Composition and Refinement of
Discrete Real-Time Systems

Jonathan S. Ostroff
Department Of Computer Science, York University,
4700 Keele Street, North York Ontario, Canada, M3J 1P3.
Email: jonathan@cs.yorku.ca Tel: 416-736-2100 X77882 Fax: 416-736-5872.

Abstract: Reactive systems exhibit ongoing, possibly non-terminating, interaction with
the environment. Real-time systems are reactive systems that must satisfy quantitative tim-
ing constraints. This paper presents a structured compositional design method for discrete
real-time systems that can be used to combat the combinatorial explosion of states in the
verification of large systems. domposition ruledescribes how the correctness of the sys-
tem can be determined from the correctness of its modules, without knowledge of their
interior structure. The advantage of compositional verification is clear. Each module is
both simpler and smaller than the system itself. Composition uses both model-checking
and deductive techniques. rafinement ruleguarantees that specifications of high-level
modules are preserved by their implementations. State Timetoolset is used to auto-
mate parts of compositional designs using a combination of model-checking and simula-
tion. The design method is illustrated using a reactor shutdown system that involves the
use of three microprocessors, each independently checking sensor readings, with the final
decision to shut down based on a majority vote. The single microprocessor version can be
checked in the StateTime toolset without compositional reasoning. However, the three-
microprocessor system suffers from a combinatorial explosion of states and a composi-
tional approach is thus needed. The reactor example also illustrates the use of the refine-
ment rule.

Keywords: Real-time reactive systems, formal methods tools, statecharts, temporal
logic, modules, abstraction, refinement, composition, model checking.

1. This research was supported with the help of NSERC (National Science and Engineering Research Coun-
cil of Canada).

September 1, 1997 1



Table of Contents

1.0 a1 (oo [ o3 1 o o ISP 3
2.0 BACKQIrOUNG ...ttt e e e e e e e e e e e 6
2.1 Real Time Temporal LOGIC (RTTL) .ivvieiiiiiiiciiiieiee e e e sttt e e e e e e e s s s snnrenrnee e e e e e e e e e s annnnnes 6
2.2 Timed Transition MOAEIS (TTIMS) ..uuuuuiiii oo e e e e aaaaas 8
2.3 Parallel composition Of TTIMS ....coiiiiiiiiieiiiie e 12
2.4 Overview of the StateTime tOOISEL........cuiiiiiiiiie e 12
3.0  Modules and module COMPOSITION ........ccouvuuiiiiiiiiiee e 14
3.1 Parallel composition Of MOAUIES...........ooiuiiiiiii e 16
3.2 Modes of interface Variables ..o 19
3.3 A small example of compositional reasoNINg .........c..uuviiiiiiiie e 19
4.0 ModUle refINEMENT........eei e e e e 22
4.1 Observation equivalenCe Of TTMS ..o e e e e e e e e e e annanaeees 23
4.2 Observation equivalence of MOAUIES ...........cooueiiiiiiiiiii e 27
5.0  Modular Design of the delay reactor trip (DRT) ...ccooeeeiiiiiiiiiiiiiieiieeeeeeeeeee e 27
5.1 Informal description of the Problem ... 28
5.2 FOrmal rEQUIFEMENTS ...coiiiiiii ittt e e e e e e e e s e es 29.........
5.3 Problem t0 he SOIVEd..........ouuieicccce e 2.
5.4 L@70] a1 0] ] (=T e [=T T o T 34....
55 Refining the CONIOIIEN ... e 36........
5.6 The design MELNOA..........oooi e I Y AN
6.0  Conclusions and related WOrK..............oiiiiiiiiii e 39
7.0 REIEIEINCES .....eii e et e e et e e e e a e e e eaaae 41
Figure
FIGURE 1. Structure diagram for compositional design method.............ccccccooviiiiiinnnns 5
FIGURE 2. Plant MOAUIE .........oooeii e eaeaes 13
FIGURE 3.  The relay MOdUIE .........coooiiiiiii e 20
FIGURE 4. Module for majority VOting l0gQiC...........uuuriimiiiiiiiiiiiiiieeeeeeee e 21
FIGURE 5. Observably equivalent TTMS......ccooiiiiiiiiiiie e 24
FIGURE 6. Analog implementation of the delay relay trip timing............ccccccceeeeenenn.. 29
FIGURE 7. The observable inputs and outputs of the DRT...........cccccviiiiiiiiiiiiininnnnnnn. 30
FIGURE 8. Architecture of the controller based on majority voting control................ 31
FIGURE 9. Structure diagram for the DRT .........ovviiiiiiiiii e 33
FIGURE 10. Control MOAUIE .........oouueii et 34
FIGURE 11. Refinement of microprocessor control module.............cccccceeeviiiiiiiiiineeennns 36

Composition and Refinement of Discrete Real-Time Systems September 1, 1997 2



1.0 Introduction

Reactivesystems exhibit ongoing, possibly non-terminating, interaction with the envi-
ronment.Real-timesystems are reactive systems that must satisfy quantitative timing con-
straints. This paper presents a structured compositional design method for discrete real-
time systems that can be used to combat the combinatorial explosion of states in the verifi-
cation of large systems.

A system is decomposed into parallel components caitedliles A composition rule
describes how the correctness of the system can be determined from the correctness of its
modules, without knowledge of their interior structure. The advantage of compositional
verification is clear. Each module is both simpler and smaller than the system itself.

In addition to system decomposition, an abstract specification of a module may need to
be refined into implementations closer to codeeffnement ruleguarantees that specifi-
cations of abstract modules are preserved by their implementations.

The StateTimeoolset is used to automate parts of compositional designs using a com-
bination of model-checking and simulation. The design method is illustrated using a reac-
tor shutdown system that involves the use of three microprocessors, each independently
checking sensor readings, with the final decision to shut down based on a majority vote.
The single microprocessor version can be checked in the StateTime toolset without com-
positional reasoning. However, the three-microprocessor system suffers from a combina-
torial explosion of states and a compositional approach is thus needed. The reactor
example also illustrates the use of the refinement rule.

The compositional design method is based on the TTM/RTTL framework [36,37,40]
which consists of the following:

* A constructive description languagealled timed transition models (TTMs) for
describing reactive systems. A TTM is a guarded transition system with lower and
upper time bounds on the transitions that relate to the occurrence of a special clock
transitiontick. Concurrent real-time programs, nondeterministic timed Petri nets and
diverse mechanisms for timing, synchronization and communication constructs can be
converted into TTMs in a straightforward manner.

* A declarative specification languagealled real-time temporal logic (RTTL) for
describing the requirements that a TTM should satisfy without discussing how the TTM
Is constructed. RTTL is a timed extension of linear temporal logic augmented with a
transition variable for describing TTM events.

» Analysis technigug®r demonstrating that a TTM conforms to its specification. Model-
checking and a proof system for theorem proving are the main analysis techniques.
Model-checking is a method for automatically verifying concurrent systems in which a
finite-state model of the system (TTM) is compared with a correctness requirement
(RTTL). Since time is a monotonically increasing variable, the state-space of naive
timed systems is automatically infinite state. Hence, special care is taken in the model-
checking algorithms to keep the state space finite provided the data types are finite.

* A toolset calledStateTimg38] which has avisual statechart-likeexecutabldanguage
for representing TTMs hierarchically. A translator to the model-checker and theorem
prover STeP [31] allows for analysis. Although STeP is designed for untimed systems,
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the translation is done in such a way so as to allow for the use of STeP’s model-check-
ing and theorem proving facilities.

The TTM/RTTL framework was initially conceived for the analysis of closed systems
whose behaviour is completely determined by the state of the system itself [17]. By con-
trast, reactive systems are best thought adpehsystems whose behaviour depends on
interaction with the environment. We provide below an informal sketch of how the frame-
work is extended to the open setting. The concepts will be made precise in the sequel.

This paper defines the notion of an open real-time reantekilem = [i, b, § wherei
is the modulenterface stulfe.g. variables or channels shared with the environmnieits),
body(a TTM) ands the modulespecification(an RTTL formula in the interface variables).
The module specificatiom must hold for all module computations including arbitrary
changes that the environment might make at any time to the interface variables. The com-
position of two modules, |[[m, is also a module.

Not all parts of a module are always determined. For example, the interface stub and
specification may be given, but not the body. We denote a module with an unspecified
body byf[i, s, s] . A Composition Rule (justified in the sequel) given by

mes, [
Composition Rule M, E'S, % my [lm,=r
O
(s:0s5) =10
states that if each of the modules satisfy their respective specifications, then the system
satisfies its global requirement provided the requirement can be derived from the con-
junction of the module specifications. The composition rule allows for both bottom-up and
top-down design. In the bottom-up method, the independently designed and implemented
modules (with respective specificatios)ss, ) when brought together exhibit the emergent
propertyr provided(s, Os,) - r .

In the top-down method, the system under desigd that is required to conform to a
global system requirement can be decomposed into moduleg = [ij,*, s)] and
m, = [i, *,s,] provided(s, Os,) - r . At this stage, we have not yet committed to module

implementations. Each of these modules can then be given to a programmer whose job it
is to develop a body that satisfies the module specification.

The body of modulen, , whose variables can be reduced to finite ranges, can be shown
to satisfy its module specification (i, =s; ) by model-checking provided the effects of
the environment are taken into account. The progspfls,) - r , except in the simplest
of cases, requires the use of deductive techniques (RTTL theorem proving). Thus the com-
position rule usually involves a combination of algorithmic and deductive techniques.

It is advisable that the programmer design and code the body of a module at as high a
level as possible (using TTMs). This keeps the body simple and small which makes it
understandable and prevents state explosion. There is then a nefkthe high-level
module body into a TTM that is closer to implementation. For example, an abstract TTM
may directly specify a delay of 50 ticks, but the implementation on a microprocessor
might be a loop construct that increments a counter every traversal of the loop. The inter-
nal loop and counter are unobservable to an external agent interacting with the module as
the agent can only observe changes in the interface variables.
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Two modules with the same interface are observationally equivalent (wnittemm, )
if they agree on timed observations of their interface variables. Under suitable conditions
(presented in the sequel) a Refinement Rule states that:

my: [i,by, el O
Refinement Rule My: [i, by, ] E (M, E s) =(m, & s) for any module specificatich
m = m, E
Hence, ifm, is observationally equivalentitq , thep can reptace wherever it

occurs with a guarantee that any module specification will be preserved. There are effi-
cient polynomial algorithms for checking observational equivalence of finite state sys-
tems, and equivalence preserving transformations are available for refining infinite state
systems.

Given a requirementthat a systemsud must satisfy, the composition and refinement
rules allow for a systematic modular development method represented by the tree in
Fig. 1. Each step imposes a proof obligation as shown in the right hand column of the fig-

FIGURE 1. Structure diagram for compositional design method
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At each level, modulem;; can either
(a) be decomposed into new modules at the next level, or
(b) the body can be designed and coded, or
(c) the module can be refined closer to an implementation.
Each of these development steps imposes a proof obligation as shown on the right.

ure. The process continues until all the modules have bodies that can be directly coded
into the given program language. We need not adhere to the ordering suggested by the fig-
ure. For example, the complete implementatiormof can take place before the other

modules are designed. It is also possible to reverse-engineer already implemented code
and move bottom-up.

We proceed as follows in the rest of this paper. In section 2 we provide background
information needed to understand the TTM/RTTL framework and the StateTime toolset.
Section 3 defines the notion of a module, modular validity and the composition rule. It
also describes how conditional specifications can be used to constrain module environ-
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ments. Section 4 presents the refinement rule for modules based on the notion of observa-
tional equivalence of TTMs developed in [26]. Observational equivalence of TTMs will be
defined precisely in the sequel, but the reader is referred to [27] for a set of TTM equiva-
lence preserving transformations and to [28] for an efficient polynomial time algorithm to
check TTM observational equivalence. Module observational equivalence is defined in
such a way that the TTM results can be applied directly to module equivalence as well. In
Section 5, we use the composition and refinement rules for the structured design of a reac-
tor shutdown system. The design method is also discussed in some detail (Sect. 5.6). Com-
parisons to other approaches and concluding remarks are presented in Section 6.

2.0 Background

In the sequel, we use relative quantificati@x: T|R:P) wligie a quantifier [l or
D), T is the type of the dummy variabteR is the range of the dummy variable énad
predicate [14]. For exampléJi:int|3<i:P)  means “for all values of an integer varjable
if i is at least as large as 3 thdras property”. If no range is supplied then ittise. The
notationd:D generally means théit D . For exampl€d:int|d >0:x+ d < 4) means
that we are defining by & ([d:int|d>0:x+d<4) . In TTM update functions (see
sequel),d:D denotes assignment, d.e.D

2.1 Real Time Temporal Logic (RTTL)

Linear time temporal logic [32] uses temporal connectives suth (&@gnceforth),O
(next),$ (eventually) U (until) and past operators such@s  (previous state) to represent
gualitative temporal properties. The standard connectives are applstataeformulas
(which are the atomic predicates) to obtain temporal logic formulas.

Real-time temporal logic (RTTL) is obtained by adding a tiak transition and the
ability to refer to system transitions via a distinguished transition variable. We refer the
reader to [32] for a precise discussion of standard temporal logic and to [37,40] for real-
time temporal logic. We now provide a brief review of some of the basic concepts.

Let x andy be the system variables where the type of is the integeys and has a set
type. An example of a state-formdles (Cd:int|(x+ d<4) O(70y)) . In this formula, the
bound variabled is just a dummy variable and is not considered a system variable. A state
is @ mapping from the system variables to values in their relevant typesf Since evaluates
to true in the state given by= [(x2,y:{7,90 , we write f (stasatisfied), and we
call s anf-state.

A temporal logic formula such asf  (“eventudlly is true”) cannot be interpreted in a
single state; rather it is evaluated in an infinite sequence of states given by
0 = 555;...5... Whereor Of (‘o satisfiesof ) will mean that there is at least one
state subsequent to the initial state that isstate. An inductive definition of the satisfac-
tion relation = can then be given. Lgt,i) = f denote the satisfaction of temporal for-
mulaf at a position 20 of the sequense . For a state-forfylgo, i) = f] & [s & f]

We can then give the appropriate inductive definitions for the propositional connectives
(e.g. negation, conjunction, implication) followed by the usual definition of the temporal
operators. For example, for temporal logic formamdh, the until operator is defined
by [(o,i) EgUuh] & (Oj|j 2i:(o, j) Eh OOk isk< j:(o,k) Eg)) . For an arbitrary tem-
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poral logic formulaf ,o=f is an abbreviation fos,0)=f . A formdla generally-
valid iff (Oojo & f).

The implication § - <g ) states only that implies eventuallyy” at the initial posi-
tion of the computation, i.e. ff holds at the initial position then there is a subsequent posi-
tion whereg holds. As a notational convenience, we will wfite g fof — <)
which states that the implication holdsalitpositions of the sequence. In general, the dou-
ble arrowentailsoperator is defined byp O q] & C[p - ¢  for any temporal logic for-
mulasp andg.

We need the notion dgimed transition sequencésr the description of real-time sys-
tems. Since we envisage thatransition t; causes a transfer from staje, to state
we may rewrite the infinite sequence of states s;s;s,... as:

0 = (To Sp)(T1, (12 Sy) - (Ea.1)

The start transition, (e.g. a computer reboot) puts the system isstate . The transition
1, takes the system from stage sio  and so on. We give the initial trargition  the spe-
cial namestart The distinguished variabke (thtransition variable is always part of the
state. The transition variable is used to record the last event taken, i.e. for the sequence
(start, g)(14, 1) (12 S,)... we have thasy(e) = start an(i|i >0:s,(¢) =1;) . The reason
we need &tart transition is so thatg |, like all other state variables, has an initial value.

The transition variable can be used to refer directly to event occurrences. For example,
for a traffic system, the temporal logic formula=turn_red) O <(e =turn_green
asserts that anytime the light turns red, it must eventually turn green.

In order to represent time, we introduce the special transitiarA timed sequence
must satisfy theéicking constraintwhich asserts that there are an infinite number of ticks
occurring in the sequence, ie= OO (e = tick) . Thus, time must progress irrespective of
what happens in a system or its environment. It is possible for any finite number of transi-
tions to occur between two ticks of the clock.

We may use quantified Manna-Pnueli temporal logic to define the bounded real-time
until operator,pu ,;q , Which in turn can be used to express a variety of important real-
time properties. Informalfy the meaning of the bounded until operator is that eventually
g will occur at a time betweeh and ticks from now; until then  must hold. Other
bounded operators can then be defined as follows:

G P (truedy, , p)  Bounded responsp must hold after theth tick but
' before the(u+ 1) -th tick.

Cpb & Goyg P p must hold before theu+1) -th tick.
O_p & (P o true) Bounded invariancep must hold until theé -th tick.
Oyp o (truely gp) EXact time p is true in exactlyd ticks.

2. Formally, thebounded untibperator is defined usingflaxible clock variablet (that is incremented by
one every time the clock ticks), andigid time variablet, (that retains the same value over all states) as
follows: P, & (Otg:type(|(t = to) — pPU(qD(tp+Ist<ty+u))). Please refer to [36,40] for the
precise details. Since the bounded time operators are defined using ordinary quantified temporal logic, the
untimed temporal theorem prover STeP [31] can be used to show the validity of theorems such as
C002p=00p, which can, in principal, be used for the deductive reasoning in the sequel.
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The formula$,p asserts thawill hold before the next tick of the clock. Several state
changes can occur befopeoccurs without the clock advancing. TKeg operator can
often be used in place of thextoperator where there is a need for stuttering-invariant for-
mulas, i.e. formulas that are “robust” with respect to unobservable moves of the environ-
ment. Some further examples of clocked properties are:

* p—(qUg 4r): If p holds initially, then eventually between 3 and 7 ticks  holds, and
g must hold continuously until then. This property is asserted only at the initial posi-
tion.

* [O(p—(qUer)): Every position satisfyingg is followed within 4 ticks by , ad
holds continuously until then.

* pO ¢y0.,q: If p holds at a position, then at some subsequent position before the next
clock tick there should be an interval of 2 ticks during wigitiolds continuously.

 O(p—>0O_3~q): The propertyq cannot become true sooner than 3 ticks after any
occurrence of the property
We often need to compare expressions in consecutive states. We therefore introduce an
abbreviation for the next value of a variable , writtéen . For example, the formula
O(v' >v) asserts that the value of is greater in every successor state that it is in its
immediate predecessor (see [32] for the precise details).

2.2 Timed Transition Models (TTMs)

TTMs are timed extensions of the fair transition systems of Manna and Pnueli [32]. The
extension involves lower and upper time bound constraints on transitions, that refer to the
number of occurrences of the special transitioh A TTM M is defined as a 4-tuple
M = (V, I, T, F) as follows:

* V: a finite set of typedystem variablesThe distinguished transition variables is
always inV, wheretypge) = T . The variables also include control and data variables
that are used to describe the various partd.dtach state afl is a map fronV to its
types; the set of all states is denotedhy (orjust  when itis clear what the TTM is).

* |: theinitial condition. This is a satisfiable boolean valued expression in the system
variables that characterizes the states at which the execution of the TTM can begin. A
states satisfyingl is called annitial state

* T: a finiteset of transitionsvhich includes the distinguished transitiatart andtick.
Each transitiom O T is a functionZ - powerseft) that mapgrestatesin X~ to a
(possibly empty) set of successostatest(s) 02 . A successor state is also called a
poststateof 1 froms. In general, we do not need nondeterministic transitidvs thus
describe a transition by ienabling conditionenk(t) (the condition under which the
transition becomes eligible to be taken), and a simultanemaate function
updt) = {v;: e, Vv,: e} , wheree, ande, are expressions in the system variables,

3. There is one exception to the rule. Wimosé vy, v,) is used in transition updates it assigns arbitrary
values tov, and, in their appropriate types. No assumptions are made about the probabilistic distribu-
tions of the values assigned. This is a purely nondeterministic update that says any value in the type is
possible in the successor state. This notion will used to construct environments of modules (Sect. 3.0).
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which indicates that the valueswf v, in the poststate s(@k s(e) respectively,
wheres is the prestate. No other system variables¥g.g. ) are changed. The transition
T is enabledin a state s (writtens=enl(t) ) if(s)#0 — otherwige is said to be
disabled The transitiont can be fully characterized byaasition relationp, given

by p.: enl(t) O(v,' =)0 (v, = e (v3' =v3) which is a predicate in the primed and
unprimed system variables. Primed variables refer to the value of the variables in the
poststate, and unprimed variables refer to values in the prestate (see [32] for precise
details). By convention, we leave out conjuncts sugtvas- v;) for which there is no
change.

* F: afairness sewwhere FOT . Informally, the fairness constraint for each transition
10 F disallows computations in which is enabled infinitely often but is taken only
finitely many time$
In addition to the enabling condition and update function, we associate with each non-

tick transitiont a lower time bountbw(t) and an upper time bohigd , Where

0 < low(T) < hi(T) £ . We allow bounds[0,0] and0, ] butndio,o] . The meaning

of these bounds will be defined formally in the sequel, but we first provide an informal

overview.

A timed transitiont[l,u] with lower time bourld ticks and upper time baund ticks,
must delay ticks before being taken, but must be taken bgks of the clock, provided it
remains continuously enabled, and is not disabled by the occurrence of another transition
that might have the effect of disabling

The operational semantics of TTMs will be described by the set of all its behaviours
calledtrajectories Informally, a trajectory is a timed sequence of states that starts in an
initial state satisfying the initial condition of the TTM. From any state of the computation,
any enabled transition is takenone atomic stefEither a tick transition is taken at each
step, in which case time advances, or a non-tick transition is taken, in which case time
stays the same. The resulting interleaving of enabled transitions allows us to model con-
current processesVhen the transitions are taken, they update the variables according to
the transition update function. The clock must tick infinitely often in any computation, and
an arbitrary but finite number of (non-tick) transitions can be taken between any two ticks
of the clock. The lower and upper time bounds of transitions must be respected.

A computationi, sfi@ ;, 5,03 ,, s,0.. ofa TTMM = (V,I,T,F), wherer; 0T for
i21 andt, & start , is a timed sequence satisfying the three constraints below. In each
case, we show how to write the constraint as a temporal logic formula.

4. Fairness is defined more formally in the sequel. A weaker notion of fairness than the one defined in this
paper is callegustice[32]. Fairness ensures that in interleaved parallel processes, the processes progress
independently (fairness distinguishes concurrency from nondeterminism). The stronger notion of fairness
defined in this paper is needed for tiok transition.

5. Actual systems may hawwerlappedrather than interleaved execution. However, provided an appropri-
ate fair set of transitions with the right level of atomicity is chosen, the interleaving model can accurately
describe overlapped execution (see [32, p103] for further discussion).
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1. Initialization constraint The first state of the computation satisfies the initial condition,
i.e. sy E (I O(e = start)) . The initialization constraint is thus represented by the tempo-
ral logic formulainit(M) & | O(e = start)d OO(e # start) . The transitiostart occurs
once at the beginning of the computation and never again.

2. Succession constrain{0i|i 20:s;,, 0 1;,4(s)), i.e. every prestate at positiomust
have as its successor a poststate according to the update funation of (the transition
taken at positioni). The succession constraint can be expressed in RTTL as
successioft WM& C(C:Tip,) , wherep, is the transition relation for

3. Fairness constraifit For each transitiom in the fairness set, it is not the case that is
infinitely often enabled beyond some position in the trajectory, but taken at only finitely
many positions in the trajectory.The fairness constraint can be written in temporal logic
as fair(M) & (Ou:F|OCenkr) - OO(e =1)) .

A timed sequencthat satisfies the above three constraints is calbedngutatiorof M . A

computation describes the behaviour of a Manna-Pnueli fair transition system (enhanced

with thetick of timed sequences). To describe the behaviour of timed transition models,
we further constrain computations by lower and upper time bound constraints and call the
resulting computationsajectories

4. Lower bound constrainfor every transitionr  with lower bound~0 ,if is taken at
positionj of the computation, then there must exist a prior position so that there
are at least ticks of the clock betwaen @nd ,(@mdi<k<j:s Fenlt)Oez1) ,
i.e. T is enabled but not taken in the stagess;

5. Upper bound constrainfor every transitiorr  with upper bound: »  1if is enabled
at positionj of the computation, then there must exist a subsequent pdsiipn with
no more tharu ticks of the clock betwgen &nd , such that either is taken or dis-
abled at positiol.

As with the initialization, succession, and fairness constraints, the bound constraints can

also be described in RTTL. For a non-tick transition  with lower time bound (where

| >0) and upper time bound , the bound constraint is:

boundt) & modrt) = [O_,O(e Z1)]A[enl1)U, (g = Tv-enl(T))] (Eq. 2)

where modt) & enl(t) O[e O {start, 1} 0O=-enlT)] . Ifl = 0, then the left conjunct
O,[O(ez1)] 0 is replaced byrue. If u = «, then the right conjunct of the consequent
in (Eq. 2) is replaced hbyue. The bound constraint can be written in temporal logic as:

bound M & (Ot:T|boundt)). (Eqg. 3)
The moment of enablementodgt)  describes the relevant positions of a computation at

which the bound constraint for a transition (that is enabled at that position) must be
asserted. A relevant position is either the initial positon start) , Or a position at which

6. The fairness constraint is included for generality but is not necessary for the example developed in the
sequel. However, real-time systems may have requirements where fairness is useful. For example, there
may be a requirement to log every error to a file or printer; this does not have to happen within a precise
time as the requirement may merely be that the error is eventually logged. In the TTM setting, we allow
in increasing stringency: spontaneot]®, «] transitions, fair transitions and timed transitions. This
allows us to describe systems to the appropriate precision.
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the transition has just been taken= 1) and is re-enabled, or a positiontwhere has just
become enabletenk(t) 0©-enlT))

Once a transition becomes enabled at some position, it begins to “mature” but cannot
be taken until its lower time bound number of ticks has been taken, at which point the tran-
sition becomes “ripe” for execution. If the transition is continuously enabled during matu-
ration, then it can be taken any time after it becomes ripe, but it must be taken or become
disabled before the upper time bound number of ticks has expired. Thus, transitions
“mature” together as time advances but execute separately in an interleaving manner.

As noted above, the initialization, succession, fairness and bound constraints can be

expressed in RTTL. The formutieg M)  defined by
deg M & init(M) Osuccessiofy M fair(M)l bound M (Eq. 4)

fully describes the set of all trajectories of the TVM

Since a trajectory of a TTM1  is a timed sequence, the trajectory must also satisfy the
ticking constrainticking(M): C0< (e = tick) . However, there is the possibility of a conflict
between the upper bound and the ticking constraint (in which case no timed sequence will
satisfydeg M and the ticking constraint simultaneously). This happens in the presence of
immediatetransitions of the typeg[0, 0] that are self-loops — such a is taken repeatedly
yet the tick transition is delayed indefinitelf¥his is called a Zeno computation and the
TTM is said to exhibiZeno behaviourAny cycle of transitions whose elements are all
immediate may also exhibit Zeno behaviour. A TTM that exhibits Zeno behaviour cannot
be implemented, and hence we must find ways to ensure that our systems are non-Zeno.

The problem of Zeno computations can be avoided by disallowing self-looping imme-
diate transitions. However, immediate transitions are useful for modelling “instantaneous”
(i.e. before the clock ticks) reactions. If immediate transitions are used in av[ tivn
we must check for the validity afi& (e = tick)  in every single computation that satisfies
the bound constraints. Fortunately, for those systems where model-checking can be used,
the ticking property can be verified automatically (e.g. see Table 1 in Secin5tbg.
sequel, we assume that all TTMs are non-Z@&ihis is not restrictive at all for the exam-
ples of this paper because all TTMs can be model-checked to ensure that they are non-
Zeno.

The set of all trajectories of a TTM  is denotedtiaj(M) . If atrajeatory satisfies
a temporal logic formulp , then we write=p . If an RTTL formpla is satisfied in all
trajectories ofM (i.e(Oo:traj(M)|o = p) ), then we writd =p , and the formpla is
said to beM-valid. Any generally-valid formula is al9d-valid. Any trajectory intraj(M)
always satisfiesle{ M ; hence, the transition systémnd the temporal logic formula
deg M are two equivalent ways of describitrg j(M)

7. The StateTime tool converts TTMs to fair transition systems [39] that can then be analyzed using STeP
(see Sect. 2.4). In this conversion, additional conjuncts are added to the enabling conditidiclf the
transition that disables the tick transition when an urgent timed transition must be taken. In a system with
a selfloopt[0, 0] transition, thigck transition is disabled indefinitely. This reflects the conflict between
the ticking constraint and the upper time bound constraint. The conversion procedure does declare tick to
be fair. However, sinceck is disabled until the urgent transition is taken, the fairness constraint is satis-
fied despite the fact thack is not taken.
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Theorem 1:For any (non-Zeno) TTNM and RTTL formulep:
(@ [MEep =[FdegM - p] , and (bM = deg M) .

If we treatdeg M as an axiom of the RTTL logic, then (Th. 1)(a) describes the relative
completeness of the logic for provivgvalidities. An oracle is a device that is guaranteed
to provide a proof of any generally-valid RTTL formula. Hence to provéithelidity of
p it is sufficient to submit to the oracle the formdies M) - p . While the axies M)
is theoretically adequate it is not very practical. In practice the special proof rules in [36]
and model-checking (Sect. 2.4) are the preferred methods for piawagdities.

2.3 Parallel composition of TTMs
The parallel compositioM, |[IM, = (V,I,T,F) of two TTMBl, = (V,, 1, T, F,)
andM, = (V,, 1,,T,,F,) is defined in [40] by:

e V=V 0OV,,
| =1,01, providedl, O1, is satisfiable,
* T =T,0T, where{start, tick OT,n T, and hencgstart, tick OT , and

* F=F,0F, wheretickDF,; nF, . We calM, [IM, theompositeTTM.

The above definition holds for shared variables but must be slightly modified for synchro-
nized transitions or channels as described in [40]. Both Nd synchronize with
respect to thetart andtick transitions. Theick transition thus provides composed systems
with a uniform notion of time.

2.4 Overview of the StateTime toolset

The StateTime toolset assists the user (a) to describe devices and systems using a
graphical structured language, (b) to execute the description so as to validate that the
description is a reasonable model of the actual system, and (c) to check that the description
conforms to its requirements using model-checking and theorem proving. We give a brief
description below of the main features of the toolset needed for the sequel. The reader is
referred to [38] for a more complete description.

The main parts of the toolset of interest to us ar@thkl tool and its translator to the
theorem prover and model-checker STeP [31]. The Build tool is a window-based front end
for constructing compact visual models of real-time systems called TTMcharts. TTM-
charts resemble statecharts, but with a simpler semantics and with the additional feature
that transitions may have time bounds. We often use the terms TTMcharts, charts and
TTMs interchangeably as the semantics of TTMcharts is based on TTMs.

A chart is a hierarchy obbjects Objects describe control information and impose
structure on the operation of the system. An object is efthentive, parallel (called
AND in statecharts) oserial (XOR in statecharts). A primitive object has no internal
structure. A parallel object is constructed from a collection of child objects (or sub-
objects) by parallel composition. The parallel composition of child objects operates in all
of these child objects simultaneously. The entry into a parallel object via an event causes
the simultaneous entry into each of the child objects. The exit from the object causes the
simultaneous exit from all its children. A serial object is constructed from a collection of
child objects such that only one of the children operates at a time. The entry and exit from
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a serial object via an event causes the simultaneous entry and exit of the currently operat-
ing child object.
Charts may havdata variablesvhich are tested and set by events. Each non-primitive
serial (XOR) object has ambject variablewhich is used to indicate which of its children
is currently operating. As an example, consider glaat chart (Fig. 2) which will be
FIGURE 2. Plant module

module plant(C;P,W)

in C: {0,1} where (C = 0) [* relay activation(C = 1) causes the relay to open */
out R: {closed, open} wheré¢R = closed /* Relay position variable */

out P: {0,1} where (P = 0) [* pressure variable whef® = 1)  is high pressure*/
out W {0,1} where (W = 0) [* power variable wheréw = 1) is high power*/
Body

private D: {wait,update}

The dotted lines in the TTM to the left indicate parallel
composition, i.eplant = relayl|| output . The “@” symbo
in output@indicates that it has further internal structure
Zooming intooutput@produces the TTM bottom left.
Zooming a further level down intgpdate @produces the
TTM to the bottom right, which is where pressure and
power updates take place.

The lower time bound of 2 in evemisli, pLo andend-
updateenforce the filtering assumption viz. pressure angd
power updates are no more frequent than once every tywo
ticks of the clock. Before the third tick of the clock, the
upper bound oéndupdateauses a move backuait, at
L——-J which point there is another delay of two clock ticks before
further sensor updates can occur.

plant( )

output (D) update {

cycle [0]0]

update@
{pressuree | (porera ]
Specification

Up0(C=1)0 ¢ _,o(R= open
sp(plan): (Eq. 5)
O.,(C=0)0 ¢p0.,(R= closed
The above module specification, inherited from Fig. 3 for the relay, is modularly-valid.
end module plant

described in more detail in Sect. 5.2. The plant is the parallel composition of two children
calledrelay andoutputwhich we write asplant = relay||output. The serial objeatlay has
two childrenclosedandopenwhich are primitive Zooming in to theoutputobject indicates
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that it is the serial composition of the primitive objeeit and the sub-objectpdate The
updateobject is the parallel composition of theessureand power sub-objects which is
where the pressure and power sensor values are updated.

The top-level objectlay andoutputhave object variable® arial  respectively where
typg B = {closed open andtypg D = {wait, updat¢ . The state-formula defined by
(R= closed]D = wait) describes a state in which the relay is closed and the next sensor
update is two ticks away. The pressBre  and pawer are examples of data variables.

A serial object begins execution atdsfaultindicated in bold; e.g. the default for the
outputobject iswait (Fig. 2). Once a&ycle[0,0] event is taken in theutputobject, nothing
else can happen until two ticks of the clock are taken. After two but before the third clock
tick, theendupdate[2,2eventmustoccur (in this case, there are no other events to preempt
its occurrence). Beforendupdateoccurs, the pressure and power, or just one of them, or
no update at alinay occur. The source of thendupdateevent is the structured object
update henceendupdatecan be taken, no matter where executiorupdate currently
resides, and preempts the internal eventgpadéte

A user can describe systems incrementally by composing sub-objects together to form
a super-object (bottom-up), or by decomposing a object into further sub-objects (top-
down). A chart can be executed at any point in the development cycle even before it is
finally fixed using the interactive simulation tool. The simulation tool displays chart trajec-
tories, and requires user interaction to select the transition to be taken at nondeterministic
selection points.

The Build tool automatically translates charts into a TTM according to the algorithm
presented in [39]. For example, the transition relation corresponding to thesptiept
date[2,2] in the output object changes the variables aril as follows:
Pendupdate(D = updatd 0(D' = wait)d (¢' = endupdatg. None of the other variables change. The
STeP [31] tool can use these transition relations for either theorem proving or model-
checking.

The current StateTime toolset was not meant for modular systems. It suffers from vari-
ous deficiencies including the fact that it does not support interface stubs, automatic gener-
ation of module environments (Sect. 3.0) and refinement. It is easy to verify standard
temporal properties, but an observer must be constructed for real-time properties. How-
ever, the tool is used in this paper for the construction of modules, their environments
(done manually) and model-checking module properties, but not for theorem proving
because it proved too tedious on account of all the quantifiers. We are currently updating
StateTime to fully support real-time modules and real-time formulas for both model-
checking and theorem proving in a seamless fashion, based on the results of this paper.

3.0 Modules and module composition

Our notion of a module is based on the untimed reactive modules of Manna and Pnueli
[32]. Although the Manna Pnueli framework has been used for real-time systems [23], the
extension to their system for modules as delineated by Chang [8] is different to ours. The
main differences are: (a) our modules are supported by a model-checker, (b) we provide a
state-event refinement relation for modules, and (c) the reactive modules of [32] are not
fully compositional as their parallel composition yields a transition system, not another
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module (composition of our modules yields another module). We now explain these differ-
ences in more detail.

Chang [8] advocates a restricted assumption/guarantee style, wherein the environmen-
tal assumption is stated as a restriction on the environment’s next-state relation. He also
presents a decision procedure in the propositional case and a deductive system for the dis-
crete time metric temporal logic used for transition modules. Although Chang provides a
deductive framework for real-time modules, he does not present model-checking algo-
rithms and tools (which are crucial for the needs of this paper).

Chang’s temporal operators are new; they are not expressed in ordinary untimed tempo-
ral logic. The RTTL logic of this paper is expressed in ordinary temporal logic with the
use of either rigid variables or clock variables, which means we can reuse techniques and
tools such as STeP from the untimed setting. The transition modules of [8] must be self-
disabling, i.e. once a transition is taken it cannot be again enabled (as in a self-loop). The
TTM semantics of modules in this paper does not impose this restriction on module
descriptions.

The untimed refinement relation of [32] will not work for real-time modules (as will be
explained in Sect. 4.0). Hence, in Sect. 4.0, we introduce the necessary framework needed
for real-time module refinement.

The reactive modules of [32] are not fully compositional as their parallel composition
yields a transition system, not another module. In this section, we provide the notion of a
fully compositional discrete time transition module (like [8]). This requires a more com-
plete treatment of the notion of the interface stub and modes of variables in a module. It
also allows our treatment to deduce the trajectories of the composite module given its sub-
modules (Lemma 1), from which we obtain the notion that a module specification must be
satisfied independently of the behaviour of the environment (Lemma 2), and finally yields
the Composition Rule (Th. 2). By contrast, [32] starts with the notion of a module as given
in Lemma 2 and then proceeds from there to obtain the Composition Rule.

A modulem = [igm), bd(m),sp(m] is defined by its interface stishm)  , bdudiym)
and RTTL specificatios p(m)

1. The interface stubconsists of the declaration of all the variables that are shared
between modulen and other modules in its environment (defined more precisely in
Sect. 3.2). The stub also declares the initial values of all the shared variables. We let
is(m) denote the set of shared variables.

2. Thebody bd(m is a program whose statements may refer only to variables declared
private to the body, or to variables in the interface. The set of private variables is
denotedpr(m) . In the sequel, the body is a TTM, in which case voel(le} denote the
TTM with variables sets(m) O pr(m) . The initial conditianit(m) is the conjunction
of all the initial conditions declared on both the private and interface variables.

3. Thespecificationsp(n) of the module is an RTTL formula in the shared interface vari-
ables. The specification asserts the required visible behaviour of the module.

In order to describe the behaviour of a module in an environment that may arbitrarily
modify the interface variablés(m) = i, ...,i,, , we adjoin to the module TTM a spontane-
ous environmental transitior[0, o] defined by the update functtmoséj, ...,i,)

(i.e. the interface variables can take on arbitrary values) while all the private variables
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remain unchanged, i.¢0v:pr(m)|v' =v) . Thus the environmental transition may exhibit
arbitrary behaviour, except that it may not modify any private variables of the module.
However, shared interface variables may be changed at any point to any value in their
respective types.

Definition 1: [The TTM associated with a moduléhe TTM m associated with the
module m is defined asim = (V, init(m), T, F) wher® = is(m) O pr(m) and

T = Thoay {18 WhereT,,q, is the set of transitions of the body TTM, &ndT iS
the set of fair transitions of the body (note thstart, tick O T ). Since  isa TTM,
we definetraj(m) & traj(m) andleg m & (Op|deg™)) wherp is the set of all pri-
vate variables, i.e variables pr(m) . (As before, we require that the timed transition
modelm be non-Zeno).

The succession constraint 86f  ensures that body transitions are arbitrarily interleaved
with the environmental transition. The environmental transition thus simulates the behav-
iour of the module in an arbitrary context and allows the module to take stuttering steps in
which none of the module private variables change from the prestate to the poststate.

The existentially quantified formul@p|deg™) in (Dfn. 1) describes the same system
asdeg ™ except with the private variablps hidden, and thus this existential formula can
be considered a descriptionmf by abstract implementation [32, p.340]. In this style of
description, we may choose the most straightforward implementation of the rmdule
and describe its operational behaviour using a TTM (erg. if  is a buffer, then a private list
variable may be used to remember sequences of messages). What makes the implementa-
tion abstract is the existential quantification of the private variables. This means that we do
not require or imply in any way that the real implementation of the module should contain
any of these private variables (e.g. the list variable in the case of a buffer need not be
used).

Definition 2: [Modular-validity] The RTTL formulap is modularly-valid for the mod-
ule m (writtenm p ) iff (QJo:traj(m)|o = p) .

3.1 Parallel composition of modules

Modulesm, (with variable setg; ) for= 1,2 are said tocbenpatiblewith each
other if:

* each module has private variables that are not variables of the other module, i.e.
pr(m)nV, = O andpr(my)nV, =0 ,and

« the conjunction of their initial conditions is satisfiable, irgét(m,) Oinit(m,) Is satisfi-
able, and

+ the conjunctiorsp(m) Osp(m,) is satisfiable.

Compatible module compositiom = m; |[Im, , is defined oyt [is(m), bd(n), sp( ]
whereis(m) Ois(m,) Ois(m,) , i.e. some of the interface variables of the sub-modules are
hidden at the parent levebd(m) = bd(m,) |[bd(m,) is ordinary TTM composition
(Sect. 2.2). Finallysp(m = sp(m) Osp(m,)

The private variables of the compositepigm) & pr(m,) O pr(m,) , and the initial con-
dition is defined byinit(m) & init(m,) Oinit(m,) . The super-moduig [|m, is itself a
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module; the TTM associated with this super-module is just the TTM obtained from
bd(my) [Ibd(m,) together with the environmental transition that may change only variables
in is(m) (i.e. it may not change any private variables).

In the next lemma, we assume that we have two modyles mand . If an environmen-
tal transition in a trajectory of modute,  has the same effect on its interface variables as a
transitiont, ofm, , then we relabel the environmental transition in the trajectagy to
and the set of all the relabelled trajectoriespf  wetcaj(m,) . A symmetric definition
also provides us with the setj(m,)  of relabelled trajectories,of

Lemma 1:If m = m [Im, thentrajm) = traj(m,) n traj({m,) .

Proof: Let o Otraj(m) . Triviallyo E init(m;) and hence the initialization constraint of
m, is satisfied. For the succession constraint, consider any positiom of . Either the
environment transition is taken at position or some transitiom of  is taken. The environ-
ment transition oim  may not modify any private variablesn@nd hence may also not
modify private variables o, , so any environment stemof is also an environment step
of m, . If some transition o is taken at position , then it is either a transitiop of  or
of m, that is taken. Since no transition rof may modify private variables of , a step
taken by a transition ah, (say ) is the same as an environment step relative to (the
transitiont, must be renamed to an environmental transition). Thus at any position either
a transition ofm, is taken or an environment transitiompf  is taken, and hence the suc-
cession constraint = successiofi ) holds. The fairness constraimb,of is also satis-
fied, as any transition ofi,  that is enabled infinitely often but not taken would also violate
the fairness constraint o . The ticking constraintngf is also satisfied, for suppose
there is a position o  beyond which there is no tick of the clockfor , then the ticking
constraint foom would also be violated. If a transitiom®f  violates its bound constraint,
then the bound constraint on transitionsmof  will also be violated. Hence  must also sat-
isfy the bound constraint oh . Sinee  satisfies the initialization, succession, fairness,
ticking and bound constraints af;, , it follows that traj(m;,) holds. By symmetry it
also follows that O traj(m,) holds. ThasO traj(m,) n traj(m,)

For the converse, let O traj(m,) n traj(m,) .Atany positiooof either a transition of
m, or of m, is taken, in which case the same transition belonging is taken, or an envi-
ronment transition that is an environment transition of bgth  ngnd  is taken. This envi-
ronment step must also be an environment step of  as no private variaibjes ofm, and
could have been changed. We can make similar arguments as before for the other con-
straints but in the converse direction. Hendetraj(m) =

Lemma 2: Let modulesm; andh, be compatible. Then
(@) [(my = sp(m)) O(m, = sp(my)] - [(my lIm,) = (sp(m) Osp(my))] , and
(b) For a modulen, [mE p] — (m||m) = p for any compatible module’ and
RTTL propertyp .

Proof: Follows directly from Lemma
Recall that a property is modularly-valid only if it is satisfied by all trajectories of the
module. Lemma 1 tells us that the trajectories of the super-module are always a subset of
those of its sub-modules. This means that a valid specification of a sub-module must also
be valid for the super-module (Lemma 2a), and that a module specification remains valid
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no matter what the behaviour of its environment is, provided the environment respects the
compatibility constraints (Lemma 2b).

Theorem 2:[Composition Rule
Let m; andm, be any two compatible modules and let the general-validity given by

Espm) Osp(my) - r hold. Then[m, = sp(m)] O[m, =sp(my)] - [myllm,=1] .
Proof: Follows directly from Lemma 2 and temporal logc.

As mentioned in the introduction, the Composition Rule can be used bottom-up or top-
down. In the bottom-up method, pre-existing implemented “off the shelf” modules can be
combined into a super-module that satisfies a system requiremienthe top-down
method, we proceed as follows:

1. The system architect decomposes the system under desiyn () into madules and
m, by:
(a) designing compatible interface stus@n,) ad(oh,) , and
(b) designing module specifications such #gfim) Osp(m,) - r

2. The architect gives each module interface and specification to a programmer. It is the
job of the programmer to develop the module body so that the specification is modu-
larly-valid. For example, if the programmer is giviesim,) ampim) for the first
module, he must design a bodg(m;) SO tmat sp(m) where the module is

fully described bym, = [is(m,), bd(m,), sp(m)]

3. The required system is thewad = m |Im, which is guaranteed by the Composition
Rule to conform to the requirement

Parts of the development method can be automated by using a combination of model-
checking for proving modular-validity (step 2), and deductive theorem proving techniques
can be used for proving that the system requirement is a consequence of the module spec-
ifications (step 1b).

A compositional proof has the following outline:

1. mEp; p; is modularly-valid fom; (by model-checking)
2. MyE P, P, is modularly-valid form, (by model-checking)
3. E(p0py) - general-validity (deductive theorem proving)
4. mer 1, 2, 3 and the Composition Rule whate= m, |[|m,

In the sequel, we will leave out the module satisfaction symbol (except for its appearance
in the last line) and write the above proof as:

1 pg p; is modularly-valid form,
2. P, p, is modularly-valid form,
3. (pydpy) - r general-validity
4. mer 1, 2, 3 and the Composition Rule whate= m, |[|m,

By Lemma 2 (b), once we know that the context of the proof is the madule , then any
specification of a sub-module ef  will also hold far , and hence there is no need to
indicate which sub-module specification we are dealing with.
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3.2 Modes of interface variables

The interface stub of a module defined in the previous subsection consists of a set of
typed shared variables with their initial conditions. We can provide more structure and
flexibility to the interface specification which will enhance the user’s ability to understand
a module.

The additional structuring mechanism is provided by describingnibéesof the
shared variables. A variable in the interface stub is dith@e module body can read the
variable but not write to itput (the environment can read the variable but not write to it),
or share (both the body and the environment have write access):

interface_stub:= {mode{variableg " : type[where init]}*

mode::= {in | out | sharg
If a modulem has a declaratiomotit y,”, then no other module in the environmentof
may have a writing reference to the variaple . If two (or more) modules each wyrite to
then they must each have the declaratshafe y, ", thus indicating that the external envi-
ronment may also change

Let the variables in the interface stubsbe vy, ..., y;, ¥j. 1, Vi , Where.., y, are
the “in” and “share’ variables (i.e. all variables whose value may be changed by the envi-
ronment), and wherg, . ;, ...y, are the remaining interface variablesdtitevariables
that the environment does not change). We often refer to the module by
m(Yy, -, Yj3Yj +1 - Yi) » Where the semicolon separates dlié variables from those that
the environment can read and modify (the@ndshare variables).

Definition 5: Two modulesm, andn, araterface compatibleprovided each vari-
ablevOis(m) n is(m,) satisfies the following constraints: the types declared for in
both interfaces match, the conjunction of tivelrere clauses (supposédie when not
specified) is satisfiable, and if one of the declarations specifiestanode, then the
other specifies aim mode.

The reactor trip relay modulelay (taken from the example in Sect. 5.2) is shown in
Fig. 3. When the command to open the relay=( 1 ) comes from the environment, then
the relay is immediately opened® € open ) before the next clock tick, thus shutting
down the reactor. The specification of the relay (see (Eg. 6) in Fig. 3) does not contain the
next operatol© in the consequent; instead, the opefgfor Is used. This is because the
trajectories of a module may have environmental steps that leave the state unchanged.
Specifications must therefore allow such “stuttering” steps otherwise the specification will
not be modularly-valid.

3.3 A small example of compositional reasoning

The modulemajorVoté G, C,, C5;,C) (Fig. 4) is part of the DRT controller which will
be discussed in the sequel. The controller consists of three independent microprocessors,
each one with independent sensors of reactor power and pressure. Each microprocessor
controller micro; signals through a variabl® whether to open the relay (which shuts
down the reactor), or to close the relay (allowing the reactor to be started up agaim). The
variables ofmajorVoteare thusC,, C,, C; , and theut variable isC , which is set to 1
when the majority of the microprocessor vote for opening the relay (i.e. when
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FIGURE 3. The relay module

module relay(C;R)
in C: {0,1} whereinitially (C = 0)
/* when the input comman(C = 1) is given, the relay is opened, and {hei0) the relay is ¢
out R: {open, closedwhere initially (R= closed
[* Ris the relay object variable that is exported as readonly output */

Body TTMchart (using the StateTime Build tool)
Note: The transitiongrip[0,0] andcloserelay[0,0]are
immediate transitions, i.e. their time bounds force the

relay (R )
trip [0]0]

enabled. Theguard of thetrip transition is(C=1) and its
enabling condition i$C=1,R=closed) In Build expres-

[nil]

colon for disjunction. The update functioil in thetrip

transition indicates that ndata variable(e.g.C) is

changed; however, when thigp transition is taken the

relay R is changed t@pen This module has no private
variables.

Specification:

sp(relay: oo €= DT bR = open (Eq. 6

O,(C=0)0 g0 ,(R= closed
/* Informal description: The operatoc>, is needed in the consequent. Although the relay respo
stimulus (i.e. a change 1) before the next clock tick, the reponse is not immediate but may occu
states later (as actions of the environment are interleaved with actions of the relay). Th
specification is modularly-valid */

to occur before the next clock tick once they become

losed */

m

sions, the comma is used for conjunction and the semi-

nds to a
a few
e above

end modulerelay.

C,+C,+C;22). The specificatiorsp(majorVotg can be shown to be modularly-valid

by model-checking.

The relay module (Fig. 3) and the voting module (Fig. 4) are interface compatible. We

may therefore use the modularly-valid module specifications (Eq. 6) and (Eq. 7), and the
Composition Rule to prove the validity of
[majorVotel| relay E p (Eq. 8)

wherep is defined by:

. [ [O0(Cr+Cy+C22) 0 O T_,o(R= oper)]} E.9)

O[O0 ,(Ci+Cy+C3=1) 0 Oy (R= closed]

The proof of the left conjunct of (Eq. 9) is as follows:
1. O p0(C +Cy+C322)0 &y U ,(C=1) by modular-validity of (Eq. 7)
2. O (C=1)0 Op_,(R= open by modular-validity of (Eq. 6)
3. &y O n(C=1)0 &y 0, (R= open (2)and RTTL
4. & 0,0(C=1)0 &, O_,(R=open (3) and RTTL
5. majorVotell relay= Ol po(Cy+C,+C322) 0 <&y O_,(R= open (2), (4) and Composition Rule
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FIGURE 4. Module for majority voting logic

module majorVote(C1,C2,C3;C)

with bitType={0,1}

in C;, C,, C4: bitType; /* 1 stands for a vote to open the relay, and O to close the relay. */
out C: bitTypewhere initially (C=0) /* Only majorVotecan write toC to set the relay*/

Body
private V: bitTypewhere initially (V = 0)/* majority vote object variable*/.

majorlote (D)

openiCom [1]1]

(C1+C24C3x=2) -

[C:1]

closeCom [1]1]
(C1+C24C3==1) -

[C:0]

Specification

O_y0(C1+Cp+Cy22) 0 &y O_, (C=1)
sp(majorVotg: ) S (EQ7
O00_x(C;+C,+Cy<1) 0 &y O_,(C=0)
/*Informal description

The first line of the specification states that once the majority of microprocessor controllerd vote to
open the relay, and this vote remains in place for time 20 ticks, then within one tick of the Elock,
the output variablee  will be set so as to command the relay to open, and will remain set for 20
ticks of the clock. The second line states a similar specification for the command to close the relay.
*

end module majorVote

The temporal logic reasoning is performed in the RTTL proof system. For example, the
RTTL theorem used in step (3) 90 q) - (<, pO <4, Q)

The Composition Rule provides a powerful technique for beating combinatorial explo-
sion of states. To verify a global requiremenf a system composed of modules, it is not
necessary to deal with the complete system (e.g. by generating its global reachability
graph). Instead, we need only verify the specification of each of its objects one at a time,
provided we can show that the object specifications entail the global requirement.

The modular-validity of module specifications for a module  can be determined by
applying the model-checking and theorem proving tools of StateTime (Sect. 2.4) to the
TTM  that corresponds tm . For example, the relay module specificagionlay in
Fig. 3 can be proved modularly-valid by model-checking the set of transitions associated
with the body together with the nondeterministic environmental transition with update
functionchoose(C)which allows the input variable to vary arbitrarily.

In the above relay example, an unrestricted environment was used to check the modu-
lar-validity of the module specification. This is not always possible as an unrestricted envi-
ronment can sometimes generate larger intermediate reachability graphs than the
reachability graph obtained when the environment is limited to a known set of fixed mod-
ules. This is because certain states of the module in an unrestricted environment may be
unreachable in the composite. There are two ways to address this issue: either (a) decom-
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pose the module into smaller sub-modules where an unrestricted environment will not be
problematic, or (b) restrict the environment of the module to the actual environment in
which the module is expected to operate.

The easiest way to restrict the environment involves the usendfitional specifica-
tionsfor the module of the forrgnv — r  which asserts that if the environment is assumed
to behave according to the RTTL formtav ~ then the module is guaranteed to behave
according to the RTTL formula . In other frameworks, such conditional specifications are
called assumption/guarantee properties [22], and special rules are provided for reasoning
about them. In our framework, conditional specifications are no different from any other
module specifications. Our purpose will be to show that - r is modularly-valid for
the modulem , i.,eme Env- r . This does not contradict our definition that a module
specification should hold independently of what the environment does. The property
will indeed hold true only if the module environment behaves accordiBgvo . However,
Env - r holds for the module in any environment; this is because if the environment does
not satisfyEnv , themr need not hold true [32, p.356].

In the sequel, we deal with modules that are intended to work in fixed environments.
For example, the environment of the DBIntroller module (Sect. 5.0) is thgant which
will remain fixed throughout the design. Consider a conditional specification
deg plan} - r for one of the controller sub-modules  which asserts that if the plant
(which is the environment ah) behaves according tdeg plant  themwill behave
according tor . To verify the modular-validity = deg plant - r  in an unrestricted envi-
ronment in which the plant output variables can take on any value at any moment, will
generate a larger reachability graph than necessary because there will be states that are not
reachable in practice. The actual plant sensors are filtered and hence change only every
two ticks of the clock. Thus we do not need to consider all the possibilities generated by
continuously changing sensor values. Instead, we can \grifyt||m =r which will
involve a smaller reachability graph in which plant changes occur only every two ticks.
The following theorem justifies this procedure.

Theorem 3:Let m; andm, be two compatible modules grah RTTL formula in the
interface variables. Them, = de{m) - p] =[m llm,] = p

Proof:
[m; Fdegsm) - p]
<(Th. 1)(a) >
Fdegm) ~ [degm) — p]
< propositional temporal logic >

Fdegm)degm) - p
< Composition Rule andy = degm) holds for= 1,2 by (Th. 1)(b) >

[myllmy] Ep. =

4.0 Module refinement

If a modulem has been implemented with a given body, under what conditions can we
replace the body with a new one while still retaining the same observed timed behaviour at
the interface stub? One possibility is to use the notion of program equivalence of untimed
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concurrent programs developed in [32, p46]. However, this notion of equivalence will not
work for our real-time reactive modules.

Consider a program with two variables and . In [32, p46], a sub-sequence such as
[(£:start, x 0, y:00(8 :tick, x:0, y:0I8 :tick, x:0, y:008 :1, x:1, y:20 would be reduced to
[£:start, y:008 :tick, y: 0008 :1, y: 20 if the only observable variableys . We have thus lost
a record of one of the clock ticks, because in the refinement relation of [32], program
states that are identical to their predecessors are omitted from the sequence. But, in real
time systems, it is essential that the reduced system show théirs@ehleehaviour as the
original system. We will thus need to define a notion of observational equivalence that
takes into account state (data) as well as events (ticks of the clock). In this section, we
adapt thestate-evennotion ofobservational equivalencgeveloped in [26,27,28] to the
needs of real-time reactive modules. Because we need to deal with both states and events,
we also cannot just use the standard event-based notion of bisimulation [33], as will be
explained in this section.

Consider two modules that have the same interface stub but different bodies. For such
modules we will define a notion of module observational equivalence tt@ahjgosition-
ally consistenand preserveany stuttering invariant RTTL module specification (detailed
explanation follows below). Thus the first body can be replaced by the second with a guar-
antee that any module specification that holds for the first will also hold for the second,
and vice versa. Observational equivalence will allow ugfine an abstract module into
one closer to code implementation. The abstract module may have a substantially smaller
state space than the refinement and hence will be more amenable to model-checking.

Informally, if a modulem,; is equivalent to a moduhe having the same interface stub
(written m; = m, ) thenm, preserves the timed behaviomgf  over the interface variables.
We want a notion of observational equivalence that only distinguishes between the two
modules if the distinction can be detected by an external agent interacting with each of
them. The agent can observe any of the interface variables astdrtii@nsition andick
of the conceptual global clock, but not any of the private variables or internal transitions
which are unobservable to the external agent. We call such internal unobservable actions
A -transitions. Although an external agent may not be able to observe an internal transition
itself, it may be able to observe the effects of the internal transition (e.qg. if the internal
transition changes one of the interface variables).

4.1 Observation equivalence of TTMs

In [37], an algorithm is given for constructing the reachability graph of a TTM. The
reachability graph is used as the basis for model-checking RTTL formulas, as maximal
fair paths in the reachability graph correspond to TTM trajectories.

We illustrate the concept of a reachability graph by referring the reader to the sample
TTM N, with variables se¥ = {¢,c,4 as shown in Fig. 5. The reachability graph of
isrg(N)) = (Q, T, R gq) (also shown in Fig. 5). The reachability graph is a labelled transi-
tion system with state s&p , transition label 3et {start tick a b R, is a set
{R|1OT} of binary relations ol® , and the initial stateyjs= Ct:on, v.00

If g g 0Qand OT thenR (g, q) holds precisely whent(s) (ise. m®wa -suc-
cessor ok ) wherg d are the restrictions,af respectivelysand both occur in tra-
jectories of the TTMN; . We let(q, g) be an abbreviation®ofq, q') which is called a
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a1 stepfrom q toq . The notationick(q,, g,)a(q,, g;)tick(as, g,)... denotes a sequence

of steps in the graph. Any maximal sequence of steps in the reachability graph corresponds
to a trajectory of the TTM respecting the initialization, succession, fairness, and bound
constraints (Sect. 2.2).

The timed behaviour of the TTM, in Fig. 5 is equivalent\to with respect to the
observable variable (in a sense to be made precise in the sequel). In this weakly observ-
able setting, théick anskart transitions are observable but no other transitions are visi-
ble to an external agent. The observable variables setsi ¢ — the variable must
thus be in the variables set of both TTMs. The TRM is much simplerNhan ~ and has

a smaller reachability graph (Fig. 5). We therefore Nall al@stractspecificatiofof the
concretaefinementN, .

FIGURE 5. Observably equivalent TTMs

TTMs N, andN, are observationally equivalent, (/& = N,)/{c .

The object variable oN; is  with

al1, 1:(v<2) - [viv+1]] TTM N, typg 9 = {on, off} . Initially (c=on) O(v=0).
The initial state i1, e:start, con, v.00 . The cor-
responding restricted state with  projected out

b0, O]:(v = 2) - [v:3 Ce:on, v.00 which we abbreviate tabn, 00
[0,0:(v=2) - [v ]>

is

tick
Reachability graphg(N,) of the TTW,
start The set of observable variableq i$

on, 0K e (on 002 (o0, 172K e (o, 112 e [O1, 272 B [bf, 3]

TTM N, Reachability graphg(N,) of the TTM,,

start tick

d[2, 2] \ . .
or0 Y o % i 9 O

For the precise definition of observation equivalence, we need the concepts of state pro-
jection operators and unobservahle -transitions. For a set of observable vaiables  of a
given TTM, theobservable state projection operatar tells us when states,  ang
agree when restricted to their observable variables. For example, if we are given the states
q; = [&on, v.00, g5 = [&:on v:20 and the observable variables set= {¢ , then
O(a,) = O(gs) as they agree on tlee  component of the state.

An external agent interacting with the TTNJ can observestiie andtick transi-
tions; but the other transitiors ahd are unobservable. Similarly, the transitioN, in

8. In this section, we show that a TTM description of a concrete sysjem meets its abstract TTM specifi-
cationN,, is by showing that, is equivalentNg on the observable variables. Although this approach
is natural in many cases, we do no thereby imply that equivalence of TTMs is always the right way to
express conformance. Temporal logic is often more convenient for expregsirngbspecification, i.e.

a property which should be satisfied by a system but which does not fully determine its observable behav-
ior. An example of a partial specification(s.,(c = off) (where ishhe object variable in Fig. 5)
which specifies tha,  should not be turreed any sooner than two ticks of the clock.
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is unobservable. We will relabel the edges of reachability graphs so that all unobservable
transitions are called . Although the -transition itself is unobservable to an external
agent, its effect may be observable (e.g. when the transition is taken it may change an
observable variable); however, the external agent is unable to tell which transition caused
that effect.

Definition 6: [State-event labelled transitions systems SEL&EM = (V, I, T,F) be
aTTM, and letO0OV be a given set of observable variables. Let the reachability graph

of M berg(M) = (Q, T, R q) whereQ is a countable set of states @nadQ is the
initial state. TherG,, = (Q, T,,R, ¢,,0) is a labelled transition system, called a state-
event labelled transition system (or SELTS), wherg = {start, tick A} and
R={ RitO{start tick} O{Ry} with:

R, & [] R, (Eg. 10)

TOT-—{start tick

(Eq. 10) achieves the required relabelling, i.e. all transitions in the reachability graph other
thanstart andtick are now relabelled to the unobservable -transition in the corresponding
SELTS. The following definition is needed for tleak state-event bisimulation

Definition 7: The unobservable moveq, q) s defined by:

Mo, o) & (9= q)
A(G, A)A(Gy, A2) - A(C -1, An)A (A, ')
and0j|1<j<n: O(q;) = O() = O(q’)

The action of taking an observable step A @.e. is edtaerortick) in a SELTS
that has (possibly empty) sequences of unobservable steps on both sides is defined by:

or[;...q,

A9, ay)a(ay, a)A (@, o)
and O(qy) = O() DO(a,) = O

We also define a similar move for the unobservable -transition (which may or may
not cause a change in the observable variables) by:

&(qv q') gef [qlv q2

A(q, a))A(@y, G)A (G O)

Ma q) & (g = q) Oy, g . 2 .
and O(q,) = O(q) 0O(g,) = O(q')

We are now ready to define the notion of a wsiaite-evenbisimulation relation. In
the weakly observable setting with unobservable -steps, thergleps T(g,and are
indistinguishable, producing the same observations (or possibly lack of observation in the

case of & move).

Definition 8: [Weak state-event bisimulatiohet G,, = (Q,, T,, R, q;0,O) be state
event labelled transition systems for the TTMs  ifer 1, 2 with a common observ-
able variables sed . Then the relati®n Q x Q, is a weak state-event bisimulation
relation if 0(qg,, q,) 0 S:0(q;) = O(q,) anddt O T,:

*1(qy, a,") implies (T’ |f(Cl2' qz") 0(a,', q2) 0 9)
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*7(qy, ") implies (T’ |f(Q1' q,) 0(a,’, q2) 0 9)

The above definition of bisimulation can be paraphrased by saying that two states are
weakly bisimilar if any move from one of the states to a new state can be matched by the
other state making a move, or sequence of moves, producing the same observations on
both the observable variables and the observable transitartsa(dtick) and reaching a

state that is weakly bisimilar to the state reached from the first state.

The standard notion of bisimulation [33] is defined with respect to the events of a
labelled transition system. While it is possible to describe systems using only state infor-
mation or event information, there are many applications where the use of both state and
event information is quite natural. The above notion of (weak) bisimulation is defined not
only with respect to the observable events of the labelled transition system (needed to
maintain a global notion of time via the claak), but also with respect to the states of the
labelled transition system (needed for dealing with properties involving the observable
variables). For TTMs that must synchronize with each other via shared events (in addition
to start andtick), the sefr, in (Dfn. 6) can be expanded quite naturally to include any such
additional synchronized events without the need to change the definition of bisimulation.

Since weak bisimulations are closed under union, there is always a largest weak bisim-
ulation relation (which we denote by the infix operator ) relating the statg of to that
of M, for an observable set of variables . Thug,if  (respectiygly ) is a state of the
reachability graph oM, (respectivelyl, ) then we can w(ide=q,)/O whenever
(d4, 9,) OS. This leads to the notion of state-event equivalence of TTMs:

Definition 9: [(M; = M,)/0] Let M, (with initial stateq, ) andM, (with initial state
q,) be two TTMs with variables sets;, ang respectively. @€t Vv, n V, be a
given observable set of variables. Thdn ahd are cstiggd-event equivalent
overO (written: (M; = M,)/0 ) providedq, =q,)/O .

Where the observable set of variables is fixed from the context to , weNyrité/, :
For the example TTMs in Fig. 5 with observable variablesCset { ¢ , we have that
N,;=N,.

For finite state TTMs, [28] provides an efficient polynomial time algorithm for check-
ing the equivalence of two TTMs. For possibly infinite state TTMs, [27] presents equiva-
lence preserving transformations. The following theorems indicate the usefulness of state-
event equivalence [26].

Lemma 3: (corollary of Lemma 2 in [26])
Given TTMs My, M,, P;,P, all having the same observable variables set, then
(My=P; OM,=P,) - [My[IMy] =[P [IP,]

Thus, state-event equivalence of TTMs is compositionally consistent, i.e. the designer can
replace a TTM with an equivalent refinement with a guarantee that the observed time
behavior will be unchanged.

The set ofSESI(state-event stuttering invariant) temporal logic formulas are defined in
[26]. We will only need a subset of SESI formulas for the sequel, which we now define. An
atomic SESI formulatomic_sesiof a modulem is any state-formula, having no occur-
rences of the transition variabde , and whose free variables are the observable variables,
i.e. the variables ins(m) . A SESI formula is defined by:
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sesi:=atomic_sesjsesill sesi|-sesi [sesfusesi |sesm[,’u]sesi K (e =tick) (Eqg.11)

The formula$,p is SESI as it is derived from the boundetil operator which itself is
SESI. Also0< (e = tick) is SESI because all the other temporal logic operators, except
for next can be obtained from thumtil operator. The®>, operator can usually replace the
nextoperator. It is shown in [26] that some formulas involvingrtbgtoperator are also
SESI, but we will not need these for the sequel.

Lemma 4: (corollary of Theorem 3 in [26]) Les be a SESI formula with a given
observable variables se&t . M;  ami, are TTMs such (tbat= M,)/ O then:
[M; = (OO (e = tick) - s)] =[M, = (OO (e = tick) - s)] .

The above lemma is significant for model-checking. We may check an abstigtion
for conformance te rather than its more complex refinergnt  , with a guarantee that
will also hold for the refinement, provided the TTMs are non-Zeno.

4.2 Observation equivalence of modules

The behaviour of a module  was defined in Sect. 3.0 with the help of an associated
TTM m, which is the composition of the body TTM and an environment transition that
arbitrarily changes interface variabliegm)

Definition 10: [state-event equivalence of modiyilest m, andm, be two modules
having precisely the same interface variables (s@n,) = is(m,) ). The observable
variables se0 of these modules is define® as is(m;) = is(m,) . The corresponding
reachability graph of each of these moduleg(éy) = (Q;, T, R, q;) i forl, 2 from
which their corresponding SELTS can be obtained as in (Dfn. 6). The state event equiv-
alence of these modules is then defined by:= m,] & (fh, =r,)/0O

As with TTMs, one may check the conformance of an abstract module for conformance
to its specification with the guarantee that the refinement will also satisfy its specification,
as stated in the following theorem.

Theorem 4:[Refinement Rulé.et s be an arbitrary SESI formula for non-Zeno mod-
ules m; andm, having the same interface variables such rthatm, . Then:
[MmEs|=[mEg.

Proof: Sincem; =m, we have thgth, =m,)/O whefie  is the TTM corresponding
to the module (Dfn. 1) for = 1,2 an@ = is(m) = is(m,) . By Lemma 4, it follows
that [, £ OO (e = tick) - s] =[m, = OO (e = tick) - s] . Since the modules are non-
Zeno,[m, k5] =[m, = s] holds. Hence, by the definition of modular-validity (Dfn. 2)
[m, £ s] =[m, = 5] holds as requirean

5.0 Modular Design of the delay reactor trip (DRT)

Industrial reactive systems are often specified using a combination of timing diagrams,
pseudocode and careful English narrative. This has the considerable advantage that it is
accessible and intelligible to a wide community. It has the disadvantage that even the most
lucid informal descriptions are prone to omissions and ambiguities. More importantly,
conformance analysis can only be undertaken in a more precise setting.
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In this section we describe an example taken from the actual requirements document
for the shutdown system of an industrial nuclear reactor. We translate the informal descrip-
tions and requirements into precise counterparts in the TTM/RTTL framework, and then
use the modular development method developed in this paper to design the system and
check its conformance to requirements. The abstract design so obtained can then be
refined down to a format close to pseudocode suggested in the original requirements docu-
ment. This is not the way the original problem was presented. Originally, the pseudocode
was a given, and the engineers wanted to know if the pseudocode satisfied the informal
requirements as presented in the timing diagram. This reverse engineering problem can be
solved using the same compositional and abstraction techniques but working bottom-up
(see [38] for the reverse engineering problem).

5.1 Informal description of the problem

In early nuclear reactors, the shutdown systems were constructed of analog devices.
The analog control had the virtue of being simple to understand but inflexible, unable to
perform system checks and not always reliable. It was felt that the situation could be
improved by installing computerized control with at least two independent shutdown sys-
tems, designed by different teams, each shutdown system itself having 3-version control
and majority voting logic [43].

The delayed reactor trip (DRT) problem was first described by Laveordl. [27].
Lawford developed behaviour preserving transformations for timed transition models
(TTMs) with which he was able to discover a flaw in the proposed design [25] involving a
single controller. However, the transformational theory cannot be fully automated as no set
of transformations is complete for proving observation equivalence between the actual
implementation and its abstract specification. In [38], the StateTime toolset was used to
verify the single controller case, where it also helped to find a bug in the original specifica-
tion. A corrected version of the pseudocode was shown to conform to its requirements by
model-checking.

In this paper we consider the case of 3-version control using a majority voting circuit to
determine control actions. The StateTime toolset was not able to model-check the com-
plete system due to a combinatorial explosion of states. However, using a combination of
model-checking and deductive techniques in the modular framework, the conformance of
the systems to its requirements can be demonstrated.

The DRT for nuclear reactors used to be implemented in hardware using timers, com-
parators and logic gates similar to the timing diagram shown in Fig. 6. The new DRT sys-
tem is implemented on microprocessors. Digital control systems provide cost savings and
flexibility over the hardware implementation. However, the question now is whether the
new microprocessor based software controller satisfies the same specifications as the old
hardware implementation.

The hardware version of the controller implements the following informal require-
ments:

[R1] When the power and pressure of the reactor exceed acceptable
safety limits, the comparators which feed in to the first AND gate
cause Timerl to start. After 3 seconds, Timerl sends a message to
one of the inputs of the second AND gate indicating that the time-
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FIGURE 6. Analog implementation of the delay relay trip timing.

Pressure |:
pwl> |_

out has occurred. If after this first time-out the power is still greater
than its safety limit, then the relay is tripped (opened), and Timer2
starts. The relay must remain open until Timer2 times out which
happens after 2 seconds.

Requirement [R1] ensures that the relay is opened and remains open for two seconds
thus shutting down the nuclear reactor in a timely fashion. If the controller fails to shut
down the reactor properly, then catastrophic results might follow including danger to life.
By the same token, each time the reactor is unnecessarily shut down, the utility operating
the reactor loses money because it must bring additional fossil fuel generating stations on
line to meet demand. The next informal requirement states:

Timerl Timer2
Ta AND ' Tb Relay

AND

[R2] If the power reduces to an acceptable level then the relay

should be closed as soon as possible (thus allowing the reactor to

operate once more).
In the actual DRT, there are three identical microprocessors that have independent sensors
for power and pressure. The final decision on when to shut down the reactor is based on a
majority vote of the three microprocessors.

The code is to be implemented on a microprocessor with a cycle time of 100ms. The
microprocessor samples the inputs (presgure  and pawer ) and passes through a block
of code every 0.1 seconds. It is assumed that the input signals have been properly filtered
and that the sampling rate is sufficient to ensure adequate control. In the formal model,
one tick of the clock will represent 100ms.

5.2 Formal requirements

The first step is to decompose theinto two parallel modules thgant and thecontrol-
ler, i.e. drt = plant|| controller. The plant corresponds to the part of the system that is
fixed and known. The controller is the part of the system that must be designed.

9. In the sequel, we assume that we are to satisfy the original hardware requirements, because this is the way
the original industrial requirements document posed the problem, and we wanted to show that formal
methods could deal with the problem as posed. Using the original requirements also allows the design
method of this paper to be directly compared to the reverse engineering problem of [38]. It could be
argued that these original requirements are biased by the hardware implementation, and simpler less strict
requirements can therefore be obtained.
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The observable variables of the DRT are shown in the data flow diagram of Fig. 7. The

FIGURE 7. The observable inputs and outputs of the DRT
drt = controller|| plant

, Wheretypg F) = { fail,norma} , is a failure vari-

Fuly Foly, Falg able forj = 1, 2, 3 I; is atiming cycle initialization
T T T variable for thg-th mlcroprocessor (see Fig. 2).

CONTROLLER | C (Activate RelayL PLANT R (Relay)
. —

(microprocessor$) (reactor & relay)

T W (Power)

P (Pressure)

plant outputs are the relay positioR ( ), powet ( ) and pressure () variables. The input
to the plant C ) is a relay activation variable that can be used to force the relay to open or
close. In the absence of control, the plant can behave unsafely. For example, if pressure
and power both go to unsafe levels, there is nothing to force the relay to trip.

The plant (Fig. 2) was described previously in Sect. 2.4 in the discussion of the
StateTime toolset and in the description of i@y module (Fig. 3). Theutputobject of
the plant updates the pressure and power readings at most every two ticks of the clock. If
the endupdateevent is deleted with only thgdateobject remaining, then pressure and
power would bdorcedto change their values. Wigmdupdatencluded, the sensor updates
can be preempted thus leaving open the possibility that pressure or power (or both) remain
unchanged for an additional two ti¢ks

The outputobject for power and pressure updates could have been included in the con-
troller as it represents thidtered sensor readings not the generation of power and pressure
in the plant itself which are continuously changing. Sinceothgut object behaviour is
fixed and knowra priori, it is more convenient to include it with the plant.

In contrast to the plant, parts of the controller are initially unknown. It is known that
there will be 3 microprocessors together with a majority voting circuit, i.e. the controller
can be decomposed into sub-modules (Fig. 8) described by:

controller = cont|| majorVote
cont = micrg || micro, |Imicrog
The microprocessors can either be in a normal or failed modg-thh@icroprocessor
thus has an observaldat variableF; withtypg F) = { fail,norma} (Fig. 7). However,

the precise nature of tlermal behaviour is initially unknown, although the informal tim-
ing diagram (Fig. 6) does provide some guidance.

(Eq. 14)

10.ThepHi, pLowHi, andwLo events could have been given bounde]2vhich would not force these events
to occur. But then the pressure and power updates could drift apart. In the current model,
(D = wait) - O_,(P' = POW = W) so that the sensor readings remain constant for a period sufficient to
ensure that the microprocessor controllers can react to their inputs. We could have changed the definition
of bothHiin (Eq. 17) to(R = closed]D = wait) except for the fact that is a private variable (Fig. 2).
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FIGURE 8. Architecture of the controller based on majority voting control

module controller
inW, P [* power and pressure variables from the plant */
out C: {0,1} where (C = 0) [* relay activation variable based on majority vaie = 1)
means send a signal to the relay to request it to open */
out Fy, Fp, F3: {fail, normal} where (F; = norma) for j = 1,23
/* failure variables needed for specifying failed behaviour */
out 14, 1,,15:{0,1} where (1;=0) forj=1,23 [ (1; =0) means thipth microprocessor is at
or has returned to the beginning of a timing cycle where|it
waits for unsafe power or pressure signals*/
Body
private Cy, C,, C3 : {0,1} where (C;=0)for j = 1,23
/* The j-th microprocessor outputs a relay activation variaI?Ie as input to the majority voting cir-
cuit. The majority voter must decide, based on the microprocessor relay activation variables, whether
to send an actual command to the relay of the plantvia . The interconnection diagram between the
modules of the controller is shown below: */

controller = (micro, [Imicro, |Imicro;) [[majorVote

W, P
A 4
micro; micro, microg
€1 C, Cy
majorVote
v v v v
Fils Fa 1z C Fa l3

Specificationsp(controlle) :

(i#j) OLI(F; # fail)d D(Fj¢fai|y

G123 [(1; =0) O(1; = 0)d bothHi O zopowerHiD gy 35 20(C = 1)] (Eq. 12)
O[(1;=0) 0(l; = 0)0 powerLoll o, Ua(c=0)

D[(#0) 0 ©_,(1 =0)]0 [(1;#0) 0 O_g(1; = 0)]

The formulasbothHi, powerHi and powerLoare defined in (Eg. 17). The module specification

(Eq. 12) is similar to the DRT requiremeRtbut with the controller output variable C playing the
same role for the controller specification that the relay variable pl&sTihe specification is stated

under the proviso that at least two of the microprocessors work normally, as the majority votirjg logic
is only robust with respect to a single failure. The last conjunct of the consequent asserts that|{the con-
troller cycle is at most 52 ticks of the clock, after which it is guaranteed to be back at its initigl posi-
tion (it is not 50 ticks as it may take up to two ticks to detect a change in the plant). Since the
environment of the controller is the (fixed) plant, the controller specification can be weakened to:

deg plan} - (EqQ. 12) (Eq. 13)

end controller
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It is necessary to be able to tell when a microprocessor is at the initial point of a timing
cycle where it checks for unsafe pressure and power levels (before invoking the two timers
described in Fig. 6). Once a timing cycle is initiated in response to unsafe power or pres-
sure levels, a new timing cycle cannot be initiated until the controller returns to its initial
point. Hence, thg-th microprocessor also has an observaté variable I; with
type(l) = {0, 3 where(l; =0) means that the microprocessor is at its initial point. We
require that a microprocessor timing cycle take no longer than the combination of the two
timers which is 50 ticks with an additional two ticks to cover controller reaction times, i.e.
(1;20)0 O gy(1;=0).

We are now in a position to state the DRT requirements for 3-version control. The
informal requirements [R1] and [R2] can be stated in temporal logic for any two function-
ing microprocessors and as:

R [(1; =0) O(1; = 0)0 bothHI $gopowerHi O <>[30’ ag<20(R = open (Eg. 15)
R2: [(1; =0) O(l; = 0)J powerLd O ¢ ,(R= closeq (Eq. 16)
where the predicatémthHi, powerHiandpowerLoare defined as:
bothHi & (R= closed OO_,(P=10W=1)
powerHi & [_,(W = 1) (Eq. 17)
powerLo&t [J_,(W = 0)
The controller can only react to changes in the pressure and power that persist long
enough for the controller to be guaranteed to detect them (2 ticks of the clock). The con-
troller microprocessors can sample pressure and power only once every tick of the clock.
Hence, we require that the pressure and power both remain high for at least two ticks of
the clock for the relay to open [R1]. Similar considerations apply when closing the relay
[R2].
The requirements as stated above do not take into account the possibility of micropro-

cessor failuresk1 andR2 can only be required to hold if at least two of the microproces-
sors are functioning normally. The final requirentens therefore:

R: 03, j:{1,2 3 |(i#]): LJ(F; # fail) OLI(F; # fail) ~ RLOR2 (Eq. 18)

where the integer variablésandj range over the three microprocessor controllers, i.e.
type() = type() &£ {1,2 3 .

5.3 Problem to be solved

We must prove that the DRT conforms to its requirements. Formally, this means we
must prove thatirt = R holds wherdt = plant|| controller  aRds the formula given
in (Eg. 18). Using the Composition Rule, a proof outline is:

1. sp(plan) modular-validity of (Eg. 5) in Fig. 2 for tqgant by model-checking
2. sp(controlle) modular-validity of (Eq. 12) in Fig. 8 for tre®ntroller by model-checking
3. sp(controlle) Osp(plan) - R general-validity (similar to the proof of (Eqg. 8))
4. R 1, 2, 3 and the Composition Rule
5. drteR drt & controller]| plant
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The body of the plant module is given in Fig. 2. The only input variable to the plant is
the relay activation variable , which can be altered arbitrarily by the environment transi-
tion without generating too large a reachability graph. Hence step 1 in the above proof out-
line was verified using StateTime model-checking.

The only part of the above proof that cannot be verified is step 2, as the controller body
is only partially defined at this point in the developmé@rttus we must complete the
design of the controller by designing its body, and demonstrate the modular validity of the
controller specificationThen the above proof outline guarantees that the DRT conforms
to its requirements.

In checking the modular-validity of the controller specification (Eq. 12), it is sufficient
replace step 2 above with the weaker specification (Eqg. 13). Instead of using an unre-
stricted environment transition, (Th. 3) allows us to check sub-modules of the controller in
the environmentplant . The resultant reachability graphs of the sub-modules are much
smaller than if an unrestricted environment transition is used. The above proof that the
DRT conforms to its requirements then becomes:

1. sp(plan) modular-validity of thgplant specification

2. deq plan} - sp(controlle) modular-validity of (Eq. 13) in Fig. 8 for ttmontroller

3. deg plan} (Th. 1)(b)

4. sp(controlle) 2,3 and temporal logic
5. sp(controlle) Osp(plan) - R general-validity via deductive theorem proving
6. drteR 1, 4, 5 and the Composition Rule

The design of the DRT controller will be performed using the structured compositional
approach described by the structure diagram (Fig. 1) as outlined in the introduction. The
structure diagram for the DRT is given in Fig. 9.

FIGURE 9. Structure diagram for the DRT

See Fig. 1 in the introduction for the interpretation of the structure diagram
drteR

plant || controller

plantbody majorVote ” cont
majorVotebody  micro, Il micro, Il ‘microg
microbody micro'bod)é mic'robod%

microbodyrefineg microbodyrefined microbodyrefined
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5.4 Controller design

A partial description of the controller was provided in Fig. 8. Wiagority\Vote sub-
module of the controller was described in Sect. 3.3 (Fig. 4). We must now design the
microprocessor sub-modules. The body of the modhiteo, is shown in Fig. 10, with

FIGURE 10. Control module micro;

module microl

in W,P /* power and pressure from the plant */

out F,: {0,1} where F, = fail /* the fail variable */

out C, : {0,1} where (C, = 0) /* relay activation variable*/

out I, : {0,1} where (1, = 0) /* initial condition variable for start of timing cycle */
Body

private N, where N; = n0 I* object variable ohormal*/

control [ F1)

failure [0]#]

normal@

rhel [1]1]

mua [1]1]
(W=1,P=1}-=

beta [1]1]

alpha [1]1]

Specification:
sp(micrg): LI(F, # fail) - (r, Os0 t;)
ry & [(l; =0) ObothHiO$;ppowerHi] O $g0 ,0(Cq = 1)
where: |s; & [I;, =00powerLd O ¢ ,0_,(C; =0)
ty & [(1,20)0 O_gy(14 = 0)]

end module

the other two microprocessors having symmetric descriptions.

Thenormal object of the controller (Fig. 10) is a more thorough description of the infor-
mal timing diagram of the analog controller (Fig. 6). The lower and upper time bounds of
1 in the transitions ofiormal indicate that the microprocessor samples the sensor inputs
and passes through a block of control code every tick of the clock (0.1 seconds). Once
unsafe power and pressure levels are detected by the transitittenormal object waits
in activity n1 for 29 clock ticks (2.9 seconds) before proceeding to actigitif the power
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is still high then the relay activity variabl®, is set via transitipha, else the system
resets via transitiomol. The second timer Timer2 of the analog controller is described by
thedelay20transition. Thebetatransition resets the control activation variable when power
returns to normal levels.

It is obvious from the foregoing that TTMs can provide precise convenient descriptions
of timing information. Thenormal object can be seen as a high level specification of the
microprocessor. The microprocessors do not have delay and time-out constructs; rather,
timing variables must be incremented every pass through the block of code to keep track
of the passage of time. In Sect. m&malwill be refined closer to code that can be imple-
mented on the microprocessors.

Once the body of the microprocessor module is known, the modular-validity of
sp(micrg) in Fig. 10 can then be verified via StateTime model-checking. As explained at
the end of Sect. 5.3, the controller will be used in the constrained environmenplahthe
Hence we need not consider an environment transition that can arbitrarily modify power
and pressure. Thautputobject of the plant (Fig. 2) allows updates of power and pressure
at most once every two ticks of the clock; this constrained environment will produce a
smaller reachability graph. Hence, instead of showing the modular-validity @ficrg)

(Eq. 12), we can verify the weaker validity (Eq. 13) given by

micro; = deg output - sp(micrg)
by model checkingoutputl| micrq) = sp(micro)

Since the microprocessor and majority vote modules satisfy their module specifica-
tions, we can now show that(controlle)  is modularly-valid. Lgt be integer vari-

ables that range over the three microprocesspp&(() = typd ) «f {1, 2, 3 ). Then
1. (i#))OU(F; # faild LI(F; # fail) Assume
2. sp(micrq) modular validitymicro,

3. sp(micrg) modular validity ofmicroj

4. sp(micrq) Osp(micrq) 2,3 and the Composition Rule
5. rdr 1, 4 and temporal logic (see Fig. 10 for tero specifications;, r )
6. (r;0rj) - [(1;=001; =00 bothHi OgopowerHi) 0 $g [ 50(C; =10C;=1)]  general-validity
7.0 [G,j{1,23)0(@#))0 (G=10C;=1)] 0 (C;+C,+C322) integer reasoning
8. (I;=001;=0J bothHiOCgopowerHi) O O4400_5o(Cy + C,+C322) 1,5,6,7 and temporal logic
9. [O0(C1+Cy+C322)0 &y O_,(C=1)] modular-validity oimajorityVotemodule
10. (I;=001; = 00 bothHiOCggpowerHi) O Ogq 330 50(C = 1) 8,9 and the Composition Rule

Line (10) of the above proof produces the first conjunct in the consequent of the controller specification
(Eg. 12). The other conjuncts are obtained by similar (and much simpler) reasoning. We thus have:

(i#)) OO(F; # faiho CI(F, # fail).
[(1; =0) O(1; = 0)J bothHi O ggpowerHil 51 3320(C = 1)]

11. discharging 1.
O[(1;=0) 0(1; = 0)0 powerLoll <[] 5(C=0)]
O[(1;20)0 O _g(1; =00 [(1;20) 0 O _.(1;=0)]

12. controller deg plan} - sp(controlle) i andj were arbitrary; a constrained environment was used
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As shown in Sect. 5.3, the above result implies that the DRT conforms to its require-
ments. The proof of conformance used a combination of model checking (for verifying
modular-validity) and deduction (e.g. for proving the general validity in step 6).

5.5 Refining the controller

The abstract modulenicro,  (Fig. 10) is observationally equivalent to its refinement
rmicro, (Fig. 11), i.e.rmicro, =micro; . The refinememmicro, is closer to the final

FIGURE 11. Refinement of microprocessor control module

* Body of rmicro, with same interface stub and module specificationiaso, (Fig. 10) «/
private Ta: {0 ... 30}where (Ta = 0) [* Timer1 variable in timing diagram */
private Th: {0 ... 20}where (Tb = 0) /* Timer2 variable in timing diagram */

rmicrol (F1)

failure [0]#]

normal@

alpha [1]1]
(W=1, Ta==30) -=
[Ta:0, Tk:Th+1,C1:1]

((W=1, P=1, Ta=0, Tk=0} ; {1=<Ta, Ta=<29) ) ->
[Ta:Ta+l, I1:1]

pseudocode [38]. As mentioned in Sect. 4.0, two methods have been developed for show-
ing observational equivalence:

» The designer can interactively apply equivalence preserving transformations to derive
rmicro, from micro, . The reader may consult [25] where this transformation is done
for a TTM body the same as thatrafcro,  but without the additional failure transition
and the initial condition variablé; . The proof used in [25] can be used as is for
rmicro, = micro, . The transformation rules can be applied to infinite state systems, but
it can be shown that there is no complete set of transformations, i.e. there is no finite set
of transformations such that it is always possible to prove TTM equivalence by using
that set of transformations [27].
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» For TTMs that can be reduced to finite state reachability graphs, there is an efficient
polynomial time algorithm for showing observational equivalence [28]. The equiva-
lence ofrmicro, andmicro, can be shown with this algorithm as the data types are
finite.

The abstract modulemicro; satisfies the non-Zeno condition (Table 1). Since
sp(micrg) is SESI (state event stuttering invariant) over the interface variables, (Th. 4)
guarantees thatp(micrg) also holds for the refinemeitro, . Thus there is no need to
redo the proofs of controller module specifications, and we remain with the guarantee that
the DRT conforms to its requirements.

The modulemicro, is a high level description of a microprocessor controller. It is eas-
ier to understand thammicro,  because it is close to the informal timing diagram of the
analog controller (Fig. 6). It does not have the two timer variablesrthiato, has, and as
a result the guards on its transitions are simplified relative to thaseiafo, . Its reach-
ability graph is smaller (Table 1).

TABLE 1. Improved model checking times for the modulemicro, compared temicro, *

Modularly valid specifications Abstraction micro, Refinementrmicro,

LI(F, # fail) — r, (Fig. 10) 13785 states in 26 secondls 59452 states in 297 seconds
O< (e = tick) (non-Zeno constraint)) 15248 states in 61 seconds 69059 states in 261 seconds

a. Above checks used the StateTime toolset and STeP on an Sparc Ultral with 160MB RAM.

Table 1 shows the result for checking the most complex module. However, all the mod-
ule specifications were verified using the model-checker. The deductive parts of the proof
were done by hand. In principal, the deductive part could have been done using the theo-
rem prover, but it proved too tedious as explained at the end of Sect. 2.4.

We refer the reader to [38] for a discussion of the reverse engineering problem, i.e. how
one goes from the pseudocode described in the original requirements document to the
refinement presented in Fig. 11.

5.6 The design method

Although top-down design by stepwise refinement desigueuruntil the 1980's, it
has subsequently come under attack. As Jackson has written [20]: “It was one thing to
impose a single hierarchical structure oseguentialprogram of the programmer’s own
devising; it was quite another to impose it on a given, inconveniently ill-structured, real
world domain”. In fact, real-systems such as the DRT often have no single “top” function.

Our design method uses both top-down as well as bottom-up techniques. We have
stressed in previous sections that the Composition and Refinement Rules can be used both
ways. Our top-down methodology differs from the classic notion of stepwise refinement.
For one thing, in the classic use of top-down design, a program was a single sequential
process. Concurrency and parallelism was “exotic” or unknown [20]. By contrast, our
TTM modules allows for nondeterminism, and serial as well as parallel constructs in any
mixture and to any depth. This allows for adequate descriptions of real systems that have
no “top” in the functional sense. Furthermore, at the top level, we do have requirements
describing the safety and correctness of the overall system consisting of different parts
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(such as the plant and the controller). Such system requirements (e.g. the DRT require-
ments R1 and R2) are oftemergenproperties, i.e. they arise out of the combined inter-
action of the system modules taken together. There is thus still an urgent need to describe
systems in a layered modular fashion, but without the sequential restrictions of the earlier
methods.

We now describe in outline the basic design method. The notions of a module, compo-
sition and refinement developed in this paper, provide the precise theoretical underpin-
nings for the method which was originally sketched in [36, pages 4-6]. We also borrow
concepts from the insightful description of requirements in [20, p169].

The basic design procedure starts withquirementskR. Requirements are about the
phenomena of the application domain (the relay, pressure and power of theledDRT
not about the machine (tlentroller). Our first step in requirements is to divide the sys-
tem into the two parallel objects: (a) the plant (which can be described as it already exists)
and (b) the controller. This division proceeds by describing their relevant interfaces and
connections, as well as some of the internal phenomena and entities of the plant — this is
the body of the plant which is an abstract model of plant operation. The plant model can-
not be too abstract because then it is not about the real problem anymore. It is a mistake to
rush to the solution (by coding the controller) before delineating the problem to be solved
(the plant requirements). The requirements are temporal logic formutdaninentities
such as pressure, power and the state of the relay. Therefore, the requirements do not
describe the internal phenomena of the controller, although they might (by accident so to
say) describe entities at the boundary of the controller and the plant (theseshrardle
phenomenp

It is the job of the controller to ensure that the requirements are satisfied, which it can
do due to fact that it shareemephenomena with the plant (as described by the plant-con-
troller interface). The controller might not be able to react to a shared phenomenon imme-
diately (e.g. a change in reactor pressure), but the shared phenomenon happens in both the
plant and controller simultaneously. Because the controller does not always know all the
plant phenomena (or at least cannot react to them immediately), there is always the possi-
bility of a gap between the requirements and what the controller can achieve (as described
in the controller specification).

The progression from requirements to controller implementation is a way of bridging
the gap between them. From the requirements expressed in terms of the plant, you derive a
specificatiors of the controller in terms of the shared phenomena of the plant and control-
ler. Then you derive the body of the controller from the controller specification. The Com-
position Rule justifies the eventual claim that the controller implementation satisfies the
requirements by reasoning as follows: (a) the body of the controller satisfies the specifica-
tion Sand (b) the specificatightogether with the description of the plant entails the truth
of requirement®.

In the case of the DRT controller, once the top-level interface stub was described, the
parts of the controller were developed bottom-up component by component. A generic
microprocessor controller was designed which was then instantiated three times to obtain
3-version control. Then the majority voting logic was designed. Bottom level modules
were developed, simulated and verified to conform to their local specifications long before
the modules were combined together. The plant description was quite simple and could be
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encapsulated in a single module. In more complicated application domains, the plant
might also benefit from a bottom-up development.

6.0 Conclusions and related work

This paper has presented a structured compositional method for the deliberate design of
real-time systems, and applied the method to an industrial example with partial support
provided by the StateTime toolset. The main novelty of the approach is to provide a fully
compositional definition of real-time reactive modules compatible with existing model-
checking tools (Sect. 3.0) and a refinement relation (Sect. 4.0). This allows for the system-
atic development and verification of real-time systems. The framework developed in this
paper indicates that a productive tool should be able to sugipariation model-check-
ing andtheorem proving

There are four main areas where mechanical support is needed: (1) system simulation
for validating models, (2) model-checking for modular-validity, (2) deductive theorem
proving for the composition rule, and (3) proving observational equivalence for the refine-
ment rule.

StateTime was used for simulation and model-checking all module specifications of the
DRT example. Although in principal, we could have used the toolset for the deductive
part, it proved too unwieldy due to the proliferation of quantifiers. The toolset has no sup-
port for refinement, and this had to be done by hand using behaviour preserving transfor-
mations.

We are currently in the process of updating StateTime so that it directly supports mod-
ules (interface stubs and automatic generation of environments) and theorem proving. The
current tool already does simulation and model-checking. We are using count-up and
count-down clock variables with ordinary temporal logic (rather than the bounded opera-
tors of RTTL) for specification, but it is yet to early to tell to what extent this will simplify
deductive reasoning. The proof of observation equivalence (both algorithmically for finite
state modules and via equivalence preserving transformations) for use in the refinement
rule needs to be implemented and incorporated into the StateTime toolset, but we have not
yet decided how to implement these techniques. Because our bisimulation relation
involves both states and events (Sect. 4.0), we may not be able to directly use existing
tools such as Concurrency Workbench [9]. The Concurrency Workbench allows for the
testing of equivalences and preorders and the verification of systems in the modal mu-cal-
culus, but does not address real-time issues.

Other tools such as Modechart [21], Statemate [16] and ObjectTime [45] also use state-
charts for visual system descriptions. Modechart can use a combination of simulation and
model-checking to deal with larger systems [34]. Statemate can be used to do reachability
analysis and ObjectTime is object-oriented which is useful in design, but it cannot deal
with hard real-time systems. None of these tools have theorem provers, nor do they allow
for modular verification.

RTTL is based on the linear time temporal logic LTL rather than on branching time log-
ics such as CTL. It is commonly accepted that while specifying is easier in LTL, model-
checking is more efficient in CTL. Both linear and branching time languages now have
efficient model-checkers using either partial orders or BDD methods: SPIN [18] is one of
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the few LTL based model-checkers. SMV is a good example of a CTL based model-
checker [5], with an extension to real-time systems called Verus in the planning stage [6].
The hybrid tool HyTech [2] extends branching time model-checking to continuous real-

time systems using stop watches and symbolic fixpoint computation (the current version
of the tool supports reachability analysis via monitor automatons and not directly the full

set of CTL formulas). HyTech and Verus both allow for parametric analysis (e.g. deter-

mining the latest possible moment a controller can wait before issuing a command).

The STeP [31] model-checker and theorem prover was chosen as the back-end to
StateTime rather than tools such as SPIN, SMV and HyTech for a number of reasons.
Tools that use a non-interleaving synchronous execution step algorithm (e.g. SMV, the
PVS model-checker [42] and COSPAN [15]) are efficient for dealing with hardware
designs, but do not seem to be as efficient as SPIN when it comes to dealing with inter-
leaved sequential code and integer variables. There is also another problem associated
with modularity when it comes to branching time model-checkers. Although branching
time is usually more efficient than linear time logics, the branching time algorithms
become EXPTIME-complete fonodule checkingvhich is worse than the PSPACE com-
plexity of linear time logics [24]. This analysis seems to suggest that the accepted trade-off
between LTL and CTL fomodulesis not as simple as it is fatosedsystems. We were
not able to use SPIN because it only supports justice (weak fairness) not compassion
(strong fairness) needed for thek transition. More importantly, we hope to use the theo-
rem proving components of STeP in future versions of our tool. None of the aforemen-
tioned tools (except PVS) have theorem provers.

Hooman [19] extends Hoare logic to real-time programs by freely mixing programs
and assumption/guarantee assertions leading to a top-down derivation method. The theory
is implemented using the interactive proof checker PVS [42]. The embedding of the proof
system in PVS provides powerful mechanical support for compositional reasoning (but
not model checking for Hooman’s programs). One disadvantage of the method is that the
semantic embedding of proofs in PVS means that there is an extra layer of conversion
between the designer and the tool that cannot be eliminated. For example, a simple state-
formula in STeP such asc>vy) is written in PVSvad(s)(x) = val(9(y) where is a
state. This is not an aspect that can be hidden from the user as any proof which the user
must guide will expose the underlying complexity. Only fully automated tools such as
model-checking can hide the backend.

There is a growing interest in compositional and refinement methods for reactive sys-
tems [1,7,22,35,41,46,48]. The field is somewhat less developed in the case of real-time
systems especially in methods that also have tool support.

ASTRAL [10] is based on the framework of [11] that uses Petri Nets for system
descriptions and a timed temporal logic called TRIO for specifications. ASTRAL provides
structuring mechanisms that allow the designer to build modularized specifications that
are translated into TRIO. Proofs in ASTRAL are eithégrlevelor intralevel The former
deals with proving that the specification at a higher level is consistent with a specification
at a lower level. The latter deals with proving that a description at a level satisfies its spec-
ification. A tool is currently under development.

The frameworks mentioned thus far have specification languages that are based on
logic, usually modal logic. Other approaches are based on algebra or automata. Discrete
real-time process algebras [4,44] can describe systems compositionally at different levels
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of abstraction. The semantics of process algebras is usually defined in terms of labelled
transition systems. An algorithm based on observation (bisimulation) equivalence is used
to show that an implementation satisfies its specification. These bisimulation relations are
usually event-based [33], whereas the bisimulation relation used in this paper is both event
and state-based (Sect. 4.1). It is event-based in order to ensure a global notion of time via
thetick transition. It is state-based so that module specifications can be written as temporal
logic properties in the observable variables. Continuous time extensions to process alge-
bras [47] lack the abstracting power of a congruence relation of the discrete event case,
due to technical difficulties associated with their infinite branching continuous time
semantics.

The real-time CSR language [13] provides a layered approach to dealing with shared
resources. [12] presents hierarchical multistate machines for multilevel specifications. The
automata based tool COSPAN has recently been extended to deal with real-time [3].
COSPAN supports top-down development through successive refinements and homomor-
phic reduction [15]. Timed automata [30] (see also the input/output automata described in
[29]) have visible actions, a time passage action (analogous to our clock tick) and a special
internal action. Dense upper bounds can be imposed between actions, but not lower time
bounds. A refinement from one timed automaton to another is a time-preserving function
similar to the classical notion of a homomorphism between automata.

In single language frameworks (e.g. automata based COSPAN or the logic based TLA
[1]), both the implementation and specification are expressed in the same formalism
(automata or logic). Conformance is proved by demonstrating that each fair trace of the
implementation is also a fair trace of the specification. There is a certain elegance and sim-
plicity associated with using a single language for both specifications and implementa-
tions. We have pursued the dual TTM/RTTL framework in this paper as it provides us with
the flexibility of using the most appropriate analysis technique in each case. For TTM
refinement, we use the algebraic notion of observation equivalence, and for TTM compo-
sition the logical conjunction of RTTL specifications.
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