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Chapter 3

Visual Tools for Verifying

Real-Time Systems

Jonathan S. Ostroff

3.1 The BUILD and VERIFY Tools

Computers are increasingly used to monitor and control safety critical systems.
Real-time software controls aircraft, shuts down nuclear power reactors in emergen-
cies, keeps telephone networks running, and monitors hospital patients. The use of
computers in such systems offers considerable benefits, but also poses serious risks
to life and the environment [8].

Visual tools based on extended state machines, Petri nets and statecharts have
been proposed for modelling real-time systems. The statechart approach has been
found particularly useful because of its appealing hierarchical, communication and
concurrency constructs. There are already industrial strength tools available in-
cluding Statemate [2] and ObjectTime [1].

Statemate [2] is one of the few available commercial tools that is based on a
formal model (statecharts), allows for dynamic execution in which triggers can be
provided interactively on the fly, and which can verify various properties including
reachability of conditions, deadlock, nondeterminism, usage of elements and racing.

In this paper, a tool called StateTime is discussed, which uses statecharts as
a visual modelling language, but which extends the range of properties that can
be checked using RTTL (real-time temporal logic). StateTime is a prototype tool
and thus cannot be compared to Statemate in many important respects. For ex-
ample, in StateTime, only integer types are available for data variables, whereas
Statemate has the full range of types available in normal programming languages.
However, StateTime (while retaining the hierarchical and concurrent constructs
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84 Visual Tools for Verifying Real-Time Systems

of statecharts) has facilities for expressing and verifying certain types of real-time
properties that Statemate does not address.

Statemate has time-out and scheduled actions. These types of events allow
for an exact delay of a specified period after which an event occurs. By contrast
StateTime has a much richer hierarchy of timing properties.

Usually, in any given real-time system, three very different types of timing con-
straints may need to be asserted on system transitions. In order of increasing
stringency of timing they are: spontaneous, just, and timed transitions.

Spontaneous transitions may occur at any point in time that they are enabled,
or they may never occur. An example is the event of a device failure. In the sequel,
spontaneous transitions are indicated by the fact that their upper time bound is
infinity (∞).

Just transitions must eventually occur if they are continually enabled. For ex-
ample, a clock must always eventually tick. Justice is qualitative in the sense that
although a just transition must occur, no finite bound on the time of occurrence is
given.

Timed transitions must occur within an interval specified by a lower and an
upper time bound.

Statemate does not deal with the contrast between justice conditions and spon-
taneous events. Nor is it able to express timed events in a direct manner. For
example, to represent a transition with lower bound 2 and upper bound 5, two
time-outs and some intermediate events and states are needed.

A more fundamental difference appears in the manner in which properties are
verified. In Statemate, the reachability test can check whether there is a path to
a certain condition from the initial state. By contrast, StateTime generates the
complete reachability graph, and can therefore check that a certain property holds
in all computations.

StateTime checks a small subset of temporal logic properties without the need
for a watchdog . A watchdog is an observer that has access to all the system
variables without affecting them. Adding a watchdog compounds the problem of
combinatorial explosion of states. Usually Statemate must use a watchdog to verify
system properties.

StateTime is based on the TTM/RTTL framework [9,7,6,8], which has a some-
what simpler semantics than that used by Statemate (this makes verification easier,
but removes some convenient expressions of Statemate).

The TTM/RTTL framework has a precise notion of real-time, coupled with the
ability to deal with a variety of models of computation (e.g. concurrent processes
using shared variables, Petri Nets and CSP). TTMs are timed transition models,
which can be used to represent concurrent processes, non-deterministic behavior,
communication between modules, real-time constraints, and structured programs.
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RTTL is real-time temporal logic. Temporal logic has been found to be a useful
specification language that can express a variety of properties, including freedom
from deadlock, mutual exclusion of critical regions, liveness properties (such as
processes that eventually access their critical regions and process fairness), and
real-time response.

StateTime Terminology

Here is a brief review of the terms that are used in the sequel:

1. The TTM/RTTL framework — the underlying mathematical theory that the
StateTime toolset is based on. TTMs are Timed Transition Models. RTTL is
Real-Time Temporal Logic. TTMs are mathematical models of networks of
interacting distributed processes. RTTL is a rigorous specification language
for stating how the models ought to behave. Without an underlying math-
ematical theory, the Statetime toolset would not be able to execute systems
and verify their correctness.

2. TTMcharts — a visual language for representing TTMs. Graphical notions
are provided for representing states (called activities), events, concurrent pro-
cesses, hierarchy, timing and program statements (assignments). TTMcharts
are similar to Statecharts, but with a different notion of timing and process
interaction. A TTM is a mathematical entity. A TTMchart is a concrete
visual representation of that mathematical entity.

3. The StateTime toolset consists of many tools. The ones used in this paper
are:

(a) The BUILD tool — a tool that provides automated support for drawing
and executing (simulating) TTMcharts.

(b) The VERIFY tool — a tool that automatically verifies that a finite state

TTM-chart satisfies an RTTL property.

The term “TTM” and “TTMchart” are often used interchangeably where it is clear
from the context what is meant.

3.2 Modeling Systems with BUILD

The first step in the design process is to discover and describe as much as possible
about the problem domain. Informal requirements must be translated into suitable
TTMs and RTTL specifications.

The system under design (SUD) is usually divided into two parts: the PLANT
and the CONTROLLER. The CONTROLLER is that part of SUD that is currently
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unknown and must be designed. The PLANT consists of the environment in which
the controller must function. The designers job is: given a PLANT and a specifi-
cation of correct plant behavior, design a CONTROLLER so that SUD satisfies its
specification.

The delayed reactor trip (DRT) problem was first described by Mark Lawford
in [4]. It is an excellent example that is small enough to be described in this paper
yet non-trivial. Lawford developed behaviour preserving transformations for TTMs
with which he was able to discover a flaw in the proposed design. However, the the-
ory cannot be fully automated as no set of transformations is complete for proving
observation equivalence between the actual implementation and its abstract speci-
fication. We will analyze the problem from a temporal logic (RTTL) perspective,
and will attempt to use completely automated verification procedures to check the
correctness of the implementation.

The delayed reactor trip for the CANDU nuclear reactors is currently imple-
mented in hardware using timers, comparators and logic gates as shown in Fig-
ure 3.1.
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�
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�

�

Power

.

✏✏✏✏
PPPP

AND AND Relay

Pressure

Timer1 Timer1

Figure 3.1: Implementation of the delay relay trip system DRT

The new DRT system is to be implemented in future on a microprocessor sys-
tem. Digital control systems provide cost savings and flexibility over the hardware
implementation. However, the question now is whether the new microprocessor
based software controller satisfies the same specifications as the old hardware im-
plementation.

The hardware version of the controller implements the following informal spec-
ifications:

S1: When the power and pressure of the reactor exceed acceptable safety limits,
the comparators which feed in to the first AND gate cause Timer1 to start,
which times out after 3 seconds and sends a message to one of the inputs of
the second AND gate indicating that the time-out has occurred. If after this
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first time-out the power is still greater than its safety limit, then the relay
is tripped (opened), and Timer2 starts. The relay must remain open until
Timer2 times out which happens after 2 seconds.

Specification S1 ensures that the relay is opened and remains open for two sec-
onds thus shutting down the nuclear reactor in a timely fashion. If the controller
fails to shut down the reactor properly, then catastrophic results might follow in-
cluding danger to life. Conversely, each time the reactor is improperly shut down,
the utility operating the reactor loses money because it must bring additional fossil
fuel generating stations on line to meet demand. The next informal specification
S2 states:

S2: If the power reaches an acceptable level then the relay should be closed (thus
allowing the reactor to operate once more).

A final requirement implicit in the hardware specification, but which must be
explicitly stated for the software version is:

S3: The controller should never deadlock. For example, if after the power and
pressure have exceeded their critical values, and the system has waited 3
seconds to check the power level again, if the power is below its critical limit,
then the system must reset and go back to monitoring its inputs.

In the actual DRT, there are three identical systems running in parallel with
the final decision on when to shut down the reactor implemented on a majority rule
basis.

It is possible to try to analyze the complete system of three concurrent micro-
processors using the TTM/RTTL approach. However, it is preferable to start by
first checking that each individual processor on its own achieves proper control. It
is important in general to verify components before proceeding to the larger picture.
In addition to “theoretical correctness”, this has important practical ramifications.
Larger systems have greater state spaces to explore that may be beyond the cur-
rent limits of automated verification. If a component can be verified to be correct
in all its detail, then a reduced order model of it may be used when checking the
component in the broader context, thus reducing exponential explosion of states.

The new DRT software controller is to be implemented on a microprocessor
system with a cycle time of 100ms. The software controller samples the inputs and
passes through a block of control code every 0.1 seconds. It is assumed that the
input signals have been properly filtered and that the sampling rate is sufficiently
fast to ensure adequate control.
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Figure 3.2: Relationship between controller, plant and watchdog of SUD

Lawford obtained the pseudocode for the proposed software controller from the
CANDU requirements document for the construction of the DRT [4] as shown in
Figure 3.3. This code mimics the original analog implementation by using integer
variables c1 and c2 in place of Timer1 and Timer2 respectively. The program also
makes use of the variables Pr (Pressure), Pw (Power) and R (Relay) for the sampled
inputs (Pressure and Power) and output (Relay) of the controller.

The DRT system under design (SUD) consists of the parallel composition of
three components, i.e.

SUD = CONTROLLER||PLANT ||WATCHDOG

The relationship between plant and controller is shown in Figure 3.2. The CON-
TROLLER is the program represented by the pseudocode for the microprocessor
(Figure 3.3). The PLANT is the environment in which the controller operates, i.e.
the nuclear reactor which generates the power and pressure variables, and the re-
lay that opens or closes depending on the value of the relay variable R set by the
controller. The WATCHDOG is a non-invasive observer of the plant and controller
variables (i.e. it has access to all the system variables but does not in any way
change or control them). The WATCHDOG is used for verification only and is not
part of the actual implementation (this will be explained further in the sequel).
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If Pressure ≥ DSP then
If Power ≥ PT then
If counter c1 is reset then
If counter c2 is reset then
increment c1 ]Transition: µ1

Else
If counter c2 has timed out then
reset c2 ]Transition: γ

Else
increment c2; open Relay ]Transition: µ2

Endif
Endif

Else
If counter c1 has timed out then
open Relay; reset c1; increment c2 ]Transition: α

Else increment c1 ]Transition: µ1

Endif
Endif

Endif
Else
If counter c1 is reset then
If counter c2 is reset then
close Relay ]Transition: β

Else
If counter c2 has timed out then
close Relay; reset c2 ]Transition: ρ2

Else
increment c2; open Relay ]Transition: µ2

Endif
Endif

Else
If counter c1 has timed out then
reset c1 ]Transition: ρ1

Else increment c1 ]Transition: µ1

Endif
Endif

Endif

Figure 3.3: Pseudocode for the software implementation of the DTR
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Figure 3.4: The “update” activity is AND-decomposed

Modeling the plant

The first step is always to model the plant. The power and pressure variables are
assumed to be filtered. This will be modelled by allowing them to be updated every
two ticks of the clock, where one tick of the clock is 100ms. The StateTime tool
BUILD is used to construct the model of the plant as shown in Figure 3.4, and
in Figure 3.6. The dotted lines around the activity “power update” in Figure 3.4
indicate that it is composed in parallel with the activity “pressure update”, i.e.

update = power update||pressure update

To be in the super-activity “update”, is to be in the sub-activities “power update”
and “pressure update” at the same time (AND-decomposition). The default sub-
activity of “power update” is “0” (default activities are shown in bold), i.e. each
time “power update” is invoked it is assumed to start in “0”, from which the power
variable Pw can be assigned 0 (meaning the power is within an acceptable range),
or 1 (meaning that the power is too high). The transition “powerHi[0,0]” takes
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“power update” from its sub-activity “0” to “1” at the same time assigning 1 to the
variable Pw. The lower and upper time bounds are both zero indicating that “pow-
erHi” is taken before the next tick of the clock. Similarly, the “pressure update”
activity describes how the pressure variable Pr is updated.

In the actual tool, activities and events have different background colours, so
that they may be easily distinguished. In this paper, both activities (states) and
events are surrounded with boxes. Arrows end at activities, which are denoted by
ordinary boxes. Events have irregular boxes. In the top part of the event box, the
name of the event followed by the timing is given (e.g. “PowerHi[0,0]”). Underneath
the event name, an optional guard and transformation function are given.

mm

m

�

�

�

�

✛
❚❚ ✲

m

pp delay[2,2]
wait

0

01

1

sample power and pressure

updated[0,0]

update

Figure 3.5: Sample power and pressure

The “update” activity (of Figure 3.4) is used to build the super activity labelled
“sample power and pressure” as shown in Figure 3.5, which is the XOR-composition
of the sub-activities “wait” and “update”. To be in the XOR activity in Figure 3.5
denoted by “sample power and pressure” is to be either in “wait” or “update” but
not both simultaneously. The symbol “@” at the end of “update@” in Figure 3.6
indicates that “update” has internal structure, i.e. “zooming in” to “update” will
display Figure 3.4.

The transition updated[0,0] exits from the outer contour of the structured activ-
ity “update”. The default meaning is that no matter where in the structured activity
“update” the two threads of control currently resides, the transition updated[0,0]
is eligible to occur. However, a special detail view of the transition updated[0,0]
can be invoked in which the default behaviour can be changed. In this case, the
transition is changed so that it is eligible to occur only when both “power update”
and “pressure update” are in their sub-activity 1 as shown in Figure 3.5 (hence the
transition updated[0,0] occurs immediately after the variables are both sampled).
The transition pp delay2[2,2] has the outer contour of activity “update” as its des-
tination, meaning that when it is taken it goes to the default activities of “update”
(indicated in bold). This default behaviour can also be changed. The transition
pp delay2 must wait for two ticks before it is taken.
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The plant is defined as the AND-composition given by

plant = relay||sample power and presure||signal update

Transitions may be declared local or shared. A transition that is declared shared
is synchronized with any other transitions of the same name in concurrent activities.
All the shared component transitions block until they are all simultaneously eligible
and all are then taken together. Shared transitions can thus be used to represent
the rendezvous in Ada or the CSP notion of synchronization. In this respect the
TTM model differs from statecharts which communicate via broadcasting.

✛
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............
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.

wait
PPPP
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sample power and pressure@

signal update@

relay@

wait update@

closed

plant ( )

pp delay2[2|2]

<updated[0|0]#

closeRelay[0|0]

[nil] [nil]

openRelay[0|0]
(R=0)->(R=1)->

open

return [0|0]

done

updated[0|*]#

Figure 3.6: AND-composition of the DTR plant

In Figure 3.6, the component transitions updated[0,∞]# in the “signal update”
activity, and updated[0,0]# in the concurrent “sample power and pressure” activ-
ity, are partners in a composite shared transition (the suffix # indicates that they
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are both declared shared). Both partners block until they synchronize and are taken
simultaneously.

The time bounds of the composite transition is the maximum of the individual
component lower bounds, and the minimum of the component transitions upper
time bounds. Hence the time bounds of the composite updated transition is [0,0].
Using these bound constraints, component transitions with tighter bounds may be
thought of as “forcing transitions” that constrain the less tightly bound components.

The component transition updated[0,∞] in the “signal update” activity is a
spontaneous transition, i.e. from the point of view of “signal update” alone it may
occur at any moment or never. Of course, once “signal update” is inserted into
the broader context of the plant, the updated[0,∞] component is constrained by its
forcing partner.
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(Pr=0,C1=0,C2>=20)->

. [C2:0,R:1]

selfloop

(Pw=1,Pr=1,C1>=30)->
[C1:0,C2:C2+1,R:0]
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controller ( C )

[C1:C1+1]

mu2[1|1]
(((Pr=1,Pw=1);Pr=0),(1=<C2,C2=<19))

rho2[1|1]

alpha[1|1]

((Pw=1,Pr=1,C1=0,C2=0);(((Pr=1,Pw=1);Pr=0),(1=<C1,C1=<29)))->
mu1[1|1]

rho1[1|1]
(Pr=0,C1>=30)->

gamma[1|1]
(Pr=1,Pw=1,C1=0,C2>=20)->
[C2:0]

beta[1|1]
(Pr=0,C1=0,C2=0)->
[R:1]

Figure 3.7: Faulty controller based on the proposed pseudocode for the micropro-
cessor

The activity “plant” may be thought of as the root activity. Sub-activities of
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“plant” such as “sample power and pressure” are structured activities. And leaf
activities such as “wait” are basic as they have no further internal structure. All
activities, except for basic ones, have activity variables. For example, the activity
variable of “signal update” is S, with type(S) = {done, wait}. To express the fact
that the plant is in the activity “done”, we may write (S = done), which is true
whenever the next update to the power and pressure variables is exactly in two ticks
of the clock.

There are much simpler ways of being able to assert when no change in the plant
data variables will occur for two ticks of the clock. These simpler models also speed
up the automated verification as their reachability graphs are smaller. However,
the above description allowed us to illustrate the hierarchical and synchronization
features of the BUILD tool.
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(R=1)->
[nil]
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a
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b w delay30[30|30] cw mu[0|0]

w return[0|0]

Figure 3.8: The complete system under design sud = controller||plant||watchdog
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The software controller

Having modelled the PLANT of Figure 3.2, the next step is to obtain a TTM
representation of the software CONTROLLER. The pseudocode can be represented
by the TTMchart “controller” shown in Figure 3.7 (see [4] for how this is done).

With each pass through the code, the microprocessor picks out one of the la-
belled blocks of code. The block chosen is the one whose enabling condition is
satisfied. The program then loops back to the start and re-evaluates all the en-
abling conditions in the next cycle. The program structure is that of a large case
statement repeatedly executed. Hence each transition has a lower and upper time
bound of one.

Conditions such as Pressure ≥ DSP (pressure exceeds delayed set point) and
Power ≥ PT (power exceeds the power threshold) can be represented by (Pr = 1)
and (Pw = 1) respectively (“1” represents beyond the critical threshold and “0”
represents normal levels), as generated by the plant. In the guards of transitions a
comma stands for conjunction and a semi-colon for disjunction. A transformation
function such as [C2:C2+1, R:0] in transition mu2[1,1] of Figure 3.7 stands for si-
multaneous assignment (i.e. when the transition is taken variable C2 is incremented
by one and R is assigned zero).

In general, it is relatively easy to transform real-time programs written in Ada,
Petri nets or CSP-style Occam code into TTMs (see references [6,5]), and this
process can in principle be automated.

The final TTMchart “sud” is obtained by AND-composing “plant” and “con-
troller” as shown in Figure 3.8. The watchdog will be explained in the next subsec-
tion that deals with the RTTL specifications.

Temporal logic specifications

The informal specifications S1, S2 and S3 must now be translated into RTTL spec-
ifications.

The VERIFY tool works in conjunction with the BUILD tool to verify a TTM-
chart. The current tool verifies a small but important set of specifications includ-
ing safety (e.g. deadlock free), liveness (e.g. accessibility) and real-time response
properties. The verifier is currently being extended to handle arbitrary real-time
temporal logic properties. An important feature of the verifier is that it can deal
with data variables directly.

The VERIFY tool computes the graph of all states that are reachable from the
initial states of the TTM. Some of the specifications that VERIFY can check are:
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f1 entails henceforth f2 f1 ⇒ ✷f2 In any reachable state s in
which the state-formula f1 is
true, the formula f2 must also
be true in s and in all states
reachable from s

f1 entails eventually f2 f1 ⇒ ✸[l,u]f2 In any reachable state s in
within l to u ticks (real-time which f1 is true, all computa-
response). tions subsequent to s have in

them a state s′ which is at least
Given f1 and f2, VERIFY l ticks but no more than u ticks
returns the minimum value after s, and f2 is true in s′.
for l and the maximum
value for u

Consider specification S2 which states that:

S2: If the power reaches an acceptable level then the relay should be closed (thus
allowing the reactor to operate once more).

At first glance, S2 may be written:

(Pw = 0) ⇒ ✸≤1(Relay = closed)

i.e. if the power level is normal, then within one tick (100ms) the relay must be
closed. The problem with this assertion is that it will not always be true in every
computation of the DTR, because even if the power level is acceptable in a given
state, the level may become critical in the next state and hence the relay should
not be closed. Furthermore, the microprocessor may not be fast enough to detect
such instantaneous changes, even presuming that the above assertion is the correct
one to enforce. Rather, we must assert that whenever the power is normal for a
sufficiently long period of time, then the relay must be closed. S2 should therefore
be written

✷<2(Pw = 0) ⇒ ✸≤1(Relay = closed)

meaning if any state is reached from which the power is low for up to two ticks of
the clock, then eventually in all subsequent computations from that state, the relay
must be closed within one tick. Using the activity variable of “signal update”, we
may re-write the above property as:

(Pw = 0 ∧ S = done ∧Reset) ⇒ ✸≤1(Relay = closed) (3.1)

using Reset
def
= (R = 0 ∧ C1 = 0 = C2), and the fact that (S = done) is true

only when there are still two ticks to the next update. “Reset” is in the antecedent
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because the microprocessor does not close the relay while it is simulating the timing
(Timer1 and Timer2). S2 as written in (3.1) is in a form that VERIFY can check.

The specification S1 can be written as

BothHi ∧Reset ⇒ ✸=30[PowerHi → ✸≤1(RelayOpen ∧ ✷<20RelayOpen] (3.2)

where

BothHi
def
= (Pw = 1 ∧ Pr = 1 ∧ S = done),

Reset
def
= (R = 1 ∧ C1 = 0 = C2),

PowerHi
def
= (Pw = 1 ∧ S = done),

RelayOpen
def
= (R = 0)

Since (3.2) cannot be directly checked by the VERIFY tool, a watchdog (that
observes but does not affect the plant or controller) must be constructed as shown in
Figure 3.8. At activity “a” the watchdog detects when (BothHi ∧Reset) becomes
true, and then delays for 30 ticks (3 seconds). At this point, the watchdog is
located at basic activity “c” (i.e. (W = c) where W is the activity variable of the
watchdog). At “c”, the transition w rho1[0,0] is immediately taken if the power is
low, and w alpha[0,0] is taken if the relay is open (R = 0). If w alpha is taken, then
w spike[0,0] checks that the relay is not opened for 19 ticks of the clock. After the
20th tick, the watchdog should be in activity “e”. Thus (3.2) can be checked by
verifying that

[S1] : [(W = c) ∧ (Pw = 1 ∧ S = done)] ⇒ ✸=20(W = e) (3.3)

which is in a format suitable for the VERIFY tool. Using the concept of a watch-
dog, most properties of interest can be checked in this way. However, there is a
cost associated with adding the watchdog, as the size of the reachability graph is
increased substantially.

The informal specification S3 requires that the system as a whole (SUD) not
deadlock. The verifier is able to directly check that

[S3a] : ✷(enabled) (3.4)

which checks that in every reachable state there is at least one transition other than
tick that is enabled. (If only a clock tick is enabled in a state, then SUD deadlocks
in that state as all that it can ever do is tick).

Furthermore, it is advisable to check that the watchdog taken by itself never
deadlocks. More specifically it should be the case that

[S3b] : (W 6= a) ⇒ ✸≤50(W = a) (3.5)
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Check Suggested Controller(Fig. 3.7) Revised Controller (Fig. 3.8)
Reachability 96.4 minutes 19.2 minutes
graph Unique States: 4,448 Unique States: 3,259
generation Unique Histories: 1,103 Unique Histories: 602

Total States: 29,369 Total States: 5,902
Total Edges: 60,361 Total Edges: 11,939

[S1] Open relay Fails after 39.8 minutes Succeeds after 2.4 minutes
[S2] Close relay Succeeds after 2.7 minutes
[S3a] No deadlock Succeeds after 1.9 minutes
[S3b] Watchdog Succeeds after 3.2 minutes
health
Total Time 2.3 hours to determine that 29.4 minutes to check that

the pseudocode is incorrect the revised controller
satisfies its specifications

Table 3.1: VERIFY tool performance statistics on a Sun 10/21

Finally, the relay should not be opened unnecessarily, i.e.

((Relay = closed) ∧ (Pw = 0)) ⇒ (Relay = closed)W(Pw = 1 ∧ Pr = 1) (3.6)

pWq asserts that p is waiting-for q, i.e., p remains true unless q becomes true. The
waiting-for specification can also be checked by the verifier.

The specifications S1,S2, S3a and S3b can all be listed using the BUILD tool.
The BUILD tool can also be used to simulate (dynamically execute) the system
under design (SUD). Simulation is important for ensuring that the model works in
the expected fashion.

3.3 Correctness Checking with VERIFY

We have now modelled the DTR by

SUD = CONTROLLER||PLANT ||WATCHDOG

The verification problem is: does every computation of SUD satisfy the specifica-
tions S1,S2, S3a and S3b. The VERIFY tool can be used to do the check.

The VERIFY tool takes its input from the BUILD tool. VERIFY was written as
an undergraduate project in Prolog. Its execution times are very slow. The current
version of VERIFY dumps a a compressed version of the reachability graph into a
result file on disk. Each time a property is checked, the result file must be compiled



Correctness Checking with VERIFY 99

in and decompressed by the Prolog verification code. This is very inefficient as the
graph should be kept in the RAM memory. The time to consult and decompress
the file for S1 is 22 minutes. Hence, with a slight change in the program the actual
time to check S1 would be substantially less, viz. 39.8-22=17.2 minutes (rather
than 39.8). There are many other inefficiencies in the current code.
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[C1:C1+1]

.

(Pw=1,C1>=30)->

selfloop

(Pw=0,C1=0,C2=0)->
[R:1]

[C1:0]

(Pw=0,C1=0,C2>=20)->
[C2:0,R:1]

[C2:C2+1,R:0]

rho2[1|1]

controller ( C )

[C2:0]
(Pw=1,C1=0,C2>=20)->
gamma[1|1]

mu1[1|1]

(Pw=0,C1>=30)->
rho1[1|1]

((Pw=1,Pr=1,C1=0,C2=0) ; (1=<C1,C1=<29))

alpha[1|1]

[C1:0,C2:C2+1,R:0]

beta[1|1]

mu2[1|1]
(C1=0,1=<C2,C2=<19)->

Figure 3.9: Successful controller

A new version is currently under construction using Smalltalk (the same lan-
guage that BUILD is written in) that will verify arbitrary temporal properties
without the need for a watchdog. Preliminary tests indicate that the new version
is faster than the Prolog based version.

We provide here the results for the old version of VERIFY. The performance
figures are provided in Table 3.1.

The pseudocode suggested for the microprocessor controller (Figure 3.7) is shown
to be incorrect as the property S1 fails to be satisfied. VERIFY indicates where
the failure takes place. Based on this debugging information, corrections can be
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made to the controller. A revised controller is suggested by Lawford in [4] which is
obtained by a set of behaviour preserving transformations. The revised controller
is shown in Figure 3.9. This revised controller satisfies all four properties S1,S2,S3a
and S3b. The revised controller corresponds to moving the guard Pressure ≥ DSP

that appears on the first line of the pseudocode down to the fourth line where it
guards the increment c2 event µ1.

It is interesting to note that the incorrect controller has a reachability graph con-
sisting of 89,730 states and edges. The revised controller is much smaller consisting
of 17,841 states and edges.

3.4 Discussion

The StateTime tool was able to automatically verify that the proposed pseudocode
is incorrect and check that the proposed software meets its temporal logic specifi-
cations.

The 2.3 hours that it took to detect the failure is obviously much too long to
deal with the just under 30,000 states — however, some very preliminary tests on
a new version of the verifier indicate that we may be able to achieve significant
increases in efficiency while extending the range of properties checked (this work is
still at a very early stage of development).

The heuristic algebraic reduction techniques proposed in [4] should be extended
to concurrent TTMs and included in the toolset. The algebraic approach may
provide a significant aid to beating combinatorial explosion of states where it can
be applied. The pseudocode can be replaced by its reduced order model thereby
reducing the size of the reachability graph.

It is important to realize that the delayed trip reactor was a tiny part of a large
requirements document. It is not surprising that a switch in one of the guards causes
the system to catastrophically fail, and that such an error is easy to overlook.

It can be argued that a competent software engineer would detect the problem,
in much less time than it took to do the formal analysis, by walking through the
code. However, the more subtle the problem the more likely it is to be overlooked.

Reducing the pseudocode to a TTM treats the code as a large case statement,
reminiscent of Dijkstra-like guarded commands [3]. Let us assume that the software
engineer is able (by inspection) to determine that there is an unnecessary depen-
dency on pressure in the guard α in Figure 3.7. The controller does not open the
relay unless (Pr = 1), whereas the specification (S1) requires that only the power
must be checked. The only other transition that can open the relay is µ2 – but µ2

must be preceded by α (which is not taken unless the pressure is also critical). The
following fix is therefore proposed: remove the conjunct (Pr = 1) from the guard
of α. However, when applying the VERIFY tool to this fix, the system was still
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shown not to satisfy its requirements.

By applying the formal methodology illustrated in this paper we are still by no
means certain that the revised controller is correct. Perhaps there are additional
RTTL specifications that should be added to the list (e.g. we did not check ( 3.6).

However, we are able to increase our confidence in the correctness of the system.
RTTL specifications are incremental. If after developing a specification, we suddenly
realize that the specification is incomplete, the situation can be rectified by adding
the missing property to the specification as additional conjuncts. All that is needed
is to verify this additional conjunct (the others do not have to be done over again).
If all of these conjuncts are shown to be valid, then our conjoined specification also
has the property of consistency.
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