb stopped processing. A processing error occurred in

a Transaction Security System product. If these errors persist, a repair of the Transaction
Security System hardware or a correction to the Transaction Security System software may
be required.

Reason Codes

A reason code details the results of verb processing. Every reason code is
associated with a single return code. A nonzero reason code can be associated
with a zero return code.

Figure A-2 on page A-2 shows the reason codes, listed in numeric sequence and
grouped by their corresponding return code. The return codes appear in decimal
form, and the reason codes appear in decimal and hexadecimal (hex) form.

© Copyright IBM Corp. 1997 A-1

Return Code 0O

A-2

Figure A-2. Reason Codes for Return Code 0
Return Reason
Code Code
Dec Dec (Hex) | Meaning
0 000 (000) The verb completed processing successfully.
0 002 (002) One or more bytes of a key do not have odd parity.
0 008 (008) No value is present to be processed.
0 151 (097) The key token supplies the MAC length or MACLEN4 is the
default for key tokens that contain MAC or MACVER keys.
0 1000 (3E8) | The key value in an internal key token was dynamically
re-enciphered.
0 701 (2BD) | A new master key value was found to have duplicate thirds.
0 702 (2BE) | A provided master key part did not have odd parity.
0 10000 The verb dynamically updated and returned one or more keys
(2710) that the application program provided.
0 10001 A key encrypted under the old master key was used.
(2711)

IBM 4758 CCA Services

Return Code 4

Figure A-3 (Page 1 of 2). Reason Codes for Return Code 4

Return Reason
Code Code

Dec Dec (Hex) | Meaning
4 001 (001) The verification test failed.
4 013 (00D) The key token has an initialization vector, and the

initialization_vector parameter value is nonzero. The verb
uses the value in the key token.

4 016 (010) The rule array and the rule array count are too small to
contain the complete result.

4 017 (011) The requested ID is not present in any profile in the specified
cryptographic hardware component.

4 018 (012) The time that was specified by the time-out value expired.

4 019 (013) The financial PIN in a PIN block is not verified, or the

password in a Cryptographic Adapter or the PIN in a Personal
Security Card is not verified.

4 020 (014) If you provided text with an odd length for the
Character/Nibble_Translate verb, the right nibble of the last
byte is padded with X'00'.

4 021 (015) The key is marked inactive in flag byte 1 of the key token.

4 052 (034) A request for END-EX is issued while the server is already in
non-exclusive control mode.

4 053 (035) A request for BEGIN-EX is issued while the server is already
in exclusive control mode.

4 123 (07B) A key-encrypting key count value is zero, and the key
notarization or offset process is requested.

4 158 (09E) The Key_Token_Change or Key_Record_Delete verb did not
process any records.

4 166 (0A6) The control vector is not valid because of parity bits,

anti-variant bits, or inconsistent KEK bits, or because bits 59 to
62 are not zero.

4 179 (0B3) The control-vector keywords that are in the rule array are
ignored.

4 182 (0B6) The actual size of the allocated Personal Security card block is
not a multiple of 8 bytes.

4 260 (104) The plaintext is not a multiple of eight bytes. The security

server padded the plaintext to a multiple of 8 bytes for the
SNA-SLE ciphering method.

4 282 (11A) The coprocessor intrusion latch is set.

4 283 (11B) The coprocessor battery is low.

4 284 (11C) The requested command completed, but the device is in the
initialization state.

4 285 (11D) The Personal Security card detected an EEPROM checksum

error while reading a data block. Data was returned, but some
part of the data is incorrect.

4 286 (11E) The signature verification overlay file was not found.

4 287 (11F) The PIN block format is not consistent.

4 296 (128) Signature enrollment completed, but the signature was of
marginal length.

4 316 (13C) The signature was not verified successfully.

4 348 (15C) A probable operator error occurred. Signature verification or

re-enroliment was attempted; however, no signature reference
information is stored on the Personal Security Card.

4 349 (15D) A probable operator error occurred. Signature enrollment was
attempted; however, signature reference information already
exists on the Personal Security card

Appendix A. Return Codes and Reason Codes A-3

A-4

Figure A-3 (Page 2 of 2). Reason Codes for Return Code 4

Return Reason

Code Code

Dec Dec (Hex) Meaning

4 350 (15E) A probable operator error occurred; the verb stopped
processing because no data was received from the signature
verification pen.

4 356 (164) A probable operator error occurred; the verb stopped
processing because the signature verification pen touched the
paper before the beep sounded.

4 358 (166) A probable operator error occurred; the enroliment signatures
were too short or the signatures were too inconsistent.

4 421 (1A5) The PCF-KEY-PREFIX parameter card was not found. The
default value of $$CUSP$$ will be used.

4 429 (1AD) | The digital signature is not verified. The verb completed its
processing normally.

IBM 4758 CCA Services

Return Code 8

Figure A-4 (Page 1 of 7). Reason Codes for Return Code 8

Return Reason

Code Code

Dec Dec (Hex) | Meaning

8 010 (00A) The value that the p_origin parameter specifies is not valid.

8 011 (00B) The value that the d_origin parameter specifies is not valid.

8 012 (00C) The token-validation value in an external key token is not
valid.

8 022 (016) The ID number in the request field is not valid.

8 023 (017) An access to the data area was outside the data-area
boundary.

8 024 (018) The master key verification pattern is not valid .

8 025 (019) The value that the text_length parameter specifies is not valid.

8 026 (01A) The value of the PIN is not valid.

8 027 (01B) The card in the security interface unit is not a supported type
of card.

8 028 (01C) The object name is not valid.

8 029 (01D) The token-validation value in an internal key token is not valid.

8 030 (01E) No record with a matching key label is in key storage.

8 031 (01F) The control vector did not specify a DATA key.

8 032 (020) A key label format is not valid.

8 033 (021) A rule array or other parameter specifies a keyword that is not
valid.

8 034 (022) A rule array keyword combination is not valid.

8 035 (023) A rule array count is not valid.

8 036 (024) The action command must be specified in the rule array.

8 037 (025) The object type must be specified in the rule array.

8 038 (026) No record in key storage exists for a key label in a
cross-domain key record.

8 039 (027) A control vector violation occurred.

8 040 (028) The service code does not contain numerical character data.

8 041 (029) The keyword supplied with the key form parameter is not
valid.

8 042 (02A) The expiration date is not valid.

8 043 (02B) The keyword supplied with the key_length or the
key token_length parameter is not valid.

8 044 (02C) A record with a matching key label already exists in key
storage.

8 045 (02D) The input character string cannot be found in the code table.

8 046 (02E) The card-validation value (CVV) is not valid.

8 047 (02F) A source key token is unusable because it contains data that
is not valid or undefined.

8 048 (030) One or more keys has a master key verification pattern that is
not valid.

8 049 (031) A key-token-version-number found in a key token is not
supported.

8 050 (032) The key-serial-number specified in the rule array is not valid.

8 051 (033) The value that the text_length parameter specifies is not a
multiple of eight bytes.

8 054 (036) The value that the pad_character parameter specifies is not
valid.

8 055 (037) The initialization vector in the key token is enciphered.

8 056 (038) The master key verification pattern in the OCV is not valid.

8 058 (03A) The parity of the operating key is not valid.

8 059 (03B) Control information (for example, the processing method or the

pad character) in the key token conflicts with that in the rule
array

Appendix A. Return Codes and Reason Codes A-5

Figure A-4 (Page 2 of 7). Reason Codes for Return Code 8

Return Reason

Code Code

Dec Dec (Hex) Meaning

8 060 (03C) A cryptographic request with the FIRST or MIDDLE keywords
and a text length less than 8 bytes is not valid.

8 061 (03D) The keyword supplied with the key type parameter is not
valid.

8 062 (03E) The source key was not found.

8 063 (03F) A key token had an invalid token header (e.g. no t an internal
token).

8 064 (040) The RSA key is not permitted to perform the requested
operation. Likely causes are key distribution usage is not
enabled for the key.

8 065 (041) The key token failed consistency checking.

8 066 (042) The recovered PKCS encryption block failed validation
checking.

8 067 (043) RSA encryption failed.

8 068 (044) RSA decryption failed.

8 070 (046) The block name that the block_ID parameter specifies is not
valid.

8 071 (047) The block name was not found on the card.

8 072 (048) The value that the size parameter specifies is not valid (too
large, negative, or zero).

8 078 (04E) The block name that the block_ID parameter specifies already
exists on the card.

8 079 (04F) The key token does not have a key-register number, the
key-register number specifies an unavailable key register, or
the same key-encrypted key was specified for both export
keys.

8 080 (050) The keyword supplied with the control parameter is not valid.

8 081 (051) The modulus length (key size) exceeds the allowable
maximum.

8 084 (054) The time-out value is not valid.

8 085 (055) The date or the time value is not valid.

8 086 (056) The cryptographic period specification is not valid.

8 087 (057) The key-reference number is not valid.

8 090 (05A) Access is denied for this verb; the authorization level is too
low, or the authorization level is not identical.

8 095 (O5F) Access to the data is not authorized.

8 100 (064) The PIN length is not valid.

8 101 (065) The PIN check length is not valid. It must be in the range
from 4 to the PIN length inclusive.

8 102 (066) The value of the decimalization table is not valid.

8 103 (067) The value of the validation data is not valid.

8 104 (068) The value of the customer-selected PIN is not valid, or the PIN
length does not match the value supplied with the PIN_length
parameter or defined by the PIN block format specified in the
PIN profile.

8 105 (069) The cryptographic hardware component reported that the user
ID or role ID is not valid.

8 106 (06A) The PIN block format keyword is not valid.

8 107 (06B) The format control keyword is not valid.

8 108 (06C) The value of the PAD data is not valid.

8 109 (06D) The extraction method keyword is not valid.

8 110 (0O6E) The value of the PAN data is not numeric character data.

8 111 (06F) The sequence number is not valid.

8 112 (070) The PIN offset is not valid

A-6 IBM 4758 CCA Services

Figure A-4 (Page 3 of 7). Reason Codes for Return Code 8

Return Reason

Code Code

Dec Dec (Hex) Meaning

8 114 (072) The PVV value is not valid.

8 116 (074) The clear PIN value is not valid.

8 120 (078) An origin or destination identifier is not valid.

8 121 (079) The value of the inbound_key or source_key parameter is not
valid.

8 122 (07A) The value of the inbound_KEK _count or outbound_count
parameter is not valid.

8 124 (07C) | An ANSI key-encrypting key is not notarized.

8 125 (07D) The control vector for an ANSI key-encrypting key does not
allow notarization, and the notarization process is requested.

8 152 (098) The security interface unit and the Personal Security card do
not provide the requested cipering method.

8 153 (099) The text length exceeds the system limits, or you attempted
data chaining with the Security Interface Unit and the Personal
Security card.

8 154 (09A) The key token that the KEK_key _identifier parameter specifies
is not an internal key token or a key label.

8 155 (09B) The value that the generated _key _identifier parameter
specifies is not valid, or it is not consistent with the value that
the key_ form parameter specifies.

8 156 (09C) A keyword is not valid with the specified parameters.

8 157 (09D) The key-token type is not specified in the rule array.

8 159 (09F) The keyword supplied with the option parameter is not valid.

8 160 (0AO0) The key type and the key length are not consistent.

8 161 (0A1) The value that the data_set_name_length parameter specifies
is not valid.

8 162 (0A2) The offset value is not valid.

8 163 (0A3) The value that the data_set_name parameter specifies is not
valid.

8 164 (0A4) The starting address of the output area falls inside the input
area.

8 165 (0A5) The carry_over_character_count that is specified in the
chaining vector is not valid.

8 168 (0A8) A hexadecimal MAC value contains characters that are not
valid.

8 169 (0A9) An MDC_Generate text length error occurred.

8 170 (0OAA) | The minimum authorization level value is not valid. The valid
range is from 0 to 255.

8 171 (0OAB) | The control_array_count value is not valid.

8 172 (0AC) | The device_type field of the key token is not valid.

8 173 (0AD) | The key tokens specify different cryptographic hardware
components.

8 175 (0AF) The key token cannot be parsed because no control vector is
present.

8 176 (0BO) The binary_time_stamp value is not valid.

8 177 (0B1) The time_stamp value is not valid.

8 178 (0B2) The device type must be specified in the rule array.

8 180 (0B4) A null key token was presented for parsing.

8 181 (0B5) The key token is not valid. The first byte is not valid, or an
incorrect token type was presented.

8 183 (0B7) The key type is not consistent with the key type of the control
vector.

8 184 (0B8) An input pointer is null (workstation security API only).

8 185 (0B9) The data-set file does not exist or a disk /0O error occurred

Appendix A. Return Codes and Reason Codes ~A-7

A-8 IBM 4758 CCA Services

Figure A-4 (Page 4 of 7). Reason Codes for Return Code 8

Return Reason

Code Code

Dec Dec (Hex) Meaning

8 186 (0BA) | The key-type field in the control vector is not valid.

8 187 (0BB) | The requested MAC length (MACLEN4, MACLENS,
MACLENS) is not consistent with the control vector (key-a,
key-b).

8 189 (0BD) | The key cannot be stored in the key register.

8 190 (OBE) | This function cannot operate on a key stored in a key register.

8 191 (OBF) | The requested MAC length (MACLENG6, MACLENS) is not
consistent with the control vector (MAC-LN-4).

8 192 (0CO0) A key-storage record contains a record validation value that is
not valid.

8 193 (0C1) The specified cryptographic hardware component is the
Personal Security card; therefore, you must use a key-register
number.

8 198 (0C6) The user can be identified only through signature verification.
The signature verification pen is not installed.

8 203 (0CB) | The name_list_array count value is too small or not valid.
The value must be equal to or greater than the number of
block names. The maximum value is 255.

8 204 (0CC) | A memory allocation failed (workstation security API only).

8 205 (OCD) | The X9.23 ciphering method is not consistent with the use of
the CONTINUE keyword.

8 304 (130) The secure session between the components cannot be
established.

8 323 (143) The ciphering method that the Decipher verb used does not
match the ciphering method that the Encipher verb used.

8 335 (14F) Either the specified cryptographic hardware component or the
environment does not implement this function.

8 340 (154) One of the input control vectors has odd parity.

8 343 (157) Either the data block or the buffer for the block is too small.

8 345 (159) Insufficient storage space exists for data in the data block
area.

8 346 (15A) The requested command is not valid in the current state of the
cryptographic hardware component.

8 358 (166) The PPV enroll or re-enroll function was attempted, but the
signatures were too inconsistent.

8 360 (168) A PPV function was attempted, but the signature that the
signature verification pen gathered was too short.

8 362 (16A) An enroll or a re-enroll was attempted, but not enough space
exists on the Personal Security card to hold the signature
reference.

8 364 (16C) The download code table was full when a Load MDC
command was attempted.

8 365 (16D) The download code name already existed in the download
code table when a Load MDC command was attempted.

8 366 (16E) The download code name did not exist when a Load Code
command was attempted.

8 367 (16F) The program was not loaded when the EXEC program option
of the Load Code command was attempted.

8 368 (170) The requested command is not valid when the device is in the
initialization state.

8 370 (172) The requested option is not valid under the current
circumstances (for example, when you issue a Read Block
command with the option for reading a secured block, but the
requested block is defined as non-secured)

Figure A-4 (Page 5 of 7). Reason Codes for Return Code 8

Return Reason

Code Code

Dec Dec (Hex) Meaning

8 371 (173) You are not authorized to use this key. This might be due to
an incorrect security token.

8 372 (174) The cryptographic hardware component reported an unknown
command. This might be caused by the Command
Unavailable bit being turned on for this command in the
Command Configuration Table.

8 373 (175) The security token is not correct. (A security token is a
password to a key register.)

8 374 (176) Less data was supplied than expected or less data exists than
was requested.

8 377 (179) A key storage error occurred.

8 379 (17B) This verb requires a secure session to be established.

8 382 (17E) A time limit violation occurred.

8 383 (17F) The user re-inserted the card or a card-eject failure occurred.
A manual eject is required.

8 385 (181) The cryptographic hardware component reported that the data
passed as part of a command is not valid for that command.

8 387 (183)

8 388 (184) A control vector with an extension was received; however, no
control-vector extension table was loaded.

8 389 (185) The first byte of a control-vector extension was not X'00'.

8 390 (186) A control vector extension is not valid for this key type.

8 391 (187) The index byte of the extension (for example, the second byte)
was X'00', or the index byte of the extension was greater than
the number of entries in the currently loaded control-vector
extension table.

8 392 (188) One or more bits were turned on in the control-vector
extension for which the corresponding bit was turned off in the
selected control-vector extension table entry.

8 393 (189) The command was not processed because the profile cannot
be used.

8 394 (18A) The command was not processed because the expiration date
was exceeded.

8 395 (18B) The command was not processed because processing on a
holiday was attempted.

8 397 (18D) The command was not processed because the active profile
requires the user to be pre-verified.

8 398 (18E) The command was not processed because the maximum
PIN/password failure limit is exceeded.

8 401 (191) The data key conversion user exit, CSUDMGRY, returned a
return code of 4. The data key conversion is rejected.

8 402 (192) The data key conversion user exit, CSUDMGRY, returned a
return code of 8. The data key conversion is terminated.

8 403 (193) The data key conversion user exit, CSUDMGRY, returned an
invalid reason code. The process is terminated.

8 406 (196) A PIN formatting error occurred.

8 407 (197) A PIN block consistency check error occurred.

8 412 (19C) | The signature has more than 25 segments.

8 420 (1A4) One or more key records are temporarily locked by an
in-process key-storage synchronization operation. Please try
again (MVS host security API only).

8 421 (1A5) The request cannot be processed because the key-storage

synchronization server is dumping key storage or changing the
master key (MVS host security AP| only)

Appendix A. Return Codes and Reason Codes ~ A-9

A-10

Figure A-4 (Page 6 of 7). Reason Codes for Return Code 8

Return Reason

Code Code

Dec Dec (Hex) Meaning

8 601 (259) The object name that is being registered already exists in the
table.

8 602 (25A) The object that is being loaded is not registered.

8 603 (25B) The object that is being managed is not known. It probably is
not registered.

8 604 (25C) The user-defined function facility does not recognize the
requested user-defined function.

8 605 (25D) | The number of output bytes is greater than the number that is
permitted.

8 606 (25E) A stack operation of a user-defined function addressed an
entry that is beyond the limits of the stack.

8 608 (260) The first specified Save Area for this DIVISA instruction in a
user-defined function contains a zero.

8 609 (261) The target of a JUMP instruction is outside the user-defined
function Set Code area.

8 610 (262) The target of a UCALL instruction is outside the user-defined
function Set Code area.

8 611 (263) The user-defined function attempted to use a control vector
that has non-even parity bytes.

8 612 (264) The user-defined function attempted to use a key that has
non-odd parity bytes.

8 613 (265) The user-defined function’s access to the I/O buffer is outside
the I/O buffer boundary.

8 614 (266) The user-defined function attempted a POP instruction, but the
stack was empty. The top-of-stack pointer indicated the initial
stack address.

8 615 (267) The user-defined function attempted a PUSH instruction, but
the stack was full. The top-of-stack pointer indicated the last
stack address.

8 616 (268) The system attempted to register an object, but the internal
object table was full.

8 617 (269) The system attempted to load an external object, but external
objects cannot be loaded into the coprocessor.

8 618 (26A) The system attempted to load a user-defined program, but the
MCS storage did not contain enough space to hold the
program.

8 619 (26B) The calculated MDC did not match the MDC that is registered
for the object.

8 620 (26C) The requested object is not loaded into the coprocessor.

8 621 (26D) The level of the UDF_MACS.INC file that this user-defined
function used is not compatible with the level of microcode.

8 622 (26E) The user-defined function nesting level is greater than 16.

8 623 (26F) The user-defined function UCALL nesting level is greater than
16.

8 624 (270) The user-defined program attempted to call the user-defined
function, but the user-defined function’s name or extension
was not valid.

8 625 (271) The total object size is too large.

8 626 (272) The code-only of the external object cannot be deleted.

8 627 (273) The object is already loaded.

8 628 (274) The format of the user-defined program is not valid.

8 630 (276) A user-defined program attempted to access memory outside
the memory that is allocated to the user-defined program

IBM 4758 CCA Services

Figure A-4 (Page 7 of 7). Reason Codes for Return Code 8

Return Reason
Code Code

Dec Dec (Hex) Meaning

8 703 (2BF) A new master key value was found to be one of the weak
DES keys.

8 704 (2C0) The new master key would have the same master key
verification pattern as current the current master key.

8 705 (2C1) The same key-encrypting key was specified for both exporter
keys.

8 706 (2C2) Pad count in deciphered data is not valid.

8 707 (2C3) | The Master Key registers are not in the state required for the
requested function.

8 713 (2C9) The algorithm or function is not available on current hardware
(DES on a CDMF-only system).

8 714 (2CA) | A reserved parameter was not a null pointer or an expected
value.

8 718 (2CE) | The hash of the data block in the decrypted RSA-OAEP block
does not match the hash of the decrypted data block.

8 719 (2CF) | The block format (BT) field in the decrypted RSA-OAEP block
does not have the correct value.

8 720 (2D0) The initial byte (1) in the decrypted RSA-OAEP block does not
have a valid value.

8 721 (2D1) The V field in the decrypted RSA-OAEP does not have the

correct value.

752 (2F0) The key-storage file path is not usable.

753 (2F1) Opening the key-storage file failed.

754 (2F2) An internal call to the key_test command failed.

756 (2F4) Creation of the key-storage file failed.

760 (2F8) An RSA-key modulus length in bits or in bytes is not valid.
761 (2F9) An RSA-key exponent length is not valid.

762 (2FA) | A length in the key value structure is not valid.

763 (2FB) The section identification number within a key token is invalid.
770 (302) The PKA key token has an invalid field.

771 (303) The user is not logged on.

772 (304) The requested role was not found.

773 (305) The requested profile was not found.

774 (306) The profile already exists.

775 (307) The supplied data is not replaceable.

776 (308) The requested Id is already logged on.

777 (309) The authentication data is invalid.

778 (30A) The checksum for the role is in error.

779 (30B) The checksum for the profile is in error.

780 (30C) There is an error in the profile data.

781 (30D) There is an error in the role data.

782 (30E) The Function-Control-Vector header is invalid.

783 (30F) The command is not permitted by the Function-Control-Vector

0O CO CO 0O CO ©0 ©O 0O 00 0O 0O 0O CO 0O CO ©O ©O 0O 0O 0O OO Co

value.

8 784 (310) The operation you requested cannot be performed because
the user profile is in use.

8 785 (311) The operation you requested cannot be performed because

the role is presently in use.

Appendix A. Return Codes and Reason Codes A-11

Return Code 12

A-12

Figure A-5. Reason Codes for Return Code 12

Return Reason

Code Code

Dec Dec (Hex) | Meaning

12 093 (05D) The security server is not available or not loaded.

12 097 (061) File space in key storage is insufficient to complete the
operation.

12 194 (0C2) No internal working storage is available in the Network
Security Processor.

12 195 (0C3) The Network Security Processor group is not valid (MVS host
security API only).

12 196 (0C4) | The device driver, the security server, or the directory server is
not installed, or is not active, or in AlX, file permissions are not
valid for your application.

12 197 (0C5) | A key-storage file I/O error occurred, or a file was not found
(workstation security APl only).

12 199 (0C7) | A Network Security Processor is not available (MVS host
security API only).

12 201 (0C9) The Network Security Processor subsystem is not active (MVS
host security API only).

12 202 (OCA) | The Network Security Processor subsystem was not loaded
(MVS host security API only).

12 206 (OCE) | The key-storage file is not valid, or the master-key verification
failed.

12 207 (OCF) | The verification method flags in the profile are not valid.

12 324 (144) The device driver attempted to allocate memory, but no
memory is available.

12 338 (152) This cryptographic hardware component is not installed.

12 339 (153) A system error occured in interprocess communication routine.

12 428 (1AC) | The BWK parameter file (DDNAME=BWKPARM) did not open
properly.

12 607 (25F) A microcode service that the user-defined function microcode
called returned an unexpected error.

12 629 (275) The user-defined program overlay file has not loaded yet.

12 764 (2FC) | The master key(s) are not loaded and therefore a key could
not be recovered or enciphered.

12 768 (300) One or more paths for key storage directory operations is
improperly specified.

IBM 4758 CCA Services

Return Code 16

Figure A-6 (Page 1 of 2). Reason Codes for Return Code 16

Return Reason
Code Code

Dec Dec (Hex) | Meaning

16 099 (063) An unrecoverable error occurred in the security server; contact
your IBM service representative.

16 099 (063) A software error occurred (OS/400 security API only).

16 150 (096) An error occurred in the Network Security Processor MVS
support program.

16 167 (0A7) An error occurred in the security server, possibly due to
inconsistent device-driver and security-server logic.

16 200 (0C8) The cross-memory server or request manager abended (MVS
host security API only).

16 298 (12A) The MDC of the signature verification overlay file did not
verify, or the format of the signature verification overlay file is
not valid.

16 326 (146) An error occurred when reading the signature verification
overlay file.

16 327 (147) An error occurred when opening the signature verification
overlay file.

16 336 (150) An error occurred in a cryptographic hardware component.

16 337 (151) A device software error occurred.

16 347 (15B) A communications error occurred.

16 351 (15F) An unknown signature verification error occurred.

16 352 (160) A signature data acquisition error occurred.

16 353 (161) An unknown error occurred during a card-read function.

16 354 (162) An unknown error occurred during a card-write function.

16 355 (163) An unknown error occurred during a create-block function.

16 357 (165) A signature verification function was attempted, but the

signature reference information that the signature verification
pen sent was not valid.

16 359 (167) The signature verification function completed, but a failure
occurred when notifying the security interface unit or the
Personal Security card.

16 361 (169) A signature verification function was attempted, but the
security interface unit pen buffer had an overrun error.

16 363 (16B) The signature verification option is not valid.

16 375 (177) The Personal Security Card processor indicated that an error
occurred while writing to the EEPROM.

16 376 (178) Data that was read from the Personal Security card’s
EEPROM did not match the data that was written there.

16 399 (18F) The cryptographic adapter intrusion latch reset failed.

16 413 (19D) A signature verification communication error occurred.

16 414 (19E) A signature verification file-length error occurred.

16 415 (19F) A signature verification tone-generation error occurred.

16 416 (1A0) A signature verification enroll-authorization communication
error occurred.

16 444 (1BC) | The verb-unique-data had an invalid length.

16 556 (22C) The request parameter block failed consistency checking.

16 708 (2C4) Inconsistent data was returned from the cryptographic engine.

16 709 (2C5) Cryptographic engine internal error, could not access the
master key data.

16 710 (2C6) An unrecoverable error occurred while attempting to update
master key data items.

16 712 (2C8) An unexpected error occured in the master key manager

Appendix A. Return Codes and Reason Codes A-13

Figure A-6 (Page 2 of 2). Reason Codes for Return Code 16

Return Reason
Code Code
Dec Dec (Hex) | Meaning

16 769 (301) The device driver, &adaptcop. code, or the CCA application in

the adapter encountered unexpected errors and was unable to
process the request.

Return Code 24

Figure A-7. Reason Codes for Return Code 24

Return Reason
Code Code
Dec Dec (Hex) | Meaning

24 057 (039) The verb processing is rejected because the server is in

24 057 (039) The verb processing is rejected because the server is in

exclusive control mode with another application program.

exclusive control mode with another application program

Additional Information about Selected Reason Codes

The return code/reason code 12/339 can be caused by the following conditions:

¢ When the amount of free space that remains on the fixed disk that contains the

OS/2 swapper file (SWAPPER.DAT) reaches the minimum amount allowed by
the SWAPPATH statement in the CONFIG.SYS file. In other words, the

0OS/2 environment needs to over commit more storage, but the swapper file
cannot be any larger. You must either remove some files from the fixed disk so
that more free space is available or you must reduce the minimum amount of
free space specified in the SWAPPATH statement in the CONFIG.SYS file.

The minimum value allowed in the SWAPPATH statement is 512KB (where KB
equals 1024 bytes).

When the security API is not able to communicate with either the security
server (SECY.EXE) or the directory server (CSUEDIR.EXE), but the server
table in memory indicates that the needed server is present and active. This
condition is normally caused by the user ending a server without using the
standard interface. You should only end the security server and the directory
server by using CSUEFREE or the LAN/DP/2 equivalent.

For information about how to respond to a return code and reason code in an
0S/400 environment, see Common Cryptographic Architecture Services/400
Installation and Operating Guide.

A-14 I1BM 4758 CCA Services

Appendi x B. Data Structures

This appendix describes the following data structures:

» Key tokens

e Chaining vector records

» Key storage records

e Key record list data set

* Access control data structures.

Key Tokens

This section describes the DES and RSA key tokens used with the product. A “key
token” is a data structure that contains information about a key and usually contains
a key or keys.

in general, keys available to an application program, or keys held in key storage,
are enciphered by some other key. When a key is enciphered by the CCA-node's
master key, the key is designated an “internal” key and is held in an internal key
token structure. Therefore, an internal key token is used to hold a key and its
related information for use at a specific node.

An external key token is used to communicate a key between nodes, or to hold a
key in a form not enciphered by a CCA master key. DES keys and RSA private
keys in an external key token are multiply-enciphered by a transport key. In a
CCA-node, a transport key is a double-length DES Key-Encrypting-Key.

The remainder of this section describes the structures used with the Fortress
product family:

» Token master key verification pattern

e Token-validation value

e Record-validation value

e Null key token

e DES key tokens
— Internal DES key token
— External DES key token
— DES key token flag bytes

* RSA key tokens

e Chaining Vector Records

e Key Storage Records

e Key Record List Data Set

Master Key Verification Pattern
A Master Key Verification Pattern (MKVP) within an internal key token permits the
cryptographic engine to detect if the key within the token is enciphered by an
available master key. These steps produce the master key verification pattern:

* Prefix the 24-byte master key with a header byte of X'01'

e Calculate a SHA-1 hash on the 25-byte string

¢ Return the high-order two bytes of the 20-byte SHA-1 hash as the master key
verification pattern.

© Copyright IBM Corp. 1997 B-1

A CCA node will not permit the introduction of a new master key value that has the
same two-byte verification pattern as either the current-master-key verification
pattern or as the old-master-key verification pattern.

Token-Validation Value and Record-Validation Value

Null Key Token

The Token-Validation Value (TVV) is a checksum that helps ensure that an
application program-provided key token is valid. A Token-Validation Value is the
sum (two’s complement ADD), ignoring carries and overflow, on the key token by
operating on four bytes at a time, starting with bytes zero to three and ending with
bytes 56 to 59. The four-byte strings are treated as big-endian binary numbers with
the high-order byte stored in the lower address. DES key token bytes 60 to 63
contain the Token-Validation Value.

When an application program supplies a key token, the CCA node checks the
Token-Validation Value. When a CCA verb generates a DES key token, it
generates a Token-Validation Value in the key token.

The record-validation value (RVV) used in DES key storage records uses the same
algorithm as the Token-Validation Value. The RVV is the sum of the bytes in
positions 0 to 123 except for bytes 60 to 63.

Figure B-1 shows the null key token format. With some CCA verbs, a null key
token can be used instead of an internal or an external key token. A verb generally
accepts a null key token as a signal to use a key token with default values in lieu of
the null key token.

A null key token is indicated by the value X'00' at offset zero in a key token, a key
token variable, or a key identifier variable.

PKA key storage uses an 8-byte structure, shown below, to represent a null key
token. The PKA_Key Record_Read verb will return this structure if a key record
with a null key token is read. Also, if you examine PKA key storage, you should
expect key records without a key token containing specific key values to be
represented by a “null key token.” In the case of key storage records, the record
length (offset 2 and 3) can be greater than 8.

Figure B-1. PKA Null Key Token Format

Offset Length Meaning

00 01 X'00' This indicates that this is a null key token
01 X'00' Version zero

02 02 X'0008' Indicates a PKA null key token.

04 04 Reserved

The key_import verb accepts input with offset zero valued to X'00'. In this special
case, the verb treats information starting at offset 16 as an enciphered, single
length key. In a very limited sense, this special case can be considered a “null key
token.”

B-2 IBM 4758 CCA Services

Internal DES Key Token

Figure B-2. Internal Key Token Format

Offset Length Meaning

00 1 X'01' (a flag that indicates an internal key token)

01 1 Reserved, binary zero

02 2 Master key verification pattern

04 1 The version number (X'03"')

05 1 Reserved, binary zero

06 1 Flag byte 1; for more information, see Figure B-4 on page B-4

07 1 Reserved, binary zero

08-15 8 Reserved, binary zero

16-23 8 The single-length encrypted key or the left half of a double-length encrypted
key.

24-31 8 Null, or the right half of a double-length operational key

32-39 8 The control-vector base

40-47 8 Null, or the control vector base for the second eight-byte portion of a 16-byte
key

48-59 12 Reserved, binary zero

60-63 4 The token-validation value

Appendix B. Data Structures B-3

External DES Key Token

Figure B-3. External Key Token Format

Offset Length Meaning

00 1 X'02' (a flag that indicates an external key token)

01 3 Reserved, binary zero

04 1 The version number (X'00")

05 1 Reserved, binary zero

06 1 Flag byte 1; for more information, see Figure B-4

07 1 Flag byte 2; for more information, see Figure B-5
Reserved, generally X'00', except X'02"' will be tolerated.

08-15 8 Reserved, binary zero

16-23 8 The single-length encrypted key or the left half of a double-length encrypted
key.

24-31 8 Null, or the right half of a double-length encrypted key

32-39 8 The control-vector base

40-47 8 Null, or the control vector base for the second 8-byte portion of a 16-byte key

48-59 12 Reserved, binary zero

60-63 4 The token-validation value

DES Key Token Flag Byte 1

Figure B-4. Key Token Flag Byte 1

Bits (MSB...LSB)1

Meaning

IXXX XXXX

OXXX XXXX
XOXX XXXX
XIXX XXXX

The encrypted key value, and as used in an implementation, the Master
Key Version Number or verification pattern are present

An encrypted key is not present

The control-vector value is not present

The control-vector value is present

All other bit combinations are reserved; undefined bits should be zero.

DES Key Token Flag Byte 2

Figure B-5. Key Token Flag Byte 2

Bits (MSB...LSB)

Meaning

0000 0010

For Key-Encrypting Keys
This Key-Encrypting key will import and export external key tokens using
the Transaction Security System key token format

1 MSB is the most significant bit; LSB is the least significant bit.

B-4

IBM 4758 CCA Services

RSA Key Token Formats

An RSA key token contains various items, some of which are optional, and some of
which can be present in different forms. The token is composed of concatenated
sections that must occur in the prescribed order.

As with other CCA key tokens, both internal and external forms are defined.

* An RSA internal key token contains a private key that is protected by
encrypting the information using the CCA-node master key. The internal key
token will also contain private key blinding information, the modulus and the
public-key exponent. A master key verification pattern is also included to
enable determination that the proper master key is available to process the
protected private key. The format and content of an internal key token is local
to a specific node and product implementation, and does not represent an
interchange format.

* An RSA external key token contains the modulus and the public-key exponent.
Also, the external key token optionally contains the private key. If present, the
private key may be in the clear or may be protected by encryption using a
double-length DES transport key. An external key token is an inter-product
interchange data structure.

The private key can be represented in one of two forms:

e By an exponent, the private-key exponent
e By a set of numbers used in the Chinese-remainder-theorem.

Protection of the private key is provided by encrypting a confounder (a random
number) and the private key information. The private key in an external key token
is protected by a double-length transport key and the EDE2 algorithm, see “CCA
RSA Private Key Encryption and Decryption Process” on page C-8. The private
key and the blinding values in an internal key token are protected by the
triple-length master key and the EDE3 algorithm, see “CCA RSA Private Key
Encryption and Decryption Process” on page C-8.

An RSA key token is the concatenation of this ordered set of sections:

¢ A token header:

— An internal header (first-byte X'1F")
— An external header (first-byte X'1E")

e An optional private-key section in one of these formats:

— 1024-bit modular-exponentiation format, fixed length (section identifier
X'02")

— 2048-bit Chineese-remainder format, variable length (section identifier
X'05")

A public-key section (section identifier X'04"')
¢ An optional key-name section (section identifier X'10")
e A private-key blinding section on an internal key token (section identifier is
X'FF"Y).
The key tokens can be built and parsed with these services:
e PKA Key Token_Build

Appendix B. Data Structures B-5

RSA Key Token Integrity: If the token contains private key information, then the
integrity of the information within the token can be verified by computing the SHA-1
hash values that are found in the private-key sections (portions of the key token).
The SHA-1 hash value at offset four within the private-key section requires access
to the cleartext values of the private-key components. The cryptographic engine
will verify this hash quantity whenever it retrieves the secret key for productive use.

A second SHA-1 hash value is located at offset 30 within the private key section.
This hash value is computed on the remainder of the key token following the
private-key section. The value of this SHA-1 hash is included in the computation of
the hash at offset four. As with the offset-four hash value, the hash at offset 30 is
validated whenever a private key is recovered from the token for productive use.

In addition to the hash checks, various token format and content checks are
performed to validate the key values.

The optional private-key hame section can be used by access monitor systems
(e.g. RACF) to ensure that the application program is entitled to employ the
particular private key.

RSA Key Token Sections
These key-token-section data structures are described in the following tables:

e Figure B-6, RSA Token Header

e Figure B-7 on page B-7, RSA Private Key, 1024-Bit Modular-Exponentiation
Format

e Figure B-8 on page B-8, RSA Private Key, 2048-Bit Chineese-Remainder
Format

e Figure B-9 on page B-9, RSA Public Key

e Figure B-10 on page B-9, RSA Private-key Name

e Figure B-11 on page B-10, RSA Private-key Blinding Information

Notes:

1. All length fields are in binary.

2. All binary fields (exponents, lengths, etc.) are stored with the high-order byte
first (left, low-address, S/390 format); thus the significant bits are to the right
and preceded with zero-bits to the width of a field.

3. In variable length binary fields that have an associated field-length value,
leading bytes that would contain X'00' can be dropped and the field shortened
to contain the significant bits.

Figure B-6. RSA Token Header

Offset Length Description
(Bytes) (Bytes)

000 001 Token identifier

X'1E' External token; the optional private key is either in cleartext or
enciphered by a transport key-encrypting key.

X'1F' Internal token; the private key is enciphered by the master key.
001 001 Version, X'00'
002 002 Length of the key token structure
004 004 Reserved, binary zero

B-6 IBM 4758 CCA Services

Figure B-7. RSA Private Key, 1024-Bit Modular-Exponentiation Format

Offset Length Description
(Bytes) (Bytes)

000 001 X'02', Section identifier, RSA private key, modular-exponent format
(RSA-PRIV)

001 001 X'00', Version

002 002 Length of the RSA private-key section X'016C"' (364 decimal)

004 020 SHA-1 hash value of the private-key subsection cleartext, offset 28 to the
section end

024 002 Reserved, binary zero

026 002 Master key verification pattern in an internal key token, else X'0000'

028 001 Key format and security

X'00' Unencrypted RSA private-key subsection identifier
X'82' Encrypted RSA private-key subsection identifier

029 001 Reserved, binary zero

030 020 SHA-1 hash of the optional key-name section; if there is no name section,
then 20 bytes of X'00"'

050 001 Key usage flag

X'00' Signature usage only
X'80' Signature and symmetric key management usage permitted

051 009 Reserved, binary zero

060 024 Reserved, binary zero

052 Start of the optionally-encrypted secure subsection

084 024 Random number, confounder

108 128 Private-key exponent, d. d=e-Imod((p-1)(g-1)), and 1<d<n where e is the

public exponent.

End of the optionally encrypted subsection; all of the fields starting with the confounder
field and ending with the variable length pad field are enciphered for key confidentiality
when the key format and security flags (offset 28) indicate that the private key is
enciphered.

236 | 128 | Modulus, n. n=pq where p and q are prime and 2512<n<21024

Appendix B. Data Structures B-7

B-8

Figure B-8 (Page 1 of 2). Private Key, 2048-Bit Chineese-Remainder Format
Offset Length Description
(Bytes) (Bytes)
000 001 X'05', Section identifier, RSA private key, CRT (RSA-OPT) format
001 001 X'00', Version
002 002 Length of the RSA private-key section, 76 +ppp +qqq +rrr +sss +ttt +uuu
+XXX +nnn
004 020 SHA-1 hash value of the private-key subsection cleartext, offset 28 to the
end of the modulus.
024 002 Length in bytes of the optionally-encrypted secure subsection, or X'0000" if
the subsection is not encrypted
026 002 Master key verification pattern in an internal key token, else X'0000'
028 001 Key format and security
X'40' Unencrypted RSA private-key subsection identifier, Chinese remainder
form
X'42' Encrypted RSA private-key subsection identifier, Chinese remainder
form
029 001 Reserved, binary zero
030 020 SHA-1 hash of the optional key-name section; if there is no name section,
then 20 bytes of X'00".
050 001 Key usage flag
X'00' Signature usage only
X'80' Signature and symmetric-key-management usage permitted.
051 001 Reserved, binary zero
052 Start of the optionally-encrypted secure subsection
052 008 Random number, confounder
060 002 Length of the prime number, p, in bytes: ppp
062 002 Length of the prime number, g, in bytes: qqq
064 002 Length of the dp, in bytes: rrr
066 002 Length of the dq, in bytes: sss
068 002 Length of the Ap: in bytes: ttt
070 002 Length of the Aq, in bytes: uuu
072 002 Length of the modulus, n., in bytes: nnn
074 002 Length of the padding field, in bytes: xxx
076 ppp Prime number, p
076 qqqg Prime number, g
+ppp
076 ree dy = d mod(p-1)
+ppp
+qqq
076 Sss dg = d mod(g-1)
+ppp
+qqq
+rrr

IBM 4758 CCA Services

Figure B-8 (Page 2 of 2). Private Key, 2048-Bit Chineese-Remainder Format

Offset Length Description
(Bytes) (Bytes)

076 ttt Ap= gP-1 mod(n)
+ppp

+qqq
+rrr

+SSS

076 uuu Aq = (n+1-Ap)
+ppp

+qaq
+rrr

+SSSs
+tt

076 XXX X'00' padding of length xxx bytes such that the length from the start of the
+ppp random number above to the end of the padding field is a multiple of eight

+qqq bytes

+rrr
+SSS
+tt

+uuu

End of the optionally-encrypted subsection; all of the fields starting with the confounder
field and ending with the variable length pad field are enciphered for key confidentiality
when the key format-and-security flags (offset 28) indicate that the private key is
enciphered.

076 nnn Modulus, n. n=pq where p and q are prime and 2512<n<22048
+ppp

+qqq
+rrr

+SSS
+tt

+uuu

+XXX

Figure B-9. RSA Public Key

Offset Length Description
(Bytes) (Bytes)

000 001 X'04', Section identifier, RSA public key

001 001 X'00', Version

002 002 Section length, 12+xxx+yyy

004 002 Reserved, binary zero

006 002 RSA public-key exponent field length in bytes, “xxx”
008 002 Public-key modulus length in bits.

010 002 RSA public-key modulus field length in bytes, “yyy”

Note: If the token contains an RSA private-key section, this field length, yyy,
should be zero. The RSA private-key section will contain the modulus.

012 XXX Public-key exponent, e (this field length will generally be 1, 3, or 64 to 512
bytes). e must be odd and 1<e<n. (e is frequently valued to 3 or 216+1
(=65 537), otherwise e is of the same order of magnitude as the modulus)

Note: You can import an RSA public key having an exponent valued to two
(2). Such a public key can correctly validate an ISO 9796-1 digital signature.
However, the current product implementation will not generate an “RSA” key
with a public exponent valued to two (a “Rabin” key).

124+xXXX yyy Modulus, n. n=pqg where p and q are prime and 2512<n<22048, This field
will be absent when the modulus is contained in the private-key-section. If
present, the field length will be 64 to 256 bytes

Appendix B. Data Structures B-9

Figure B-10. RSA Private-key Name
Offset Length Description
(Bytes) (Bytes)

000 001 X'10', Section identifier, private-key name

001 001 X'00', Version

002 002 Section length, X'0044' (68 decimal)

004 064 Private-key name, left-justified, padded with space characters (X'20'). The
private-key name can be used by an access control system to validate the
calling application's entitlement to employ the key

Figure B-11. RSA Private-key Blinding Information
Offset Length Description
(Bytes) (Bytes)

000 001 X'FF', Section identifier, private-key blinding information

001 001 X'00', Version

002 002 Section length, 34 + rrr + iii

004 020 SHA-1 hash value of the internal information subsection cleartext, offset 28 to
the section end. This hash value is checked after an enciphered private key
is deciphered for use.

024 002 Length in bytes of the encrypted secure subsection

026 002 Reserved, binary zero

028 Start of the encrypted secure subsection

028 002 Length of the random number r, in bytes: rrr

030 002 Length of the random number inverse r-1, in bytes: iii

032 002 Length of the padding field, in bytes xxx

034 rrr Random number r (used in blinding)

034 iii Random number r-1 (used in blinding)

+rrr

034 XXX 0x00 padding of length xxx bytes such that the length from the start of the

+rrr encrypted subsection to the end of the padding field is a multiple of eight

+iii bytes.
End of the encrypted subsection.

Chaining Vector Records

The chaining_vector parameter specifies an address that points to the place in
main storage that contains an 18-byte work area that is required with the Cipher,
MAC_Generate and MAC_Verify, verbs. The application program should not
change the chaining vector information. The verb uses the chaining vector to carry
information between procedure calls.

Figure B-12. Cipher, MAC_Generate, and MAC_Verify Chaining Vector Format

Offset Length Meaning

00-07 8 The cryptographic Output Chaining Vector (OCV) of the service. When used
with the MAC_Generate and MAC_Verify verbs, the OCV is enciphered as a
cryptographic variable

08 1 The count of the bytes that are carried over and not processed (from 0 to 7)

09-15 7 The bytes that are carried over and left-justified

16 2 The token master-key verification pattern

B-10 1BM 4758 CCA Services

Key Storage Records

Key storage exists as an online, Direct Access Storage Device (DASD)-resident
data set for the storage of key records. Key records contain a key label, space for
a key token, and control information. The first two records in key storage contain
key-storage control information that includes the key verification information for the
master key that is used to multiply-encipher the keys that are held in key storage.

Figure B-13 shows the format of the first record in the file header of the key
storage file. This record contains the default master-key verification pattern, and
part of the file description.

Figure B-14 on page B-12 shows the format of the second record in the file header
of the key storage file. This record contains the rest of the file description for key
storage.

Figure B-15 on page B-12 shows the format of the records that contain key tokens.

Figure B-13. Key Storage File Header, Record 1

Offset Length Meaning

00 04 The total length of this key record.
04 04 The record validation value.
08 64 The key label without separators.

$$SFORTRESS$RELOISMASTERS$SKEYSVERIFYSPATTERN .

72 15 The date and time of when this record was created. The date string consists
of an 8 digit date and a 6 digit time (ccyymmddhhmmssz) where:

e cc - century

e yy - year

e mm - month

e dd - day

e hh - Hour in 24 hour format (00-24).
e mm - Minutes.

e ss - Seconds.

e z - String terminator (0x00)

87 15 The date and time of when this record was last updated. This field has the
same format as the created date.

102 26 Reserved

128 01 An indicator that this is either an internal DES or PKA key token.

129 01 Reserved

130 02 Token length which is a value of 64.

132 04 Reserved

136 16 The master key verification pattern of the current master key in the
cryptographic facility when this file was initialized.

152 24 The first 24 bytes of the file description (the remaining 40 bytes are stored in
the second record).

176 12 Reserved

188 04 The token validation value. Bytes 128 through 191 are considered to be the

64 byte token.

Appendix B. Data Structures B-11

B-12

Figure B-14. Key Storage File Header, Record 2

Offset Length Meaning

00 04 The total length of this key record.

04 04 The record validation value.

08 64 The key label without separators.
For the DES key storage file the key label is
$$SFORTRESS$DESSRELO1I$SKEY$SSTORAGESFILESHEADER .
For the PKA key storage file the key label is
$$FORTRESS$PKASRELO1$SKEY$STORAGESFILE$SHEADER .

72 15 The date and time of when this record was created. This field has the same
format as the created date in Figure B-13.

87 15 The date and time of when this record was last updated. This field has the
same format as the created date in Figure B-13.

102 26 Reserved

128 01 An indicator that this is either an internal DES or PKA key token.

129 01 Reserved

130 02 Token length which is a value of 64.

132 04 Reserved

136 40 The last 40 bytes of the file description (the first 24 bytes were stored in the
first record).

176 12 Reserved

188 04 The token validation value. Bytes 128 through 191 are considered to be the

64 byte token.

Figure B-15. Key Record Format in Key Storage

Offset Length Meaning

00 04 The total length of this key record.

04 04 The record validation value.

08 64 The key label without separators.

72 15 The date and time of when this record was created. This field has the same
format as the created date in Figure B-13 on page B-11.

87 15 The date and time of when this record was last updated. This field has the
same format as the created date in Figure B-13 on page B-11.

102 26 Reserved

128 ?? A DES or PKA key token.

IBM 4758 CCA Services

Key Record List Data Set

There are two Key_Record_List verbs, one for the DES key store and one for the
PKA key store. Each creates an internal data set that contains information about
specified key records in key storage. Both verbs return the list in a data set,
KYRLTnnn.LST, where nnn is the numeric portion of the name and nnn starts at
001 and increments to 999 and then wraps back to 001. For the DES key store,
the data set is stored in the subdirectory specified by the optional environmental
variable, CSUDESLD. If CSUDESLD is not set, x:\KEYDIR is used where x is the
current disk. For the PKA key store, the data set is stored in the subdirectory
specified by the optional environmental variable, CSUPKALD. If CSUPKALD is not
set, x:\PKADIR is used where x is the current disk. For information about the
Key Record_List verbs, see “Key_ Record_List” 7-7.

The data set has a header record, followed by zero to n detail records, where n is
the number of key records with matching key labels.

Figure B-16 (Page 1 of 2). Key Record List Data Set Format
Offset | Length | Meaning
Header Record (Part 1)

0 24 This field contains the installation-configured listing header (the default value
for the DES key store is DES KEY RECORD LIST and for the PKA key store
is PKA KEY RECORD LIST).

24 2 This field contains spaces for separation.

26 19 This field contains the date and the time when the list was generated. The
format is ccyy-mm-dd hh:tt:ss, where:

cc Is the century
0%% Is the year
mm Is the month
dd Is the day

hh Is the hour

tt Is the minute
ss Is the second.

A space character separates the day and the hour.

45 5 This field contains spaces for separation.
50 6 This field contains the number of detail records.
56 2 This field contains spaces for separation.
58 4 This field contains the length of each detail record, in character form, and
left-justified. (The length is 154.)
62 4 This field contains the offset to the first detail record, in character form, and
left-justified. (The offset is 154.)
66 9 This field is reserved filled wilth space characters.
75 2 This field contains carriage return/line feed (CR/LF).
Header Record (Part 2)
77 64 This field contains the key-label pattern that you used to request the list.
141 11 This field is reserved filled wilth space characters.
152 2 This field contains a carriage return or line feeds (CR/LF).

Appendix B. Data Structures B-13

Figure B-16 (Page 2 of 2). Key Record List Data Set Format

Offset | Length | Meaning

Detail Record (Part 1)

0 1 This field contains an asterisk (*) if the key-storage record did not have a
correct record validation value; this record should be considered to be a
potential error.

1 2 This field contains spaces for separation.
3 64 This field contains the key label.
67 8 This field contains the key type. If a null key token exists in the record or if

the key token does not contain the key value, this field is set to NO-KEY.

For the DES key storage, if the key token does not contain a control vector,
this field is set to NO-CV. If the control vector cannot be decoded to a
recognized key type, this field is set to ERROR, and an asterisk (*) is set into
the record at offset 0. For PKA key storage, the possible key types are:
RSA-PRIV, RSA-PUBL, or RSA-OPT.

75 2 This field contains a carriage return or line feeds (CR/LF).

Detail Record (Part 2)

7710 4 For an internal token, this field will contain the Master key verification pattern
in the token, else it is filled with space characters.

81/4 1 This field contains spaces for separation

82/5 8 Reserved, filled with space characters.

90/13 2 This field contains spaces for separation.

92/15 19 This field contains the date and time when the record was created. The

format is ccyy-mm-dd hh:tt:ss, where:

cc Is the century
0%% Is the year
mm Is the month
dd Is the day

hh Is the hour

tt Is the minute
Ss Is the second.

A space character separates the day and the hour.

111/34 2 This field contains spaces for separation.

113/36 19 This field contains the last time and date when the record was updated. The
format is ccyy-mm-dd hh:tt:ss, where:

cc Is the century
vy Is the year
mm Is the month

dd Is the day
hh Is the hour
tt Is the minute

ss Is the second.

A space character separates the day and the hour.

132/55 1 This field contains a space character for separation.

133/56 8 This field contains type of token, INTERNAL, EXTERNAL or NO-KEY (null
token). Anything else, this field is set of ERROR and an asterisk (*) is set
into the record offset 0 field.

141/64 11 Reserved, filled with space characters.

152/75 2 This field contains a carriage return (CR) or line feeds (LF).

B-14 1BM 4758 CCA Services

Access Control

Role Structure

Data Structures

The following sections define the data structures that are used in the access control
system.

Unless otherwise noted, all two-byte and four-byte integers are in big-endian
format; the high order byte of the value is in the lowest numbered address in
memory.

This section describes the data structures used with roles.

Basic Structure of a Role

The following figure describes how the Role data is structured. This is the format
used when role data is transferred to or from the coprocessor, using verbs
CSUAACI or CSUAACM.

Bytes Field

2 Role structure version (X'0O1l', X'00')
2 Role structure length (bytes)
20) Comment
2 Checksum B
2 Reserved
8 Role ID
2 Required Authentication Strength
2 Lower time limit
2 Upper time limit
1 Valid DOW
1 N Reserved
variable B Permitted Operations

Figure B-17. Role layout

The checksum is calculated as the exclusive-OR (XOR) of each byte in the role
structure. The high-order byte of the checksum field is set to zero (X'00'), and the
exclusive-OR result is put in the low-order byte.

The Permitted Operations are defined by the Access Control Point list, described in
“The Access Control Point List” on page B-16 below.

The lower time limit and upper time limit fields are two-byte structures with each
byte containing a binary value. The first byte contains the hour (0-23) and the
second byte contains the minute (0-59). For example, 8:45 AM is represented by
X'08' in the first byte, and X'2D' in the second.

The valid days-of-the-week are represented in a single byte with each bit

representing a single day. Set the appropriate bit to one to validate a specific day.
The first, or Most Significant Bit (MSB) represents Sunday, the second bit

Appendix B. Data Structures B-15

B-16

represents Monday, and so on. The last or Least Significant Bit (LSB) is reserved
and must be set to zero.

Aggregate Role Structure

A set of one or more role definitions are sent in a single data structure. This
structure consists of a header, followed by one or more role structures as defined in
“Basic Structure of a Role” on page B-15.

The header defines the number of roles which follow in the rest of the structure. Its
layout is shown in Figure B-18, with three concatenated role structures shown for
illustration.

Bytes Field

4 Number of roles in aggregate structure

4 Reserved
variable ‘ First role
variable Second role
variable | Third role

Figure B-18. Aggregate role structure with header

The Access Control Point List

The user's permissions are attached to each Role in the form of an Access Control
Point list. This list is a map of bits, with one bit for each primitive function that can
be independently controlled. If a bit is True (1), the user has the authority to use
the corresponding function, if all other access conditions are also satisfied. If the
bit is False (0), the user is not permitted to make use of the function that bit
represents.

The access control point identifiers are two byte integrs. This provides a total
space of 64K possible bits. Only a small fraction of these are used, so storing the
entire 64K bit (8K byte) table in each role would be an unnecessary waste of
memory space. Instead, the table is stored as a sparse matrix, where only the
necessary bits are included.

To accomplish this, each bitmap is stored as a series of one or more bitmap
segments, where each can hold a variable number of bits. Each segment must
start with a bit that is the high order bit in a byte, and each must end with a bit that
is the low order bit in a byte. This restriction results in segments that have no
partial bytes at the beginning or end. Any bits that do not represent defined access
control points must be set to zero, indicating that the corresponding function is not
permitted.

IBM 4758 CCA Services

The bitmap portion of each segment is preceded by a header, providing information
about the segment. The header contains the following fields.

Starting bit number The index of the first bit contained in the segment. The index
of the first access control point in the table is zero (X'0000").

Ending bit number The index of the last bit contained in the segment.
Number of bytes in segment The number of bytes of bitmap data contained in
this segment.

The entire access control point structure is comprised of a header, followed by one
or more access control point segments. The header indicates how many segments
are contained in the entire structure.

The layout of this structure is illustrated in Figure B-19.

Bytes Field

2 Number of segments
Header
2 Reserved
2 Start bit number
2 End bit number
First
2 Number of bytes — bitmap
segment
2 Reserved
variable Bitmap data
2 Start bit number
2 End bit number
Last
2 Number of bytes — bitmap
segment
2 Reserved
variable Bitmap data

Figure B-19. Access control point structure

Contents of the Default Role
The default role will have the following characteristics.

e The role ID will be DEFAULT.
* The required authentication strength level will be zero.
e The role will be valid at all times and on all days of the week.

¢ The only functions that will be permitted are those related to access control
initialization. This will guarantee that the owner will initialize the coprocessor
before any useful cryptographic work can be done. This requirement prevents
security “accidents” in which unrestricted default authority might accidentally be
left intact when the system is put into service.

The access control points that are enabled in the default role are shown in
Figure B-20.

Appendix B. Data Structures B-17

Figure B-20. Functions permitted in Default Role

Code Function Name

X'0107' PKA96 One Way Hash

X'0110' Set Clock

X'0111' Reinitialize Device

X'0112' Initialize access control system roles and profiles
X'0113' Change the expiration date in a user profile
X'0114' Change the authentication data (e.g. passphrase) in a user profile
X'0115' Reset the logon failure count in a user profile
X'0116' Read public access control information

X'0117' Delete a user profile

X'0118' Delete a role

Profil e Structure
This section describes the data structures related to user profiles

Basic Structure of a Profile

The following figures describe how the Profile data is structured. This is the format
used when profile data is transferred to or from the coprocessor, using verbs
Access_Control_Initialization or Access_Control_Maintenance.

Bytes Field

2 Profile structure version (X'01', X'00')

2 Profile length

20 - Comment

2 Checksum)

1 Logon failure count

1 o Reserved

8 User ID

8 Role ID

4 Activation date (see format below)

4 Expiration date (see format below)
variable) Authentication data

Figure B-21. Profile layout

Bytes Field

2 Year (big-endian format)
1 Month (1-12)
1 Day (1-31)

Figure B-22. Layout of profile Activation and Expiration dates

B-18 IBM 4758 CCA Services

When a new profile is loaded, the host application does not provide the Logon
failure count value. This field is automatically set to zero when the profile is stored
in the coprocessor. The failure count field should have a value of zero in the
initialization data you send with Access_Control_|Initialization.

The checksum is calculated as the exclusive-OR (XOR) of each byte in the profile
structure. The high-order byte of the checksum field is set to zero (X'00'), and the
exclusive-OR result is put in the low-order byte.

Aggregate Profile Structure

For initialization, a set of one or more profile definitions are sent to the coprocessor
together, in a single data structure. This structure consists of a header, followed by
one or more profile structures as defined in “Profile Structure” on page B-18.

The header defines the number of profiles which follow in the rest of the structure.
Its layout is shown in Figure B-23, with three concatenated profile structures shown
for illustration.

Bytes Field
4 Number of profiles in aggregate structure
4 Reserved
variable First profile
variable | Second profile
variable Third profile

Figure B-23. Aggregate profile structure with header

The Authentication Data Structure

This section describes the authentication data, which is part of each user profile.
Authentication data is the information the coprocessory uses to verify your identity
when you log on.

General Structure of Authentication Data: The Authentication Data field is a
series of one or more Authentication Data structures, each containing the data and
parameters for a single authentication method. The field begins with a header,
which contains two data elements.

Length A two-byte integer value defining how many bytes of authentication
information are in the fields following the header. The length of the
header's length field itself is not included in this value.

Field Type Identifier A two-byte integer value which identifies the type of data
following the header. The identifier must be set to the integer value
X'0001', which indicates that the data is of type “Authentication Data.”

The header is followed by individual sets of authentication data, each containing the

data for one authentication mechanism. This layout is shown pictorially in
Figure B-24 on page B-20.

Appendix B. Data Structures B-19

B-20

Authentication Data Length
covers size of these fields

Authentication Data Length

Header

Field Type |dentifier

Length

Mechanism ID

Mechanism strength

Mechanism 1

Expiration date

Attributes and authentication data

(other mechanismes)

Length

Mechanism ID

Mechanism strength

Expiration date

Mechanism "n"

Attributes and authentication data

Figure B-24. Layout of the Authentication Data field

The content of the individual Authentication Data structures is shown in

Figure B-25 below.

Figure B-25 (Page 1 of 2). Authentication Data for each authentication mechanism

Description

The size of this set of authentication mechanism data, in
bytes, not including the length field itself.

An identifier which describes the authentication mechanism
associated with this set of data. For example, there might be
identifiers for passphrase, PIN, fingerprint, public-key based
identification, and others. This is an integer value.

For passphrase authentication, the mechanism ID is the
integer value X'0001'.

Field name Length

(bytes)
Length 2
Mechanism ID 2
Mechanism 2
strength

IBM 4758 CCA Services

An integer value which defines the strength of this
identification mechanism, relative to all others. Higher values
reflect greater strength. A value of zero is reserved for users
who have not been authenticated in any way.

Figure B-25 (Page 2 of 2). Authentication Data for each authentication mechanism

Field name

Length
(bytes)

Description

Expiration
date

4

The last date on which this authentication data may be used
to identify the user. The field contains the month, day, and
year of expiration. All four digits of the year are stored, so
that no problems occur at the turn of the century.

The expiration date is a four-byte structure, as shown in the
C type definition below.

typedef struct {
unsigned char exp_year[2];
unsigned char exp_month;
unsigned char exp_day;

} expiration_date t;

The two-byte exp_year is in big-endian format. The
high-order byte is at the lower numbered address.

Mechanism
attributes

This field contains flags and attributes needed to fully
describe the operation and use of of the authentication
mechanism. One flag is defined for all methods:

Renewable A boolean value which indicates whether the
user is permitted to renew the authentication
data. If this value is True (1), the user can
renew the data by authenticating, and then
providing new authentication data. For example,
the user might enter his old passphrase to
authenticate, then enter a new passphrase to
replace the old one.

The Renewable bit is the most-significant bit (MSB) in the
two-byte attributes field. The other 31 bits are unused, and
must be set to zero.

Mechanism
data

variable

This field contains the data needed to perform the
authentication. The size, content, and complexity of this data
will vary according to the authentication mechanism. For
example, the content could be as simple as a password that
is compared to one entered by the user, or it could be as
complex as a set of sophisticated biometric reference data,
or a public key certificate.

Authentication Data for Passphrase Authentication: For passphrase
authentication, the mechanism data field contains the 20-byte SHA-1 hash of the
user's passphrase. The hash is computed in the host, where it is used to construct
the profile that is downloaded to the Leeds card.

Appendix B. Data Structures B-21

B-22 I1BM 4758 CCA Services

Appendix C. CCA Control Vector Definitions and Key

Encryption

This appendix describes the following:
e DES control vector values?*
* Specifying a Control Vector Base Value

e CCA key encryption and decryption process

In the Common Cryptographic Architecture (CCA), a control vector is a non-secret
guantity that expresses permissible usages for an associated key. When a CCA
DES key is encrypted, the Key-Encrypting Key is exclusive-ORd with the control
vector to form the actual key used in the DES key-encrypting process. This
technique allows the generator or creator of a key to specify how the key is to be
distributed and used. Attacks can be mounted against a cryptographic system
when it is possible to use a key for other than its intended purpose. The CCA
control vector key-typing scheme, and the authorization and control vector checking
performed by a CCA node, provides insurance that these attacks will fail.

DES Control

Vector Values

A control vector is associated with and carried with a key in the key token for the
key. The control vector is as long as the key, either 64 or 128-bits in length.
Although the CCA architecture permits several advanced techniques, the product
implementations described in this book use the same control vector value for the
second half of a double length key as for the first half...except for the reversal of
two bits. Therefore this discussion of control vector values focuses on a 64-bit
vector with the understanding that for a double-length key the value associated with
the second half of the key is essentially the same.

Most of the first 16 bits of a control vector define the key as belonging to one of
several general (generic) classes of keys as shown in the following list:

Key-Encrypting Keys:

IMPORTER Used to decrypt a key brought to this node

EXPORTER Used to encrypt a key taken from this node

Data keys:

DATA Used to encrypt or decrypt data, or to generate or verify a MAC
MAC Used to generate or verify a MAC

MACVER Used to verify a MAC code (can not be used in MAC-generation)

There is a default control vector associated with each of the generic key types just
listed; see Figure C-1 on page C-2. The bits in positions 16-22 and 33-37
generally have different meanings for every generic key class. Many of the
remaining bits in a control vector have a common meaning. Most of the DES

1 In this appendix, control vector means DES control vector base unless noted otherwise. This document does not include
information about encoding a control vector extension.

© Copyright IBM Corp. 1997 C-1

key-management services permit you to use the default control vector value by
naming the generic key class in the service's key-type variable. You can use the
default control vector for a generic key type or you can create a more restrictive
control vector.

The default control vector for a generic key type provides basic key-separation
functions. The cryptographic subsystem creates a default control vector for a
generic key type when you use the Key_Generate verb and specify a null key token
and a name generic key-type in the key type parameter. When you import or
export a key, you can also specify a key type to obtain a default control vector
instead of supplying a control vector in a key token. If you specify a key type with
the Key_import verb, you must ensure that the default control vector is the same as
the control vector that was used to encrypt the key.

The additional control vector bits that you can turn on (beyond those already on in
the generic control vector value) permit you to further restrict the use of a key. This
gives you the ability to implement the general security policy of permitting only
those capabilities actually required in a system. Each of the additional bits is
designed to block some specific attacks although these attacks are almost always
very obscure.

You can obtain the value for a control vector in one of several ways:

e Use a generic control vector and obtain the value from Figure C-1.

* Read “Specifying a Control Vector Base Value” on page C-3; the table
presents an ordered set of questions to enable you to create the value for a
control vector.

* Use the Key_Token_Build verb and keywords to construct a control vector and
incorporate this vector into a key token.

Figure C-1. Control Vector Default Values for Generic Key Types

Control Vector (Hexadecimal Control Vector (Hexadecimal
value for Left Half of value for Right Half for
Key Type Double-Length Key) Double-Length Key)
DATA 00 00 7D 00 03 00 00 00
EXPORTER 00 41 7D 00 03 41 00 00 00 41 7D 00 03 21 00 00
IKEYXLAT 00 42 42 00 03 41 00 00 00 42 42 00 03 21 00 00
IMPORTER 00 42 7D 00 03 41 00 00 00 42 7D 00 03 21 00 00
MAC 00 05 4D 00 03 00 00 00
MACVER 00 05 44 00 03 00 00 00

C-2 IBM 4758 CCA Services

Control Vector Base Bits
0OO0O00 (0111|1122 |22231(3333|4444 (4555155606
0246|8024 (6802(46801(2468|0246 (8024 (6802
Most Significant Bit Least Significant Bit—I
Common Bits
(————————T————Anti—Varient Bits
....... Pleeeee o Pl Ece o Ploee et OP| et J 1P oe o KUl ee et b Pee P
{ [E=Exp0rt LK=KEY—PART
P=Even Parity
Key—Encrypting Keys
g=IMEX
k=0PEX
s=EXEX
i=EXPORT
x=XLATE
EXPORTER [
00000000|01000001 [OEgksixP|00000000|00000011|fffOKOOP| 00000000 00000000
OKEYXLAT
00000000|01000001 [OEOOCO1P|00000000|00000011 | fffOKOOP| 00000000 00000000
IKEYXLAT
00000000|01000010 |OEOOOO1P 00000000 |00000011 | fffOKOOP| 00000000 00000000
IMPORTER
00000000|01000010 |0EgksixP|00000000|00000011|fffOKOOP| 00000000 00000000
l{x=XLATE Key—Form
i=IMPORT
s=IMIM
k=0PIM
g=IMEX
DATA
00000000| 00000000 (OE11110P|00000000|SO000011|0000KOXP | 00000000 00000000
MAC
00000000|00000101 [OEOO110P 00000000 |00000011|0000KOXP | 00000000 00000000
MACVER *

00000000| 00000101 |OEOCO10P 00000000 00000011 |0OOOKOXP |00000000|00000000

Figure C-2. Control Vector Base Bit Map

Specifying a Control Vector Base Value

You can determine the value of a control vector by working through the following
series of questions:

1. Begin with a field of 64 bits (eight bytes) set to 0. The most significant bit is
referred to as bit 0. Define the key type and subtype (bits eight to 14), as
follows:

e The main key type bits (bits eight to 11). Set bits eight to 11 to one of the
following values:

Bits eight to Main Key Types
11
0000 Data operation keys
0100 Key-Encrypting Keys

Appendix C. CCA Control Vector Definitions and Key Encryption C-3

c-4

e The key subtype bits (bits 12 to 14). Set bits 12 to 14 to one of the
following values:

Bits 12 to 14 Key Subtypes

Data Operation Keys

010 MAC key (MAC or MACVER)
000 Compatibility key (DATA)
Key-Encrypting Keys
000 Transport-sending keys (EXPORTER and OKEYXLAT)
001 Transport-receiving keys (IMPORTER and IKEYXLAT)

2. For Key-Encrypting Keys, set the following bits:

¢ The key-generating usage bits (gks, bits 18 to 20). Set the gks bits to 1 to

indicate that the Key_Generate verb can use the associated Key-Encrypting
Key to encipher generated keys when the Key_Generate verb is generating
various key-pair key-form combinations (see the Key-Encrypting Keys
section ofFigure C-2 on page C-3). Without any of the gks bits set to 1,
the Key_Generate verb cannot use the associated Key-Encrypting Key.

The Control_Vector_Generate verb can set the gks bits to 1 when you
supply the OPIM, IMEX, IMIM, OPEX, and EXEX keywords.

The IMPORT and EXPORT bit and the XLATE bit (ix, bits 21 and 22). If
the ‘i’ bit is set to 1, the associated Key-Encrypting Key can be used in the
Data_Key Import, Key Import, Data_Key_ Export, and Key_ Export verbs. If
the ‘X’ bit is set to 1, the associated Key-Encrypting Key can be used in the
Key Translate verb. The Control_Vector_Generate verb can set the ‘ix’
bits to 1 when you supply the IMPORT, EXPORT, and XLATE keywords.

The key-form bits (fff, bits 40, 41, and 42). The key-form bits indicate how
the key was generated and how the control vector participates in
multiple-enciphering. To indicate that the parts can be the same value, set
these bits to B'010'. For information about the value of the key-form bits
in the right half of a control vector, see step 4 on page C-4.

3. For MAC and MACVER keys, set the following bits:

e The MAC control bits (bits 20 and 21). For a MAC-generate key, set bits

20 and 21 to 11. For a MAC-verify key, set bits 20 and 21 to 01.

4. For all keys, set the following bits:

IBM 4758 CCA Services

e The export bit (E, bit 17). If set to 0, the export bit prevents a key from

being exported. By setting this bit to 0, you can prevent the receiver of a
key from exporting or translating the key for use in another cryptographic
subsystem.

The KEY-PART bit (K, bit 44). Set the KEY-PART bit to 1 in a control
vector associated with a key part. When the final key part is combined with
previously accumulated key parts, the KEY-PART bit in the control vector
for the final key part is set to 0. The Control_Vector_Generate verb can set
the key-part bit to 1 when you supply the KEY-PART keyword.

The anti-variant bits (bit 30 and bit 38). Set bit 30 to 0 and bit 38 to 1.
Many cryptographic systems have implemented a system of variants where
a seven-bit value is exclusive-ORd with each 7-bit group of a

Key-Encrypting Key before enciphering the target key. By setting bits 30
and 38 to opposite values, control vectors do not produce patterns that can
occur in variant-based systems.

e Control vector bits 64 to 127. If bits 40 to 42 are 000 (single-length key),
set bits 64 to 127 to 0. Otherwise, copy bits 0 to 63 into bits 64 to 127 and
set bits 105 and 106 to 01.

e Set the parity bits (low-order bit of each byte, bits 7, 15, ..., 127). These
bits contain the parity bits (P) of the control vector. Set the parity bit of
each byte so the number of zero-value bits in the byte is an even number.

CCA Key Encryption and Decryption Process
This section describes the CCA key encryption processes:

e CCA DES key encryption
e CCA RSA private key encryption.

CCA DES Key Encryption and Decryption Process

With the CCA, multiply-enciphering or deciphering a key is a two-step process.
The implementation first exclusive-ORs the subject key’s control vector with the
master key or a Key-Encrypting Key. multiple-decipherment. The implementation
then uses the resulting keys to multiply-encode or decode the subject key.

Figure C-3 on page C-6 shows how a cryptographic implementation
multiply-enciphers and multiply-deciphers a single-length key. Figure C-4 on
page C-7 shows how a cryptographic implementation multiply-enciphers and
multiply-deciphers a double-length key. The top portion of each figure shows how
the implementation exclusive-ORs the subject key’s control vector with a master
key or a Key-Encrypting Key to form the keys (K1 and K2 for a single-length key;
K1, K2, K3, and K4 for a double-length key) used in the encryption or decryption
process. The bottom portion of each figure shows how the implementation uses
the resulting keys to multiply-encipher and to multiply decipher the subject key.

Appendix C. CCA Control Vector Definitions and Key Encryption C-5

C-6

T
l KM or KEK

o

78 1

Control Optional
Vector Control
Base Vector
Extension
78 15

.

JEEN

(See the note below.)

1 2

EI
o | ¢/
=

E

Multiple
Encipherment

Clear Key

0 7

Multiply-
Enciphered
Key

0 7

Multiple
Decipherment

Multiply-
Enciphered
Key

R

0 7

Figure C-3. Multiply Enciphering and Multiply Deciphering a Single-Length Key

Notes:

1. The Encode and Decode processes are the DES Electronic Code Book (ECB)
processes for ciphering 64 data bits using a single-length key, K.

2. If the key token for a single-length key specifies a control vector extension, the
implementation exclusive-ORs the control vector extension with the second part
of the KM or KEK to form K2. If the key token does not specify a control vector
extension, the implementation exclusive-ORs the control vector base with the
second part of the KM or KEK to form K2. Control vector extensions are not
supported by the CCA implementation described in this manual.

IBM 4758 CCA Services

T T
KM or‘" KEK ‘ Control IVector

0 ‘ 78 15
Multiple Multiple
Encipherment Decipherment
T T
l Clear Key l ‘Mu1t1’p1y-Enc1phered Key‘

1 |
0 l 78 115 0 l 78 115
s o

—

v ' v v
=
—

v v v v
s o
v ¥ v v

T T
Mu]tip]y—Engphered Keyl ‘ C]eaT Key ‘

Figure C-4. Multiply-Enciphering and Multiply-Deciphering a Double-Length Key

Notes:

1. The Encode and Decode processes are the DES Electronic Code Book (ECB)
processes for ciphering 64 data bits using a single-length key, K..

2. A cryptographic implementation processes the left half of a double-length key in
the same way as it processes a single-length key.

3. If the left and right halves of a double-length Key-Encrypting Key have the
same value, using the key in multiply-enciphering or multiply-deciphering a key
is equal to single-enciphering or single-deciphering a key.

4. The control vector for a double-length key consists of two halves. The second
half is the same as the first half except for bits 41 and 42, which are reversed
in value.

Appendix C. CCA Control Vector Definitions and Key Encryption C-7

CCA RSA Private Key Encryption and Decryption Process

C-8

Private keys in PKA96 implementations use the EDEZ2 process to encipher the
secret portion of an RSA private key in an external key token encrypted by a
transport Key-Encrypting Key, see Figure C-5. A private key in an internal key
token encrypted by the master key is encrypted using the EDE3 process, see
Figure C-7 on page C-10. The secret key is deciphered using the DED2 and
DED3 processes, see Figure C-6 on page C-9 and Figure C-8 on page C-11.

The EDE2 algorithm uses a 112-bit key to encrypt any number of 64-bit blocks of
information. The DED2 algorithm is used to decrypt this information. The
Key-Encrypting Key is a transport Key-Encrypting Key for an external key.

‘ K1<64> ‘ K2<64> |

‘ T1<64> ‘ T2<64> | T3<64>

o» —» —» —//—»

K1—+»| e Kl—»| e Kl—+»| e

v v

(| =l | =0 | =
=0 =0 -
EAR
a “*F

‘ S1<64> ’ S2<64> S3<64> ‘ ’ Sn<64>
S = ede2(K,T)
or
S = e2xK(T)
S1 = e2*K(T1)
S2 = +e2*K(T2)
S3 = +e2*K(T3)

Figure C-5. EDE2 Algorithm

IBM 4758 CCA Services

‘ K1<64> ’ K2<64> |
/

‘ S1<64> ‘ S2<64> | S3<64> H Sn<64>
/

v v v l
KH@ KH@ KH@ KH@
] =00 =L B[]
<[] =0 =L =L
K2—+| e K2—| e K2—+| e K2—

v A\ v
KH@ KH@ KH@ KH@
] =00 =L B[]

/
‘ T1<64> ‘ T2<64> | T3<64> Tn<64>

B

T = ded2(K,S)

Figure C-6. DED2 Algorithm

The EDE3 algorithm uses a 168-bit key to encrypt any number of 64-bit blocks of

information. The DED3 algorithm is used to decrypt this information. The

Key-Encrypting Key is the master key for an internal key.

Appendix C. CCA Control Vector Definitions and Key Encryption

C-9

C-10

/
‘ K1<64> ’ K2<64> H K3<64> ‘
/

‘ T1<64>

T2<64>

T3<64>

/
‘ ‘ Tn<64>

'
0—>

K1—>| e

'
—[

Kl=»| e

.
[

K1—»>| e

T
—/1—| + |

K1

K2—»

K2—

G

Ty
ol

K2—

i
&

K2—

—/)—
—/—

K2—» K2— K2— K2—
/
S1<64> S2<64> S3<64> ‘ ‘ Sn<64>
S = ede3(K,T)
or
S = e3%K(T)

Figure C-7. EDE3 Algorithm

IBM 4758 CCA Services

/
‘ K1<64> ’ K2<64> H K3<64> ‘
/
/
‘ S1<64> ‘ S2<64> | S3<64> H Sn<64>
/
v A4
K3—>@ K3—» K3—» K3—»
0+ % %F HF
<[] =0 =L =L
K2—+| e K2—| e K2—+| e K2—
v A\ v
K1—>@ K1 K1 K1
(] *F ag -l
/
‘ T1<64> T2<64> T3<64> H Tn<64>
/
= ded3(K,S)

Figure C-8. DED3 Algorithm

Appendix C. CCA Control Vector Definitions and Key Encryption

C-11

Changing Control Vectors

C-12

Use the pre-exclusive-OR technique to change a key's control vector when
exporting or importing the key from or to a cryptographic node. By exclusive-ORing
information with the KEK used to import or export the key, you can effectively
change the control vector associated with the key.

The pre-exclusive-OR technique requires exclusive-ORing additional information
into the value of the importer or exporter KEK by one of the following methods:

e Exchange the KEK in the form of a plaintext value or in the form of key parts.
For example, if you use the Key_ Part_Import verb to enter the KEK key parts,
you can enter another part that is set to the value of the pre-exclusive-OR
quantity.

e Use the Key_ Generate verb to generate an IMPORTER/EXPORTER pair of
KEKs, with the key-part control vector bit set on. Then use the
Key Part_Import verb to enter an additional key part that is set to the value of
the pre-exclusive-OR quantity.

To understand how you can change a key’s control vector when importing or
exporting keys, you must first understand the importing and exporting process. For
example, when exporting key K, the cryptogram e*Km@CV,(K) is changed to the
cryptogram e*KEK®CV,, (K).

Notes:

1. The first cryptogram is read as “the multiple-encipherment of key K by the key
formed from the exclusive-OR of the master key and the control vector, CV,, of
key K.”

2. The second cryptogram is read as “the multiple-encipherment of key K by the
key formed from the exclusive-OR of the KEK and the control vector, CV,,, of
key K.” KEK represents the value of the exporter key.

3. A control vector of value binary zero is equivalent to not having a control
vector.

The CCA specifies that in all but one case, CV, is the same as CV,;. The
exception is that a DATA key whose CV, contains the value of a default CV for that
key type, has a CVy, equal to binary zero. (Key importing and exporting performed
by the Personal Security Card does not obey this exception; for the card, CV, is
always equal to CV,;.)
To change the control vector on key K, the KEK must be set to the value:
KEK @ CV,; ® CV,,

where:

e KEK is the value of the shared esporter key.

e @ represents exclusive-OR

* CV,, is the control vector value used with the operational key K at the local
node

CV,, is the desired control vector value for the exported key K.

IBM 4758 CCA Services

This process works because the value CV,, is specified in the key token for the
exported key. The Key_Export verb provides this control-vector value to the
hardware, which exclusive-ORs it with the exporter KEK. However, you have set
the exporter KEK to the value KEK®CV,;,.... When CV,, is exclusive-ORed with
CV,,, the effect is that CV,, is removed. Because you also set the KEK to include
the desired control vector, CV,,, the exported key will have a changed control
vector.

For an example of how to use the hardware initialization and key management
utility to establish a KEK to import a PIN-block-encrypting key from a system that
uses variants to a Transaction Security System node, see the “Using the HIKM
Utility” chapter in the Workstation Security Services Installation and Operating
Guide. Figure C-9 shows how the pre-exclusive-OR process is used during a
specific key import step.

|PIN—B10ck-Enc1’pher1‘ng Key (Kp)‘

‘ Other—System Variant

I \ 4
EOEI—TEncipher—Key Process‘

‘ Key—Encrypting Key }—I

Key-Encrypting Key XOR
Other-System Variant XOR
Control Vector to Obtain v
KEK'-Left and KEK'-Right | exKEK.Variant (Kp)

‘ Double-Length KEK' }——l

I
BOE'——TDecipher—Key Process‘

Transaction Security System
Control Vector for the

PIN-Block—Enciphering Key,
Control Vector Left and v
Control Vector Right |PIN—B1ock—Enc1'pher1'ng Key (Kp)‘

Figure C-9. Exchanging a Key with a Non-Control-Vector System

Appendix C. CCA Control Vector Definitions and Key Encryption C-13

C-14 1BM 4758 CCA Services

Appendix D. Algorithms and Processes

This appendix provides processing details for the following aspects of the CCA
design:

* Cryptographic key-verification techniques

¢ Ciphering methods

e MAC calculation methods

e Multiple encipherment of DES keys with a control vector
e Access control algorithms

Cryptographic

Key Verification Techniques

The CCA implementations described in this book employ mechanisms for assuring
the integrity and/or value of the key. These subjects are discussed:

* Master key verification algorithm
e DES key and key-part verification algorithm.

Master Key Verification Algorithm

The Fortress product family implementations employ a “triple-length” master key (3
DES keys) that is internally represented in 24 bytes. Verification patterns on the
contents of the new, current, and old master key registers can be generated and
verified when the selected register is not in the empty state.

A SHA-1 hash is calculated on the quantity X'01' prepended to the 24-byte
register contents. Then the high-order eight-bytes (0...7) of the 20-byte SHA-1
hash are returned in the random_number variable from a Key_Test verb call. The
next eight-bytes of the SHA-1 hash (8...15) are returned in the verification_pattern
variable.

The master key verification pattern used in an internal DES key record is calculated
in a similar manner with the high-order two bytes of the SHA-1 used as the
verification pattern (MKVP).

DES Key Verification Algorithm

The cryptographic engines provide a method for verifying the value of a DES
cryptographic key or key part without revealing information about the value of the
key or key part.

The CCA verification method first creates a random number. A one-way
cryptographic function combines the random number with the key or key part. The
verification method returns the result of this one-way cryptographic function (the
verification pattern) and the random number.

Note: A one-way cryptographic function is a function in which it is easy to
compute the output from a given input, but it is computationally infeasible to
compute the input given an output.

For information about how you can use an application program to invoke this
verification method, see page 5-33.

© Copyright IBM Corp. 1997 D-1

The CCA DES key verification algorithm does the following:

1. Sets KKR' = KKR exclusive-OR RN

Sets K1 = X'4545454545454545"

Sets X1 = DES encoding of KKL using key K1
Sets K2 = X1 exclusive-OR KKL

Sets X2 = DES encoding of KKR' using key K2
Sets VP = X2 exclusive-OR KKR'.

ok wd

Where:
RN Is the random number generated or provided

KKL Is the value of the single-length key, or is the left half of the
double-length key

KKR Is XL8'00' if the key is a single-length key, or is the value of the right
half of the double-length key

VP Is the verification pattern.

D-2 IBM 4758 CCA Services

Cipherin g Methods

The Data Encryption Standard (DES) algorithm defines operations on eight-byte
data strings. Although the fundamental concepts of ciphering (enciphering and
deciphering) and data verification are simple, different methods exist to process
data strings that are not a multiple of eight bytes in length. The standards and IBM
products that define these methods are as follows:

« ANSI X3.106 (CBC)
+ ANSI X9.23.

Note: These methods also differ in how they define the initial chaining value (ICV).

This section describes how the verbs implement these methods.

ANSI X3.106 Cipher Block Chaining (CBC) Method

ANSI standard X3.106 defines four modes of operation for ciphering. One of these
modes, Cipher Block Chaining (CBC), defines the basic method for ciphering
multiple eight-byte data strings. Figure D-1 and Figure D-2 on page D-4 show
Cipher Block Chaining using the Encipher and the Decipher verbs. A plaintext data
string that must be a multiple of eight bytes, is processed as a series of eight-byte
blocks. The ciphered result from processing an eight-byte block is exclusive-ORd
with the next block of eight input bytes. The last eight-byte ciphered result is
defined as an output chaining value (OCV). The security server stores the OCV in
bytes 0 through 7 of the chaining_vector variable.

An ICV is exclusive-ORd with the first block of eight bytes. When you call the
Encipher verb or the Decipher verb, specify the INITIAL or CONTINUE keywords.
If you specify the INITIAL keyword (the default), the initialization vector from the
verb parameter or the key token is exclusive-ORd with the first eight bytes of data.
If you specify the CONTINUE keyword, the OCV identified by the chaining_vector
parameter is exclusive-ORd with the first eight bytes of data.

Appendix D. Algorithms and Processes D-3

D-4

Verb Parameter
or Key Token

A

Plaintext from Application Program ———

Initialization

 —
—0CV

Vector Data (1,8) Data (9,16) Data (N*8-7,N%8)
INITIAL
Keyword
v] [[[_
or—ICV ——XO0R —XO0R r — —>XOR
A
CONTINUE
Keyword |
Encipher Encipher Encipher
|
|
v A 4 A\ 4
Data (1,8) Data (9,16) Data (N*8-7,N*8)

<«— (Ciphertext to Application Program ——»

Figure D-1. Enciphering Using the CBC Method

Verb Parameter
or Key Token

Chaining Vector

Ciphertext from Application Program ———»

Initialization

Vector Data (1,8) Data (9,16) Data (N*8-7,N*8)
—
— =7 ————————————TOCV
v v | \4
Decipher Decipher Decipher
INITIAL |
Keyword l l l
v] [[l_
or—»ICV ——XO0R L——X0R L — —»X0R
A
CONTINUE
Keyword
Data (1,8) Data (9,16) Data (N*8-7,N*8)
<«— Plaintext to Application Program ———
A
Chaining Vector

Figure D-2. Deciphering Using the CBC Method

IBM 4758 CCA Services

ANSI X9.23

An enhancement to the basic Cipher Block Chaining mode of X3.106 is defined so
that the system can process data lengths that are not exact multiples of eight bytes.

The ANSI X9.23 method always adds from one byte to eight bytes to the plaintext
before encipherment. With these methods, the last added byte is the count of the
added bytes and is within the range of X'01' to X'08'. The other added padding
bytes are set to X'00".

For other than the CBC method, when the security server deciphers the ciphertext,
the security server uses the last byte of the deciphered data as the number of
bytes to be removed (the pad bytes and the count byte). The resulting plaintext is
the same length as the original plaintext.

Appendix D. Algorithms and Processes D-5

D-6

Verb Parameter
or Key Token

<— Plaintext from Application Program —»

Initialization
Vector Data (1,8)

Data (N*8-7,N*8)

Data| Pad [Count

1

,

l

—
> Oﬂ r — —>XO0R —>X0R
L L
|
v | A 4
Encipher Encipher Encipher
|
- _ 1
v A A\ 4
Data (1,8) Data (N*8-7,N*8) Last Block

<«— C(Ciphertext to Application Program ———»

Figure D-3. Enciphering Using the ANSI X9.23 Method

Verb Parameter
or Key Token

< Ciphertext from Application Program ———»
Initialization
Vector Data (1,8) Data (N*8-7,N*8) Last Block
L
\ 4 | 4
Decipher Decipher Decipher
[|
[[[™
»XO0R - —»XO0R ———XO0R
Data (1,8) Data (N*87,N+8)| |Data| Pad |Count

<«— Plaintext to Application Program —»

Figure D-4. Deciphering Using the ANSI X9.23 Method

IBM 4758 CCA Services

MAC Calculation Method

The Financial Institution (Wholesale) Message Authentication Standard (ANSI
X9.9-1986) defines a process for the authentication of messages from originator to
recipient. This process is called the Message Authentication Code (MAC)
calculation method.

Figure D-5 shows the MAC calculation for binary data. KEY is a 64-bit key, and T,
through T, are 64-bit data blocks of text. In the standard, the Initial Chaining Value
is binary zeroes. If T, is less than 64 bits long, binary zeros are appended
(padded) to the right of T,. The leftmost 32 bits of (O,) are taken as the MAC.

T1 T2 Tn-1 Tn
0

XOR »— XOR »— XOR »— XOR

A 4 \ \ 4 A 4

KEY| e KEY| e KEY| e KEY| e
01 02 On-1 On

—(0CV)
v
MAC

Figure D-5. MAC Calculation Method

Notes:

1. A footnote in the ANSI X9.9 standard suggests the future use of a 48-bit or
64-bit MAC. For these cases, the left-most 48 bits or the entire final output
(O,) is taken as the MAC.

2. The ANSI X9.9 standard defines five options. The MAC_Generate and
MAC_Verify verbs implement option 1, binary data. The X9.9_ Data_Editing
verb is supplied as a subroutine to perform data fitting as required for options 2
and 4.

Appendix D. Algorithms and Processes D-7

Access Control Algorithms

The following sections describe algorithms and protocols used by the access
control system.

Passphrase Verification Protocol

This section describes the process used to log a user on to the Cryptographic
Coprocessor.

Design Criteria
The passphrase verification protocol is designed to meet the following criteria.

1. The use of cryptographic algorithms is permitted in the client logon software,
but there must be no storage of any long-term cryptographic keys. This is
because secure key storage is generally not available in the client workstation.

2. Replay attacks must not be feasible. This means that the logon request
message must be protected so that it cannot be captured by an adversary, and
later replayed to gain access to the genuine user's privileges.

3. An attacker should not be able to guess the cleartext content of the logon
request message.

4. No special hardware should be required on the client workstation, other than
the Cryptographic Coprocessor itself.

5. The logon process must result in the establishment of a session key known
only to the Cryptographic Coprocessor and the host. This key will be used on
subsequent transactions to prove the identity of the sender, and to secure
transmitted data.

6. The session key will be generated in the coprocessor. Its hardware-based
random number generator is of higher quality than any random number source
available in the client workstation.

Description of the Protocol
The protocol is comprised of the following steps.

1. The user provides his User ID (UID) and passphrase.

2. The passphrase is hashed in the client workstation, using SHA-1. The resulting
hash is used to construct a logon key, denoted K.

K_ is a triple-length DES key. The three components of the triple-length key
are denoted K1, K2/, and K3,. K1, is comprised of the first eight bytes of the
hash, K2, is comprised of the second eight bytes, and K3, is comprised of the
last four bytes, concatenated with four bytes of X'00'. Figure D-6 shows an
example to clarify this.

Passphrase is "This is my passphrase!"

SHA-1 hash of the passphrase is hex ?ZBEDICD 1D86893? ?319E315 F3C096A? ?ZEGSDB%

K1 is 42BEDICD 1DB68934
K2 is 6319E315 F3C096A8
K3 is B2EO8DB2 00000000

A A A

Figure D-6. Example of logon key computation

D-8 IBM 4758 CCA Services

3. The client workstation generates a random number, RN.

Note: Note: The random number RN is not used inside the Cryptographic
Coprocessor. It is only included in the protocol to guarantee that the cleartext
of the logon request is different every time.

4. The client workstation sends a logon request to the Cryptograhpic Coprocessor,
including the following information:

{ UID, eK (RN, UID, Timestamp) }

Encryption uses DES EDE3! mode, performed in software in the client
workstation. The timestamp includes both the time and the date, in GMT. It is
used to prevent replay of the logon request.

5. The Cryptographic Coprocessor retrieves the user profile, which it has in secure
internal memory. It uses the received userid value UID to locate the right
profile. If the user's profile is not found, the logon request is rejected.

6. The coprocessor reads the hash of the user's passphrase from the profile, thus
obtaining K.

7. The coprocessor uses K| to decrypt the user's logon data, thus recovering the
UID, Timestamp, and RN. It compares the recovered UID with the cleartext
UID it received, and aborts if the two are not equal. Inequality is an indication
that the passphrase was incorrect, or that someone tried to splice another
user's captured logon data into their own request.

8. The coprocessor verifies that the recovered Timestamp is within 5 minutes of
the current time, according to the secure clock. If the Timestamp falls outside
this window, it indicates a probably replay attack, and the logon request is
rejected.

9. If everything everything in the preceding steps was acceptable, the user is
logged on to the coprocessor. It generates a DES session key Kg, and returns
this key to the client in the form eK (Kg). The session key is a triple-length
DES key.

10. In a secure internal table, the coprocessor stores the userid UID, the value of
Ks, and the user's Role, which is extracted from the profile. This table is used
on later requests to verify that the user is logged on, and to find the role
defining the user's privileges. The table entry is destroyed when the user logs
off.

11. The client workstation software (SAPI) saves Kg for use in subsequent
transactions.

1 For a description of the EDE3 encryption process, see Figure C-7 on page C-10.

Appendix D. Algorithms and Processes D-9

D-10 1BM 4758 CCA Services

Appendi x E. Verb List

This appendix lists the verbs supported by the Transaction Security System
products.

Figure E-1 on page E-2 lists each verb by the verb’s pseudonym and entry-point
name and shows the operating environment under which the verb is supported. A
check (v) in the operating environment column means that the verb is available for
use in that operating environment?.

1 Figure E-1 lists the verbs that are used with DES and PKA96 processing; for information about the verbs that are used with
PKA92 public-key processing, see the TSS Programming Reference: Volume Il, Public-Key Cryptography SC31-2888.

© Copyright IBM Corp. 1997 E-1

Figure E-1 (Page 1 of 2). Security API Verbs in Supported Environments

Entry-Point Page/
Pseudonym Name 0Ss/2 AIX NT Book
DES Key Processing and Key Storage Verbs
Clear_Key_Import CSNBCKI v v v 5-16
Data_Key_Export CSNBDKX v v v 5-18
Data_Key_Import CSNBDKM v v v 5-20
Key_Export CSNBKEX v v v 5-22
Key_ Generate CSNBKGN v v v 5-24
Key_Import CSNBKIM v v v 5-29
Key_Part_Import CSNBKPI v v v 5-31
DES_Key_Record_Create CSNBKRC v v v 7-4
DES_Key_Record_Delete CSNBKRD v v v 7-5
DES_Key_Record_List CSNBKRL v v v 7-7
DES_Key_Record_Read CSNBKRR v v v 7-9
Key_ Record_Write CSNBKRW v v v 7-10
Key Test CSNBKYT v v v 5-33
Key_Token_Change CSNBKTC v v v 5-39
Key_Translate CSNBKTR v v v 5-41
Random_Number_Generate CSNBRNG v v v 5-43
Key_Token_Build CSNBKTB v v v 5-36
PKA_Symmetric_Key_ Export CSNDSYX v v v 5-45
PKA_Symmetric_Key_Import CSNDSYI v v v 5-47
Data Confidentiality and Data Integrity Verbs
Decipher CSNBDEC v v v 6-4
Encipher CSNBENC v v v 6-7
MAC_Generate CSNBMGN v v v 6-10
MAC_Verify CSNBMVR v v v 6-13
One_Way_Hash CSNBQWH v v v 4-10
Digital_Signature_Generate CSNDDSG v v v 4-4
Digital_Signature_Verify CSNDDSV v v v 4-7
Hardware Access-Control Verbs
Access_Control_Initialization CSUAACI v v v 2-8
Access_Control_Maintenance CSUAACM v v v 2-11
Cryptographic_Facility_Control CSUSCFC v v v 2-17
Cryptographic_Facility_Query CSUSCFQ v v v 2-20
Cogon_Control CSUSLCT v v v 2-27
Master_Key_ Process CSNBMKP v v v 2-31
RSA Key Administration and Key Storage Verbs
PKA_Key_Generate CSNDPKG v v v 3-6
PKA_Key_Import CSNDPKI v v v 3-9
PKA_Key_Token_Build CSNDPKB v v v 311
PKA_Key_Token_Change CSNDKTC v v v 3-17
PKA_Key_Record_Create CSNDKRC v v v 7-11
PKA_Key_Record_Delete CSNDKRD v v v 7-13

E-2 1BM 4758 CCA Services

Figure E-1 (Page 2 of 2). Security API Verbs in Supported Environments

Entry-Point Page/
Pseudonym Name 0Ss/2 AIX NT Book
PKA_Key_Record_List CSNDKRL v v v 7-15
PKA_Key_Record_Read CSNDKRR v v v 7-17
PKA_Key_Record_Write CSNDKRW v v v 7-19
Financial Services Support Verbs
SET_Block_Compose CSNDSBC v v v 8-2
SET_Block_Decompose CSNDSBD v v v 8-5

Appendix E. Verb List E-3

E-4 1BM 4758 CCA Services

List of Abbreviations

ac alternating current
ANSI American National Standards Institute
ACF/VNTAM Advanced Communications Function

for the Virtual Telecommunications
Access Method

AlX Advanced Interactive Executive
operating system

APF Authorized Program Facility

API Application Programming Interface

ASCII American National Standard Code for
Information Interchange

AS/400 Application System/400

BCD Binary Coded Decimal

BTU British Thermal Unit

C Celsius

CBC Cipher-Block Chaining

CCA Common Cryptographic Architecture

CDMF Commercial Data Masking Facility

cfm cubic feet per minute

CICs Customer Information Control System

CKDS Cryptographic Key Data Set

cm centimeter

COBOL Common Business-Oriented
Language

CTC Channel To Channel

CPRB Connectivity Programming Request
Block

CUSP Cryptographic Unit Support Program

cv Control Vector.

CcvC Card-Verification Code.

Cw Card-Verification Value

DCI Data Channel Interlock

DEA Data Encryption Algorithm

DES Data Encryption Standard

DMA Direct Memory Access

DOS Disk Operating System

EBCDIC Extended Binary Coded Decimal
Interchange Code

EC Engineering Change

ECB Electronic Code Book

© Copyright IBM Corp. 1997

EEPROM

EIA
EMS
EPO
ESCON
ESS

F
FBSS
FCC

FEPROM

FIPS

GTF
HCD
Hz
IBM
ICRF
ICSF

ICSF/IMVS

IMS
in.
110
10CP
IPL
ISO
KB
KEK
KM
kPa
KSS
kVA
LAN
LANDP
LED

Electrically Erasable, Programmable
Read-Only Memory

Electronics Industries Association
Expanded Memory Specification.
Emergency Power Off

Enterprise Systems Connection
Establish Secure Session
Fahrenheit

Financial Branch System Services

Federal Communications
Commission

Flash Erasable, Programmable
Read-Only Memory

Federal Information Processing
Standard

foot

Generalized Trace Facility
Hardware Configuration Definition
Hertz

International Business Machines
Integrated Cryptographic Facility

Integrated Cryptographic Service
Facility

Integrated Cryptographic Service
Facility/Multiple Virtual Storage

Information Management System
inch

Input/Output

Input/Output Control Program
Initial Program Load
International Standards Organization
Kilobyte

Key-Encrypting Key

Master key

kilopascal

Key Storage Synchronization
kilovolt ampere

Local Area Network

LAN Distributed Platform
Light-Emitting Diode

X-1

LU

MAU

MB

MCS

m

MAC
MBps
MD5
MDC
MKVN
MVS
MVS/DFP
MVS/ESA
MVS/SP
MVS/XA
NEMA

NIST

OEM
OLTS
OSs/VS
0S/2
0S/400
Pa

PC

PC DOS

PCF
pH
PIN
PKA
POS

Logical Unit

Multistation Access Unit

Megabyte

Multiple Console Support

meter

Message Authentication Code
Megabytes per second

Message Digest 5 Hashing Algorithm
Modification Detection Code

Master Key Version Number

Multiple Virtual Storage

MVS/Data Facility Product
MVS/Enterprise Systems Architecture
MV Storage/System Product
MVS/Extended Architecture

National Electrical Manufacturers
Association

National Institute of Science and
Technology (USA).

Original Equipment Manufacturer
Online Test System

Operating System/Virtual Storage
Operating System/2

Operating System/400

Pascal

Personal Computer

Personal Computer Disk Operating
System

Programmed Cryptographic Facility
A measure of acidity or alkalinity
Personal Identification Number
Public Key Algorithm

Point Of Sale

X-2 IBM 4758 CCA Services

POST
PROM

PRPQ
PS/2
RACF
RAM
RISC
ROM
RPQ
RSA
RU
SAA
SAF
SHA
SM
SNA
SRIU
SRPI

TSO
TSR
TSS
Ucw
UKPT
UL/CSA

\Y,
VGA
WCS
VM
WSSP

Power-On Self Test

Programmable Read-Only Memory.
(A)

Program Request for Price Quotation
Personal System/2

Resource Access Control Facility
Random Access Memory

Reduced Instruction-Set Computer
Read-Only Memory

Request for Price Quotation

Rivest, Shamir, and Adleman
Request Unit

Systems Application Architecture
System Authorization Facility

Secure Hashing Algorithm

Service Memorandum

Systems Network Architecture
Service request/reply interchange unit

Server-Requester Programming
Interface

Time Sharing Option
Terminate and Stay Resident
Transaction Security System
Unit Control Word
Unique-Key-Per-Transaction

Underwriters Laboratory/Canadian
Standards Association

Volt

Video Graphics Adapter
Workstation Cryptographic Services
Virtual Machine

Workstation Security Services
Program

Glossary

This glossary includes some terms and definitions from
the IBM Dictionary of Computing, New York: McGraw
Hill, 1994. This glossary also includes some terms and
definitions from:

e The American National Standard Dictionary for
Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standards Institute
(ANSI). Copies may be purchased from the
American National Standards Institute, 11 West 42
Street, New York, New York 10036. Definitions are
identified by the symbol (A) after the definition.

e The Information Technology Vocabulary, developed
by Subcommittee 1, Joint Technical Committee 1, of
the International Organization for Standardization
and the International Electrotechnical Commission
(ISO/IEC JTC1/SC1). Definitions of published parts
of this vocabulary are identified by the symbol (1)
after the definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) after the
definition, indicating that final agreement has not yet
been reached among the participating National
Bodies of SC1.

A

access. A specific type of interaction between a
subject and an object that results in the flow of
information from one to the other.

access control . Ensuring that the resources of a
computer system can be accessed only by authorized
users in authorized ways.

access method . (1) A technique for moving data
between main storage and input/output devices. (2) In
the Transaction Security System products, the part of
the IBM Network Security Processor MVS Support
Program that supports the Application Program
Interfaces, the cross-memory server, the request
manager, and that sends cryptographic requests to the
appropriate Network Security Processor.

adapter . A printed circuit card that modifies the system
unit to allow it to operate in a particular way.

address . (1) In data communication, the unique code
assigned to each device or workstation connected to a
network. (2) A character or group of characters that

* UNIX is a trademark of UNIX Systems Laboratories, Incorporated.

© Copyright IBM Corp. 1997

identifies a register, a particular part of storage, or some
other data source or data destination. (A) (3) To refer
to a device or an item of data by its address. (A) (I)

Advanced Communications Function for the Virtual
Telecommunications Access Method. ACF/VTAM is
an IBM-licensed program that controls communication
and the flow of data in an SNA network.

Advanced Interactive Executive (AIX) operating
system . IBM’s implementation of the UNIX™ operating
system.

alternating current (ac). An electric current that
reverses its direction at regularly recurring intervals.

American National Standard Code for Information
Interchange (ASCII). The standard code (8 bits
including parity a bit), used for information interchange
among data processing systems, data communication
systems, and associated equipment. The ASCII set
consists of control characters and graphic characters.

American National Standards Institute (ANSI). An
organization, consisting of producers, consumers, and
general interest groups that establishes the procedures
by which accredited organizations create and maintain
voluntary industry standards in the United States. (A)

Application System/400 system (AS/400). AS/400 is
one of a family of general purpose midrange systems
with a single operating system, Operating System/400,
that provides application portability across all models.

assembler language . A source language that includes
symbolic machine language statements in which there
is a one-to-one correspondence between the instruction
formats and the data formats of the computer.

authentication . (1) A process used to verify the
integrity of transmitted data, especially a message. (T)
(2) In computer security, a process used to verify the
user of an information system or protected resources.

authorization . (1) The right granted to a user to
communicate with or make use of a computer

system. (T) (2) The process of granting a user either
complete or restricted access to an object, resource, or
function.

authorize . To permit or give authority to a user to

communicate with or make use of an object, resource,
or function.

X-3

Authorized Program Facility (APF) APF is a facility
that permits identification of programs authorized to use
restricted functions.

B

batch file . A file that contains multiple DOS
commands that are processed sequentially whenever
you type the name of the batch file and press the Enter
key.

batch initialization utility In the Transaction Security
System, one of the utility programs supplied with the
Workstation Security Services Program. It enables you
to initialize the hardware access controls and the
cryptographic key registers in the Cryptographic
Adapter, the Security Interface Unit, and the Personal
Security Card.

Binary-Coded Decimal (BCD) . BCD notation is
asystem of binary coding where which each decimal
digit is represented by a binary numeral; for example, in
BCD notation, the number “twenty-three” is represented
by the binary digits 0010 0011 (compare its
representation 10111 in the pure binary numeration
system).

bus. In a processor, a physical facility along which
data is transferred.

bus in. A unidirectional data bus that is part of the
System/360 or System/370 Parallel Channel Interface.
This bus passes data from the control unit to the host.

bus out . A unidirectional data bus that is part of the
System/360 or System/370 Parallel Channel Interface.
This bus passes data from the host to the control unit.

byte. (1) A binary character operated on as a unit and
usually shorter than a computer word. (A) (2) A string

that consists of a number of bits, treated as a unit, and

representing a character. (3) A group of eight adjacent
binary digits that represents one EBCDIC character.

C

Card-Verification Code (CVC) . See Card-Verification
Value.

Card-Verification Value (CVV) . CWis a
cryptographic method, defined by VISA, for detecting
forged magnetic-striped cards. This method
cryptographically checks the contents of a magnetic
stripe. This process is functionally the same as
MASTERCARD's Card-Verification Code (CVC)
process.

Commercial Data Masking Facility (CDMF) CMDF is

an alternate algorithm for data confidentiality

X-4 IBM 4758 CCA Services

applications, based on the DES algorithm with an
effective 40 bit key strength.

channel . A path along which signals can be sent; for
example, a data channel or an output channel. (A)

channel adapter . A communication controller
hardware unit used to attach the controller to a
System/370 data channel.

channel-attached . (1) Pertaining to attachment of
devices directly by data channels (/O channels) to a
computer. (2) Pertaining to devices attached to a
controlling unit by cables rather than by
telecommunication lines.

channel-interface assembly An assembly that
attaches to the Network Security Processor with a
flat-ribbon cable so that a channel attachment can be
made. The channel-interface assembly includes bus
and tag sockets.

channel speed . The rate at which data is transferred
between a host computer and a channel-attached
device. Channel speed is dependent on the type of
sub-channel defined by the channel-attached device.

ciphertext . Text that results from the encipherment of
plaintext. See also plaintext.

Cipher Block Chaining (CBC) CBC is a mode of
operation that cryptographically connects one block of
ciphertext to the next plaintext block.

clear data. (1) Data that is not enciphered.

cleartext . Text that has not been altered by a
cryptographic process. Synonym for plaintext. See
also ciphertext.

Common Cryptographic Architecture (CAA) API

The CCA API is the programming interface described in
the Common Cryptographic Architecture: Cryptographic
Application Programming Interface Reference.

Common Cryptographic Architecture Services/400

This IBM PRPQ runs in an AS/400 system under the
OS/400 operating system to support a xryptographic
co-processor. PRPQ 5700 XBI also enables the use of
a Security Interface Unit and Personal Security Card on
an AS/400 system.

concatenation . An operation that joins two characters
or strings in the order specified, forming one string
whose length is equal to the sum of the lengths of its
parts.

configuration . (1) The manner in which the hardware
and software of an information processing system are
organized and interconnected. (T) (2) The physical and

logical arrangement of devices and programs that
consitiutes a data processing system.

configuration vector In the Transaction Security
System, a public-key hardware data structure that
specifies the security levels under which the user
requires the system to operate, and the
key-management protocol that determines the use of
each type of public key. The configuration vector is
stored in the security module on the cryptographic
adapter.

Connectivity Programming Request Block (CPRB)
The CPRB is an interface control block used by
requesters and servers to communicate information
over the Server-Requester Programming INterface
(SRPI).

controller . A device that coordinates and controls the
operation of one or more input/output devices, such as
workstations, and synchronizes the operation of such
devices with the operation of the system as a whole.

control program . (1) A computer program designed
to schedule and to supervise the programs running in a
computer system. (A) (I) (2) In the Transaction
Security System, the IBM 4753 Network Security
Processor Control Program.

control vector (CV) . In the Transaction Security
System, a 16-byte string that is exclusive-ORd with a
master key or a Key-Encrypting Key to create another
key that is used to encipher and decipher data or data
keys. A control vector determines the type of key and
the restrictions on the use of that key.

cross-memory server . The part of the access method
that receives the request from the security APl and exits
to the System Authorization Facility interface.

cryptographic adapter The 4755 is an expansion
board that provides a comprehensive set of
cryptographic functions for the Network Security
Processor and the workstation.

Cryptographic Key Data Set (CKDS) CKDS is a
data set containing the encrypting keys used by an
installation.

Cryptographic Key Data Set Conversion Utility . The
CKDS Conversion utility is that part of the IBM Network
Security Processor MVS Support Program that converts
PCF/CUSP cryptographic key data sets to Network
Security Processor key data sets.

cryptographic processor An AS/400 I/O processor
that uses the Cryptographic Adapter and & CCAS4. to
provide a comprehensive set of DES and RSA-based
cryptographic services for an AS/400 system.

cryptographic services In the Transaction Security
System, the part of the security server that processes
requests from an application program or the HIKM utility
and sends the requests to the cryptographic hardware
for processing.

Cryptographic Unit Support Program (CUSP)

CUSP is an IBM licensed program (program number
5740-XY6) that supports the creation and management
of cryptographic keys. This program interacts with the
IBM 3848 Cryptographic Unit to encipher and decipher
data.

cryptography . The transformation of data to conceal
its meaning.

CUSP/PCF. An interface between the ACF/VTAM
program and the Network Security Processor MVS
Support Program.

CUSP/PCF transform . That part of the access method
that contains the code to transform the CUSP/PCF
cryptographic requests to a format that the security API
stub can use.

Customer Information Control System (CICS) . CICS
is an IBM licensed program that enables transactions
entered at remote terminals to be processed
concurrently by user-written application programs. It
includes facilities for building, using, and maintaining
databases.

D

data. (1) A representation of facts or instructions in a
form suitable for communication, interpretation, or
processing by human or automatic means. Data
includes constants, variables, arrays, and character
strings. (2) Any representations such as characters or
analog quantities to which meaning is or might be
assigned. (A)

Data Channel Interlock (DCI) . DCI is a protocol for
transmitting data on a channel. In this protocol, the

sender raises and maintains a signal on the channel
until the receiver acknowledges receipt of the signal.

data-encrypting key . (1) A key used to encipher,
decipher, or authenticate data. (2) Contrast with
Key-Encrypting Key.

Data Encryption Algorithm (DEA) DEA is a 64-bit
block cipher that uses a 64-bit key, of which 56 bits are
used to control the cryptographic process and 8 bits are

Glossary X-5

used for parity checking to ensure that the key is
transmitted properly.

Data Encryption Standard (DES) DES is the
National Institute of Standards and Technology Data
Encryption Standard, adopted by the U.S. government
as Federal Information Processing Standard (FIPS)
Publication 46. which allows only hardware
implementations of the data-encryption algorithm.

data set. The major unit of data storage and retrieval,
consisting of a collection of data in one of several
prescribed arrangements and described by control
information to which the system has access.

data streaming . An uninterrupted transfer of
information over an interface in order to achieve high
data transfer rates. (A)

decipher . (1) To convert enciphered data into clear
data. (2) Synonym for decrypt. (3) Contrast with
encipher.

decode . (1) To convert data by reversing the effect of
some previous encoding. (A) (1) (2) In the Transaction
Security System products, decode and encode relate to
the Electronic Code Book mode of the Data Encryption
Standard (DES). (3) Contrast with encode.

decrypt . (1) To decipher or decode. (2) Synonym for
decipher. (3) Contrast with encrypt.

device ID. In the Transaction Security System
products, a user-defined field in the global
configuration-data that can be used for any purpose the
user specifies. For example, it can be used to identify a
particular device, by using a unique ID similar to a serial
number.

diagnostic . Pertaining to the detection and isolation of
errors in programs, and faults in equipment.

directory server . A server that manages key records
in key storage by using an Indexed Sequential Access
Method.

Disk Operating System (DOS) . DOS is an operating
system for computers that use disks and diskettes for
the auxiliary storage of programs and data.

driver . A program that contains the code needed to
attach and use a device.

dump file . In the IBM 4753, a file that contains a
record of dump information for the selected servers.

X-6 IBM 4758 CCA Services

E

Electronic Code Book (ECB) ECB is a mode of
operation used with block cipher cryptographic
algorithms in which plaintext or ciphertext is placed in
the input to the algorithm and the result is contained in
the output of the algorithm.

Electronics Industries Association (EIA) EIA is an

organization of electronics manufacturers that advances
the technological growth of the industry, represents the
views of its members, and develops industry standards.

encipher . (1) To scramble data or to convert data to a
secret code that masks the meaning of the data to
unauthorized recipients. (2) Synonym for encrypt.
(3) Contrast with decipher. (4) See also encode.

enciphered data . Data whose meaning is concealed
from unauthorized users or observers. See also
ciphertext.

encode. (1) To convert data by the use of a code in
such a manner that reconversion to the original form is
possible. (T) (2) In the Transaction Security System
products, decode and encode relate to the Electronic
Code Book mode of the Data Encryption Standard.

(3) Contrast with decode. (4) See also encipher.

encrypt . (1) Synonym for encipher. (T) (2) To
convert clear text into ciphertext. (3) Contrast with
decrypt.

engineering change (EC) level A number that

indicates the hardware version.

Erasable Programmable Read-Only Memory
(EPROM). EPROM is a PROM that can be erased by
a special process and reused. (T)

ESCON. The data processing environment having an
Enterprise Systems Connection channel-to-control-unit
1/0 interface that uses optical cables as the
transmission medium.

Establish Secure Session (ESS) ESS describes the
way by which the hardware components establish
authenticity with each other.

exit routine . In the Transaction Security System
products, a user-provided routine that acts as an
extension of the cross-memory server in the IBM
Network Security Processor MVS Support Program.

Expanded Memory Specification (EMS) EMS is a
software interface for accessing additional memory in
personal computers that use the disk operating system
(DOS).

expansion board . In an IBM personal computer, a
panel the user can install in an expansion slot to add
memory or special features.

EXPORTER key. (1) In the Transaction Security
System, a type of DES Key-Encrypting Key that can
encipher a key at a sending node. (2) Contrast with
IMPORTER key.

F

facility . (1) An operational capability, or the means for
providing such a capability. (T) (2) A service provided
by an operating system for a particular purpose; for
example, the checkpoint/restart facility.

feature . A part of an IBM product that can be ordered
separately.

Federal Communications Commission (FCC) . The
FCC is a board of commissioners, appointed by the
President under the Communications Act of 1934, and
having the power to regulate all interstate and foreign
communications by wire and radio originating in the
United States.

Federal Information Processing Standard (FIPS)
FIPS is a standard published by the US National
Institute of Science and Technology.

Financial Branch System Services (FBSS) FBSS is
an IBM licensed program that provides extended
services for application programs, communication,
token-ring interconnection, and device support.

financial PIN . (1) A Personal Identification Number
used to identify an individual in some financial
transactions. To maintain the security of the PIN,
processes and data structures have been adopted for
creating, communicating, and verifying PINs used in
financial transactions. (2) See also Personal
Identification Number.

Flash-Erasable Programmable Read-Only Memory
(FEPROM). FEPROM is a PROM that has to be
erased before it can be changed.

frequency . The rate of signal oscillation, expressed in
hertz (cycles per second).

G

Generalized Trace Facility (GTF) . GTF is an optional
Operating System/Virtual Storage (OS/VS) service
program that records significant system events, such as
supervisor calls and start /0O operations, for the
purpose of problem determination.

global configuration data Information that specifies
general configuration characteristics of the
cryptographic hardware components, such as the
number of Key-Encrypting Keys, number of data keys,
log size, and so forth.

guest profile . (1) In the Transaction Security System
products, profile data that is downloaded from the
Personal Security Card into the other hardware
components. The guest profile temporarily redefines
the user’s capabilities for that component. (2) See also
Profile.

H

hardware . The equipment, as opposed to the
programming, of a system.

Hardware Initialization and Key Management

Utilities . The part of the Workstation Security Services
Program that enables you to customize the system,
display the status of components, reinitialize the
components, manage the command configuration data,
manage the profiles, manage the clear cryptographic
keys, manage the keys and key storage, manage the
signatures, manage the initialization batch file, and
perform miscellaneous functions.

hertz (Hz). A unit of frequency equal to one cycle per
second.

Note: In the United States, line frequency is 60 Hz or
a change in voltage polarity 120 times per second; in
Europe, line frequency is 50 Hz or a change in voltage
polarity 100 times per second.

holiday table . Information that specifies up to 16
dates on which the cryptographic hardware components
cannot be fully used.

host. (1) In this publication, same as host computer or
host processor. (2) In a computer network, the
computer that usually performs network-control
functions and provides end-users with services such as
computation and database access. (T) (3) The primary
or controlling computer in a multiple-computer
installation. (4) A processor that controls all or part of a
user-application network. (T) (5) In a network, the
processing unit where the access method resides.

host-communication interface The part of the IBM
4753 control program that permits communication
between the 4753 and the System/370 host through the
channel adapter.

host-connection data In the Transaction Security
System products, information about the channel
between the &BUulwarknm. and the MVS host. For the
4753 Model 1, this data includes the channel address,
the number of channel pairs, the channel speed, and

Glossary X-7

the data transfer mode. For the IBM 4753 Models 2
and 12, this data includes the data transfer mode,
channel transfer speed, and the subchannel starting
address.

IMPORTER key. (1) In the Transaction Security
System, a type of DES Key-Encrypting Key that can
decipher a key at a receiving mode. (2) Contrast with
EXPORTER key.

Information Management System IMS is an IBM
licensed program that is an operation on the operating
system; this operation provides information
management services.

initialize . (1) In programming languages, to give a
value to a data object at the beginning of its lifetime. (1)
(2) To set counters, switches, addresses, or contents of
storage to zero or other starting values at the beginning
of, or at prescribed points in, the operation of a
computer routine. (A)

Initial Program Load (IPL) . (1) IPL is the initialization
procedure that causes an operating system to
commence operation. (2) The process by which a
configuration image is loaded into storage at the
beginning of a work day or after a system malfunction.
(3) The process of loading system programs and
preparing a system to run jobs.

Input/Output (1/0O) . (1) /O Pertains to a device whose
parts can perform an input process and an output
process at the same time. (I) (2) Pertaining to a
functional unit or channel involved in an input process,
output process, or both, concurrently or not, and to the
data involved in such a process.

Integrated Cryptographic Service Facility (ICSF)

ICSF is an IBM licensed program that supports the
cryptographic hardware feature for the high-end
System/390 processor running in an MVS environment.

Interconnect Control Program (ICP) ICPis a
communication control program that the 3172 uses.

interface . (1) A shared boundary between two
functional units, defined by functional characteristics,
signal characteristics, or other characteristics, as
appropriate. The concept includes the specification of
the connection of two devices having different
functions. (T) (2) Hardware, software, or both, that links
systems, programs, or devices.

X-8 IBM 4758 CCA Services

International Organization for Standardization

(ISO). IS0 is an organization of national standards
bodies established to promote the development of
standards to facilitate the international exchange of
goods and services, and develop cooperation in
intellectual, scientific, technological, and economic
activity.

ISA bus. A Personal computer industry standard
architecture. The expansion board bus introduced with
the IBM Personal Computer and subsequently extended
to a 16-bit data bus. See also Micro Channel bus.

J

jumper . A wire that joins two unconnected circuits on
a printed circuit board.

K

key. In computer security, a sequence of symbols
used with a cryptographic algorithm to encrypt or
decrypt data.

Key-Encrypting Key (KEK) (1) A KEK is a key used
for the encryption and decryption of other keys.
(2) Contrast with data-encrypting key.

key storage . In the Transaction Security System
products, a data file that contains cryptographic keys.

key-storage synchronization A process that ensures
that every Network Security Processor accessed by the
application program contains the same key-storage
records.

key-synchronization server The part of the Network
Security Processor control program that maintains
current and compatible cryptographic keys to be used
by multiple network security processors connected on a
token-ring network.

key token . In the Transaction Security System security
API, a data structure that can contain a cryptographic
key, a control vector, and other information related to
the key.

Kilobyte (KB) . a Kkilobyte is equal to 1024 bytes.
See byte.

Kilopascals (kPa) . Is equal to one thousand pascals.
See pascal.

Kilovolt ampere (kVA) . Kilovolt is a unit of power.

L

LAN/Distributed Processing (LAN/DP) . An
IBM-licensed program product.

Light-Emitting Diode (LED) A semiconductor chip
that gives off visible or infrared light when activated.

link. (1) The logical connection between nodes
including the end-to-end control procedures. (2) The
combination of physical media, protocols, and
programming that connects devices on a network.

(3) In computer programming, the part of a program, in
some cases a single instruction or an address, that
passes control and parameters between separate
portions of the computer program. (A) (1) (4) To
interconnect items of data or portions of one or more
computer programs. (T) (5) In SNA, the combination of
the link connection and link stations joining network
nodes.

local area network (LAN) . A LAN is a computer
network located on the user’s premises within a limited
geographical area. Communication within a Local Area
Network is not subject to external regulations; however,
communication across the LAN boundary may be
subject to some form of regulation.

logical unit (LU) . An LU is a port through which an
end user accesses the SNA network in order to
communicate with another end user, and through which
the end user accesses the functions provided by
System Services Control Points (SSCPs). An LU can
support at least two sessions, one with an SSCP and
one with another LU; it can be capable of supporting
many sessions with other logical units.

M

make file . A composite file that contains either device
configuration data or individual user profiles.

master key (KM) . In computer security, the top-level
key in a hierarchy of key-encrypting keys.

megabyte (MB) . A megabyte is equal to 1048576
bytes.

merge file . A file containing information for each of
several Personal Security Cards that the Batch
Initialization utility initializes.

Message Authentication Code (MAC) (1) A number
or value derived by processing data with an
authentication algorithm, (2) The cryptographic result of
block cipher operations on text or data using a cipher
block chaining (CBC) mode of operation, (3) A digital
signature code.

Micro Channel bus . A type of bus is used in IBM
PS/2 computer Models 50 and higher. This term is
used to distinguish these computers from personal
computers using a PC 1/0O channel.

migrate . (1) To move data from one hierarchy of
storage to another. (2) To move to a changed
operating environment, usually to a new release or a
new version of a system.

Modification Detection Code (MDC) In cryptography,
the MDC is a number or value that interrelates all bits of
a data stream so that, when enciphered, modification of
any bit in the data stream results in a new MDC.

Multiple Virtual Storage (MVS) MVS implies
MVS/370, the MVS/XA product, and the MVS/ESA
product.

Multiple Virtual Storage/Extended Architecture
(MVS/XA). The MVS/XA product, consists of
MVS/System Product Version 2 and the MVS/XA Data
Facility Product, operating on a System/370 processor
in the System/370 extended-architecture mode. The
MVS/XA product allows virtual storage addressing up to
two gigabytes.

multiplexer . (1) A device that takes several input
signals and combines them into a single output signal;
the output signal allows each of the input signals to be
recovered. (T) (2) A device capable of interleaving the
events of two-or-more activities, or capable of
distributing the events of an interleaved sequence to
their respective activities. (A)

Multi-station Access Unit (MAU) An MAU is an IBM
token-ring unit that can be used to connect as many as
16 Network Security Processors on a single token ring.

multi-tasking supervisor The part of the Network
Security Processor that manages the system functions
and system states, and schedules the software tasks for
the network security processor.

multi-user environment A computer system that
provides terminals and keyboards for more than one
user at the same time.

N

National Institute of Science and Technology
(NIST). This is the current name for the US National
Bureau of Standards.

network . (1) A configuration of data-processing
devices and software programs connected for
information interchange. (2) An arrangement of nodes
and connecting branches. (T)

Network Security Processor (IBM 4753) The IBM
4753 is a processor that uses the Data Encryption
Algorithm to provide cryptographic support for systems
requiring secure transaction processing (and other
cryptographic services) at the host computer.

Glossary X-9

Network Security Processor Control Program . A
program that runs in the IBM 4753 Network Security
Processor to enable it to process cryptographic
commands from the host computer.

IBM Network Security Processor MVS Support

Program . An IBM-licensed program that runs in the
System/370 host under the MVS/370, MVS/XA, or
MVS/ESA operating systems to enable host applications
to request cryptographic services in the Network
Security Processor.

Network Security Processor Support Utility

Network Security Processor Support Utility is the part of
the workstation security services program to support
functions relating directly to the Network Security
Processor.

Network Security Processor Utilities The Network
Security Processor Utilities are the parts of the Network
Security Processor Control Program that enable you to
do the following: install the program, customize the
system, manage key storage, manage the signon list,
and vary the host adapter offline and online.

node. In a network, a point at which one-or-more
functional units connect channels or data circuits. (l)

node address . The address of an adapter on a LAN.

O

Online Test System (OLTS) . OLTS is a system that
allows the user to test I1/0 devices concurrently with
program execution. Tests can be run to diagnose I/O
errors, and verify repairs and engineering changes, or
run to check devices periodically.

Operating System/2 (OS/2) . OS/2 is an operating
system for the IBM Personal System/2 computers.

Operating System/400 (OS/400) . OS/400 is an
operating system for the IBM Application System/400
computers.

Operating System/Virtual Storage (OS/VS) OS/VS
is a family of operating systems that controls IBM
System/360" and System/370 computing systems.
OS/VS includes VS1, VS2, MVS/370, and MVS/XA.

operations log . In the IBM 4753, a file that contains a
record of operator activitiesperformed on the 4753.

* Trademark of IBM

X-10 IBM 4758 CCA Services

P

panel. The complete set of information shown in a
single image on a display station screen.

parameter . In the security API, one of the values
passed to a verb to address a variable exchanged
between an application program and the verb.

Pascal (Pa). The stress resulting when a force of one
Newton is applied evenly and perpendicularly to an area
of one square meter.

password . (1) In computer security, a string of
characters known to the computer system and a user;
the user must specify it to gain full or limited access to
a system and to the data stored within it. (2) In the
Transaction Security System products, a string of
characters that a user must enter when signing on to a
system that uses the Cryptographic Adapter.

path. (1) In a network, any route between any two
nodes. A path may include more than one branch. (T)
(2) The route traversed by the information exchanged
between two attaching devices in a network. (3) A
command in IBM Personal Computer Disk Operating
System (PC DOS) and IBM Operating System/2 (0S/2)
environments that specifies directories to be searched
for commands or batch files that are not found by a
search of the current directory.

PC-bus. A type of bus that is used in the following
IBM Personal Computers: PC/XT, AT, PS/2 Model 25,
PS/2 Model 30, and PS/2 Model 30 286.

Personal Identification Number (PIN) (1) In the
Transaction Security System, the PIN is the secret
number that is used to authenticate the user to the
Personal Security Card and the Cryptographic Adapter.
(2) In some financial-transaction-authentication
systems, the PIN is the secret number given to a
consumer with an identification card. This number is
selected by the consumer, or it is assigned by the
financial institution.

Personal Security Card . An ISO-standard “smart
card” with a microprocessor that enables it to perform a
variety of DES-based cryptographic functions, such as
identifying and verifying users and determining which
functions the users can perform. The Security Interface
Unit reads and writes information on the Personal
Security Card.

physical device ID . In a Transaction Security System
public-key implementation, a 16-byte, user-defined field
that is stored in and identifies the public-key hardware.

profile ID . In the Transaction Security System
products, one of the four profiles that the Personal
Security card contains.

plaintext . (1) Data that has nor been altered by a
cryptographic process. (2) Synonym for cleartext. See
also ciphertext.

plug. (1) A connector designed to insert into a
receptacle or socket. (2) To insert a connector into a
receptacle or socket.

Point-Of-Sale (POS) device . A POS records sales
data on machine-readable media at the time a sale is
made. (A)

Power-On Self Test (POST) . POST is a series of
diagnostic tests run automatically by a device when the
power is turned on.

private key . (1) In computer security, a key that is
known only to the owner and used together with a
public-key algorithm to decipher data. The data is
enciphered using the related public key. (2) Contrast
with public key. (3) See also public-key algorithm.

procedure call . In programming languages, a
language construct for invoking execution of a
procedure. (I) A procedure call usually includes an
entry name and possible parameters.

profile . Data that describes the significant
characteristics of a user, a group of users, or
one-or-more computer resources.

profile ID . In the Transaction Security System
products, one of the four profiles that the Personal
Security Card contains.

profile vector . Transaction Security System public-key
implementation, a software data structure that contains
default values and configuration information used by
various public-key verbs.

profile 0, profile 1, profile 2, profile 3 (1) Inthe
Transaction Security System products, profile data that
identifies one of the users of the Cryptographic Adapter
or the Security Interface Unit. (2) See also Profile.

Programmed Cryptographic Facility (PCF) PCF is
an IBM licensed program that provides facilities for
enciphering and deciphering data and for creating,
maintaining, and managing cryptographic keys.

protocol . (1) A set of semantic and syntactic rules
that determines the behavior of functional units in
achieving communication. (I) (2) In SNA, the meanings
of and the sequencing rules for requests and responses
used to manage the network, transfer data, and
synchronize the states of network components. (3) A

specification for the format and relative timing of
information exchanged between communicating parties.

public key . (1) In computer security, a key that is
widely known, and used with a public-key algorithm to
encrypt data. The encrypted data can be decrypted
only with the related private key. (2) Contrast with
private key. (3) See also public-key algorithm.

Public-Key Algorithm (PKA) (1) In computer
security, PKA is an asymmetric cryptographic process
that uses a public key to encrypt data and a related
private key to decrypt data. (2) Contrast with Data
Encryption Algorithm and Data Encryption Standard
algorithm. (3) See also Rivest-Shamir-Adleman
algorithm.

public-key hardware . That portion of the security
module in a Cryptographic Adapter containing the
microcode and registers for the public-key functions.
Depending on the adapter, the hardware can be
installed in a workstation or in a Network Security
Processor.

public profile . (1) In the Transaction Security System
products, profile data that contains the default
characteristics for the Cryptographic Adapter and for the
Security Interface Unit; the defaults are available when
a specific profile is not active. (2) See also profile.

R

rack. A free-standing framework that holds equipment.

Random Access Memory (RAM) . RAM is a storage
device into which data are entered and from which data
are retrieved in a non-sequential manner.

Read-Only Memory (ROM) . ROM is memory in which
stored data cannot be modified by the user except
under special conditions.

reason code . (1) A value that provides a specific
result as opposed to a general result. (2) Contrast with
return code.

receptacle . Electrically, a fitting equipped to receive a
plug and used to complete an electrical path.

Reduced Instruction-Set Computer (RISC) A RISC
computer uses a small, simplified set of frequently used
instructions for rapid processing.

request manager . The part of the Access Method that
sends cryptographic requests to one or more Network
Security Processors.

Request Unit (RU) . In SNA, the RU is a message unit
containing control information such as a request code or

Glossary X-11

function management headers, or end-user data, or
both.

Resource Access Control Facility (RACF) RACFis
an IBM licensed program that enables access control by
identifying and verifying the users to the system,
authorizing access to protected resources, logging
detected unauthorized attempts to enter the system,
and logging detected accesses to protected resources.

return code . (1) A code used to influence the
execution of succeeding instructions. (A) (2) A value
returned to a program to indicate the results of an
operation requested by that program. (3) In the
Transaction Security System products, a value that
provides a general result as opposed to a specific
result. (4) Contrast with reason code.

Rivest-Shamir-Adleman (RSA) algorithm RSA is a
public-key cryptography process developed by R.
Rivest, A. Shamir, and L. Adleman.

RS-232. A specification that defines the interface
between data terminal equipment and data
circuit-terminating equipment, using serial binary data
interchange.

RS-232C. A standard that defines the specific physical,
electronic, and functional characteristics of an interface
line that uses a 25-pin connector to connect a
workstation to a communication device.

RSA algorithm .
algorithm.

Rivest-Shamir-Adleman encryption

S

security . The protection of data, system operations,
and devices from accidental or intentional ruin, damage,
or exposure.

security APl stub . The part of the access method that
contains a set of code for each security API verb.

security application programming interface . In
Transaction Security System, the security API is the
interface through which an application program interacts
with an access method or with a workstation interface
between an application program and the security server.
The interface consists of procedure calls for services
(verbs).

Security Interface Unit (IBM 4754) The IBM 4754 is
a free-standing device that controls data communication
between the Network Security Processor and the
Personal Security Card or between the workstation and
the Personal Security Card. The Security Interface Unit
reads and writes data on the Personal Security Card.

X-12 IBM 4758 CCA Services

security server . In the Transaction Security System,
the part of the Network Security Facility Control
Program and the Workstation Security Services
Program that provides cryptographic services and
key-storage services.

server. On a Local Area Network, a data station that
provides facilities to other data stations; for example, a
file server, a print server, a mail server. (A)

Server-Requester Programming Interface (SRPI)

The SRPI is an Application Programming Interface (API)
used by requester and server programs to communicate
with the personal computer or host routers.

service clearance . The minimum space required to
allow working room for the person installing or servicing
a unit.

session . (1) In network architecture, for the purpose
of data communication between functional units, all the
activities that take place during the establishment,
maintenance, and release of the connection. (T)

(2) The period of time during which a user of a terminal
can communicate with an interactive system (usually,
the elapsed time between logon and logoff).

Session-Level Encryption (SLE) SLE is a Systems
Network Architecture (SNA) protocol that provides a
method for establishing a session with a unique key for
that session. This protocol establishes a cryptographic
key and the rules for deciphering and enciphering
information in a session.

signature verification module An optional module on
the Cryptographic Adapter that provides support for
signature verification.

signature verification pen A pen attached by a cable
to the Security Interface Unit for the purpose of
identifying and verifying users.

signon list . In the Transaction Security System
products, a list that contains the profile IDs and the card
IDs of the only users allowed to log onto the IBM 4753.
You can create this list with the IBM 4753 support
utility.

software configuration utility One of the utilities
supplied with the Workstation Security Services
Program that enables you to configure security servers
and device drivers by specifying combinations of verbs
and functions. By using this utility, you can minimize
memory requirements.

string . A sequence of elements of the same nature,
such as characters, considered as a whole. (T)

subsystem . A secondary or subordinate system,
usually capable of operating independently of, or
asynchronously with, a controlling system. (T)

supervisor router The part of the Workstation
Security Services Program that schedules each task for
the program.

system . In data processing, a collection of people,
machines, and methods organized to accomplish a set
of specific functions. (A) (1)

system administrator The person at a computer
installation who designs, controls, and manages the use
of the computer system.

System Authorization Facility (SAF) SAF is a
program that provides access to the resource access
control facility or its equivalent.

system error log . In the IBM 4753, a file containing a
record of error messages that have been displayed.

Systems Network Architecture (SNA) . SNA
describes logical structure, formats, protocols, and
operational sequences for transmitting information units
through, and controlling the configuration and operation
of, networks. Note: The layered structure of SNA
allows the ultimate origins and destinations of
information, that is, the end users, to be independent of
and unaffected by the specific SNA network services
and facilities used for information exchange.

T

tag in. A unidirectional control line bus that is part of
the System/360 or System/370 Parallel Channel
Interface. This bus passes control signals from the
control unit to the host.

tag out . A unidirectional control line bus that is part of
the System/360 or System/370 Parallel Channel
Interface. This bus passes control signals from the host
to the control unit.

Terminate and Stay Resident (TSR) . ATSRis a
program that remains in memory after it has run and
returned control to the operating system. A TSR
program can be started and stopped by another
program without disturbing that program’s processing.

throughput . (1) A measure of the amount of work
performed by a computer system over a given period of
time; for example, number of jobs per day. (A) (I) (2) A
measure of the amount of information transmitted over
a network in a given period of time; for example, a
network’s data-transfer-rate is usually measured in bits
per second.

Time Sharing Option (TSO) . TSO is an IBM licensed
program that is an option on the operating system; for a
System/370 processor, the option provides interactive
time sharing from remote terminals.

token. (1) In a Local Area Network, the symbol of
authority passed successively from one data station to
another to indicate the station is temporarily in control of
the transmission medium. (T) (2) A string of characters
treated as a single entity.

token-ring adapter . The circuit card and its
associated software that enables a communicating
device to communicate over a local area network.

token-ring network (1) A ring network that allows
unidirectional data transmission between data stations,
by a token passing-procedure, such that the transmitted
data return to the transmitting station. (T) (2) A
network that uses a ring technology, in which tokens
are passed in a circuit from node to node. A node that
is ready to send can capture the token and insert data
for transmission.

trace file . In the IBM 4753, a file that contains a
record of trace information for the selected servers.

U

Unique Key Per Transaction (UKPT) UKPT is a
cryptographic process that can be used to decipher PIN
blocks in a transaction.

user exit . That point in an IBM supplied program at
which a user-exit routine can be given control.

user-authorization table In the Transaction Security
System products, information that specifies the options
the operator is permitted to access.

user-exit routine . A user-written routine that receives
control at predefined user-exit points.

user ID. User identification.

userid . A string of characters that uniquely identifies a
user to the system.

utility program A computer program in general
support of computer processes. (T)

Vv

verb. A function that has an entry-point-name and a
fixed-length parameter list. The procedure call for a
verb uses the standard syntax of a programming
language.

virtual machine (VM) . A functional simulation of a
computer and its associated devices. Each virtual
machine is controlled by a suitable operating system.
VM controls concurrent execution of multiple virtual
machines on one host computer.

Glossary X-13

VISA. A financial institution consortium which defines
four PIN block formats and a method of PIN verification.

W

workstation . A terminal or microcomputer, usually one
that is connected to a mainframe or to a network, at
which a user can perform applications.

Workstation Cryptographic Services Program . An
IBM-licensed program that runs in the workstation under
0S/2, AIX, or an equivalent product to support the
Cryptographic Adapter, the Security Interface Unit, and
the Personal Security Card.

X-14 IBM 4758 CCA Services

Numerics

3172. IBM 3172 Interconnect Controller. The 4753 is
based on the 3172.

4707 display . (1) A monochrome display. (2) In an
IBM 4753 environment, the 4707 display shows the
4753 messages and codes, including the diagnostic and
control program messages and codes.

4753. IBM 4753 Network Security Processor.

4754. |BM 4754 Security Interface Unit.

4755. IBM 4755 Cryptographic Adapter.

Index

Special Characters
(CSNBMKP) Master_Key Process 2-31
(PKA_Key_Record_Delete) CSNDKRD 7-13

A

Access Control Initialization (CSUAACI) 2-8
Access Control Maintenance (CSUAACM) 2-11
Access Control, CCA 2-1
Access_Control_Initialization (CSUAACI) 2-8
Access_Control_Maintenance (CSUAACM) 2-11
American National Standards Institute (ANSI)
message authentication code (MAC) calculation
method D-7
X3.106 (CBC) method D-3
X9.17 standard
key processing verbs 5-11
X9.23 method D-5
X9.9
standard D-7
asymmetric keys 5-5
attributes 5-7

C

carriage return (CR) B-13
chaining vector 6-3
chaining vector record format B-10
ciphering
DES key verification algorithm D-1
keys 5-7
methods
ANSI X3.106 (CBC) D-3
message authentication code (MAC) D-7
clear keys 5-12
coding procedure calls 1-5
common parameters 1-7
compatibility-class keys 5-6
confidentiality, data 6-1
control vectors (CVs)
bit map
EXPORT hit C-4
format C-3
gks bits C-4
IMPORT bit C-4
KEY-PART bit C-4
parity bits C-5
XLATE bit C-4
Changing
pre-exclusive-OR technique C-12
checking 5-4
default values 5-6

© Copyright IBM Corp. 1997

control vectors (CVs) (continued)

description 5-3

key separation 5-3

keywords 5-7

multiply deciphering keys C-5

multiply enciphering keys C-5

specifying values C-3

values C-3
CR (carriage return) B-13
Cryptographic_Facility_Control (CSUACFC) 2-17
Cryptographic_Facility_Query (CSUACFQ) 2-20
CSNBCKI (Clear_Key_Import) 5-16
CSNBDEC (Decipher) 6-4
CSNBDKM (Data_Key_Import) 5-20
CSNBDKX (Data_Key_Export) 5-18
CSNBENC (Encipher) 6-7
CSNBKEX (Key_Export) 5-22
CSNBKGN 5-13
CSNBKGN (Key_Generate) 5-24
CSNBKIM (Key_Import) 5-29
CSNBKPI (Key_Part_Import) 5-31
CSNBKRC (DES_Key_ Record_Create) 7-4
CSNBKRL (Key_Record_List) 7-7
CSNBKRR (Key_Record_Read) 7-9
CSNBKRW (Key_Record_Write) 7-10
CSNBKTB (Key_Token_Build) 5-36
CSNBKTC (Key_Token_Change) 5-39
CSNBKTR (Key_Translate) 5-41
CSNBKYT (Key_Test) 5-33
CSNBMGN (MAC_Generate) 6-10
CSNBMVR (MAC_Verify) 6-13
CSNBOWH (One_Way_Hash) 4-10
CSNBRNG (Random_Number_Generate) 5-43
CSNDDSG (Digital_Signature_Generate) 4-4
CSNDDSV (Digital_Signature_Verify) 4-7
CSNDKRC (PKA_Key_Record_Create) 7-11
CSNDKRL (PKA_Key_Record_List) 7-15
CSNDKRR (PKA_Key Record_Read) 7-17
CSNDKRW (PKA_Key_Record_Write) 7-19
CSNDKTC (PKA_Key_Token_Change) 3-17
CSNDPKB (PKA_Key_Token_Build) 3-11
CSNDPKG (PKA_Key_Generate) 3-6
CSNDPKI (PKA_Key_Import) 3-9
CSNDPKX (PKA_Public_Key_Extract) 3-19
CSNDSBC (SET_Block_Compose) 8-2
CSNDSBD (SET_Block_Decompose) 8-5
CSNDSYI (PKA_Symmetric_Key_Import) 5-47
CSNDSYX (PKA_Symmetric_Key_Export) 5-45
CSUAACI 2-8
CSUAACI (Access_Control_lInitialization) 2-8
CSUAACM 2-11

X-15

CSUAACM (Access_Control_Maintenance) 2-11

CSUACFC (Cryptographic_Facility_Control) 2-17

CSUACFQ (Cryptographic_Facility_Query) 2-20
CSUALCT 2-27
CSUALCT (Logon_Control) 2-27

D

DASD (direct access storage device) B-11
data

confidentiality 6-1

ensuring 6-1

integrity 6-1, 6-2

segmented 6-3
deactivating keys 3-17, 7-5, 7-13
defaults, control vectors 5-6
DES_Key_Record_Delete (CSNBKRD) 7-5
DES_Key_Record_List(CSNBKRL) 7-7
DES_Key_ Record_Read (CSNBKRR) 7-9
DES_Key_Record_Write (CSNBKRW) 7-10
direct access storage device (DASD) B-11

E

entry-point names 1-5

EX (exportable) keys 5-3
exit_data parameter 1-8
exit_data_length parameter 1-8
exportable (EX) keys 5-3
exporting, description 5-13, C-12

external
key tokens
building 5-36
format B-4

Key_Token_Build verb 5-36
key tokens, description 5-10
keys 5-3, 5-13

F

financial personal identification number (PIN)
blocks
flag bytes B-4
format
chaining_vector record B-10
key record list data set B-13
key storage record B-11
key tokens
external B-4
internal B-3
null B-2

IM (importable) keys 5-3
importable (IM) keys 5-3

X-16 IBM 4758 CCA Services

importing, description 5-13, C-12
input/output (I/O) parameters 1-6
installing keys 5-11
internal 5-10
key tokens
building 5-36
copying into application data storage 7-9
copying into key storage 7-10, 7-19
format B-3
Key_Token_Build verb 5-36

K

key storage
description 5-14
key-record-list data set
creating 7-7, 7-15
format B-13
verbs 5-11
key tokens
assembling 5-36
changing 3-17
contents 5-8
deleting 3-17, 7-13
description 5-8
external 5-10
Key_Token_Build verb 5-36
PKA_Key_Record_Delete service 7-13
PKA_Key_Token_Change verb 3-17
flag byte 1 B-4
flag byte 2 B-4
format 5-8, B-1
internal 5-10
Key_Token_Build verb 5-36
PKA_Key_Record_Delete service 7-13
PKA_Key_Token_Change verb 3-17
Key_Token_Build verb 5-36
null 5-10
Record-Validation Value (RVV) B-2
token-validation value (TVV) B-2
key-encrypting-key-class keys 5-6
key-export operation 5-13
key-import operation 5-14
key-management keys
Common Cryptographic Architecture
support 5-1
key-processing and key-storage verbs 5-11
DES_Key_Record_Delete (CSNBKRD) 7-5
Key_Record_List (CSNBKRL) 7-7
Key_Record_Read (CSNBKRR) 7-9
Key_Record_Write (CSNBKRW) 7-10
PKA_Key_Record_Delete (CSNDKRD) 7-13
PKA_Key_Record_List (CSNDKRL) 7-15
PKA_Key_Record_Read (CSNDKRR) 7-17
PKA_Key_Record_Write (CSNDKRW) 7-19

Key DES_Key_Record_Delete (CSNBKRD) 7-5

Key_Generate (CSNBKGN) 5-13
Key_Record_List (CSNBKRL) 7-7
Key_Record_List (CSNDKRL) 7-15
Key_Record_Read (CSNBKRR) 7-9
Key_Record_Write (CSNBKRW) 7-10
Key_Token_Build (CSNBKTB) 5-36
keys
activating 3-17
asymmetric 5-5
ciphering 5-7
clear 5-12
control vectors 5-3
deactivating 3-17
deleting 3-17, 7-13
double-length 5-6
exportable (EX) 5-3
exporting 5-13
external 5-3
generating 5-12
identifiers 5-10
importable (IM) 5-3
importing 5-13
installing 5-11
key management 5-1
key-usage keywords 5-7
labels
definition 5-10
length 5-8, 5-26
managing 5-1
master key loading 2-31
multiply-deciphered 5-14
multiply-deciphered the 5-3
multiply-enciphered 5-3, 5-12
operational (OP) 5-3
parity 5-3
parts
generating 5-12
secure 5-11
processing
verbs 5-11
re-enciphering 3-17
records
deleting 7-5, 7-13
DES_Key_Record_Deleteservice 7-5
Key_Record_List service 7-7
Key_ Record_Read service 7-9
Key_Record_Write service 7-10
listing 7-7, 7-15
PKA_Key_Record_Delete service 7-13
PKA_Key_Record_List service 7-15
PKA_Key Record_Read service 7-17
PKA_Key_Record_Write service 7-19
reading 7-9, 7-17
writing 7-10, 7-19
separation 5-3

keys (continued)

single-length 5-6

storing 5-14

symmetric 5-5

types
and verbs 5-6
asymmetric 5-5
compatibility-class keys 5-6
DATA 5-6
description 5-5
EXPORTER 5-6
IKEYXLAT 5-6
IMPORTER 5-6
key-encrypting-key-class keys 5-6
key-usage keywords 5-7
MAC 5-6
MAC-class keys 5-6
MACVER 5-6
OKEYXLAT 5-6
one-way key distribution channels 5-5
symmetric 5-5

usage
key form 5-13
key type 5-13
keywords 5-7

verification pattern 5-11

verifying 5-11

keywords, key-usage 5-7

L

LF (line feed) B-13

line feed (LF) B-13

loading a master key 2-31
Logging on and logging off 2-6
Logon Control (CSUALCT) 2-27
Logon_Control (CSUALCT) 2-27

M

MAC_Generate (CSNBMGN) 6-3
MAC_Verify (CSNBMVR) 6-3
MACVER key type, MAC_Verify verb 5-6
managing

DES keys

Common Cryptographic Architecture 5-1

master key loading 2-31
Master_Key_ Process (CSNBMKP) 2-31
multiply-deciphered keys 5-3, 5-14
multiply-enciphered keys 5-3, 5-12

N

null key token 5-10, B-2

Index

X-17

O T

OCV (output chaining value) D-3 token-validation value (TVV) 5-9, B-2
OP (operational) keys 5-3, 5-14 TVV (token-validation value) 5-9, B-2

operating environments 1-5
operational (OP) keys 5-14
operational keys (OP) 5-3
output chaining value (OCV) D-3

P

parity, key 5-3
PKA_Key_Record_Delete (CSNDKRD) 7-13
PKA_Key_Record_List(CSNDKRL) 7-15
PKA_Key_Record_Read (CSNDKRR) 7-17
PKA_Key_Record_Write (CSNDKRW) 7-19
PKA_Key_Token_Change (CSNDKTC) 3-17
PKA_PKA_Key_Record_Delete (CSNDKRD) 7-13
pre-exclusive-OR technique C-12
procedure calls 1-5
processing a master key 2-31
profiles

activating

Header 2-4

Overview 2-3

Passphrase verification protocol D-8

Passphrases 2-6

personal identification number (PIN)

Profile data structures B-18

Verbs for initialization and management 2-4
pseudonyms 1-5, E-1

R

re-enciphering keys 3-17
reason codes A-1
reason_code parameter 1-8
record-validation value (RVV) B-2
Required Commands

Description B-16

Overview 2-2
return_code parameter 1-7
Roles, access control

Default role 2-2

Overview 2-1

Role data structures B-15

Verbs for initialization and management 2-4
rule_array parameter description 1-9
RVV (record-validation value) B-2

S

segmented data 6-3
symmetric keys 5-5

X-18 IBM 4758 CCA Services

Vv

verbs

common parameters
exit_data 1-8
exit_data_length 1-8
reason_code 1-8
return_code 1-7
rule_array 1-9
data confidentiality 6-1
data integrity 6-1
descriptions 1-5
direction 1-7
entry-point names 1-5
list of 1-5
parameters 1-7
procedure calls 1-5
processing A-1
pseudonyms 1-5, E-1
reason codes A-1
return codes A-1
supported environments 1-5
type 1-7
variables 1-7

verification pattern 5-11

X

X3

.106 (CBC) method D-3

Communicating Your Comments to IBM

IBM SecureWay Cryptographic Products
IBM 4758 CCA Basic Services
Reference And Guide

Publication No. SC31-8609-00

If you especially like or dislike anything about this book, please use one of the methods
listed below to send your comments to IBM. Whichever method you choose, make sure you
send your name, address, and telephone number if you would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject matter,
or completeness of this book. However, the comments you send should pertain to only the
information in this manual and the way in which the information is presented. To request
additional publications, or to ask questions or make comments about the functions of IBM
products or systems, you should talk to your IBM representative or to your IBM authorized
remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute
your comments in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers' comment form (RCF) from a country other than the United
States, you can give the RCF to the local IBM branch office or IBM representative for
postage-paid mailing.

 If you prefer to send comments by mail, use the RCF at the back of this book.
e If you prefer to send comments by FAX, use this number:
United States & Canada: 1-800-955-5259

Make sure to include the following in your note:

e Title and publication number of this book
e Page number or topic to which your comment applies.

Readers' Comments — We'd Like to Hear from You

IBM SecureWay Cryptographic Products
IBM 4758 CCA Basic Services
Reference And Guide

Publication No. SC31-8609-00

Overall, how satisfied are you with the information in this book?

Very Very
Satisfied Satisfied Neutral Dissatisfied Dissatisfied
Overall satisfaction O O O m] u}
How satisfied are you that the information in this book is:
Very Very
Satisfied Satisfied Neutral Dissatisfied Dissatisfied
Accurate O O O m] O
Complete O O O m] m]
Easy to find O O O m] m]
Easy to understand O O O m] O
Well organized O O O m] m]
Applicable to your tasks O O O m] m]

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? O Yes O No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments

in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers' Comments — We'd Like to Hear from You

SC31-8609-00

Fold and Tape

Please do not staple

Fold and Tape

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
RDS Solutions Development

Department 56l

8501 IBM Drive

Charlotte NC 28262-8563

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

Fold and Tape

SC31-8609-00

Please do not staple

Fold and Tape

Cut or Fold
Along Line

Cut or Fold
Along Line

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

