
 

 
Blues Virtual  
Host Manual



 

 

 

THIS DOCUMENT HAS BEEN PREPARED TO ASSIST CUSTOMERS IN 
USING SOFTWARE AND HARDWARE.  NEWHART SYSTEMS 
INCORPORATED WILL NOT BE LIABLE FOR DAMAGES TO CUSTOMERS 
DUE TO ANY ERRORS CONTAINED IN THIS DOCUMENTATION, OR FOR 
DAMAGES TO CUSTOMERS RESULTING FROM THE USE OF THIS 
DOCUMENTATION AND ACCOMPANYING SOFTWARE AND HARDWARE. 

 

 

BEFORE USING THIS PRODUCT WITH ANY LICENSED SOFTWARE, THE 
CUSTOMER SHOULD CAREFULLY READ ITS LICENSE AGREEMENT TO 
INSURE THAT IT WILL NOT VIOLATE ANY OF THE LICENSE TERMS OR 
CONDITIONS. 

 

 

COPYRIGHT (c) 2005 NEWHART SYSTEMS INCORPORATED.  ALL RIGHTS 
RESERVED. THIS MATERIAL MAY NOT BE REPRODUCED IN WHOLE OR IN 
PART BY ANY MEANS WITHOUT WRITTEN PERMISSION. 

 

 

 

 

For More Information Write: 

 

Newhart Systems Inc. 

P.O. Box 348 

Barneveld, N.Y. 13304 USA 

Tel. 315-896-4131 

Fax. 315- 896 - 4548 

Web. http:\\www.newhartsystems.com



 

 

CONTENTS 
Introduction................................................................................... 1 

Installation..................................................................................... 1 

Software Requirements ............................................................... 2 

License Agreement...................................................................... 3 

Selecting User Information .......................................................... 3 

Installation Type........................................................................... 4 

Uninstalling............................................................................................. 5 

Licensing Issues........................................................................... 6 

Packaging VirtualHost with a Third Party Application............................. 6 

Sample Projects............................................................................ 6 

Opening the Sample Projects in Visual Studio ....................................... 6 

Adding VirtualHost to an existing Visual Studio project .......................... 7 

VirtualHost Class.......................................................................... 7 

Overview................................................................................................. 7 

Methods.................................................................................................. 8 

BeginConnect .............................................................................. 9 

Close ........................................................................................... 9 

DisconnectFromHost ................................................................... 9 

FindDisplayText ........................................................................... 10 

getDisplayText ............................................................................. 10 

keyText ........................................................................................ 11 

keyTerminalKey ........................................................................... 11 

setCursor ..................................................................................... 15 

Properties ............................................................................................... 15 

EmulationType............................................................................. 15 

foundTextOnRow......................................................................... 16 

foundTextOnColumn ................................................................... 17 

HostCodePage ............................................................................ 17 

IPAddress .................................................................................... 18 



IPPort........................................................................................... 18 

ModelNumber .............................................................................. 19 

Message ...................................................................................... 19 

ScreenCols .................................................................................. 20 

ScreenRows ................................................................................ 20 

Tag .............................................................................................. 21 

TraceActive.................................................................................. 21 

TraceFileName ............................................................................ 22 

Delegates, Events, and Handlers ........................................................... 22 

Threading .................................................................................... 22 

evtConnected............................................................................... 23 

evtDisconnected .......................................................................... 24 

evtKeyboardUnlocked.................................................................. 25 

evtScreenChange ........................................................................ 26 



Newhart Systems Incorporated © 2005 All Rights Reserved 

 

BLUES User Manual  Page:1 

Introduction 
 

VirtualHost is a managed .net assembly that may be used to access IBM 
Mainframe and IBM Midrange AS400 computers by emulating an IBM terminal 
over a TCPIP network connection.  VirtualHost is a .net toolkit consisting of a 
single .net dll, sample Microsoft Visual Studio projects, and associated 
documentation and help system. 

 

The VirtualHost class has no end user interface and is designed to be used by 
third party .NET applications that requires access to IBM Mainframe and IBM 
Midrange computers.   The VirtualHost class provides the necessary Properties, 
Methods, and Events to connect to a host computer, simulate operator entry, 
and scrape the virtual screen image. 

 

Since VirtualHost has no end user interface, it is not tied to any particular .NET 
architecture.  The class can be used in Windows Forms application, ASP.NET 
applications, and .NET services. 

 

The VirtualHost class is written in 100% managed C# and is not mearly a .NET 
wrapper.  The VirtualHost class may be used from any .NET language such as 
C#, VB.NET and J#. 

    

 

Installation 
 

Installation involves running the setup.exe program to copy the necessary files to 
a hard drive located on a stand-alone pc, network file share, or Microsoft Internet 
Information Server.   The installation will copy the VirtualHost dll to the hard 
drive, and add the VirtualHost dll to the Global Assembly Cache (GAC).  Once 
the dll is in the GAC, it may be used by any other .NET assembly and does not 
need to be copied to the target applications bin folder.  Redistribution may either 
be done this way, or the VirtualHost dll may be copied directly to the target 
applications bin folder. 

     



Newhart Systems Incorporated © 2005 All Rights Reserved 

 

BLUES User Manual  Page:2 

 

 

Software Requirements 
 

To be able to install and run VirtualHost, the following software components 
must be previously installed: 

 Microsoft Windows 98 or newer operating system. 

 Microsoft .NET Framework  

 Microsoft Visual Studio 2003 or higher (optional) 

 Adobe reader to view the User Manual (optional)  

 

 

 

The installation is done by performing a Start/Run from start menu of the 
program setup.exe .  The first window will prompt for the preferred language to 
use for the installation.  

Once the installation has been started, the following window will be displayed: 

  



Newhart Systems Incorporated © 2005 All Rights Reserved 

 

BLUES User Manual  Page:3 

 

 

License Agreement 
 

The next window displays the license agreement.  Please read the license 
agreement before continuing.  After you have accepted the license agreement, 
press the next button. 

 

 
 

Selecting User Information 



Newhart Systems Incorporated © 2005 All Rights Reserved 

 

BLUES User Manual  Page:4 

 
 

The software may be installed for all users of the PC, or only for yourself. 

Installation Type 



Newhart Systems Incorporated © 2005 All Rights Reserved 

 

BLUES User Manual  Page:5 

 
 

There are two types of installation; Complete, and Custom.  Complete will install 
all possible components.  The Custom installation will allow you to select the 
folder where the software will be installed and select individual features. 

 

The software will now be copied from the installation media to your computer.  
After installation, the User Manual will automatically be launched. 

 

Uninstalling 
 

The Virtual Host software may be removed from the Control Panel “Add/Remove 
Programs” icon.  To properly remove the software you should have 
administrative privileges and have all other windows closed.  The uninstall wizard 
will guide you through removing Virtual Host from your PC.    

 

 

 



Newhart Systems Incorporated © 2005 All Rights Reserved 

 

BLUES User Manual  Page:6 

Licensing Issues 
 

Any third party application that uses the VirtualHost software must be properly 
licensed.  Each PC running any part of the VirtualHost software must be 
licensed.  For information on the software license, please read the license 
agreement that must be agreed to during the initial software installation process.  
Licensing is enforced through the use of a license file named VirtualHost.lic.   
The license may be either a trial license or a purchased license.  The trial license 
is valid for 30 days from the installation date. 

 

Packaging VirtualHost with a Third Party Application 
 

Licensing issues still apply if the VirtualHost software is going to be packaged 
with any third party application.  Each computer running the third party 
application that is using the software must be properly licensed.   

 

 

Sample Projects 
 

Opening the Sample Projects in Visual Studio 
 

To use the sample projects, Visual Studio .NET or the .NET SDK must already 
be installed on the PC used for development.  It is suggested that a copy of all 
files in the appropriate sample folder be copied to a new folder to preserve the 
sample for reference purposes.  To build a project, first start Visual Studio .NET 
2003 and use the Open Project function and browse to the project folder, and 
select the project to open.    

 

The sample projects are installed under the “Program Files\Newhart 
Systems\Blues Virtual Host\Sample Visual Studio Projects”.  The samples come 
in both a C# and VB version.  Sample projects exist for Windows Forms 
applications and ASP.NET applications. 

 



Newhart Systems Incorporated © 2005 All Rights Reserved 

 

BLUES User Manual  Page:7 

Once you are able to build and run the project with no errors, then your ready to 
add new functionality or add the class to your existing application. 

 

Adding VirtualHost to an existing Visual Studio project 
 

Important 

 

Before adding the control to an existing application it is important to 
understand how the .NET runtime locates assemblies (.NET dll’s) that are 
referenced by another application.  Typically all .NET dlls that an 
application requires are located in either the same folder as the 
application, or in the .NET Global Cache (GAC).  The software installation 
automatically places the VirtualHost dll in the GAC making it available for 
use by application located anyplace.     

 

To add VirtualHost to your application from visual studio, follow these steps:   

 

1. Right click on the “References” tree in the Solution window and select 
“Add Reference”.  Select the reference “NewhartSystems.VirtualHost” 
from the list and press ok. 

2. C# programmers need to add a using statement to any source file using 
the class as follows: “using NewhartSystems;” 

3. Construct a new VirtualHost class, set the TCPIP settings in the control, 
call the BeginConnect method and start using the class. 

 

 

 

VirtualHost Class 
 

Overview 
The VirtualHost class provides the interface to a terminal emulation session.  
The class must be properly initialized before any host interaction can take place.  



Newhart Systems Incorporated © 2005 All Rights Reserved 

 

BLUES User Manual  Page:8 

Each instance of the VirtualHost class represents an instance of a terminal 
emulator. 

 

Using the class consists of creating a new instance, initializing the tcpip and 
device options, instructing the class to begin the connection process, waiting for 
screen change events, scraping the emulator screen contents, and simulating 
keystroke entry.  The class is totally asynchronous in design.  The calling class 
instructs the VirtualHost to perform some type of operation and an event calls 
the calling class back at key instances during the life of the emulator. 

 

The simplest way to use the class is to copy and paste the few lines of code that 
make up the sample projects and then make the necessary changes to connect 
to your host computer and screen scrape your screens.    

  

 

The class definition is as follows: 

  

C# 

 private NewhartSystems.VirtualHost  Host =  new 
NewhartSystems.VirtualHost("C:\\Program Files\\Newhart Systems\\Blues Virtual 
Host\\Bin"); 
    
VB 

     Friend WithEvents Host As NewhartSystems.VirtualHost 
        Host = New NewhartSystems.VirtualHost("C:\\Program Files\\Newhart 
Systems\\Blues Virtual Host\\Bin") 
 
Creating a new instance of the VirtualHost class requires a single argument that contains the 
location of the license file named VirtualHost.lic.  A sample 30 day license is installed as part of 
the trial version of the software. 
 
 

Methods 
 
Methods are functions that the application calls to have some type of function 
performed.  Any method that can take time to complete is asynchronous and 
return immediately, when the method has been performed, the associated 
delegate is called to notify the application of the outcome. 
 



Newhart Systems Incorporated © 2005 All Rights Reserved 

 

BLUES User Manual  Page:9 

The following methods are listed in alphabetal order. 
 
  

BeginConnect 
 

This method starts the connection process.  Before calling this method, set the 
event evtConnected to be notified of the result.  The connection process is 
asynchronous.   See the event evtConnected for details on determining the 
outcome of the call. 

 

C# 
Host.BeginConnect(); //Start communications and wait for  

//screen change events 
 

VB 
 
Host.BeginConnect()   REM start connection process and wait for 

REM connect complete event 
 

 

Close 
 

This method closes the control and frees up any resources it may be using. 

 

C# 
 
Host.Close();  //end communications and free up  

//resources 
 

VB 
 
Host.Close()   REM end communications and free up 

    REM resources 

 

DisconnectFromHost 
 
This method will cause the terminal session to disconnect the tcp/ip connection. 



Newhart Systems Incorporated © 2005 All Rights Reserved 

 

BLUES User Manual  Page:10 

 
C# 
 
Host.DisconnectFromHost(); //end communications 
 

VB 
 
Host.DisconnectFromHost() REM end communications  

 
FindDisplayText 

 

This method is used to search for a string on the host screen.  The arguments 
include the string, the starting row and the starting column.  The starting row and 
column are one based numbers.  The search is exhausted at the end of the 
screen.  If the string is found, true is returned, other false is returned.  If the 
string is found, the found TextOnRow and founfTextOnColumn properties will 
contain the location of the string. 

 

C# 
 
If(Host.FindDisplayText(“signon”,1,1)) //search screen for text 
{ 
 // inspect foundTextOnRow and foundTextOnColumn to see 

 // where it was found  

} 

 

VB 
 
If (Host.findDisplayText("signon", 1, 1)) Then 
    REM Inspect foundTextOnRow and foundTextOnColumn 
    REM properties 
End If 
 

 

getDisplayText 
 



Newhart Systems Incorporated © 2005 All Rights Reserved 

 

BLUES User Manual  Page:11 

This method obtains a copy of the host screen (scrapes the screen).  Any portion 
of the screen contents may be read.  Arguments include the starting row, 
column, and length.  All argument values are one based. 
  

C# 

 
// 
// scrape screen and take appropriate action 
// 
string Screen = Host.getDisplayText(1,1,Host.ScreenRows * 
Host.ScreenCols); 
 

 

VB 

 
REM 
REM scrape screen and take appropriate action 
REM 
Dim Screen As String 
Screen = Host.getDisplayText(1, 1, Host.ScreenRows * Host.ScreenCols) 
 

 

keyText 
 
This method is used to type a string of characters into the host screen.  The 
characters are entered starting at the current cursor address.   
 
The return code is true for success and false for failure.  A False return code 
indicates that the either the host screen was busy receiving data from the host, 
or that the cursor was located in a protected location of the screen. 
 
C# 
 
Host.keyText(“hello World”); //enter some text 
 
VB 
 
Host.keyText(“hello world”)  REM enter some text 
 
 

keyTerminalKey 
 



Newhart Systems Incorporated © 2005 All Rights Reserved 

 

BLUES User Manual  Page:12 

This method is used to send a function key to the terminal session.  Function 
keys are special keys that cause a specific function to be performed by the 
terminal session.  
 
Two prototypes of this function exist, one that takes a key code, and the other 
that takes a text representation of the key.  The enumerator called KeyDefines 
contains the integer values for the key codes.  The following table lists the 
possible values for the arguments: 
 
Argument Function 
KeyDefines.DUPLICATE or 
“DUP” or 
“DUPLICATE” 

3270 or 5250 Duplicate key 

KeyDefines.PF1 or 
“PF1” or “F1” 

3270 or 5250 Function key 1 

KeyDefines.PF2 or 
“PF2” or “F2” 

3270 or 5250 Function key 2 

KeyDefines.PF3 or 
“PF3” or “F3” 

3270 or 5250 Function key 3 

KeyDefines.PF4 or 
“PF4” or “F4” 

3270 or 5250 Function key 4 

KeyDefines.PF5 or 
“PF5” or “F5” 

3270 or 5250 Function key 5 

KeyDefines.PF6 or 
“PF6” or “F6” 

3270 or 5250 Function key 6 

KeyDefiles.PF7 or 
“PF7” or “F7” 

3270 or 5250 Function key 7 

KeyDefines.PF8 or 
“PF8” or “F8” 

3270 or 5250 Function key 8 

KeyDefines.PF9 or 
“PF9” or “F9” 

3270 or 5250 Function key 9 

KeyDefines.PF10 or 
“PF10” or “F10” 

3270 or 5250 Function key 10 

KeyDefines.PF11 or 
“PF11” or “F11” 

3270 or 5250 Function key 11 

KeyDefines.PF12 or 
“PF12” or “F12” 

3270 or 5250 Function key 12 

KeyDefines.PF13 or 
“PF13” or “F13” 

3270 or 5250 Function key 13 

KeyDefines.PF14 or 
“PF14” or “F14” 

3270 or 5250 Function key 14 

KeyDefines.PF15 or 
“PF15” or “F15” 

3270 or 5250 Function key 15 



Newhart Systems Incorporated © 2005 All Rights Reserved 

 

BLUES User Manual  Page:13 

KeyDefines.PF16 or 
“PF16” or “F16” 

3270 or 5250 Function key 16 

KeyDefines.PF17 or 
“PF17” or “F17” 

3270 or 5250 Function key 17 

KeyDefines.PF18 or 
“PF18” or “F18” 

3270 or 5250 Function key 18 

KeyDefines.PF19 or 
“PF19” or “F19” 

3270 or 5250 Function key 19 

KeyDefines.PF20 or 
“PF20” or “F20” 

3270 or 5250 Function key 20 

KeyDefines.PF21 or 
“PF21” or “F21” 

3270 or 5250 Function key 21 

KeyDefines.PF22 or 
“PF22” or “F22” 

3270 or 5250 Function key 22 

KeyDefines.PF23 or 
“PF23” or “F23” 

3270 or 5250 Function key 24 

KeyDefines.PF24 or 
“PF24” or “F24” 

3270 or 5250 Function key 24 

KeyDefines.PA1 or 
“PA1” 

3270 or 5250 PA 1 Function key  

KeyDefines.PA2 or 
“PA2” 

3270 or 5250 PA 2 Function key 

KeyDefines.PA3 or 
“PA3” 

3270 or 5250 PA 3 Function key 

KeyDefines.ENTER or 
“ENTER” 

3270 or 5250 ENTER Function key 

KeyDefiles.SYSREQ or 
“SYS_REQ” or “SYSTEM REQUEST” 

3270 or 5250 System Request 
Function key 

KeyDefines.TABFWD or 
“TAB”  

3270 or 5250 Tab forward Function key 

KeyDefines.BACKTAB or 
“BACKTAB”  

3270 or 5250 Back TabFunction key 

KeyDefines.NEWLINE or 
“NEWLINE” or “NEW LINE” 

3270 or 5250 New LineFunction key 

KeyDefines.CLEAR or 
“CLEAR”  

3270 or 5250 Clear Screen Function 
key 

KeyDefines.ATTENTION or 
“ATTENTION” 

3270 or 5250 Attendtion Function key 

KeyDefines.CURSOR_SELECT or 
“CUR_SEL” or “CURSOR SELECT” 

3270 or 5250 Cursor Select Function 
key 

KeyDefines.ERASE_FIELD or 
“ERASE_EOF” or “ERASE EOF” 

3270 or 5250 Erase to end of field 
Function key 

KeyDefines.ERASE_INPUT or 3270 or 5250 Erase Input Function key 



Newhart Systems Incorporated © 2005 All Rights Reserved 

 

BLUES User Manual  Page:14 

“ERASE_INP” or “ERASE INPUT” 
KeyDefines.FIELD_MARKER or 
“FLD_MARK” or “FIELD MARK” 

3270 or 5250 Field Mark Function key 

KeyDefines.CURHOME or 
“HOME” 

3270 or 5250 Home Function key 

KeyDefines.CURSOR_LEFT or 
“CUR_LEFT” or “CURSOR_LEFT” 

3270 or 5250 Cursor Left Function key 

KeyDefines.CURSOR_RIGHT or 
“CUR_RIGHT” or “CURSOR RIGHT” 

3270 or 5250 Cursor Right Function 
key 

KeyDefines.RESETor 
“RESET” 

3270 or 5250 Reset Function key 

KeyDefines.CURSOR_UP or 
“KEYUP” or “CURSOR UP” 

3270 or 5250 Cursor Up Function key 

KeyDefines.CURDOWN or 
“KEYDOWN” or “CURSOR DOWN” 

3270 or 5250 Cursor Down Function 
key 

KeyDefines.BACKSPACE or 
“BACKSPACE” 

3270 or 5250 Backspace Function key 

KeyDefines.INSERT or 
“INSERT” 

3270 or 5250 Insert Function key 

KeyDefines.DELCHAR or 
“DELETE” 

3270 or 5250 Delete Function key 

KeyDefines.FIELD_EXIT or 
“FIELD_EXIT” or “FIELD EXIT” 

5250 Field Exit Function key 

KeyDefines.FIELD_PLUS or 
“FIELD_PLUS” or “FIELD PLUS” 

5250 Field Plus Function key 

KeyDefines.FIELD_MINUS or 
“FIELD_MINUS” or “FIELD MINUS” 

5250 Field Minus Function key 

KeyDefines.ROLL_UP or 
“ROLL_UP” or “ROLL UP” 

5250 Roll Up Function key 

KeyDefines.ROLL_DOWN or 
“ROLL_DOWN” or “ROLL DOWN” 

5250 Roll Down Function key 

KeyDefines.PRINT_5250 or 
“HOST PRINT” 

5250 Host Print Function key 

 
 
 
C# 
 
Host.keyTerminalKey(“ENTER”); //send enter key 
 
or 
 
Host.keyTerminalKey(NewhartSystems.KEYDefines.ENTER); //send enter key 
 



Newhart Systems Incorporated © 2005 All Rights Reserved 

 

BLUES User Manual  Page:15 

 
VB 
 
Host.keyTerminalKey(“ENTER”)  REM send enter key 
 
or 
 
Host.keyTerminalKey(NewhartSystems.KEYDefines.ENTER)  REM send enter key 
 

 

setCursor 
 

This method may be used to set the input cursor to a specific row and column for 
subsequent operator input or keyText method calls.  The arguments are one 
based values. 

 

C# 
 
Host.setCursor(2,5); //set cursor to row 2 column 5 
 

 

VB 
 
Host.setCursor(2, 5) REM set cursor to row 2 column 5 
 

 

Properties 
 
The following properties are listed in alphabetal order. 
 
 
 

EmulationType 
 

This property determines the protocol type used for the TCPIP connection.  The 
TN3270 protocol is selected for TN3270 and TN3270E connections to 



Newhart Systems Incorporated © 2005 All Rights Reserved 

 

BLUES User Manual  Page:16 

mainframe computers and TN5250 is selected for IBM AS400 connections.  See 
the enumerator Newhart Systems.EMULATIONTYPES for valid values. 

 

C# 
 
Host.EmulationType = (int)EMULATIONTYPES.TN5250; //TN3270 or TN5250 
 

 

VB 
 
Host.EmulationType = NewhartSystems.EMULATIONTYPES.TN5250 REM select  
emulation type based on your type of host computer 
 

 

foundTextOnRow 
 

This property contains the row that a string was found on.  This property is only 
valid after a successful findDisplayText or waitForDisplayString method has been 
done.  The property is 1 based and may range from 1 to the number of rows in 
the host session screen. 

 

C# 
 
If(Host.FindDisplayText(“signon”,1,1)) //search screen for text 
{ 
 // inspect foundTextOnRow and foundTextOnColumn to see 

 // where it was found  
if(Host.foundTextOnRow == 8 && Host.foundTextOnColumn == 10) 
{ 
} 

} 

 

VB 
 
If (Host.findDisplayText("signon", 1, 1)) Then 
    REM Inspect foundTextOnRow and foundTextOnColumn 
    REM properties 
 



Newhart Systems Incorporated © 2005 All Rights Reserved 

 

BLUES User Manual  Page:17 

       If (Host.foundTextOnRow = 2 And Host.foundTextOnColumn = 10) Then 
 
       End If 
 
End If 
 

 

foundTextOnColumn 
 

This property contains the column that a string was found on.  This property is 
only valid after a successful findDisplayText or waitForDisplayString method has 
been done.  The property is 1 based and may range from 1 to the number of 
columns in the host session screen. 

 

C# 
 
If(Host.FindDisplayText(“signon”,1,1)) //search screen for text 
{ 
 // inspect foundTextOnRow and foundTextOnColumn to see 

 // where it was found  
if(Host.foundTextOnRow == 8 && Host.foundTextOnColumn == 10) 
{ 
} 

} 

 

VB 
 
If (Host.findDisplayText("signon", 1, 1)) Then 
    REM Inspect foundTextOnRow and foundTextOnColumn 
    REM properties 
 
       If (Host.foundTextOnRow = 2 And Host.foundTextOnColumn = 10) Then 
 
       End If 
 
End If 
 

 

HostCodePage 
 



Newhart Systems Incorporated © 2005 All Rights Reserved 

 

BLUES User Manual  Page:18 

This property determines what code page the host computer is using to transmit 
and receive screens of text in.  This property will attempt to default to a 
compatable host code page of the executing computers language settings. 

 

This property may be set to any valid CODEPAGE value.  See 
NewhartSystems.CODEPAGE enumeration. 

 

C# 
 
Host.HostCodePage = NewhartSystems.CODEPAGE.GERMAN; 
 

VB 
 
Host.HostCodePage = NewhartSystems.CODEPAGE.GERMAN 
 

IPAddress 
 

This property is used to get or set the IP address for the session to connect to.  
The argument is a well-formed TCP/IP address in either the form a.b.c.d, or a 
string that is defined in a domain name server (like “localhost”).  The terminal 
session should not be connected at the time this method is called.  An 
application can dynamically connect to a host if the session is not configured for 
the “Automatically Connect To Host” option and have the application set the ip 
address, ip port, and call the BeginConnect method. 

 

C# 
 
Host.IPAddress = "217.110.154.85"; //IP address of the host 
 

VB 
 
Host.IPAddress = "217.110.154.85" REM IP address of the host 
 

IPPort 
 
This property may be used to set the tcp/ip port number used to connect to that 
host.  The default value is for the telnet port is 23.  The terminal session should 



Newhart Systems Incorporated © 2005 All Rights Reserved 

 

BLUES User Manual  Page:19 

not be connected at the time this method is called.  An application can 
dynamically connect to a host if the session is not configured for the 
“Automatically Connect To Host” option and have the application set the ip 
address, ip port, and call the BeginConnect or ConnectToDestination method. 
 

C# 
 
Host.IPPort = 23;  //default telnet port number is 23 
 

VB 
 
Host.IPPort = 23  REM default telnet port number is 23 
 

 

ModelNumber 
 

This property determines the type of IBM terminal that is emulated.  Different 
model types have different numbers of rows and columns.  Each model type has 
a default screen size and an alternate screen size.  Either the default or alternate 
screen size is active as any given instant and is controlled by the host 
application.  This means that the screen size can change at any time.  The 
ScreenRows and ScreenCols properties contain the current number of rows and 
columns being used.  See the enumerator NewhartSystems.MODELTYPE for 
the valid values of this property.   

 

C# 
 
Host.ModelNumber = (int)MODELS.MODEL_2; //default 24 lines by 80 
characters wide 
 

VB 
 
Host.ModelNumber = NewhartSystems.MODELS.MODEL_2  REM select model 
number, it determines the number of rows and columns 
 

 

Message 
 



Newhart Systems Incorporated © 2005 All Rights Reserved 

 

BLUES User Manual  Page:20 

This property contains an error message when an error occurs.   

 

C# 
 
string LastError = Host.Message; 
  

 

VB 
 
Dim LastError As String 
LastError = Host.Message 
 

ScreenCols 
 

This property contains the number of columns on the host screen area.   

 

C# 

 
// 
// scrape screen and take appropriate action 
// 
string Screen = Host.getDisplayText(1,1,Host.ScreenRows * 
Host.ScreenCols); 
 

 

VB 

 
REM 
REM scrape screen and take appropriate action 
REM 
Dim Screen As String 
Screen = Host.getDisplayText(1, 1, Host.ScreenRows * Host.ScreenCols) 
 

 

 

 

ScreenRows 



Newhart Systems Incorporated © 2005 All Rights Reserved 

 

BLUES User Manual  Page:21 

 

This property contains the number of rows on the host screen area.   

 

C# 

 
// 
// scrape screen and take appropriate action 
// 
string Screen = Host.getDisplayText(1,1,Host.ScreenRows * 
Host.ScreenCols); 
 

 

VB 

 
REM 
REM scrape screen and take appropriate action 
REM 
Dim Screen As String 
Screen = Host.getDisplayText(1, 1, Host.ScreenRows * Host.ScreenCols) 
 

 

Tag 
 
This is an application defines standard control tag that may be used by the 
application to store information. 

 

C# 
 

Host.Tag = “My Special Tag”: 

 

VB 
 

Host.Tag = “My Special Tag” 

 

TraceActive 
 



Newhart Systems Incorporated © 2005 All Rights Reserved 

 

BLUES User Manual  Page:22 

This property turns the trace option on and off.  When this option is enabled, a 
trace file with the name in the property TraceFileName will be created. 

 

C# 
 
Host.TraceActive = false; //set to true to get a trace 
 

VB 
 
Host.TraceActive = False  REM set to true to cause a trace file to be 
generated 
 

TraceFileName 
 

The name of the file to place  tracing information into.  This file is only created if 
the TraceActive property is set to True. 

 

C# 
 
Host.TraceFileName = "C:\\TRACEFILE.TXT"; 
 

VB 
 
Host.TraceFileName = "C:\\TRACEFILE.TXT" 
 

 

Delegates, Events, and Handlers 
 

Delegates are called by the VirtualHost class to inform the application of some 
type of event.  Most delegates return the class as the first argument to identify 
the class that it came from and facilitate multiple concurrent VirtualHost 
instances.  This may be used to identify the control in the case that the 
application has more than one control in the application. 

 

Threading 



Newhart Systems Incorporated © 2005 All Rights Reserved 

 

BLUES User Manual  Page:23 

Because the VirtualHost class uses the .NET Socket TCPIP class, it uses 2 
threads for execution, the owners thread that constructed the VirtualHost class 
and a TCPIP thread to asynchronously send and receive information to the host 
computer.  This means that when the VirtualHost fires an event back to the 
application, it may be on either thread.   Depending on what the application 
wants to do, it may or may not have to switch to a safe thread.  For example, A 
Windows Forms application wanting to display something inside an 
evtScreenChange event will have to switch to the main GUI thread before calling 
the .NET framework to display the information.  This is because the .NET 
framework only allows painting the window in the main GUI thread.  For more 
information on threading in .NET application, see the Microsoft web site for a 
number of technical documents. 

 

It is important to call the VirtualHost.Close method when the application is done 
using the class so that the TCPIP conection can be closed and the trhead freed 
up.  Failure to do this can cause exceptions to occur. 

 

evtConnected 
 
This delegate is fired when the terminal control connect attempt is complete.  
The ConnectedOk argument indicates the outcome of the connect attempt.  If 
the connection attempt fails, the Message property contains the error string. 

 
C# 
 
Host.evtConnectComplete +=new  
NewhartSystems.VirtualHost.evtConnected(Host_evtConnectComplete); 
 

. 

. 

. 
/// <summary> 
/// Connection attempt has completed 
/// </summary> 
/// <param name="Control"></param> 
/// <param name="ConnectedOk"></param> 
private void Host_evtConnectComplete(NewhartSystems.VirtualHost Control, 
bool ConnectedOk) 
{ 
 
 
} 



Newhart Systems Incorporated © 2005 All Rights Reserved 

 

BLUES User Manual  Page:24 

 

 

VB 
 
AddHandler Host.evtConnectComplete, AddressOf Host_evtConnectComplete 
 
. 
. 
. 
 
Protected Sub Host_evtConnectComplete(ByVal Control As 
NewhartSystems.VirtualHost, ByVal Connected As Boolean) 
 
 
 
 
End Sub 
 
 

evtDisconnected 
 
This delegate is fired when the terminal session connection is lost or the operator 
selected to disconnect from the host. 

 
C# 
 
Host.evtDisconnected +=new 
NewhartSystems.VirtualHost.evtLostConnection(Host_evtDisconnected); 
. 

. 

. 

. 
/// <summary> 
/// Disconnect from host has occured 
/// </summary> 
/// <param name="Control"></param> 
private void Host_evtDisconnected(NewhartSystems.VirtualHost Control) 
{ 
 
} 
 

 

VB 



Newhart Systems Incorporated © 2005 All Rights Reserved 

 

BLUES User Manual  Page:25 

 
AddHandler Host.evtDisconnected, AddressOf Host_evtDisconnected 
. 

. 

. 
Protected Sub Host_evtDisconnected(ByVal Control As 
NewhartSystems.VirtualHost) 
 
 
End Sub 
 
 
 
 
 

evtKeyboardUnlocked 
 
This delegate is fired when the host application unlocks the keyboard.  When a 
screen is sent to the host, the keyboard becomes locked until the host 
application unlocks it. 

C# 
 
Host.evtKeyboardUnlocked +=new 
NewhartSystems.VirtualHost.evtevtKeyboardUnlocked(Host_evtKeyboardUnlock
ed); 
. 

. 

. 

. 
/// <summary> 
/// Keyboard has been unlocked 
/// </summary> 
/// <param name="Control"></param> 
private void Host_evtKeyboardUnlocked(NewhartSystems.VirtualHost 
Control) 
{ 
 
} 
 

 

VB 
 
AddHandler Host.evtKeyboardUnlocked, AddressOf Host_evtKeyboardUnlocked 



Newhart Systems Incorporated © 2005 All Rights Reserved 

 

BLUES User Manual  Page:26 

. 

. 

. 
Protected Sub Host_evtKeyboardUnlocked(ByVal Control As 
NewhartSystems.VirtualHost) 
 
 
End Sub 
 
 

evtScreenChange 
 
This delegate is fired when the host application has written to the session screen 
area.  It informs the application that the screen has changed. 

 
C# 
 
Host.evtScreenChanged += new 
NewhartSystems.VirtualHost.evtScreenChange(Host_evtScreenChanged); 
. 

. 

. 
/// <summary> 
/// Here the session screen has changed, retreive the screen contents 
/// and parse the screen 
/// </summary> 
/// <param name="Control"></param> 
private void Host_evtScreenChanged(NewhartSystems.VirtualHost Control) 
{ 
 // 
 // scrape screen and take appropriate action 
 // 
 string Screen = Host.getDisplayText(1,1,Host.ScreenRows * 
Host.ScreenCols); 
 
 // 
 // ADD YOUR CODE HERE 
 // 
 // Parse screen, simulate keystrokes and wait for next screen 
 // 
   
} 
 

 

VB 
 



Newhart Systems Incorporated © 2005 All Rights Reserved 

 

BLUES User Manual  Page:27 

AddHandler Host.evtScreenChanged, AddressOf Host_evtScreenChanged 
. 

. 

. 
Protected Sub Host_evtScreenChanged(ByVal Control As 
NewhartSystems.VirtualHost) 
 
REM 
REM scrape screen and take appropriate action 
REM 
Dim Screen As String 
Screen = Host.getDisplayText(1, 1, Host.ScreenRows * Host.ScreenCols) 
 
REM 
REM add your code here to automate keyboard entry and wait for next 
screen 
REM 
 
End Sub 
 

 


