
The MG Reference Manual

Release MG2A

Sandra J. Loosemore

Copyright

c

1987, Sandra J. Loosemore

This document, or sections of this document, may be freely redis-

tributed provided that the copyright notice and the following disclaimer

remain intact: The author bears no responsibilities for errors in this

document or the software it describes; and shall not be held liable for

any indirect, incidental, or consequential damages.

Contents

1

Chapter 1

Introduction

MG is a small, fast, and portable Emacs-style text editor intended to be used by people

who can't run a real Emacs for one reason or another | as their main editor on smaller

machines with limited memory or �le space, or as a \quick-start" editor on larger systems,

useful for composing short mail messages and the like.

We've made MG compatible with GNU Emacs because that is the \big", full-featured

editor that many of us use regularly and are most familiar with. GNU Emacs is the creation

of Richard M. Stallman, who was also the author of the original Emacs editor. However,

MG is not associated in any way with the GNU project, and the MG authors individually

may or may not agree with the opinions expressed by Richard Stallman and the GNU

project.

MG is largely public domain. You can use, modify, and redistribute MG as you like. A

few modules, however, are copyrighted; speci�cally, the regular expression code, the VMS

termcap routines, and the Amiga support code. Look at the source code for the exact

copyright restrictions.

There are several other editors in existence which call themselves MicroEmacs. The

original public domain version was written by Dave Conroy and circulated as version 1.6.

Derived from this, there is another PD version by Dave Conroy numbered v30; a signi�cantly

larger PD version by Daniel Lawrence which is now up to version 3.9; at least one proprietary

implementation; an implementation for the Atari ST with an integrated command shell, by

Prabhaker Mateti; and probably others that we don't know about.

MG is derived from the v30 MicroEmacs, with key bindings, command names, and

general functionality made more compatible with GNU Emacs. Like v30, MG is fairly

small and quite robust. We have generally resisted the temptation to overfeaturize. Some

features which are large and complex are
agged for conditional compilation.

Many people have contributed their time to developing, improving, and porting MG.

2

Mike Meyer, Mic Kaczmarczik, and Bob Larson deserve particular mention for their e�orts.

Questions, suggestions, and o�ers of help should be addressed to:

mg-developers@ucbvax.berkeley.edu (ARPA)

ucbvax!mg-developers (UUCP)

1.1 Implementations of MG

MG runs on many di�erent kinds of hardware under many di�erent operating systems.

Currently, these include:

� 4.2 and 4.3 BSD Unix (including Ultrix-32)

� System V Unix

� VAX/VMS

� Primos

� OS9/68k

� Amiga

� Atari ST

� MS-DOS

This document describes release MG2A. When we talk of di�erent versions of MG in

this manual, the term version is used to refer to the di�erent support MG provides for the

various machines and operating systems it runs under, not to di�erent releases of MG itself.

For example, we might speak of how the VMS version of MG di�ers from the Unix version.

As mentioned above, some MG commands may not be implemented in all versions; these

are noted in the documentation. Some versions of MG also support features (such as mouse

handling) that are not described here.

1.2 A Note on Character Sets

MG uses the 128-character ASCII character set, and provides support for 8-bit characters.

Whether the particular version of MG that you are running knows about extended character

sets depends on whether your terminal and the host operating system know about them.

Moreover, since there is no standard 8-bit character set, the same character codes will

probably give di�erent glyphs on di�erent systems. Most versions of MG use the DEC

multinational character set.

3

1.3 Notation and Conventions

In this manual, commands and other things that must be typed in literally are indicated in

a typewriter font, like next-line. Placeholders such as command argument names use an

italic font.

The terms command and function are synonymous. We often speak of a command being

bound to a particular key , although you may actually have to type more than one character

to form a single key. Most commands are bound to keys with control and meta modi�ers.

To type a control character, use the control key on your keyboard like a shift key: hold

down the control key while typing the character. In this manual, we will indicate control

characters like C-x | here, typing the character \x" while holding down the control key.

Some keyboards also have a meta key that works like the control key. (It may be labelled

something else; on the Atari ST, for example, the key marked \Alternate" is the meta key.)

If your keyboard doesn't have a meta key, don't panic. You can also use the escape key

as a meta pre�x; �rst type the escape, and then the character. Meta characters will be

indicated as M-x.

Besides the meta pre�x, two other characters are used as pre�xes: C-x and C-h. A few

keys have special notation: SPC is the space character, DEL is the delete or rubout character,

RET is carriage return, and ESC is the escape character. NUL is the null character (ASCII

0), which is usually equivalent to either C-SPC or C-@.

Uppercase and lowercase characters are generally equivalent in command keystrokes.

When you run MG from a shell, command line arguments are interpreted as the names

of �les you want to visit , or edit. Each �le is read into a bu�er in memory. No changes are

actually made to the �le until you ask it to be written out to disk.

Within MG, the large top part of the screen serves as a window into the bu�er being

edited. Below this is the mode line, which displays the name of the bu�er. Finally, at

the very bottom of the screen, there is a one-line minibu�er which is used for displaying

messages and answering questions.

MG keeps track of two pointers into each window, the point and the mark . The cursor

appears at the point in the current window, and we often speak of moving the cursor rather

than of moving the point. The text between the point and the mark is referred to as the

region.

Some commands deal with words and paragraphs . Generally, whitespace and punctu-

ation separate words. Lines that are empty or that contain only spaces or tabs separate

paragraphs without being part of a paragraph. A non-empty line that starts with a space

or tab also begins a new paragraph.

A number of commands are de�ned as toggles . If no pre�x argument is supplied, these

commands toggle an action. The action is turned on if a negative or zero argument is

supplied, and turned on if a positive argument is supplied.

4

1.4 Getting Started

This document is intended primarily as a reference manual. If you have never used any

Emacs-like text editor before, it is strongly suggested that you run the on-line tutorial

supplied with the MG distribution, instead of reading this manual.

Do not be put o� by the large number of commands described in this manual! It is

possible to get by with only a handful of basic commands. Here are the ones that are

probably used most frequently:

C-p Move the cursor to the previous line

C-n Move the cursor to the next line

C-b Move the cursor backwards

C-f Move the cursor forwards

C-v Scroll forwards one screenful

M-v Scroll backwards one screenful

M-< Go to the beginning of the bu�er

M-> Go to the end of the bu�er

C-a Go to the beginning of the line

C-e Go to the end of the line

DEL Delete the previous character

C-k Kill (delete) to the end of line

C-y Reinsert killed text.

C-x C-c Exit MG

C-x C-s Save the current bu�er

5

Chapter 2

Using Commands

2.1 Command Arguments

Some commands require arguments. For example, if you want to read a �le into a bu�er,

you must type in the name of the �le. In the descriptions of commands in this manual, if

arguments are required, they are listed following the command name.

MG prompts for command arguments in the minibu�er. Within the minibu�er, the

following characters can be used for editing:

DEL, C-h Erase the last character.

C-x, C-u Erase the entire input line.

C-w Erase to the beginning of the previous word.

C-q, n Quote the next character typed.

RET Signi�es that you have completed typing in the argument.

C-g Abort the command in progress.

2.2 Pre�x Arguments

All commands accept an optional numeric pre�x argument. This is often interpreted as

a repetition count. For example, the function next-line, if given a pre�x argument, will

move the cursor forward that many lines; without an argument, it will move the cursor

forward one line. A few commands behave di�erently if given a pre�x argument than they

do without one, and others ignore the pre�x argument entirely.

6

digit-argument M-0, M-1, M-2, M-3, M-4, M-5, M-6, M-7, M-8, M-9

negative-argument M--

One way to specify a command argument is to use the escape key as a meta pre�x, and

then type one or more digits. A dash may be used for a negative argument.

universal-argument C-u

Another way to specify a command pre�x is to type C-u. Typing one C-u is equivalent to

a pre�x argument of 4, typing two gives a value of 16, and so on. In addition, you can type

digits following C-u to form a numeric pre�x argument.

2.3 Aborting

keyboard-quit C-g

Typing C-g cancels any command. It is particularly useful for cancelling a command when

MG is prompting for input in the minibu�er.

2.4 Extended Commands

execute-extended-command command M-x

Commands that are not bound to keys can be executed through execute extended-command.

If a pre�x argument is supplied, it is passed to the command being executed.

7

Chapter 3

Moving the Cursor

The commands described in this chapter move the cursor (sometimes called the point or

dot) within the current window. Commands which set the mark are included here as well.

backward-char C-b

Moves the cursor backward (left) one character. If the cursor is at the left margin, it will

be moved to the end of the previous line.

backward-paragraph M-[

Moves the cursor backwards to the beginning of the current paragraph, or to the beginning

of the previous paragraph if the cursor is already at the beginning of a paragraph.

backward-word M-b

Moves the cursor backwards to the beginning of the current word, or to the beginning of

the previous word if the cursor is already at the beginning of a word.

beginning-of-buffer M-<

Moves the cursor backwards to the beginning of the bu�er.

beginning-of-line C-a

Moves the cursor backwards to the beginning of the current line. This command has no

e�ect if the cursor is already at the beginning of the line.

end-of-buffer M->

8

Moves the cursor forwards to the end of the bu�er.

end-of-line C-e

Moves the cursor forwards to the end of the current line. This command has no e�ect if

the cursor is already at the end of the line.

exchange-point-and-mark C-x C-x

Set the mark at the current cursor position, and move the cursor to the old location of the

mark.

forward-char C-f

Moves the cursor forwards one character. If the cursor is at the end of a line, it will be

moved to the �rst character on the next line.

forward-paragraph M-]

Moves the cursor forwards to the next paragraph delimiter.

forward-word M-f

Moves the cursor forwards to the end of the current word, or to the end of the next word

if the cursor is already at the end of a word.

goto-line line-number

Moves the cursor to the beginning of line line-number in the bu�er.

next-line C-n

Moves the cursor down one line. The cursor remains in the same column unless it would

be past the end of the line, in which case it is moved to the end of the line. At the end of

the bu�er, C-n will create new lines.

previous-line C-p

Moves the cursor up one line. The cursor remains in the same column unless it would be

past the end of the line, in which case it is moved to the end of the line.

recenter C-l

Redraws the entire screen, scrolling the current window if necessary so that the cursor is

9

near the center. With a positive pre�x argument n, the window is scrolled so that the

cursor is n lines from the top. A negative pre�x argument puts the cursor that many lines

from the bottom of the window.

redraw-display

Redraws the entire screen, but never scrolls.

scroll-down M-v

Scrolls the display down (moving backward through the bu�er). Without an argument, it

scrolls slightly less than one windowful. A pre�x argument scrolls that many lines.

scroll-one-line-down

scroll-one-line-up

These functions are similar to scroll-down and scroll-up (respectively), but when invoked

without an argument, cause the display to scroll by one line only. These functions are

enabled by de�ning the compile-time option GOSMACS.

scroll-other-window M-C-v

Scrolls the \other" window forward as for scroll-up.

scroll-up C-v

Scrolls the display up (moving forward through the bu�er). Without an an argument, it

scrolls slightly less than one windowful. A pre�x argument scrolls that many lines.

set-mark-command NUL

Set the mark at the current cursor position.

what-cursor-position C-x =

Prints some information in the minibu�er about where the cursor is.

10

Chapter 4

Text Insertion Commands

The usual way to insert text into a bu�er is simply to type the characters. The default

binding for all of the printing characters (self-insert-command) causes them to be inserted

literally at the cursor position.

insert string

Insert string into the current bu�er at the cursor position.

newline RET

Insert a line break into the current bu�er at the cursor position, moving the cursor forward

to the beginning of the new line.

newline-and-indent C-j

Insert a line break into the current bu�er at the cursor position, then add extra whitespace

so that the cursor is aligned in the same column as the �rst non-whitespace character in

the previous line.

open-line C-o

Inserts a line break into the current bu�er at the current position, but does not move the

cursor forward.

quoted-insert C-q

This command acts as a pre�x to cancel the normal interpretation of the next keystroke.

If C-q is followed by one to three octal digits, it is interpreted as the code of the character

11

to insert. Otherwise a single key is read and the character typed is inserted into the bu�er

instead of interpreted as a command. This is used for inserting literal control characters

into a bu�er.

self-insert-command

This is the default binding for keys representing printable characters. The character is

inserted into the bu�er at the cursor position, and the cursor moved forward.

12

Chapter 5

Killing, Deleting, and Moving

Text

When text is deleted, it is erased completely. Killing text, on the other hand, moves it into

a temporary storage area called the kill bu�er. The saved text in the kill bu�er is erased

when another block of text is killed. Until then, however, you can retrieve text from the kill

bu�er. This can be used to move or copy blocks of text, as well as to restore accidentally

killed text.

backward-kill-word M-DEL

Kill the text backwards from the cursor position to the beginning of the current word.

Typing M-DEL several times in succession prepends each killed word to the kill bu�er.

copy-region-as-kill M-w

Copies the text in the region into the kill bu�er, without removing it from the current

bu�er.

delete-backward-char DEL

Deletes the character to the left of the cursor.

delete-blank-lines C-x C-o

Deletes all blank lines after the current line, and if the current line is blank, deletes it and

all blank lines preceeding it as well.

delete-char C-d

13

Deletes the character underneath the cursor.

delete-horizontal-space M-n

Deletes all spaces and tabs on either side of the cursor.

just-one-space M-SPC

This is like delete-horizontal-space, except it leaves a single space at the cursor position.

kill-line C-k

If no pre�x argument is speci�ed, this function kills text up to the next newline; or if the

cursor is at the end of a line, the newline is killed. A pre�x argument speci�es how many

lines to kill. Typing C-k several times in succession appends each line to the kill bu�er.

kill-paragraph

This command kills the entire paragraph containing the cursor. If the cursor is positioned

between paragraphs, the next paragraph is killed.

kill-region C-w

The region (all text between point and mark) is killed.

kill-word M-d

Text is killed forward from the cursor position to the next end of word. If the cursor is at

the end of the word, then the next word is killed. Typing M-d several times appends the

killed text to the kill bu�er.

yank C-y

Text is copied from the kill bu�er into the current bu�er at the cursor position. The cursor

is moved to the end of the inserted text.

14

Chapter 6

Searching and Replacing

6.1 Searching

The ordinary search command in MG di�ers from that in many other editors in that it is

incremental: it begins searching as soon as you begin typing the search string, instead of

waiting for you to type the entire string.

All of the search commands described in this section are case-insensitive.

isearch-backward pattern C-r

isearch-forward pattern C-s

These commands perform an incremental search backward and forward (respectively) for

pattern. MG will move the cursor to the place in the bu�er that matches as much of the

pattern as you have typed so far, as each character is entered.

Within the incremental search, the following characters are interpreted specially:

DEL Erase the last character in the search string.

ESC Stop searching; exit from incremental search mode, leaving the cursor where

the search brought it.

C-g If a match has been found, exits from incremental search but leaves the

cursor in its original position. If the search has failed, this will just erase the

characters which have not been found from the end of the search pattern.

In this case, you must type C-g again to abort the search.

C-s Search forward for the next occurrence of the same pattern.

C-r Search backward for the previous occurrence of the same pattern.

15

C-q \Quotes" the next character typed, forcing it to be interpreted as a literal

character in the search pattern.

In addition, normal commands such as C-a that do not have special meanings within

incremental search cause the search to be terminated, and then are executed in the ordinary

way.

search-again

search-backward pattern M-r

search-forward pattern M-s

These commands perform ordinary, non-incremental searches. Search-again uses the same

pattern and direction as the previous search.

6.2 Replacing

query-replace pattern replacement M-%

The primary replace command in MG is an interactive query replace. MG searches forward

for occurrences of pattern, and asks you what to do about each one. The choices are:

SPC Replace this match with replacement , and go on to the next.

DEL Skip to the next match without replacing this one.

. Replace this match, and then quit.

! Replace all remaining occurrences without asking again.

ESC Quit.

By default, query-replace adjusts the case of lower-case letters in the replacement

string to match that of the particular occurrence of the pattern; for example, replacing

\Foo" with \bar" results in \Bar". Upper case letters in the replacement string are always

left uppercase. In addition, supplying a pre�x argument will also tell query-replace to

leave the case of the replacement string as-is.

Note that query-replace always performs a case-insensitive search.

16

6.3 Regular Expressions

Regular expressions provide a means for specifying complex search patterns, instead of just

a literal string. The commands in this section are available only if MG is compiled with the

REGEX option de�ned.

Regular expression syntax uses the following rules. Most characters in a regular expres-

sion are considered to be ordinary characters, and will match themselves and nothing else.

The exceptions are the special characters listed below.

. Matches any single character except a newline.

* A su�x operator that matches zero or more repetitions of the (smallest)

preceding regular expression.

+ A su�x operator that matches one or more repetitions of the (smallest)

preceding regular expression.

? A su�x operator that matches either zero or one occurence of the (smallest)

preceding regular expression.

[. . .] Matches any one character listed in the character set between the square

brackets. See examples below.

^ Matches at the beginning of a line.

$ Matches at the end of a line.

n Except for the situations listed below, acts as a pre�x operator which causes

the character following to be treated as an ordinary character.

n| An in�x binary or operator. It applies to the two largest surrounding

expressions.

n(. . .n) A grouping construct, usually used to specify a larger expression for post�x

operators such as * or to limit the scope of operands to \|.

ndigit Matches the same text matched by the digitth \(...\) construct. These

are numbered from 1 to 9 in the order that the open-parentheses appear.

n` Matches at the beginning of the bu�er.

n' Matches at the end of the bu�er.

nb Matches at the beginning or end of a word.

17

nB Matches anyplace except at the beginning or end of a word.

n< Matches at the beginning of a word.

n> Matches at the end of a word.

nw Matches any word-constituent character.

nW Matches any character which is not a word-constituent.

Some examples may help clarify the rules.

foo Matches the literal string foo.

;.* Matches all strings which begin with a semicolon and continue to the end

of a line.

c[ad]+r Matches strings of the form car, cdr, caar, cadr, and so on.

[a-z] Matches any lowercase letter.

[^a-z] Matches any character except lowercase letters.

[0-9+---] Matches a digit or sign.

n(foon|barn) Matches either the string foo or the string bar.

count-matches pattern

count-non-matches pattern

These commands count the number of lines which do or do not (respectively) match the

speci�ed pattern.

delete-matching-lines pattern

delete-non-matching-lines pattern

These commands delete all lines which do or do not (respectively) match the speci�ed

pattern.

query-replace-regexp pattern replacement

This is the regular expression version of query-replace.

The replacement string may be a constant, or it can refer to all or part of the string

matched by the pattern. \& in the replacement string expands into the entire text being

18

replaced, while \n (where n is a number) replaces the nth parenthesized expression in

pattern.

re-search-again

re-search-backward pattern

re-search-forward pattern

These are the regular expression equivalents of the ordinary non-incremental search com-

mands.

set-case-fold-search

This command toggles an internal variable that controls whether the regular expression

search and replace commands pay attention to case. By default, regular expression searches

are case-insensitive. Ordinary searches are always case-insensitive and are not a�ected by

the setting of this variable.

19

Chapter 7

Windows

MG initially has only one text window displayed. However, you can have as many windows

as will �t on the screen. Each window has its own mode line and must display at least two

lines of text. (Note that a MG's \windows" are distinct from the \windows" handled by

screen managers such as the X Window System.)

Multiple windows may be used to display di�erent bu�ers. You can also have the same

bu�er displayed in more than one window, which is useful if you want to see one part of a

�le at the same time as you are editing another part.

Although many windows can be displayed at once, only one window is active at any

given time. This is the window where the cursor appears.

Some commands refer to the \other" window. This is the window directly below the

current window, or the top window if you are in the bottom window.

delete-other-windows C-x 1

Makes the current window the only window.

delete-window C-x 0

Deletes the current window, making the \other" window the current window. This com-

mand doesn't do anything useful if there is only one window being displayed.

enlarge-window C-^

Makes the current window larger. Without a pre�x argument, the window grows one line;

otherwise, the pre�x argument speci�es how many lines to grow.

other-window C-x o

20

Makes the \other" window the current window.

previous-window

This is like other-window, except that it cycles through the windows in reverse order. This

command is available only if MG was compiled with the GOSMACS option de�ned.

shrink-window

Makes the current window smaller. Without a pre�x argument, the window loses one line;

otherwise, the pre�x argument speci�es how many lines go away.

split-window-vertically C-x 2

Split the current window into two windows, both using the same bu�er.

21

Chapter 8

Files and Bu�ers

Most bu�ers are used to contain a �le being edited. It is also possible to have bu�ers that

are not associated with any �le; MG uses these for purposes such as displaying help text,

for example. However, since most commands for dealing with �les also deal with bu�ers,

we have grouped all of these commands together into one chapter.

8.1 Bu�er Manipulation

insert-buffer bu�er-name

Inserts the contents of the named bu�er into the current bu�er at the cursor location. The

cursor moves to the end of the inserted text.

kill-buffer bu�er-name C-x k

The named bu�er and its contents are deleted. If the bu�er has been marked as modi�ed,

MG will ask you if you really want to delete it. Note that, contrary to its name, this

command does not save the bu�er contents in the kill bu�er.

If a bu�er is being displayed in a window when it is deleted, MG will �nd some other

bu�er to display in the same window.

list-buffers C-x C-b

This command writes information about the bu�ers currently in use to a bu�er named

Buffer List. This bu�er is then displayed in the \other" window; if there is only one

window, this command will split the screen into two windows.

22

not-modified M-~

This command makes MG think that the current bu�er has not been modi�ed, even if it

really has been changed. This a�ects the behavior of the kill-buffer and the bu�er-saving

commands described below.

MG indicates modi�ed bu�ers with two stars at the left end of the mode line.

switch-to-buffer bu�er-name C-x b

The current window is mapped onto the named bu�er. If there isn't already a bu�er with

that name around, MG will create one.

switch-to-buffer-other-window bu�er-name C-x 4 b

This command works like switch-to-buffer, except that the \other" window is used. If

there is only one window, this command splits the screen into two windows and maps the

named bu�er onto one of them.

8.2 Reading and Writing Files

find-file �le-name C-x f

find-file-other-window �le-name C-x 4 C-f

These commands are analagous to switch-to-buffer and switch-to-buffer-other-window,

respectively. The di�erence is that these commands look for a bu�er associated with the

named �le. If no matching bu�er is found, MG will create a new bu�er with a name derived

from the �lename, and attempt to read the �le into the bu�er. If the named �le cannot be

opened, the bu�er remains empty.

insert-file �le-name C-x i

This command reads in the contents of the named �le into the current bu�er at the cursor

position. The cursor remains in the same place.

save-buffer C-x C-s

If the current bu�er has been modi�ed, it is saved. Bu�ers that are not associated with

�les cannot be written out with this command.

save-buffers-kill-emacs C-x C-c

23

This command is used to leave MG and return control to the shell or other program that

was used to start MG. If there are modi�ed bu�ers, MG will ask you if you want to save

them before exiting.

save-some-buffers C-x s

MG will ask you if you want to save modi�ed bu�ers that are associated with �les.

write-file �le-name C-x C-w

The current bu�er is written out using the �le name supplied. This is useful for saving

bu�ers that are not associated with �les, or for writing out a �le with a di�erent name than

what was used to read it in.

8.3 Backup Files

MG provides a way to save a copy of the original version of �les which have been modi�ed

and then written out again. The backup copy re
ects the state of the �le as it existed the

�rst time it was read into MG. The name used for the backup �le varies, depending on the

operating system.

This feature is disabled if MG is compiled with NO BACKUP de�ned.

make-backup-files

This command is a toggle which controls the state of an internal variable that determines

whether MG creates backup �les.

8.4 Changing the Directory

The commands in this section are disabled by de�ning NO DIR.

cd directory-name

This command changes MG's notion of the \current" directory or pathname. This is used

to supply defaults for functions that read or write �les.

The syntax for directory-name is obviously speci�c to the particular operating system

MG is running on.

pwd

Display what MG thinks is the current directory.

24

Chapter 9

Modes

Modes are used to locally alter the bindings of keys on a bu�er-by-bu�er basis. MG is

normally in fundamental mode, and these are the bindings that are listed with the command

descriptions in this manual. Modes de�ne additional keymaps that are searched for bindings

before the fundamental mode bindings are examined; see the section on key binding below

for more details on how this works.

set-default-mode mode-name

Normally, when MG visits a �le, it puts the associated bu�er into fundamental mode. Using

the set-default-mode command, you can specify that MG should default to use some other

mode on all subsequent bu�ers that are created. This command is a toggle. With no pre�x

argument, if the named mode is not already on the list of default modes, then it will be

added to the list; otherwise, it is removed from the list.

9.1 No Tab Mode

In notab mode, tabs are expanded into spaces instead of inserted literally into the bu�er.

Literal tab characters are displayed as ^I (much like other control characters). These

commands are available if MG is compiled with the symbol NOTAB de�ned. (This mode

is mainly for use on systems such as PRIMOS that do not treat tab as a series of spaces.)

no-tab-mode

This command is a toggle to control whether notab mode is in e�ect.

space-to-tabstop

25

Insert enough spaces to move the cursor to the next tab stop. In notab mode, this function

is bound to C-i.

9.2 Overwrite Mode

Normally, when characters are inserted into the bu�er, they are spliced into the existing

text. In overwrite mode, inserting a character causes the character already at the cursor

position to be replaced. This is useful for editing pictures, tables, and the like.

overwrite-mode

This command is a toggle which controls whether overwrite mode is in e�ect.

9.3 Auto Fill

Fill mode causes newlines to be added automatically at word breaks when text is added at

the end of a line, extending past the right margin. Auto �ll is useful for editing text and

documentation �les.

auto-fill-mode

This command is a toggle which controls whether �ll mode is in e�ect.

insert-with-wrap

This command works like self-insert, except that it checks to see if the cursor has passed

the right margin. If so, it �lls the line by inserting a line break between words. This

command is bound to SPC in �ll mode.

fill-paragraph M-q

Fill the paragraph containing the cursor.

set-fill-column C-x f

Without a pre�x argument, this command sets the right margin at the current cursor

column. If a pre�x argument is supplied, it is used instead as the line width.

26

9.4 Auto Indent

Indent mode binds RET to newline-and-indent, so that each new line is indented to the

same level as the preceeding line. This mode is useful for editing code.

auto-indent-mode

This command is a toggle which controls whether auto-indent mode is in e�ect.

9.5 Blink

Blink mode makes it easier to match parentheses, brackets, and other paired delimiters.

When the closing delimiter is typed, the cursor moves momentarily to the matching opening

delimiter (if it is on the screen), or displays the line containing the matching delimiter on

the echo line. This is useful for editing Lisp or C code, or for preparing input �les for text

processors such as LaTeX that use paired delimiters.

blink-matching-paren

This command is a toggle which controls whether blink mode is in e�ect.

blink-matching-paren-hack

This function behaves like self-insert, except that it �nds the matching delimiter as

described above. In blink mode, this function is bound to), which
ashes the matching (.

This function also knows about the pairs {}, [], and <>. All other characters match with

themselves.

9.6 Dired Mode

\Dired" is an abbreviation for \directory editor", and it provides a way to browse through

the contents of a directory from with MG. Dired puts a directory listing into a bu�er;

you can use normal editing commands to move around the bu�er, and a special group of

commands to manipulate the �les. For example, there are commands to delete and rename

�les, and to read a �le into an MG bu�er.

Since dired mode rebinds many keys, a table may be helpful:

C-d dired-flag-file-deleted

SPC next-line

c dired-copy-file

27

d dired-flag-file-deleted

e dired-find-file

f dired-find-file

n next-line

o dired-find-file-other-window

p previous-line

r dired-renamefile

u dired-unflag

x dired-do-deletions

DEL dired-backup-unflag

The commands in this section are disabled by de�ning NO DIRED.

dired directory-name C-x d

Creates a dired bu�er for the given directory name, and displays it in the current window.

The �les in the directory are listed, usually along with information about the �le such as

its size and timestamp. The exact format of the information is system-speci�c.

dired-backup-unflag

This function removes the deletion
ag from the �le listed on the previous line of the dired

bu�er.

dired-copy-file new-name

Copy the �le listed on the current line of the dired bu�er.

dired-do-deletions

Deletes the �les that have been
agged for deletion.

dired-find-file

dired-find-file-other-window

These function works like find-file and find-file-other-window, except that the �le-

name is taken from the current line in the dired bu�er.

dired-flag-file-deleted

Flag the �le listed on the current line for deletion. This is indicated in the bu�er by

putting a \D" at the left margin. No �les are not actually deleted until the function

dired-do-deletions is executed.

28

dired-other-window directory-name

This function works just like dired, except that it puts the dired bu�er in the \other"

window.

dired-rename-file new-name

Renames the �le listed on the current line of the dired bu�er. Note that the dired bu�er is

not updated to re
ect the change.

dired-unflag

Remove the deletion
ag for the �le on the current line.

29

Chapter 10

Miscellaneous

10.1 Help

Most of the commands in this section write useful information to the *help* bu�er, which

is then displayed in the \other" window.

These commands can be disabled at compile-time by de�ning NO HELP.

apropos topic C-h a

This command lists all functions whose names contain a string matching topic in the *help*

bu�er.

describe-bindings C-h b

Information about the key bindings in e�ect in the current bu�er is listed in the *help*

bu�er.

describe-key-briefly key C-h c

Information about the binding of key is printed in the minibu�er.

help-help option C-h C-h

This command lists all of the help options available and prompts for which one to run.

Currently, these include only a to run apropos, b to run describe-bindings, and c to run

describe-key-briefly.

30

10.2 Keyboard Macros

A keyboard macro is a saved set of commands from the keyboard that can be reexecuted

later on. There can only be one keyboard macro de�ned at any one time.

The commands in this section are available unless they have been disabled by de�ning

NO MACRO.

call-last-kbd-macro C-x e

Execute the saved keyboard macro. A pre�x argument can be used to specify a repetition

count.

end-kbd-macro C-x)

start-kbd-macro C-x (

These functions are used to de�ne a keyboard macro. All keys entered after start-kbd-macro

is executed, up to a end-kbd-macro, are remembered as they are executed. You can then

reexecute the same sequence of operations using call-last-kbd-macro.

10.3 Changing Case

MG provides a number of functions for changing the case of text.

capitalize-word M-c

downcase-region C-x C-l

downcase-word M-l

upcase-region C-x C-u

upcase-word M-u

All of these commands do the obvious.

10.4 Odds and Ends

This section describes miscellaneous commands that don't �t into any particular category.

emacs-version

Prints information about the version of MG you are running in the minibu�er.

meta-key-mode

31

If the particular version of MG you are running supports a meta key, this function can be

used to determine whether MG actually pays attention to it or not. If no pre�x argument

is supplied, the internal variable that controls the use of the meta key is toggled; a positive

value enables the meta key, while a negative value disables it.

prefix-region

set-prefix-string string

Prefix-region is used to pre�x each line of the region with a string. This is useful for in-

denting quoted text, making block comments, and the like. The function set-prefix-string

can be used to set the string used as the pre�x.

suspend-emacs C-z

This command temporarily suspends MG so that you can run other programs, and later

resume editing. The exact behavior depends on which operating system you are running

MG under. Typically, MG will either spawn a new shell as a subprocess, or return you to

the parent process.

transpose-chars C-t

This command transposes the previous two characters.

32

Chapter 11

Customization

MG provides a limited support for customization. However, unlike \real" Emacs, there is

no extension language for interpretively de�ning new functions.

11.1 Key Bindings

MG allows keys to be rebound locally or globally. To understand the di�erence between

the two, some discussion on how modes are implemented is necessary.

An internal data structure called a keymap is used to look up the function that is bound

to a particular key. The keymap for fundamental mode contains all of the default bindings

which are listed with the command descriptions in this manual. Modes de�ne additional

keymaps that are searched for a binding before the fundamental mode keymap is examined.

Keymaps have the same name as the mode they are associated with.

MG does not provide commands for de�ning new modes, but you can alter the keymaps

for existing modes.

define-key keymap-name key command

This command can be used to modify the keymap for the named mode.

global-set-key key command

global-unset-key key

These commands modify the keymap for fundamental mode. Bindings established by

global-set-key will be inherited by all other modes, as long as they do not establish

local rebindings of the same key.

33

local-set-key key command

local-unset-key key

These commands modify the keymap currently in e�ect.

11.2 Startup Files

Although MG does not include a general-purpose extension language, it does provide a

way to read and evaluate commands using a somewhat di�erent syntax than that used

for executing extended commands. This is typically used in a startup �le to modify key

bindings.

A startup �le consists of one or more expressions. Each expression must appear on

a separate line in the �le; there may not be more than one expression per line, nor may

expressions span across line breaks. Whitespace (spaces and tabs) separate the tokens in

an expression. For historical reasons, parentheses are also considered to be whitespace in

this context. A semicolon acts as a comment character, causing the rest of the line to be

discarded.

An expression consists of a function name, an optional pre�x argument (given as an

integer constant), and arguments to be passed to the function. If an argument includes

literal whitespace or nonprintable characters (for example, as in a keystroke argument to

one of the key binding functions described in the previous section), it must be supplied as

a string constant enclosed in double quotes.

Within string constants, the following backslash escapes are available to specify non-

printable characters:

nt, nT Tab

nn, nN Newline

nr, nR Carriage return

ne, nE Escape (Meta pre�x)

n^ Control pre�x

nn Speci�es a character by its ASCII code, where n may consist of from one

to three octal digits

nfn, nFn Speci�es the keycode for the nth function key. N may consist of one or two

decimal digits.

34

The following commands which deal with evaluation of expressions are disabled by

de�ning the compile-time option NO STARTUP. See the implementation notes for your

particular version of MG for information on how it handles startup �les.

eval-current-buffer

Evaluate the expressions in the current bu�er.

eval-expression expression

Evaluate the expression supplied.

load �le-name

Read in the speci�ed �le and evaluate its contents.

35

Fundamental Mode Key Bindings

NUL set-mark-command

C-a beginning-of-line

C-b backward-char

C-d delete-char

C-e end-of-line

C-f forward-char

C-g keyboard-quit

C-h help

TAB self-insert-command

C-j newline-and-indent

C-k kill-line

C-l recenter

RET newline

C-n next-line

C-o open-line

C-p previous-line

C-q quoted-insert

C-r isearch-backward

C-s isearch-forward

C-t transpose-chars

C-u universal-argument

C-v scroll-up

C-w kill-region

C-x c-x prefix

C-y yank

C-z suspend-emacs

ESC meta prefix

SPC .. ~ self-insert-command

DEL delete-backward-char

C-h C-g keyboard-quit

C-h C-h help-help

C-h a apropos

C-h b describe-bindings

C-h c describe-key-briefly

C-x C-b list-buffers

C-x C-c save-buffers-kill-emacs

C-x C-f find-file

C-x C-g keyboard-quit

C-x C-l downcase-region

C-x C-o delete-blank-lines

C-x C-s save-buffer

C-x C-u upcase-region

C-x C-w write-file

C-x C-x exchange-point-and-mark

C-x (start-kbd-macro

C-x) end-kbd-macro

C-x 0 delete-window

C-x 1 delete-other-windows

C-x 2 split-window-vertically

C-x 4 c-x 4 prefix

C-x = what-cursor-position

C-x ^ enlarge-window

C-x b switch-to-buffer

C-x d dired

C-x e call-last-kbd-macro

C-x f set-fill-column

C-x i insert-file

C-x k kill-buffer

36

C-x o other-window

C-x s save-some-buffers

C-x 4 C-f find-file-other-window

C-x 4 C-g keyboard-quit

C-x 4 b switch-to-buffer-other-window

C-x 4 f find-file-other-window

M-C-g keyboard-quit

M-C-v scroll-other-window

M-SPC just-one-space

M-% query-replace

M-- negative-argument

M-0 digit-argument

M-1 digit-argument

M-2 digit-argument

M-3 digit-argument

M-4 digit-argument

M-5 digit-argument

M-6 digit-argument

M-7 digit-argument

M-8 digit-argument

M-9 digit-argument

M-< beginning-of-buffer

M-> end-of-buffer

M-[backward-paragraph

M-\ delete-horizontal-space

M-] forward-paragraph

M-b backward-word

M-c capitalize-word

M-d kill-word

M-f forward-word

M-l downcase-word

M-q fill-paragraph

M-r search-backward

M-s search-forward

M-u upcase-word

M-v scroll-down

M-w copy-region-as-kill

M-x execute-extended-command

M-~ not-modified

M-DEL backward-kill-word

37

