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Abstract

 

: 

 

Reactive systems exhibit ongoing, possibly non-terminating, interaction with
the environment. Real-time systems are reactive systems that must satisfy quantitative tim-
ing constraints. This paper presents a structured compositional design method for discrete
real-time systems that can be used to combat the combinatorial explosion of states in the
verification of large systems. A 

 

composition rule

 

 describes how the correctness of the sys-
tem can be determined from the correctness of its modules, without knowledge of their
interior structure. The advantage of compositional verification is clear. Each module is
both simpler and smaller than the system itself. Composition uses both model-checking
and deductive techniques. A 

 

refinement rule

 

 guarantees that specifications of high-level
modules are preserved by their implementations. The 

 

StateTime

 

 toolset is used to auto-
mate parts of compositional designs using a combination of model-checking and simula-
tion. The design method is illustrated using a reactor shutdown system that involves the
use of three microprocessors, each independently checking sensor readings, with the final
decision to shut down based on a majority vote. The single microprocessor version can be
checked in the StateTime toolset without compositional reasoning. However, the three-
microprocessor system suffers from a combinatorial explosion of states and a composi-
tional approach is thus needed. The reactor example also illustrates the use of the refine-
ment rule.
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1.0  Introduction

 

Reactive

 

 systems exhibit ongoing, possibly non-terminating, interaction with the envi-
ronment. 

 

Real-time

 

 systems are reactive systems that must satisfy quantitative timing con-
straints. This paper presents a structured compositional design method for discrete real-
time systems that can be used to combat the combinatorial explosion of states in the verifi-
cation of large systems. 

A system is decomposed into parallel components called 

 

modules

 

. A 

 

composition rule

 

describes how the correctness of the system can be determined from the correctness of its
modules, without knowledge of their interior structure. The advantage of compositional
verification is clear. Each module is both simpler and smaller than the system itself. 

In addition to system decomposition, an abstract specification of a module may need to
be refined into implementations closer to code. A 

 

refinement rule

 

 guarantees that specifi-
cations of abstract modules are preserved by their implementations. 

The 

 

StateTime

 

 toolset is used to automate parts of compositional designs using a com-
bination of model-checking and simulation. The design method is illustrated using a reac-
tor shutdown system that involves the use of three microprocessors, each independently
checking sensor readings, with the final decision to shut down based on a majority vote.
The single microprocessor version can be checked in the StateTime toolset without com-
positional reasoning. However, the three-microprocessor system suffers from a combina-
torial explosion of states and a compositional approach is thus needed. The reactor
example also illustrates the use of the refinement rule.

The compositional design method is based on the TTM/RTTL framework [36,37,40]
which consists of the following:

• A 

 

constructive description language

 

 called timed transition models (TTMs) for
describing reactive systems. A TTM is a guarded transition system with lower and
upper time bounds on the transitions that relate to the occurrence of a special clock
transition 

 

tick

 

. Concurrent real-time programs, nondeterministic timed Petri nets and
diverse mechanisms for timing, synchronization and communication constructs can be
converted into TTMs in a straightforward manner.

• A 

 

declarative specification language

 

 called real-time temporal logic (RTTL) for
describing the requirements that a TTM should satisfy without discussing how the TTM
is constructed. RTTL is a timed extension of linear temporal logic augmented with a
transition variable for describing TTM events. 

•

 

Analysis techniques

 

 for demonstrating that a TTM conforms to its specification. Model-
checking and a proof system for theorem proving are the main analysis techniques.
Model-checking is a method for automatically verifying concurrent systems in which a
finite-state model of the system (TTM) is compared with a correctness requirement
(RTTL). Since time is a monotonically increasing variable, the state-space of naive
timed systems is automatically infinite state. Hence, special care is taken in the model-
checking algorithms to keep the state space finite provided the data types are finite.

• A toolset called 

 

StateTime

 

 [38] which has a 

 

visual

 

 statechart-like 

 

executable

 

 language
for representing TTMs hierarchically. A translator to the model-checker and theorem
prover STeP [31] allows for analysis. Although STeP is designed for untimed systems,
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the translation is done in such a way so as to allow for the use of STeP’s model-check-
ing and theorem proving facilities.

The TTM/RTTL framework was initially conceived for the analysis of closed systems
whose behaviour is completely determined by the state of the system itself [17]. By con-
trast, reactive systems are best thought of as 

 

open

 

 systems whose behaviour depends on
interaction with the environment. We provide below an informal sketch of how the frame-
work is extended to the open setting. The concepts will be made precise in the sequel.

This paper defines the notion of an open real-time reactive 

 

module

 

  where 

 

i

 

is the module 

 

interface stub

 

 (e.g. variables or channels shared with the environment), 

 

b

 

 its

 

body

 

 (a TTM) and 

 

s

 

 the module 

 

specification

 

 (an RTTL formula in the interface variables).
The module specification 

 

s

 

 must hold for all module computations including arbitrary
changes that the environment might make at any time to the interface variables. The com-
position of two modules  is also a module.

Not all parts of a module are always determined. For example, the interface stub and
specification may be given, but not the body. We denote a module with an unspecified
body by . A Composition Rule (justified in the sequel) given by

 

Composition Rule

 

: 

 

states that if each of the modules satisfy their respective specifications, then the system
satisfies its global requirement  provided the requirement can be derived from the con-
junction of the module specifications. The composition rule allows for both bottom-up and
top-down design. In the bottom-up method, the independently designed and implemented
modules (with respective specifications ) when brought together exhibit the emergent
property 

 

r

 

 provided .

In the top-down method, the system under design (

 

sud

 

) that is required to conform to a
global system requirement 

 

r

 

 can be decomposed into modules  and
 provided . At this stage, we have not yet committed to module

implementations. Each of these modules can then be given to a programmer whose job it
is to develop a body that satisfies the module specification. 

The body of module , whose variables can be reduced to finite ranges, can be shown
to satisfy its module specification (i.e. ) by model-checking provided the effects of
the environment are taken into account. The proof of , except in the simplest
of cases, requires the use of deductive techniques (RTTL theorem proving). Thus the com-
position rule usually involves a combination of algorithmic and deductive techniques.

It is advisable that the programmer design and code the body of a module at as high a
level as possible (using TTMs). This keeps the body simple and small which makes it
understandable and prevents state explosion. There is then a need to 

 

refine

 

 the high-level
module body into a TTM that is closer to implementation. For example, an abstract TTM
may directly specify a delay of 50 ticks, but the implementation on a microprocessor
might be a loop construct that increments a counter every traversal of the loop. The inter-
nal loop and counter are unobservable to an external agent interacting with the module as
the agent can only observe changes in the interface variables.

m i b s, ,[ ]=

m1 m2
||

i • s, ,[ ]

m1ms1

m2ms2

s1 s2∧( ) r→ 





  m1 m2mr||

r

s1 s2,
s1 s2∧( ) r→

m1 i1 • s1, ,[ ]=

m2 i2 • s2, ,[ ]= s1 s2∧( ) r→

m1

m1ms1

s1 s2∧( ) r→
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Two modules with the same interface are observationally equivalent (written: )
if they agree on timed observations of their interface variables. Under suitable conditions
(presented in the sequel) a Refinement Rule states that:

 

Refinement Rule

 

: for any module specification 

 

s

 

.

 

Hence, if  is observationally equivalent to , then  can replace  wherever it
occurs with a guarantee that any module specification will be preserved. There are effi-
cient polynomial algorithms for checking observational equivalence of finite state sys-
tems, and equivalence preserving transformations are available for refining infinite state
systems.

Given a requirement 

 

r

 

 that a system 

 

sud

 

 must satisfy, the composition and refinement
rules allow for a systematic modular development method represented by the tree in
Fig. 1. Each step imposes a proof obligation as shown in the right hand column of the fig-

ure. The process continues until all the modules have bodies that can be directly coded
into the given program language. We need not adhere to the ordering suggested by the fig-
ure. For example, the complete implementation of  can take place before the other
modules are designed. It is also possible to reverse-engineer already implemented code
and move bottom-up.

We proceed as follows in the rest of this paper. In section 2 we provide background
information needed to understand the TTM/RTTL framework and the StateTime toolset.
Section 3 defines the notion of a module, modular validity and the composition rule. It
also describes how conditional specifications can be used to constrain module environ-

 

FIGURE 1. Structure diagram for compositional design method

m1 m2≈

m1: i b1 •, ,[ ]

m2: i b2 •, ,[ ]

m1 m2≈ 





  m1ms( ) m2ms( )≡

m2 m1 m2 m1

sudmr

m11: i11 • s11, ,[ ] m12: i12 • s12, ,[ ]

prove composition rule:

s11 s12∧( ) r→



m22: i22 • s22, ,[ ] m23: i23 • s23, ,[ ]m21: i11 b11 s11, ,[ ]

m31: i22 b31 s22, ,[ ] m32: i23 b32 s23, ,[ ]

||

||

m41: i22 b41 s22, ,[ ] m42: i23 b42 s23, ,[ ]

prove refinement rule

m32 m42≈



prove composition rule:

s22 s23∧( ) s12→



design/code body

model-check  m32ms23



At each level i, module  can either 
(a) be decomposed into new modules at the next level, or 
(b) the body can be designed and coded, or 
(c) the module can be refined closer to an implementation.
Each of these development steps imposes a proof obligation as shown on the right.

mij

m11
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ments. Section 4 presents the refinement rule for modules based on the notion of observa-
tional equivalence of TTMs developed in [26]. Observational equivalence of TTMs will be
defined precisely in the sequel, but the reader is referred to [27] for a set of TTM equiva-
lence preserving transformations and to [28] for an efficient polynomial time algorithm to
check TTM observational equivalence. Module observational equivalence is defined in
such a way that the TTM results can be applied directly to module equivalence as well. In
Section 5, we use the composition and refinement rules for the structured design of a reac-
tor shutdown system. The design method is also discussed in some detail (Sect. 5.6). Com-
parisons to other approaches and concluding remarks are presented in Section 6.

2.0  Background

In the sequel, we use relative quantification  where Q is a quantifier (∀ or
∃), T is the type of the dummy variable x, R is the range of the dummy variable and P a
predicate [14]. For example,  means “for all values of an integer variable i,
if i is at least as large as 3 then i has property P”. If no range is supplied then it is true. The
notation  generally means that . For example,  means
that we are defining  by . In TTM update functions (see
sequel),  denotes assignment, i.e. .

2.1  Real Time Temporal Logic (RTTL)
Linear time temporal logic [32] uses temporal connectives such as h (henceforth), 

(next), e (eventually), U (until) and past operators such as  (previous state) to represent
qualitative temporal properties. The standard connectives are applied to state-formulas

(which are the atomic predicates) to obtain temporal logic formulas. 

Real-time temporal logic (RTTL) is obtained by adding a fair tick transition and the
ability to refer to system transitions via a distinguished transition variable. We refer the
reader to [32] for a precise discussion of standard temporal logic and to [37,40] for real-
time temporal logic. We now provide a brief review of some of the basic concepts. 

Let  and  be the system variables where the type of  is the integers and  has a set
type. An example of a state-formula f is . In this formula, the
bound variable  is just a dummy variable and is not considered a system variable. A state
is a mapping from the system variables to values in their relevant types. Since  evaluates
to true in the state given by , we write  (state s satisfies f), and we
call s an f-state.

A temporal logic formula such as  (“eventually  is true”) cannot be interpreted in a
single state; rather it is evaluated in an infinite sequence of states  given by

 where  (“  satisfies “) will mean that there is at least one
state subsequent to the initial state that is an f-state. An inductive definition of the satisfac-
tion relation  can then be given. Let  denote the satisfaction of temporal for-
mula f at a position  of the sequence . For a state-formula , . 

We can then give the appropriate inductive definitions for the propositional connectives
(e.g. negation, conjunction, implication) followed by the usual definition of the temporal
operators. For example, for temporal logic formulas g and h, the until operator is defined
by . For an arbitrary tem-

Qx:T R:P( )

i:int 3 i:P≤∀( )

d:D dyD f : d:int d 0:x> d+ 4≤∃( )
f fy d:int d 0:x> d+ 4≤∃( )

d:D d5D

n

1

x y x y

d:int x d+ 4≤( )∃ 7 y∈( )∧( )
d

f

s x:2 y: 7 9,{ },〈 〉= smf

ef f

σ
σ s0s1s2…si…= σmef σ ef

m σ i,( )mf

i 0≥ σ f σ i,( )mf[ ]y simf[ ]

σ i,( )mgUh[ ]y j j i: σ j,( )mh k i k j: σ k,( )mg<≤∀( )∧≥∃( )
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poral logic formula ,  is an abbreviation for . A formula  is generally-

valid iff .

The implication ( ) states only that “f implies eventually g” at the initial posi-
tion of the computation, i.e. if  holds at the initial position then there is a subsequent posi-
tion where  holds. As a notational convenience, we will write  for 
which states that the implication holds at all positions of the sequence. In general, the dou-
ble arrow entails operator is defined by   for any temporal logic for-
mulas p and q.

We need the notion of timed transition sequences for the description of real-time sys-
tems. Since we envisage that a transition  causes a transfer from state  to state ,
we may rewrite the infinite sequence of states  as:

(Eq. 1)

The start transition  (e.g. a computer reboot) puts the system in state . The transition
 takes the system from state  to  and so on. We give the initial transition  the spe-

cial name start. The distinguished variable  (the transition variable) is always part of the
state. The transition variable is used to record the last event taken, i.e. for the sequence

 we have that  and . The reason
we need a start transition is so that , like all other state variables, has an initial value. 

The transition variable can be used to refer directly to event occurrences. For example,
for a traffic system, the temporal logic formula 
asserts that anytime the light turns red, it must eventually turn green.

In order to represent time, we introduce the special transition tick. A timed sequence 
must satisfy the ticking constraint which asserts that there are an infinite number of ticks
occurring in the sequence, i.e. . Thus, time must progress irrespective of
what happens in a system or its environment. It is possible for any finite number of transi-
tions to occur between two ticks of the clock.

We may use quantified Manna-Pnueli temporal logic to define the bounded real-time
until operator, , which in turn can be used to express a variety of important real-
time properties. Informally2, the meaning of the bounded until operator is that eventually

 will occur at a time between  and  ticks from now; until then  must hold. Other
bounded operators can then be defined as follows:

2.  Formally, the bounded until operator is defined using a flexible clock variable  (that is incremented by
one every time the clock ticks), and a rigid time variable  (that retains the same value over all states) as
follows: . Please refer to [36,40] for the
precise details. Since the bounded time operators are defined using ordinary quantified temporal logic, the
untimed temporal theorem prover STeP [31] can be used to show the validity of theorems such as

, which can, in principal, be used for the deductive reasoning in the sequel.

Bounded response: p must hold after the l-th tick but 
before the -th tick.

 must hold before the -th tick.

Bounded invariance:  must hold until the -th tick.

Exact time:  is true in exactly  ticks.

f σmf σ 0,( )mf f

σ σmf∀( )
f eg→

f

g f eg⇒ h f eg→( )

p q⇒[ ]yh p q→[ ]

τi si 1– si

σ s0s1s2…=

σ τ0 s0,( ) τ1 s1,( ) τ2 s2,( )…=

τ0 s0

τ1 s0 s1 τ0

ε

start s0,( ) τ1 s1,( ) τ2 s2,( )… s0 ε( ) start= i i 0:s>
i

ε( ) τi=∀( )
ε

ε turn_red=( ) e ε turn_green=( )⇒

σ

σmhe ε tick=( )

pU l u,[ ]q

t

t0

pU l u,[ ]qy t0:type t( )∀ t t0=( ) pU q t0 l+ t t0 u+≤ ≤( )∧( )→( )

e0e2 p e2 p≡

q l u q

e l u,[ ] p y trueU l u,[ ] p( )
u 1+( )

elu p y e0 u,[ ] p p u 1+( )

h9l p y pU l ∞,[ ] true( ) p l

ed p y trueU d d,[ ] p( ) p d
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The formula  asserts that p will hold before the next tick of the clock. Several state
changes can occur before p occurs without the clock advancing. The  operator can
often be used in place of the next operator where there is a need for stuttering-invariant for-
mulas, i.e. formulas that are “robust” with respect to unobservable moves of the environ-
ment. Some further examples of clocked properties are:

• : If  holds initially, then eventually between 3 and 7 ticks  holds, and
 must hold continuously until then. This property is asserted only at the initial posi-

tion.

• : Every position satisfying  is followed within 4 ticks by , and 
holds continuously until then.

• : If p holds at a position, then at some subsequent position before the next
clock tick there should be an interval of 2 ticks during which q holds continuously.

• : The property  cannot become true sooner than 3 ticks after any
occurrence of the property .

We often need to compare expressions in consecutive states. We therefore introduce an
abbreviation for the next value of a variable , written . For example, the formula

 asserts that the value of  is greater in every successor state that it is in its
immediate predecessor (see [32] for the precise details).

2.2  Timed Transition Models (TTMs)
TTMs are timed extensions of the fair transition systems of Manna and Pnueli [32]. The

extension involves lower and upper time bound constraints on transitions, that refer to the
number of occurrences of the special transition tick. A TTM M is defined as a 4-tuple

 as follows:

• : a finite set of typed system variables. The distinguished transition variables  is
always in V, where . The variables also include control and data variables
that are used to describe the various parts of M. Each state of M is a map from V to its
types; the set of all states is denoted by  (or just  when it is clear what the TTM is).

• I: the initial condition. This is a satisfiable boolean valued expression in the system
variables that characterizes the states at which the execution of the TTM can begin. A
state s satisfying I is called an initial state.

• T: a finite set of transitions which includes the distinguished transitions start and tick.
Each transition  is a function  that maps a prestate s in  to a
(possibly empty) set of -successor states . A successor state  is also called a
poststate of  from s. In general, we do not need nondeterministic transitions3. We thus
describe a transition  by its enabling condition  (the condition under which the
transition becomes eligible to be taken), and a simultaneous update function

, where  and  are expressions in the system variables,

3. There is one exception to the rule. When  is used in transition updates it assigns arbitrary
values to  and  in their appropriate types. No assumptions are made about the probabilistic distribu-
tions of the values assigned. This is a purely nondeterministic update that says any value in the type is
possible in the successor state. This notion will used to construct environments of modules (Sect. 3.0).

e0 p

e0

pc q( U 3 7,[ ] r ) p r

q

h p( c q( U≤4 r ) ) p r q

p e0h92q⇒

h p( ch93dq ) q

p

v v′
h v′ v>( ) v

M V I T F, , ,( )=

V ε
type ε( ) T=

ΣM Σ

τ T∈ τ:Σ powerset Σ( )→ Σ
τ τ s( ) Σ⊆ s′

τ

choose v1 v2,( )

v1 v2

τ enb τ( )

upd τ( ) v1: e1 v2: e2,{ }= e1 e2
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which indicates that the values of  in the poststate  are  respectively,
where  is the prestate. No other system variables (e.g. ) are changed. The transition

 is enabled in a state s (written: ) if  — otherwise  is said to be
disabled. The transition  can be fully characterized by a transition relation  given
by  which is a predicate in the primed and
unprimed system variables. Primed variables refer to the value of the variables in the
poststate, and unprimed variables refer to values in the prestate (see [32] for precise
details). By convention, we leave out conjuncts such as  for which there is no
change.

• F: a fairness set where . Informally, the fairness constraint for each transition
 disallows computations in which  is enabled infinitely often but is taken only

finitely many times4.

In addition to the enabling condition and update function, we associate with each non-
tick transition  a lower time bound  and an upper time bound , where

. We allow bounds  and  but not . The meaning
of these bounds will be defined formally in the sequel, but we first provide an informal
overview.

A timed transition  with lower time bound  ticks and upper time bound  ticks,
must delay l ticks before being taken, but must be taken by u ticks of the clock, provided it
remains continuously enabled, and is not disabled by the occurrence of another transition
that might have the effect of disabling . 

The operational semantics of TTMs will be described by the set of all its behaviours
called trajectories. Informally, a trajectory is a timed sequence of states that starts in an
initial state satisfying the initial condition of the TTM. From any state of the computation,
any enabled transition is taken in one atomic step. Either a tick transition is taken at each
step, in which case time advances, or a non-tick transition is taken, in which case time
stays the same. The resulting interleaving of enabled transitions allows us to model con-
current processes5. When the transitions are taken, they update the variables according to
the transition update function. The clock must tick infinitely often in any computation, and
an arbitrary but finite number of (non-tick) transitions can be taken between any two ticks
of the clock. The lower and upper time bounds of transitions must be respected.

A computation  of a TTM , where  for
 and , is a timed sequence satisfying the three constraints below. In each

case, we show how to write the constraint as a temporal logic formula.

4. Fairness is defined more formally in the sequel. A weaker notion of fairness than the one defined in this
paper is called justice [32]. Fairness ensures that in interleaved parallel processes, the processes progress
independently (fairness distinguishes concurrency from nondeterminism). The stronger notion of fairness
defined in this paper is needed for the tick transition.

5. Actual systems may have overlapped rather than interleaved execution. However, provided an appropri-
ate fair set of transitions with the right level of atomicity is chosen, the interleaving model can accurately
describe overlapped execution (see [32, p103] for further discussion).

v1 v2, s′ s e1( ) s e2( ),
s v3

τ smenb τ( ) τ s( ) ∅≠ τ
τ ρτ

ρτ: enb τ( ) v1′ e1=( ) v2′ e2=( ) v3′ v3=( )∧ ∧ ∧

v3′ v3=( )

F T⊂
τ F∈ τ

τ low τ( ) hi τ( )

0 low τ( ) hi τ( ) ∞≤ ≤ ≤ τ 0 0,[ ] τ 0 ∞,[ ] τ ∞ ∞,[ ]

τ l u,[ ] l u

τ

τ0 s0,〈 〉 τ1 s1,〈 〉 τ2 s2,〈 〉… M V I T F, , ,( )= τi T∈
i 1≥ τ0ystart
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1. Initialization constraint: The first state of the computation satisfies the initial condition,
i.e. . The initialization constraint is thus represented by the tempo-
ral logic formula . The transition start occurs
once at the beginning of the computation and never again.

2. Succession constraint: , i.e. every prestate at position i must
have as its successor a poststate according to the update function of  (the transition
taken at position i). The succession constraint can be expressed in RTTL as

, where  is the transition relation for .

3. Fairness constraint6: For each transition  in the fairness set, it is not the case that  is
infinitely often enabled beyond some position in the trajectory, but taken at only finitely
many positions in the trajectory.The fairness constraint can be written in temporal logic
as .

A timed sequence that satisfies the above three constraints is called a computation of . A
computation describes the behaviour of a Manna-Pnueli fair transition system (enhanced
with the tick of timed sequences). To describe the behaviour of timed transition models,
we further constrain computations by lower and upper time bound constraints and call the
resulting computations trajectories.

4. Lower bound constraint: for every transition  with lower bound , if  is taken at
position j of the computation, then there must exist a prior position  so that there
are at least  ticks of the clock between  and , and ,
i.e.  is enabled but not taken in the states .

5. Upper bound constraint: for every transition  with upper bound , if  is enabled
at position j of the computation, then there must exist a subsequent position  with
no more than  ticks of the clock between  and , such that either  is taken or dis-
abled at position k.

As with the initialization, succession, and fairness constraints, the bound constraints can
also be described in RTTL. For a non-tick transition  with lower time bound  (where

) and upper time bound , the bound constraint is:

(Eq. 2)

where . If , then the left conjunct
 is replaced by true. If , then the right conjunct of the consequent

in (Eq. 2) is replaced by true. The bound constraint can be written in temporal logic as:

. (Eq. 3)

The moment of enablement  describes the relevant positions of a computation at
which the bound constraint for a transition  (that is enabled at that position) must be
asserted. A relevant position is either the initial position , or a position at which

6. The fairness constraint is included for generality but is not necessary for the example developed in the
sequel. However, real-time systems may have requirements where fairness is useful. For example, there
may be a requirement to log every error to a file or printer; this does not have to happen within a precise
time as the requirement may merely be that the error is eventually logged. In the TTM setting, we allow
in increasing stringency: spontaneous  transitions, fair transitions and timed transitions. This
allows us to describe systems to the appropriate precision.
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h9l n ε τ≠( )[ ]"" u ∞=
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moe τ( )

τ
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the transition has just been taken  and is re-enabled, or a position where  has just
become enabled .

Once a transition  becomes enabled at some position, it begins to “mature” but cannot
be taken until its lower time bound number of ticks has been taken, at which point the tran-
sition becomes “ripe” for execution. If the transition is continuously enabled during matu-
ration, then it can be taken any time after it becomes ripe, but it must be taken or become
disabled before the upper time bound number of ticks has expired. Thus, transitions
“mature” together as time advances but execute separately in an interleaving manner.

As noted above, the initialization, succession, fairness and bound constraints can be
expressed in RTTL. The formula  defined by

(Eq. 4)

fully describes the set of all trajectories of the TTM M. 

Since a trajectory of a TTM  is a timed sequence, the trajectory must also satisfy the
ticking constraint . However, there is the possibility of a conflict
between the upper bound and the ticking constraint (in which case no timed sequence will
satisfy  and the ticking constraint simultaneously). This happens in the presence of
immediate transitions of the type  that are self-loops — such a  is taken repeatedly
yet the tick transition is delayed indefinitely7. This is called a Zeno computation and the
TTM is said to exhibit Zeno behaviour. Any cycle of transitions whose elements are all
immediate may also exhibit Zeno behaviour. A TTM that exhibits Zeno behaviour cannot
be implemented, and hence we must find ways to ensure that our systems are non-Zeno.

The problem of Zeno computations can be avoided by disallowing self-looping imme-
diate transitions. However, immediate transitions are useful for modelling “instantaneous”
(i.e. before the clock ticks) reactions. If immediate transitions are used in a TTM M, then
we must check for the validity of  in every single computation that satisfies
the bound constraints. Fortunately, for those systems where model-checking can be used,
the ticking property can be verified automatically (e.g. see Table 1 in Sect. 5.5). In the

sequel, we assume that all TTMs are non-Zeno. This is not restrictive at all for the exam-
ples of this paper because all TTMs can be model-checked to ensure that they are non-
Zeno.

The set of all trajectories of a TTM  is denoted by . If a trajectory  satisfies
a temporal logic formula , then we write . If an RTTL formula  is satisfied in all
trajectories of  (i.e. ), then we write , and the formula  is
said to be M-valid. Any generally-valid formula is also M-valid. Any trajectory in 
always satisfies ; hence, the transition system M and the temporal logic formula

 are two equivalent ways of describing .

7. The StateTime tool converts TTMs to fair transition systems [39] that can then be analyzed using STeP
(see Sect. 2.4). In this conversion, additional conjuncts are added to the enabling condition of the tick

transition that disables the tick transition when an urgent timed transition must be taken. In a system with
a selfloop  transition, the tick transition is disabled indefinitely. This reflects the conflict between
the ticking constraint and the upper time bound constraint. The conversion procedure does declare tick to
be fair. However, since tick is disabled until the urgent transition is taken, the fairness constraint is satis-
fied despite the fact that tick is not taken.

ε τ=( ) τ
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M
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Theorem 1: For any (non-Zeno) TTM M and RTTL formula p:
(a) , and (b) .

If we treat  as an axiom of the RTTL logic, then (Th. 1)(a) describes the relative
completeness of the logic for proving M-validities. An oracle is a device that is guaranteed
to provide a proof of any generally-valid RTTL formula. Hence to prove the M-validity of
p it is sufficient to submit to the oracle the formula . While the axiom 
is theoretically adequate it is not very practical. In practice the special proof rules in [36]
and model-checking (Sect. 2.4) are the preferred methods for proving M-validities.

2.3  Parallel composition of TTMs
The parallel composition  of two TTMs 

and  is defined in [40] by:

• ,

•  provided  is satisfiable,

•  where  and hence , and

•  where . We call  the composite TTM.

The above definition holds for shared variables but must be slightly modified for synchro-
nized transitions or channels as described in [40]. Both  and  synchronize with
respect to the start and tick transitions. The tick transition thus provides composed systems
with a uniform notion of time.

2.4  Overview of the StateTime toolset
The StateTime toolset assists the user (a) to describe devices and systems using a

graphical structured language, (b) to execute the description so as to validate that the
description is a reasonable model of the actual system, and (c) to check that the description
conforms to its requirements using model-checking and theorem proving. We give a brief
description below of the main features of the toolset needed for the sequel. The reader is
referred to [38] for a more complete description.

The main parts of the toolset of interest to us are the Build tool and its translator to the
theorem prover and model-checker STeP [31]. The Build tool is a window-based front end
for constructing compact visual models of real-time systems called TTMcharts. TTM-
charts resemble statecharts, but with a simpler semantics and with the additional feature
that transitions may have time bounds. We often use the terms TTMcharts, charts and
TTMs interchangeably as the semantics of TTMcharts is based on TTMs.

A chart is a hierarchy of objects. Objects describe control information and impose
structure on the operation of the system. An object is either primitive, parallel (called
AND in statecharts) or serial (XOR in statecharts). A primitive object has no internal
structure. A parallel object is constructed from a collection of child objects (or sub-
objects) by parallel composition. The parallel composition of child objects operates in all
of these child objects simultaneously. The entry into a parallel object via an event causes
the simultaneous entry into each of the child objects. The exit from the object causes the
simultaneous exit from all its children. A serial object is constructed from a collection of
child objects such that only one of the children operates at a time. The entry and exit from

Mmp[ ] mdes M( ) p→[ ]≡ Mmdes M( )

des M( )

des M( ) p→ des M( )

M1 M2
|| V I T F, , ,( )= M1 V1 I1 T1 F1, , ,( )=

M2 V2 I2 T2 F2, , ,( )=

V V1 V2∪=

I I1 I2∧= I1 I2∧

T T1 T2∪= start tick,{ } T1 T2∩⊂ start tick,{ } T⊂

F F1 F2∪= tick F1∈ F2∩ M1 M2
||

M1 M2
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a serial object via an event causes the simultaneous entry and exit of the currently operat-
ing child object.

Charts may have data variables which are tested and set by events. Each non-primitive
serial (XOR) object has an object variable which is used to indicate which of its children
is currently operating. As an example, consider the plant chart (Fig. 2) which will be

described in more detail in Sect. 5.2. The plant is the parallel composition of two children
called relay and output which we write as . The serial object relay has
two children closed and open which are primitive. Zooming in to the output object indicates

FIGURE 2. Plant module

module plant(C;P,W)
in C: {0,1} where /* relay activation.  causes the relay to open */
out R: {closed, open} where /* Relay position variable */
out P: {0,1} where  /* pressure variable where  is high pressure*/
out W: {0,1} where  /* power variable where  is high power*/

Body
private D: {wait,update}

Specification

:  (Eq. 5)

The above module specification, inherited from Fig. 3 for the relay, is modularly-valid.
end module plant

C 0=( ) C 1=( )
R closed=( )

P 0=( ) P 1=( )
W 0=( ) W 1=( )

The dotted lines in the TTM to the left indicate parallel 
composition, i.e. . The “@” symbol 
in output@ indicates that it has further internal structure. 
Zooming into output@ produces the TTM bottom left. 
Zooming a further level down into update@ produces the 
TTM to the bottom right, which is where pressure and 
power updates take place.

The lower time bound of 2 in events pHi, pLo and end-

update enforce the filtering assumption viz. pressure and 
power updates are no more frequent than once every two 
ticks of the clock. Before the third tick of the clock, the 
upper bound of endupdate causes a move back to wait, at 
which point there is another delay of two clock ticks before 
further sensor updates can occur.

plant relay output||=

s p plant( )
h920 C 1=( ) e0h920

R open=( )⇒

h92 C 0=( ) e0h92 R closed=( )⇒

plant relay= output||
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that it is the serial composition of the primitive object wait and the sub-object update. The
update object is the parallel composition of the pressure and power sub-objects which is
where the pressure and power sensor values are updated. 

The top-level objects relay and output have object variables  and  respectively where
 and . The state-formula defined by

 describes a state in which the relay is closed and the next sensor
update is two ticks away. The pressure  and power  are examples of data variables.

A serial object begins execution at its default indicated in bold; e.g. the default for the
output object is wait (Fig. 2). Once a cycle[0,0] event is taken in the output object, nothing
else can happen until two ticks of the clock are taken. After two but before the third clock
tick, the endupdate[2,2] event must occur (in this case, there are no other events to preempt
its occurrence). Before endupdate occurs, the pressure and power, or just one of them, or
no update at all may occur. The source of the endupdate event is the structured object
update; hence endupdate can be taken, no matter where execution in update currently
resides, and preempts the internal events of update.

A user can describe systems incrementally by composing sub-objects together to form
a super-object (bottom-up), or by decomposing a object into further sub-objects (top-
down). A chart can be executed at any point in the development cycle even before it is
finally fixed using the interactive simulation tool. The simulation tool displays chart trajec-
tories, and requires user interaction to select the transition to be taken at nondeterministic
selection points. 

The Build tool automatically translates charts into a TTM according to the algorithm
presented in [39]. For example, the transition relation corresponding to the event endup-

date[2,2] in the output object changes the variables  and  as follows:
. None of the other variables change. The

STeP [31] tool can use these transition relations for either theorem proving or model-
checking.

The current StateTime toolset was not meant for modular systems. It suffers from vari-
ous deficiencies including the fact that it does not support interface stubs, automatic gener-
ation of module environments (Sect. 3.0) and refinement. It is easy to verify standard
temporal properties, but an observer must be constructed for real-time properties. How-
ever, the tool is used in this paper for the construction of modules, their environments
(done manually) and model-checking module properties, but not for theorem proving
because it proved too tedious on account of all the quantifiers. We are currently updating
StateTime to fully support real-time modules and real-time formulas for both model-
checking and theorem proving in a seamless fashion, based on the results of this paper.

3.0  Modules and module composition

Our notion of a module is based on the untimed reactive modules of Manna and Pnueli
[32]. Although the Manna Pnueli framework has been used for real-time systems [23], the
extension to their system for modules as delineated by Chang [8] is different to ours. The
main differences are: (a) our modules are supported by a model-checker, (b) we provide a
state-event refinement relation for modules, and (c) the reactive modules of [32] are not
fully compositional as their parallel composition yields a transition system, not another

R D

type R( ) closed open,{ }= type D( ) wait update,{ }=

R closed= D wait=∧( )
P W

ε D

ρendupdate: D update=( ) D′ wait=( ) ε′ endupdate=( )∧ ∧
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module (composition of our modules yields another module). We now explain these differ-
ences in more detail.

Chang [8] advocates a restricted assumption/guarantee style, wherein the environmen-
tal assumption is stated as a restriction on the environment’s next-state relation. He also
presents a decision procedure in the propositional case and a deductive system for the dis-
crete time metric temporal logic used for transition modules. Although Chang provides a
deductive framework for real-time modules, he does not present model-checking algo-
rithms and tools (which are crucial for the needs of this paper).

Chang’s temporal operators are new; they are not expressed in ordinary untimed tempo-
ral logic. The RTTL logic of this paper is expressed in ordinary temporal logic with the
use of either rigid variables or clock variables, which means we can reuse techniques and
tools such as STeP from the untimed setting. The transition modules of [8] must be self-
disabling, i.e. once a transition is taken it cannot be again enabled (as in a self-loop). The
TTM semantics of modules in this paper does not impose this restriction on module
descriptions.

The untimed refinement relation of [32] will not work for real-time modules (as will be
explained in Sect. 4.0). Hence, in Sect. 4.0, we introduce the necessary framework needed
for real-time module refinement.

The reactive modules of [32] are not fully compositional as their parallel composition
yields a transition system, not another module. In this section, we provide the notion of a
fully compositional discrete time transition module (like [8]). This requires a more com-
plete treatment of the notion of the interface stub and modes of variables in a module. It
also allows our treatment to deduce the trajectories of the composite module given its sub-
modules (Lemma 1), from which we obtain the notion that a module specification must be
satisfied independently of the behaviour of the environment (Lemma 2), and finally yields
the Composition Rule (Th. 2). By contrast, [32] starts with the notion of a module as given
in Lemma 2 and then proceeds from there to obtain the Composition Rule.

A module  is defined by its interface stub , body 
and RTTL specification :

1. The interface stub consists of the declaration of all the variables that are shared
between module m and other modules in its environment (defined more precisely in
Sect. 3.2). The stub also declares the initial values of all the shared variables. We let

 denote the set of shared variables.

2. The body  is a program whose statements may refer only to variables declared
private to the body, or to variables in the interface. The set of private variables is
denoted . In the sequel, the body is a TTM, in which case we let  denote the
TTM with variables set . The initial condition  is the conjunction
of all the initial conditions declared on both the private and interface variables. 

3. The specification  of the module is an RTTL formula in the shared interface vari-
ables. The specification asserts the required visible behaviour of the module.

In order to describe the behaviour of a module in an environment that may arbitrarily
modify the interface variables , we adjoin to the module TTM a spontane-
ous environmental transition  defined by the update function 
(i.e. the interface variables can take on arbitrary values) while all the private variables

m is m( ) bd m( ) s p m( ), ,[ ]= is m( ) bd m( )

s p m( )

is m( )

bd m( )

pr m( ) bd m( )

is m( ) pr m( )∪ init m( )

s p m( )

is m( ) i1 … in, ,=

τE 0 ∞,[ ] choose i1 … in, ,( )



Composition and Refinement of Discrete Real-Time Systems September 1, 1997 16

remain unchanged, i.e. . Thus the environmental transition may exhibit
arbitrary behaviour, except that it may not modify any private variables of the module.
However, shared interface variables may be changed at any point to any value in their
respective types.

Definition 1: [The TTM associated with a module] The TTM  associated with the
module  is defined as  where  and

 where  is the set of transitions of the body TTM, and  is
the set of fair transitions of the body (note that ). Since  is a TTM,
we define  and  where  is the set of all pri-
vate variables, i.e variables in . (As before, we require that the timed transition
model  be non-Zeno).

The succession constraint of  ensures that body transitions are arbitrarily interleaved
with the environmental transition. The environmental transition thus simulates the behav-
iour of the module in an arbitrary context and allows the module to take stuttering steps in
which none of the module private variables change from the prestate to the poststate.

The existentially quantified formula  in (Dfn. 1) describes the same system
as  except with the private variables  hidden, and thus this existential formula can
be considered a description of  by abstract implementation [32, p.340]. In this style of
description, we may choose the most straightforward implementation of the module 
and describe its operational behaviour using a TTM (e.g. if  is a buffer, then a private list
variable may be used to remember sequences of messages). What makes the implementa-
tion abstract is the existential quantification of the private variables. This means that we do
not require or imply in any way that the real implementation of the module should contain
any of these private variables (e.g. the list variable in the case of a buffer need not be
used).

Definition 2: [Modular-validity] The RTTL formula p is modularly-valid for the mod-
ule m (written ) iff .

3.1  Parallel composition of modules
Modules  (with variable sets ) for  are said to be compatible with each

other if:

• each module has private variables that are not variables of the other module, i.e.
 and , and

• the conjunction of their initial conditions is satisfiable, i.e.  is satisfi-
able, and

• the conjunction  is satisfiable. 

Compatible module composition, , is defined by 
where , i.e. some of the interface variables of the sub-modules are
hidden at the parent level.  is ordinary TTM composition
(Sect. 2.2). Finally .

The private variables of the composite is , and the initial con-
dition is defined by . The super-module  is itself a

v: pr m( ) v′ v=∀( )

m̂
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init m( )yinit m1( ) init m2( )∧ m1 m2
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module; the TTM associated with this super-module is just the TTM obtained from
 together with the environmental transition that may change only variables

in  (i.e. it may not change any private variables).

In the next lemma, we assume that we have two modules  and . If an environmen-
tal transition in a trajectory of module  has the same effect on its interface variables as a
transition  of , then we relabel the environmental transition in the trajectory to ,
and the set of all the relabelled trajectories of  we call . A symmetric definition
also provides us with the set  of relabelled trajectories of .

Lemma 1: If  then .

Proof: Let . Trivially  and hence the initialization constraint of
 is satisfied. For the succession constraint, consider any position  of . Either the

environment transition is taken at position  or some transition of  is taken. The environ-
ment transition of  may not modify any private variables of m and hence may also not
modify private variables of , so any environment step of  is also an environment step
of . If some transition of  is taken at position , then it is either a transition of  or
of  that is taken. Since no transition of  may modify private variables of , a step
taken by a transition of  (say ) is the same as an environment step relative to  (the
transition  must be renamed to an environmental transition). Thus at any position either
a transition of  is taken or an environment transition of  is taken, and hence the suc-
cession constraint  holds. The fairness constraint of  is also satis-
fied, as any transition of  that is enabled infinitely often but not taken would also violate
the fairness constraint of . The ticking constraint of  is also satisfied, for suppose
there is a position of  beyond which there is no tick of the clock for , then the ticking
constraint for  would also be violated. If a transition of  violates its bound constraint,
then the bound constraint on transitions of  will also be violated. Hence  must also sat-
isfy the bound constraint of . Since  satisfies the initialization, succession, fairness,
ticking and bound constraints of , it follows that  holds. By symmetry it
also follows that  holds. Thus . 

For the converse, let . At any position of  either a transition of
 or of  is taken, in which case the same transition belonging  is taken, or an envi-

ronment transition that is an environment transition of both  and  is taken. This envi-
ronment step must also be an environment step of  as no private variables of  and 
could have been changed. We can make similar arguments as before for the other con-
straints but in the converse direction. Hence . ■

Lemma 2: Let modules  and  be compatible. Then

(a) , and 

(b) For a module m,  for any compatible module  and

RTTL property .

Proof: Follows directly from Lemma 1. ■

Recall that a property is modularly-valid only if it is satisfied by all trajectories of the
module. Lemma 1 tells us that the trajectories of the super-module are always a subset of
those of its sub-modules. This means that a valid specification of a sub-module must also
be valid for the super-module (Lemma 2a), and that a module specification remains valid
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no matter what the behaviour of its environment is, provided the environment respects the
compatibility constraints (Lemma 2b).

Theorem 2: [Composition Rule]. 
Let  and  be any two compatible modules and let the general-validity given by

 hold. Then .

Proof: Follows directly from Lemma 2 and temporal logic. ■

As mentioned in the introduction, the Composition Rule can be used bottom-up or top-
down. In the bottom-up method, pre-existing implemented “off the shelf” modules can be
combined into a super-module that satisfies a system requirement r. In the top-down
method, we proceed as follows:

1. The system architect decomposes the system under design ( ) into modules  and
 by:

(a) designing compatible interface stubs  and , and 
(b) designing module specifications such that .

2. The architect gives each module interface and specification to a programmer. It is the
job of the programmer to develop the module body so that the specification is modu-
larly-valid. For example, if the programmer is given  and  for the first
module, he must design a body  so that  where the module  is
fully described by . 

3. The required system is then  which is guaranteed by the Composition
Rule to conform to the requirement .

Parts of the development method can be automated by using a combination of model-
checking for proving modular-validity (step 2), and deductive theorem proving techniques
can be used for proving that the system requirement is a consequence of the module spec-
ifications (step 1b). 

A compositional proof has the following outline:

1.  is modularly-valid for  (by model-checking)

2.  is modularly-valid for  (by model-checking)

3. general-validity (deductive theorem proving)

4. 1, 2, 3 and the Composition Rule where 

In the sequel, we will leave out the module satisfaction symbol (except for its appearance
in the last line) and write the above proof as:

1.  is modularly-valid for 

2.  is modularly-valid for 

3. general-validity

4. 1, 2, 3 and the Composition Rule where 

By Lemma 2 (b), once we know that the context of the proof is the module , then any
specification of a sub-module of  will also hold for , and hence there is no need to
indicate which sub-module specification we are dealing with.
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3.2  Modes of interface variables
The interface stub of a module defined in the previous subsection consists of a set of

typed shared variables with their initial conditions. We can provide more structure and
flexibility to the interface specification which will enhance the user’s ability to understand
a module.

The additional structuring mechanism is provided by describing the modes of the
shared variables. A variable in the interface stub is either in (the module body can read the
variable but not write to it), out (the environment can read the variable but not write to it),
or share (both the body and the environment have write access):

interface_stub ::= {mode {variables}+ : type [where init]}*
mode ::= {in | out | share}

If a module m has a declaration “out ”, then no other module in the environment of m
may have a writing reference to the variable . If two (or more) modules each write to y,
then they must each have the declaration “share ”, thus indicating that the external envi-
ronment may also change . 

Let the variables in the interface stub be , where  are
the “in” and “share” variables (i.e. all variables whose value may be changed by the envi-
ronment), and where  are the remaining interface variables (the “out” variables
that the environment does not change). We often refer to the module by

, where the semicolon separates the out variables from those that
the environment can read and modify (the in and share variables).

Definition 5: Two modules  and  are interface compatible, provided each vari-
able  satisfies the following constraints: the types declared for  in
both interfaces match, the conjunction of their where clauses (supposed true when not
specified) is satisfiable, and if one of the declarations specifies an out mode, then the
other specifies an in mode.

The reactor trip relay module relay (taken from the example in Sect. 5.2) is shown in
Fig. 3. When the command to open the relay ( ) comes from the environment, then
the relay is immediately opened ( ) before the next clock tick, thus shutting
down the reactor. The specification of the relay (see (Eq. 6) in Fig. 3) does not contain the
next operator  in the consequent; instead, the operator  is used. This is because the
trajectories of a module may have environmental steps that leave the state unchanged.
Specifications must therefore allow such “stuttering” steps otherwise the specification will
not be modularly-valid.

3.3  A small example of compositional reasoning
The module  (Fig. 4) is part of the DRT controller which will

be discussed in the sequel. The controller consists of three independent microprocessors,
each one with independent sensors of reactor power and pressure. Each microprocessor
controller  signals through a variable  whether to open the relay (which shuts
down the reactor), or to close the relay (allowing the reactor to be started up again). The in
variables of majorVote are thus , and the out variable is , which is set to 1
when the majority of the microprocessor vote for opening the relay (i.e. when

y1

y1

y1

y1

y y1 … y j y j 1+ … yk, , , , ,= y1 … y j, ,

y j 1+ …yk,

m y1 … y j y j 1+ …yk,;, ,( )

m1 m2

v is m1( ) is m2( )∩∈ v

C 1=

R open=

n e0

majorVote C1 C2 C3 C;, ,( )

microi Ci

C1 C2 C3, , C
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). The specification  can be shown to be modularly-valid
by model-checking.

The relay module (Fig. 3) and the voting module (Fig. 4) are interface compatible. We
may therefore use the modularly-valid module specifications (Eq. 6) and (Eq. 7), and the
Composition Rule to prove the validity of

 (Eq. 8)

where p is defined by:

p: (Eq. 9)

The proof of the left conjunct of (Eq. 9) is as follows:

1. by modular-validity of (Eq. 7)

2. by modular-validity of (Eq. 6)

3. (2) and RTTL 

4. (3) and RTTL

5. (1), (4) and Composition Rule

FIGURE 3. The relay module

module relay(C;R)
in C: {0,1} where initially 

/* when the input command  is given, the relay is opened, and when  the relay is closed */

out R: {open, closed} where initially  
/* R is the relay object variable that is exported as readonly output */

Body TTMchart (using the StateTime Build tool)

Specification:

:  (Eq. 6)

/* Informal description: The operator  is needed in the consequent. Although the relay responds to a
stimulus (i.e. a change in C) before the next clock tick, the reponse is not immediate but may occur a few
states later (as actions of the environment are interleaved with actions of the relay). The above
specification is modularly-valid */
end module relay.

C 0=( )
C 1=( ) C 0=( )

R closed=( )

Note: The transitions trip[0,0] and closerelay[0,0] are
immediate transitions, i.e. their time bounds force them
to occur before the next clock tick once they become
enabled. The guard of the trip transition is (C=1) and its
enabling condition is (C=1,R=closed). In Build expres-
sions, the comma is used for conjunction and the semi-
colon for disjunction. The update function nil in the trip
transition indicates that no data variable (e.g. C) is
changed; however, when the trip transition is taken the
relay R is changed to open. This module has no private

variables.

s p relay( )
h920 C 1=( ) e0h920

R open=( )⇒

h92 C 0=( ) e0h92 R closed=( )⇒

e0

C1 C2 C3 2≥+ + sp majorVote( )

majorVote relay||[ ]mp

h920 C1 C2 C3 2≥+ +( ) el1 h920
R open=( )⇒[ ]

h92 C1 C2 C3 1≤+ +( ) el1 R closed=( )⇒[ ]∧

h920 C1 C2 C3 2≥+ +( ) el1 h920
C 1=( )⇒

h920 C 1=( ) e0h920
R open=( )⇒

el1 h920 C 1=( ) el1 e0
h
920

R open=( )⇒

el1 h920 C 1=( ) el1 h920
R open=( )⇒

majorVote relay|| mh920 C1 C2 C3 2≥+ +( ) el1 h920
R open=( )⇒
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The temporal logic reasoning is performed in the RTTL proof system. For example, the
RTTL theorem used in step (3) is: .

The Composition Rule provides a powerful technique for beating combinatorial explo-
sion of states. To verify a global requirement r of a system composed of modules, it is not
necessary to deal with the complete system (e.g. by generating its global reachability
graph). Instead, we need only verify the specification of each of its objects one at a time,
provided we can show that the object specifications entail the global requirement.

The modular-validity of module specifications for a module  can be determined by
applying the model-checking and theorem proving tools of StateTime (Sect. 2.4) to the
TTM  that corresponds to . For example, the relay module specification  in
Fig. 3 can be proved modularly-valid by model-checking the set of transitions associated
with the body together with the nondeterministic environmental transition with update
function choose(C), which allows the input variable C to vary arbitrarily.

In the above relay example, an unrestricted environment was used to check the modu-
lar-validity of the module specification. This is not always possible as an unrestricted envi-
ronment can sometimes generate larger intermediate reachability graphs than the
reachability graph obtained when the environment is limited to a known set of fixed mod-
ules. This is because certain states of the module in an unrestricted environment may be
unreachable in the composite. There are two ways to address this issue: either (a) decom-

FIGURE 4. Module for majority voting logic

module majorVote(C1,C2,C3;C)
with bitType={0,1}
in : bitType;   /* 1 stands for a vote to open the relay, and 0 to close the relay. */
out : bitType where initially    /* Only majorVote can write to  to set the relay*/

Body
private : bitType where initially /* majority vote object variable*/.

Specification

: (EQ 7)

/*Informal description

The first line of the specification states that once the majority of microprocessor controllers vote to 
open the relay, and this vote remains in place for time 20 ticks, then within one tick of the clock, 
the output variable  will be set so as to command the relay to open, and will remain set for 20 
ticks of the clock. The second line states a similar specification for the command to close the relay. 
*/

end module majorVote

C1 C2 C3, ,
C C 0=( ) C

V V 0=( )

s p majorVote( )
h920 C1 C2 C3 2≥+ +( ) el1 h920

C 1=( )⇒

h∧ 92 C1 C2 C3 1≤+ +( ) el1 h92 C 0=( )⇒

C

p q⇒( ) el1 p el1 q⇒( )→

m

m̂ m s p relay( )
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pose the module into smaller sub-modules where an unrestricted environment will not be
problematic, or (b) restrict the environment of the module to the actual environment in
which the module is expected to operate.

The easiest way to restrict the environment involves the use of conditional specifica-

tions for the module of the form  which asserts that if the environment is assumed
to behave according to the RTTL formula  then the module is guaranteed to behave
according to the RTTL formula . In other frameworks, such conditional specifications are
called assumption/guarantee properties [22], and special rules are provided for reasoning
about them. In our framework, conditional specifications are no different from any other
module specifications. Our purpose will be to show that  is modularly-valid for
the module , i.e. . This does not contradict our definition that a module
specification should hold independently of what the environment does. The property 
will indeed hold true only if the module environment behaves according to . However,

 holds for the module in any environment; this is because if the environment does
not satisfy , then  need not hold true [32, p.356].

In the sequel, we deal with modules that are intended to work in fixed environments.
For example, the environment of the DRT controller module (Sect. 5.0) is the plant which
will remain fixed throughout the design. Consider a conditional specification

 for one of the controller sub-modules  which asserts that if the plant
(which is the environment of m) behaves according to  then m will behave
according to . To verify the modular-validity  in an unrestricted envi-
ronment in which the plant output variables can take on any value at any moment, will
generate a larger reachability graph than necessary because there will be states that are not
reachable in practice. The actual plant sensors are filtered and hence change only every
two ticks of the clock. Thus we do not need to consider all the possibilities generated by
continuously changing sensor values. Instead, we can verify  which will
involve a smaller reachability graph in which plant changes occur only every two ticks.
The following theorem justifies this procedure.

Theorem 3: Let  and  be two compatible modules and p an RTTL formula in the
interface variables. Then .

Proof:

< (Th. 1)(a)  >

< propositional temporal logic >

< Composition Rule and  holds for  by (Th. 1)(b) >

. ■

4.0  Module refinement

If a module m has been implemented with a given body, under what conditions can we
replace the body with a new one while still retaining the same observed timed behaviour at
the interface stub? One possibility is to use the notion of program equivalence of untimed

Env r→
Env

r

Env r→
m mmEnv r→

r

Env

Env r→
Env r

des plant( ) r→ m
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r mmdes plant( ) r→

plant m||[ ]mr

m1 m2

m1mdes m2( ) p→[ ] m1 m2
||[ ]mp≡

m1mdes m2( ) p→[ ]
≡

mdes m1( ) des m2( ) p→[ ]→
≡
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concurrent programs developed in [32, p46]. However, this notion of equivalence will not
work for our real-time reactive modules. 

Consider a program with two variables  and . In [32, p46], a sub-sequence such as
 would be reduced to

 if the only observable variable is . We have thus lost
a record of one of the clock ticks, because in the refinement relation of [32], program
states that are identical to their predecessors are omitted from the sequence. But, in real
time systems, it is essential that the reduced system show the same timed behaviour as the
original system. We will thus need to define a notion of observational equivalence that
takes into account state (data) as well as events (ticks of the clock). In this section, we
adapt the state-event notion of observational equivalence developed in [26,27,28] to the
needs of real-time reactive modules. Because we need to deal with both states and events,
we also cannot just use the standard event-based notion of bisimulation [33], as will be
explained in this section.

Consider two modules that have the same interface stub but different bodies. For such
modules we will define a notion of module observational equivalence that is composition-

ally consistent and preserves any stuttering invariant RTTL module specification (detailed
explanation follows below). Thus the first body can be replaced by the second with a guar-
antee that any module specification that holds for the first will also hold for the second,
and vice versa. Observational equivalence will allow us to refine an abstract module into
one closer to code implementation. The abstract module may have a substantially smaller
state space than the refinement and hence will be more amenable to model-checking.

Informally, if a module  is equivalent to a module  having the same interface stub
(written ) then  preserves the timed behavior of  over the interface variables.
We want a notion of observational equivalence that only distinguishes between the two
modules if the distinction can be detected by an external agent interacting with each of
them. The agent can observe any of the interface variables and the start transition and tick

of the conceptual global clock, but not any of the private variables or internal transitions
which are unobservable to the external agent. We call such internal unobservable actions

-transitions. Although an external agent may not be able to observe an internal transition
itself, it may be able to observe the effects of the internal transition (e.g. if the internal
transition changes one of the interface variables).

4.1  Observation equivalence of TTMs
In [37], an algorithm is given for constructing the reachability graph of a TTM. The

reachability graph is used as the basis for model-checking RTTL formulas, as maximal
fair paths in the reachability graph correspond to TTM trajectories. 

We illustrate the concept of a reachability graph by referring the reader to the sample
TTM  with variables set  as shown in Fig. 5. The reachability graph of 
is  (also shown in Fig. 5). The reachability graph is a labelled transi-
tion system with state set , transition label set ,  is a set

 of binary relations on , and the initial state is . 

If  and  then  holds precisely when  (i.e.  is a -suc-
cessor of ) where  are the restrictions of  respectively, and  both occur in tra-
jectories of the TTM . We let  be an abbreviation for  which is called a

x y

ε:start x:0 y:0, ,〈 〉 ε:tick x:0 y:0, ,〈 〉 ε:tick x:0 y:0, ,〈 〉 ε:τ x:1 y:2, ,〈 〉
ε:start y:0,〈 〉 ε:tick y:0,〈 〉 ε:τ y:2,〈 〉 y

m1 m2

m1 m2≈ m1 m2

λ

N1 V ε c v, ,{ }= N1

rg N1( ) Q T R q1, , ,( )=

Q T start tick a b, , ,{ }= R

Rτ τ T∈{ } Q q1 c:on v:0,〈 〉=

q q′, Q∈ τ T∈ Rτ q q′,( ) s′ τ s( )∈ s′ τ
s q q′, s s′, s s′,

N1 τ q q′,( ) Rτ q q′,( )
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a -step from  to . The notation  denotes a sequence
of steps in the graph. Any maximal sequence of steps in the reachability graph corresponds
to a trajectory of the TTM respecting the initialization, succession, fairness, and bound
constraints (Sect. 2.2).

The timed behaviour of the TTM  in Fig. 5 is equivalent to  with respect to the
observable variable  (in a sense to be made precise in the sequel). In this weakly observ-
able setting, the  and  transitions are observable but no other transitions are visi-
ble to an external agent. The observable variables set is  — the variable  must
thus be in the variables set of both TTMs. The TTM  is much simpler than  and has
a smaller reachability graph (Fig. 5). We therefore call  an abstract specification8 of the
concrete refinement .

For the precise definition of observation equivalence, we need the concepts of state pro-
jection operators and unobservable -transitions. For a set of observable variables  of a
given TTM, the observable state projection operator  tells us when states  and 
agree when restricted to their observable variables. For example, if we are given the states

,  and the observable variables set , then
 as they agree on the  component of the state.

An external agent interacting with the TTM  can observe the start and tick transi-
tions; but the other transitions  and  are unobservable. Similarly, the transition  in 

8. In this section, we show that a TTM description of a concrete system  meets its abstract TTM specifi-
cation  is by showing that  is equivalent to  on the observable variables. Although this approach
is natural in many cases, we do no thereby imply that equivalence of TTMs is always the right way to
express conformance. Temporal logic is often more convenient for expressing a partial specification, i.e.
a property which should be satisfied by a system but which does not fully determine its observable behav-
ior. An example of a partial specification is  (where  is the  object variable in Fig. 5)
which specifies that  should not be turned  any sooner than two ticks of the clock.

FIGURE 5. Observably equivalent TTMs

TTMs  and  are observationally equivalent, i.e. .
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is unobservable. We will relabel the edges of reachability graphs so that all unobservable
transitions are called . Although the -transition itself is unobservable to an external
agent, its effect may be observable (e.g. when the transition is taken it may change an
observable variable); however, the external agent is unable to tell which transition caused
that effect. 

Definition 6: [State-event labelled transitions systems SELTS] Let  be
a TTM, and let  be a given set of observable variables. Let the reachability graph
of  be  where  is a countable set of states and  is the
initial state. Then  is a labelled transition system, called a state-
event labelled transition system (or SELTS), where  and

 with:

(Eq. 10)

(Eq. 10) achieves the required relabelling, i.e. all transitions in the reachability graph other
than start and tick are now relabelled to the unobservable -transition in the corresponding
SELTS. The following definition is needed for the weak state-event bisimulation:

Definition 7: The unobservable move  is defined by: 

The action of taking an observable step  (i.e.  is either start or tick) in a SELTS
that has (possibly empty) sequences of unobservable steps on both sides is defined by:

We also define a similar move for the unobservable -transition (which may or may
not cause a change in the observable variables) by:

We are now ready to define the notion of a weak state-event bisimulation relation. In
the weakly observable setting with unobservable -steps, the steps  and  are
indistinguishable, producing the same observations (or possibly lack of observation in the
case of a  move).

Definition 8: [Weak state-event bisimulation] Let  be state
event labelled transition systems for the TTMs  for  with a common observ-
able variables set . Then the relation  is a weak state-event bisimulation
relation if :  and 

•  implies 
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∃∨

λ τ q q′,( ) τ̃ q q′,( )

λ

GMi
Qi Tλ Ri qi0 O, , , ,( )=

Mi i 1 2,=

O S Q1 Q2×⊆
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•  implies 

The above definition of bisimulation can be paraphrased by saying that two states are
weakly bisimilar if any move from one of the states to a new state can be matched by the
other state making a move, or sequence of moves, producing the same observations on
both the observable variables and the observable transitions (start and tick) and reaching a
state that is weakly bisimilar to the state reached from the first state. 

The standard notion of bisimulation [33] is defined with respect to the events of a
labelled transition system. While it is possible to describe systems using only state infor-
mation or event information, there are many applications where the use of both state and
event information is quite natural. The above notion of (weak) bisimulation is defined not
only with respect to the observable events of the labelled transition system (needed to
maintain a global notion of time via the clock tick), but also with respect to the states of the
labelled transition system (needed for dealing with properties involving the observable
variables). For TTMs that must synchronize with each other via shared events (in addition
to start and tick), the set  in (Dfn. 6) can be expanded quite naturally to include any such
additional synchronized events without the need to change the definition of bisimulation.

Since weak bisimulations are closed under union, there is always a largest weak bisim-
ulation relation (which we denote by the infix operator ) relating the states of  to that
of  for an observable set of variables . Thus if  (respectively ) is a state of the
reachability graph of  (respectively ) then we can write  whenever

. This leads to the notion of state-event equivalence of TTMs:

Definition 9: [ ] Let  (with initial state ) and  (with initial state
) be two TTMs with variables sets  and  respectively. Let  be a

given observable set of variables. Then  and  are called state-event equivalent

over  (written: ) provided .

Where the observable set of variables is fixed from the context to , we write .
For the example TTMs in Fig. 5 with observable variables set , we have that

.

For finite state TTMs, [28] provides an efficient polynomial time algorithm for check-
ing the equivalence of two TTMs. For possibly infinite state TTMs, [27] presents equiva-
lence preserving transformations. The following theorems indicate the usefulness of state-
event equivalence [26]. 

Lemma 3: (corollary of Lemma 2 in [26]) 
Given TTMs  all having the same observable variables set, then

 

Thus, state-event equivalence of TTMs is compositionally consistent, i.e. the designer can
replace a TTM with an equivalent refinement with a guarantee that the observed time
behavior will be unchanged.

The set of SESI (state-event stuttering invariant) temporal logic formulas are defined in
[26]. We will only need a subset of SESI formulas for the sequel, which we now define. An
atomic SESI formula atomic_sesi of a module m is any state-formula, having no occur-
rences of the transition variable , and whose free variables are the observable variables,
i.e. the variables in . A SESI formula is defined by:
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sesi ::= atomic_sesi |  |  |  |  | (Eq. 11)

The formula  is SESI as it is derived from the bounded until operator which itself is
SESI. Also  is SESI because all the other temporal logic operators, except
for next, can be obtained from the until operator. The  operator can usually replace the
next operator. It is shown in [26] that some formulas involving the next operator are also
SESI, but we will not need these for the sequel.

Lemma 4: (corollary of Theorem 3 in [26]) Let  be a SESI formula with a given
observable variables set . If  and  are TTMs such that  then:

.

The above lemma is significant for model-checking. We may check an abstraction 
for conformance to  rather than its more complex refinement , with a guarantee that 
will also hold for the refinement, provided the TTMs are non-Zeno.

4.2  Observation equivalence of modules
The behaviour of a module  was defined in Sect. 3.0 with the help of an associated

TTM , which is the composition of the body TTM and an environment transition that
arbitrarily changes interface variables .

Definition 10: [state-event equivalence of modules] Let  and  be two modules
having precisely the same interface variables (i.e. ). The observable
variables set  of these modules is defined as . The corresponding
reachability graph of each of these modules is  for  from
which their corresponding SELTS can be obtained as in (Dfn. 6). The state event equiv-
alence of these modules is then defined by: . 

As with TTMs, one may check the conformance of an abstract module for conformance
to its specification with the guarantee that the refinement will also satisfy its specification,
as stated in the following theorem.

Theorem 4: [Refinement Rule] Let  be an arbitrary SESI formula for non-Zeno mod-
ules  and  having the same interface variables such that . Then:

.

Proof: Since  we have that  where  is the TTM corresponding
to the module (Dfn. 1) for  and . By Lemma 4, it follows
that . Since the modules are non-
Zeno,  holds. Hence, by the definition of modular-validity (Dfn. 2)

 holds as required. ■

5.0  Modular Design of the delay reactor trip (DRT)

Industrial reactive systems are often specified using a combination of timing diagrams,
pseudocode and careful English narrative. This has the considerable advantage that it is
accessible and intelligible to a wide community. It has the disadvantage that even the most
lucid informal descriptions are prone to omissions and ambiguities. More importantly,
conformance analysis can only be undertaken in a more precise setting.
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In this section we describe an example taken from the actual requirements document
for the shutdown system of an industrial nuclear reactor. We translate the informal descrip-
tions and requirements into precise counterparts in the TTM/RTTL framework, and then
use the modular development method developed in this paper to design the system and
check its conformance to requirements. The abstract design so obtained can then be
refined down to a format close to pseudocode suggested in the original requirements docu-
ment. This is not the way the original problem was presented. Originally, the pseudocode
was a given, and the engineers wanted to know if the pseudocode satisfied the informal
requirements as presented in the timing diagram. This reverse engineering problem can be
solved using the same compositional and abstraction techniques but working bottom-up
(see [38] for the reverse engineering problem).

5.1  Informal description of the problem
In early nuclear reactors, the shutdown systems were constructed of analog devices.

The analog control had the virtue of being simple to understand but inflexible, unable to
perform system checks and not always reliable. It was felt that the situation could be
improved by installing computerized control with at least two independent shutdown sys-
tems, designed by different teams, each shutdown system itself having 3-version control
and majority voting logic [43].

The delayed reactor trip (DRT) problem was first described by Lawford et. al. [27].
Lawford developed behaviour preserving transformations for timed transition models
(TTMs) with which he was able to discover a flaw in the proposed design [25] involving a
single controller. However, the transformational theory cannot be fully automated as no set
of transformations is complete for proving observation equivalence between the actual
implementation and its abstract specification. In [38], the StateTime toolset was used to
verify the single controller case, where it also helped to find a bug in the original specifica-
tion. A corrected version of the pseudocode was shown to conform to its requirements by
model-checking.

In this paper we consider the case of 3-version control using a majority voting circuit to
determine control actions. The StateTime toolset was not able to model-check the com-
plete system due to a combinatorial explosion of states. However, using a combination of
model-checking and deductive techniques in the modular framework, the conformance of
the systems to its requirements can be demonstrated.

The DRT for nuclear reactors used to be implemented in hardware using timers, com-
parators and logic gates similar to the timing diagram shown in Fig. 6. The new DRT sys-
tem is implemented on microprocessors. Digital control systems provide cost savings and
flexibility over the hardware implementation. However, the question now is whether the
new microprocessor based software controller satisfies the same specifications as the old
hardware implementation. 

The hardware version of the controller implements the following informal require-
ments9:

[R1] When the power and pressure of the reactor exceed acceptable
safety limits, the comparators which feed in to the first AND gate
cause Timer1 to start. After 3 seconds, Timer1 sends a message to
one of the inputs of the second AND gate indicating that the time-
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out has occurred. If after this first time-out the power is still greater
than its safety limit, then the relay is tripped (opened), and Timer2
starts. The relay must remain open until Timer2 times out which
happens after 2 seconds. 

Requirement [R1] ensures that the relay is opened and remains open for two seconds
thus shutting down the nuclear reactor in a timely fashion. If the controller fails to shut
down the reactor properly, then catastrophic results might follow including danger to life.
By the same token, each time the reactor is unnecessarily shut down, the utility operating
the reactor loses money because it must bring additional fossil fuel generating stations on
line to meet demand. The next informal requirement states:

[R2] If the power reduces to an acceptable level then the relay
should be closed as soon as possible (thus allowing the reactor to
operate once more).

In the actual DRT, there are three identical microprocessors that have independent sensors
for power and pressure. The final decision on when to shut down the reactor is based on a
majority vote of the three microprocessors. 

The code is to be implemented on a microprocessor with a cycle time of 100ms. The
microprocessor samples the inputs (pressure  and power ) and passes through a block
of code every 0.1 seconds. It is assumed that the input signals have been properly filtered
and that the sampling rate is sufficient to ensure adequate control. In the formal model,
one tick of the clock will represent 100ms.

5.2  Formal requirements
The first step is to decompose the drt into two parallel modules the plant and the control-

ler, i.e. . The plant corresponds to the part of the system that is
fixed and known. The controller is the part of the system that must be designed.

9. In the sequel, we assume that we are to satisfy the original hardware requirements, because this is the way
the original industrial requirements document posed the problem, and we wanted to show that formal
methods could deal with the problem as posed. Using the original requirements also allows the design
method of this paper to be directly compared to the reverse engineering problem of [38]. It could be
argued that these original requirements are biased by the hardware implementation, and simpler less strict
requirements can therefore be obtained. 

FIGURE 6. Analog implementation of the delay relay trip timing.
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The observable variables of the DRT are shown in the data flow diagram of Fig. 7. The

plant outputs are the relay position ( ), power ( ) and pressure ( ) variables. The input
to the plant ( ) is a relay activation variable that can be used to force the relay to open or
close. In the absence of control, the plant can behave unsafely. For example, if pressure
and power both go to unsafe levels, there is nothing to force the relay to trip. 

The plant (Fig. 2) was described previously in Sect. 2.4 in the discussion of the
StateTime toolset and in the description of the relay module (Fig. 3). The output object of
the plant updates the pressure and power readings at most every two ticks of the clock. If
the endupdate event is deleted with only the update object remaining, then pressure and
power would be forced to change their values. With endupdate included, the sensor updates
can be preempted thus leaving open the possibility that pressure or power (or both) remain
unchanged for an additional two ticks10.

The output object for power and pressure updates could have been included in the con-
troller as it represents the filtered sensor readings not the generation of power and pressure
in the plant itself which are continuously changing. Since the output object behaviour is
fixed and known a priori, it is more convenient to include it with the plant.

In contrast to the plant, parts of the controller are initially unknown. It is known that
there will be 3 microprocessors together with a majority voting circuit, i.e. the controller
can be decomposed into sub-modules (Fig. 8) described by:

(Eq. 14)

The microprocessors can either be in a normal or failed mode. The j-th microprocessor
thus has an observable out variable  with  (Fig. 7). However,
the precise nature of the normal behaviour is initially unknown, although the informal tim-
ing diagram (Fig. 6) does provide some guidance.

10.The pHi, pLo,wHi, and wLo events could have been given bounds [2,∞] which would not force these events
to occur. But then the pressure and power updates could drift apart. In the current model,

 so that the sensor readings remain constant for a period sufficient to
ensure that the microprocessor controllers can react to their inputs. We could have changed the definition
of bothHi in (Eq. 17) to  except for the fact that  is a private variable (Fig. 2).

FIGURE 7. The observable inputs and outputs of the DRT
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FIGURE 8. Architecture of the controller based on majority voting control

module controller
in W, P /* power and pressure variables from the plant */
out C : {0,1} where /* relay activation variable based on majority vote.  

means send a signal to the relay to request it to open */
out : {fail, normal} where  for 

/* failure variables needed for specifying failed behaviour */
out : {0,1} where  for      /*  means the j-th microprocessor is at 

or has returned to the beginning of a timing cycle where it 
waits for unsafe power or pressure signals*/

Body
private  : {0,1} where for 
/* The j-th microprocessor outputs a relay activation variable  as input to the majority voting cir-
cuit. The majority voter must decide, based on the microprocessor relay activation variables, whether 
to send an actual command to the relay of the plant via . The interconnection diagram between the 
modules of the controller is shown below: */

Specification :

(Eq. 12)

The formulas bothHi, powerHi and powerLo are defined in (Eq. 17). The module specification
(Eq. 12) is similar to the DRT requirement R but with the controller output variable C playing the
same role for the controller specification that the relay variable plays in R. The specification is stated
under the proviso that at least two of the microprocessors work normally, as the majority voting logic
is only robust with respect to a single failure. The last conjunct of the consequent asserts that the con-
troller cycle is at most 52 ticks of the clock, after which it is guaranteed to be back at its initial posi-
tion (it is not 50 ticks as it may take up to two ticks to detect a change in the plant). Since the
environment of the controller is the (fixed) plant, the controller specification can be weakened to:

 (Eq. 12) (Eq. 13)
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It is necessary to be able to tell when a microprocessor is at the initial point of a timing
cycle where it checks for unsafe pressure and power levels (before invoking the two timers
described in Fig. 6). Once a timing cycle is initiated in response to unsafe power or pres-
sure levels, a new timing cycle cannot be initiated until the controller returns to its initial
point. Hence, the j-th microprocessor also has an observable out variable  with

 where  means that the microprocessor is at its initial point. We
require that a microprocessor timing cycle take no longer than the combination of the two
timers which is 50 ticks with an additional two ticks to cover controller reaction times, i.e.

.

We are now in a position to state the DRT requirements for 3-version control. The
informal requirements [R1] and [R2] can be stated in temporal logic for any two function-
ing microprocessors  and  as:

R1: (Eq. 15)

R2: (Eq. 16)

where the predicates bothHi, powerHi and powerLo are defined as:

(Eq. 17)

The controller can only react to changes in the pressure and power that persist long
enough for the controller to be guaranteed to detect them (2 ticks of the clock). The con-
troller microprocessors can sample pressure and power only once every tick of the clock.
Hence, we require that the pressure and power both remain high for at least two ticks of
the clock for the relay to open [R1]. Similar considerations apply when closing the relay
[R2].

The requirements as stated above do not take into account the possibility of micropro-
cessor failures. R1 and R2 can only be required to hold if at least two of the microproces-
sors are functioning normally. The final requirement R is therefore:

R: (Eq. 18)

where the integer variables i and j range over the three microprocessor controllers, i.e.
.

5.3  Problem to be solved
We must prove that the DRT conforms to its requirements. Formally, this means we

must prove that  holds where  and R is the formula given
in (Eq. 18). Using the Composition Rule, a proof outline is:

1. modular-validity of (Eq. 5) in Fig. 2 for the plant by model-checking

2. modular-validity of (Eq. 12) in Fig. 8 for the controller by model-checking

3. general-validity (similar to the proof of (Eq. 8))

4. 1, 2, 3 and the Composition Rule

5.

I j
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The body of the plant module is given in Fig. 2. The only input variable to the plant is
the relay activation variable , which can be altered arbitrarily by the environment transi-
tion without generating too large a reachability graph. Hence step 1 in the above proof out-
line was verified using StateTime model-checking. 

The only part of the above proof that cannot be verified is step 2, as the controller body
is only partially defined at this point in the development. Thus we must complete the

design of the controller by designing its body, and demonstrate the modular validity of the

controller specification. Then the above proof outline guarantees that the DRT conforms
to its requirements.

In checking the modular-validity of the controller specification (Eq. 12), it is sufficient
replace step 2 above with the weaker specification (Eq. 13). Instead of using an unre-
stricted environment transition, (Th. 3) allows us to check sub-modules of the controller in
the environment . The resultant reachability graphs of the sub-modules are much
smaller than if an unrestricted environment transition is used. The above proof that the
DRT conforms to its requirements then becomes:

1. modular-validity of the plant specification

2. modular-validity of (Eq. 13) in Fig. 8 for the controller

3. (Th. 1)(b)

4. 2,3 and temporal logic

5. general-validity via deductive theorem proving

6. 1, 4, 5 and the Composition Rule

The design of the DRT controller will be performed using the structured compositional
approach described by the structure diagram (Fig. 1) as outlined in the introduction. The
structure diagram for the DRT is given in Fig. 9.

FIGURE 9. Structure diagram for the DRT

See Fig. 1 in the introduction for the interpretation of the structure diagram

C

plant

s p plant( )

des plant( ) s p controller( )→

des plant( )

s p controller( )

s p controller( ) s p plant( )∧ R→

drtmR

drtmR

plant controller

majorVote contplantbody

majorVotebody

||

||

micro3micro2micro1

microbody1 microbody2 microbody3

microbodyrefined1 microbodyrefined2 microbodyrefined2

|| ||



Composition and Refinement of Discrete Real-Time Systems September 1, 1997 34

5.4  Controller design
A partial description of the controller was provided in Fig. 8. The majorityVote sub-

module of the controller was described in Sect. 3.3 (Fig. 4). We must now design the
microprocessor sub-modules. The body of the module  is shown in Fig. 10, with

the other two microprocessors having symmetric descriptions. 

The normal object of the controller (Fig. 10) is a more thorough description of the infor-
mal timing diagram of the analog controller (Fig. 6). The lower and upper time bounds of
1 in the transitions of normal indicate that the microprocessor samples the sensor inputs
and passes through a block of control code every tick of the clock (0.1 seconds). Once
unsafe power and pressure levels are detected by the transition mu, the normal object waits
in activity n1 for 29 clock ticks (2.9 seconds) before proceeding to activity n2. If the power

FIGURE 10. Control module 

module micro1
in W,P /* power and pressure from the plant */
out : {0,1} where  /* the fail variable */
out : {0,1} where /* relay activation variable*/
out : {0,1} where /* initial condition variable for start of timing cycle */

Body
private  where /* object variable of normal */

Specification:

: 

where:   

end module

micro1

micro1

F1 F1 fail=

C1 C1 0=( )
I1 I1 0=( )

N1 N1 n0=

s p micro1( )   h F1 fail≠( ) r1 s1 t1∧ ∧( )  →

r1y I1 0=( ) bothHi e30 powerHi ] e31h920 C1 1=( )⇒∧∧[

s1y I1 0= powerLo ] el1h92 C1 0=( )⇒∧[

t1y I1 0≠( ) el52 I1 0=( )⇒[ ]
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is still high then the relay activity variable  is set via transition alpha, else the system
resets via transition rho1. The second timer Timer2 of the analog controller is described by
the delay20 transition. The beta transition resets the control activation variable when power
returns to normal levels.

It is obvious from the foregoing that TTMs can provide precise convenient descriptions
of timing information. The normal object can be seen as a high level specification of the
microprocessor. The microprocessors do not have delay and time-out constructs; rather,
timing variables must be incremented every pass through the block of code to keep track
of the passage of time. In Sect. 5.5, normal will be refined closer to code that can be imple-
mented on the microprocessors.

Once the body of the microprocessor module is known, the modular-validity of
 in Fig. 10 can then be verified via StateTime model-checking. As explained at

the end of Sect. 5.3, the controller will be used in the constrained environment of the plant.
Hence we need not consider an environment transition that can arbitrarily modify power
and pressure. The output object of the plant (Fig. 2) allows updates of power and pressure
at most once every two ticks of the clock; this constrained environment will produce a
smaller reachability graph. Hence, instead of showing the modular-validity of 
(Eq. 12), we can verify the weaker validity (Eq. 13) given by

by model checking .

Since the microprocessor and majority vote modules satisfy their module specifica-
tions, we can now show that  is modularly-valid. Let  be integer vari-
ables that range over the three microprocessors ( ). Then

1. Assume

2. modular validity 

3. modular validity of 

4. 2,3 and the Composition Rule

5. 1, 4 and temporal logic (see Fig. 10 for the micro specifications )

6. general-validity

7. integer reasoning

8.  1,5,6,7 and temporal logic

9. modular-validity of majorityVote module

10. 8,9 and the Composition Rule

Line (10) of the above proof produces the first conjunct in the consequent of the controller specification
(Eq. 12). The other conjuncts are obtained by similar (and much simpler) reasoning. We thus have:

11. discharging 1.

12. i and j were arbitrary; a constrained environment was used
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As shown in Sect. 5.3, the above result implies that the DRT conforms to its require-
ments. The proof of conformance used a combination of model checking (for verifying
modular-validity) and deduction (e.g. for proving the general validity in step 6).

5.5  Refining the controller
The abstract module  (Fig. 10) is observationally equivalent to its refinement

 (Fig. 11), i.e. . The refinement  is closer to the final

pseudocode [38]. As mentioned in Sect. 4.0, two methods have been developed for show-
ing observational equivalence: 

• The designer can interactively apply equivalence preserving transformations to derive
 from . The reader may consult [25] where this transformation is done

for a TTM body the same as that of  but without the additional failure transition
and the initial condition variable . The proof used in [25] can be used as is for

. The transformation rules can be applied to infinite state systems, but
it can be shown that there is no complete set of transformations, i.e. there is no finite set
of transformations such that it is always possible to prove TTM equivalence by using
that set of transformations [27].

FIGURE 11. Refinement of microprocessor control module

/* Body of  with same interface stub and module specification as  (Fig. 10) •/
private Ta: {0 ... 30} where (Ta = 0) /* Timer1 variable in timing diagram */
private Tb: {0 ... 20} where (Tb = 0) /* Timer2 variable in timing diagram */
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rmicro1 rmicro1 micro1≈ rmicro1

rmicro1 micro1
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• For TTMs that can be reduced to finite state reachability graphs, there is an efficient
polynomial time algorithm for showing observational equivalence [28]. The equiva-
lence of  and  can be shown with this algorithm as the data types are
finite.

The abstract module  satisfies the non-Zeno condition (Table 1). Since
 is SESI (state event stuttering invariant) over the interface variables, (Th. 4)

guarantees that  also holds for the refinement . Thus there is no need to
redo the proofs of controller module specifications, and we remain with the guarantee that
the DRT conforms to its requirements.

The module  is a high level description of a microprocessor controller. It is eas-
ier to understand than  because it is close to the informal timing diagram of the
analog controller (Fig. 6). It does not have the two timer variables that  has, and as
a result the guards on its transitions are simplified relative to those of . Its reach-
ability graph is smaller (Table 1). 

Table 1 shows the result for checking the most complex module. However, all the mod-
ule specifications were verified using the model-checker. The deductive parts of the proof
were done by hand. In principal, the deductive part could have been done using the theo-
rem prover, but it proved too tedious as explained at the end of Sect. 2.4.

We refer the reader to [38] for a discussion of the reverse engineering problem, i.e. how
one goes from the pseudocode described in the original requirements document to the
refinement presented in Fig. 11.

5.6  The design method
Although top-down design by stepwise refinement was de rigueur until the 1980’s, it

has subsequently come under attack. As Jackson has written [20]: “It was one thing to
impose a single hierarchical structure on a sequential program of the programmer’s own
devising; it was quite another to impose it on a given, inconveniently ill-structured, real
world domain”. In fact, real-systems such as the DRT often have no single “top” function. 

Our design method uses both top-down as well as bottom-up techniques. We have
stressed in previous sections that the Composition and Refinement Rules can be used both
ways. Our top-down methodology differs from the classic notion of stepwise refinement.
For one thing, in the classic use of top-down design, a program was a single sequential
process. Concurrency and parallelism was “exotic” or unknown [20]. By contrast, our
TTM modules allows for nondeterminism, and serial as well as parallel constructs in any
mixture and to any depth. This allows for adequate descriptions of real systems that have
no “top” in the functional sense. Furthermore, at the top level, we do have requirements
describing the safety and correctness of the overall system consisting of different parts

a. Above checks used the StateTime toolset and STeP on an Sparc Ultra1 with 160MB RAM.

TABLE 1. Improved model checking times for the module  compared to a

Modularly valid specifications Abstraction Refinement 

 (Fig. 10) 13785 states in 26 seconds 59452 states in 297 seconds

 (non-Zeno constraint) 15248 states in 61 seconds 69059 states in 261 seconds

rmicro1 micro1

micro1

s p micro1( )

s p micro1( ) rmicro1

micro1

rmicro1

rmicro1

rmicro1

micro1 rmicro1

micro1 rmicro1

  h F1 fail≠( ) r1  →

he ε tick=( )
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(such as the plant and the controller). Such system requirements (e.g. the DRT require-
ments R1 and R2) are often emergent properties, i.e. they arise out of the combined inter-
action of the system modules taken together. There is thus still an urgent need to describe
systems in a layered modular fashion, but without the sequential restrictions of the earlier
methods.

We now describe in outline the basic design method. The notions of a module, compo-
sition and refinement developed in this paper, provide the precise theoretical underpin-
nings for the method which was originally sketched in [36, pages 4-6]. We also borrow
concepts from the insightful description of requirements in [20, p169].

The basic design procedure starts with requirements R. Requirements are about the
phenomena of the application domain (the relay, pressure and power of the DRT plant),
not about the machine (the controller). Our first step in requirements is to divide the sys-
tem into the two parallel objects: (a) the plant (which can be described as it already exists)
and (b) the controller. This division proceeds by describing their relevant interfaces and
connections, as well as some of the internal phenomena and entities of the plant — this is
the body of the plant which is an abstract model of plant operation. The plant model can-
not be too abstract because then it is not about the real problem anymore. It is a mistake to
rush to the solution (by coding the controller) before delineating the problem to be solved
(the plant requirements). The requirements are temporal logic formulas in plant entities
such as pressure, power and the state of the relay. Therefore, the requirements do not
describe the internal phenomena of the controller, although they might (by accident so to
say) describe entities at the boundary of the controller and the plant (these are the shared

phenomena).

It is the job of the controller to ensure that the requirements are satisfied, which it can
do due to fact that it shares some phenomena with the plant (as described by the plant-con-
troller interface). The controller might not be able to react to a shared phenomenon imme-
diately (e.g. a change in reactor pressure), but the shared phenomenon happens in both the
plant and controller simultaneously. Because the controller does not always know all the
plant phenomena (or at least cannot react to them immediately), there is always the possi-
bility of a gap between the requirements and what the controller can achieve (as described
in the controller specification).

The progression from requirements to controller implementation is a way of bridging
the gap between them. From the requirements expressed in terms of the plant, you derive a
specification S of the controller in terms of the shared phenomena of the plant and control-
ler. Then you derive the body of the controller from the controller specification. The Com-
position Rule justifies the eventual claim that the controller implementation satisfies the
requirements by reasoning as follows: (a) the body of the controller satisfies the specifica-
tion S and (b) the specification S together with the description of the plant entails the truth
of requirements R.

In the case of the DRT controller, once the top-level interface stub was described, the
parts of the controller were developed bottom-up component by component. A generic
microprocessor controller was designed which was then instantiated three times to obtain
3-version control. Then the majority voting logic was designed. Bottom level modules
were developed, simulated and verified to conform to their local specifications long before
the modules were combined together. The plant description was quite simple and could be
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encapsulated in a single module. In more complicated application domains, the plant
might also benefit from a bottom-up development. 

6.0  Conclusions and related work

This paper has presented a structured compositional method for the deliberate design of
real-time systems, and applied the method to an industrial example with partial support
provided by the StateTime toolset. The main novelty of the approach is to provide a fully
compositional definition of real-time reactive modules compatible with existing model-
checking tools (Sect. 3.0) and a refinement relation (Sect. 4.0). This allows for the system-
atic development and verification of real-time systems. The framework developed in this
paper indicates that a productive tool should be able to support simulation, model-check-

ing and theorem proving.

There are four main areas where mechanical support is needed: (1) system simulation
for validating models, (2) model-checking for modular-validity, (2) deductive theorem
proving for the composition rule, and (3) proving observational equivalence for the refine-
ment rule. 

StateTime was used for simulation and model-checking all module specifications of the
DRT example. Although in principal, we could have used the toolset for the deductive
part, it proved too unwieldy due to the proliferation of quantifiers. The toolset has no sup-
port for refinement, and this had to be done by hand using behaviour preserving transfor-
mations. 

We are currently in the process of updating StateTime so that it directly supports mod-
ules (interface stubs and automatic generation of environments) and theorem proving. The
current tool already does simulation and model-checking. We are using count-up and
count-down clock variables with ordinary temporal logic (rather than the bounded opera-
tors of RTTL) for specification, but it is yet to early to tell to what extent this will simplify
deductive reasoning. The proof of observation equivalence (both algorithmically for finite
state modules and via equivalence preserving transformations) for use in the refinement
rule needs to be implemented and incorporated into the StateTime toolset, but we have not
yet decided how to implement these techniques. Because our bisimulation relation
involves both states and events (Sect. 4.0), we may not be able to directly use existing
tools such as Concurrency Workbench [9]. The Concurrency Workbench allows for the
testing of equivalences and preorders and the verification of systems in the modal mu-cal-
culus, but does not address real-time issues.

Other tools such as Modechart [21], Statemate [16] and ObjectTime [45] also use state-
charts for visual system descriptions. Modechart can use a combination of simulation and
model-checking to deal with larger systems [34]. Statemate can be used to do reachability
analysis and ObjectTime is object-oriented which is useful in design, but it cannot deal
with hard real-time systems. None of these tools have theorem provers, nor do they allow
for modular verification.

RTTL is based on the linear time temporal logic LTL rather than on branching time log-
ics such as CTL. It is commonly accepted that while specifying is easier in LTL, model-
checking is more efficient in CTL. Both linear and branching time languages now have
efficient model-checkers using either partial orders or BDD methods: SPIN [18] is one of
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the few LTL based model-checkers. SMV is a good example of a CTL based model-
checker [5], with an extension to real-time systems called Verus in the planning stage [6].
The hybrid tool HyTech [2] extends branching time model-checking to continuous real-
time systems using stop watches and symbolic fixpoint computation (the current version
of the tool supports reachability analysis via monitor automatons and not directly the full
set of CTL formulas). HyTech and Verus both allow for parametric analysis (e.g. deter-
mining the latest possible moment a controller can wait before issuing a command).

The STeP [31] model-checker and theorem prover was chosen as the back-end to
StateTime rather than tools such as SPIN, SMV and HyTech for a number of reasons.
Tools that use a non-interleaving synchronous execution step algorithm (e.g. SMV, the
PVS model-checker [42] and COSPAN [15]) are efficient for dealing with hardware
designs, but do not seem to be as efficient as SPIN when it comes to dealing with inter-
leaved sequential code and integer variables. There is also another problem associated
with modularity when it comes to branching time model-checkers. Although branching
time is usually more efficient than linear time logics, the branching time algorithms
become EXPTIME-complete for module checking which is worse than the PSPACE com-
plexity of linear time logics [24]. This analysis seems to suggest that the accepted trade-off
between LTL and CTL for modules is not as simple as it is for closed systems. We were
not able to use SPIN because it only supports justice (weak fairness) not compassion
(strong fairness) needed for the tick transition. More importantly, we hope to use the theo-
rem proving components of STeP in future versions of our tool. None of the aforemen-
tioned tools (except PVS) have theorem provers.

Hooman [19] extends Hoare logic to real-time programs by freely mixing programs
and assumption/guarantee assertions leading to a top-down derivation method. The theory
is implemented using the interactive proof checker PVS [42]. The embedding of the proof
system in PVS provides powerful mechanical support for compositional reasoning (but
not model checking for Hooman’s programs). One disadvantage of the method is that the
semantic embedding of proofs in PVS means that there is an extra layer of conversion
between the designer and the tool that cannot be eliminated. For example, a simple state-
formula in STeP such as  is written in PVS as  where  is a
state. This is not an aspect that can be hidden from the user as any proof which the user
must guide will expose the underlying complexity. Only fully automated tools such as
model-checking can hide the backend.

There is a growing interest in compositional and refinement methods for reactive sys-
tems [1,7,22,35,41,46,48]. The field is somewhat less developed in the case of real-time
systems especially in methods that also have tool support.

ASTRAL [10] is based on the framework of [11] that uses Petri Nets for system
descriptions and a timed temporal logic called TRIO for specifications. ASTRAL provides
structuring mechanisms that allow the designer to build modularized specifications that
are translated into TRIO. Proofs in ASTRAL are either interlevel or intralevel. The former
deals with proving that the specification at a higher level is consistent with a specification
at a lower level. The latter deals with proving that a description at a level satisfies its spec-
ification. A tool is currently under development.

The frameworks mentioned thus far have specification languages that are based on
logic, usually modal logic. Other approaches are based on algebra or automata. Discrete
real-time process algebras [4,44] can describe systems compositionally at different levels

x y≥( ) val s( ) x( ) val s( ) y( )≥ s
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of abstraction. The semantics of process algebras is usually defined in terms of labelled
transition systems. An algorithm based on observation (bisimulation) equivalence is used
to show that an implementation satisfies its specification. These bisimulation relations are
usually event-based [33], whereas the bisimulation relation used in this paper is both event
and state-based (Sect. 4.1). It is event-based in order to ensure a global notion of time via
the tick transition. It is state-based so that module specifications can be written as temporal
logic properties in the observable variables. Continuous time extensions to process alge-
bras [47] lack the abstracting power of a congruence relation of the discrete event case,
due to technical difficulties associated with their infinite branching continuous time
semantics.

The real-time CSR language [13] provides a layered approach to dealing with shared
resources. [12] presents hierarchical multistate machines for multilevel specifications. The
automata based tool COSPAN has recently been extended to deal with real-time [3].
COSPAN supports top-down development through successive refinements and homomor-
phic reduction [15]. Timed automata [30] (see also the input/output automata described in
[29]) have visible actions, a time passage action (analogous to our clock tick) and a special
internal action. Dense upper bounds can be imposed between actions, but not lower time
bounds. A refinement from one timed automaton to another is a time-preserving function
similar to the classical notion of a homomorphism between automata.

In single language frameworks (e.g. automata based COSPAN or the logic based TLA
[1]), both the implementation and specification are expressed in the same formalism
(automata or logic). Conformance is proved by demonstrating that each fair trace of the
implementation is also a fair trace of the specification. There is a certain elegance and sim-
plicity associated with using a single language for both specifications and implementa-
tions. We have pursued the dual TTM/RTTL framework in this paper as it provides us with
the flexibility of using the most appropriate analysis technique in each case. For TTM
refinement, we use the algebraic notion of observation equivalence, and for TTM compo-
sition the logical conjunction of RTTL specifications.
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