
Composition and Refinement of

Discrete Real-Time Systems

Jonathan S. Ostroff1

Department Of Computer Science, York University,
4700 Keele Street, North York Ontario, Canada, M3J 1P3.

Email: jonathan@cs.yorku.ca Tel: 416-736-2100 X77882 Fax: 416-736-5872.

Abstract: Reactive systems exhibit ongoing, possibly non-terminating, interaction
with the environment. Real-time systems are reactive systems that must satisfy
quantitative timing constraints. This paper presents a structured compositional design
method for discrete real-time systems that can be used to combat the combinatorial
explosion of states in the verification of large systems. A composition rule describes how
the correctness of the system can be determined from the correctness of its modules,
without knowledge of their internal structure. The advantage of compositional
verification is clear. Each module is both simpler and smaller than the system itself.
Composition requires the use of both model-checking and deductive techniques. A
refinement rule guarantees that specifications of high-level modules are preserved by
their implementations. The StateTime toolset is used to automate parts of compositional
designs using a combination of model-checking and simulation. The design method is
illustrated using a reactor shutdown system that cannot be verified using the StateTime
toolset (due to the combinatorial explosion of states) without compositional reasoning.
The reactor example also illustrates the use of the refinement rule.

Keywords: Real-time reactive systems, formal methods tools, statecharts,
temporal logic, modules, abstraction, refinement, composition, model checking.

1 .This research was supported with the help of NSERC (National Science and Engineering Research
Council of Canada).

$paratext[ReportTitle] 1

Table of Contents
1.0 Introduction..3

2.0 Background..6
2.1 Real Time Temporal Logic (RTTL)...6
2.2 Timed Transition Models (TTMs)...8
2.3 Parallel composition of TTMs...12
2.4 Overview of the StateTime toolset...12

3.0 Modules and module composition...15
3.1 Parallel composition of modules..16
3.2 Modes of interface variables..19
3.3 A small example of compositional reasoning..20

4.0 Module refinement...23
4.1 Observation equivalence of TTMs...23
4.2 Observation equivalence of modules...27

5.0 Modular Design of the delay reactor trip (DRT)...28
5.1 Informal description of the problem..28
5.2 Formal requirements..30
5.3 Problem to be solved..33
5.4 Controller design..34
5.5 Refining the controller...36
5.6 The design method...38

6.0 Conclusions and related work..39

7.0 References..42

Figure
FIGURE 1. Structure diagram for compositional design method...................................5
FIGURE 2. Plant module..14
FIGURE 3. The relay module...20
FIGURE 4. Module for majority voting logic...21
FIGURE 5. Observably equivalent TTMs..24
FIGURE 6. Analog implementation of the delay relay trip timing...............................29
FIGURE 7. The observable inputs and outputs of the DRT..30
FIGURE 8. Architecture of the controller based on majority voting control................32
FIGURE 9. Structure diagram for the DRT..34
FIGURE 10. Control module..35
FIGURE 11. Refinement of microprocessor control module..37

$paratext[ReportTitle] 2

$paratext[ReportTitle] 3

1.0    Introduction
Reactive systems exhibit ongoing, possibly non-terminating, interaction with the

environment. Real-time systems are reactive systems that must satisfy quantitative timing
constraints. This paper presents a structured compositional design method for discrete
real-time systems that can be used to combat the combinatorial explosion of states in the
verification of large systems.

A system is decomposed into parallel components called modules. A composition rule
describes how the correctness of the system can be determined from the correctness of its
modules, without knowledge of their interior structure. The advantage of compositional
verification is clear. Each module is both simpler and smaller than the system itself.

In addition to system decomposition, an abstract specification of a module may need
to be refined into implementations closer to code. A refinement rule guarantees that
specifications of abstract modules are preserved by their implementations.

The StateTime toolset is used to automate parts of compositional designs using a
combination of model-checking and simulation. The design method is illustrated using a
reactor shutdown system that involves the use of three microprocessors, each
independently checking sensor readings, with the final decision to shut down based on a
majority vote. The single microprocessor version can be checked in the StateTime toolset
without compositional reasoning. However, the three-microprocessor system suffers from
a combinatorial explosion of states and a compositional approach is thus needed. The
reactor example also illustrates the use of the refinement rule.

The compositional design method is based on the TTM/RTTL framework [36,37,40]
which consists of the following:

• A constructive description language called timed transition models (TTMs) for
describing reactive systems. A TTM is a guarded transition system with lower and
upper time bounds on the transitions that relate to the occurrence of a special clock
transition tick. Concurrent real-time programs, nondeterministic timed Petri nets and
diverse mechanisms for timing, synchronization and communication constructs can be
converted into TTMs in a straightforward manner.

• A declarative specification language called real-time temporal logic (RTTL) for
describing the requirements that a TTM should satisfy without discussing how the
TTM is constructed. RTTL is a timed extension of linear temporal logic augmented
with a transition variable for describing TTM events.

• Analysis techniques for demonstrating that a TTM conforms to its specification.
Model-checking and a proof system for theorem proving are the main analysis
techniques. Model-checking is a method for automatically verifying concurrent
systems in which a finite-state model of the system (TTM) is compared with a
correctness requirement (RTTL). Since time is a monotonically increasing variable,
the state-space of naive timed systems is automatically infinite state. Hence, special
care is taken in the model-checking algorithms to keep the state space finite provided
the data types are finite.

$paratext[ReportTitle] 4

• A toolset called StateTime [38] which has a visual statechart-like executable language
for representing TTMs hierarchically. An automatic translator to the model-checker
and theorem prover STeP [31] allows for analysis. Although STeP is designed for
untimed systems, the automatic translation is done in such a way so as to allow for the
use of STeP’s model-checking facilities. The STeP theorem prover can also be used for
simplifying properties.

The TTM/RTTL framework was initially conceived for the analysis of closed
systems whose behaviour is completely determined by the state of the system itself [17].
In a closed system, we assume that the environment may set the initial values of input
variables, but, once the system starts running the environment cannot modify any of the
system variables. Thus, all changes to the system variables are accounted for by the
transitions of the program. By contrast, reactive systems are best thought of as open
systems whose behaviour depends on continuous interaction with the environment. We
provide below an informal sketch of how the framework is extended to the open setting.
The concepts will be made precise in the sequel.

This paper defines the notion of an open real-time reactive module    where i is the
module interface stub (e.g. variables or channels shared with the environment), b its body
(a TTM) and s the module specification (an RTTL formula in the interface variables). The
module specification s must hold for all module computations including arbitrary changes
that the environment might make at any time to the interface variables. The composition
of two modules    is also a module.

Not all parts of a module are always determined. For example, the interface stub and
specification may be given, but not the body. We denote a module with an unspecified
body by . A Composition Rule (justified in the sequel) given by

Composition Rule:

states that if each of the modules satisfy their respective specifications, then the system
satisfies its global requirement    provided the requirement can be derived from the
conjunction of the module specifications. The composition rule allows for both bottom-
up and top-down design. In the bottom-up method, the independently designed and
implemented modules (with respective specifications) when brought together exhibit the
emergent property r provided .

In top-down development, the system under design (sud) that is required to conform to
a global system requirement r can be decomposed into modules    and    provided . At this
stage, we have not yet committed to module implementations. Each of these modules can
then be given to a programmer whose job it is to develop a body that satisfies the module
specification.

The body of module , whose variables can be reduced to finite ranges, can be shown to
satisfy its module specification (i.e.) by model-checking provided the effects of the
environment are taken into account. The proof of , except in the simplest of cases,
requires the use of deductive techniques (RTTL theorem proving). Thus the composition
rule usually involves a combination of algorithmic and deductive techniques.

It is advisable that the programmer design and code the body of a module at as high a
level as possible (using TTMs). This keeps the body simple and small which makes it
understandable and prevents state explosion. There is then a need to refine the high-level

$paratext[ReportTitle] 5

module body into a TTM that is closer to implementation. For example, an abstract TTM
may directly specify a delay of 50 ticks, but the implementation on a microprocessor
might be a loop construct that increments a counter every traversal of the loop. The
internal loop and counter are unobservable to an external agent interacting with the
module as the agent can only observe changes in the interface variables.

Two modules with the same interface are observationally equivalent (written:) if they
agree on timed observations of their interface variables. Under suitable conditions
(presented in the sequel) a Refinement Rule states that:

Refinement Rule: for any module specification s.

Hence, if    is observationally equivalent to , then    can replace    wherever it occurs with a
guarantee that any module specification    will be preserved. There are efficient
polynomial algorithms for checking observational equivalence of finite state systems, and
equivalence preserving transformations are available for refining infinite state systems.

Given a requirement r that a system sud must satisfy, the composition and refinement
rules allow for a systematic modular development method represented by the tree in
Fig. 1. Each step imposes a proof obligation as shown in the right hand column of the
figure. The process continues until all the modules have bodies that can be directly coded
into the given program language. We need not adhere to the ordering suggested by the
figure. For example, the complete implementation of    can take place before the other
modules are designed. It is also possible to reverse-engineer already implemented code
and move bottom-up.

FIGURE 1. Structure diagram for compositional design
method

We proceed as follows in the rest of this paper. In section 2 we provide background
information needed to understand the TTM/RTTL framework and the StateTime toolset.
Section 3 defines the notion of a module, modular validity and the composition rule. It
also describes how conditional specifications can be used to constrain module
environments. Section 4 presents the refinement rule for modules based on the notion of
observational equivalence of TTMs developed in [26]. Observational equivalence of
TTMs will be defined precisely in the sequel, but the reader is referred to [27] for a set of
TTM equivalence preserving transformations and to [28] for an efficient polynomial time
algorithm to check TTM observational equivalence. Module observational equivalence is
defined in such a way that the TTM results can be applied directly to module equivalence
as well. In Section 5, we use the composition and refinement rules for the structured
design of a reactor shutdown system. The design method is also discussed in some detail
(Sect. 5.6). Comparisons to other approaches and concluding remarks are presented in
Section 6.

2.0    Background
In the sequel, we use relative quantification    where Q is a quantifier (" or $), T is the

type of the dummy variable x, R is the range of the dummy variable and P a predicate

$paratext[ReportTitle] 6

[14]. For example,    means “for all values of an integer variable i, if i is at least as large
as 3 then i has property P”. If no range is supplied then it is true. The notation    generally
means that . For example,    means that we are defining    by . In TTM update functions
(see sequel),    denotes assignment, i.e. .

2.1    Real Time Temporal Logic (RTTL)
Linear time temporal logic [32] uses temporal connectives such as h (henceforth),   

(next), e (eventually), U (until) and past operators such as    (previous state) to represent
qualitative temporal properties. The standard connectives are applied to state-formulas
(which are the atomic predicates) to obtain temporal logic formulas.

Real-time temporal logic (RTTL) is obtained by adding a fair tick transition and the
ability to refer to system transitions via a distinguished transition variable. We refer the
reader to [32] for a precise discussion of standard temporal logic and to [37,40] for real-
time temporal logic. We now provide a brief review of some of the basic concepts.

Let    and    be the system variables where the type of    is the integers and    has a set
type. An example of a state-formula f is . In this formula, the bound variable    is just a
dummy variable and is not considered a system variable. A state is a mapping from the
system variables to values in their relevant types. Since    evaluates to true in the state
given by , we write    (state s satisfies f), and we call s an f-state.

A temporal logic formula such as    (“eventually    is true”) cannot be interpreted in a
single state; rather it is evaluated in an infinite sequence of states    given by    where    (“
satisfies “) will mean that there is at least one state subsequent to the initial state that is an
f-state. An inductive definition of the satisfaction relation    can then be given. Let
denote the satisfaction of temporal formula f at a position    of the sequence . For a state-
formula , .

We can then give the appropriate inductive definitions for the propositional
connectives (e.g. negation, conjunction, implication) followed by the usual definition of
the temporal operators. For example, for temporal logic formulas g and h, the until
operator is defined by . For an arbitrary temporal logic formula ,    is an abbreviation for .
A formula    is generally-valid iff .

The implication () states only that “f implies eventually g” at the initial position of the
computation, i.e. if    holds at the initial position then there is a subsequent position where
holds. As a notational convenience, we will write    for    which states that the implication
holds at all positions of the sequence. In general, the double arrow entails operator is
defined by for any temporal logic formulas p and q.

We need the notion of timed transition sequences for the description of real-time
systems. Since we envisage that a transition    causes a transfer from state    to state , we
may rewrite the infinite sequence of states    as:

(Eq. 1)

The start transition    (e.g. a computer reboot) puts the system in state . The transition
takes the system from state    to    and so on. We give the initial transition    the special
name start. The distinguished variable    (the transition variable) is always part of the
state. The transition variable is used to record the last event taken, i.e. for the sequence

$paratext[ReportTitle] 7

we have that    and . The reason we need a start transition is so that , like all other state
variables, has an initial value.

The transition variable can be used to refer directly to event occurrences. For example,
for a traffic system, the temporal logic formula    asserts that anytime the light turns red, it
must eventually turn green.

In order to represent time, we introduce the special transition tick. A timed sequence
must satisfy the ticking constraint which asserts that there are an infinite number of ticks
occurring in the sequence, i.e. . Thus, time must progress irrespective of what happens in
a system or its environment. It is possible for any finite number of transitions to occur
between two ticks of the clock.

We may use quantified Manna-Pnueli temporal logic to define the bounded real-time
until operator, , which in turn can be used to express a variety of important real-time
properties. Informally2, the meaning of the bounded until operator is that eventually    will
occur at a time between    and    ticks from now; until then    must hold. Other bounded
operators can then be defined as follows:

Bounded response: p must hold after the l-th
tick but before the -th tick.
 must hold before the -th tick.

Bounded invariance:    must hold until the -th
tick.
Exact time:    is true in exactly    ticks.

The formula    asserts that p will hold before the next tick of the clock. Several state
changes can occur before p occurs without the clock advancing. The    operator can often
be used in place of the next operator where there is a need for stuttering-invariant
formulas, i.e. formulas that are “robust” with respect to unobservable moves of the
environment. Some further examples of clocked properties are:

• : If    holds initially, then eventually between 3 and 7 ticks    holds, and    must hold
continuously until then. This property is asserted only at the initial position.

• : Every position satisfying    is followed within 4 ticks by , and    holds continuously
until then.

• : If p holds at a position, then at some subsequent position before the next clock tick
there should be the start of an interval of duration 2 ticks during which q holds
continuously.

• : The property    cannot become true sooner than 3 ticks after any occurrence of the
property .
We often need to compare expressions in consecutive states. We therefore introduce an

2 . Formally, the bounded until operator is defined using a flexible clock variable (that is
incremented by one every time the clock ticks), and a rigid time variable (that retains the same value
over all states) as follows: . Please refer to [36,40] for the precise details. Since the bounded time
operators are defined using ordinary quantified temporal logic, the untimed temporal theorem prover
STeP [31] can be used to show the validity of theorems such as , which can, in principal, be used for the
deductive reasoning in the sequel.

$paratext[ReportTitle] 8

abbreviation for the next value of a variable , written . For example, the formula    asserts
that the value of    is greater in every successor state that it is in its immediate predecessor
(see [32] for the precise details).

2.2    Timed Transition Models (TTMs)
TTMs are timed extensions of the fair transition systems of Manna and Pnueli [32].

The extension involves lower and upper time bound constraints on transitions, that refer
to the number of occurrences of the special transition tick. A TTM M is defined as a 4-
tuple    as follows:

• : a finite set of typed system variables. The distinguished transition variable    is always
in V, where . The variables set also include control and data variables that are used to
describe the various parts of M. Each state of M is a map from V to its types; the set of
all states is denoted by    (or just    when it is clear what the TTM is).

• I: the initial condition. This is a satisfiable boolean valued expression in the system
variables that characterizes the states at which the execution of the TTM can begin. A
state s satisfying I is called an initial state.

• T: a finite set of transitions which includes the distinguished transitions start and tick.
Each transition    is a function    that maps a prestate s in    to a (possibly empty) set of -
successor states . An empty successor set means that the transition is disabled (i.e.
cannot be taken from the prestate). A successor state    is also called a poststate of
from s. If the set of successor states consists of a single poststate, then the transition is
deterministic. If there is more than one poststate, then the transition is
nondeterministic.

• F: a fairness set where . Informally, the fairness constraint for each transition
disallows computations in which    is enabled infinitely often but is taken only finitely
many times3.

Since, in general, we do not need nondeterministic transitions4, we can also describe a
transition    by its enabling condition    (the condition under which the transition
becomes eligible to be taken), and a simultaneous update function

where    and    are expressions in the system variables, which indicates that the values of
in the poststate    are    respectively, where    is the prestate. No other system variables (e.g.
) are changed. The transition is enabled in a state s (written:) if    — otherwise    is said to

3 .Fairness is defined more formally in the sequel. A weaker notion of fairness than the one defined in this
paper is called justice [32]. Fairness ensures that in interleaved parallel processes, the processes progress
independently (fairness distinguishes concurrency from nondeterminism). The stronger notion of
fairness defined in this paper is needed for the tick transition.

4 .There is one exception to the rule. When is used in transition updates it assigns arbitrary values to and
in their appropriate types. No assumptions are made about the probabilistic distributions of the values
assigned. This is a purely nondeterministic update that says any value in the type is possible in the
successor state. This notion will used to construct environments of modules (Sect. 3.0).

$paratext[ReportTitle] 9

be disabled.
The transition    can be fully characterized by a transition relation    given by

which is a predicate in the primed and unprimed system variables. Primed variables refer
to the value of the variables in the poststate, and unprimed variables refer to values in the
prestate (see [32] for precise details). By convention, we leave out conjuncts such as    for
which there is no change.

In addition to the enabling condition and update function, we associate with each non-
tick transition    a lower time bound    and an upper time bound , where . We allow bounds
and    but not . The meaning of these bounds will be defined formally in the sequel, but
we first provide an informal overview.

A timed transition    with lower time bound    ticks and upper time bound    ticks, must
delay l ticks before being taken, but must be taken by u ticks of the clock, provided it
remains continuously enabled, and is not disabled by the occurrence of another transition
that might have the effect of disabling .

The operational semantics of TTMs will be described by the set of all its behaviours
called trajectories. Informally, a trajectory is a timed sequence of states that starts in an
initial state satisfying the initial condition of the TTM. From any state of the
computation, any enabled transition is taken in one atomic step. Either a tick transition is
taken at each step, in which case time advances, or a non-tick transition is taken, in which
case time stays the same. The resulting interleaving of enabled transitions allows us to
model concurrent processes5. When the transitions are taken, they update the variables
according to the transition update function. The clock must tick infinitely often in any
computation, and an arbitrary but finite number of (non-tick) transitions can be taken
between any two ticks of the clock. The lower and upper time bounds of transitions must
be respected.

A computation of a TTM , where    for    and , is a timed sequence satisfying the three
constraints below. In each case, we show how to write the constraint as a temporal logic
formula.

1. Initialization constraint: The first state of the computation satisfies the initial
condition, i.e. . The initialization constraint is thus represented by the temporal logic
formula . The transition start occurs once at the beginning of the computation and
never again.

2. Succession constraint: , i.e. every prestate at position i must have as its successor a
poststate according to the update function of    (the transition taken at position i). The
succession constraint can be expressed in RTTL as , where    is the transition relation
for .

3. Fairness constraint6: For each transition    in the fairness set, it is not the case that    is

5 .Actual systems may have overlapped rather than interleaved execution. However, provided an
appropriate fair set of transitions with the right level of atomicity is chosen, the interleaving model can
accurately describe overlapped execution (see [32, p103] for further discussion).

6 .The fairness constraint is included for generality but is not necessary for the example developed in the
sequel. However, real-time systems may have requirements where fairness is useful. For example, there

$paratext[ReportTitle] 10

infinitely often enabled beyond some position in the trajectory, but taken at only
finitely many positions in the trajectory.The fairness constraint can be written in
temporal logic as .

A timed sequence that satisfies the above three constraints is called a computation
of . A computation describes the behaviour of a Manna-Pnueli fair transition system
(enhanced with the tick of timed sequences). To describe the behaviour of timed
transition models, we further constrain computations by lower and upper time bound
constraints and call the resulting computations trajectories.

4. Lower bound constraint: for every transition    with lower bound , if    is taken at
position j of the computation, then there must exist a prior position    so that there are
at least    ticks of the clock between    and , and , i.e.    is enabled but not taken in the
states .

5. Upper bound constraint: for every transition    with upper bound , if    is enabled
at position j of the computation, then there must exist a subsequent position    with no
more than    ticks of the clock between    and , such that either    is taken or disabled at
position k.

As with the initialization, succession, and fairness constraints, both the bound constraints
can also be described in RTTL. For a non-tick transition    with lower time bound    (where
) and upper time bound , the bound constraint is:

(Eq. 2)

where , and where    (the previous temporal operator) holds at a position    of a trajectory
provided    is not the first position of the trajectory and    holds at position . If , then the
left conjunct    is replaced by true. If , then the right conjunct of the consequent in (Eq. 2)
is replaced by true. The bound constraint (for both lower and upper bounds) can be
written in temporal logic as:

(Eq. 3).

The moment of enablement    describes the relevant positions of a computation at which
the bound constraint for a transition    (that is enabled at that position) must be asserted. A
relevant position is either the initial position , or a position at which the transition has just
been taken    and is re-enabled, or a position where    has just become enabled .

Once a transition becomes enabled at some position, it begins to “mature” but cannot
be taken until its lower time bound number of ticks has been taken, at which point the
transition becomes “ripe” for execution. If the transition is continuously enabled during
maturation, then it can be taken any time after it becomes ripe, but it must be taken or
become disabled before the upper time bound number of ticks has expired. Thus,
transitions “mature” together as time advances but execute separately in an interleaving
manner.

may be a requirement to log every error to a file or printer; this does not have to happen within a precise
time as the requirement may merely be that the error is eventually logged. In the Fischer protocol,
mutual exclusion is ensured if certain precise timing constraints are satisfied; however, for response it
may be sufficient to specify that each process eventually returns to it’s non-critical region. For TTMs,
we allow in increasing stringency: spontaneous transitions, fair transitions and timed transitions. This
allows us to describe systems to the appropriate precision.

$paratext[ReportTitle] 11

As noted above, the initialization, succession, fairness and bound constraints can be
expressed in RTTL. The formula    defined by

(Eq. 4)

fully describes the set of all trajectories of the TTM M.
Since a trajectory of a TTM    is a timed sequence, the trajectory must also satisfy the

ticking constraint . However, there is the possibility of a conflict between the upper
bound and the ticking constraint (in which case no timed sequence will satisfy    and the
ticking constraint simultaneously). This happens in the presence of immediate transitions
of the type    that are self-loops — such a    is taken repeatedly yet the tick transition is
delayed indefinitely7. This is called a Zeno computation and the TTM is said to exhibit
Zeno behaviour. Any cycle of transitions whose elements are all immediate may also
exhibit Zeno behaviour. A TTM that exhibits Zeno behaviour cannot be implemented, and
hence we must find ways to ensure that our systems are non-Zeno.

The problem of Zeno computations can be avoided by disallowing self-looping
immediate transitions. However, immediate transitions are useful for modelling
“instantaneous” (i.e. before the clock ticks) reactions. If immediate transitions are used in
a TTM M, then we must check for the validity of    in every single computation that
satisfies the bound constraints. Fortunately, for those systems where model-checking can
be used, the ticking property can be verified automatically (e.g. see Table 1 in Sect. 5.5).
In the sequel, we assume that all TTMs are non-Zeno. This is not restrictive
at all for the examples of this paper because all TTMs can be model-checked to ensure
that they are non-Zeno.

The set of all trajectories of a TTM    is denoted by . If a trajectory    satisfies a
temporal logic formula , then we write . If an RTTL formula    is satisfied in all
trajectories of    (i.e.), then we write , and the formula    is said to be M-valid. Any
generally-valid formula is also M-valid. Any trajectory in    always satisfies ; hence, the
transition system M and the temporal logic formula    are two equivalent ways of
describing .

Theorem 1: For any (non-Zeno) TTM M and RTTL formula p in the variables of :
(a) , and (b) .

If we treat    as an axiom of the RTTL logic, then (Th. 1)(a) describes the relative
completeness of the logic for proving M-validities. An oracle is a device that is
guaranteed to provide a proof of any generally-valid RTTL formula. Hence to prove the
M-validity of p it is sufficient to submit to the oracle the formula . While the axiom    is
theoretically adequate it is not very practical. In practice the special proof rules in [36]
and model-checking (Sect. 2.4) are the preferred methods for proving M-validities.

7 .The StateTime tool automatically converts TTMs to fair transition systems [39] that can then be
analyzed using STeP (see Sect. 2.4). In this conversion, additional conjuncts are added to the enabling
condition of the tick transition that disables the tick transition when an urgent timed transition must be
taken. In a system with a selfloop transition, the tick transition is disabled indefinitely. This reflects the
conflict between the ticking constraint and the upper time bound constraint. The conversion procedure
does declare tick to be fair. However, since tick is disabled until the urgent transition is taken, the
fairness constraint is satisfied despite the fact that tick is not taken.

$paratext[ReportTitle] 12

2.3    Parallel composition of TTMs
The parallel composition    of two TTMs    and    is defined in [40] by:

• ,

• provided    is satisfiable,

• where    and hence , and

• where . We call    the composite TTM.
The above definition holds for shared variables but must be slightly modified for
synchronized transitions or channels as described in [40]. Both    and    synchronize with
respect to the start and tick transitions. The tick transition thus provides the composed
system with a uniform notion of time.

2.4    Overview of the StateTime toolset
The StateTime toolset assists the user (a) to describe devices and systems using a

graphical structured language, (b) to execute the description so as to validate that the
description is a reasonable model of the actual system, and (c) to check that the
description conforms to its requirements using model-checking. We give a brief
description below of the main features of the toolset needed for the sequel. The reader is
referred to [38] for a more complete description.

The main parts of the toolset of interest to us are the Build tool and its translator to
the theorem prover and model-checker STeP [31]. The Build tool is a window-based
front end for constructing compact visual models of real-time systems called TTMcharts.
TTMcharts resemble statecharts, but with a simpler semantics and with the additional
feature that transitions may have time bounds. We often use the terms TTMcharts, charts
and TTMs interchangeably as the semantics of TTMcharts is based on TTMs.

A chart is a hierarchy of objects. Objects describe control information and impose
structure on the operation of the system. An object is either primitive, parallel (called
AND in statecharts) or serial (XOR in statecharts). A primitive object has no internal
structure. A parallel object is constructed from a collection of child objects (or sub-
objects) by parallel composition. The parallel composition of child objects operates in all
of these child objects simultaneously. The entry into a parallel object via an event causes
the simultaneous entry into each of the child objects. The exit from the object causes the
simultaneous exit from all its children. A serial object is constructed from a collection of
child objects such that only one of the children operates at a time. The entry and exit from
a serial object via an event causes the simultaneous entry and exit of the currently
operating child object.

Charts may have data variables which are tested and set by events. Each non-primitive
serial (XOR) object has an object variable which is used to indicate which of its children
is currently operating. As an example, consider the plant chart (Fig. 2) which will be
described in more detail in Sect. 5.2. The plant is the parallel composition of two children
called relay and output which we write as . The serial object relay has two children
closed and open which are primitive. Zooming in to the output object indicates that it
is the serial composition of the primitive object wait and the sub-object update. The
update object is the parallel composition of the pressure and power sub-objects which is

$paratext[ReportTitle] 13

where the pressure and power sensor values are updated.

FIGURE 2. Plant module

module plant(C;P,W)
in C: {0,1} where /* relay activation.    causes the relay to open */
out R: {closed, open} where /* Relay position variable */
out P: {0,1} where    /* pressure variable where    is high pressure*/
out W: {0,1} where    /* power variable where    is high power*/

Body
private D: {wait,update}

Specification
(Eq. 5):   

The above module specification, inherited from Fig. 3 for the relay, is modularly-valid.
end module plant
The top-level objects relay and output have object variables    and    respectively where

and . The state-formula defined by    describes a state in which the relay is closed and the
next sensor update is two ticks away. The pressure    and power    are examples of data
variables.

A serial object begins execution at its default indicated in bold; e.g. the default for the
output object is wait (Fig. 2). Once a cycle[0,0] event is taken in the output object,
nothing else can happen until two ticks of the clock are taken. After two but before the
third clock tick, the endupdate[2,2] event must occur (in this case, there are no other
events to preempt its occurrence). Before endupdate occurs, the pressure and power, or
just one of them, or no update at all may occur. The source of the endupdate event is the
structured object update; hence endupdate can be taken, no matter where execution in
update currently resides, and preempts the internal events of update.

A user can describe systems incrementally by composing sub-objects together to form
a super-object (bottom-up), or by decomposing a object into further sub-objects (top-
down). A chart can be executed at any point in the development cycle even before it is
finally fixed using the interactive simulation tool. The simulation tool displays chart
trajectories, and requires user interaction to select the transition to be taken at
nondeterministic selection points. The Build tool automatically translates TTMcharts into
fair transition systems according to the algorithm presented in [39]; STeP [31] can then be
used to model-check the chart for conformance to its specification.

The current StateTime toolset was not meant for modular systems. It suffers from
various deficiencies including the fact that it does not support interface stubs, automatic
generation of module environments (Sect. 3.0) and refinement. It is easy to verify
standard temporal properties, but an observer must be constructed for real-time
properties. However, the tool is used in this paper for the construction of modules, their
environments (done manually) and model-checking module properties. In principal, a
chart when loaded into STeP can also be verified using theorem proving — however,
theorem proving real-time properties proved tedious (especially on account of the need to
use quantifiers). We are currently updating StateTime to fully support real-time modules
and real-time formulas for both model-checking and theorem proving in a seamless

$paratext[ReportTitle] 14

fashion, based on the results of this paper.

3.0    Modules and module composition
Our notion of a module is based on the untimed reactive modules of Manna and Pnueli

[32]. Although the Manna Pnueli framework has been used for real-time systems [23], the
extension to their system for modules as delineated by Chang [8] is different to ours. The
main differences are: (a) our modules are supported by a model-checker, (b) we provide a
state-event refinement relation for modules, and (c) the reactive modules of [32] are not
fully compositional as their parallel composition yields a transition system, not another
module (composition of our modules yields another module). We now explain these
differences in more detail.

Chang [8] advocates a restricted assumption/guarantee style, wherein the
environmental assumption is stated as a restriction on the environment’s next-state
relation. He also presents a decision procedure in the propositional case and a deductive
system for the discrete time metric temporal logic used for transition modules. Although
Chang provides a deductive framework for real-time modules, he does not present model-
checking algorithms and tools (which are crucial for the needs of this paper).

Chang’s temporal operators are new; they are not expressed in ordinary untimed
temporal logic. The transition modules of [8] must be self-disabling, i.e. once a transition
is taken it cannot be again enabled (as in a self-loop). The TTM semantics of modules in
this paper does not impose this restriction on module descriptions.

The untimed refinement relation of [32] will not work for real-time modules (as will
be explained in Sect. 4.0). Hence, in Sect. 4.0, we introduce the necessary framework
needed for real-time module refinement.

The reactive modules of [32] are not fully compositional as their parallel composition
yields a transition system, not another module. In this section, we provide the notion of a
fully compositional discrete time transition module (like [8]). This requires a more
complete treatment of the notion of the interface stub and modes of variables in a module.
It also allows our treatment to deduce the trajectories of the composite module given its
sub-modules (Lemma 1), from which we obtain the notion that a module specification
must be satisfied independently of the behaviour of the environment (Lemma 2), and
finally yields the Composition Rule (Th. 2). By contrast, [32] starts with the notion of a
module as given in Lemma 2 and then proceeds from there to obtain the Composition
Rule.

A module    is defined by its interface stub , body    and RTTL specification :

1. The interface stub consists of the declaration of all the variables that are shared
between module m and other modules in its environment (defined more precisely in
Sect. 3.2). The stub also declares the initial values of all the shared variables. We let
denote the set of shared variables.

2. The body    is a program whose statements may refer only to variables declared
private to the body, or to variables in the interface. The set of private variables is
denoted . In the sequel, the body is a TTM, in which case we let    denote the TTM

$paratext[ReportTitle] 15

with variables set . The initial condition    is the conjunction of all the initial conditions
declared on both the private and interface variables.

3. The specification    of the module is an RTTL formula in the shared interface
variables. The specification asserts the required visible behaviour of the module.
In order to describe the behaviour of a module in an environment that may arbitrarily

modify the interface variables , we adjoin to the module TTM a spontaneous
environmental transition    defined by the update function    (i.e. the interface variables can
take on arbitrary values) while all the private variables remain unchanged, i.e. . Thus the
environmental transition may exhibit arbitrary behaviour, except that it may not modify
any private variables of the module. However, shared interface variables may be changed
at any point to any value in their respective types.

Definition 1: [The TTM associated with a module] The TTM    associated with the
module    is defined as    where    and    where    is the set of transitions of the body
TTM, and    is the set of fair transitions of the body (note that). Since    is a TTM, we
define    and    where    is the set of all private variables, i.e variables in . (As before, we
require that the timed transition model    be non-Zeno).

The succession constraint of    allows the body transitions to be interleaved in an arbitrary
fashion with the environmental transition. The environmental transition thus simulates the
behaviour of the module in an arbitrary context and allows the module to take stuttering
steps in which none of the module private variables change from the prestate to the
poststate.

The existentially quantified formula    in (Dfn. 1) describes the same system as    except
with the private variables    hidden, and thus this existential formula can be considered a
description of    by abstract implementation [32, p.340]. In this style of description, we
may choose the most straightforward implementation of the module    and describe its
operational behaviour using a TTM (e.g. if    is a buffer, then a private list variable may be
used to remember sequences of messages). What makes the implementation abstract is
the existential quantification of the private variables. This means that we do not require or
imply in any way that the real implementation of the module should contain any of these
private variables (e.g. the list variable in the case of a buffer need not be used).

Definition 2: [Modular-validity] The RTTL formula p is modularly-valid for the
module m (written) iff .

3.1    Parallel composition of modules
Modules    (with variable sets) for    are said to be compatible with each other if:

• each module has private variables that are not variables of the other module, i.e.    and ,
and

• the conjunction of their initial conditions is satisfiable, i.e.    is satisfiable, and

• the conjunction    is satisfiable.

Compatible module composition, , is defined by    where , i.e. some of the interface

$paratext[ReportTitle] 16

variables of the sub-modules may be hidden at the parent level.    is ordinary TTM
composition (Sect. 2.2). Finally .

The private variables of the composite is , and the initial condition is defined by . The
super-module    is itself a module; the TTM associated with this super-module is just the
TTM obtained from    together with the environmental transition that may change only
variables in    (i.e. it may not change any private variables).

In the next lemma, we assume that we have two modules    and . If an environmental
transition in a trajectory of module    has the same effect on its interface variables as a
transition    of , then we relabel the environmental transition in the trajectory to , and the
set of all the relabelled trajectories of    we call . A symmetric definition also provides us
with the set    of relabelled trajectories of .

Lemma 1: If    then .

Proof: Let . Trivially    and hence the initialization constraint of    is satisfied. For the
succession constraint, consider any position    of . Either the environment transition is
taken at position    or some transition of    is taken. The environment transition of    may
not modify any private variables of m and hence may also not modify private variables of
, so any environment step of    is also an environment step of . If some transition of    is
taken at position , then it is either a transition of    or of    that is taken. Since no transition
of    may modify private variables of , a step taken by a transition of    (say) is the same as
an environment step relative to    (the transition    must be renamed to an environmental
transition). Thus at any position either a transition of    is taken or an environment
transition of    is taken, and hence the succession constraint    holds. The fairness
constraint of    is also satisfied, as any transition of    that is enabled infinitely often but not
taken would also violate the fairness constraint of . The ticking constraint of    is also
satisfied, for suppose there is a position of    beyond which there is no tick of the clock for
, then the ticking constraint for    would also be violated. If a transition of    violates its
bound constraint, then the bound constraint on transitions of    will also be violated.
Hence    must also satisfy the bound constraint of . Since    satisfies the initialization,
succession, fairness, ticking and bound constraints of , it follows that    holds. By
symmetry it also follows that    holds. Thus .

For the converse, let . At any position of    either a transition of    or of    is taken, in
which case the same transition belonging    is taken, or an environment transition that is
an environment transition of both    and    is taken. This environment step must also be an
environment step of    as no private variables of    and    could have been changed. We can
make similar arguments as before for the other constraints but in the converse direction.
Hence . n

Lemma 2: Let modules    and    be compatible. Then
(a) , and
(b) For a module m,    for any compatible module    and RTTL property .

Proof: Follows directly from Lemma 1. n
Recall that a property is modularly-valid only if it is satisfied by all trajectories of the
module. Lemma 1 tells us that the trajectories of the super-module are always a subset of
those of its sub-modules. This means that a valid specification of a sub-module must also

$paratext[ReportTitle] 17

be valid for the super-module (Lemma 2a), and that a module specification remains valid
no matter what the behaviour of its environment is, provided the environment respects the
compatibility constraints (Lemma 2b).

Theorem 2: [Composition Rule].
Let    and    be any two compatible modules and let the general-validity given by    hold.
Then .

Proof: Follows directly from Lemma 2 and temporal logic. n

As mentioned in the introduction, the Composition Rule can be used bottom-up or top-
down. In the bottom-up method, pre-existing implemented “off the shelf” modules can be
combined into a super-module that satisfies a system requirement r. In the top-down
method, we proceed as follows:

1. The system architect decomposes the system under design () into modules    and    by:
(a) designing compatible interface stubs    and , and
(b) designing module specifications such that .

2. The architect gives each module interface and specification to a programmer. It is the
job of the programmer to develop the module body so that the specification is
modularly-valid. For example, if the programmer is given    and    for the first module,
he must design a body    so that    where the module    is fully described by .

3. The required system is then    which is guaranteed by the Composition Rule to conform
to the requirement .

Parts of the development method can be automated by using a combination of model-
checking for proving modular-validity (step 2), and deductive theorem proving
techniques can be used for proving that the system requirement is a consequence of the
module specifications (step 1b).

A compositional proof has the following outline:

1. is modularly-valid for    (by model-checking)
2. is modularly-valid for    (by model-checking)
3. general-validity (deductive theorem proving)
4. 1, 2, 3 and the Composition Rule where

In the sequel, we will leave out the module satisfaction symbol (except for its appearance
in the last line) and write the above proof as:

1. is modularly-valid for
2. is modularly-valid for
3. general-validity
4. 1, 2, 3 and the Composition Rule where

By Lemma 2 (b), once we know that the context of the proof is the module , then any
specification of a sub-module of    will also hold for , and hence there is no need to
indicate which sub-module specification we are dealing with.

$paratext[ReportTitle] 18

3.2    Modes of interface variables
The interface stub of a module defined in the previous subsection consists of a set of

typed shared variables with their initial conditions. We can provide more structure and
flexibility to the interface specification which will enhance the user’s ability to
understand a module.

The additional structuring mechanism is provided by describing the modes of the
shared variables. A variable in the interface stub is either in (the module body can read
the variable but not write to it), out (the environment can read the variable but not write
to it), or share (both the body and the environment have write access):
interface_stub ::= {mode {variables}If a module m has a declaration “out ”, then no
other module in the environment of m may have a writing reference to the variable . If
two (or more) modules each write to y, then they must each have the declaration “share
”, thus indicating that the external environment may also change .

Let the variables in the interface stub be , where    are the “in” and “share” variables
(i.e. all variables whose value may be changed by the environment), and where    are the
remaining interface variables (the “out” variables that the environment does not
change). We often refer to the module by , where the semicolon separates the out
variables from those that the environment can read and modify (the in and share
variables).

Definition 5: Two modules    and    are interface compatible, provided each
variable    satisfies the following constraints: the types declared for    in both interfaces
match, the conjunction of their where clauses (supposed true when not specified) is
satisfiable, and if one of the declarations specifies an out mode, then the other
specifies an in mode.

The reactor trip relay module relay (taken from the example in Sect. 5.2) is shown in
Fig. 3. When the command to open the relay () comes from the environment, then the
relay is immediately opened () before the next clock tick, thus shutting down the reactor.
The specification of the relay (see (Eq. 6) in Fig. 3) does not contain the next operator    in
the consequent; instead, the operator    is used. This is because the trajectories of a module
may have environmental steps that leave the state unchanged. Specifications must
therefore allow such “stuttering” steps otherwise the specification will not be modularly-
valid.

FIGURE 3. The relay module

module relay(C;R)
in C: {0,1} where initially

/* when the input command    is given, the relay is opened, and when    the relay is closed */
out R: {open, closed} where initially   
/* R is the relay object variable that is exported as readonly output */

Body TTMchart (using the
StateTime Build tool)
Specification:

(Eq. 6):   
/* Informal description: The operator    is needed in the consequent. Although the relay responds

$paratext[ReportTitle] 19

to a stimulus (i.e. a change in C) before the next clock tick, the reponse is not immediate but may occur a
few states later (as actions of the environment are interleaved with actions of the relay). The above
specification is modularly-valid */
end module relay.

3.3    A small example of compositional reasoning
The module    (Fig. 4) is part of the DRT controller which will be discussed in the

sequel. The controller consists of three independent microprocessors, each one with
independent sensors of reactor power and pressure. Each microprocessor controller
signals through a variable    whether to open the relay (which shuts down the reactor), or
to close the relay (allowing the reactor to be started up again). The in variables of
majorVote are thus , and the out variable is , which is set to 1 when the majority of
the microprocessor vote for opening the relay (i.e. when). The specification    can be
shown to be modularly-valid by model-checking.

FIGURE 4. Module for majority voting logic

module majorVote(C1,C2,C3;C)
with bitType={0,1}
in : bitType; /* 1 stands for a vote to open the relay, and 0 to close the relay. */
out : bitType where initially    /* Only majorVote can write to    to set the relay*/

Body
private : bitType where initially /* majority vote object variable*/
.
Specification

(EQ 7):
/*Informal description
The first line of the specification states that once the majority of microprocessor controllers vote
to open the relay, and this vote remains in place for time 20 ticks, then within one tick of the
clock, the output variable    will be set so as to command the relay to open, and will remain set for
20 ticks of the clock. The second line states a similar specification for the command to close the
relay. */

end module majorVote
The relay module (Fig. 3) and the voting module (Fig. 4) are interface compatible. We

may therefore use the modularly-valid module specifications (Eq. 6) and (Eq. 7), and the
Composition Rule to prove the validity of

(Eq. 8)

where p is defined by:
(Eq. 9)p:

The proof of the first conjunct of (Eq. 9) is as follows:

1. by modular-validity of (Eq. 7)
2. by modular-validity of (Eq. 6)
3. (2) and RTTL
4. (3) and RTTL
5. (1), (4) and Composition Rule

$paratext[ReportTitle] 20

The temporal logic reasoning is performed in the RTTL proof system. For example,
the RTTL theorem used in step (3) is: .

The Composition Rule provides a powerful technique for beating combinatorial
explosion of states. To verify a global requirement r of a system composed of modules, it
is not necessary to deal with the complete system (e.g. by generating its global
reachability graph). Instead, we need only verify the specification of each of its objects
one at a time, provided we can show that the object specifications entail the global
requirement.

The modular-validity of module specifications for a module    can be determined by
applying the model-checking and theorem proving tools of StateTime (Sect. 2.4) to the
TTM    that corresponds to . For example, the relay module specification    in Fig. 3 can be
proved modularly-valid by model-checking the set of transitions associated with the body
together with the nondeterministic environmental transition with update function
choose(C), which allows the input variable C to vary arbitrarily.

In the above relay example, an unrestricted environment was used to check the
modular-validity of the module specification. This is not always possible as an
unrestricted environment can sometimes generate larger intermediate reachability graphs
than the reachability graph obtained when the environment is limited to a known set of
fixed modules. This is because certain states of the module in an unrestricted
environment may be unreachable in the composite. There are two ways to address this
issue: either (a) decompose the module into smaller sub-modules where an unrestricted
environment will not be problematic, or (b) restrict the environment of the module to the
actual environment in which the module is expected to operate.

The easiest way to restrict the environment involves the use of conditional
specifications for the module of the form    which asserts that if the environment is
assumed to behave according to the RTTL formula    then the module is guaranteed to
behave according to the RTTL formula . In other frameworks, such conditional
specifications are called assumption/guarantee properties [22], and special rules are
provided for reasoning about them. In our framework, conditional specifications are no
different from any other module specifications. Our purpose will be to show that    is
modularly-valid for the module , i.e. . This does not contradict our definition that a
module specification should hold independently of what the environment does. The
property    will indeed hold true only if the module environment behaves according to .
However,    holds for the module in any environment; this is because if the environment
does not satisfy , then    need not hold true [32, p.356].

In the sequel, we deal with modules that are intended to work in fixed environments.
For example, the environment of the DRT controller module (Sect. 5.0) is the plant which
will remain fixed throughout the design. Consider a conditional specification    for one of
the controller sub-modules    which asserts that if the plant (which is the environment of
m) behaves according to    then m will behave according to . To verify the modular-
validity    in an unrestricted environment in which the plant output variables can take on
any value at any moment, will generate a larger reachability graph than necessary
because there will be states that are not reachable in practice. The actual plant sensors are
filtered and hence change only every two ticks of the clock. Thus we do not need to
consider all the possibilities generated by continuously changing sensor values. Instead,

$paratext[ReportTitle] 21

we can verify    which will involve a smaller reachability graph in which plant changes
occur only every two ticks. The following theorem justifies this procedure.

Theorem 3: Let    and    be two compatible modules and p an RTTL formula in the
interface variables. Then .

Proof:

< (Th. 1)(a) >

< propositional temporal logic >

< Composition Rule and    holds for    by (Th. 1)(b) >
. n

4.0    Module refinement
If a module m has been implemented with a given body, under what conditions can we

replace the body with a new one while still retaining the same observed timed behaviour
at the interface stub? One possibility is to use the notion of program equivalence of
untimed concurrent programs developed in [32, p46]. However, this notion of
equivalence will not work for our real-time reactive modules.

Consider a program with two variables    and . In [32, p46], a sub-sequence    is
reduced to    if we want to observe variable . We have thus lost a record of one of the
clock ticks, because in the refinement relation of [32], program states that are identical to
their predecessors are omitted from the sequence. But, in real time systems, it is essential
that the reduced system show the same timed behaviour as the original system. We will
thus need to define a notion of observational equivalence that takes into account state
(data such as the value of) as well as events (ticks of the clock). In this section, we adapt
the state-event notion of observational equivalence developed in [26,27,28] to
the needs of real-time reactive modules. Because we need to deal with both states and
events, we also cannot just use the standard event-based notion of bisimulation [33], as
will be explained in this section.

Consider two modules that have the same interface stub but different bodies. For such
modules we will define a notion of module observational equivalence that is
compositionally consistent and preserves any stuttering invariant RTTL module
specification (detailed explanation follows below). Thus the first body can be replaced by
the second with a guarantee that any module specification that holds for the first will also
hold for the second, and vice versa. Observational equivalence will allow us to refine an
abstract module into one closer to code implementation. The abstract module may have a
substantially smaller state space than the refinement and hence will be more amenable to

$paratext[ReportTitle] 22

model-checking.
Informally, if a module    is equivalent to a module    having the same interface stub

(written) then    preserves the timed behavior of    over the interface variables. We want a
notion of observational equivalence that only distinguishes between the two modules if
the distinction can be detected by an external agent interacting with each of them. The
agent can observe any of the interface variables and the start transition and tick of the
conceptual global clock, but not any of the private variables or internal transitions which
are unobservable to the external agent. We call such internal unobservable actions -
transitions. Although an external agent may not be able to observe an internal transition
itself, it may be able to observe the effects of the internal transition (e.g. if the internal
transition changes one of the interface variables).

4.1    Observation equivalence of TTMs
In [37], an algorithm is given for constructing the reachability graph of a TTM. The

reachability graph is used as the basis for model-checking RTTL formulas, as maximal
fair paths in the reachability graph correspond to TTM trajectories.

We illustrate the concept of a reachability graph by referring the reader to the sample
TTM    with variables set    as shown in Fig. 5. The reachability graph of    is also shown in
Fig. 5. The reachability graph is a labelled transition system with state set , transition
label set ,    is a set    of binary relations on , and the initial state is .

If    and    then    holds precisely when    (i.e.    is a -successor of) where    are the
restrictions of    respectively, and    both occur in trajectories of the TTM . Let    be an
abbreviation for    which is called a -step from    to . The notation    denotes a sequence of
steps in the graph. Any maximal sequence of steps in the reachability graph corresponds
to a trajectory of the TTM respecting the initialization, succession, fairness, and bound
constraints (Sect. 2.2).

The timed behaviour of the TTM    in Fig. 5 is equivalent to    with respect to the
observable variable    (in a sense to be made precise in the sequel). In this weakly
observable setting, the    and    transitions are observable but no other transitions are
visible to an external agent. The observable variables set is ; we require that the variable
be in the variables set of both TTMs. The TTM    is much simpler than    and has a smaller
reachability graph (Fig. 5). We therefore call    an abstract specification}} of the concrete
refinement .

FIGURE 5. Observably equivalent TTMs

TTMs    and    are observationally equivalent, i.e. .

} .In this section, we show that a TTM description of a concrete system meets its abstract TTM
specification is by showing that is equivalent to on the observable variables. Although this approach is
natural in many cases, we do not thereby imply that equivalence of TTMs is always the right way to
express conformance. Temporal logic is often more convenient for expressing a partial specification, i.e.
a property which should be satisfied by a system but which does not fully determine its observable
behavior. An example of a partial specification is (where is the object variable in Fig. 5) which
specifies that should not be turned any sooner than two ticks of the clock.

$paratext[ReportTitle] 23

For the precise definition of observation equivalence, we need the concepts of state
projection operators and unobservable -transitions. For a set of observable variables    of a
given TTM, the observable state projection operator    tells us when states    and    agree
when restricted to their observable variables. For example, if we are given the states ,
and the observable variables set , then

as they agree on the    component of the state.
An external agent interacting with the TTM    can observe the start and tick transitions;

but the other transitions    and    are unobservable. Similarly, the transition    in    is
unobservable. We will relabel the edges of reachability graphs so that all unobservable
transitions are called . Although the -transition itself is unobservable to an external agent,
its effect may be observable (e.g. when the transition is taken it may change an
observable variable); however, the external agent is unable to tell which transition caused
that effect.

Definition 6: [State-event labelled transitions systems SELTS] Let    be a TTM,
and let    be a given set of observable variables. Let the reachability graph of    be
where    is a countable set of states and    is the initial state. Then    is a labelled
transition system, called a state-event labelled transition system (or SELTS), where
and    where:

(Eq. 10)

(Eq. 10) achieves the required relabelling, i.e. all transitions in the reachability graph
other than start and tick are now relabelled to the unobservable -transition in the
corresponding SELTS. The following definition is needed for the weak state-event
bisimulation:

Definition 7: The unobservable move    is defined by:

The action of taking an observable step    (i.e.    is either start or tick) in a SELTS that
has (possibly empty) sequences of unobservable steps on both sides is defined by:

We also define a similar move for the unobservable -transition (which may or may
not cause a change in the observable variables) by:

We are now ready to define the notion of a weak state-event bisimulation relation.
In the weakly observable setting with unobservable -steps, the steps    and    are
indistinguishable, producing the same observations (or possibly lack of observation in the
case of a    move).

Definition 8: [Weak state-event bisimulation] Let    be state event labelled
transition systems for the TTMs    for    with a common observable variables set . Then
the relation    is a weak state-event bisimulation relation if :    and

$paratext[ReportTitle] 24

• implies

• implies

The above definition of bisimulation can be paraphrased by saying that two states are
weakly bisimilar if any move from one of the states to a new state can be matched by the
other state making a move, or sequence of moves, producing the same observations on
both the observable variables and the observable transitions (start and tick) and reaching
a state that is weakly bisimilar to the state reached from the first state.

The standard notion of bisimulation [33] is defined with respect to the events of a
labelled transition system. While it is possible to describe systems using only state
information or event information, there are many applications where the use of both state
and event information is quite natural. The above notion of (weak) bisimulation is
defined not only with respect to the observable events of the labelled transition system
(needed to maintain a global notion of time via the clock tick), but also with respect to the
states of the labelled transition system (needed for dealing with properties involving the
observable variables). For TTMs that must synchronize with each other via shared events
(in addition to start and tick), the set    in (Dfn. 6) can be expanded quite naturally to
include any such additional synchronized events without the need to change the definition
of bisimulation.

Since weak bisimulations are closed under union, there is always a largest weak
bisimulation relation (which we denote by the infix operator) relating the states of    to
that of    for an observable set of variables . Thus if    (respectively) is a state of the
reachability graph of    (respectively) then we can write    whenever . This leads to the
notion of state-event equivalence of TTMs:

Definition 9: [] Let    (with initial state) and    (with initial state) be two TTMs
with variables sets    and    respectively. Let    be a given observable set of variables.
Then    and    are called state-event equivalent over    (written:) provided .

Where the observable set of variables is fixed from the context to , we write . For the
example TTMs in Fig. 5 with observable variables set , we have that .

For finite state TTMs, [28] provides an efficient polynomial time algorithm for
checking the equivalence of two TTMs. For possibly infinite state TTMs, [27] presents
equivalence preserving transformations. The following theorems indicate the usefulness
of state-event equivalence [26].

Lemma 3: (corollary of Lemma 2 in [26])
Given TTMs    all having the same observable variables set, then   

Thus, state-event equivalence of TTMs is compositionally consistent, i.e. the designer can
replace a TTM with an equivalent refinement with a guarantee that the observed time
behavior will be unchanged.

The set of SESI (state-event stuttering invariant) temporal logic formulas is defined in
[26]. We will only need a subset of SESI formulas for the sequel, which we now define.
An atomic SESI formula atomic_sesi of a module m is any state-formula, having no
occurrences of the transition variable , and whose free variables are the observable

$paratext[ReportTitle] 25

variables, i.e. the variables in . A SESI formula is defined by:
(Eq. 11)sesi ::= atomic_sesi |    |    |    |    |

The formula    is SESI as it is derived from the bounded until operator which itself is
SESI. Also    is SESI because all the other temporal logic operators, except for next, can
be obtained from the until operator. The    operator can usually replace the next operator.
It is shown in [26] that some formulas involving the next operator are also SESI, but we
will not need these for the sequel.

Lemma 4: (corollary of Theorem 3 in [26]) Let    be a SESI formula with a given
observable variables set . If    and    are TTMs such that    then: .

The above lemma is significant for model-checking. We may check an abstraction
for conformance to    rather than its more complex refinement , with a guarantee that
will also hold for the refinement, provided the TTMs are non-Zeno.

4.2    Observation equivalence of modules
The behaviour of a module    was defined in Sect. 3.0 with the help of an associated

TTM , which is the composition of the body TTM and an environment transition that
arbitrarily changes interface variables .

Definition 10: [state-event equivalence of modules] Let    and    be two modules
having precisely the same interface variables (i.e.). The observable variables set    of
these modules is defined as . The corresponding reachability graph of each of these
modules is    for    from which their corresponding SELTS can be obtained as in
(Dfn. 6). The state event equivalence of these modules is then defined by: .

As with TTMs, one may check the conformance of an abstract module for
conformance to its specification with the guarantee that the refinement will also satisfy its
specification, as stated in the following theorem.

Theorem 4: [Refinement Rule] Let    be an arbitrary SESI formula for non-Zeno
modules    and    having the same interface variables such that . Then: .

Proof: Since    we have that    where    is the TTM corresponding to the module (Dfn. 1)
for    and . By Lemma 4, it follows that . Since the modules are non-Zeno,    holds.
Hence, by the definition of modular-validity (Dfn. 2)    holds as required. n

5.0    Modular Design of the delay reactor trip
(DRT)

Industrial reactive systems are often specified using a combination of timing diagrams,
pseudocode and careful English narrative. This has the considerable advantage that it is
accessible and intelligible to a wide community. It has the disadvantage that even the
most lucid informal descriptions are prone to omissions and ambiguities. More
importantly, conformance analysis can only be undertaken in a more precise setting.

$paratext[ReportTitle] 26

In this section we describe an example taken from the actual requirements document
for the shutdown system of an industrial nuclear reactor. We translate the informal
descriptions and requirements into precise counterparts in the TTM/RTTL framework,
and then use the modular development method developed in this paper to design the
system and check its conformance to requirements. The abstract design so obtained can
then be refined down to a format close to pseudocode suggested in the original
requirements document. This is not the way the original problem was presented.
Originally, the pseudocode was a given, and the engineers wanted to know if the
pseudocode satisfied the informal requirements as presented in the timing diagram. This
reverse engineering problem can be solved using the same compositional and abstraction
techniques but working bottom-up (see [38] for the reverse engineering problem).

5.1    Informal description of the problem
In early nuclear reactors, the shutdown systems were constructed of analog devices.

The analog control had the virtue of being simple to understand but inflexible, unable to
perform system checks and not always reliable. It was felt that the situation could be
improved by installing computerized control with at least two independent shutdown
systems, designed by different teams, each shutdown system itself having 3-version
control and majority voting logic [43].

The delayed reactor trip (DRT) problem was first described by Lawford et. al. [27].
Lawford developed behaviour preserving transformations for timed transition models
(TTMs) with which he was able to discover a flaw in the proposed design [25] involving
a single controller. However, the transformational theory cannot be fully automated as no
set of transformations is complete for proving observation equivalence between the actual
implementation and its abstract specification. In [38], the StateTime toolset was used to
verify the single controller case, where it also helped to find a bug in the original
specification. A corrected version of the pseudocode was shown to conform to its
requirements by model-checking.

In this paper we consider the case of 3-version control using a majority voting circuit
to determine control actions. The StateTime toolset was not able to model-check the
complete system due to a combinatorial explosion of states. However, using a
combination of model-checking and deductive techniques in the modular framework, the
conformance of the systems to its requirements can be demonstrated.

The DRT for nuclear reactors used to be implemented in hardware using timers,
comparators and logic gates similar to the timing diagram shown in Fig. 6. The new DRT
system is implemented on microprocessors. Digital control systems provide cost savings
and flexibility over the hardware implementation. However, the question now is whether
the new microprocessor based software controller satisfies the same specifications as the
old hardware implementation.

FIGURE 6. Analog implementation of the delay relay trip timing.

$paratext[ReportTitle] 27

The hardware version of the controller implements the following informal
requirements8:

[R1] When the power and pressure of the reactor exceed
acceptable safety limits, the comparators which feed in to the first
AND gate cause Timer1 to start. After 3 seconds, Timer1 sends a
message to one of the inputs of the second AND gate indicating
that the time-out has occurred. If after this first time-out the power
is still greater than its safety limit, then the relay is tripped
(opened), and Timer2 starts. The relay must remain open until
Timer2 times out which happens after 2 seconds.

Requirement [R1] ensures that the relay is opened and remains open for two seconds
thus shutting down the nuclear reactor in a timely fashion. If the controller fails to shut
down the reactor properly, then catastrophic results might follow including danger to life.
By the same token, each time the reactor is unnecessarily shut down, the utility operating
the reactor loses money because it must bring additional fossil fuel generating stations on
line to meet demand. The next informal requirement states:

[R2] If the power reduces to an acceptable
level then the relay should be closed as soon as possible (thus
allowing the reactor to operate once more).

In the actual DRT, there are three identical microprocessors that have independent sensors
for power and pressure. The final decision on when to shut down the reactor is based on a
majority vote of the three microprocessors.

The code is to be implemented on a microprocessor with a cycle time of 100ms. The
microprocessor samples the inputs (pressure    and power) and passes through a block of
code every 0.1 seconds. It is assumed that the input signals have been properly filtered
and that the sampling rate is sufficient to ensure adequate control. In the formal model,
one tick of the clock will represent 100ms.

5.2    Formal requirements
The first step is to decompose the drt into two parallel modules the plant and the

controller, i.e. . The plant corresponds to the part of the system that is fixed and known.
The controller is the part of the system that must be designed.

The observable variables of the DRT are shown in the data flow diagram of Fig. 7. The
plant outputs are the relay position (), power () and pressure () variables. The input to the
plant () is a relay activation variable that can be used to force the relay to open or close.
In the absence of control, the plant can behave unsafely. For example, if pressure and
8 .In the sequel, we assume that we are to satisfy the original hardware requirements, because this is the

way the original industrial requirements document posed the problem, and we wanted to show that
formal methods could deal with the problem as posed. Using the original requirements also allows the
design method of this paper to be directly compared to the reverse engineering problem of [38]. It could
be argued that these original requirements are biased by the hardware implementation, and simpler less
strict requirements can therefore be obtained.

$paratext[ReportTitle] 28

power both go to unsafe levels, there is nothing to force the relay to trip.

FIGURE 7. The observable inputs and outputs of the DRT

The plant (Fig. 2) was described previously in Sect. 2.4 in the discussion of the
StateTime toolset and in the description of the relay module (Fig. 3). The output object of
the plant updates the pressure and power readings at most every two ticks of the clock. If
the endupdate event is deleted with only the update object remaining, then pressure and
power would be forced to change their values. With endupdate included, the sensor
updates can be preempted thus leaving open the possibility that pressure or power (or
both) remain unchanged for an additional two ticks9.

The output object for power and pressure updates could have been included in the
controller as it represents the filtered sensor readings not the generation of power and
pressure in the plant itself which are continuously changing. Since the output object
behaviour is fixed and known a priori, it is more convenient to include it with the plant.

In contrast to the plant, parts of the controller are initially unknown. It is known that
there will be 3 microprocessors together with a majority voting circuit, i.e. the controller
can be decomposed into sub-modules (Fig. 8) described by:

FIGURE 8. Architecture of the controller based on majority voting
control

module controller
in W, P /* power and pressure variables from the plant */
out C : {0,1} where /* relay activation variable based on majority vote.    means

send a signal to the relay to request it to open */
out : {fail, normal} where    for

/* failure variables needed for specifying failed behaviour
*/
out : {0,1} where    for    /*    means the j-th microprocessor is at or has returned to the beginning

of a timing cycle where it waits for unsafe power or
pressure signals*/

Body
private    : {0,1} where for
/* The j-th microprocessor outputs a relay activation variable    as input to the majority voting
circuit. The majority voter must decide, based on the microprocessor relay activation variables,
whether to send an actual command to the relay of the plant via . The interconnection diagram
between the modules of the controller is shown below: */
Specification :

(Eq. 12)
The formulas bothHi, powerHi and powerLo are defined in (Eq. 17). The module specification

9 .The pHi, pLo,wHi, and wLo events could have been given bounds [2,∞] which would not force these
events to occur. But then the pressure and power updates could drift apart. In the current model, so that
the sensor readings remain constant for a period sufficient to ensure that the microprocessor controllers
can react to their inputs. We could have changed the definition of bothHi in (Eq. 17) to except for the
fact that is a private variable (Fig. 2).

$paratext[ReportTitle] 29

(Eq. 12) is similar to the DRT requirement R but with the controller output variable C playing the
same role for the controller specification that the relay variable plays in R. The specification is
stated under the proviso that at least two of the microprocessors work normally, as the majority
voting logic is only robust with respect to a single failure. The last conjunct of the consequent
asserts that the controller cycle is at most 52 ticks of the clock, after which it is guaranteed to be
back at its initial position (it is not 50 ticks as it may take up to two ticks to detect a change in the
plant). Since the environment of the controller is the (fixed) plant, the controller specification can be
weakened to:

(Eq. 13) (Eq. 12)
end controller

(Eq. 14)

The microprocessors can either be in a normal or failed mode. The j-th microprocessor
thus has an observable out variable    with    (Fig. 7). However, the precise nature of the
normal behaviour is initially unknown, although the informal timing diagram (Fig. 6)
does provide some guidance.

It is necessary to be able to tell when a microprocessor is at the initial point of a timing
cycle where it checks for unsafe pressure and power levels (before invoking the two
timers described in Fig. 6). Once a timing cycle is initiated in response to unsafe power or
pressure levels, a new timing cycle cannot be initiated until the controller returns to its
initial point. Hence, the j-th microprocessor also has an observable out variable    with
where    means that the microprocessor is at its initial point. We require that a
microprocessor timing cycle take no longer than the combination of the two timers which
is 50 ticks with an additional two ticks to cover controller reaction times, i.e. .

We are now in a position to state the DRT requirements for 3-version control. The
informal requirements [R1] and [R2] can be stated in temporal logic for any two
functioning microprocessors    and    as:

(Eq. 15)R1:

(Eq. 16)R2:

where the predicates bothHi, powerHi and powerLo are defined as:
(Eq. 17)

The controller can only react to changes in the pressure and power that persist long
enough for the controller to be guaranteed to detect them (2 ticks of the clock). The
controller microprocessors can sample pressure and power only once every tick of the
clock. Hence, we require that the pressure and power both remain high for at least two
ticks of the clock for the relay to open [R1]. Similar considerations apply when closing
the relay [R2].

The requirements as stated above do not take into account the possibility of
microprocessor failures. R1 and R2 can only be required to hold if at least two of the
microprocessors are functioning normally. The final requirement R is therefore:

(Eq. 18)R:

where the integer variables i and j range over the three microprocessor controllers, i.e. .

$paratext[ReportTitle] 30

5.3    Problem to be solved
We must prove that the DRT conforms to its requirements. Formally, this means we

must prove that    holds where    and R is the formula given in (Eq. 18). Using the
Composition Rule, a proof outline is:

1. modular-validity of (Eq. 5) in Fig. 2 for the plant by model-checking
2. modular-validity of (Eq. 12) in Fig. 8 for the controller by model-checking
3. general-validity (similar to the proof of (Eq. 8))
4. 1, 2, 3 and the Composition Rule
5.

The body of the plant module is given in Fig. 2. The only input variable to the plant is
the relay activation variable , which can be altered arbitrarily by the environment
transition without generating too large a reachability graph. Hence step 1 in the above
proof outline was verified using StateTime model-checking.

The only part of the above proof that cannot be verified is step 2, as the controller
body is only partially defined at this point in the development. Thus we must complete
the design of the controller by designing its body, and demonstrate the modular validity
of the controller specification. Then the above proof outline guarantees that the DRT
conforms to its requirements.

In checking the modular-validity of the controller specification (Eq. 12), it is sufficient
replace step 2 above with the weaker specification (Eq. 13). Instead of using an
unrestricted environment transition, (Th. 3) allows us to check sub-modules of the
controller in the environment . The resultant reachability graphs of the sub-modules are
much smaller than if an unrestricted environment transition is used. The above proof that
the DRT conforms to its requirements then becomes:

1. modular-validity of the plant specification
2. modular-validity of (Eq. 13) in Fig. 8 for the controller
3. (Th. 1)(b)
4. 2,3 and temporal logic
5. general-validity via deductive theorem proving
6. 1, 4, 5 and the Composition Rule

The design of the DRT controller will be performed using the structured compositional
approach described by the structure diagram (Fig. 1) as outlined in the introduction. The
structure diagram for the DRT is given in Fig. 9.

FIGURE 9. Structure diagram for the DRT

See Fig. 1 in the introduction for the interpretation of the structure diagram

5.4    Controller design
A partial description of the controller was provided in Fig. 8. The majorityVote sub-

module of the controller was described in Sect. 3.3 (Fig. 4). We must now design the

$paratext[ReportTitle] 31

microprocessor sub-modules. The body of the module    is shown in Fig. 10, with the
other two microprocessors having symmetric descriptions.

FIGURE 10. Control module

module micro1
in W,P /* power and pressure from the plant */
out : {0,1} where    /* the fail variable */
out : {0,1} where /* relay activation variable*/
out : {0,1} where /* initial condition variable for start of timing cycle */

Body
private    where /* object variable of normal */
Specification:

:

where:
end module
The normal object of the controller (Fig. 10) is a more thorough description of the

informal timing diagram of the analog controller (Fig. 6). The lower and upper time
bounds of 1 in the transitions of normal indicate that the microprocessor samples the
sensor inputs and passes through a block of control code every tick of the clock (0.1
seconds). Once unsafe power and pressure levels are detected by the transition mu, the
normal object waits in activity n1 for 29 clock ticks (2.9 seconds) before proceeding to
activity n2. If the power is still high then the relay activity variable    is set via transition
alpha, else the system resets via transition rho1. The second timer Timer2 of the analog
controller is described by the delay20 transition. The beta transition resets the control
activation variable when power returns to normal levels.

It is obvious from the foregoing that TTMs can provide precise convenient
descriptions of timing information. The normal object can be seen as a high level
specification of the microprocessor. The microprocessors do not have delay and time-out
constructs; rather, timing variables must be incremented every pass through the block of
code to keep track of the passage of time. In Sect. 5.5, normal will be refined closer to
code that can be implemented on the microprocessors.

Once the body of the microprocessor module is known, the modular-validity of    in
Fig. 10 can then be verified via StateTime model-checking. As explained at the end of
Sect. 5.3, the controller will be used in the constrained environment of the plant. Hence
we need not consider an environment transition that can arbitrarily modify power and
pressure. The output object of the plant (Fig. 2) allows updates of power and pressure at
most once every two ticks of the clock; this constrained environment will produce a
smaller reachability graph. Hence, instead of showing the modular-validity of    (Eq. 12),
we can verify the weaker validity (Eq. 13) given by

by model checking .
Since the microprocessor and majority vote modules satisfy their module

specifications, we can now show that    is modularly-valid. Let    be integer variables that
range over the three microprocessors (). Then

$paratext[ReportTitle] 32

1. Assume
2. modular validity
3. modular validity of
4. 2,3 and the Composition Rule
5. 1, 4 and temporal logic (see Fig. 10 for the micro specifications)
6. general-validity
7. integer reasoning
8. 1,5,6,7 and

temporal logic
9. modular-validity of majorityVote module
10.

8,9 and the Composition Rule
Line (10) of the above proof produces the first conjunct in the consequent of the controller specification
(Eq. 12). The other conjuncts are obtained by similar (and much simpler) reasoning. We thus have:
11. discharging 1.
12. i and j were arbitrary; a constrained environment was used

As shown in Sect. 5.3, the above result implies that the DRT conforms to its
requirements. The proof of conformance used a combination of model checking (for
verifying modular-validity) and deduction (e.g. for proving the general validity in step 6).

5.5    Refining the controller
The abstract module    (Fig. 10) is observationally equivalent to its refinement

(Fig. 11), i.e. . The refinement    is closer to the final pseudocode [38]. As mentioned in
Sect. 4.0, two methods have been developed for showing observational equivalence:

FIGURE 11. Refinement of microprocessor control module

/* Body of    with same interface stub and module specification as    (Fig. 10) •/
private Ta: {0 ... 30} where (Ta = 0) /* Timer1 variable in timing diagram */
private Tb: {0 ... 20} where (Tb = 0)

/* Timer2 variable in timing diagram */

• The designer can interactively apply equivalence preserving transformations to derive
from . The reader may consult [25] where this transformation is done for a TTM body
the same as that of    but without the additional failure transition and the initial
condition variable . The proof used in [25] can be used as is for . The transformation
rules can be applied to infinite state systems, but it can be shown that there is no
complete set of transformations, i.e. there is no finite set of transformations such that it
is always possible to prove TTM equivalence by using that set of transformations [27].

• For TTMs that can be reduced to finite state reachability graphs, there is an efficient
polynomial time algorithm for showing observational equivalence [28]. The
equivalence of    and    can be shown with this algorithm as the data types are finite.

The abstract module    satisfies the non-Zeno condition (Table 1). Since    is SESI (state

$paratext[ReportTitle] 33

event stuttering invariant) over the interface variables, (Th. 4) guarantees that    also holds
for the refinement . Thus there is no need to redo the proofs of controller module
specifications, and we remain with the guarantee that the DRT conforms to its
requirements.

The module    is a high level description of a microprocessor controller. It is easier to
understand than    because it is close to the informal timing diagram of the analog
controller (Fig. 6). It does not have the two timer variables that    has, and as a result the
guards on its transitions are simplified relative to those of . Its reachability graph is
smaller (Table 1).
TABLE 1. Improved model checking times for the module    compared
to 10

Modularly valid
specifications

Abstraction Refinement

 (Fig. 10) 13785 states in 26 seconds 59452 states in 297 seconds
 (non-Zeno constraint) 15248 states in 61 seconds 69059 states in 261 seconds

Table 1 shows the result for checking the most complex module. However, all the
module specifications were verified using the model-checker. The deductive parts of the
proof were done by hand. In principal the deductive part could have been done using the
theorem prover, but it proved too tedious as explained at the end of Sect. 2.4.

We refer the reader to [38] for a discussion of the reverse engineering problem, i.e.
how one goes from the pseudocode described in the original requirements document to
the refinement presented in Fig. 11.

5.6    The design method
Although top-down design by stepwise refinement was de rigueur until the 1980’s,

it has subsequently come under attack. As Jackson has written [20]: “It was one thing to
impose a single hierarchical structure on a sequential program of the programmer’s
own devising; it was quite another to impose it on a given, inconveniently ill-structured,
real world domain”. In fact, real-systems such as the DRT often have no single “top”
function.

Our design method uses both top-down as well as bottom-up techniques. We have
stressed in previous sections that the Composition and Refinement Rules can be used
both ways. Our top-down methodology differs from the classic notion of stepwise
refinement. In classic top-down design, a program is a single sequential process;
concurrency and parallelism was “exotic” or unknown [20]. By contrast, TTM modules
allows for nondeterminism, and serial as well as parallel constructs in any mixture and to
any depth. This allows for adequate descriptions of real systems that have no “top” in the
functional sense. Furthermore, at the top level, we do have requirements describing the
safety and correctness of the overall system consisting of different parts (such as the plant
and the controller). Such system requirements (e.g. the DRT requirements R1 and R2) are
often emergent properties, i.e. they arise out of the combined interaction of the system
modules taken together. There is thus still an urgent need to describe systems in a layered

10. Above checks used the StateTime toolset and STeP on an Sparc Ultra1 with 160MB RAM.

$paratext[ReportTitle] 34

modular fashion, but without the sequential restrictions of the earlier methods.
We now describe in outline the basic design method. The notions of a module,

composition and refinement developed in this paper, provide the precise theoretical
underpinnings for the method which was originally sketched in [36, pages 4-6]. We also
borrow concepts from the insightful description of requirements in [20, p169].

The basic design procedure starts with requirements R. Requirements are about the
phenomena of the application domain (the relay, pressure and power of the DRT plant),
not about the machine (the controller). Our first step in requirements is to divide the
system into the two parallel objects: (a) the plant which can be described as it already
exists and (b) the controller which must be designed. This division proceeds by
describing their relevant interfaces and connections, as well as some of the internal
phenomena and entities of the plant — this is the body of the plant which is a model of
plant behaviour. The plant model cannot be too abstract because then it is not about the
real problem anymore. It is a mistake to rush to the solution (by coding the controller)
before delineating the problem to be solved (the plant requirements). The requirements
are temporal logic formulas in plant entities such as pressure, power and the state of the
relay. Therefore, the requirements do not describe the internal phenomena of the
controller, although they might describe entities at the boundary of the controller and the
plant (the shared phenomena).

It is the job of the controller to ensure that the requirements are satisfied, which it can
do due to fact that it shares some phenomena with the plant (as described by the plant-
controller interface). The controller might not be able to react to a shared phenomenon
immediately (e.g. a change in reactor pressure), but the shared phenomenon happens in
both the plant and controller simultaneously.

Because the controller does not always know all the plant phenomena (or at least
cannot react to them immediately), there is always the possibility of a gap between the
requirements and what the controller can achieve (as described in the controller
specification). The progression from requirements to controller implementation is a way
of bridging the gap between them. From the requirements expressed in terms of the plant,
you derive a specification S of the controller in terms of the shared phenomena of the
plant and controller. Then you derive the body of the controller from the controller
specification. The Composition Rule justifies the eventual claim that the controller
implementation satisfies the requirements by reasoning as follows: (a) the body of the
controller satisfies the specification S and (b) the specification S together with the
description of the plant entails the truth of requirements R.

In the case of the DRT controller, once the top-level interface stub was described, the
parts of the controller were developed bottom-up component by component. A generic
microprocessor controller was designed which was then instantiated three times to obtain
3-version control. Then the majority voting logic was designed. Bottom level modules
were developed, simulated and verified to conform to their local specifications long
before the modules were combined together. The plant description was quite simple and
could be encapsulated in a single module. In more complicated application domains, the
plant might also benefit from a bottom-up development.

$paratext[ReportTitle] 35

6.0    Conclusions and related work
This paper has presented a structured compositional method for the deliberate design

of real-time systems, and applied the method to an industrial example with partial support
provided by the StateTime toolset. The main novelty of the approach is to provide a fully
compositional definition of real-time reactive modules compatible with existing model-
checking tools (Sect. 3.0) and a refinement relation (Sect. 4.0). This allows for the
systematic development and verification of real-time systems.

There are four main areas where mechanical support is needed: (1) system simulation
for validating models, (2) model-checking for modular-validity, (2) deductive theorem
proving for the composition rule, and (3) proving observational equivalence for the
refinement rule.

StateTime was used for simulation and model-checking all module
specifications of the DRT example. Although, in principal, we could have used the toolset
for the deductive part, it proved too unwieldy due to the proliferation of quantifiers. The
toolset has no support for refinement, and this had to be done by hand using behaviour
preserving transformations. So too, there is a need to directly supports modules with
interface stubs and automatic generation of environments.

This leads us to the main conclusion of this paper. StateTime, as it currently stands,
needs to be enhanced in a variety of ways if it is to support more seamless compositional
verification. I am therefore currently working, together with Lewis Lo, on a new version
of StateTime that builds on the reactive modules introduced in this paper, and allows for
the complete spectrum of automated simulation, model-checking and theorem proving
tools.

The enhanced StateTime will also support modules (interface stubs and automatic
generation of environments). We use count-up and count-down clock variables with
ordinary temporal logic (rather than the bounded operators of RTTL) for specification,
but it is yet to early to tell to what extent this will simplify deductive reasoning.

The proof of observation equivalence (both algorithmically for finite state modules
and via equivalence preserving transformations) for use in the refinement rule needs to be
implemented and incorporated into the StateTime toolset, but we have not yet decided
how to implement these techniques. Because our bisimulation relation involves both
states and events (Sect. 4.0), we may not be able to directly use existing tools such as
Concurrency Workbench [9]. The Concurrency Workbench allows for the testing of
equivalences and preorders and the verification of systems in the modal mu-calculus;
real-time CCS style front-ends are available.

Other tools such as Modechart [21], Statemate [16] and ObjectTime [45] also use
statecharts for visual system descriptions. Modechart allows for both simulation and
algorithmic analysis techniques for a subset of properties expressed in a predicate real-
time logic [34]. Statemate can be used to do reachability analysis and ObjectTime is
object-oriented which is useful in design, but it cannot deal with hard real-time systems.
None of these tools have theorem provers, nor do they allow for modular verification.

RTTL is based on the linear time temporal logic LTL rather than on branching time
logics such as CTL. It is commonly accepted that while specifying is easier in LTL,

$paratext[ReportTitle] 36

model-checking is more efficient in CTL. Both linear and branching time languages now
have efficient model-checkers using either partial orders or BDD methods: SPIN [18] is
one of the few LTL based model-checkers. SMV is a good example of a CTL based
model-checker [5], with an extension to real-time systems called Verus which uses a
branching time real-time language called RTCTL [6]. Verus also has the facility for
specifying task priorities. The hybrid tool HyTech [2] extends branching time model-
checking to continuous real-time systems using stop watches and symbolic fixpoint
computation (the current version of the tool supports reachability analysis via monitor
automatons and not directly the full set of CTL formulas). HyTech and Verus both allow
for parametric analysis (e.g. determining the latest possible moment a controller can wait
before issuing a command).

The STeP [31] model-checker and theorem prover was chosen as the back-end to
StateTime rather than tools such as SPIN, SMV and HyTech for a number of reasons.
Tools that use a non-interleaving synchronous execution step algorithm (e.g. SMV, the
PVS model-checker [42] and COSPAN [15]) are efficient for dealing with hardware
designs, but do not seem to be as efficient as SPIN when it comes to dealing with
interleaved sequential code and integer variables. There is also another problem
associated with modularity when it comes to branching time model-checkers. Although
branching time is usually more efficient than linear time logics, the branching time
algorithms become EXPTIME-complete for module checking which is worse than
the PSPACE complexity of linear time logics [24]. This analysis seems to suggest that the
accepted trade-off between LTL and CTL for modules is not as simple as it is for
closed systems. We were not able to use SPIN because it only supports justice (weak
fairness) not compassion (strong fairness) needed for the tick transition. More
importantly, we hope to use the theorem proving components of STeP in future versions
of our tool. None of the aforementioned tools (except PVS) have theorem provers.

Hooman [19] extends Hoare logic to real-time programs by freely mixing programs
and assumption/guarantee assertions leading to a top-down derivation method. The theory
is implemented using the interactive proof checker PVS [42]. The embedding of the proof
system in PVS provides powerful mechanical support for compositional reasoning (but
not model checking). The only timing construct is the precise delay; there are no time
bounds on transitions as in TTMs.

There is a growing interest in compositional and refinement methods for reactive
systems [1,7,22,35,41,46,48]. The field is somewhat less developed in the case of real-
time systems especially in methods that also have tool support.

ASTRAL [10] is based on the framework of [11] that uses Petri Nets for system
descriptions and a timed temporal logic called TRIO for specifications. ASTRAL
provides structuring mechanisms that allow the designer to build modularized
specifications that are translated into TRIO. Proofs in ASTRAL are either interlevel or
intralevel. The former deals with proving that the specification at a higher level is
consistent with a specification at a lower level. The latter deals with proving that a
description at a level satisfies its specification. A tool is currently under development.

The frameworks mentioned thus far have specification languages that are based on
logic, usually modal logic. Other approaches are based on algebra or automata. Discrete
real-time process algebras [4,44] can describe systems compositionally at different levels

$paratext[ReportTitle] 37

of abstraction. The semantics of process algebras is usually defined in terms of labelled
transition systems. An algorithm based on observation (bisimulation) equivalence is used
to show that an implementation satisfies its specification. These bisimulation relations are
usually event-based [33], whereas the bisimulation relation used in this paper is both
event and state-based (Sect. 4.1). It is event-based in order to ensure a global notion of
time via the tick transition. It is state-based so that module specifications can be written
as temporal logic properties in the observable variables. Continuous time extensions to
process algebras [47] lack the abstracting power of a congruence relation of the discrete
event case, due to technical difficulties associated with their infinite branching
continuous time semantics.

The real-time CSR language [13] provides a layered approach to dealing with shared
resources. [12] presents hierarchical multistate machines for multilevel specifications.
The automata based tool COSPAN has recently been extended to deal with real-time [3].
COSPAN supports top-down development through successive refinements and
homomorphic reduction [15]. Timed automata [30] (see also the input/output automata
described in [29]) have visible actions, a time passage action (analogous to our clock
tick) and a special internal action. Dense upper bounds can be imposed between actions,
but not lower time bounds. A refinement from one timed automaton to another is a time-
preserving function similar to the classical notion of a homomorphism between automata.

In single language frameworks (e.g. automata based COSPAN or the logic based TLA
[1]), both the implementation and specification are expressed in the same formalism
(automata or logic). Conformance is proved by demonstrating that each fair trace of the
implementation is also a fair trace of the specification. There is a certain elegance and
simplicity associated with using a single language for both specifications and
implementations. We have pursued the dual TTM/RTTL framework in this paper as it
provides us with the flexibility of using the most appropriate analysis technique in each
case. For TTM refinement, we use the algebraic notion of observation equivalence, and
for TTM composition the logical conjunction of RTTL specifications.

Acknowledgments
I would like to thank Mark Lawford for his help with all aspects of this paper. I also

thank the anonymous referees for their helpful criticisms, comments and suggestions.

7.0    References
[1] Abadi, M. and L. Lamport. “Conjoining Specifications.” ACM Trans. on Programming

Languages and Systems, 17(3): 507-534, 1995.
[2] Alur, R., T.A. Henzinger, and P.-H. Ho. “Automatic Symbolic Verification of Embedded Systems.”

IEEE Transactions on Software Engineering, 22(3): 181-201, 1996.
[3] Alur, R. and R.P. Kurshan. “Timing Analysis with Cospan.” In Hybrid Systems III, ed. R. Alur,

T.A. Henzinger, and E. Sontag. LNCS 1066 Springer Verlag, 1996.
[4] Baeten, J.C.M. and J.A. Bergstra. “Discrete Time Process Algebra.” Formal Aspects of

Computing, 8(2): 188-208, 1996.
[5] Burch, J.R., E.M. Clarke, K.L. MacMillan, D.L. Dill, and L.J. Hwang. “Symbolic Model Checking:

10^20 States and Beyond.” Information and Computation, 98(2): 142-170, 1992.

$paratext[ReportTitle] 38

[6] Campos, S.V. and E.M. Clark. “ Real-Time Symbolic Model Checking for Discrete Time Models.” In
Theories and Experiences for Real-Time System Development, ed. T. Rus and C.
Rattray. AMAST Series in Computing, Vol. 2. World Scientific Press, 1994.

[7] Chandy, K.M. and J. Misra. Parallel Program Design. Addison-Wesley, 1988.
[8] Chang, E. “Compositional Verification of Reactive and Real-Time Systems.” Ph.D, Stanford

University, 1995.
[9] Cleaveland, R. and S. Sims. “The NCSU Concurrency Workbench.” In Computer-Aided

Verification (CAV '96), New Brunswick, NJ, edited by R. Alur and T. Henzinger, Springer-Verlag,
LNCS 1102, 394-397, 1996.

[10] Coen-Porisini, A., R. Kemmerer, and D. Mandrioli. “A formal framework for ASTRAL intralevel
proof obligations.” IEEE Transactions on Software Engineering, 20(8): 548-560, 1994.

[11] Felder, M., D. Mandrioli, and A. Morzenti. “Proving properties of real-time systems through logical
specifications and Petri Net models.” IEEE Transactions on Software Engineering, 20(2):
127-141, 1994.

[12] Gabrielian, A. and M. Franklin. “Multilevel specifications of real-time systems.” Communications
of the ACM, 34(5): 51-60, 1991.

[13] Gerber, R. and I. Lee. “A layered approach to automating the verification of real-time systems.” IEEE
Transactions on Software Engineering, 18(9): 768-784, 1992.

[14] Gries, D. and F.B. Schneider. A Logical Approach to Discrete Math. Springer Verlag, 1993.
[15] Hardin, R.H., Z. Harel, and R.P. Kurshan. “COSPAN.” In 8th International Conference on

Computer Aided Verification CAV'96, LNCS 1102 Springer-Verlag, 421-427, 1996.
[16] Harel, D., H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, and M. Trachtenbrot.

“Statemate: a working Environment for the Development of Complex Reactive Systems.” IEEE
Transactions on Software Engineering, 16:403–414, 1990.

[17] Harel, D. and A. Pnueli. “On the Development of Reactive Systems.” In Logics and Models of
Concurrent Systems, ed. K. Apt. 477-498. F-13 of NATO Advanced Summer Institutes. Springer-
Verlag, 1985.

[18] Holzmann, G. “The Model Checker Spin.” IEEE Trans. on Software    Engineering, 23(5): 279-
295, 1997.

[19] Hooman, J. “Correctness of Real-Time Systems by Construction.” In Proc. Symposium on
Formal techniques in Real-Time and Fault-Tolerant Systems, 19-40. LNCS 863
Springer-Verlag, 1994.

[20] Jackson, M. Software Requirements & Specifications. Addison-Wesley, 1995.
[21] Jahanian, F. and A.K. Mok. “Modechart: A Specification Language for Real-Time Systems.” IEEE

Transactions on Software Engineering, 20(12): 933-947, 1994.
[22] Jones, C.B. “Specification and design of parallel programs.” In IFIP 9th World Congress, 321-

323, 1983.
[23] Kesten, Y., Z. Manna, and A. Pnueli. “Verifying Clocked Transition Systems.” In Hybrid Systems

III, Springer-Verlag, LNCS, 1996.
[24] Kupferman, O. and M.Y. Vardi. “Module Checking.” In 8th International Conference on

Computer Aided Verification CAV'96, LNCS 1102 Springer-Verlag, 75-86, 1996.
[25] Lawford, M. “Transformational Equivalence of Timed Transition Models.” Systems Control Group,

Department of Electrical Engineering, University of Toronto. TR-9202 (M.A.Sc. thesis), 1992.
[26] Lawford, M., J.S. Ostroff, and W.M. Wonham. “Model Reduction of Modules for State-Event

Temporal Logics.” In IFIP Joint International Conference on Formal Description
Techniques (FORTE-PSTV'96), Chapman & Hall, 1996.

[27] Lawford, M. and W.M. Wonham. “Equivalence Preserving Transformations for Timed Transition

$paratext[ReportTitle] 39

Models.” IEEE Trans. on Automatic Control, 40(7): 1167-1179, 1995.
[28] Lawford, M., W.M. Wonham, and J.S. Ostroff. “State-Event Labels for Labelled Transition Systems.”

In Proc. 33rd IEEE Conference on Decision and Control, Orlando, FL, IEEE Control
System Society, 3642-3648, 1994.

[29] Lynch, N. and R. Segala. “A Comparison of Simulation Techniques and Algebraic    Techniques for
Verifying Concurrent Systems.” Formal Aspects of Computing, 7(3): 231-265, 1995.

[30] Lynch, N. and F. Vaandrager. “Forward and Backward Simulations for Timing-Based Systems.” In
REX Workshop — Real-Time: Theory in Practice, 397-446. LNCS 600 Springer-Verlag,
1992.

[31] Manna, Z. “STeP: The Stanford Temporal Prover.” Dep. of Computer Science, Stanford University.
STAN-CS-TR-94-1518, 1994.

[32] Manna, Z. and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, New York, 1992.

[33] Milner, R. Communication and Concurrency. Prentice Hall, 1989.
[34] Mok, A. and D. Stuart. “Simulation vs. Verification: Getting the Best of Both Worlds.” In 11th

Annual IEEE Conference on Computer Assurance (COMPASS), Washington D.C, 1995.
[35] Mokkedem, A. and D. Mery. “On Using Temporal Logic for Refinement and Compositional

Verification of Concurrent Systems.” Theoretical Computer Science, 140:95-138, 1995.
[36] Ostroff, J.S. Temporal Logic for Real-Time Systems. Advanced Software Development Series,

ed. J. Kramer. Research Studies Press Limited (distributed by John Wiley and Sons), England, 1989.
[37] Ostroff, J.S. “Deciding properties of Timed Transition Models.” IEEE Transactions on Parallel

and Distributed Systems, 1(2): 170-183, 1990.
[38] Ostroff, J.S. “A Visual Toolset for the Design of Real-Time Discrete Event Systems.” IEEE Trans.

on Control Systems Technology, 5(3): 320-337, 1997.
[39] Ostroff, J.S. and H.K. Ng. “The Design of Real-Time Systems Using Standard Untimed Theories.” In

Preprints Third AMAST Workshop on Real-Time Systems, Salt Lake City, Utah, ONR and
Iowa University, 1996.

[40] Ostroff, J.S. and W.M. Wonham. “A Framework for Real-Time Discrete Event Control.” IEEE
Transactions on Automatic Control, 35(4): 386–397, 1990.

[41] Owicki, S. and D. Gries. “Verifying properties of parallel programs: an axiomatic approach.”
Communications of the ACM, 19(5): 279-285, 1976.

[42] Owre, S., J. Rushby, N. Shankar, and F.v. Henke. “Formal Verification for Fault-Tolerant
Architectures: Prolegomena to the Design of PVS.” IEEE Trans. on Software Engineering,
21(2): 107-125, 1995.

[43] Parnas, D.L., G.J.K. Asmis, and J. Madey. “Assessment of Safety-Critical Software in Nuclear Power
Plants.” Nuclear Safety, 32(2): 189-198, 1991.

[44] Schneider, S., J. Davies, D.M. Jackson, G.M. Reed, J.N. Reed, and A.W. Roscoe. “Timed CSP: Theory
and Practice.” In REX Workshop --- Real-Time: Theory in Practice, 640-675.    LNCS 600,
Springer-Verlag, 1992.

[45] Selic, B., G. Gullekson, J. McGee, and I. Engelberg. “ROOM: An Object-Oriented Methodology for
Developing Real-Time Systems.” In CASE’92 Fifth International Workshop on Computer-
Aided Software Engineering, Montreal, IEEE Computer Society Press, 230-240, 1992.

[46] Stolen, K., F. Dederichs, and R. Weber. “Specification and refinmenent of networks of asynchronously
communicating agents using the assumption/commitment paradigm.” Formal Aspects of
Computing, 8(2): 127-161, 1996.

[47] Yi, W. “CCS + Time = an Interleaving Model for Real Time Systems.” In Proceedings of
ICALP'91, 217-228. LNCS 510 Springer-Verlag, 1991.

$paratext[ReportTitle] 40

[48] Zwiers, J. and W.P.d. Roever. “Compositionality and modularity in process specification and design.”
In Temporal logic in specification, ed. B. Banieqbal, H. Barringer, and A. Pnueli. 351-374.
LNCS 398 Springer-Verlag, 1989.

$paratext[ReportTitle] 41

