
Fig – A Lout Package for Drawing Figures

Jeffrey H. Kingston

Basser Department of Computer Science

The University of Sydney 2006

Australia

ABSTRACT

This report describes the use of Fig, a package of definitions for use with the Lout

document formatter. Fig draws, colours, and positions arbitrary shapes made

from straight lines, circular and elliptical arcs, and Bezier curves:

25, 39

43 Problem node

40, 41 44, 45, 46

The graphical objects may be rotated and scaled; they may enclose, and be

enclosed by arbitrary Lout objects (text, equations, tables, other graphical

objects, etc.) without restriction. A convenient algebra of points and a method

of labelling points assist positioning.

22 December, 1992

Fig – A Lout Package for Drawing Figures

Jeffrey H. Kingston

Basser Department of Computer Science

The University of Sydney 2006

Australia

1. Introduction

Fig is a package of Lout definitions for drawing and filling in arbitrary shapes made from

straight lines, circular and elliptical arcs, and Bezier curves. Its features are smoothly integrated

with the rest of Lout: one can rotate and concatenate objects created by Fig, draw a box to fit

neatly around any object, etc. The design of Fig is based entirely on Brian W. Kernighan’s PIC

language [2]. The implementation of Fig makes good use of the PostScript1 page description

language [1], which was designed by John Warnock and others. Lout was designed and

implemented by Jeffrey H. Kingston [3].

To use Fig within a Lout document, first ensure that its definition is included, either by

putting @SysInclude { fig } at the start of the document, or -ifig on the command line. Then,

anywhere at all within the document, write

@Fig { ... }

and the symbols of Fig will be available between the braces, which may enclose an arbitrary

Lout object. Throughout this report we will show the Lout text on the left and the corresponding

result on the right, like this:

@Fig {

 @Square

 //0.5c

 @Circle

}

Subsequent examples will omit the enclosing @Fig.

2. Basic Shapes

Fig has a repertoire of basic shapes, whose size varies depending on what they enclose:

@Ellipse { hello, world }
hello, world

1PostScript is a trademark of Adobe Systems, Inc.

- 2 -

@Box { 2c @High }

There are six such shapes: @Box, @Square, @Diamond, @Polygon, @Ellipse, and @Circle;

the result in each case is the right parameter, enclosed in a small margin, with the shape around

it.

There are options for changing the appearance of these shapes. The boundary line’s style

may be solid, dashed, cdashed, dotted, or noline (that is, no line is drawn), and the length of

the dashes may be changed:

@Circle

 linestyle { cdashed }

 dashlength { 0.2 cm }

@Eq { X sub 2 }

X2

If the line style is not mentioned, it becomes solid by default. The dashed option makes all

dashes the same length; cdashed halves the length of the first and last dash on each segment,

which looks better in some cases. The distance between dashes or dots will be at most

dashlength, reduced to make the dashes or dots fit evenly.

Shapes may be painted black, dark, grey or gray, light, white, or nopaint (the default):

@Box

 margin { 0c }

 paint { grey }

@Diamond

 linestyle { noline }

 paint { white }

{ hello, world }

hello, world

Here, the right parameter of @Box is a diamond containing hello, world. There is no limit to the

amount of this sort of nesting; the right parameter may be any Lout object.

When painting it is important to know what order things are done in, because anything put

down earlier will disappear under the paint. This is why nopaint and white are different. Painting

is done first, then boundaries, and finally the right parameter.

The @Polygon shape has a sides option for specifying the number of sides, and an angle

option for specifying what angle anticlockwise from vertically beneath the centre the first corner

will appear at:

@Polygon

 sides { 5 }

{}

- 3 -

@Polygon

 sides { 5 }

 angle { 0 dg }

{}

The defaults are 3 sides and the angle that gives the polygon a horizontal base (i.e. 180 degrees

divided by the number of sides). Thus the two cases with symmetry about a vertical axis are

obtained by the default angle and 0 dg respectively, which is convenient.

Although lines and arrows do not enclose things in the way that boxes and circles do, Fig

treats them as it does the other shapes. The line or arrow is drawn along the mark of the right

parameter, either horizontally or vertically:

@HLine { //0.2c hello, world }
hello, world

@VArrow { 2c @High X ^|0.2c } X

The usual line style options are available; the default margin is 0c. Arrows can be forward (the

default), back, both, or noarrow (which just draws a line); the style of the arrowhead can be open

(the default), halfopen, or closed:

@HArrow

 arrow { both }

 headstyle { closed }

{ 3c @Wide }

It is also possible to change the shape of the arrowhead, using the headwidth and headlength

options:

headlength

headwidth

Their default values are 0.05 cm and 0.15 cm respectively.

3. Creating New Shapes

If the needed shape is not provided by Fig, it can be created using the @Figure symbol.

@Figure takes all the options we have already seen, plus another one called shape. For

example,

- 4 -

@Figure

 shape {

 0 0 xsize 0

 0 ysize 0 0

 }

{ 3c @High 2c @Wide }

The pairs of numbers define points in a coordinate system whose origin is the lower left

corner of the right parameter; the upper right corner is xsize ysize, and the point where the right

parameter’s marks cross is xmark ymark:

ysize

ymark

0

0 xmark xsize

This arrangement is identical with that for the @Graphic symbol of basic Lout. A sequence of

points defines a shape, like the triangle above. Arrowheads are drawn pointing forwards from

the last segment and backwards from the first, as requested; the margin option has default value

0c.

Normally, the points are connected by straight lines to form the shape, which is then painted

and drawn in the usual way, depending on the other options.

If two points in the shape are separated by [], no line will be drawn between them. This

permits a shape to consist of two or more disconnected parts.

If two points in the shape are separated by [x y], where x and y are numbers, the two points

will be joined by an anticlockwise arc whose centre is the point (x, y). This arc will be circular

if possible, otherwise it will be part of an ellipse whose axes are oriented horizontally and

vertically. The notation [x y clockwise] makes the arc go clockwise. For example,

@Figure

 shape {

 0 -0.5 cm

 0 0.5 cm

 1 cm 0 0 -0.5 cm []

 1 cm 0 [1.1 cm 0]

 1 cm 0

 }

{}

We have recklessly disregarded the size of the right parameter when drawing this shape, a

dangerous thing to do since Lout thinks that the figure is the same size as its right parameter.

Finally, two points may be separated by [x1 y1 x2 y2], which requests that a Bezier curve be

- 5 -

drawn between them with control points (x1, y1) and (x2, y2):

(x0, y0)

(x1, y1)

(x2, y2)

(x3, y3)

The curve is attracted toward the control points, without reaching them; it is tangent to the

straight line from the start point to the first control point, and from the second control point to

the finishing point, and it lies wholly inside the quadrilateral formed by the four points. Owing

to the author’s laziness, dashes and dots do not fit as neatly onto Bezier curves as they do onto

lines and arcs. @Figure should be general enough to draw most shapes; for example, all the

other shapes (@Box, @Circle, etc.) are just instances of @Figure. When it is inadequate, one

can fall back to the standard @Graphic symbol.

Lines, arrows and arcs at any angle can be produced using @Figure:

@Figure

 shape { 0 0 xsize ysize }

 arrow { forward }

{ 2c @High 3c @Wide }

However, for convenience there are symbols @Line and @Arrow which have two options, from

and to, for specifying the endpoints:

@Arrow

 from { 0 0 }

 to { xsize ysize }

{ 2c @High 3c @Wide }

There is also an @Arc symbol, which draws a circular or elliptical arc from one point to another

about a given centre, with the usual options:

@Arc

 from { 0 0 }

 to { xsize ysize }

 ctr { 0 ysize }

 direction { anticlockwise }

 arrow { forward }

 linestyle { dashed }

{ 2c @High 3c @Wide }

The arc goes either clockwise (the default) or anticlockwise about the centre, depending on the

direction option. Any arrowhead will point in a direction tangent to the arc.

- 6 -

4. Colour

An arbitrary Lout object may be printed in colour, like this:

red @Colour hello hello

@Colour may also be spelt @Color. Of course, a colour printing device is needed to see the

effect. The @Colour symbol is intended to provide a fixed palette of colours indicated by names,

including white, grey, gray, black, red, green, and blue at least.

An unlimited range of colours can be obtained with the @RGBColour (or @RGBColor)

symbol, which is given three numbers in the range 0 to 1 specifying the required intensity of

red, green and blue colour in that order. For example,

{1.0 0.0 0.0} @RGBColour hello

is equivalent to red @Colour hello. There is also @HSBColour (or @HSBColor) for specifying

colour using the hue-saturation-brightness model (see [1], Section 4.8).

5. Lengths, angles, and points

We already know that two lengths placed side by side define a point. This is only the

simplest of a number of such geometrical combinations.

The symbol @Distance returns the length of the line joining two points:

{0 0} @Distance {3 cm 4 cm}

is equivalent to the length 5 cm. The result of @Distance is never negative. Notice that braces

must enclose the two points. The symbol @XDistance returns the distance in the x direction

from one point to another:

{x1 y1} @XDistance {x2 y2}

has for its result the length x2 − x1, and so may be negative. There is an analogous @YDistance

symbol.

The symbol @Angle returns the angle θ from one point to another:

{x1 y1} @Angle {x2 y2}

(x1, y1)

(x2, y2)

θ

The result will be 0 if the two points are equal. The symbol << returns the point at a given

distance and angle from (0, 0):

- 7 -

{length << θ}

length

θ

For example, { 5 cm << 45 dg } is the point 5 cm from (0, 0)at 45 degrees.

Points may be added, subtracted, and multiplied by a number:

{x1 y1} ++ {x2 y2} is (x1 + x2, y1 + y2)
{x1 y1} -- {x2 y2} is (x1 − x2, y1 − y2)
{x1 y1} ** k is (x1k, y1k)

For example,

{x1 y1} ** 0.2 ++ {x2 y2} ** 0.8

is the point eight tenths of the way from (x1, y1) to (x2, y2) on the line joining them:

(x1, y1)

(x2, y2)

(0.2x1 + 0.8x2, 0.2y1 + 0.8y2)

When using **, the point must be on the left and the number on the right. It would be more

convenient to name these symbols +, -, and *, but these names are often taken by equation

formatters, and - appears in lengths, so we don’t. There are @Max and @Min symbols:

{x1 y1} @Max {x2 y2} is (max(x1, x2), max(y1, y2))
{x1 y1} @Min {x2 y2} is (min(x1, x2), min(y1, y2))

Note carefully that these apply to points, not to numbers.

The result of adding two points together depends on where the origin is at the time, as well

as on the points themselves. This can lead to unexpected results, as the author has found to his

cost more than once. Within the shape option of @Figure, the origin is the lower left corner of

the result of the @Figure. In cases like the example on page 12, where points are added outside

of any @Figure symbol, the origin is usually at the bottom left corner of the figure as a whole.

- 8 -

A label always denotes a particular point on the printed page, regardless of where the origin

happens to be.

The symbol @Prev within the shape option of @Figure denotes the previous point of the

shape, ignoring points within []. This makes it easy to specify each point relative to the previous

one:

 shape {

 0 0

 { 2 cm << 30 }

 @Prev ++ { 2 cm << 90 }

 @Prev ++ { 2 cm << 150 }

 @Prev ++ { 2 cm << 210 }

 @Prev ++ { 2 cm << 270 }

 0 0

 }

Fig provides a @Label symbol for attaching a label to a point in a shape, like this:

{xsize ysize} ** 0.5 @Label CTR

The point may then be referred to more concisely by its label, CTR. For example, the large arrow

appearing in Section 2 was built like this:

@Figure

 shape {

 {0 ysize} ** 0.4 @Label SB

 {0 ysize} ** 0.6 @Label ST

 {xsize 0} ** 0.7 @Label HB

 SB

 SB ++ HB

 HB

 {xsize 0} ++ {0 ysize} ** 0.5

 HB ++ {0 ysize}

 HB ++ ST

 ST

 SB

 }

 paint { grey }

{ 6c @Wide 2c @High }

HB

ST

SB

Incidentally, the labels of a figure can be displayed as above by putting the symbol

@ShowLabels at the end of the figure. Labels can save a lot of effort. They should contain

only digits, upper-case letters and @, because Fig and Lout use labels of their own made from

lower-case letters.

The standard shapes have standard labels; for example, the labels of @Ellipse are

- 9 -

@Ellipse

{ 3c @Wide 2c @High }

W

NW NE

SE

S

E

SW

N

CTR

There is a symbol, ::, for relabelling an object. Each label in the right parameter is relabelled in

the following way:

E1:: @Ellipse

{ 3c @Wide 2c @High }

E1@NEE1@NW

E1@W E1@CTR

E1@N

E1@SW

E1@E

E1@S

E1@SE

Within the right parameter of :: the original names hold sway; but afterwards the names are

changed by prefixing the label and @ to them. These composite labels may be used exactly like

other labels. Relabelling can be nested to arbitrary depth:

A::

{ 1:: @Ellipse

 { 3c @Wide 2c @High }

 //1c

 2:: @Box

 { 3c @Wide 2c @High }

}
A@2@NE

A@1@S

A@1@NW

A@2@SW

A@1@E

A@1@NE

A@2@N

A@2@SE

A@1@SW

A@2@CTR

A@2@S

A@1@N

A@1@CTR

A@2@W

A@2@NW

A@1@SE

A@1@W

A@2@E

The right parameter of :: may be any object.

The six standard shapes (@Box, @Square, @Diamond, @Polygon, @Ellipse, and

@Circle) have a special CIRCUM label, not displayed by @ShowLabels. The expression

angle CIRCUM

yields the point on the boundary of the shape at the given angle from the centre, in a coordinate

system with the centre for origin. Thus, given a labelled standard shape such as

A :: @Ellipse ...

the point on its boundary at an angle of 45 degrees from the centre is

- 10 -

A@CTR ++ {45 A@CIRCUM}

The braces must be present. Regrettably, there is no way to produce a CIRCUM label for shapes

defined by the user in any reasonable time.

If the same label is used twice, as is inevitable with unlabelled standard shapes, only the

most recent value is remembered. There is a limit on the maximum number of distinct labels in

any one figure, which can be changed by means of an option to the @Fig symbol:

@Fig

 maxlabels { 500 }

{ ... }

The default value is 200. Large values could cause the printing device to run out of memory.

Memory is reclaimed at the end of each figure.

6. Putting it all together

In this section we consider the problem of linking individual shapes together to form

complex diagrams like this one:

A

B

C

D

We already have several aids to hand: the standard Lout symbols, especially horizontal and

vertical concatenation, rotation and scaling; the ability to nest text, equations, and other figures

(in fact arbitrary Lout objects) within our shapes; and the standard Lout definition mechanism.

The default values of the various options – solid for linestyle, noarrow for arrow, and so on

– may be changed by giving options to the @Fig symbol:

@Fig

 linestyle { noline }

 paint { black }

{

 @Circle |1c @Square

 /1c @Diamond | @Polygon

}

- 11 -

A complete list of options is given in the next section.

Fig provides an additional aid: the symbols @BaseOf and @MarkOf. The right parameter

of @BaseOf is an arbitrary object, and its left parameter is a point. As far as Lout is concerned,

the result of @BaseOf is always an empty object; but the right parameter will appear on the page

with the bottom left-hand corner of its base at the point denoted by the left parameter. We stress

that Lout has no idea that this is happening, and so cannot prevent the shifted object from writing

over other objects or even going off the edge of the page. Of course, this lack of discipline is

just what is needed very often in diagrams.

The @MarkOf symbol works in a similar way, except that the point where the object’s

marks cross (rather than its bottom left-hand corner) will appear on the page at the point denoted

by the left parameter.

We can set up a coordinate system for a figure:

@Figure shape { xsize 0 @Label X 0 ysize @Label Y }

{ 10c @Wide 6c @High }

In fact, Fig contains this shape under the name @Frame, so we need only write

@Frame { 10c @Wide 6c @High }

Of course, the right parameter may contain an arbitrary Lout object.

Once the frame is set up, we can specify points by their X and Y coordinates, as fractions

of the total width and height:

X ** 0.5 ++ Y ** 0.8

To place the squares in the diagram above, we can use

// X**0.1 ++ Y**0.4 @BaseOf A:: @Square { @I A }

// X**0.4 ++ Y**0.7 @BaseOf B:: @Square { @I B }

// X**0.6 ++ Y**0.1 @BaseOf C:: @Square { @I C }

// X**0.8 ++ Y**0.6 @BaseOf D:: @Square { @I D }

The symbols’ precedences are chosen so that this very common situation requires no braces.

The result of this is

A

B

C

D

- 12 -

where we have drawn a box with margin 0 around the frame to make its extent clear.

Now the arrow from A to B starts on the boundary of A at the angle of a line drawn between

the centres of A and B:

A@CTR ++ { {A@CTR @Angle B@CTR} A@CIRCUM }

and a similar expression will yield the endpoint of the arrow. Such expressions should be placed

into definitions if they are to be used often:

import @Fig

def @JoinFigures

 left A

 named linestyle { solid }

 named dashlength { 0.15 cm }

 named arrow { noarrow }

 named linewidth { 0.5 pt }

 right B

{ @Arrow

 from { A"@CTR" ++ {{A"@CTR" @Angle B"@CTR"} A"@CIRCUM"} }

 to { B"@CTR" ++ {{B"@CTR" @Angle A"@CTR"} B"@CIRCUM"} }

 linestyle { linestyle }

 dashlength { dashlength }

 arrow { arrow }

 linewidth { linewidth }

 {}

}

Definitions preceded by import @Fig may use the symbols of Fig within them; they may

themselves be used only within @Fig { ... }. Now, to the figure above we can add

// A @JoinFigures arrow { forward } B

// A @JoinFigures arrow { forward } C

// B @JoinFigures arrow { forward } C

// B @JoinFigures arrow { forward } D

// C @JoinFigures arrow { forward } D

to obtain the diagram as it appears at the beginning of this section. Definitions are the best means

of managing complexity in diagrams, and serious users maintain a file of definitions which is

included automatically by an @Include command.

7. Errors

Lout normally produces an output file that will print without mishap on any PostScript

device. However, some of the options of Fig’s symbols are passed through Lout to the output

file without checking, including anything containing Fig lengths, angles, points, and labels. Any

errors in these options will not be detected until the file is printed.

The most likely errors are syntax errors, as in shape { 0 0 [0 xsize } for example, in which

- 13 -

a] is missing; type errors, as in 0 0 @Distance 45 where the right parameter is not a point; and

undefined errors, arising from labels misspelt or used before being defined. Less commonly, the

options may all be correct but the figure is too large in some way: too many labels, too deeply

nested, etc.

When an error is detected, Fig arranges for the offending page to be printed up to the point

where the error occurred, with a message nearby describing the error. Printing of the document

is then aborted.

8. A Concise Reference for Fig

The options to the @Fig symbol, and their default values, are as follows. The complete

range of options is shown at right:

@Fig

 maxlabels { 200 } any whole number

 linestyle { solid } solid dashed cdashed dotted noline

 linewidth { 0.5 pt } any Fig length (see below)

 linecap { round } butt round project

 dashlength { 0.15 cm } any Fig length

 paint { nopaint } nopaint white light grey gray dark black

 margin { 0.4c } any Lout length

 arrow { noarrow } noarrow forward back both

 headstyle { open } open halfopen closed

 headwidth { 0.05 cm } any Fig length

 headlength { 0.15 cm } any Fig length

The linecap option determines the shape of the ends of lines: round puts a round cap on them,

which is the most useful in Fig; butt is a square end; and project is a square end projecting half

a line width past the end of the line; it is useful for getting sharp corners on rectangles and square

dots in dotted lines.1

The following standard shapes take the same options as @Fig, except that they do not have

maxlabels or the last four (arrow-drawing) options, and occasionally they have other options. In

most cases the default values of these options are taken from the enclosing @Fig. Where there

are extra options, or where a different default value is used, the option and its default value are

shown. The list also shows the shape’s labels, and how it is superimposed on its right parameter

(shown as a grey rectangle). A larger margin will enlarge the right parameter and hence the shape

as well. Squares, polygons and circles have a diameter equal to the larger of xsize and ysize.

@Box W

NW NE

SES

E

SW

N

CTR

1The line joining options of PostScript are not reflected in Fig options because Fig strokes paths segment by

segment, not all at once, and so there are no line joins in the PostScript sense. This was done to improve the

appearance of dashed and dotted lines.

- 14 -

@Square W

NW NE

SES

E

SW

N

CTR

@Diamond W

S

E

N

CTR

@Polygon

 sides { 3 }

 angle { 180/sides }

P2

P1

CTR

P3

... ...

P2
P1P12

P11

P10

P9

P8
P7 P6

P5

P4
CTR

P3

@Ellipse W

NW NE

SE
S

E

SW

N

CTR

@Circle W

NW NE

SE
S

E

SW

N

CTR

The following standard shapes have the same options as @Fig, including the four arrow-drawing

options, and occasionally they have others. In each case the only difference between the line

and arrow symbols is the default value of arrow, which lines take from @Fig and arrows set to

forward. The first four draw a line along the mark of the right parameter, which is not necessarily

the same as its left or top edge.

@HLine

 margin { 0c }

TOFROM

@HArrow

 margin { 0c }

 arrow { forward }

TOFROM

@VLine

 margin { 0c } TO

FROM

- 15 -

@VArrow

 margin { 0c }

 arrow { forward }
TO

FROM

@Line

 from { 0 ysize }

 to { xsize 0 }

 margin { 0c }

TO

FROM

@Arrow

 from { 0 ysize }

 to { xsize 0 }

 margin { 0c }

 arrow { forward }

TO

FROM

@Arc

 from { 0 ysize }

 to { xsize 0 }

 ctr { 0 0 }

 direction { clockwise }

 margin { 0c }

TO

FROM

CTR

More generally, the @Figure symbol takes all the options of @Fig except maxlabels, together

with a shape option containing a sequence of points, and it connects each pair of points by a

line or curve as specified by the following:

point point Straight line

point [] point Draw nothing

point [point] point Anticlockwise circular or elliptical arc

point [point clockwise] point Clockwise circular or elliptical arc

point [point point] point Bezier curve with two control points

The remaining symbols do not draw shapes. They are

colour @Colour object

colour @Color object

Print object in colour, which may be white, grey, gray, black, red, green, or blue at least.

{ number number number } @RGBColour object

{ number number number } @RGBColor object

{ number number number } @HSBColour object

{ number number number } @HSBColor object

Print object in the colour defined by the three numbers, using the red-green-blue or

- 16 -

hue-saturation-brightness colour models.

point @Label label

Within a shape, makes label stand for the point on the page denoted by point, which is not made

part of the shape. The label applies from here onwards until some other point is given this label,

a relabelling occurs, or the figure ends.

label :: object

Relabel every labelled point in the right parameter (which may be an arbitrary Lout object), by

adding label@ to the front of each label.

@Frame object

Equivalent to @Figure shape {xsize 0 @Label X 0 ysize @Label Y} object.

point @BaseOf object

Translate object so that its bottom left-hand corner appears at point. Lout thinks that the result

is an empty object.

point @MarkOf object

Translate object so that the point where its marks cross appears at point. Lout thinks that the

result is an empty object.

@ShowLabels

Display all the labels of the figure created up to this point.

The following lists define all the ways to specify lengths, angles and points.1 Brief

explanations appear to the right, with the symbols’ precedences in parentheses where

appropriate.

length

0 zero

xmark distance to column mark

ymark distance to row mark

xsize distance to right boundary

ysize distance to top boundary

number in number inches (39)

number cm number centimetres (39)

number pt number points (39)

1A length is represented in PostScript by a single number on the operand stack; so is an angle. A point is

represented by two numbers on the stack. Those familiar with PostScript and willing to sacrifice portability and

increase their risk of error can therefore write, for example, length sqrt within a shape, to obtain a length which

is the square root of another length, or point exch to obtain the reflection of a point about the main diagonal,

and so on.

- 17 -

number em number ems (39)

number sp 1 sp is the current width of a space (39)

number vs 1 vs is the current inter-line space (39)

number ft 1 ft is the size of the current font (39)

point @Distance point distance between two points (35)

point @XDistance point horizontal distance between two points (35)

point @YDistance point vertical distance between two points (35)

angle

number dg number degrees (39)

number number degrees (dg is optional)

point @Angle point angle from first point to second (35)

point

length length x and y distance from origin (5)

length << angle distance and angle from origin (38)

point ++ point vector sum of two points (36)

point -- point vector difference of two points (36)

point @Max point vector maximum of two points (36)

point @Min point vector minimum of two points (36)

point ** number multiplication of point by number (37)

label a previously defined label

@Prev the previous point in a shape

References

1. Adobe Systems, Inc., PostScript Language Reference Manual, Second Edition.

Addison-Wesley, 1990.

2. Kernighan, Brian W., PIC – A language for typesetting graphics. Software Practice and

Experience 12, 1–21 (1982).

3. Kingston, Jeffrey H., Document Formatting with Lout (Second Edition). Tech. Rep.

449 (1992), Basser Department of Computer Science F09, University of Sydney 2006,

Australia.

