
Logic Notes

Jonathan S. Ostro�

October 3, 1994

1 Propositional/Sentential Logic - SL

Consider the following deductions (or arguments):

(D1)

If Alfred concentrates on his logic course then he enjoys it

Alfred is concentrating on his logic course

Therefore, Alfred is enjoying logic

(D2)

If Alfred concentrates on his logic course then he enjoys it

Alfred is not concentrating on his logic course

Therefore, Alfred is not enjoying logic

(D3)

If Prince Charles was married he had a wife

Prince Charles is married

Therefore, Prince Charles had a wife

In logic, deductions (or arguments) are often displayed in the above format. The

premises (or hypotheses) are given in a column. The conclusion is written underneath

seperated from them by a horizontal line.

Deduction D2 is an incorrect deduction. Even if the premises would be true the

consequence is not necessarily true.

Deduction D1 is a correct deduction, i.e. if the hypotheses would be true, then the

consequence must also be true. However, D1 may or may not be a cogent deduction.

A cogent deduction is a correct deduction that also has true premises. D3 is a cogent

deduction, i.e. the �rst premise is true by the de�nition of \married", and the second

premise is true as a matter of history.

Much of the study of logic is tied up with determining whether deductions are correct

or not. Both D1 and D3 are instances of the symbolic deduction:

1

1 PROPOSITIONAL/SENTENTIAL LOGIC - SL 2

(MP | Modus Ponens)

P ! Q

P

Q

It is important for you to know how to translate from an English argument into a symbolic

argument, and vice versa | this kind of translation often involves subtle and sometimes

quite complex thought processes. Try and translate the following argument into symbolic

form:

If I do not specify the initial conditions then my program will not begin.

If I program an in�nite loop then my program will not terminate. If the

program does not begin or if it does not terminate, then the program will

fail. Therefore, if the program fails then either I speci�ed the initial conditions

or I must have programmed an in�nite loop.

Is the deduction (or argument) correct? Is it cogent?

We will learn how to (a) translate English sentences into symbolic notation, (b)

translate Enlish arguments into symbolic deductions, and (c) check whether deductions

are correct or not using a proof system.

We can already give some rules for (a):

� Simple statements are assigned uppercase Roman letters, e.g P stands for a par-

ticular simple statement such as \Plato is a man". Make sure that P symbolizes

an assertion or statement that is either true or false, and not a command, question

etc. that have no truth values.

� You must be consistent | P can only represent one statement in a given context.

� Two distinct letters can represent the same statement e.g. both P and Q can stand

for \10 is greater than 11".

1.1 Notation

De�nition 1 (Symbols of SL)

� Atomic propositions are denoted by P;Q;R; � � � ; P

1

; Q

1

; � � �, i.e. by upper case Ro-

man letters with or without positive numerical subscripts. An atomic proposition

such as P

11

stands for a particular simple statement such as \Plato is a man".

Atomic propositions are also called simple sentences or sentence letters.

� Truth-functional connectives: :;^;_; ! ;�.

1 PROPOSITIONAL/SENTENTIAL LOGIC - SL 3

� Punctuation symbols: (,),[,].

De�nition 2 (Well-formed formulas of SL | w�s) We let �; �;
; ::: be metavari-

ables that stand for any w� of SL. W�s are de�ned inductively as follows:

1. All the atomic propositions are w�s of SL.

2. If � is a w� of SL then :� is a w� of SL.

3. If �; � are w�s of SL then (�^�); (�_�); (� ! �); (� � �) are w�s of SL.

4. Anything that cannot be constructed by �nitely many applications of of one or

more of rules 1{3 is not a w� of SL.

We may relax the de�nition of a w� slightly by (a) dropping the outer brackets and

(b) allowing the use of square brackets for greater readibility. The negation symbol :

binds tightest, then ^;_, and then ! ;�. Thus P^:Q ! R must be interpreted as

(P^(:Q)) ! R.

The main connective of a w� is the outermost connective linking the outermost com-

ponents, e.g. the outermost connective of :P_(P ! :Q) is _.

Sometimes authors use other symbols. The table below gives some equivalent uses of

symbols.

Name Read Symbol Gries other

Negation \not" : :

Conjunction \and" ^ ^ &

Disjunction \or" _ _

Conditional \if...then.." !) �

Biconditional \i�" � = $;,

Gries' use of = for � is particulary confusing. As we will see later, the equality sign is

usually used for equality of terms. Terms refer to objects in the domain (e.g. 10 = 5+5

means the object 10 is equal to the object 5+5, i.e. 10 and 5+5 refer to the same object,

i.e. number) rather than to assertions (or relations) about objects.

Let H stand for any set of w�s such as fP;P ! Qg. Then H ` Q means that Q

can be deduced from the formulas in H, e.g. fP;P ! Qg ` Q is an example of a correct

deduction. Another way of writing fP;P ! Qg ` Q is P;P ! Q ` Q. The rules for

correct deductions are provided below.

If H ` P and H is the empty set (no hypotheses) , then we write ` P and we say P

is a theorem.

The notation H ` P;Q stands for \H ` P and H ` Q".

1 PROPOSITIONAL/SENTENTIAL LOGIC - SL 4

1.2 Basic Rules of inference for SL

In the table below, H is a metavariable standing for any set of w�s. In addition to the

rules in the table, there are three other rules that you can always use:

Premise: You can enter any w� you like anywhere in a proof except within a subderiva-

tion, with the justi�cation PREMISE.

Reiteration - (R): You can always derive a sentence from itself with the justi�cation

(R).

Assumption: You can always \push" into a subderivation with any assumption you like.

The w�s within a subderivation are not accessible from outside a subderivation.

As soon as you \pop" out of a subderivation, we say that the derivation has been

discharged .

Introduction Rules Elimination Rules

(^I)

H ` �

H ` �

H ` �^�

(^E)

H ` �^�

H ` �

H ` �^�

H ` �

(_I)

H ` �

H ` �_�

H ` �

H ` �_�

(_E)

H ` �_�

H ` � ! �

H ` � ! �

H ` �

(for any �)

(! I)

H;� ` �

H ` � ! �

(! E)

H ` �

H ` � ! �

H ` �

(Often called the DEDUCTION rule) (Often called Modus Ponens)

(:I)

H;� ` �

H;� ` :�

H ` :�

(:E)

H;:� ` �

H;:� ` :�

H ` �

(� I)

H ` � ! �

H ` � ! �

H ` � � �

(� E)

H ` � � �

H ` �

H ` �

H ` � � �

H ` �

H ` �

1 PROPOSITIONAL/SENTENTIAL LOGIC - SL 5

The notation

�

�

is an abbreviated way of saying the two rules

�

�

and

�

�

i.e. you

can derive either way.

The following rules can be derived from the already stated rules.

1 PROPOSITIONAL/SENTENTIAL LOGIC - SL 6

Derived Rules of SD

Modus Tollens | (MT)

H ` � ! �

H ` :�

H ` :�

Hypothetical Syllogism | (HS)

H ` � ! �

H ` � ! �

H ` � ! �

H ` � � �

H ` � � �

H ` � � �

Disjunctive Syllogism | (DS)

H ` �_�

H ` :�

H ` �

Commutativity | (CM)

H ` �_�

H ` �_�

H ` � � �

H ` � � �

H ` �^�

H ` �^�

Associativity | (AS)

H ` �^(�^�)

H ` (�^�)^�

H ` �_(�_�)

H ` (�_�)_�

H ` � � (� � �)

H ` (� � �) � �

Implication | (IM)

H ` � ! �

H ` :�_�

Double Negation | (DN)

H ` �

H ` ::�

De Morgan | (DM)

H ` :(�^�)

H ` :�_:�

H ` :(�_�)

H ` :�^:�

Idempotence | (ID)

H ` �

H ` �^�

H ` �

H ` �_�

Transposition | (TR)

H ` � ! �

H ` :� ! :�

Exportation | (EX)

H ` � ! (� ! �)

H ` (�^�) ! �

Distribution | (DI)

H ` �^(�_�)

H ` (�^�)_(�_�)

H ` �_(�^�)

H ` (�_�)^(�_�)

Equivalence | (EQ)

H ` � � �

H ` (� ! �)^(� ! �)

H ` � � �

H ` (�^�)_(:�^:�)

True and False

H;� ` false

H ` :�

false

def

= �^:�

H ` �_true � true H ` �_false � �

true

def

= �_:�

H ` �^true � � H ` �^false � false

2 PREDICATE LOGIC | PL 7

1.3 Example of using the proof system

Suppose we want to show that fD � :B;A ! (::R^K);:Bg ` A ! [(R_H)^D]

The proof would work as follows (note that assumptions, unlike premises, must be

discharged):

1 D � :B PREMISE

2 A ! (::R^K PREMISE

3 :B PREMISE

4 A ASSUMPTION

5 :R ASSUMPTION

6 :R R 5

7 ::R^K ! E 2,4

8 ::R ^E 7

9 R :E 5-6, 5-8

10 R_H _I 9

11 D � E 1,3

12 (R_H)^D ^I 10,11

13 A ! [(R_H)^D] ! I 4-12

2 Predicate Logic | PL

Consider the following argument in which N stands for \the number 2 is even", and L

stands for \there is at least one even number".

The number two is even

At least one number is even

N

L

The above argument sounds intuitively correct, and yet we cannot prove it to be correct

in SL. Note that if we assign true to N and false to L, then the premise is true whereas

the conclusion is false.

We need a more expressive logic that deals with units smaller than atomic propositions

N and L| we need to be able to deal with concrete objects such as the number 2 as well

as express ideas such as \at least one object" (i.e. there exits at least one number). We

need terms to denote objects such as numbers and quanti�ers such as 9 (there exists)

which allow us to talk about some or all objects.

2.1 Terms and relations

In mathematics we will often see algebraic assertions such as

sin(90� x) = cos(x)

2 PREDICATE LOGIC | PL 8

This algebraic law is a complex statement that is composed of many di�erent kinds of

objects.

1. First there is the constant 90. The number 90 represents one of the objects about

which the algebraic law above is expressing some truth.

2. Then there is the variable x. This too represents a number but not a �xed one like

90. The variable x stands for any number in the above assertion.

3. Next are the functions sin; cos and �. Note that = is not a function. Functions

take as their arguments numbers and return other numbers. The function sin is a

function of arity one, i.e. it takes as its argument a single number (e.g. 90) and

returns another number (1); given 30 it would return 0.5. The function � has arity

two, i.e. it takes as its arguments two numbers (e.g. 10 and 7) and returns another

number (3).

4. Lastly is the relation =. This is similar to the functions, but instead of taking in

numbers and returning numbers, it takes in numbers and returns a truth value true

or false. Thus 7 = 8 asserts that 7 and 8 are in the relation equality which is of

course false.

The key di�erence between a function and relation is that a function is used to refer

to objects such as numbers, whereas relations assert something that is either true

or false about those objects.

Similarly, terms represent objects in the universe of discourse, whereas w�s repre-

sent relationships that hold between those objects.

Constants, variables and functions together with their arguments (items 1{3) will be

denoted by terms of PL, and relations will be denoted by the atomic predicates of PL.

2.2 The status of variables

Variables in maths often have an ambiguous status whose resolution depends on the

context. For instance the x in

(x + y) � (x � y) = (x

2

� y

2

) (1)

is usually intended to stand for any x, and similarly for y. Thus what is really meant is:

8x8y[(x + y) � (x � y) = (x

2

� y

2

)]

The 8 symbol is the universal quanti�er (read:\for all").

2 PREDICATE LOGIC | PL 9

The x in

Solve x

2

+ 2 � x+ 1 = 0 for x (2)

stands for some particular number whose exact value is not yet revealed. If we want to

assert: \(2) has a solution", we write

9x[x

2

+ 2 � x+ 1 = 0]

The symbol 9 is the existential quanti�er (read:\there exists").

Consider now the mathematical statement

Solve a � x

2

+ b � x+ c = 0 for x (3)

Here a; b; c stand for any number whereas x stands for some particular number, whose

precise value will depend on a; b; c. If we want to assert: \(3) has a solution", we write

8a8b8c9x[a � x

2

+ b � x+ c = 0]

Putting the existential quanti�er before the universal quanti�er would have a completely

di�erent meaning, viz. that all quadratic equations have the exact same solution!

De�nition 3 (Symbols of PL) All the symbols of SL are also symbols of PL. However

there will be some additional symbols not in SL.

� Constant symbols a; b; c; ::: (constant symbols can also be subscripted e.g. c

7

.

� Variable symbols v;w; x; ::: (variable symbols can also be subscripted).

� Function symbols f; g; h; ::: (function symbols can be subscripted). A function

symbol can have any arity (i.e. number of arguments), e.g. if f has arity 3, then f

has 3 arguments and we write f(�; �; �).

� Relation symbols p; q; r; ::: (they can also be subscripted and have whatever arity

you choose).

When the arity of a relation symbol is zero (no arguments) then what we really

have is a boolean variable (similar to the atomic propositions).

There is also a distinguished

1

relation symbol = with arity 2.

� Truth-functional connectives: :;^;_; ! ;�.

� Quanti�ers: 8, 9.

1

In any interpretation, the symbol = means equality of terms.

2 PREDICATE LOGIC | PL 10

� Punctuation symbols: (,),[,].

We will �nd it useful to pay attention to the variables of formulas that have not

been announced with qunati�ers: the free-variables. If t is a term then FV (t) stands

for the set of free variables of t. Similarly if � is a formula then FV (�) will denote the

free-variables of �.

De�nition 4 [Terms of PL].

� Any constant symbol c is a term of PL with FV (c) = fg.

� Any variable symbol v is a term of PL with FV (v) = fvg.

� If t

1

; t

2

; � � � ; t

n

are terms of PL and f is any n-ary function symbol then f(t

1

; t

2

; � � � ; t

n

)

is a term of PL with FV (f(t

1

; t

2

; � � � ; t

n

)) = FV (t

1

)

S

FV (t

2

)

S

� � �

S

FV (t

n

).

� No other string of symbols is a term.

If � is a set of formulas then

FV (�)

def

=

S

�2�

FV (�)

Remark: The above de�nition of the free-variables of a term does not take into account

the fact that in \relaxed" notation a bound-variable may occur in a term, e.g.

20

X

x=1

x � (x+ 1) � y

is a term in which the variable x is bound | really x is a dummy variable as the above

summation stands for

3 � y + 4 � y + � � �+ 460 � y

The free-variables of the term

P

20

x=1

x � (x + 1) � y should thus be the singleton set fyg

(and not fy; xg).

De�nition 5 [Well-formed formulas (w�s) of PL]

� If t

1

; t

2

; � � � ; t

n

are terms of PL and p is any n-ary relation symbol then p(t

1

; t

2

; � � � ; t

n

)

is a w� of PL with FV (p(t

1

; t

2

; � � � ; t

n

)) = FV (t

1

)

S

FV (t

2

)

S

� � �

S

FV (t

n

).

If p has arity zero, then FV (p) = fpg.

2

The expression p(t

1

; t

2

; � � � ; t

n

) is called an atomic formula.

2

If n > 0 the proposition symbol is not included in the list of free-variables, whereas if p is boolean then

its symbol is included in the list. The reason for this is that in providing a \state" for a w� (see semantics

in later sections), the value of all the variables including boolean variables must be given. In programs,

boolean variables have the same status as other variables.

2 PREDICATE LOGIC | PL 11

� If � is a w� then :� is a w� with FV (:�) = FV (�).

� If �; � are w�s of PL then (�^�); (�_�); (� ! �); (� � �) are also w�s and

FV (�_�) = FV (�)

S

FV (�) (and similarly for the other connectives).

� If � is a w� and v a variable symbol then 8v� and 9v� are also w�s, and FV (8v�) =

FV (9v�) = FV (�) � fvg.

2.3 Safe substitution

Consider the w� � given by 9z[y = p(z; z)]. Let us interpret this w� as follows:

type(z) := f0; 1; 2; 3; � � �g

p(x; y) := x + y

In \relaxed" notation we can write � as 9z(y = z + z) which asserts that: \y is an

even number". Note that FV (�) = fyg, i.e. y is the only free-variable of �.

If in � we substitute every free occurrence of y by some other variable say v (this is

denoted �

y

v

) then we get a new formula (�

y

v

) similar to � except y is replaced by v, i.e.

we get 9z(v = z + z). The main point is that �

y

v

asserts the same thing about v that

9y(y = z + z) asserts about y viz. that \v is even".

However, if we substitute y by z then we get a formula with a totally di�erent meaning,

viz. we get the formula 9z(z = z+ z) which essentially asserts that \0 = 0" | i.e. there

is in fact only one z with z + z = z and that is the number zero. What has happened

is that the z replacing the y was \captured" illegally by the existential quanti�er 9z,

thereby changing the meaning of the sentence completely.

We want to have a de�nition of substitution that is \safe", i.e. avoids this illegal

capture of substitued variables by quanti�ers. If the quanti�ed variable z is such that

z 2 FV (t), where t is the replacement term (in this case t is also z | thus the condition

z 2 FV (t) is satis�ed in our example), then compute �

y

z

is performed as follows:

� Drop the main outer quanti�er of � | in this case 9z | to get (y = z + z) (note:

at this point z becomes free).

� Replace every free occurrence of z by a brand new variable u not occurring anywhere

else | we thus get (y = u+ u).

� Now do the original replacement of y by z to get (z = u+ u).

� Now add back the original quanti�er except over the new dummy variable u to get

9u(z = u+ u).

2 PREDICATE LOGIC | PL 12

To formally de�ne safe substitution for an arbitrary w�, we �rst need to de�ne safe

subsitution on terms. Since terms are de�ned inductively, the de�nition of safe substition

on them must also be d�ned inductively on the structure of terms, i.e.

De�nition 6 (Term Substitution) Base Case If the term t

0

is a constant symbol c

then

c

x

t

def

= c

If t

0

is a variable symbol v then

v

x

t

def

=

(

t if x = v

v otherwise

Inductive Case If the term t

0

is f(t

1

; � � � ; t

n

) then

f(t

1

; � � � ; t

n

)

x

t

def

= f(t

1

x

t

; � � � ; t

n

x

t

)

The formal de�nition of safe substitution for w�s is given inductively on the structure

of w�s.

De�nition 7 [Safe substitution]

Base Case If � is an atomic predicate p(t

1

; � � � ; t

n

) then

p(t

1

; � � � ; t

n

)

x

t

def

= p(t

1

x

t

; � � � ; t

n

x

t

)

Inductive Case 1. If � is a w� then

(:�)

x

t

def

= :(�

x

t

)

2. If � and � are w�s and � is any of the truth functional connectives, then

(� � �)

x

t

def

= �

x

t

� �

x

t

3. Let �

def

= 8y� and let t be any term, and u is a new variable not occurring

anywhere in either � or t. Then

�

x

t

def

=

8

>

<

>

:

� if x = y

8y(�

x

t

) if y 62 FV (t) and x 6= y

8u[(�

y

u

)

x

t

] if y 2 FV (t) and x 6= y

A similar de�nition of safe substitution can be given for existential operators.

2 PREDICATE LOGIC | PL 13

Note that the de�nition is recursive and thus when computing inner expression e.g.

�

x

t

the same procedure must be used to avoid illegal capture of quanti�ers.

Let � be :[8z(y = z)]. Then

8y� ! �

y

z

(4)

really means

8y[:8z(y = z)] ! :[8u(z = u)]

which is of course a valid formula. Thus safe substitution preserves the validity of the

formula in (4). Intutively, (4) reads: \if � is true for all objects y in the domain of

discourse then � is true for any particular object (e.g. z) you wish to choose". Without

safe substition some instances of (4) would be invalid. Later we will see a rule of derivation

called 8E whose correctness depends on the validity of (4).

2.4 PL is multi-typed

We assume that each variable v has a \type" (or range of values that it may assume)

called type(v). For example, in the w�

p^9z(z = y + 4)^x =

p

2 (5)

we have

type(p) = ftrue; falseg (6)

type(z) = f0; 1; 2; � � �g (7)

type(y) = f0; 1; 2; � � �g (8)

type(x) = < (9)

Any term t of PL must thus have an associated type(t) which denotes the set of objects

that the term may refer to. Thus (y + 4) is a term with type(y + 4) = f0; 1; 2; � � �g.

2.5 Simultaneous substitution

A formula such as �

v

1

;v

2

;���;v

n

t

1

;t

2

;���;t

n

denotes the simultaneous replacement of each free occurrence

of v

i

by t

i

for each i between 1 and n (making sure not to allow illegal capture of variables).

It is important that type(v

i

) = type(t

i

) when doing the substitution. For example, let �

be the w� in (5). Then �

y;x

x;x+1

is invalid because type(y) 6= type(x), i.e. y is a natural

number whereas x is real. On the other hand �

y;x

y+2;x+1

is a valid substitution and evaluates

to p ^ 9z(z = y + 6) ^ (x + 1 =

p

2).

Note that

(x + x + y)

x; y

x+y;z

� (x + y) + (x + y) + z

[(x + x + y)

x

x+y

]

y

z

� (x + z) + (x + z) + z

2 PREDICATE LOGIC | PL 14

2.6 Relativized quanti�ers

(8x : � : �)

def

= 8x(� ! �)

(9x : � : �)

def

= 9x(�^�)

For example, consider a programming language in which we have the declaration

var s: array [1:3] of integer

Then to express the assertion:\every element in the array s is greater than 23", we could

write:

(8x : q(1; x)^q(x; 3) : r(s(x); 23)) (10)

where

type(x) : � the integers (1,3 and 23 are integer constants)

q(x; y) : � x is less than or equal to y | q is a two place relation symbol

s(x) : � the x-th element of array s | s is a one place function symbol

r(x; y) : � x is greater than or equal to y | r is a two-place relation symbol

In a more \relaxed" notation we could write:

(8x : 1 � x � 3 : s(x) � 23) (11)

in which the fact that x is an integer is implicit. Note that 1 � x � 3 expresses the range

of the array pointer x and s(x) � 23 the assertion we want to make over that range.

Note that not even (10) is really a w� of PL, as it abbreviates

8x[q(1; x)^q(x; 3)) ! r(s(x); 23)] (12)

which is a w� of PL.

When we write the relaxed statement (11) what we really mean formally is (12)

2.7 Inference Rules of PL

2 PREDICATE LOGIC | PL 15

Introduction Rules Elimination Rules

(8I)

H ` �

H ` 8x�

(8E)

H ` 8x�

H ` �

x

t

Provided x 62 FV (H) �

x

t

is safe substitution

H ` �

x

c

H ` 8x�

Provided c does not occur in H and �

(9I)

H ` �

x

t

H ` 9x�

(9E)

H ` (9x)�

H;�

x

c

` �

H ` �

Partial substitution is allowed Provided c does not occur in H;� and �

Derived Rules

Quanti�er Negation | (QN)

H ` 8x:�

H ` :9x�

H ` :8x�

H ` 9x:�

Equivalence Substitution | (ES)

H ` 8x

1

� � � 8x

n

[� � �]

H ` � � �

�

�

where � is a sub-w� of � and �

�

�

stands for the w� similar

to � except one or more occurrences of the sub-w� � in

� are replaced with �. The variables x

1

; � � � ; x

n

must

include all variables that occur bound in �.

2 PREDICATE LOGIC | PL 16

Rules for equality

Re
exivity of equality

t = t

for any term t

Term substitution | (TS)

H ` t

1

= t

2

H ` �

x

t

1

� �

x

t

2

Partial substitution is allowed.

Leibniz' Rule | (LL)

H ` t

1

= t

2

H ` f(�; � � � ; �)

x

t

1

= f(�; � � � ; �)

x

t

2

for any function f(�; � � � ; �) with free-variable x.

Partial substitution is allowed.

Derived rules for equality

Variations on Leibniz | (LL)

H ` :�

x

t

1

H ` �

x

t

2

H ` t

1

6= t

2

provided x 2 FV (�), and where t

1

6= t

2

def

= :(t

1

=

t

2

) and partial substitution is allowed.

Symmetry | (Sm)

H ` t

1

= t

2

H ` t

2

= t

1

H ` t

1

6= t

2

H ` t

2

6= t

1

Transitivity

H ` t

1

= t

2

H ` t

2

= t

3

H ` t

1

= t

3

2 PREDICATE LOGIC | PL 17

Theorems derived from no premises

(T1) ` 8x(�^�) � (8x�)^(8x�)

(T2) ` 9x(�_�) � 9x�)_(9x�)

(T3) ` 8x(�_�) � �_(8x�)

Provided that x62FV (�)

(T4) ` 9x(�^�) � �^(9x�)

Provided that x62FV (�)

(T5) ` 8x(� ! �) ! [(8x�) ! (8x�)]

(T6) ` (8x : false : �) � true

(T7) ` (8x : � : true) � true

(T8) ` (9x : false : �) � false

(T9) ` (9x : � : false) � false

(T10) ` :(8x : � : �) � (9x : � : :�)

(T11) ` :(9x : � : �) � (8x : � : :�)

(T12) ` 9x8y� ! 8y9x�

But not the converse

2 PREDICATE LOGIC | PL 18

Theorems for equality

(T15) Transitivity 8x8y8z[x = y^y = z ! x = z]

(T16) Symmetry 8x8y[x = y ! y = x]

Theorems for integers | Domain Reasoning (DR)

(T20) Transitivity 8i8j8k[i � j^j � k ! i � k]

(T21) Symmetry 8i8j[i � j^j � i ! i = j]

(T22) 8i8j[i � j^j � i � false]

(T23) 8i8j8k[i � j ! i+ k � j + k]

(T24) 8i8j8k[k > 0 ! (i � j ! k � i � k � j)]

(T25) 8i8j8k[k < 0 ! (i � j ! k � i � k � j)]

(T26) 8i8j[i < j � i + 1 � j]

(T27) 8i8j[i � j + 1 � i � j]

(T28) 8i8j[(k � j)� j = k] Where � is integer division

(T29) 8i8j8k[j > 0^i � k ! (i � j) � (k � j)]

(T30) Associativity 8i8j8k[i+ (k + j) = (i + k) + j)]

(T31) Commutativity 8i8j[i+ j = j + 1]

(T32) 8i8j[i 6= j ! i < j_j < i]

(T33) 1 > 0

(T34) 8i8j[i < j � (9z : z > 0 : i + z = j)]

2.8 Relaxed proofs

We do not usually give a fully formal proof in which each line is justi�ed by one of the

rules of inference provided or one of the theorems. Usually we give a proof outline with

enough \hints" to convince the reader that a fully formal proof could be constructed.

For example, to prove � ! �, we might write

�

) f Hint why � ! �

1

g

�

1

) f Hint why �

1

! �

2

g

�

2

) f Hint why �

2

! �g

�

3 SEMANTICS OF PL 19

Example: Consider the following proof of (T6).

(8x : false : �)

, fDe�nition of relativized quanti�ersg

8x[false ! �]

, fsentential reasoning, i.e. SDg

8x[:false_�]

, fSDg

8x[true_�]

, fSDg

8x[true]

, fcombination of (8E) and (8I), i.e. PDg

true

At each step you should say what kind of reasoning you are using (i.e. SD, PD or

DR) and where necesary give a hint as to why the appropriate reaoning is in order. Until

you become experienced rather �ll in too much justi�cation rather than too little.

3 Semantics of PL

Up until now we have been dealing with the syntax of SL and PL including the rules

of how to form terms and w�s,the rules for free variables of formulas and the rules for

doing derivations in SD and PD.

Now we want to discuss the semantics of PL (which includes SL as a subset). The

semantics of a w� is its meaning. When we gave an interpretation or symbolization for

translating a w� into English we were in fact doing an informal kind of semantics. For

example, when we write

l(x; y) := \x is less than y"

we were really giving an interpretation or semantics for the w� l(x; y).

It is important to realize that a w� such as l(x; y) in and of itself has no meaning

| it is merely a string of symbols of PL. The w� l(x; y) only takes on a meaning

once an interpretation is given. What is the signi�cance of an interpretation? Given an

interpretation for a w� one can evaluate whether the w� is true under that interpretation

or not.

Example 1 Consider the w� [p_l(x; f(a; y))]. An interpretation I for the w� is made

up of two kinds of information: a structure S and a state-assignment s, i.e. I = (S; s).

3 SEMANTICS OF PL 20

The structure S consists of the universe of discourse (i.e. the type of each variable)

and the meaning of each constant, function and relation symbol, e.g.

type(x) := f0; 1; 2; � � �g

type(y) := f0; 1; 2; � � �g

type(p) := ftrue; falseg

a := the number \5" in type(x)

f(x; y) := x + y

l(x; y) := x < y

In the sequel we will write S(a) to denote the value of a in the structure S | in

this case S(a) = 5. We write S(f) to denote the concrete function \+" for the

nonnegative integers; f on its own is an uninterpreted function symbol having no

meaning, it is only S(f) that has the meaning \plus". We write S(l) to denote

the \less than" relation on the nonnegative integers. In this example, l is an

uninterpreted relation symbol. S(l) stands for the concrete relation <, which is

de�ned formally by a set of ordered pairs, i.e.

S(l)

def

= f(x; y)jx < yg

= f(0; 1); (0; 2); � � � ; (1; 2); (1; 3); � � �g

Thus, for example, S(l)(4; 5) holds true precisely when (4; 5) 2 S(l).

The state-assignment s is a map that gives each free-variable of of the w� [p_l(x; f(a; y))]

a value in its corresponding type, e.g.

x := 8

y := 4

p := false

Another way of denoting the state

3

s is to write

s = f(x; 8); (y; 4); (p; false)g

The state map gives values only to the free-variables of the w� as the bound

occurrences of variables really act as \dummy" variables. If the dummy variable

is universally quanti�ed then it is a place holder that stands for all objects in

the universe of discourse. If the dummy variable is existentially quanti�ed then it

stands for some object in the universe of discourse. Either way, a dummy variable

does not need to be given a value by the state map in order for the truth value of

the w� to be evaluated.

3

We will often use the shorter word \state" instead of state-assignment

3 SEMANTICS OF PL 21

The w� [p_l(x; f(a; y))] when evaluated in the structure given above becomes

false or x < (5 + y)

which itself cannot be evaluated (to true or false) unless we also have the values of its

free-variables. The value of the free-variables x; y; p is given by the state and thus we

obtain:

false or 8 < (5 + 4)

which is true.

The main point here is that both the structure and the state-assignment are needed

to evaluate the truth value of the w�.

Of course, [p_l(x; f(a; y))] evaluated in a di�erent interpretation would mean some-

thing very di�erent and hence have a di�erent truth value.

3.1 Extension of the state map to a map on terms

A state map s for a w� � is an assignment of values from an appropriate universe of

discourse to the set of all free-variables of �. Thus, in Example 1, s(x) = 8 where 8 is an

object in type(x), s(y) = 4 where 4 is an object in type(y), and s(p) = false where false

is an object in type(p).

Although the state map is de�ned for any free-variable of �, it is has not yet been

de�ned for a given term t occurring in �. In Example 1, the term f(a; y) under the state

s has as yet no de�ned value | intuitively we would like to give it the value (5 + 4), i.e.

9. What is needed is a de�nition of the value of an arbitrary term t for a given state s.

Since terms were de�ned recursively in De�nition 4, we must de�ne the evalution of an

arbitrary term in a state recursively using the recursive de�nition of terms.

De�nition 8 [Evaluation of a term t in a state s] Let I = (S; s) be an interpretation.

Base Case 1. If the term t is a constant c then s(t) = S(c), where S(c) is the value

of the constant c in the structure S.

2. If the term t is a variable v then s(t) = s(v).

Inductive Case If the term t is f(t

1

; � � � ; t

n

), where f is any n-ary function symbol and

t

1

; � � � ; t

n

are any terms, then

s(t) = S(f)(s(t

1

); � � � ; s(t

n

))

where S(f) is the concrete function assigned to the function symbol f by the

structure S.

3 SEMANTICS OF PL 22

For the term f(a; y) in Example 1 we have by the above de�ntion

s(f(a; y)) = S(f)(s(a); s(y))

= s(a) + s(y)

= S(a) + 4

= 5 + 4

= 9

The state s

0

= f(x; 8); (y; 7); (p; false)g is similar to the state s = f(x; 8); (y; 4); (p; false)g

at all variables except at the variable y where it has the value 7 instead of 4. We then

write

s

0

= (s; y: 7)

The formal de�nition of the state update is:

De�nition 9 (State-update notation) Let s be any state, let x be any variable sym-

bol, and let d be any object in the universe of discourse.

(s; x: d)(v)

def

=

(

d if v = x

s(v) otherwise, i.e. if v 6= x

Note that x may not be in the domain of the state map s in which case case the map

(s; x: d) is extended to include x in its domain with (s; x: d)(x) = d. For example, if

s = f(x; 8); (y; 4); (p; false)g then

(s; z: 19) = f(x; 8); (y; 4); (p; false); (z; 19)g

Proposition 1 (Term substitution lemma) Let s be any state, let t; t

1

be any terms,

and let x be any variable symbol. Then

(s; x: s(t

1

))(t) = s(t

x

t

1

)

The proof of the above theorem must be done by induction on terms.

3.2 The satisfaction relation

De�nition 10 Let I = (S; s). The interpretation (I; x: d) is a variant-interpretation of

I which is de�ned as

(I; x: d)

def

= (S; (s; x: d))

i.e. (I; x: d) is identical to I except at x where it has the value d.

3 SEMANTICS OF PL 23

We are now in a position to de�ne the satisfaction relation. Informally we say that

a w� � is satis�ed in an interpretation I if � evaluates to true in the interpretation, in

which case we write j=

I

�.

De�nition 11 (Satisfaction) Let � be any w� and let I = (S; s) be an interpretation

for the w�. The satisfaction relation j=

I

� is de�ned inductively on the structure of w�s

as follows:

Base Case 1. If � is an atomic predicate p, where p has arity zero, then

j=

I

p i� s(p) = true

2. If � is an atomic predicate p(t

1

; � � � ; t

n

), for any terms t

1

; � � � ; t

n

, then

j=

I

p(t

1

; � � � ; t

n

) i� (s(t

1

); � � � ; s(t

n

)) 2 S(p)

Inductive Case 1. If � is a w� then

j=

I

:� i� notj=

I

�

2. If � and � are w�s then

j=

I

(�^�) i� j=

I

� and j=

I

�

j=

I

(�_�) i� j=

I

� or j=

I

�

j=

I

(�! �) i� [not j=

I

�] or j=

I

�

j=

I

(� � �) i� j=

I

� i� j=

I

�

3. If � is a w� then

j=

I

9x� i� (there is some d in type(x))j=

(I;x:d)

�

j=

I

8x� i� (for each d in type(x))j=

(I;x:d)

�

Example 2 Question: Let I be the interpretation given in Example 1. Check whether

p_8z[l(z; a)^l(x; f(a; y))] is satis�ed in I, i.e. check for the truth of

j=

I

p_8z[l(z; a)^l(x; f(a; y))]

3 SEMANTICS OF PL 24

Answer: Let s

0

def

= (s; z: d). Then by the inductive de�nition of satisfaction we have:

j=

I

p_8z[l(z; a)^l(x; f(a; y))] iff j=

I

p or j=

I

8z[l(z; a)^l(x; f(a; y))]

iff s(p) or j=

I

8z[l(z; a)^l(x; f(a; y))]

iff true or j=

I

8z[l(z; a)^l(x; f(a; y))]

iff j=

I

8z[l(z; a)^l(x; f(a; y))]

iff (for all d) j=

(I; z:d)

l(z; a)^l(x; f(a; y))

iff (for all d) [j=

(I; z:d)

l(z; a) and j=

(I; z:d)

l(x; f(a; y))]

iff (for all d) [(s

0

(z);S(a)) 2 S(l) and (s

0

(x); s

0

(f(a; y))) 2 S(l)]

iff (for all d) [(d; 5) 2 S(l) and (8; s

0

(a) + s

0

(y)) 2 S(l)]

iff (for all d) [(d; 5) 2 S(l) and (8; s

0

(a) + s

0

(y)) 2 S(l)]

iff (for all d) [(d; 5) 2 S(l) and (8; 5 + 4) 2 S(l)]

iff (for all d) [(d; 5) 2 S(l) and (8; 9) 2 S(l)]

iff [(for all d) ((d; 5) 2 S(l)) and (8; 9) 2 S(l)]

iff [(for all d) ((d; 5) 2 S(l)) and true]

iff (for all d) ((d; 5) 2 S(l))

iff (for all d) (d < 5)

iff false, e.g. if d = 6 then d 6< 5.

Thus, the w� p_8z[l(z; a)^l(x; f(a; y))] is not satis�ed in I.

Proposition 2 (Formula substitution lemma) Let � be any w�, x any variable, t

any term, and let I any interpretation for �. Then

j=

I

�

x

t

, j=

(I;x:s(t))

�

The proof of the proposition must be done by induction on w�s �.

De�nition 12 The following de�nitions all use the concept of satisfaction. Let � be

any set o� w�s. Then

j=

I

� | � is satis�ed in I

j=

I

� , (for all � 2 �) j=

I

�

�j=

I

� | � entails � in I

�j=

I

� , [j=

I

�) j=

I

�]

3 SEMANTICS OF PL 25

j= � | � is valid

4

j= � , (for any interpretation I) j=

I

�

� j= � | � entails �

� j= � , (for any interpretation I) �j=

I

�

3.3 Our proof system is sound

Consider the inference rule (8E).

� ` 8x�

� ` �

x

t

In the syntactic proof system PD we were able to make arguments of the form � ` �

where � is the set of premises and � the last line of the proof. The proof was done

using the rules of inference. How do we know that the rules of inference are correct. i.e.

preserve truth?

We now have a way of checking that the rules of inference are indeed sound, i.e.

preserve validity. For example, for the (8E) rule it is su�cient to check that if � entails

8x� then � must also entail �

x

t

, i.e. we must check that

� j= 8x�) � j= �

x

t

(13)

The reader may, as an exercise, prove that (13) is equivalent to

8x� j= �

x

t

(14)

Example 3 ((8E) is sound) Prove that (8E) is sound.

Proof: We must show the truth of (14), i.e. by de�nition we must show the truth of

(for each interpretation I) [j=

I

8x�) j=

I

�

x

t

]

Let I = (S; s) be any interpretation, and note that s(t) is some element in type(x).

j=

I

8x�

, fBy De�nition 11 of satisfaction, Inductive Case 3 g

(for all d in type(x)) j=

(I;x:d)

�

) fs(t) 2 type(x) g

j=

(I;x:s(t))

�

, fProposition 2: Formula substitution lemmag

j=

I

�

x

t

4

In Portararo, quanti�cationally true.

3 SEMANTICS OF PL 26

If we prove the soundness of each rule of inference of SD, then in e�ect we have proved

the soundness of the SD proof system, i.e.

Proposition 3 (SD is sound) For any set o� w�s �, and any w� �

� ` �) � j= �

3.4 Checking the validity of an argument

Suppose we have a symbolic argument such as

8x[p(x) ! q(x)]

p(a)

q(a)

and we want to check the correctness of the argument, irrespective of the interpretation

chosen. Obviously we would like to check if

f8x[p(x) ! q(x)]; p(a)g j= q(a)

i.e.we would like to check that f8x[p(x) ! q(x)]; p(a)g entails q(a). There are two ways

to do this check:

Use the proof system SD Use the proof system to prove that q(a) can be derived

from f8x[p(x) ! q(x)]; p(a)g, i.e. show that f8x[p(x) ! q(x)]; p(a)g ` q(a). Then

use soundness of the proof system to argue that indeed f8x[p(x) ! q(x)]; p(a)g j=

q(a) holds.

Find a counterexample Find an interpretation I in which f8x[p(x) ! q(x)]; p(a)gj=

I

q(a)

fails to hold true. Finding just one such failing interpretation is su�cient to show

that

not f8x[p(x) ! q(x)]; p(a)g j= q(a)

i.e. the argument is invalid. Note that, the argument might still be satis�able in

another interpretation; however, we can no longer claim that the argument is in

general correct.

If you could �nd even one counterexample to any of the SD inference rules, then

SD would be unsound.

