

 September 13, 1994. 1

Automated Modular Specification and

Verification of Real-Time Reactive Systems

Jonathan S. Ostroff

Department Of Computer Science, York University

1

,

4700 Keele Street, North York Ontario, Canada, M3J 1P3.

Email: jonathan@cs.yorku.ca Tel: 416-736-2100 X77882 Fax: 416-736-5872

Electronic Technical Report Number: CS-ETR-94-06

ftp.cs.yorku.ca:/pub/TECH-REPORTS/General-CS/CS-ETR-94-06/text.ps2.Z

Abstract

: Model-checking is a powerful automated technique for verifying
finite state real-time safety critical systems, but suffers from a combinatorial
explosion of states as system complexity increases. In this paper, we introduce a
method for compositional reasoning in real-time temporal logic that is suitable
for model-checking finite state real-time reactive modules with data variables.
This allows for the formal development of systems by top-down hierarchical pro-
gram derivation. A system can be decomposed into modules, and the modules
checked separately instead of checking the complete system all at once. This pro-
cedure often results in a significant decrease in the size of the reachability graphs
that must be checked, particularly if the modules are loosely coupled.

The modular model-checking method developed in this paper is illustrated
using a real time resource allocation problem and the StateTime toolset. StateTime
is a prototype toolset that uses visual specifications and temporal logic for the
design and verification of real-time systems. The StateTime toolset has been used
on small but non-trivial industrial examples. The incorporation of the modular
methods discussed in this paper will allow StateTime to evolve from a prototype
into an industrial strength tool.

1.0 Introduction

The record of successful applications of formal verification techniques is
slowly growing, although misconceptions surrounding the use of formal methods
still abound [8]. The ultimate aim is to firmly integrate verification techniques
into the software design cycle as an essential part of quality control. The sale of a
non-verified piece of software, protocol, algorithm or device should be as
unthinkable as the deployment of bridges without suitable stress analysis or the
prescription of potentially harmful drugs without testing [12].

The design of most software can benefit from the use of formal methods, but
their use becomes crucial in the design of real-time safety critical software. While
CASE tools may be useful for software design in general, tools for safety critical

1. This work is supported in part by the National Science and Engineering Council of Canada.

This document was created with FrameMaker 4.0.4

 September 13, 1994. 2

systems that mechanize specification and verification are essential if these meth-
ods are to be applied in industry.

In this paper, we show how an existing prototype toolset called StateTime can
be used to automate modular verification of real-time reactive systems specified
using a visual state based language. The compositional techniques developed in
this paper are crucial for dealing with the problem of combinatorial explosion of
states.

In compositional verification, the properties of a system (compound construct)
can be deduced from specifications for its constituent parts (modules), without
any further information about the internal structure of these parts. A module is
specified by its interface specification I (e.g. its communication channels or exter-
nal variables), a behavioural description R in real-time temporal logic that speci-
fies the ongoing interaction of the module with its environment, and the body (or
“secret”) of the module.

The requirements R refer only to parameters of the interface I, and not to local
variables declared in the body of the module. Once the body is model-checked
against its module requirements R, the body together with all its local variables
can be hidden. The module is then represented by its abstract specification (I,R).
All the assumptions which are needed regarding the environment — because
these influence the behaviour of the model — are incorporated as explicit param-
eters in R. Thus the module will behave according to its abstract specification in
any environment and regardless of the inner syntactic structure of the body.

StateTime, visual languages and the TTM/RTTL framework

Many engineers prefer to work with pictures when specifying reactive sys-
tems. Tools that use formal graphical languages have been developed [9,15,27],
which can be used for model execution and reachability analysis.

StateTime [22] is a prototype toolset that uses visual specifications and tempo-
ral logic for automated design and verification. The BUILD tool allows the
designer to model a system using a graphical language based on timed transition
models (TTMs). Any partial or complete model is immediately executable, which
allows for rapid prototyping and validation. The description language is capable
of describing the

given

 behaviour of the environment (which may be unstructured
and nondeterministic) as well as the

required

 behaviour of the computer system
(e.g. written in a structured high level language such as Ada). Thus, concurrency,
nondeterminism, hierarchy, synchronization and communication, time bounds
and integer data variables are supported.

The VERIFY tool is used to model-check finite state TTMs using real-time tem-
poral logic (RTTL). The DESIGN tool is used for verifying infinite state systems
using a proof system. For an example of the use of StateTime for checking part of
the shutdown procedure for the Candu reactor see [24].

TTMs are a generic computational model for real-time reactive systems. Con-
currency is represented by interleaving of atomic actions (transitions) chosen, one
at a time, from parallel processes. A conceptual external global clock is a genera-
tor of tick events that are also interleaved with other actions. Time bounds on
actions are specified with respect to clock ticks. An action must wait for
clock ticks before it can be taken. If it is continually enabled, and not preempted
from occurring, it must be taken by ticks of the clock. The system evolves either

τ l u,[] l

u

 September 13, 1994. 3

by performing an instantaneous action (or sequence of actions) or by letting time
pass (taking a clock tick).

A variety of concrete programming languages such as Ada, or concurrent for-
malisms such as Petri nets and CSP can be mapped into TTMs [18,19]. The TTM-
chart is used by the StateTime tool as its concrete visual specification language.
However, the techniques developed in this paper are equally applicable to other
concrete languages provided they can be mapped to TTMs.

RTTL can describe ongoing real-time reactive behaviour abstractly (free from
implementation details) and concisely. System requirements can be succinctly
stated in RTTL, refined into TTMs, and then implemented in some concrete lan-
guage. Alternatively, an already implemented program can be transformed into a
TTM. The program requirements can then be specified in RTTL, and verified
using StateTime. StateTime supports top down decomposition as well as bottom
up development.

The survey article [21] compares the TTM/RTTL framework to other logics
and process algebras.

Model-checking real-time systems

Model-checking is a powerful technique for verifying finite state systems
because it is easily automated, and does not require the same skill on the part of
the software engineer that the use of a proof systems entails. Model-checking
together with a visual specification language is thus a good candidate for inclu-
sion in an industrial strength tool.

Model-checking was first introduced by the authors of [6], and extended to
real-time systems in [19,20], which is the basis of the VERIFY tool. Time cannot
just be modelled by a concurrent process that continuously increments some time
variable, for then the reachability graph would be infinite state. A more sophisti-
cated approach must be used to keep the reachability graph finite state, but this
results in an additional complexity over untimed systems that depends on the
product of the upper time bounds of the timed transitions or clocks [2,4].

For VERIFY, in the worst case, the timed reachability graph may be larger than
the untimed graph by a factor proportional to the largest finite upper time bound.
The subset of RTTL properties treated by the verifier can be checked in time com-
plexity linear in the size of the timed reachability graph. The extensions, proposed
in [7], will allow arbitrary branching time properties to be checked in time linear
with respect to the product of the length of the property and the size of the graph.

Techniques for efficient model-checking for real-time temporal logics have
steadily improved since the earlier work, especially with the use of binary deci-
sion diagrams and efficient state space exploration [3,5,11,26]. Not all of these
techniques are suitable for the general systems that VERIFY must deal with. For
example, binary decision diagrams do not always deal with data variables effi-
ciently. The intention is to incorporate some of these techniques into the VERIFY
tool. However, a modular and hierarchical approach will still be needed to beat
state explosion.

By decomposing proofs into modular parts, verification of systems that hith-
erto required completely hand-guided proofs, can now be checked automatically
using decision procedures [16]. Although compositional proof systems for real-
time temporal logics and a compositional axiomatization of statecharts are avail-
able [13,14], there are as yet no tools reported for compositional model-checking

 September 13, 1994. 4

of real-time reactive systems with hierarchical visual specification languages that
use data variables.

Contribution and organization of this paper

In this paper, we present a method for using the visual tools and model-
checker of StateTime compositionally for specification and verification of real-
time reactive systems. We suggest improvements to the tool to facilitate modular
reasoning. Compositional model-checking as discussed in this paper, model
reduction via bisimulations as described in [17], and the further development of
the TTMchart visual specification language are all essential components for
evolving StateTime from a prototype into an industrial strength tool.

The state-event observers discussed in [17] allow for high level abstractions
(quotients) of TTMs computable in polynomial time. Thus, large hierarchical sys-
tems can be treated in the following way. Use state-event observers to effect as
much hierarchical model reduction as possible on the variables and events of
interest. Then use compositional reasoning on the reduced modules to verify the
requirements.

This paper is organized as follows. In Section 2.0, we summarize some fea-
tures of the StateTime toolset. In Section 3.0, we describe the theory of composi-
tional model-checking in RTTL. Section 4.0 applies the theory to a comprehensive
example (real-time resource allocation). Modular verification is significantly more
efficient than constructing the total reachability graph. Modular specification
requires more insight from the designer, but results in a more robust structured
design.

2.0 The StateTime toolset, TTMcharts and RTTL

The StateTime toolset [22] consists of various tools for designing real-time
safety critical systems. The BUILD tool is used to construct TTMcharts, and the
VERIFY tool can model-check these charts for various properties specified in real-
time temporal logic.

TTMcharts are similar to statecharts [9], but with (non-blocking) broadcast
communication replaced by (blocking) synchronization as in the Ada rendezvous
or CSP message passing. A richer class of timing properties can be directly
expressed in TTMcharts than in the charts of the Statemate tool [10]. An event
can have a closed time interval as a firing condition (e.g.), or be spontane-
ous (e.g.). A spontaneous transition may occur at any moment or never.

A typical chart built with the StateTime tool is shown in Figure 1, where hier-
archy (clustered activities, default states and XOR-composition), concurrency
(AND-composition), synchronization (shared events), and timing are illustrated.
The TTMchart can be mapped into a TTM. A TTM consists of a set of variables
(activity and data variables), an initial condition, and a set of transitions corre-
sponding to the chart events. The transitions of the TTM corresponding to the
chart of Figure 1are shown in Figure 2. Transitions have an enabling condition,
transformation function and time bounds, on the basis of which the formal
semantics and timed reachability graph of the TTM can be defined [19,20,25].

What is called a “state” with respect to statecharts is called an

activity

 in TTM-
charts. This is because the term state is used in TTMs to refer to a global snapshot
at any instant of all the activity and data variables of a chart. Activity variables

τ
τ 3 7,[]

τ 0 ∞,[]

 September 13, 1994. 5

FIGURE 1. Example of a TTMchart m=m1||m2

Each activity variable
has its corresponding type
that it ranges over, e.g.
type(M1) = {m3,2}, and
type(M3) = {0,1}.

The event d is declared a
shared event (indicated by
the symbol “#”), i.e. it will
synchronize with any other
shared event d in a parallel
activity. (e.g. see m2
below).

An upper time bound of
infinity is denoted by the
symbol “*”.

TTMcharts can be developed top down or bottom up. Working top down, the root activity m is
AND-decomposed into subactivities m1 and m2, i.e. m = m1 || m2. AND-composition is indicated by
dashed boxes (see bottom picture). The root activity m is also called a TTMchart.

The structured activity m1 is XOR-decomposed into the structured activity m3 and the leaf activity
2. An activity with internal structure is followed by the “@” symbol. Leaf activities have no internal
structure.

Y is an integer data variable. The event d has guard (Y=4;(6=<Y,Y=<9) and when taken does the
assignment Y:=Y-1, and leads to the default activity 0 of m3. The activity 0 is the default of m3, and m3
is the default of m1 (default activities are in bold). In guards such as (Y=4;(6=<Y,Y=<9), the comma
stands for conjunction and the semicolon for disjunction.

The superactivity m3 is an abstraction of activities 0 and 1, describing the common property that
event c transforms them to activity 2. Conversely, this can be seen as a refinement: m3 is refined to con-
sist of 0 and 1.

Each structured activity has its own activity variable. Thus M1, M2, M3 are the activity variables of
activities m1, m2, m3 respectively.

 The shared event d is taken after having been in activities 3 and 2 simultaneously (with both
guards continuously true) for between two and four ticks of the clock. The lower bound is the maxi-
mum of the two component events in m1 and m2 and the upper time bound is the minimum of the
two components (see the bounds d[2,4] for event d in the table below).

A TTMchart can be converted into a TTM. A TTM consists of a set of variables, an initial condition,
and a set of transitions. Each transition of the TTM corresponds to an event in the chart (or pair of
synchronizing events). A transition has an enabling condition, transformation function, and lower
and upper time bounds as shown in Figure 2.

 The component event
d in m2 is declared shared,
thus synchronizing with
the corresponding com-
ponent d in m1.

The event e, which is
local to m2, is taken after
having been in activity 4
for between two and five
ticks of the clock, unless it
is preempted by event f
which can be taken any-
time (the upper time
bound of event f is infin-
ity).

 September 13, 1994. 6

such as

M1

,

M2

 and

M3

 (see Figure 1) are used to write state-formulas describing
the state of the chart. For example, the state-formula

 (EQ 1)

asserts that the chart is in subactivity

1

 of the clustered activity

m3

 and the data
variable

Y

 is less than 7.
A computation of a TTMchart is an infinite sequence of global states executed

by the chart, starting in an initial state, with successor states computed by the
transition of enabled events. The tick transition occurs an infinite number of times
in such a computation. The tick transition always eventually fires even if there are
no other eligible events.

State-formulas are boolean valued expressions in the activity and data vari-
ables, e.g. (EQ 1). RTTL formulas are constructed from state-formulas together
with special temporal logic operators such as (

henceforth

) and (

eventually

).
Let stand for state-formulas in Table 1. The table documents some of

FIGURE 2. TTM transitions corresponding to the events of chart m in Figure 1

Transition: Enabling Condition: Transformation Func.: Lower: Upper:

----------- ------ --------- ------ ------

a M1=m3,(M3=0) [M3:1] 0 infinity

b M1=m3,(M3=1) [M3:0] 0 infinity

c M1=m3 [M1:2] 0 infinity

d# M1=2,(Y=4;(6=<Y,Y=<9)), [M1:m3,M3:0,Y:Y-1,M2:4] 2 4

 M2=3,(Y>=2)

e M2=4 [M2:3] 2 5

f M2=4 [M2:5] 0 infinity

TABLE 1. Some properties that can be model-checked by VERIFY

How the property is read Property Definition of the property

Invariance:

 entails henceforth .

In any reachable state
in which the state-for-
mula holds, the for-
mula must also hold
in and in all following
states.

Real-time response:

 entails eventually
within to ticks

In any reachable state
in which holds,
must also hold in some
following state which
is at least ticks but no
more than ticks after .

Unless

 or

waiting-for:

 entails waiting for .

If holds in any reach-
able state , then in
and all following states
the formula holds
continuously or until the
next occurrence of .

M1 m3 M3∧ 1= =() Y 7<()∧

h e

f f
1

f
2
…, ,

f
1

f
2

f
1
ih f

2
s

f
1

f
2

s

f
1

f
2

l u

f
1
ie

l u,[] f
2

s

f
1

f
2

s'

l

u s

f
1

f
2

f
3

f
1
i f(

2
W f

3
) f

1

s s

f
2

f
3

 September 13, 1994. 7

the RTTL properties that the VERIFY tool can check. For example, the chart m (of
Figure 1) can be checked for the property

.

The symbol is the ordinary propositional conditional connective, whereas
the symbol is the modal entails operator. Thus . The
formula asserts that: if is true in the initial state of a computation, then
there is some subsequent state in which holds. The stronger formula
asserts that: if is true in any state of the computation, then eventually must
hold in some subsequent state.

The temporal formula (which uses the previous operator) is true in a state
(but not the initial state) of a computation, if is true in the previous state. The
temporal formula asserts that holds true up to and including the t-th tick
of the clock. Thereafter, ‘s truth value is unconstrained.

While a state-formula can be checked for satisfaction in a global state, an RTTL
formula must be checked for satisfaction in a computation. Given a TTMchart
and an RTTL formula , we say that is -valid if all computations of satisfy

, and we write . The reader is referred to [19,20,23,25] for a complete treat-
ment of the TTM/RTTL framework and the verifier.

3.0 Compositional reasoning in RTTL

The TTM/RTTL framework is based on the temporal logic for reactive sys-
tems in [18], with the necessary extensions and proof rules for timed transitions.
This means that any valid temporal formula in [18] is also valid in RTTL. We may
therefore use the theory of compositional reasoning presented in [18] within the
TTM/RTTL framework as well. We briefly describe below how compositional
reasoning is done.

A module consists of an interface specification and a body. The purpose of the
interface specification is to list all the shared variables (or channels if message
passing is used) through which the module interacts with its environment. A vari-
able declaration in the interface specification is preceded by one or more of the
modes in, out or external.

Let be a variable in the interface specification of module . A statement in
the body may have a reading reference to only if is declared to be of mode in,
and a writing reference only if is declared to be of mode out. A statement in a
module parallel to may have a writing reference to only if is declared
in to be of mode external.

Consider the module in Figure 3. Since the array variable (with mode out)
is not declared as external, no other module (e.g a client) may change — at best
another module may read the value of by declaring its mode as external in.

The body of a module may start with some local variable declarations (e.g. see
Figure 3). These local variables may not be referenced outside of its body.

Two concurrent modules are interface compatible if the declarations for any
variable declared in both modules are consistent. The types specified in both dec-
larations must be identical. The initial values assigned must be consistent. Finally,
if one of the declarations specifies an out mode, the other specifies an external
mode.

M1(m3 M3∧ 1= = Y 7)<∧ e
3 9,[] M2(⇒ 5)=

c

i p eq⇒()yh p eq)→(
p eq→ p

q p eq⇒()
p q

1p

p

h
9t

p p

p

M

p p M M

p Mmp

y M
1

y y

y

M
2

M
1

y y

M
1

A g

g

g

 September 13, 1994. 8

We say that an RTTL formula is modularly valid for a module if

 for every module that is interface compatible with . (EQ 2)

Thus, modular validity ensures that satisfies independently of the behav-
iour of its environment, provided that its environment respects the constraints
imposed by the interface specification. Usually, the formula will refer only to
the variables in the interface specification, and not to any of the local variables.

An immediate consequence of the definition in (EQ 2) is the following theorem
Theorem:

Let RTTL formulas be modularly valid over compatible modules
respectively. Then:

(a) , and
(b) A program satisfies RTTL formula if .

A top down method for developing real-time systems may now be followed.
To develop a program satisfying , design compatible interfaces and
behavioral specifications for the respective modules so that .
Then develop bodies that are modularly valid for and
respectively. Finally, the required modules are for .

A team assigned to the implementation of a module is given its interface
specification and an RTTL formula in the variables of the interface specifica-
tion, describing the expected reactive behaviour of the module. The task of the
team is then to find a body of so that is modularly valid for . Many dif-
ferent bodies may satisfy the required constraints.

The verification problem we now wish to consider is: if a design team provides
us with a module and an RTTL behavioural specification ,
how can we check (automatically if possible) that is modularly valid over .

(EQ 2) seems to require that modular validity for a module can only be
checked by considering all its infinitely many interface compatible partners.
However, there is a more direct approach to the problem.

As explained above, a TTMchart can be converted into a timed transition sys-
tem (TTM) consisting of a variables set, initial condition and set of transitions (see
Figure 1). We add to the set of transitions an environmental transition repre-
senting all possible interferences of the environment with the operation of the
module. This environmental transition is arbitrarily interleaved with the transi-
tions of the module. Transition pledges to preserve the values of all non-exter-
nal data variables, but it may arbitrarily change external data variables.

This suggests that we can model-check a module for a property using
StateTime, provided all variables range over finite types, as follows:

• Use the BUILD tool to construct a chart corresponding to the body of .

• Construct an environmental chart that arbitrarily varies the external variables
of module .

• AND-compose the body chart and environmental charts together to
form a new chart , representing the combined interaction of the
module and its environment (e.g. see Figure 5 which is the combined chart
for a client module in Figure 3).

• Use VERIFY to model-check that .

p M
1

M
1

M||[]mp M M
1

M
1

p

p

p
1

p
2

, M
1

M
2

,

M
1

M
2

||[]m p
1

p
2

∧()
M M

1
M

2
||= p m p

1
p

2
∧() p→

M p I
1

I
2

,
p

1
p

2
, p

1
p

2
∧() p→

B
1

B
2

, I
1

p
1

,() I
2

p
2

,()
M

i
 :: module I

i
B

i
;;[] i 1 2,{ }∈

M
i

I
i

p
i

B
i

M
i

p
i M

i

M
i
 :: module I

i
B

i
;;[] p

i

p
i

M
i

τ
E

τ
E

M
i

p
i

M
i

M
i

M
i

M
E

M M
i

M
E

||=

Mmp
i

 September 13, 1994. 9

The above procedure is usually significantly more efficient than checking the
complete program. This is particularly so if the external interface variables are
few in number (i.e. there is only a loose coupling between the module and its
environment) compared to the number of local variables of its partner modules.
Furthermore, the module may not be required to perform in an arbitrarily uncon-
strained environment. It may only be required to satisfy its behavioral property if
the environment is guaranteed to behave in a certain constrained fashion. Such a
constrained environment will further reduce the size of the reachability graph
that must be generated.

We illustrate modular model-checking by considering a real time version of
the resource allocator discussed in [18]. In the real-time version, it is no longer
adequate that a client will eventually give up the shared resource. We will require
that there is an upper time bound by which the resource must be released. Simi-
larly, the allocator must grant the resource once requested in a timely fashion. The
requirements of the various modules will thus require real-time temporal logic for
its behavioral specification.

4.0 An example

A resource allocator must manage the allocation of a shared resource among
several competing processes (clients). In a real-time system, it is not sufficient to
guarantee a critical process eventual use of the resource. Rather, there will be
strict time bounds by which the resource must be made available.

The need to share resources is common not only in computers (e.g. disks or
printers) and databases (e.g. record locking), but also in real-time devices. In a
flexible manufacturing system, a job may need to gain exclusive access to an auto-
mated guided vehicle. We consider the simple case where there is one indivisible
resource. However, more general cases can also be specified, e.g. simultaneous
exclusive access to a forklift, guided vehicle and workstation stand.

An allocator with its clients is shown in Figure 3. The arrays
contain the grant and request variables respectively. We will refer to the array
variables as respectively.

In the interface specification for A, the grant variables are assigned a mode
of out (but not external). Thus these variables cannot be written to by any other
process that is interface compatible with A. However, other processes are allowed
to import these variables as read only by declaring them as external in. Similarly
the request variable of client may only be written to by .

The non-critical processing parts can take as long as they like, i.e. they have
time bounds of [0,∞]. Hence a request can be made for a resource at any point in
time. The critical region processing takes no more than five clock ticks [0,5].

Assignments to and guard checking is assumed to take one tick of the
clock. The increment (modulo 3) of the local variable also takes precisely one
tick of the clock [1,1].

The corresponding TTMchart is shown in Figure 4. TTMcharts do not (yet)
allow for arrays, so the arrays must be modelled by independent variables.

A C
1

C
2

C
3

, , g r,

r i[] g i[], r
i

g
i

,
g

i

r
i

C
i

C
i

r
i

g
i

,
i

g r,

 September 13, 1994. 10

4.1 Requirements for the complete system
We provide the requirements for the complete system. We then describe mod-

ular requirements which together entail the complete specification. Finally we do
modular model-checking using the VERIFY tool. The first system requirements is:

Mutual exclusion:

R1:

The formula R1 states mutual exclusion, i.e. at most one client can be granted
access at any one time. Since the only operations allowed on the is to set
them to zero or one, it is clear that

 (EQ 3)

is modularly valid for any of the modules of the resource allocator.

FIGURE 3. Allocator and clients

module {allocator}

external in : array[1..3] of integer {array of request variables}

out : array [1..3] of integer where {grant variables}

local : integer where { for fair allocation to the three clients}

local : integer where {variable to limit critical references}

loop forever do

if then

do ; when then od

{count modulo 3, ranges between 1..3}

if then else

end module

module {Client }

external in : boolean {grant variable is either 0 or 1}

out : integer where {request variable is either 0 or 1}

loop forever do

noncritical processing;

; {request the resource}

await ; {await the allocator to grant the request}

critical processing;

 ; {release the resource}

await {await an acknowledgement from the allocator}

end module

A C i[]

SUD A C||=

where C C
1

C
2

C
3

|| ||=

A

r

g g 0=

i i 1=

v v 0=

v5r i[]
v 1=

g i[]51 r i[] 1= g i[]50

i i

i 2≤() i5i 1+ i 1=()
A

C i[] i

g i[]
r i[] r i[] 0=

r i[]51

g i[] 1=()

r i[]50

g i[] 0=()
C i[]

h g(
1

g
2

g
3

) 1≤+ +[]

r
i

g
i

,

i 3 i≤ 1: h≥∀ g
i

0 1,{ }∈ r
i

0 1,{ }∈∧()

 September 13, 1994. 11

Conformance with the protocol:

Both the allocator and the clients must conform to the protocol, i.e. the order of
events should always be: requests access (by setting to one), grants access

FIGURE 4. TTMchart of resource allocator corresponding to program in Figure 3

a allocator=

c clients=

SUD a c||=

c c
1

c
2

c
3

|| ||=

The event ie1 in the allocator has the default behaviour for entering req, i.e. it leads to the default
activity 1 of req. The events ie2, ie3, g1, g2, g3 are changed from the default behaviour for the clustered
activity req. Event iei leads to activity i of req, and gi leads from activity i (where i is 1,2 or 3). The change
from the defaults is indicated by the symbols “<” and “>” after the event names iei and gi.

SUD = a || c, where a is the alloca-
tor and c is the parallel composition
of the clients, i.e. c = c1 || c2 || c3. The
arrays g and r are represented by the
independent data variables G1, G2,

G3 and R1, R2, R3 respectively. I and
V are local integer data variables.

The event rn1 (see above) has the
default behaviour for exiting from
the clustered activity req. This event
is taken no matter where in the clus-
tered activity execution is provided
the guard V#1 is true, i.e. the
enabling condition of rn1 is V#1,A=req
where A is the activity variable of the
allocator.

C
i

r
i

A

 September 13, 1994. 12

(by setting to one), releases the resource (by resetting back to zero), and
acknowledges the release (by resetting). We can use the formula

to characterize the next change allowed from the state . Thus the
resource is not granted to the client unless the client has previously requested the
resource (there must be no unsolicted granting of the resource).

Using PTL (propositional temporal logic), the above property is actually
equivalent to the simpler formula

R2: .

Once the customer makes a request, the request remains in place waiting for the
allocator to grant the request.

R3: .

The resource will not be prematurely withdrawn (i.e. before the client releases it)

R4: .

The client will not make another request unless until after the allocator acknowl-
edges the release of the resource

R5: .

Real-time response

The safety properties (R1–R5) can be satisfied in a system in which the clients
never send a request message and hence the allocator need never grant a request.
The real-time response property will ensure that certain vital actions are taken in
bounded time.

Only the state satisfying is stable. Each of the other protocol
states must be exited within a time bound. This is most succinctly specified by

 (EQ 4)

i.e. the system will always reach a stable state within 31 ticks of the clock. The
actual time in any given implementation will depend on the bounds of the atomic
transitions. For illustration, we have assumed that evaluating a guard and then
doing some assignment takes one tick of the clock in the implementation of
Figure 4. However, the requirements can ignore implementation details of this
kind.

The above response property makes decomposition into modular specifica-
tions difficult. This is because the property constrains at the same time variables
owned by (i.e. the request variable) and variables owned by (i.e. the grant
variable). We must try to break (EQ 4) into smaller properties that constrain
only sets of variables from a single module at a time.

The property (EQ 4) can be replaced with the next three requirements. Every
request for the resource must be granted within two ticks by the allocator, i.e.

R6: .

g
i

C
i

r
i

A

g
i

r
i

0 g
i

∧ 0= =() r
i

0 g
i

∧ 0= =()W r
i

(⇒ 1 g
i

∧ 0)= =

r
i

0 g
i

∧ 0= =()

g(
i

0) g(
i

⇒ 0)W r
i

(1 g
i

∧ 0)= = = =

r
i

(r1) r(
i
r1)W r

i
(⇒ 1 g

i
∧ 1)= =

g
i

1=() g
i

1=()⇒ W g
i

(1 r
i

∧ 0)= =

r(
i

0) r(
i

⇒ 0)W r(
i

0 g
i

∧ 0)= = = =

r
i

0 g
i

∧ 0= =()

he
l31

r(
i

0 g
i

∧ 0)= =

C
i

r
i

A

g
i

r
i
r1() e

l24
g

i
(⇒ 1)=

 September 13, 1994. 13

Some cooperation from the clients is required. A client that has a resource must
release it within 6 ticks of the clock, i.e.

R7: .

We are assuming that a client uses the resource for no more than 5 ticks of the
clock. We add one tick for resetting the request variable to come up with a 6 tick
total.Clearly, if a client appropriates the resource for more than its allotted
time, then the allocator cannot guarantee service to another customer ,
without violating the mutual exclusion requirement.

An equally important allocator responsibility is to ensure that the client’s
release of the resource is duly acknowledged, i.e.

R8: .

Due to the safety requirements, a customer cannot make its next request unless its
previous release was acknowledged by the allocator. R8 outlaws that type of devi-
ous behaviour on the part of the allocator that withholds service from the client
by not acknowledging a release.

The requirements R1–R8 specify all the properties that must be satisfied by
. The verifier was used to generate the graph and check

each of these properties with the complete analysis performed in a total time of
under three minutes. However, as will be shown later, as the system to be checked
increases in size, the resulting combinatorial explosion of states makes it impera-
tive that a modular analysis be undertaken.

The time bounds in the temporal operators of requirements R6, R7 and R8
need not be specified explicitly to the verifier. The verifier will return the most lib-
eral interval over which the property is true. This is an important feature of
the verifier that is useful in debugging the system. For example, if an interval

 is returned, then the implementor knows immediately that there is at least
one trajectory in which the system can cycle forever without reaching the goal
predicate, and the path to that cycle from an initial state is part of the diagnostic
information returned by the verifier.

4.2 Modular specification of the resource allocator
The global requirements R1–R8 do not directly translate into a set of modular

requirements. This is because a modular specification must hold in an environ-
ment that “misbehaves”, e.g. the allocator cannot always count on clients that
stick to the required protocol.

There will often be a need to refer to changes in the request and grant vari-
ables. For example, to record the fact that the request variable goes from zero to
one (flagging a request) we could write .

g
i

1=() e
l 6

r
i

(⇒ 0)=

C
i

C
j

j i≠,

r
i

0=() e
l1

g
i

(⇒ 0)=

SUD A C
1

C
2

C
3

|| ||()||=

l u,[]

0 ∞,[]

r
i

rq
i
y r

i
(1) 1 r(

i
∧ 1)= =

 September 13, 1994. 14

The other definitions of changes to the request and grant variables are

(EQ 5)

The global requirement for is the conjunction of requirements R1–R8,
which must be decomposed into modular specifications. Thus, we must come up
with modularly valid requirements for the allocator and clients respec-
tively so that .

A possible methodology is to inspect the global requirements R1–R8 one by
one, and to determine whether the considered module is the one responsible for
that requirement. By the interface specifications, only the clients may write to the
release variables , and only the allocator may write to the grant variables .
Thus, for example, the mutual exclusion requirement R1 is the responsibility of
the allocator.

Modular specification of a client

The first global requirement that a client must ensure is R3 given by

.

As explained in [18, p368], this property is far to strict, and will not in general be
true of any reasonable client (e.g. after both and are set the environment can
reset before can be set). What is needed is the weaker specification

R9:

i.e. once the client sets to one, the request variable must remain high at least
until the allocator responds by resetting the grant variable. It is sufficient to state
the property only at the exact points at which has just changed from zero to
one. The complementary global requirement R5 is specified by

R10:

i.e. the modular version of the property must be stated with respect to a point at
which is reset.

The only real-time response property that constrains variables owned by is
R7 given by , which claims that the client must release the
resource within six ticks of having gained access to it. It is impossible to guarantee
a response to the grant variable being set if it is not kept set sufficiently long. A
modular specification will therefore require a response to the setting of the grant
variable only if the grant variable remains set at least until the response is gener-
ated, i.e.

R11: .

The above property is satisfied if holds (before the seventh tick) in
response to the grant variable being set. Alternately, it will also be satisfied if is
reset before the seventh tick. If is reset after well and good. If not, then

rq
i
y r

i
(1) 1 r(

i
∧ 0)= =

gr
i
y g(

i
1) 1 g(

i
∧ 0)= =

rl
i
y r

i
(0) 1 r(

i
∧ 1)= =

ak
i
y g(

i
0) 1 g(

i
∧ 1)= =

R SUD

R
A

R
Ci

,
R(

A
R

C1
R

C2
R

C3
) R→∧ ∧ ∧

r
i

g
i

C
i

r
i

(r1) r(
i
r1)W r

i
(⇒ 1 g

i
∧ 1)= =

r
i

g
i

g
i

r
i

rq
i

r(
i
r1)W r

i
(1 g

i
∧ 1)= =⇒

r
i

r
i

rl
i

r(
i
r0)W r

i
(0 g

i
∧ 0)= =⇒

r
i

C
i

g
i

1=() e
l 6

r
i

(⇒ 0)=

g(
i

1) e
l 6

r
i

(⇒ 0 g
i

∨ 0)= = =

r
i

0=()
g

i

g
i

r
i

0=()

 September 13, 1994. 15

there is nothing the client can do about it, as the grant variable was reset by the
allocator before the client could respond.

The complete modular specification for the client is thus given by
: R9 & R10 & R11

Modular specification of the allocator

The mutual exclusion property R1 given by is clearly the
responsibility of the allocator as it refers to variables owned by .

The two remaining protocol conformance specifications must be stated from
points of change. We therefore obtain

R12: .

The property cannot be true in the first position of a
legal trajectory. The state-formula must therefore be inserted into the ante-
cedent in order to obtain the appropriate unsolicited response property. The glo-
bal property R4 becomes:

R13: .

The global response properties R6 and R8 constrain the behaviour of the grant
variable of the allocator. R8 requires that the grant variable must be reset in
response to the release variables being set. We again require that remains reset
sufficiently long, which is specified by:

R14: .

The requirement R6 given by is more complex to
state modularly. A client that makes a request to the allocator may not eventu-
ally be granted that request because some other rebellious client may refuse to
release the resource. To release the allocator from the obligation of granting a
request when there is a rebellious client, we may require

R15: .

This property states that if has made a sustained request, then either the alloca-
tor will grant it the resource, or we can identify a rebellious client that at some-
time holds the resource for at least a tick longer than it is supposed to (i.e. up to
and including the 7th clock tick rather than releasing it before the 7th tick as spec-
ified by R7).

It might be thought that the allocator can misuse the leniency specified by the
right disjunct in the consequent of R15 by leaving set to one for seven ticks of
the clock (even after the client has released the resource). However, by R14, the
allocator is obliged to reset almost immediately in response to the resource
being released. By R12, must remain reset at least until the next request. Hence
the leniency in R15 cannot be misused.

The modular specification for the allocator is thus defined by
: R1 & R12 & R13 & R14 & R15.

It is tedious but straightforward to confirm that . A the-
orem prover exists for the propositional untimed fragment of RTTL, which is use-

C
i

R
Ci

h g
1

g
2

g
3

1≤+ +()
A

initial ak
i

∨() g(
i

⇒ 0)W r
i

(1 g
i

∧ 0)= = =

ak
i
y g(

i
0) 1 g(

i
∧ 1)= =

initial

gr
i

g(
i

⇒ 1)W r
i

(0 g
i

∧ 1)= = =

g
i

r
i

r(
i

0) e
l1

g(
i

⇒ 0 r
i

∨ 1)= = =

r
i
r1() e

l24
g

i
(⇒ 1)=

C
i

r(
i

1) e
l24

g(
i

⇒ 1 r
i

∨ 0 j∃ : j i: e≠ h<7
g(

j
1)=[])∨= = =

C
i

g
j

g
i

g
i

R
A

R(
A

R
C1

R
C2

R
C3

) R→∧ ∧ ∧

 September 13, 1994. 16

ful in automating most of this check [18]. We must now check that each of the
conjuncts in the antecedent is modularly valid.

4.3 Modular Verification
Modular specifications can be used to verify the resource allocator more effi-

ciently by model-checking each component separately rather than the total sys-
tem all at once. For example, to check the modular specifications of the clients it is
sufficient to check the TTMchart shown in Figure 5. The two events gone and gzero

model the changes that can occur at any point in the environment. The size of the
graph for checking the client module alone is 72 (states and edges), while the size
of the graph for the total system is 1424 (Table 2).

While the reachability graph of a client module is an order of magnitude
smaller than that of the total system, the allocator and its unconstrained environ-
ment is about the same size as the total system. However, the requirements R9
and R10 for the client constrain the behaviour of . Thus, instead of an uncon-
strained environment, we may instead verify the allocator with the constrained
environment shown in Figure 6. This reduces the size of the model to be checked
to 410 which is substantially less than checking the total graph of size 1424
(Table 2).

In larger systems the modular approach substantially reduces the size of the
reachability graph even using an unconstrained environment. For example, when
the allocator has six clients, the size of the reachability graph of the total system is
much larger than the allocator module with an unconstrained environment
(Table 2). Constraining the environment of the allocator reduces the size of the
model to be checked even more. The allocator can itself be decomposed into
smaller modules if further model reduction is required.

FIGURE 5. A generic client chart with its unconstrained environment

cae = client || env. The variables R,G are used for respectively.r
i

g
i

,

r
i

 September 13, 1994. 17

We note that one cannot really constrain the environment, as a module has no
control over its environment. The constraints referred to above are really assump-
tions about the environment similar to traditional assumption/guarantee tech-
niques. An assumption/guarantee specification for a concurrent program is a
generalization of the pre/post-condition specification for a sequential program. It
asserts that a module provides a guarantee (e.g. the allocator requirements)

FIGURE 6. The constrained environment of the allocator

The allocator module can be checked by verifying awe = a || rch.

TABLE 2. Size of reachability graphs for the various TTMcharts

TTMchart Size of reachability graph = states + edges

Total system of 3 clients and
allocator (both charts in
Figure 4 running in parallel).

Size of graph: 1424

Unique States = 200, Total States = 412, Total Edges = 1012

Time to generate graph: 1.7 minutes

Module of client and its
unconstrained environment

Size of graph: 72

Unique States: 8, Total States = 20, Total Edges = 52.

Module of allocator for 3 cli-
ents, together with its envi-
ronment constrained by the
client requirements R9 and
R10 (see Figure 6).

Size of graph: 410

Unique States = 76, Total States = 140, Total Edges = 270

Total system with six clients
and allocator.

Size of graph: 86,124

Unique States = 5440, Total States = 18136, Total Edges = 67988

Module of allocator for 6 cli-
ents with its unconstrained
environment.

Size of graph: 42,496

Unique States = 2752, Total States = 5312, Total Edges = 37184

Module of allocator for 6 cli-
ents with its constrained envi-
ronment.

Size of graph: 22,944

Unique States = 2576, Total States = 4688, Total Edges = 18256

G R
A

 September 13, 1994. 18

if its environment satisfies an assumption (e.g. the client requirements R9 &
R10).

We have used single-assumption specifications, i.e. ,
which is trivially valid (because is valid). However, mutual-assump-
tion specifications, e.g. , in which each system guar-
antees to satisfies the other’s environment assumption, are not in general valid for
liveness properties. The techniques discussed in [1] can be used for mutual -
assumption specifications in RTTL as well.

Watchdogs

The current verifier checks a small but important subset of RTTL properties.
Those properties not included in the set treated, can be checked by attaching a
watchdog to the module. A watchdog is a non-invasive observer of the system. It
can read the various system variables, but does not write to or destroy them.

The TTMchart hog2 in Figure 7 is an example of a watchdog that detects when
the subformula in the requirement R15 becomes true (i.e. when
client 2 rebels). The chart hog2 || hog3 (where hog3 detects when client 3 rebels) is
composed in parallel with the allocator and its environment. By model-checking
the resulting chart for property

(EQ 6)

which is in a format that the verifier can check, we have thereby verified require-
ment R15. The activity variables correspond to the charts hog1 and hog2

respectively.
A disadvantage of adding a watchdog is that there is a corresponding increase

in the size of the reachability graph that must be checked (although still smaller

FIGURE 7. Watchdog called “hog2” to detect a rebellious client

E

R
C

R
c

R
A

→()∧[] R→
R

A
R

C
∧ R→

R
A

R→
C

() R
c

R
A

→()∧[] R→

eh<7
g

2
(1)=

r
1

(1) e
l7

g
1

(⇒ 1 r
1

∨ 0 h
2

∨ 2 h
3

∨ 2)= = = = =

h
2

h
3

,

 September 13, 1994. 19

than the size of the total graph). It is for this reason that the current verifier is
being extended to verify arbitrary properties of real-time temporal logic [7].

The properties R9, R10 for the client, and R12, R13 for the allocator are almost
in a format that the verifier can check. According to the definitions given in
(EQ 5), changes in the release and grant variables must be detected by means of a
watchdog. For example, to detect the condition in the antecedent of R13, the
watchdog in Figure 8 can be used. In the watchdog, the event g1 which sets to

one, is declared shared. Thus g1 in the allocator of Figure 4 synchronizes with the
corresponding component event g1 in the watchdog. The property R13 can then
be verified by checking

(EQ 7)

which is in a format that the verifier can deal with, where Gr1 is the activity vari-
able of the watchdog in Figure 8.

5.0 Conclusions

The main difficulty in modular specification is that modules are harder to
specify than the total system. This is because the modular specification must take
into account the environment (e.g. the rebellious clients in requirement R15).

It would be useful to have a tool that can check the validity of properties such
as where are the specifications of modules A and B, and is
the specification of the complete system. There is already a propositional theorem
prover available for the untimed subset of RTTL, which can be extended to deal
with timed properties.

The main advantage of modular specification and verification is that it signifi-
cantly reduces the size of the state space that must be generated and checked. In
general, the looser the coupling between the module and its environment the
greater the efficiency of the modular check. The client module, which is very
loosely coupled to its environment, can be checked in time an order of magnitude
less than the total system. The allocator is more coupled to the environment (each
client introduces one extra environmental variable), and hence the time to per-

FIGURE 8. Watchdog to detect for requirement R13

The event g1# is declared shared and synchronizes with the same event in a.

gr
1

g
1

gr
i

Gr1(1) g(
i

⇒ 1)W r
1

(0 g
1

∧ 0)= = = =

R
A

R
B

R→∧ R
A

R
B

, R

 September 13, 1994. 20

form its check increases as more clients are added, although this modular check
still takes substantially less time than checking the total system.

The use of assumption/guarantee specifications are useful for further reduc-
ing the size of the reachability graphs. Alternatively, the allocator can itself be
decomposed into sub-modules.

Once the modular specification of the allocator is provided, the body can be
developed and checked. If the body is changed, we need re-verify only the alloca-
tor module and not the complete system. For example, consider the alternative
code in Figure 9 for the body of the allocator. The local variable has been elimi-

nated and the computation of the count variable has been changed. This change
can be verified by merely rechecking the new code against the modular specifica-
tion of the allocator. There is no need to check the complete system.

The BUILD tool is written in Smalltalk and the VERIFY tool in Prolog. The cur-
rent Prolog implementation is much slower than what can be achieved using
more efficient languages. The VERIFY tool is currently being re-implemented in
Smalltalk to allow model-checking of arbitrary branching time properties [7],
which will eliminate the need for watchdogs in most cases. Arbitrary data types
(including the ability to deal with the grant and request arrays such as and)
will be supported.

The use of Smalltalk classes for representing data will provide rich flexible
data definitions. However, the construction of reachability graphs will then not
have the efficiency of a C language implementation restricted to efficient types for
hashing (e.g. booleans, integers and unsigned 8 bit bytes). There may thus be a
need to implement part of the verifier in C.

The modular methods discussed in this paper indicate that the StateTime
toolset should be enhanced by allowing TTMcharts to have interface specifica-
tions. Modules can then be checked automatically for interface compatibility.
Finally, the verifier should automatically build the environment (constrained
where possible) in which the module must be checked.

6.0 References

[1] Abadi, M. and L. Lamport. Conjoining Specifications. DEC Research Center. SRC 118, 1993.

[2] Alur, R., C. Courcoubetis, and D.L. Dill. “Model Checking for Real-Time Systems.” In Proc.
5th Conference on Logic in Computer Science, IEEE Computer Society Press, 1990.

[3] Alur, R. and T.A. Henzinger. “A Really Temporal Logic.” Journal of the ACM, 41(1): 181-204,
1994.

[4] Berthomieu, B. and M. Diaz. “Modeling and Verification of Time Dependent Systems Using
Time Petri Nets.” IEEE Transactions on Software Engineering, 17(3): 259-273, 1991.

FIGURE 9. Alternative code for the body of the allocator

loop forever do

if

then do ; when then od

endloop

v

r i[] 1=

g i[]51 r i[] 1= g i[]50

i5 i(mod 3) 1+

i

g r

 September 13, 1994. 21

[5] Campos, S.V. and E.M. Clark. “ Real-Time Symbolic Model Checking for Discrete Time Mod-
els.” In Theories and Experiences for Real-Time System Development, eds. T. Rus and C. Rattray.
AMAST Series in Computing, Vol. 2. World Scientific Press, 1994.

[6] Clarke, E.M., E.A. Emerson, and A.P. Sistla. “ Automatic Verification of Finite State Concurrent
Systems Using Temporal Logic.” ACM Transactions on Programming Languages and Systems,
8:244-263, 1986.

[7] Gruden, C. “Automated Model Checking in the TTM/TCTL Framework.” M.Sc., York Univer-
sity, Toronto, Canada, 1994 (to appear).

[8] Hall, A. “Seven Myths of Formal Methods.” IEEE Software, Sep:11-19, 1990.

[9] Harel, D. “Statecharts: A Visual Formalism for Complex Systems.” Science of Computer Pro-
gramming, 8:231-274, 1987.

[10] Harel, D., H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, and M. Trachtenbrot.
“Statemate: a working Environment for the Development of Complex Reactive Systems.”
IEEE Transactions on Software Engineering, 16:403–414, 1990.

[11] Henzinger, T.A., X. Nicollin, J. Sifakis, and S. Yovine. “Symbolic Model Checking fo Real-Time
Systems.” In Proc. 7th Symposium of Logics in Computer Science, IEEE Computer Society Press,
1992.

[12] Holzmann, G. “Proving the Value of Formal Methods.” In FORTE'94 7th International Confer-
ence on Formal Description Techniques, Berne, Switzerland, 1994 (to appear).

[13] Hooman, J. and W.-P.d. Roever. “Design and Verification in Real-time Distributed Comput-
ing: and Introduction to Compositional Methods.” In Proc. of of the 9th International Symposium
on Protocol Specification, Testing and Verification, North-Holland, 1989.

[14] Hooman, J.J.M., S. Ramesh, and W.P.d. Roever. “A Compositional Axiomatization of State-
charts.” Theoretical Computer Science, 101(2): 289-335, 1992.

[15] Jahanian, F. and D. Stuart. “A Method for Verifying Properties of Modechart Specifications.”
In Proc. 9th Real-time Systems Symposium, IEEE Computer Society Press, 12-21, 1988.

[16] Kurshan, R.P. and L. Lamport. “Verification of a Multiplier: 64 bits and Beyond.” In Com-
puter-Aided Verification (Proc. 5th CAV'93), edited by C. Courcebetis, Springer Verlag, 166-179,
1993.

[17] Lawford, M., W.M. Wonham, and J.S. Ostroff. “State-Event Labels for Labelled Transition Sys-
tems.” In Proc. 1994 Conference on Decision and Control, Orlando, FL, 1994 (to appear).

[18] Manna, Z. and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems. Springer-Ver-
lag, New York, 1992.

[19] Ostroff, J.S. Temporal Logic for Real-Time Systems. Research Studies Press Limited (distributed
by John Wiley and Sons), England, 1989.

[20] Ostroff, J.S. “Deciding properties of Timed Transition Models.” IEEE Transactions on Parallel
and Distributed Systems, 1(2): 170-183, 1990.

[21] Ostroff, J.S. “Design of Real-Time Safety Critical Systems.” The Journal of Systems and Software,
18(1): 33–60, 1992.

[22] Ostroff, J.S. StateTime — a Diagrammatic Toolset for the Design and Verification of Real-Time Sys-
tems. Department of Computer Science, York University. TR CS-92-07, 1992.

[23] Ostroff, J.S. “A Verifier for Real-Time Properties.” Real-Time Journal, 4:5–35, 1992.

[24] Ostroff, J.S. “Visual Tools for Verifying Real-Time Systems.” In Theories and Experiences in Real-
Time Systems, AMAST Series in Computing, Vol. 2. Iowa City: World Scientific Press, 1994.

[25] Ostroff, J.S. and W.M. Wonham. “A Framework for Real-Time Discrete Event Control.” IEEE
Transactions on Automatic Control, 35(4): 386–397, 1990.

[26] Toi, H.W. and D.L. Dill. “Approximations for Verifying Timing Properties.” In Theories and
Experiences for Real-Time System Development, eds. T. Rus and C. Rattray. AMAST Series in
Computing, Vol. 2. World Scientific Press, 1994.

[27] Tyszberowicz, S. and A. Yehudai. “OBSERV — A Prototyping Language and Environment.”
ACM Transactions on Software Engineering Methodology, 1(3): 269-309, 1992.

