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Abstract:  Reactive systems exhibit ongoing, possibly non-terminating, interaction
with  the  environment.  Real-time  systems  are  reactive  systems  that  must  satisfy
quantitative timing constraints.  This  paper  presents  a  structured  compositional  design
method  for  discrete  real-time  systems that  can  be  used  to  combat  the  combinatorial
explosion of states in the verification of large systems. A composition rule describes how
the correctness of the system can be determined from the correctness of its  modules,
without  knowledge  of  their  internal  structure.  The  advantage  of  compositional
verification is  clear.  Each module is  both simpler  and smaller  than the system itself.
Composition  requires  the  use  of  both  model-checking  and  deductive  techniques.  A
refinement rule guarantees that specifications of high-level  modules  are  preserved  by
their implementations. The StateTime toolset is used to automate parts of compositional
designs using a combination of model-checking and simulation. The design method is
illustrated using a reactor shutdown system that cannot be verified using the StateTime
toolset (due to the combinatorial explosion of states) without compositional reasoning.
The reactor example also illustrates the use of the refinement rule.
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1.0    Introduction
Reactive  systems  exhibit  ongoing,  possibly  non-terminating,  interaction  with  the

environment. Real-time systems are reactive systems that must satisfy quantitative timing
constraints.  This paper presents a structured compositional design method for discrete
real-time systems that can be used to combat the combinatorial explosion of states in the
verification of large systems. 

A system is decomposed into parallel components called modules. A composition rule
describes how the correctness of the system can be determined from the correctness of its
modules, without knowledge of their interior structure. The advantage of compositional
verification is clear. Each module is both simpler and smaller than the system itself. 

In addition to system decomposition, an abstract specification of a module may need
to  be  refined  into  implementations  closer  to  code.  A refinement  rule  guarantees  that
specifications of abstract modules are preserved by their implementations. 

The StateTime toolset  is  used  to  automate  parts  of  compositional  designs  using  a
combination of model-checking and simulation. The design method is illustrated using a
reactor  shutdown  system  that  involves  the  use  of  three  microprocessors,  each
independently checking sensor readings, with the final decision to shut down based on a
majority vote. The single microprocessor version can be checked in the StateTime toolset
without compositional reasoning. However, the three-microprocessor system suffers from
a combinatorial explosion of states and a compositional approach is thus needed. The
reactor example also illustrates the use of the refinement rule.

The compositional design method is based on the TTM/RTTL framework [36,37,40]
which consists of the following:

• A  constructive  description  language  called  timed  transition  models  (TTMs)  for
describing reactive systems. A TTM is a guarded transition system with lower and
upper time bounds on the transitions that relate to the occurrence of a special clock
transition tick. Concurrent real-time programs, nondeterministic timed Petri nets and
diverse mechanisms for timing, synchronization and communication constructs can be
converted into TTMs in a straightforward manner.

• A declarative  specification  language  called  real-time  temporal  logic  (RTTL)  for
describing the requirements  that  a TTM should satisfy without  discussing how the
TTM is constructed. RTTL is a timed extension of linear temporal logic augmented
with a transition variable for describing TTM events. 

• Analysis  techniques  for  demonstrating  that  a  TTM  conforms  to  its  specification.
Model-checking  and  a  proof  system  for  theorem  proving  are  the  main  analysis
techniques.  Model-checking  is  a  method  for  automatically  verifying  concurrent
systems  in  which  a  finite-state  model  of  the  system  (TTM)  is  compared  with  a
correctness requirement (RTTL). Since time is a monotonically increasing variable,
the state-space of naive timed systems is automatically infinite state. Hence, special
care is taken in the model-checking algorithms to keep the state space finite provided
the data types are finite.
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• A toolset called StateTime [38] which has a visual statechart-like executable language
for representing TTMs hierarchically.  An automatic translator to the model-checker
and theorem prover  STeP [31] allows for analysis.  Although STeP is  designed for
untimed systems, the automatic translation is done in such a way so as to allow for the
use of STeP’s model-checking facilities. The STeP theorem prover can also be used for
simplifying properties.

The  TTM/RTTL  framework  was  initially  conceived  for  the  analysis  of  closed
systems whose behaviour is completely determined by the state of the system itself [17].
In a closed system, we assume that the environment may set the initial values of input
variables, but, once the system starts running the environment cannot modify any of the
system variables.  Thus,  all  changes  to  the system variables  are  accounted for  by the
transitions of the program. By contrast, reactive systems are best thought of as  open
systems whose behaviour depends on continuous interaction with the environment. We
provide below an informal sketch of how the framework is extended to the open setting.
The concepts will be made precise in the sequel.

This paper defines the notion of an open real-time reactive module    where i is the
module interface stub (e.g. variables or channels shared with the environment), b its body
(a TTM) and s the module specification (an RTTL formula in the interface variables). The
module specification s must hold for all module computations including arbitrary changes
that the environment might make at any time to the interface variables. The composition
of two modules    is also a module.

Not all parts of a module are always determined. For example, the interface stub and
specification may be given, but not the body. We denote a module with an unspecified
body by . A Composition Rule (justified in the sequel) given by

Composition Rule:        

states that if each of the modules satisfy their respective specifications, then the system
satisfies  its  global  requirement    provided  the  requirement  can  be  derived  from  the
conjunction of the module specifications. The composition rule allows for both bottom-
up  and  top-down  design.  In  the  bottom-up  method,  the  independently  designed  and
implemented modules (with respective specifications ) when brought together exhibit the
emergent property r provided .

In top-down development, the system under design (sud) that is required to conform to
a global system requirement r can be decomposed into modules    and    provided . At this
stage, we have not yet committed to module implementations. Each of these modules can
then be given to a programmer whose job it is to develop a body that satisfies the module
specification. 

The body of module , whose variables can be reduced to finite ranges, can be shown to
satisfy  its  module  specification  (i.e.  )  by model-checking provided the  effects  of  the
environment  are  taken  into  account.  The  proof  of  ,  except  in  the  simplest  of  cases,
requires the use of deductive techniques (RTTL theorem proving). Thus the composition
rule usually involves a combination of algorithmic and deductive techniques.

It is advisable that the programmer design and code the body of a module at as high a
level as possible (using TTMs). This keeps the body simple and small which makes it
understandable and prevents state explosion. There is then a need to refine the high-level
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module body into a TTM that is closer to implementation. For example, an abstract TTM
may directly specify a delay of 50 ticks, but the implementation on a microprocessor
might  be a  loop construct  that  increments a  counter  every traversal  of  the loop.  The
internal  loop  and counter  are  unobservable  to  an  external  agent  interacting  with  the
module as the agent can only observe changes in the interface variables.

Two modules with the same interface are observationally equivalent (written: ) if they
agree  on  timed  observations  of  their  interface  variables.  Under  suitable  conditions
(presented in the sequel) a Refinement Rule states that:

Refinement Rule:          for any module specification s.

Hence, if    is observationally equivalent to , then    can replace    wherever it occurs with a
guarantee  that  any  module  specification      will  be  preserved.  There  are  efficient
polynomial algorithms for checking observational equivalence of finite state systems, and
equivalence preserving transformations are available for refining infinite state systems.

Given a requirement r that a system sud must satisfy, the composition and refinement
rules  allow for  a  systematic  modular  development  method represented  by the tree in
Fig. 1. Each step imposes a proof obligation as shown in the right hand column of the
figure. The process continues until all the modules have bodies that can be directly coded
into the given program language. We need not adhere to the ordering suggested by the
figure. For example, the complete implementation of    can take place before the other
modules are designed. It is also possible to reverse-engineer already implemented code
and move bottom-up.

FIGURE 1. Structure diagram for compositional design 
method

We proceed as follows in the rest of this paper. In section 2 we provide background
information needed to understand the TTM/RTTL framework and the StateTime toolset.
Section 3 defines the notion of a module, modular validity and the composition rule. It
also  describes  how  conditional  specifications  can  be  used  to  constrain  module
environments. Section 4 presents the refinement rule for modules based on the notion of
observational  equivalence  of  TTMs  developed  in  [26].  Observational  equivalence  of
TTMs will be defined precisely in the sequel, but the reader is referred to [27] for a set of
TTM equivalence preserving transformations and to [28] for an efficient polynomial time
algorithm to check TTM observational equivalence. Module observational equivalence is
defined in such a way that the TTM results can be applied directly to module equivalence
as well.  In Section 5, we use the composition and refinement rules for the structured
design of a reactor shutdown system. The design method is also discussed in some detail
(Sect. 5.6). Comparisons to other approaches and concluding remarks are presented in
Section 6.

2.0    Background
In the sequel, we use relative quantification    where Q is a quantifier (" or $), T is the

type of the dummy variable x, R is the range of the dummy variable and P a predicate
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[14]. For example,    means “for all values of an integer variable i, if i is at least as large
as 3 then i has property P”. If no range is supplied then it is true. The notation    generally
means that . For example,    means that we are defining    by . In TTM update functions
(see sequel),    denotes assignment, i.e. .

2.1    Real Time Temporal Logic (RTTL)
Linear time temporal logic [32] uses temporal connectives such as h (henceforth),      

(next), e (eventually), U (until) and past operators such as    (previous state) to represent
qualitative temporal properties. The standard connectives are applied to state-formulas
(which are the atomic predicates) to obtain temporal logic formulas. 

Real-time temporal logic (RTTL) is obtained by adding a fair tick transition and the
ability to refer to system transitions via a distinguished transition variable. We refer the
reader to [32] for a precise discussion of standard temporal logic and to [37,40] for real-
time temporal logic. We now provide a brief review of some of the basic concepts. 

Let    and    be the system variables where the type of    is the integers and    has a set
type. An example of a state-formula f is . In this formula, the bound variable    is just a
dummy variable and is not considered a system variable. A state is a mapping from the
system variables to values in their relevant types. Since    evaluates to true in the state
given by , we write    (state s satisfies f), and we call s an f-state.

A temporal logic formula such as    (“eventually    is true”) cannot be interpreted in a
single state; rather it is evaluated in an infinite sequence of states    given by    where    (“
satisfies “) will mean that there is at least one state subsequent to the initial state that is an
f-state.  An  inductive  definition  of  the  satisfaction  relation    can  then  be  given.  Let
denote the satisfaction of temporal formula f at a position    of the sequence . For a state-
formula , . 

We  can  then  give  the  appropriate  inductive  definitions  for  the  propositional
connectives (e.g. negation, conjunction, implication) followed by the usual definition of
the temporal  operators.  For example,  for  temporal  logic  formulas  g and h,  the  until
operator is defined by . For an arbitrary temporal logic formula ,    is an abbreviation for .
A formula    is generally-valid iff .

The implication () states only that “f implies eventually g” at the initial position of the
computation, i.e. if    holds at the initial position then there is a subsequent position where
holds. As a notational convenience, we will write    for    which states that the implication
holds at all positions of the sequence. In general, the double arrow entails operator is
defined by   for any temporal logic formulas p and q.

We need the  notion  of  timed  transition  sequences  for  the  description  of  real-time
systems. Since we envisage that a transition    causes a transfer from state    to state , we
may rewrite the infinite sequence of states    as:

(Eq. 1)

The start transition    (e.g. a computer reboot) puts the system in state . The transition
takes the system from state    to    and so on. We give the initial transition    the special
name start. The distinguished variable    (the transition variable) is always part of the
state. The transition variable is used to record the last event taken, i.e. for the sequence
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we have that    and . The reason we need a start transition is so that , like all other state
variables, has an initial value. 

The transition variable can be used to refer directly to event occurrences. For example,
for a traffic system, the temporal logic formula    asserts that anytime the light turns red, it
must eventually turn green.

In order to represent time, we introduce the special transition tick. A timed sequence
must satisfy the ticking constraint which asserts that there are an infinite number of ticks
occurring in the sequence, i.e. . Thus, time must progress irrespective of what happens in
a system or its environment. It is possible for any finite number of transitions to occur
between two ticks of the clock.

We may use quantified Manna-Pnueli temporal logic to define the bounded real-time
until operator, , which in turn can be used to express a variety of important real-time
properties. Informally2, the meaning of the bounded until operator is that eventually    will
occur at a time between    and    ticks from now; until then    must hold. Other bounded
operators can then be defined as follows:

Bounded response: p must hold after the l-th 
tick but before the -th tick.
 must hold before the -th tick.

Bounded invariance:    must hold until the -th 
tick.
Exact time:    is true in exactly    ticks.

The formula    asserts that p will hold before the next tick of the clock. Several state
changes can occur before p occurs without the clock advancing. The    operator can often
be  used  in  place  of  the  next  operator  where  there  is  a  need  for  stuttering-invariant
formulas,  i.e.  formulas  that  are  “robust”  with  respect  to  unobservable  moves  of  the
environment. Some further examples of clocked properties are:

• : If    holds initially, then eventually between 3 and 7 ticks    holds, and    must hold
continuously until then. This property is asserted only at the initial position.

• : Every position satisfying    is followed within 4 ticks by , and    holds continuously
until then.

• : If p holds at a position, then at some subsequent position before the next clock tick
there  should  be  the  start  of  an  interval  of  duration  2  ticks  during  which  q  holds
continuously.

• : The property    cannot become true sooner than 3 ticks after any occurrence of the
property .
We often need to compare expressions in consecutive states. We therefore introduce an

2 . Formally,  the  bounded  until operator  is  defined  using  a  flexible clock  variable   (that  is
incremented by one every time the clock ticks), and a rigid time variable  (that retains the same value
over all  states)  as  follows: .  Please refer  to [36,40] for the precise details.  Since the bounded time
operators are defined using ordinary quantified temporal logic, the untimed temporal theorem prover
STeP [31] can be used to show the validity of theorems such as , which can, in principal, be used for the
deductive reasoning in the sequel.
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abbreviation for the next value of a variable , written . For example, the formula    asserts
that the value of    is greater in every successor state that it is in its immediate predecessor
(see [32] for the precise details).

2.2    Timed Transition Models (TTMs)
TTMs are timed extensions of the fair transition systems of Manna and Pnueli [32].

The extension involves lower and upper time bound constraints on transitions, that refer
to the number of occurrences of the special transition tick. A TTM M is defined as a 4-
tuple    as follows:

• : a finite set of typed system variables. The distinguished transition variable    is always
in V, where . The variables set also include control and data variables that are used to
describe the various parts of M. Each state of M is a map from V to its types; the set of
all states is denoted by    (or just    when it is clear what the TTM is).

• I: the initial condition. This is a satisfiable boolean valued expression in the system
variables that characterizes the states at which the execution of the TTM can begin. A
state s satisfying I is called an initial state.

• T: a finite set of transitions which includes the distinguished transitions start and tick.
Each transition    is a function    that maps a prestate s in    to a (possibly empty) set of -
successor states .  An empty successor set means that the transition is disabled (i.e.
cannot be taken from the prestate). A successor state    is also called a poststate of
from s. If the set of successor states consists of a single poststate, then the transition is
deterministic.  If  there  is  more  than  one  poststate,  then  the  transition  is
nondeterministic.

• F:  a  fairness  set  where  .  Informally,  the  fairness  constraint  for  each  transition
disallows computations in which    is enabled infinitely often but is taken only finitely
many times3.

Since, in general, we do not need nondeterministic transitions4, we can also describe a
transition    by  its  enabling condition    (the  condition  under  which  the  transition
becomes eligible to be taken), and a simultaneous update function

where    and    are expressions in the system variables, which indicates that the values of
in the poststate    are    respectively, where    is the prestate. No other system variables (e.g.
) are changed. The transition  is enabled in a state s (written: ) if    — otherwise    is said to

3 .Fairness is defined more formally in the sequel. A weaker notion of fairness than the one defined in this
paper is called justice [32]. Fairness ensures that in interleaved parallel processes, the processes progress
independently  (fairness  distinguishes  concurrency  from  nondeterminism).  The  stronger  notion  of
fairness defined in this paper is needed for the tick transition.

4 .There is one exception to the rule. When  is used in transition updates it assigns arbitrary values to  and
in their appropriate types. No assumptions are made about the probabilistic distributions of the values
assigned. This is a purely nondeterministic update that says any value in the type is possible in the
successor state. This notion will used to construct environments of modules (Sect. 3.0).
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be disabled. 
The transition    can  be fully  characterized by a  transition relation    given by

which is a predicate in the primed and unprimed system variables. Primed variables refer
to the value of the variables in the poststate, and unprimed variables refer to values in the
prestate (see [32] for precise details). By convention, we leave out conjuncts such as    for
which there is no change.

In addition to the enabling condition and update function, we associate with each non-
tick transition    a lower time bound    and an upper time bound , where . We allow bounds
and    but not . The meaning of these bounds will be defined formally in the sequel, but
we first provide an informal overview.

A timed transition    with lower time bound    ticks and upper time bound    ticks, must
delay l ticks before being taken, but must be taken by u ticks of the clock, provided it
remains continuously enabled, and is not disabled by the occurrence of another transition
that might have the effect of disabling . 

The operational semantics of TTMs will be described by the set of all its behaviours
called trajectories. Informally, a trajectory is a timed sequence of states that starts in an
initial  state  satisfying  the  initial  condition  of  the  TTM.  From  any  state  of  the
computation, any enabled transition is taken in one atomic step. Either a tick transition is
taken at each step, in which case time advances, or a non-tick transition is taken, in which
case time stays the same. The resulting interleaving of enabled transitions allows us to
model concurrent processes5. When the transitions are taken, they update the variables
according to the transition update function. The clock must tick infinitely often in any
computation, and an arbitrary but finite number of (non-tick) transitions can be taken
between any two ticks of the clock. The lower and upper time bounds of transitions must
be respected.

A computation  of a TTM , where    for    and , is a timed sequence satisfying the three
constraints below. In each case, we show how to write the constraint as a temporal logic
formula.

1. Initialization  constraint:  The  first  state  of  the  computation  satisfies  the  initial
condition, i.e. . The initialization constraint is thus represented by the temporal logic
formula .  The transition start  occurs once at  the beginning of the computation and
never again.

2. Succession constraint: , i.e. every prestate at position i must have as its successor a
poststate according to the update function of    (the transition taken at position i). The
succession constraint can be expressed in RTTL as , where    is the transition relation
for .

3. Fairness constraint6: For each transition    in the fairness set, it is not the case that    is

5 .Actual  systems  may  have  overlapped rather  than  interleaved  execution.  However,  provided  an
appropriate fair set of transitions with the right level of atomicity is chosen, the interleaving model can
accurately describe overlapped execution (see [32, p103] for further discussion).

6 .The fairness constraint is included for generality but is not necessary for the example developed in the
sequel. However, real-time systems may have requirements where fairness is useful. For example, there
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infinitely  often  enabled  beyond  some position  in  the  trajectory,  but  taken  at  only
finitely  many  positions  in  the  trajectory.The  fairness  constraint  can  be  written  in
temporal logic as .

A timed sequence that satisfies the above three constraints is called a computation
of  .  A computation  describes  the  behaviour  of  a  Manna-Pnueli  fair  transition system
(enhanced  with  the  tick of  timed  sequences).  To  describe  the  behaviour  of  timed
transition models,  we further  constrain computations  by lower and upper  time bound
constraints and call the resulting computations trajectories.

4. Lower bound constraint:  for  every transition    with lower bound ,  if    is  taken at
position j of the computation, then there must exist a prior position    so that there are
at least    ticks of the clock between    and , and , i.e.    is enabled but not taken in the
states .

5. Upper bound constraint: for every transition    with upper bound , if    is enabled
at position j of the computation, then there must exist a subsequent position    with no
more than    ticks of the clock between    and , such that either    is taken or disabled at
position k.

As with the initialization, succession, and fairness constraints, both the bound constraints
can also be described in RTTL. For a non-tick transition    with lower time bound    (where
) and upper time bound , the bound constraint is:

(Eq. 2)

where , and where    (the previous temporal operator) holds at a position    of a trajectory
provided    is not the first position of the trajectory and    holds at position . If , then the
left conjunct    is replaced by true. If , then the right conjunct of the consequent in (Eq.  2)
is  replaced by true.  The bound constraint  (for  both  lower and upper  bounds)  can  be
written in temporal logic as:

(Eq. 3).

The moment of enablement    describes the relevant positions of a computation at which
the bound constraint for a transition    (that is enabled at that position) must be asserted. A
relevant position is either the initial position , or a position at which the transition has just
been taken    and is re-enabled, or a position where    has just become enabled .

Once a transition  becomes enabled at some position, it begins to “mature” but cannot
be taken until its lower time bound number of ticks has been taken, at which point the
transition becomes “ripe” for execution. If the transition is continuously enabled during
maturation, then it can be taken any time after it becomes ripe, but it must be taken or
become  disabled  before  the  upper  time  bound  number  of  ticks  has  expired.  Thus,
transitions “mature” together as time advances but execute separately in an interleaving
manner.

may be a requirement to log every error to a file or printer; this does not have to happen within a precise
time as the requirement may merely be that the error is eventually logged. In the Fischer protocol,
mutual exclusion is ensured if certain precise timing constraints are satisfied; however, for response it
may be sufficient to specify that each process eventually returns to it’s non-critical region. For TTMs,
we allow in increasing stringency: spontaneous  transitions, fair transitions and timed transitions. This
allows us to describe systems to the appropriate precision.
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As noted above, the initialization, succession, fairness and bound constraints can be
expressed in RTTL. The formula    defined by

(Eq. 4)

fully describes the set of all trajectories of the TTM M. 
Since a trajectory of a TTM    is a timed sequence, the trajectory must also satisfy the

ticking constraint  .  However,  there is  the  possibility  of  a  conflict  between the  upper
bound and the ticking constraint (in which case no timed sequence will satisfy    and the
ticking constraint simultaneously). This happens in the presence of immediate transitions
of the type    that are self-loops — such a    is taken repeatedly yet the tick transition is
delayed indefinitely7. This is called a Zeno computation and the TTM is said to exhibit
Zeno behaviour. Any cycle of transitions whose elements are all  immediate may also
exhibit Zeno behaviour. A TTM that exhibits Zeno behaviour cannot be implemented, and
hence we must find ways to ensure that our systems are non-Zeno.

The  problem  of  Zeno  computations  can  be  avoided  by  disallowing  self-looping
immediate  transitions.  However,  immediate  transitions  are  useful  for  modelling
“instantaneous” (i.e. before the clock ticks) reactions. If immediate transitions are used in
a TTM M, then we must check for the validity of    in every single computation that
satisfies the bound constraints. Fortunately, for those systems where model-checking can
be used, the ticking property can be verified automatically (e.g. see Table 1 in Sect. 5.5).
In the sequel, we assume that all TTMs are non-Zeno. This is not restrictive
at all for the examples of this paper because all TTMs can be model-checked to ensure
that they are non-Zeno.

The set  of  all  trajectories  of  a  TTM    is  denoted  by .  If  a  trajectory    satisfies  a
temporal  logic  formula  ,  then  we  write  .  If  an  RTTL formula    is  satisfied  in  all
trajectories of    (i.e.  ),  then we write ,  and the formula    is  said to  be  M-valid.  Any
generally-valid formula is also M-valid. Any trajectory in    always satisfies ; hence, the
transition  system  M  and  the  temporal  logic  formula    are  two  equivalent  ways  of
describing .

Theorem 1: For any (non-Zeno) TTM M and RTTL formula p in the variables of :
(a) , and (b) .

If we treat    as an axiom of the RTTL logic,  then (Th. 1)(a) describes the relative
completeness  of  the  logic  for  proving  M-validities.  An  oracle  is  a  device  that  is
guaranteed to provide a proof of any generally-valid RTTL formula. Hence to prove the
M-validity of p it is sufficient to submit to the oracle the formula . While the axiom    is
theoretically adequate it is not very practical. In practice the special proof rules in [36]
and model-checking (Sect. 2.4) are the preferred methods for proving M-validities.

7 .The  StateTime  tool  automatically  converts  TTMs to  fair  transition  systems  [39]  that  can  then  be
analyzed using STeP (see Sect. 2.4). In this conversion, additional conjuncts are added to the enabling
condition of the tick transition that disables the tick transition when an urgent timed transition must be
taken. In a system with a selfloop  transition, the tick transition is disabled indefinitely. This reflects the
conflict between the ticking constraint and the upper time bound constraint. The conversion procedure
does declare tick to be fair.  However,  since  tick is disabled until the urgent transition is taken, the
fairness constraint is satisfied despite the fact that tick is not taken.

$paratext[ReportTitle] 12



2.3    Parallel composition of TTMs
The parallel composition    of two TTMs    and    is defined in [40] by:

• ,

•  provided    is satisfiable,

•  where    and hence , and

•  where . We call    the composite TTM.
The  above  definition  holds  for  shared  variables  but  must  be  slightly  modified  for
synchronized transitions or channels as described in [40]. Both    and    synchronize with
respect to the start and tick transitions. The tick transition thus provides the composed
system with a uniform notion of time.

2.4    Overview of the StateTime toolset
The StateTime toolset assists  the user (a) to describe devices and systems using a

graphical structured language, (b) to execute the description so as to validate that the
description  is  a  reasonable  model  of  the  actual  system,  and  (c)  to  check  that  the
description  conforms  to  its  requirements  using  model-checking.  We  give  a  brief
description below of the main features of the toolset needed for the sequel. The reader is
referred to [38] for a more complete description.

The main parts of the toolset of interest to us are the Build tool and its translator to
the theorem prover and model-checker STeP [31]. The  Build tool is a window-based
front end for constructing compact visual models of real-time systems called TTMcharts.
TTMcharts resemble statecharts, but with a simpler semantics and with the additional
feature that transitions may have time bounds. We often use the terms TTMcharts, charts
and TTMs interchangeably as the semantics of TTMcharts is based on TTMs.

A chart is a hierarchy of  objects. Objects describe control information and impose
structure on the operation of the system. An object is either primitive, parallel (called
AND in statecharts) or  serial (XOR in statecharts). A primitive object has no internal
structure.  A parallel  object  is  constructed  from a  collection  of  child  objects  (or  sub-
objects) by parallel composition. The parallel composition of child objects operates in all
of these child objects simultaneously. The entry into a parallel object via an event causes
the simultaneous entry into each of the child objects. The exit from the object causes the
simultaneous exit from all its children. A serial object is constructed from a collection of
child objects such that only one of the children operates at a time. The entry and exit from
a serial  object  via  an  event  causes  the  simultaneous  entry  and  exit  of  the  currently
operating child object.

Charts may have data variables which are tested and set by events. Each non-primitive
serial (XOR) object has an object variable which is used to indicate which of its children
is currently operating. As an example, consider the plant chart  (Fig. 2) which will  be
described in more detail in Sect. 5.2. The plant is the parallel composition of two children
called relay and output which we write as . The serial object relay has two children
closed and open which are primitive. Zooming in to the output object indicates that it
is  the serial  composition of  the primitive object  wait  and the sub-object  update.  The
update object is the parallel composition of the pressure and power sub-objects which is
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where the pressure and power sensor values are updated. 

FIGURE 2. Plant module

module plant(C;P,W)
in C: {0,1} where /* relay activation.    causes the relay to open */
out R: {closed, open} where /* Relay position variable */
out P: {0,1} where    /* pressure variable where    is high pressure*/
out W: {0,1} where    /* power variable where    is high power*/

Body
private D: {wait,update}

Specification
(Eq. 5):    

The above module specification, inherited from Fig. 3 for the relay, is modularly-valid.
end module plant
The top-level objects relay and output have object variables    and    respectively where

and . The state-formula defined by    describes a state in which the relay is closed and the
next sensor update is two ticks away. The pressure    and power    are examples of data
variables.

A serial object begins execution at its default indicated in bold; e.g. the default for the
output  object  is  wait (Fig. 2).  Once a  cycle[0,0]  event  is  taken in  the  output  object,
nothing else can happen until two ticks of the clock are taken. After two but before the
third clock tick, the endupdate[2,2] event must occur (in this case, there are no other
events to preempt its occurrence). Before endupdate occurs, the pressure and power, or
just one of them, or no update at all may occur. The source of the endupdate event is the
structured object update; hence endupdate can be taken, no matter where execution in
update currently resides, and preempts the internal events of update.

A user can describe systems incrementally by composing sub-objects together to form
a super-object (bottom-up), or by decomposing a object into further sub-objects (top-
down). A chart can be executed at any point in the development cycle even before it is
finally  fixed  using  the  interactive  simulation  tool.  The simulation  tool  displays  chart
trajectories,  and  requires  user  interaction  to  select  the  transition  to  be  taken  at
nondeterministic selection points. The Build tool automatically translates TTMcharts into
fair transition systems according to the algorithm presented in [39]; STeP [31] can then be
used to model-check the chart for conformance to its specification. 

The current StateTime toolset was not meant for modular systems. It  suffers from
various deficiencies including the fact that it does not support interface stubs, automatic
generation  of  module  environments  (Sect. 3.0)  and  refinement.  It  is  easy  to  verify
standard  temporal  properties,  but  an  observer  must  be  constructed  for  real-time
properties. However, the tool is used in this paper for the construction of modules, their
environments (done manually)  and model-checking module properties.  In  principal,  a
chart when loaded into STeP can also be verified using theorem proving — however,
theorem proving real-time properties proved tedious (especially on account of the need to
use quantifiers). We are currently updating StateTime to fully support real-time modules
and  real-time  formulas  for  both  model-checking  and  theorem proving  in  a  seamless
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fashion, based on the results of this paper.

3.0    Modules and module composition
Our notion of a module is based on the untimed reactive modules of Manna and Pnueli

[32]. Although the Manna Pnueli framework has been used for real-time systems [23], the
extension to their system for modules as delineated by Chang [8] is different to ours. The
main differences are: (a) our modules are supported by a model-checker, (b) we provide a
state-event refinement relation for modules, and (c) the reactive modules of [32] are not
fully compositional as their parallel composition yields a transition system, not another
module  (composition  of  our  modules  yields  another  module).  We now explain  these
differences in more detail.

Chang  [8]  advocates  a  restricted  assumption/guarantee  style,  wherein  the
environmental  assumption  is  stated  as  a  restriction  on  the  environment’s  next-state
relation. He also presents a decision procedure in the propositional case and a deductive
system for the discrete time metric temporal logic used for transition modules. Although
Chang provides a deductive framework for real-time modules, he does not present model-
checking algorithms and tools (which are crucial for the needs of this paper).

Chang’s  temporal  operators  are  new;  they  are  not  expressed  in  ordinary  untimed
temporal logic. The transition modules of [8] must be self-disabling, i.e. once a transition
is taken it cannot be again enabled (as in a self-loop). The TTM semantics of modules in
this paper does not impose this restriction on module descriptions.

The untimed refinement relation of [32] will not work for real-time modules (as will
be explained in Sect. 4.0). Hence, in Sect. 4.0, we introduce the necessary framework
needed for real-time module refinement.

The reactive modules of [32] are not fully compositional as their parallel composition
yields a transition system, not another module. In this section, we provide the notion of a
fully  compositional  discrete  time  transition  module  (like  [8]).  This  requires  a  more
complete treatment of the notion of the interface stub and modes of variables in a module.
It also allows our treatment to deduce the trajectories of the composite module given its
sub-modules (Lemma 1), from which we obtain the notion that a module specification
must be satisfied independently of the behaviour of the environment (Lemma 2), and
finally yields the Composition Rule (Th. 2). By contrast, [32] starts with the notion of a
module as given in Lemma 2 and then proceeds from there to obtain the Composition
Rule.

A module    is defined by its interface stub , body    and RTTL specification :

1. The  interface stub consists of the declaration of all the variables that are shared
between module m and other modules in its environment (defined more precisely in
Sect. 3.2). The stub also declares the initial values of all the shared variables. We let
denote the set of shared variables.

2. The  body    is  a  program whose  statements  may refer  only  to  variables  declared
private to the body, or to variables in the interface.  The set  of private variables is
denoted . In the sequel, the body is a TTM, in which case we let    denote the TTM
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with variables set . The initial condition    is the conjunction of all the initial conditions
declared on both the private and interface variables. 

3. The  specification    of  the  module  is  an  RTTL formula  in  the  shared  interface
variables. The specification asserts the required visible behaviour of the module.
In order to describe the behaviour of a module in an environment that may arbitrarily

modify  the  interface  variables  ,  we  adjoin  to  the  module  TTM  a  spontaneous
environmental transition    defined by the update function    (i.e. the interface variables can
take on arbitrary values) while all the private variables remain unchanged, i.e. . Thus the
environmental transition may exhibit arbitrary behaviour, except that it may not modify
any private variables of the module. However, shared interface variables may be changed
at any point to any value in their respective types.

Definition 1: [The TTM associated with a module] The TTM    associated with the
module    is defined as    where    and    where    is the set of transitions of the body
TTM, and    is the set of fair transitions of the body (note that ). Since    is a TTM, we
define    and    where    is the set of all private variables, i.e variables in . (As before, we
require that the timed transition model    be non-Zeno).

The succession constraint of    allows the body transitions to be interleaved in an arbitrary
fashion with the environmental transition. The environmental transition thus simulates the
behaviour of the module in an arbitrary context and allows the module to take stuttering
steps in  which none of the module private  variables  change from the prestate  to the
poststate.

The existentially quantified formula    in (Dfn. 1) describes the same system as    except
with the private variables    hidden, and thus this existential formula can be considered a
description of    by abstract implementation [32, p.340]. In this style of description, we
may choose the most straightforward implementation of the module    and describe its
operational behaviour using a TTM (e.g. if    is a buffer, then a private list variable may be
used to remember sequences of messages). What makes the implementation abstract is
the existential quantification of the private variables. This means that we do not require or
imply in any way that the real implementation of the module should contain any of these
private variables (e.g. the list variable in the case of a buffer need not be used).

Definition 2: [Modular-validity] The RTTL formula p is modularly-valid for the
module m (written ) iff .

3.1    Parallel composition of modules
Modules    (with variable sets ) for    are said to be compatible with each other if:

• each module has private variables that are not variables of the other module, i.e.    and ,
and

• the conjunction of their initial conditions is satisfiable, i.e.    is satisfiable, and

• the conjunction    is satisfiable. 

Compatible  module  composition,  ,  is  defined by    where  ,  i.e.  some of  the interface
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variables  of  the  sub-modules  may  be  hidden  at  the  parent  level.    is  ordinary  TTM
composition (Sect. 2.2). Finally .

The private variables of the composite is , and the initial condition is defined by . The
super-module    is itself a module; the TTM associated with this super-module is just the
TTM obtained from    together with the environmental transition that may change only
variables in    (i.e. it may not change any private variables).

In the next lemma, we assume that we have two modules    and . If an environmental
transition in a trajectory of module    has the same effect on its interface variables as a
transition    of , then we relabel the environmental transition in the trajectory to , and the
set of all the relabelled trajectories of    we call . A symmetric definition also provides us
with the set    of relabelled trajectories of .

Lemma 1: If    then .

Proof: Let . Trivially    and hence the initialization constraint of    is satisfied. For the
succession constraint, consider any position    of .  Either the environment transition is
taken at position    or some transition of    is taken. The environment transition of    may
not modify any private variables of m and hence may also not modify private variables of
, so any environment step of    is also an environment step of . If some transition of    is
taken at position , then it is either a transition of    or of    that is taken. Since no transition
of    may modify private variables of , a step taken by a transition of    (say ) is the same as
an environment step relative to    (the transition    must be renamed to an environmental
transition).  Thus  at  any  position  either  a  transition  of    is  taken  or  an  environment
transition  of    is  taken,  and  hence  the  succession  constraint     holds.  The  fairness
constraint of    is also satisfied, as any transition of    that is enabled infinitely often but not
taken would also violate the fairness constraint of . The ticking constraint of    is also
satisfied, for suppose there is a position of    beyond which there is no tick of the clock for
, then the ticking constraint for    would also be violated. If a transition of    violates its
bound constraint,  then  the  bound constraint  on  transitions  of    will  also  be  violated.
Hence    must also satisfy the bound constraint of .  Since    satisfies the initialization,
succession,  fairness,  ticking  and  bound  constraints  of  ,  it  follows  that    holds.  By
symmetry it also follows that    holds. Thus . 

For the converse, let . At any position of    either a transition of    or of    is taken, in
which case the same transition belonging    is taken, or an environment transition that is
an environment transition of both    and    is taken. This environment step must also be an
environment step of    as no private variables of    and    could have been changed. We can
make similar arguments as before for the other constraints but in the converse direction.
Hence . n

Lemma 2: Let modules    and    be compatible. Then
(a) , and 
(b) For a module m,    for any compatible module    and RTTL property .

Proof: Follows directly from Lemma 1. n
Recall that a property is modularly-valid only if it is satisfied by all trajectories of the
module. Lemma 1 tells us that the trajectories of the super-module are always a subset of
those of its sub-modules. This means that a valid specification of a sub-module must also
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be valid for the super-module (Lemma 2a), and that a module specification remains valid
no matter what the behaviour of its environment is, provided the environment respects the
compatibility constraints (Lemma 2b).

Theorem 2:  [Composition  Rule].  
Let    and    be any two compatible modules and let the general-validity given by    hold.
Then .

Proof: Follows directly from Lemma 2 and temporal logic. n

As mentioned in the introduction, the Composition Rule can be used bottom-up or top-
down. In the bottom-up method, pre-existing implemented “off the shelf” modules can be
combined into a super-module that  satisfies  a system requirement  r.  In  the top-down
method, we proceed as follows:

1. The system architect decomposes the system under design () into modules    and    by:
(a)  designing  compatible  interface  stubs      and  ,  and  
(b) designing module specifications such that .

2. The architect gives each module interface and specification to a programmer. It is the
job  of  the  programmer  to  develop  the  module  body  so  that  the  specification  is
modularly-valid. For example, if the programmer is given    and    for the first module,
he must design a body    so that    where the module    is fully described by . 

3. The required system is then    which is guaranteed by the Composition Rule to conform
to the requirement .

Parts of the development method can be automated by using a combination of model-
checking  for  proving  modular-validity  (step 2),  and  deductive  theorem  proving
techniques can be used for proving that the system requirement is a consequence of the
module specifications (step 1b). 

A compositional proof has the following outline:

1.  is modularly-valid for    (by model-checking)
2.  is modularly-valid for    (by model-checking)
3. general-validity (deductive theorem proving)
4. 1, 2, 3 and the Composition Rule where 

In the sequel, we will leave out the module satisfaction symbol (except for its appearance
in the last line) and write the above proof as:

1.  is modularly-valid for 
2.  is modularly-valid for 
3. general-validity
4. 1, 2, 3 and the Composition Rule where 

By Lemma 2 (b), once we know that the context of the proof is the module , then any
specification of a sub-module of    will  also hold for ,  and hence there is no need to
indicate which sub-module specification we are dealing with.
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3.2    Modes of interface variables
The interface stub of a module defined in the previous subsection consists of a set of

typed shared variables with their initial conditions. We can provide more structure and
flexibility  to  the  interface  specification  which  will  enhance  the  user’s  ability  to
understand a module.

The additional  structuring  mechanism is  provided by describing  the  modes  of  the
shared variables. A variable in the interface stub is either in (the module body can read
the variable but not write to it), out (the environment can read the variable but not write
to it), or share (both the body and the environment have write access):
interface_stub ::= {mode {variables}If a module m has a declaration “out ”, then no
other module in the environment of m may have a writing reference to the variable . If
two (or more) modules each write to y, then they must each have the declaration “share
”, thus indicating that the external environment may also change . 

Let the variables in the interface stub be , where    are the “in” and “share” variables
(i.e. all variables whose value may be changed by the environment), and where    are the
remaining  interface  variables  (the  “out”  variables  that  the  environment  does  not
change).  We often  refer  to  the  module  by  ,  where  the  semicolon separates  the  out
variables  from those that  the  environment  can  read  and modify  (the  in and  share
variables).

Definition 5:  Two  modules    and    are  interface  compatible,  provided  each
variable    satisfies the following constraints: the types declared for    in both interfaces
match, the conjunction of their where clauses (supposed true when not specified) is
satisfiable,  and if  one  of  the  declarations  specifies  an  out  mode,  then  the  other
specifies an in mode.

The reactor trip relay module relay (taken from the example in Sect. 5.2) is shown in
Fig. 3. When the command to open the relay () comes from the environment, then the
relay is immediately opened () before the next clock tick, thus shutting down the reactor.
The specification of the relay (see (Eq. 6) in Fig. 3) does not contain the next operator    in
the consequent; instead, the operator    is used. This is because the trajectories of a module
may  have  environmental  steps  that  leave  the  state  unchanged.  Specifications  must
therefore allow such “stuttering” steps otherwise the specification will not be modularly-
valid.

FIGURE 3. The relay module

module relay(C;R)
in C: {0,1} where initially 

/* when the input command    is given, the relay is opened, and when    the relay is closed */
out R: {open, closed} where initially    
/* R is the relay object variable that is exported as readonly output */

Body TTMchart (using the 
StateTime Build tool)
Specification:

(Eq. 6):    
/* Informal description: The operator    is needed in the consequent. Although the relay responds
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to a stimulus (i.e. a change in C) before the next clock tick, the reponse is not immediate but may occur a
few states later  (as actions of the environment are interleaved with actions of the relay).  The above
specification is modularly-valid */
end module relay.

3.3    A small example of compositional reasoning
The module    (Fig. 4) is part of the DRT controller which will be discussed in the

sequel.  The  controller  consists  of  three  independent  microprocessors,  each  one  with
independent  sensors  of  reactor  power  and  pressure.  Each  microprocessor  controller
signals through a variable    whether to open the relay (which shuts down the reactor), or
to  close  the  relay  (allowing the  reactor  to  be  started  up  again).  The  in variables  of
majorVote are thus , and the out variable is , which is set to 1 when the majority of
the microprocessor vote for opening the relay (i.e. when ). The specification    can be
shown to be modularly-valid by model-checking.

FIGURE 4. Module for majority voting logic

module majorVote(C1,C2,C3;C)
with bitType={0,1}
in : bitType;   /* 1 stands for a vote to open the relay, and 0 to close the relay. */
out : bitType where initially      /* Only majorVote can write to    to set the relay*/

Body
private : bitType where initially /* majority vote object variable*/
.
Specification

(EQ 7): 
/*Informal description
The first line of the specification states that once the majority of microprocessor controllers vote 
to open the relay, and this vote remains in place for time 20 ticks, then within one tick of the 
clock, the output variable    will be set so as to command the relay to open, and will remain set for 
20 ticks of the clock. The second line states a similar specification for the command to close the 
relay. */

end module majorVote
The relay module (Fig. 3) and the voting module (Fig. 4) are interface compatible. We

may therefore use the modularly-valid module specifications (Eq. 6) and (Eq. 7), and the
Composition Rule to prove the validity of

(Eq. 8) 

where p is defined by:
(Eq. 9)p: 

The proof of the first conjunct of (Eq. 9) is as follows:

1. by modular-validity of (Eq. 7)
2. by modular-validity of (Eq. 6)
3. (2) and RTTL 
4. (3) and RTTL
5. (1), (4) and Composition Rule
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The temporal logic reasoning is performed in the RTTL proof system. For example,
the RTTL theorem used in step (3) is: .

The  Composition  Rule  provides  a  powerful  technique  for  beating  combinatorial
explosion of states. To verify a global requirement r of a system composed of modules, it
is  not  necessary  to  deal  with  the  complete  system  (e.g.  by  generating  its  global
reachability graph). Instead, we need only verify the specification of each of its objects
one  at  a  time,  provided  we can  show that  the  object  specifications  entail  the  global
requirement.

The modular-validity of module specifications for a module    can be determined by
applying the model-checking and theorem proving tools of StateTime (Sect. 2.4) to the
TTM    that corresponds to . For example, the relay module specification    in Fig. 3 can be
proved modularly-valid by model-checking the set of transitions associated with the body
together  with  the  nondeterministic  environmental  transition  with  update  function
choose(C), which allows the input variable C to vary arbitrarily.

In  the  above  relay  example,  an  unrestricted  environment  was  used  to  check  the
modular-validity  of  the  module  specification.  This  is  not  always  possible  as  an
unrestricted environment can sometimes generate larger intermediate reachability graphs
than the reachability graph obtained when the environment is limited to a known set of
fixed  modules.  This  is  because  certain  states  of  the  module  in  an  unrestricted
environment may be unreachable in the composite. There are two ways to address this
issue: either (a) decompose the module into smaller sub-modules where an unrestricted
environment will not be problematic, or (b) restrict the environment of the module to the
actual environment in which the module is expected to operate.

The  easiest  way  to  restrict  the  environment  involves  the  use  of  conditional
specifications  for  the  module  of  the  form    which  asserts  that  if  the  environment  is
assumed to behave according to the RTTL formula    then the module is guaranteed to
behave  according  to  the  RTTL  formula  .  In  other  frameworks,  such  conditional
specifications  are  called  assumption/guarantee  properties  [22],  and  special  rules  are
provided for reasoning about them. In our framework, conditional specifications are no
different from any other module specifications. Our purpose will be to show that    is
modularly-valid  for  the  module  ,  i.e.  .  This  does  not  contradict  our  definition  that  a
module  specification  should  hold  independently  of  what  the  environment  does.  The
property    will indeed hold true only if the module environment behaves according to .
However,    holds for the module in any environment; this is because if the environment
does not satisfy , then    need not hold true [32, p.356].

In the sequel, we deal with modules that are intended to work in fixed environments.
For example, the environment of the DRT controller module (Sect. 5.0) is the plant which
will remain fixed throughout the design. Consider a conditional specification    for one of
the controller sub-modules    which asserts that if the plant (which is the environment of
m) behaves according to    then m will  behave according to .  To verify the modular-
validity    in an unrestricted environment in which the plant output variables can take on
any  value  at  any  moment,  will  generate  a  larger  reachability  graph  than  necessary
because there will be states that are not reachable in practice. The actual plant sensors are
filtered and hence change only every two ticks of the clock. Thus we do not need to
consider all the possibilities generated by continuously changing sensor values. Instead,
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we can verify    which will involve a smaller reachability graph in which plant changes
occur only every two ticks. The following theorem justifies this procedure.

Theorem 3: Let    and    be two compatible modules and p an RTTL formula in the
interface variables. Then .

Proof:

< (Th. 1)(a)  >

< propositional temporal logic >

< Composition Rule and    holds for    by (Th. 1)(b) >
. n

4.0    Module refinement
If a module m has been implemented with a given body, under what conditions can we

replace the body with a new one while still retaining the same observed timed behaviour
at  the interface stub? One possibility  is  to  use the notion of  program equivalence of
untimed  concurrent  programs  developed  in  [32,  p46].  However,  this  notion  of
equivalence will not work for our real-time reactive modules. 

Consider  a  program with  two variables    and  .  In  [32,  p46],  a  sub-sequence    is
reduced to    if we want to observe variable . We have thus lost a record of one of the
clock ticks, because in the refinement relation of [32], program states that are identical to
their predecessors are omitted from the sequence. But, in real time systems, it is essential
that the reduced system show the same timed behaviour as the original system. We will
thus need to define a notion of observational equivalence that takes into account state
(data such as the value of ) as well as events (ticks of the clock). In this section, we adapt
the state-event notion of observational equivalence developed in [26,27,28] to
the needs of real-time reactive modules. Because we need to deal with both states and
events, we also cannot just use the standard event-based notion of bisimulation [33], as
will be explained in this section.

Consider two modules that have the same interface stub but different bodies. For such
modules  we  will  define  a  notion  of  module  observational  equivalence  that  is
compositionally  consistent  and  preserves  any  stuttering  invariant  RTTL  module
specification (detailed explanation follows below). Thus the first body can be replaced by
the second with a guarantee that any module specification that holds for the first will also
hold for the second, and vice versa. Observational equivalence will allow us to refine an
abstract module into one closer to code implementation. The abstract module may have a
substantially smaller state space than the refinement and hence will be more amenable to
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model-checking.
Informally, if a module    is equivalent to a module    having the same interface stub

(written ) then    preserves the timed behavior of    over the interface variables. We want a
notion of observational equivalence that only distinguishes between the two modules if
the distinction can be detected by an external agent interacting with each of them. The
agent can observe any of the interface variables and the start transition and tick of the
conceptual global clock, but not any of the private variables or internal transitions which
are  unobservable  to  the  external  agent.  We call  such  internal  unobservable  actions  -
transitions. Although an external agent may not be able to observe an internal transition
itself, it may be able to observe the effects of the internal transition (e.g. if the internal
transition changes one of the interface variables).

4.1    Observation equivalence of TTMs
In [37], an algorithm is given for constructing the reachability graph of a TTM. The

reachability graph is used as the basis for model-checking RTTL formulas, as maximal
fair paths in the reachability graph correspond to TTM trajectories. 

We illustrate the concept of a reachability graph by referring the reader to the sample
TTM    with variables set    as shown in Fig. 5. The reachability graph of    is also shown in
Fig. 5. The reachability graph is a labelled transition system with state set , transition
label set ,    is a set    of binary relations on , and the initial state is . 

If    and    then    holds precisely when    (i.e.    is a -successor of ) where    are the
restrictions of    respectively, and    both occur in trajectories of the TTM . Let    be an
abbreviation for    which is called a -step from    to . The notation    denotes a sequence of
steps in the graph. Any maximal sequence of steps in the reachability graph corresponds
to a trajectory of the TTM respecting the initialization, succession, fairness, and bound
constraints (Sect. 2.2).

The timed behaviour of the TTM    in Fig. 5 is equivalent to    with respect to the
observable  variable    (in  a  sense  to  be  made  precise  in  the  sequel).  In  this  weakly
observable  setting,  the    and    transitions  are  observable  but  no other  transitions  are
visible to an external agent. The observable variables set is ; we require that the variable
be in the variables set of both TTMs. The TTM    is much simpler than    and has a smaller
reachability graph (Fig. 5). We therefore call    an abstract specification}} of the concrete
refinement .

FIGURE 5. Observably equivalent TTMs

TTMs    and    are observationally equivalent, i.e. .

} .In  this  section,  we  show  that  a  TTM  description  of  a  concrete  system   meets  its  abstract  TTM
specification  is by showing that  is equivalent to  on the observable variables. Although this approach is
natural in many cases, we do not thereby imply that equivalence of TTMs is always the right way to
express conformance. Temporal logic is often more convenient for expressing a partial specification, i.e.
a property which should be satisfied by a system but which does not fully determine its observable
behavior.  An example of a  partial  specification is   (where  is  the  object  variable in  Fig. 5)  which
specifies that  should not be turned  any sooner than two ticks of the clock.
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For the precise definition of observation equivalence, we need the concepts of state
projection operators and unobservable -transitions. For a set of observable variables    of a
given TTM, the observable state projection operator    tells us when states    and    agree
when restricted to their observable variables. For example, if we are given the states ,
and the observable variables set , then

as they agree on the    component of the state.
An external agent interacting with the TTM    can observe the start and tick transitions;

but  the  other  transitions    and    are  unobservable.  Similarly,  the  transition    in    is
unobservable. We will relabel the edges of reachability graphs so that all unobservable
transitions are called . Although the -transition itself is unobservable to an external agent,
its  effect  may  be  observable  (e.g.  when  the  transition  is  taken  it  may  change  an
observable variable); however, the external agent is unable to tell which transition caused
that effect. 

Definition 6: [State-event labelled transitions systems SELTS] Let    be a TTM,
and let    be a given set of observable variables. Let the reachability graph of    be
where    is  a  countable  set  of  states  and    is  the initial  state.  Then    is  a  labelled
transition system, called a state-event labelled transition system (or SELTS), where
and    where:

(Eq. 10)

(Eq. 10) achieves the required relabelling,  i.e.  all  transitions in the reachability  graph
other  than  start  and  tick  are  now  relabelled  to  the  unobservable  -transition  in  the
corresponding SELTS. The following definition is needed for the  weak state-event
bisimulation:

Definition 7: The unobservable move    is defined by: 

The action of taking an observable step    (i.e.    is either start or tick) in a SELTS that
has (possibly empty) sequences of unobservable steps on both sides is defined by:

We also define a similar move for the unobservable -transition (which may or may
not cause a change in the observable variables) by:

We are now ready to define the notion of a weak state-event bisimulation relation.
In  the  weakly  observable  setting  with  unobservable  -steps,  the  steps      and      are
indistinguishable, producing the same observations (or possibly lack of observation in the
case of a    move).

Definition  8:  [Weak  state-event  bisimulation]  Let      be  state  event  labelled
transition systems for the TTMs    for    with a common observable variables set . Then
the relation    is a weak state-event bisimulation relation if :    and 

$paratext[ReportTitle] 24



•  implies 

•  implies 

The above definition of bisimulation can be paraphrased by saying that two states are
weakly bisimilar if any move from one of the states to a new state can be matched by the
other state making a move, or sequence of moves, producing the same observations on
both the observable variables and the observable transitions (start and tick) and reaching
a state that is weakly bisimilar to the state reached from the first state. 

The standard notion of bisimulation [33] is defined with respect to the events of a
labelled  transition  system.  While  it  is  possible  to  describe  systems  using  only  state
information or event information, there are many applications where the use of both state
and  event  information  is  quite  natural.  The  above  notion  of  (weak)  bisimulation  is
defined not only with respect to the observable events of the labelled transition system
(needed to maintain a global notion of time via the clock tick), but also with respect to the
states of the labelled transition system (needed for dealing with properties involving the
observable variables). For TTMs that must synchronize with each other via shared events
(in addition to start and tick), the set    in (Dfn. 6) can be expanded quite naturally to
include any such additional synchronized events without the need to change the definition
of bisimulation.

Since  weak  bisimulations  are  closed  under  union,  there  is  always  a  largest  weak
bisimulation relation (which we denote by the infix operator ) relating the states of    to
that of    for an observable set of variables . Thus if    (respectively ) is a state of the
reachability graph of    (respectively ) then we can write    whenever . This leads to the
notion of state-event equivalence of TTMs:

Definition 9: [] Let    (with initial state ) and    (with initial state ) be two TTMs
with variables sets    and    respectively. Let    be a given observable set of variables.
Then    and    are called state-event equivalent over    (written: ) provided .

Where the observable set of variables is fixed from the context to , we write . For the
example TTMs in Fig. 5 with observable variables set , we have that .

For  finite  state  TTMs,  [28]  provides  an  efficient  polynomial  time  algorithm  for
checking the equivalence of two TTMs. For possibly infinite state TTMs, [27] presents
equivalence preserving transformations. The following theorems indicate the usefulness
of state-event equivalence [26]. 

Lemma 3:  (corollary  of  Lemma  2  in  [26])  
Given TTMs    all having the same observable variables set, then    

Thus, state-event equivalence of TTMs is compositionally consistent, i.e. the designer can
replace a TTM with an equivalent refinement with a guarantee that the observed time
behavior will be unchanged.

The set of SESI (state-event stuttering invariant) temporal logic formulas is defined in
[26]. We will only need a subset of SESI formulas for the sequel, which we now define.
An atomic SESI formula atomic_sesi of a module m is  any state-formula,  having no
occurrences  of  the  transition  variable  ,  and  whose  free  variables  are  the  observable
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variables, i.e. the variables in . A SESI formula is defined by:
(Eq. 11)sesi ::= atomic_sesi |    |    |    |    | 

The formula    is SESI as it is derived from the bounded  until operator which itself is
SESI. Also    is SESI because all the other temporal logic operators, except for next, can
be obtained from the until operator. The    operator can usually replace the next operator.
It is shown in [26] that some formulas involving the next operator are also SESI, but we
will not need these for the sequel.

Lemma 4: (corollary of Theorem 3 in [26]) Let    be a SESI formula with a given
observable variables set . If    and    are TTMs such that    then: .

The above lemma is significant for model-checking. We may check an abstraction
for conformance to    rather than its more complex refinement , with a guarantee that
will also hold for the refinement, provided the TTMs are non-Zeno.

4.2    Observation equivalence of modules
The behaviour of a module    was defined in Sect. 3.0 with the help of an associated

TTM , which is the composition of the body TTM and an environment transition that
arbitrarily changes interface variables .

Definition 10: [state-event equivalence of modules] Let    and    be two modules
having precisely the same interface variables (i.e. ). The observable variables set    of
these modules is defined as . The corresponding reachability graph of each of these
modules  is    for    from which  their  corresponding  SELTS can  be  obtained  as  in
(Dfn. 6). The state event equivalence of these modules is then defined by: . 

As  with  TTMs,  one  may  check  the  conformance  of  an  abstract  module  for
conformance to its specification with the guarantee that the refinement will also satisfy its
specification, as stated in the following theorem.

Theorem 4: [Refinement Rule] Let    be an arbitrary SESI formula for non-Zeno
modules    and    having the same interface variables such that . Then: .

Proof: Since    we have that    where    is the TTM corresponding to the module (Dfn. 1)
for    and . By Lemma 4, it follows that . Since the modules are non-Zeno,    holds.
Hence, by the definition of modular-validity (Dfn. 2)    holds as required. n

5.0    Modular Design of the delay reactor trip 
(DRT)

Industrial reactive systems are often specified using a combination of timing diagrams,
pseudocode and careful English narrative. This has the considerable advantage that it is
accessible and intelligible to a wide community. It has the disadvantage that even the
most  lucid  informal  descriptions  are  prone  to  omissions  and  ambiguities.  More
importantly, conformance analysis can only be undertaken in a more precise setting.
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In this section we describe an example taken from the actual requirements document
for  the  shutdown  system  of  an  industrial  nuclear  reactor.  We  translate  the  informal
descriptions and requirements into precise counterparts in the TTM/RTTL framework,
and then use the modular development method developed in this paper to design the
system and check its conformance to requirements. The abstract design so obtained can
then  be  refined  down  to  a  format  close  to  pseudocode  suggested  in  the  original
requirements  document.  This  is  not  the  way  the  original  problem  was  presented.
Originally,  the  pseudocode  was  a  given,  and  the  engineers  wanted  to  know  if  the
pseudocode satisfied the informal requirements as presented in the timing diagram. This
reverse engineering problem can be solved using the same compositional and abstraction
techniques but working bottom-up (see [38] for the reverse engineering problem).

5.1    Informal description of the problem
In early nuclear reactors, the shutdown systems were constructed of analog devices.

The analog control had the virtue of being simple to understand but inflexible, unable to
perform system checks and not always reliable. It was felt that the situation could be
improved by installing computerized  control  with at  least  two independent  shutdown
systems,  designed  by  different  teams,  each  shutdown  system  itself  having  3-version
control and majority voting logic [43].

The delayed reactor trip (DRT) problem was first described by Lawford et. al. [27].
Lawford  developed  behaviour  preserving  transformations  for  timed  transition  models
(TTMs) with which he was able to discover a flaw in the proposed design [25] involving
a single controller. However, the transformational theory cannot be fully automated as no
set of transformations is complete for proving observation equivalence between the actual
implementation and its abstract specification. In [38], the StateTime toolset was used to
verify  the  single  controller  case,  where  it  also  helped  to  find  a  bug  in  the  original
specification.  A corrected  version  of  the  pseudocode  was  shown  to  conform  to  its
requirements by model-checking.

In this paper we consider the case of 3-version control using a majority voting circuit
to  determine control  actions.  The StateTime toolset  was not  able  to model-check the
complete  system  due  to  a  combinatorial  explosion  of  states.  However,  using  a
combination of model-checking and deductive techniques in the modular framework, the
conformance of the systems to its requirements can be demonstrated.

The  DRT for  nuclear  reactors  used  to  be  implemented  in  hardware  using  timers,
comparators and logic gates similar to the timing diagram shown in Fig. 6. The new DRT
system is implemented on microprocessors. Digital control systems provide cost savings
and flexibility over the hardware implementation. However, the question now is whether
the new microprocessor based software controller satisfies the same specifications as the
old hardware implementation. 

FIGURE 6. Analog implementation of the delay relay trip timing.
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The  hardware  version  of  the  controller  implements  the  following  informal
requirements8:

[R1] When  the  power  and  pressure  of  the  reactor  exceed
acceptable safety limits, the comparators which feed in to the first
AND gate cause Timer1 to start. After 3 seconds, Timer1 sends a
message to one of the inputs of the second AND gate indicating
that the time-out has occurred. If after this first time-out the power
is  still  greater  than  its  safety  limit,  then  the  relay  is  tripped
(opened),  and  Timer2  starts.  The  relay  must  remain  open  until
Timer2 times out which happens after 2 seconds. 

Requirement [R1] ensures that the relay is opened and remains open for two seconds
thus shutting down the nuclear reactor in a timely fashion. If the controller fails to shut
down the reactor properly, then catastrophic results might follow including danger to life.
By the same token, each time the reactor is unnecessarily shut down, the utility operating
the reactor loses money because it must bring additional fossil fuel generating stations on
line to meet demand. The next informal requirement states:

[R2] If  the  power  reduces  to  an  acceptable
level  then  the  relay  should be  closed  as  soon as  possible  (thus
allowing the reactor to operate once more).

In the actual DRT, there are three identical microprocessors that have independent sensors
for power and pressure. The final decision on when to shut down the reactor is based on a
majority vote of the three microprocessors. 

The code is to be implemented on a microprocessor with a cycle time of 100ms. The
microprocessor samples the inputs (pressure    and power ) and passes through a block of
code every 0.1 seconds. It is assumed that the input signals have been properly filtered
and that the sampling rate is sufficient to ensure adequate control. In the formal model,
one tick of the clock will represent 100ms.

5.2    Formal requirements
The first  step is to decompose the drt into two parallel  modules the plant and the

controller, i.e. . The plant corresponds to the part of the system that is fixed and known.
The controller is the part of the system that must be designed.

The observable variables of the DRT are shown in the data flow diagram of Fig. 7. The
plant outputs are the relay position (), power () and pressure () variables. The input to the
plant () is a relay activation variable that can be used to force the relay to open or close.
In the absence of control, the plant can behave unsafely. For example, if pressure and
8 .In the sequel, we assume that we are to satisfy the original hardware requirements, because this is the

way the original  industrial  requirements document  posed the problem, and we wanted to show that
formal methods could deal with the problem as posed. Using the original requirements also allows the
design method of this paper to be directly compared to the reverse engineering problem of [38]. It could
be argued that these original requirements are biased by the hardware implementation, and simpler less
strict requirements can therefore be obtained. 
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power both go to unsafe levels, there is nothing to force the relay to trip. 

FIGURE 7. The observable inputs and outputs of the DRT

The  plant  (Fig. 2)  was  described  previously  in  Sect. 2.4  in  the  discussion  of  the
StateTime toolset and in the description of the relay module (Fig. 3). The output object of
the plant updates the pressure and power readings at most every two ticks of the clock. If
the endupdate event is deleted with only the update object remaining, then pressure and
power  would  be  forced  to  change  their  values.  With  endupdate  included,  the  sensor
updates can be preempted thus leaving open the possibility that pressure or power (or
both) remain unchanged for an additional two ticks9.

The output object for power and pressure updates could have been included in the
controller as it represents the filtered sensor readings not the generation of power and
pressure  in  the  plant  itself  which are continuously  changing.  Since  the output  object
behaviour is fixed and known a priori, it is more convenient to include it with the plant.

In contrast to the plant, parts of the controller are initially unknown. It is known that
there will be 3 microprocessors together with a majority voting circuit, i.e. the controller
can be decomposed into sub-modules (Fig. 8) described by:

FIGURE 8. Architecture of the controller based on majority voting 
control

module controller
in W, P /* power and pressure variables from the plant */
out C : {0,1} where /* relay activation variable based on majority vote.    means 

send a signal to the relay to request it to open */
out : {fail, normal} where    for 

/* failure variables needed for specifying failed behaviour 
*/
out : {0,1} where    for        /*    means the j-th microprocessor is at or has returned to the beginning 

of a timing cycle where it waits for unsafe power or 
pressure signals*/

Body
private    : {0,1} where for 
/* The j-th microprocessor outputs a relay activation variable    as input to the majority voting 
circuit. The majority voter must decide, based on the microprocessor relay activation variables, 
whether to send an actual command to the relay of the plant via . The interconnection diagram 
between the modules of the controller is shown below: */
Specification :

(Eq. 12)
The formulas  bothHi,  powerHi  and powerLo are defined  in  (Eq. 17).  The module  specification

9 .The  pHi, pLo,wHi, and  wLo events could have been given bounds [2,∞] which would not force these
events to occur. But then the pressure and power updates could drift apart. In the current model,  so that
the sensor readings remain constant for a period sufficient to ensure that the microprocessor controllers
can react to their inputs. We could have changed the definition of bothHi in (Eq. 17) to  except for the
fact that  is a private variable (Fig. 2).
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(Eq. 12) is similar to the DRT requirement R but with the controller output variable C playing the
same role for the controller specification that  the relay variable plays in R. The specification is
stated under the proviso that at least two of the microprocessors work normally, as the majority
voting logic is only robust with respect  to a single failure.  The last  conjunct of the consequent
asserts that the controller cycle is at most 52 ticks of the clock, after which it is guaranteed to be
back at its initial position (it is not 50 ticks as it may take up to two ticks to detect a change in the
plant). Since the environment of the controller is the (fixed) plant, the controller specification can be
weakened to:

(Eq. 13) (Eq. 12)
end controller

(Eq. 14)

The microprocessors can either be in a normal or failed mode. The j-th microprocessor
thus has an observable out variable    with    (Fig. 7). However, the precise nature of the
normal behaviour  is  initially  unknown, although the informal timing diagram (Fig. 6)
does provide some guidance.

It is necessary to be able to tell when a microprocessor is at the initial point of a timing
cycle where it  checks for unsafe pressure and power levels (before invoking the two
timers described in Fig. 6). Once a timing cycle is initiated in response to unsafe power or
pressure levels, a new timing cycle cannot be initiated until the controller returns to its
initial point. Hence, the j-th microprocessor also has an observable out variable    with
where      means  that  the  microprocessor  is  at  its  initial  point.  We  require  that  a
microprocessor timing cycle take no longer than the combination of the two timers which
is 50 ticks with an additional two ticks to cover controller reaction times, i.e. .

We are now in a position to state the DRT requirements for 3-version control. The
informal  requirements  [R1]  and  [R2]  can  be  stated  in  temporal  logic  for  any  two
functioning microprocessors    and    as:

(Eq. 15)R1: 

(Eq. 16)R2: 

where the predicates bothHi, powerHi and powerLo are defined as:
(Eq. 17)

The controller  can only react  to  changes  in  the pressure and power that  persist  long
enough for the controller  to be guaranteed to detect them (2 ticks of the clock).  The
controller microprocessors can sample pressure and power only once every tick of the
clock. Hence, we require that the pressure and power both remain high for at least two
ticks of the clock for the relay to open [R1]. Similar considerations apply when closing
the relay [R2].

The  requirements  as  stated  above  do  not  take  into  account  the  possibility  of
microprocessor failures.  R1 and  R2 can only be required to hold if at least two of the
microprocessors are functioning normally. The final requirement R is therefore:

(Eq. 18)R: 

where the integer variables i and j range over the three microprocessor controllers, i.e. .
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5.3    Problem to be solved
We must prove that the DRT conforms to its requirements. Formally, this means we

must  prove  that    holds  where    and  R is  the  formula  given  in  (Eq. 18).  Using the
Composition Rule, a proof outline is:

1. modular-validity of (Eq. 5) in Fig. 2 for the plant by model-checking
2. modular-validity of (Eq. 12) in Fig. 8 for the controller by model-checking
3. general-validity (similar to the proof of (Eq. 8))
4. 1, 2, 3 and the Composition Rule
5.

The body of the plant module is given in Fig. 2. The only input variable to the plant is
the  relay  activation  variable  ,  which  can  be  altered  arbitrarily  by  the  environment
transition without generating too large a reachability graph. Hence step 1 in the above
proof outline was verified using StateTime model-checking. 

The only part of the above proof that cannot be verified is step 2, as the controller
body is only partially defined at this point in the development. Thus we must complete
the design of the controller by designing its body, and demonstrate the modular validity
of the controller  specification.  Then the above proof outline guarantees that the DRT
conforms to its requirements.

In checking the modular-validity of the controller specification (Eq. 12), it is sufficient
replace  step 2  above  with  the  weaker  specification  (Eq. 13).  Instead  of  using  an
unrestricted  environment  transition,  (Th. 3)  allows  us  to  check  sub-modules  of  the
controller in the environment . The resultant reachability graphs of the sub-modules are
much smaller than if an unrestricted environment transition is used. The above proof that
the DRT conforms to its requirements then becomes:

1. modular-validity of the plant specification
2. modular-validity of (Eq. 13) in Fig. 8 for the controller
3. (Th. 1)(b)
4. 2,3 and temporal logic
5. general-validity via deductive theorem proving
6. 1, 4, 5 and the Composition Rule

The design of the DRT controller will be performed using the structured compositional
approach described by the structure diagram (Fig. 1) as outlined in the introduction. The
structure diagram for the DRT is given in Fig. 9.

FIGURE 9. Structure diagram for the DRT

See Fig. 1 in the introduction for the interpretation of the structure diagram

5.4    Controller design
A partial description of the controller was provided in Fig. 8. The majorityVote sub-

module of the controller was described in Sect. 3.3 (Fig. 4). We must now design the
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microprocessor sub-modules. The body of the module    is shown in Fig. 10, with the
other two microprocessors having symmetric descriptions. 

FIGURE 10. Control module 

module micro1
in W,P /* power and pressure from the plant */
out : {0,1} where    /* the fail variable */
out : {0,1} where /* relay activation variable*/
out : {0,1} where /* initial condition variable for start of timing cycle */

Body
private    where /* object variable of normal */
Specification:

: 

where:   
end module
The normal object of the controller (Fig. 10) is a more thorough description of the

informal  timing diagram of  the  analog controller  (Fig. 6).  The lower  and upper  time
bounds of 1 in the transitions of normal indicate that the microprocessor samples the
sensor inputs and passes through a block of control code every tick of the clock (0.1
seconds). Once unsafe power and pressure levels are detected by the transition mu, the
normal object waits in activity n1 for 29 clock ticks (2.9 seconds) before proceeding to
activity n2. If the power is still high then the relay activity variable    is set via transition
alpha, else the system resets via transition rho1. The second timer Timer2 of the analog
controller is described by the delay20 transition. The beta transition resets the control
activation variable when power returns to normal levels.

It  is  obvious  from  the  foregoing  that  TTMs  can  provide  precise  convenient
descriptions  of  timing  information.  The  normal  object  can  be  seen  as  a  high  level
specification of the microprocessor. The microprocessors do not have delay and time-out
constructs; rather, timing variables must be incremented every pass through the block of
code to keep track of the passage of time. In Sect. 5.5, normal will be refined closer to
code that can be implemented on the microprocessors.

Once the body of the microprocessor module is known, the modular-validity of    in
Fig. 10 can then be verified via StateTime model-checking. As explained at the end of
Sect. 5.3, the controller will be used in the constrained environment of the plant. Hence
we need not consider an environment transition that can arbitrarily modify power and
pressure. The output object of the plant (Fig. 2) allows updates of power and pressure at
most once every two ticks of the clock;  this  constrained environment will  produce a
smaller reachability graph. Hence, instead of showing the modular-validity of    (Eq. 12),
we can verify the weaker validity (Eq. 13) given by

by model checking .
Since  the  microprocessor  and  majority  vote  modules  satisfy  their  module

specifications, we can now show that    is modularly-valid. Let    be integer variables that
range over the three microprocessors (). Then
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1. Assume
2. modular validity 
3. modular validity of 
4. 2,3 and the Composition Rule
5. 1, 4 and temporal logic (see Fig. 10 for the micro specifications )
6. general-validity
7. integer reasoning
8.  1,5,6,7 and

temporal logic
9. modular-validity of majorityVote module
10.

8,9 and the Composition Rule
Line (10) of the above proof produces the first conjunct in the consequent of the controller specification
(Eq. 12). The other conjuncts are obtained by similar (and much simpler) reasoning. We thus have:
11. discharging 1.
12. i and j were arbitrary; a constrained environment was used

As  shown  in  Sect. 5.3,  the  above  result  implies  that  the  DRT  conforms  to  its
requirements.  The proof  of  conformance used a  combination  of  model  checking (for
verifying modular-validity) and deduction (e.g. for proving the general validity in step 6).

5.5    Refining the controller
The  abstract  module      (Fig. 10)  is  observationally  equivalent  to  its  refinement

(Fig. 11), i.e. . The refinement    is closer to the final pseudocode [38]. As mentioned in
Sect. 4.0, two methods have been developed for showing observational equivalence: 

FIGURE 11. Refinement of microprocessor control module

/* Body of    with same interface stub and module specification as    (Fig. 10) •/
private Ta: {0 ... 30} where (Ta = 0) /* Timer1 variable in timing diagram */
private Tb: {0 ... 20} where (Tb = 0)

/* Timer2 variable in timing diagram */

• The designer can interactively apply equivalence preserving transformations to derive
from . The reader may consult [25] where this transformation is done for a TTM body
the  same  as  that  of    but  without  the  additional  failure  transition  and  the  initial
condition variable . The proof used in [25] can be used as is for . The transformation
rules can be applied to infinite state systems, but it can be shown that there is no
complete set of transformations, i.e. there is no finite set of transformations such that it
is always possible to prove TTM equivalence by using that set of transformations [27].

• For TTMs that can be reduced to finite state reachability graphs, there is an efficient
polynomial  time  algorithm  for  showing  observational  equivalence  [28].  The
equivalence of    and    can be shown with this algorithm as the data types are finite.

The abstract module    satisfies the non-Zeno condition (Table 1). Since    is SESI (state
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event stuttering invariant) over the interface variables, (Th. 4) guarantees that    also holds
for  the  refinement  .  Thus  there  is  no  need  to  redo  the  proofs  of  controller  module
specifications,  and  we  remain  with  the  guarantee  that  the  DRT  conforms  to  its
requirements.

The module    is a high level description of a microprocessor controller. It is easier to
understand  than    because  it  is  close  to  the  informal  timing  diagram  of  the  analog
controller (Fig. 6). It does not have the two timer variables that    has, and as a result the
guards  on its  transitions  are  simplified relative  to  those of  .  Its  reachability  graph is
smaller (Table 1). 
TABLE 1. Improved model checking times for the module    compared 
to 10

Modularly valid 
specifications

Abstraction Refinement 

 (Fig. 10) 13785 states in 26 seconds 59452 states in 297 seconds
 (non-Zeno constraint) 15248 states in 61 seconds 69059 states in 261 seconds

Table 1 shows the result  for checking the most complex module.  However,  all  the
module specifications were verified using the model-checker. The deductive parts of the
proof were done by hand. In principal the deductive part could have been done using the
theorem prover, but it proved too tedious as explained at the end of Sect. 2.4.

We refer the reader to [38] for a discussion of the reverse engineering problem, i.e.
how one goes from the pseudocode described in the original requirements document to
the refinement presented in Fig. 11.

5.6    The design method
Although top-down design by stepwise refinement was de rigueur until the 1980’s,

it has subsequently come under attack. As Jackson has written [20]: “It was one thing to
impose a single hierarchical structure on a  sequential program of the programmer’s
own devising; it was quite another to impose it on a given, inconveniently ill-structured,
real world domain”. In fact, real-systems such as the DRT often have no single “top”
function. 

Our design method uses both top-down as well  as bottom-up techniques. We have
stressed in previous sections that the Composition and Refinement Rules can be used
both  ways.  Our  top-down  methodology  differs  from  the  classic  notion  of  stepwise
refinement.  In  classic  top-down  design,  a  program  is  a  single  sequential  process;
concurrency and parallelism was “exotic” or unknown [20]. By contrast, TTM modules
allows for nondeterminism, and serial as well as parallel constructs in any mixture and to
any depth. This allows for adequate descriptions of real systems that have no “top” in the
functional sense. Furthermore, at the top level, we do have requirements describing the
safety and correctness of the overall system consisting of different parts (such as the plant
and the controller). Such system requirements (e.g. the DRT requirements R1 and R2) are
often emergent properties, i.e. they arise out of the combined interaction of the system
modules taken together. There is thus still an urgent need to describe systems in a layered

10. Above checks used the StateTime toolset and STeP on an Sparc Ultra1 with 160MB RAM.
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modular fashion, but without the sequential restrictions of the earlier methods.
We  now  describe  in  outline  the  basic  design  method.  The  notions  of  a  module,

composition  and  refinement  developed  in  this  paper,  provide  the  precise  theoretical
underpinnings for the method which was originally sketched in [36, pages 4-6]. We also
borrow concepts from the insightful description of requirements in [20, p169].

The basic design procedure starts with requirements R. Requirements are about the
phenomena of the application domain (the relay, pressure and power of the DRT plant),
not about the machine (the  controller). Our first step in requirements is to divide the
system into the two parallel objects: (a) the plant which can be described as it already
exists  and  (b)  the  controller  which  must  be  designed.  This  division  proceeds  by
describing  their  relevant  interfaces  and  connections,  as  well  as  some of  the  internal
phenomena and entities of the plant — this is the body of the plant which is a model of
plant behaviour. The plant model cannot be too abstract because then it is not about the
real problem anymore. It is a mistake to rush to the solution (by coding the controller)
before delineating the problem to be solved (the plant requirements). The requirements
are temporal logic formulas in plant entities such as pressure, power and the state of the
relay.  Therefore,  the  requirements  do  not  describe  the  internal  phenomena  of  the
controller, although they might describe entities at the boundary of the controller and the
plant (the shared phenomena).

It is the job of the controller to ensure that the requirements are satisfied, which it can
do due to fact that it shares some phenomena with the plant (as described by the plant-
controller interface). The controller might not be able to react to a shared phenomenon
immediately (e.g. a change in reactor pressure), but the shared phenomenon happens in
both the plant and controller simultaneously. 

Because the controller  does not  always know all  the plant  phenomena (or at  least
cannot react to them immediately), there is always the possibility of a gap between the
requirements  and  what  the  controller  can  achieve  (as  described  in  the  controller
specification). The progression from requirements to controller implementation is a way
of bridging the gap between them. From the requirements expressed in terms of the plant,
you derive a specification S of the controller in terms of the shared phenomena of the
plant  and controller.  Then  you  derive  the  body of  the  controller  from the  controller
specification.  The  Composition  Rule  justifies  the  eventual  claim  that  the  controller
implementation satisfies the requirements by reasoning as follows: (a) the body of the
controller  satisfies  the  specification  S  and  (b)  the  specification  S  together  with  the
description of the plant entails the truth of requirements R.

In the case of the DRT controller, once the top-level interface stub was described, the
parts of the controller were developed bottom-up component by component. A generic
microprocessor controller was designed which was then instantiated three times to obtain
3-version control. Then the majority voting logic was designed. Bottom level modules
were  developed,  simulated  and verified  to  conform to  their  local  specifications  long
before the modules were combined together. The plant description was quite simple and
could be encapsulated in a single module. In more complicated application domains, the
plant might also benefit from a bottom-up development. 
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6.0    Conclusions and related work
This paper has presented a structured compositional method for the deliberate design

of real-time systems, and applied the method to an industrial example with partial support
provided by the StateTime toolset. The main novelty of the approach is to provide a fully
compositional definition of real-time reactive modules compatible with existing model-
checking  tools  (Sect. 3.0)  and  a  refinement  relation  (Sect. 4.0).  This  allows  for  the
systematic development and verification of real-time systems. 

There are four main areas where mechanical support is needed: (1) system simulation
for validating models, (2) model-checking for modular-validity, (2) deductive theorem
proving  for  the  composition  rule,  and  (3)  proving  observational  equivalence  for  the
refinement rule. 

StateTime  was  used  for  simulation and  model-checking all  module
specifications of the DRT example. Although, in principal, we could have used the toolset
for the deductive part, it proved too unwieldy due to the proliferation of quantifiers. The
toolset has no support for refinement, and this had to be done by hand using behaviour
preserving transformations.  So too,  there is  a  need to directly supports  modules with
interface stubs and automatic generation of environments.

This leads us to the main conclusion of this paper. StateTime, as it currently stands,
needs to be enhanced in a variety of ways if it is to support more seamless compositional
verification. I am therefore currently working, together with Lewis Lo, on a new version
of StateTime that builds on the reactive modules introduced in this paper, and allows for
the complete spectrum of automated simulation, model-checking and theorem proving
tools. 

The enhanced StateTime will  also support  modules  (interface  stubs  and automatic
generation  of  environments).  We  use  count-up  and  count-down clock  variables  with
ordinary temporal logic (rather than the bounded operators of RTTL) for specification,
but it is yet to early to tell to what extent this will simplify deductive reasoning. 

The proof of observation equivalence (both algorithmically for finite state modules
and via equivalence preserving transformations) for use in the refinement rule needs to be
implemented and incorporated into the StateTime toolset, but we have not yet decided
how to  implement  these  techniques.  Because  our  bisimulation  relation  involves  both
states and events (Sect. 4.0), we may not be able to directly use existing tools such as
Concurrency  Workbench  [9].  The  Concurrency  Workbench  allows  for  the  testing  of
equivalences and preorders and the verification of systems in the modal mu-calculus;
real-time CCS style front-ends are available.

Other tools such as Modechart  [21],  Statemate [16] and ObjectTime [45] also use
statecharts  for  visual  system descriptions.  Modechart  allows  for  both  simulation  and
algorithmic analysis techniques for a subset of properties expressed in a predicate real-
time logic [34].  Statemate can be used to do reachability analysis  and ObjectTime is
object-oriented which is useful in design, but it cannot deal with hard real-time systems.
None of these tools have theorem provers, nor do they allow for modular verification.

RTTL is based on the linear time temporal logic LTL rather than on branching time
logics such as CTL. It  is  commonly accepted that  while  specifying is  easier in LTL,
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model-checking is more efficient in CTL. Both linear and branching time languages now
have efficient model-checkers using either partial orders or BDD methods: SPIN [18] is
one of the few LTL based model-checkers. SMV is a good example of a CTL based
model-checker  [5],  with an extension to real-time systems called Verus which uses a
branching  time  real-time  language  called  RTCTL [6].  Verus  also  has  the  facility  for
specifying task priorities.  The hybrid tool HyTech [2] extends branching time model-
checking  to  continuous  real-time  systems  using  stop  watches  and  symbolic  fixpoint
computation (the current version of the tool supports reachability analysis via monitor
automatons and not directly the full set of CTL formulas). HyTech and Verus both allow
for parametric analysis (e.g. determining the latest possible moment a controller can wait
before issuing a command).

The STeP [31]  model-checker  and theorem prover  was chosen as  the back-end to
StateTime rather than tools such as SPIN, SMV and HyTech for a number of reasons.
Tools that use a non-interleaving synchronous execution step algorithm (e.g. SMV, the
PVS model-checker  [42]  and COSPAN [15])  are  efficient  for  dealing  with  hardware
designs,  but  do  not  seem to  be  as  efficient  as  SPIN when it  comes  to  dealing  with
interleaved  sequential  code  and  integer  variables.  There  is  also  another  problem
associated with modularity when it comes to branching time model-checkers. Although
branching  time  is  usually  more  efficient  than  linear  time  logics,  the  branching  time
algorithms become EXPTIME-complete for  module checking which is worse than
the PSPACE complexity of linear time logics [24]. This analysis seems to suggest that the
accepted trade-off between LTL and CTL for  modules is  not as simple as it  is  for
closed systems. We were not able to use SPIN because it only supports justice (weak
fairness)  not  compassion  (strong  fairness)  needed  for  the  tick transition.  More
importantly, we hope to use the theorem proving components of STeP in future versions
of our tool. None of the aforementioned tools (except PVS) have theorem provers.

Hooman [19] extends Hoare logic to real-time programs by freely mixing programs
and assumption/guarantee assertions leading to a top-down derivation method. The theory
is implemented using the interactive proof checker PVS [42]. The embedding of the proof
system in PVS provides powerful mechanical support for compositional reasoning (but
not model checking). The only timing construct is the precise delay; there are no time
bounds on transitions as in TTMs.

There  is  a  growing interest  in  compositional  and refinement  methods  for  reactive
systems [1,7,22,35,41,46,48]. The field is somewhat less developed in the case of real-
time systems especially in methods that also have tool support.

ASTRAL [10]  is  based  on the framework of  [11]  that  uses  Petri  Nets  for  system
descriptions  and  a  timed  temporal  logic  called  TRIO  for  specifications.  ASTRAL
provides  structuring  mechanisms  that  allow  the  designer  to  build  modularized
specifications that are translated into TRIO. Proofs in ASTRAL are either interlevel or
intralevel.  The  former  deals  with  proving  that  the  specification  at  a  higher  level  is
consistent  with  a  specification  at  a  lower  level.  The  latter  deals  with  proving  that  a
description at a level satisfies its specification. A tool is currently under development.

The frameworks mentioned thus far have specification languages that are based on
logic, usually modal logic. Other approaches are based on algebra or automata. Discrete
real-time process algebras [4,44] can describe systems compositionally at different levels
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of abstraction. The semantics of process algebras is usually defined in terms of labelled
transition systems. An algorithm based on observation (bisimulation) equivalence is used
to show that an implementation satisfies its specification. These bisimulation relations are
usually event-based [33],  whereas the bisimulation relation used in this  paper is  both
event and state-based (Sect. 4.1). It is event-based in order to ensure a global notion of
time via the tick transition. It is state-based so that module specifications can be written
as temporal logic properties in the observable variables. Continuous time extensions to
process algebras [47] lack the abstracting power of a congruence relation of the discrete
event  case,  due  to  technical  difficulties  associated  with  their  infinite  branching
continuous time semantics.

The real-time CSR language [13] provides a layered approach to dealing with shared
resources.  [12]  presents  hierarchical  multistate  machines  for  multilevel  specifications.
The automata based tool COSPAN has recently been extended to deal with real-time [3].
COSPAN  supports  top-down  development  through  successive  refinements  and
homomorphic reduction [15]. Timed automata [30] (see also the input/output automata
described in [29]) have visible actions, a time passage action (analogous to our clock
tick) and a special internal action. Dense upper bounds can be imposed between actions,
but not lower time bounds. A refinement from one timed automaton to another is a time-
preserving function similar to the classical notion of a homomorphism between automata.

In single language frameworks (e.g. automata based COSPAN or the logic based TLA
[1]),  both  the  implementation  and specification  are  expressed  in  the  same formalism
(automata or logic). Conformance is proved by demonstrating that each fair trace of the
implementation is also a fair trace of the specification. There is a certain elegance and
simplicity  associated  with  using  a  single  language  for  both  specifications  and
implementations. We have pursued the dual TTM/RTTL framework in this paper as it
provides us with the flexibility of using the most appropriate analysis technique in each
case. For TTM refinement, we use the algebraic notion of observation equivalence, and
for TTM composition the logical conjunction of RTTL specifications.
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