SA7120A: 128 Bit Read-only Biphase Coded Transponder for ISO 11784 / 11785 FDX-B (Full Duplex) Application #### **FEATURES** - EEPROM flexibility of data configuration - 128 bits of OTP data factory programmed and locked - Customer specific configuration of stored data - Data output in Biphase mode - Biphase data readout conforming to ISO 11784 / 11785 FDX-B full duplex - Carrier frequency 100 to 300 kHz ## **DESCRIPTION** This device is manufactured in the SAMES 1.2µm N-well EEPROM process. It has 128 bits, factory pre-programmed and locked in EEPROM memory. Read data is Biphase coded. The device has an on-chip rectification circuit that converts the incoming rf signal to DC power feeding \(\forall _D \). There is also an on-chip data modulator which works in conjunction with the rectifier. The time base is extracted by an on-chip RF clock extractor. High voltage protection across the coil inputs is provided internally. The energy is stored on capacitance on chip due to low internal power consumption. The device has an on-chip resonance capacitor connected between the COIL1 and COIL2 pads. These features result in a single external component count, comprised of, only the coil. - On-chip resonance capacitor - No external charge storage capacitor required - On-chip full wave rectifier - On-chip data modulator - On-chip high voltage protection / regulation - On-chip RF frequency clock extractor / prescaler - Low power dissipation Data is read at the RF interface by means of the on-chip modulator. The stored bits are clocked out sequentially during the read operation. An internal power-on reset is provided which allows the device to start reading out data at low voltages for improved tag range. #### **APPLICATIONS** - Animal ID ear tag - Animal ID bolus tag - Industrial automation - Asset tracking ## **PAD CONNECTIONS** ## **PAD DESCRIPTION** | PAD
No. | NAME | DESCRIPTION | |------------|-----------------|--------------------------| | 1 | COIL1 | External coil connection | | 2 | COIL2 | External coil connection | | 3 | V _{DD} | Supply voltage | | 4 | TEST | Test Pad | | 5 | TEST | Test Pad | | 6 | TEST | Test Pad | | 7 | V _{SS} | Ground | | 8 | TEST | Test Pad | ## **BLOCK DIAGRAM** #### **ABSOLUTE MAXIMUM RATINGS** | PARAMETER | SYMBOL | MIN | MAX | UNIT | NOTE | |---|--|------|------|------|-----------| | Supply Voltage | V_{DD} | -0.3 | 9.4 | V | 1,2,3,4,5 | | ESD protection C= 100pF R = 1.5Kohm,
Human body model. MIL-STD-883C method
3015 | Vpesd | - | TBD | V | 3,8 | | Peak voltage across COIL1 or COIL2 to V _{SS} | V _{COIL1,2} - V _{SS} | -10 | +10 | ٧ | 3,6 | | Peak current through COIL 1,2 | I _{COIL1,2} | -30 | +30 | mA | 3,7 | | Storage temperature | Tst | -55 | +125 | °C | 3 | Note 1: Duration not to exceed 10 seconds, and no logic switching. Note 2: Referenced to Vss Note 3: Stresses above those listed under "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating conditions section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect the device reliability. Note 4: VDD level when absolute maximum current goes through coil inputs. Note 5: VDD level when absolute maximum voltage is across coil inputs. Note 6: Maximum peak voltage at COIL1 or COIL2 of incoming RF signal with V_{SS} as reference. Clamping by front end protection circuitry. Note 7: Maximum allowed peak current of incoming RF signal. Note 8: TBD - To be determined. #### HANDLING PROCEDURES Although the device has built-in ESD protection, adherence to anti-static procedures for CMOS devices is required. ### **ELECTRICAL CHARACTERISTICS** #### **DC Operating Conditions** | Parameter | Symbol | Min | Тур | Max | Unit | Condition | |--|-------------------|-----|-----|-------------------|-------|---| | Dynamic current | I _{DD} | | 3 | 6 | μΑ | $V_{DD} = 3V$ | | Static current | I _{DDS} | | | 1 | μΑ | V_{DD} = 3V, clock stopped, COIL1 & COIL2 shorted to V_{SS} | | Voltage when power-on reset comes out of reset | V _{POR} | 1.2 | 1.6 | 2 | > | During power-up V _{DD} – V _{SS} rising | | Histereses on power-on rest | V _{PORH} | 200 | ı | 600 | mV | Between coming out of reset and going back into reset | | Data retention | T _{DR} | 10 | - | - | years | programmed | | Supply voltage | V _{DD} | 2 | ı | 5.5 ₁₎ | ٧ | At specified current at COIL1 or COIL2, | | Operating temperature | Тор | -40 | | +70 | ွပ | | Note: 1) maximum voltage is defined when forcing 10 mA on the coil inputs. ## AC Operating Conditions Clocking | Parameter | Symbol | Min | Тур | Max | Unit | Condition | |-------------------------------------|-----------------|-----|-----|-----|------|--| | RF carrier frequency at COIL1,2 | f _{RF} | 50 | 134 | 300 | kHz | Sustained RF from base station | | Number of rf carrier cycles per bit | N _B | - | 32 | 64 | | Note that for ISO 11784/85 32 cycles must be used. As an option 64 cycles may be used for other custom applications. | ## **Coil Inputs** | Parameter | Symbol | Min | Тур | Max | Unit | Condition | |--------------------------------------|-----------------|------|-------|------|------|---| | Negative excursion of COIL1 or COIL2 | V _{CN} | -0.6 | -0.65 | -0.7 | V | Peak level referenced to VSS | | Modulated voltage drop | V _{СМ} | TBD | 3.3 | TBD | V | Unmodulated COIL1 or COIL2 voltage referenced to V _{SS} = 5.5V | | Modulated voltage drop | V _{СМ} | TBD | 3.0 | TBD | V | Unmodulated COIL1 or COIL2 voltage referenced to V _{SS} = 5.0V | | Modulated voltage drop | V _{CM} | TBD | 0.875 | TBD | V | Unmodulated COIL1 or COIL2 voltage referenced to V _{SS} = 2.5 | | Resonance Capacitor | C _R | 1) | 75 | 1) | pF | Measured between COIL1 and COIL2 | Note: 1) for a single batch the tolerance is $\pm 3\%$. From batch to batch the tolerance is $\pm 30\%$. TBD - To be determined. #### **FUNCTIONAL DESCRIPTION** The circuit is built up out of several functional blocks, control logic, coil interface, the power-on reset, and the memory module (EEPROM), The chip activates automatically during power-up as a result of the built in power-on reset. #### **Coil Interface** Power is derived from a full wave rectifier bridge. Data modulation takes place by loading the coil inputs to the bridge with a modulating circuit. The coil interface includes on-chip high voltage protection. The system clock for the chip is derived by means of a clock extractor coupled to the rectifier circuit. The Clock extractor / prescaler is the time base generator for data reading. Data is read from the EEPROM to the coil interface where the rf signal is modulated by the data in the Biphase coded mode. #### **Memory Array** #### Data storage: The data EEPROM is arranged in an 16X8 bit array composed of 16 columns of 8 bit bytes. The 128 bits of data stored in the array can be configured in any way as agreed with the client, and is factory programmed and locked in that way. This gives OTP (One Time Programmable) security. #### **Memory map** The memory is mapped as described in ISO 11784 code structure and the code is programmed during wafer test. For other special requirements the flexibility of programming allows custom memory mapping. #### **Control logic** The control logic gets its clock from the clock extractor / prescaler and facilitates the reading of the data stored in the data EEPROM. #### TIMING SPECIFICATIONS The COIL1 and COIL2 pads modulate the incoming rf signal with Biphase encoded data. The data will repeatedly be read out serially until the power is reduced sufficiently to activate the power on reset again. There are 32 rf carrier cycles for each data bit. This is the nominal setting to comply with ISO 11784/11785. An optional setting of 64 rf cycles per bit can be selected during wafer manufacture. #### **DATA OUTPUT** Data output takes place according to biphase encoding. ### **TYPICAL APPLICATION** The chip powers up via the COIL1 and COIL2 pads, deriving its energy from the rf carrier wave through the resonating tank circuit made up by the external inductor, L_R , and internal capacitor, C_R . An optional additional external capacitor can be added for special requirements. The data will automatically start modulating the rf signal as soon as the chip has powered up to the power-on reset level. The built in voltage protection and regulation insures protection against high voltage from the tank circuit. The value of L_R is determined by the following relationship. $$f_R = 1/(2 \pi \sqrt{L_{R^*} C_R})$$ Where f_R is the resonance frequency. For a typical internal C_R of 75 pf and for f_R at 134.2 kHz, $L_R = 18.75 \, mH$ ## PACKAGE AND ORDERING INFORMATION ## **PCB FORM** #### **CHIP FORM** #### **ORDERING INFORMATION** Data rate at 32 clocks per bit (compulsory for ISO 11784/85) In Chip form SA7120 32 IC In PCB form SA7120 32 COB Data rate at 64 clocks per bit (custom option which is not ISO 11784/85) In Chip form SA7120 64 IC In PCB form SA7120 64 COB #### **SA7120A** **Disclaimer:** The information contained in this document is confidential and proprietary to South African Micro-Electronic Systems (Pty) Ltd ("SAMES") and may not be copied or disclosed to a third party, in whole or in part, without the express written consent of SAMES. The information contained herein is current as of the date of publication; however, delivery of this document shall not under any circumstances create any implication that the information contained herein is correct as of any time subsequent to such date. SAMES does not undertake to inform any recipient of this document of any changes in the information contained herein, and SAMES expressly reserves the right to make changes in such information, without notification, even if such changes would render information contained herein inaccurate or incomplete. SAMES makes no representation or warranty that any circuit designed by reference to the information contained herein, will function without errors and as intended by the designer. Any sales or technical questions may be posted to our e-mail address below: id_security@sames.co.za For the latest updates on datasheets, please visit our web site: http://www.sames.co.za ## SOUTH AFRICAN MICRO-ELECTRONIC SYSTEMS (PTY) LTD Tel: 012 333-6021 Tel: Int +27 12 333-6021 Fax: 012 333-8071 Fax: Int +27 12 333-8071 P O Box 15888, Lynn East 0039, Republic of South Africa 33 Eland Street, Koedoespoort Industrial Area, Pretoria Republic of South Africa 10/10