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1.0 Introduction

Mathematical logic is the glue that binds together reasoning in many domains such as
philosophy, digital hardware, logic programming, databases, and artificial intelligence. In
software development, logic has played an important role in the area of program design
and verification, but on the whole its use has not been adopted in practice.

It has been suggested that logic should play a more significant part in software develop-
ment than it currently does [4,27], the argument being that software behaviour cannot be
specified, predicted, or precisely documented without it. Engineers traditionally use math-
ematics to describe properties of products such as bridges or machinery. It is unlikely that
we could send a rocket to the moon without the precision of a mathematical theory. Simi-
larly, software engineers should use mathematical logic to describe and understand prop-
erties of their products, which are programs. Although ordinary programs can be written
without the precision afforded by logic, complex programs are unlikely to work correctly
without a good mathematical theory.

The argument for the use of logic (and formal methods in general) in software develop-
ment is not generally accepted for a variety of reasdhs argued that the use of mathe-
matical methods is expensive, unproven in large-scale development, and unsupported by
usable tools. Many papers (e.g. [6,10,12]) have discussed the reasons for practitioners not
adopting mathematical methods in full or in part. These arguments will not be recounted
here, but it is clear that software professionals will not adopt mathematical methods until
they are easy to use, improve our ability to deliver quality code on time, provide tool sup-
port, and are founded on an appropriate educational programme. It is the educational pro-
gramme that we address in this paper.

Electrical engineers are taught mathematical methods (e.g. differential equations or
Laplace transforms) and tools (e.g. Matlab or Spice) for describing the properties of cir-
cuits. Such methods and tools are a key component of an electrical engineering education.
Similarly, engineers use mathematical descriptions in discussions of the deformation of a
beam, the flow of fluid in a pipe and the evolution of a chemical reaction. Methods, tools,
and curriculum components of similar simplicity and ease of use are needed for the educa-
tion and practice of software engineering.

In this paper, we provide an overview of how mathematics, and in particular logic, can
be used throughout the software development cycle, and discuss what methods and tools
can be introduced in the computer science curriculum to support software development.
We provide some simple examples of methods and tools to motivate the material.

Organization of the paper

The paper commences with an overview of software engineering, its purpose, and its
fundamental definitions. We describe a method for software design, using logic as the
foundation. Logic is used for describing requirements, specifications, design, and pro-
grams. We recap the calculational proof format, presented in [9], and thereafter apply it to
simple examples that illustrate the method. We discuss some of the existing tools that can
support calculational proof and the use of logic for software design, and we discuss how

2. Butsee Table 1 (end of Sect. 5.0).
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logic can be integrated into a computer science curriculum, indicating our own experi-
ences in doing so.

2.0 Software Engineering

A program is a description or specification of computer behaviour. A computer exe-
cutes a program by behaving according to the instructions of the program. Hehner [11]
writes: “People often confuggrogramswith computer behaviouiThey talk about what a
program ‘does’; of course it just sits there on the screen; it is the computer that ‘does’
something. They ask whether a program ‘terminates’; of course it does; it is the execution
that may not terminate. A program is not behaviour, but a specification of behaviour.”
When the disk crashes or the arithmetical unit overflows the difference between a program
and computer behaviour is obvious.

Think of it as follows: program + computer machine For example, an executing
application such as word processor is a machine similar to a typewriter, but with more ver-
satility. Similarly, a software telephone switch is a machine — similar to an old-fashioned
telephone exchange, except that the new kind of machine does not consist of rotary
switches and clattering relays.

The purpose of software development is to build special kinds of machines — those
that can be physically embodied in a general purpose computer — merely by describing
them as programs. A general purpose computer accepts our description of the particular
machine we want (as described in the program), and converts itself into the desired
machine. We summarize below some insights into software development as described by
Jackson [15].

2.1 Requirements, Specifications and Programs

To construct a “software” machine, we must go through normal product development
that engineers perform when constructing “hard” machines like typewriters, bridges, and
motors. This includes requirements elicitation, analysis, design, implementation, testing
and documentation.

A software machine must ultimately be installed in the world and interact with it. The
part of the world in which the machine’s effects will be felt — and which is of most inter-
est to the customers of the machine — is calledekternalworld® (denoted byw). So we
have a machin® and the external world that it interacts with, The phenomena dV
predate the machind. The machine designer (programmer) can describe the phenomena
of W and possibly influence them; but, the designer does not create the phenonvéna of
By contrast, the machine is initially undetermined, and it is the designer who creates and
shapes the machine phenomena.

3. Jackson [15] call§V the application domainWe do not use the termpplication domairbecause this can be con-
fused with a generic domain denoting a class of applications (e.g. the process control domain) or an application pro-
gram. The wordenvironments also used fow, but this suggests something that physically surrounds the machine,
whereasW can also include intangible things such as the rules for safe aviation or employment legislation. In the
control theoretic literatur@/ is often calledhe plantandM is calledthe controller
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We need to pay serious attentionWb When developing a program to control a plane,
we obviously need to understand how the plane works, how it lands and takes off on run-
ways, and how it can be controlled while in the air. We may also need to understand intan-
gibles associated with the external world, such as the rules for safe aviation. This
understanding must be obtained prior to any attempt to design the data structures and data
flow of the software program that will ultimately control the plane.

For example, the one-million line program GPS (Global Positioning System for satel-
lite navigation) involves an understanding of celestial mechanics, gravity, atomic clocks
and cryptography. The phenomena of the external world domain for the GPS are distinct
from the phenomena (code and data structure) of the machine required to operate it. Simi-
larly, a telephone switch deals with telephone calls, a word-processing program deals with
text, and a process control program deals with a chemical plant. These domains (tele-
phones, text and plants) are very different, and each has its own peculiar characteristics
that determine how it interacts with the machine.

The phenomena of the external world determine the custormregisrements This is
what makes requirements capture an almost impossible task, because there is no way of
rigorously checking that we actually understood what the customer wanted when we
deliver the final machine. It is easy for a software developer to ignore the external world
domain (the realm of the customer’s true requirements), for it is more enjoyable to turn
directly to the machine where one can start implementing the “solution” immediately. But,
focusing on the machine too soon may quickly lead to confusion and ambiguity. If we
were never quite clear on what our customers really wanted then the final product is likely
to disappoint them. This is also why programmers do not always thoroughly understand
the properties of their products, or apply accepted theory, even when it leads to better or
safer products.

Requirements are therefore about the phenomena of the externaMwarid not about
the phenomena of the machikk Not all the phenomena of the external world are neces-
sarily shared with the machine. But the machine does share some phenomena with the
external world. The machine can thus try to ensure that the requirements are satisfied by
manipulating the shared phenomena at the interfadéasfdM.

An example of a shared phenomenon is the event of a passenger sitting in an aircraft
seat and pushing a button to turn on a light. The push of the button is a shared phenome-
non between the passenger (who is pati\@fand the aircraft control systenvlj. To the
passenger, the event is “push the button”; to the machine the event is “input signal on
interrupt line”. Similarly, the state in which the machine emits a continuous beep is the
same state in which the user of the machine hears the continuous beep.

2.2 The gap between requirements and programs

Not all the phenomena of the external world are shared with the machine. There can
thus be a gap between the customer’s requirements and what the machine can deliver
directly. We can think of the various phenomena with the help of Fig. 1, in which M
is the set of all shared phenomena.

4. Certain select requirements may also refer to the phenomena of the machine, e.g. a requirement that the program
must be well-structured and efficient.
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FIGURE 1. The phenomena of the external world domaiw and the machineM
(From Jackson [15, p127])

External world domain W Machine M

The requirementR are described in terms of the phenomen®/ado requirements may
involve phenomena that are not shared with the machine. The program that will Mn on
will be written in terms of the phenomenaf The traditional progression from require-
ments to an implemented program is a way of bridging the gap between the phenomena of
W and those oM

A rational development process, where each step follows from the previous ones and
everything is done in the most elegant and economic order, does not really exist for com-
plex systems. Nevertheless, we can fake it [26]. We can try to follow an established proce-
dure as closely as possible, and the final product and documentation is the ideal that would
have resulted had we not departed from the established procedure. There are a number of
advantages to faking it in this way, despite numerous departures from the ideal: the pro-
cess will guide us even if we do not always follow it; we will come closer to rational
development; and it will also be easier to measure progress.

Rational software development:
1. Elicit and document thequirementR in terms of the phenomena\of

2. From R, expressed in terms of, derive aspecificationM.spec of the machine,
expressed in terms of the shared phenom&ha M . Specifications thus describe the
interface or boundary between the machine and the external domain.

3. From the specificatiomM.spec derive the programprog . The program refers to
shared phenomena and internal phenomena of

We must now provide a justification that the program satisfies its requireRn&ntjustify

this claim, we can reason as follows:

1. Argue that if the specificatiovi.spec is satisfied, then so is the requirement, i.e.

specification correctnessW [J M.spec- R (1)
(we may use any knowledgk' that we have of the external world to prove the implica-
tion).
2. Argue that if the machine behaves likeprog , then specificakibspec is satisfied.
ie.,
implementation correctness M.prog - M.spec 2
The implication states thafl.prog is a more specific or determinate product than the

more abstract specificatiavi.spec . This makes the program more useful and closer to
implementation than the specification, for the program describes how the specification
is implemented, whereas the specification describes what must be implemented, with-
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out any unnecessary appeal to internal detail. An example of a specification is
X' =00x" =1 where x' is the final value of program variabte . The specification
asserts that the final value @ must be either zero or one. An implementation of the
specification is the programx“=1 ", which can be described in logic by the assertion
X' = 1.Since(x' =1) -~ (x =00x' = 1) is atheorem of propositional logic, it follows
that the machine implementation satisfies its specification

3. Having shown specification and implementation correctness, we are then entitled to
conclude that the machine correctly achieves the customer requirements, i.e.

system correctnessW [1 M.prog - R. 3)

In the development process described above, we made a distinction bejpedica-
tionsandrequirementsActually, the term “specification” is one of a trio of terms: require-
ments, specifications and programs.

Requirements are all about — and only about — the environment of the machine, i.e.
the external world phenomena. The customer is interested in these external world phe-
nomena — he wants the nuclear plant to run properly or the paychecks to be calculated
correctly. Some of the customer’s interests may coincidently involve shared phenomena at
the specification interfac& n M

By contrast, programs are all about — and only about — the machine phenomena. Pro-
grammers will surely be interested in phenomena at the inteiacemM ; this interest is
motivated by the needs to obtain the data on which the machine must operate.

Specifications form a bridge between requirements and programs. Specifications are
only about the shared phenomewan M . Specifications are requirements of a kind, but
they are also partly programs. Since specifications are derived from customer require-
ments by a number of reasoning steps, they may not make obvious sense to either the cus-
tomer or the programmer. Although specifications are programs of a kind, they may not be
executable (we prefer that they not be tainted by irrelevant machine detail).

The quality of the final software will depend critically on gettidgandR right. Jack-
son [15, p127] quotes a well-known incident in which a pilot landing his plane had tried,
correctly, to engage reverse thrust, but the system would not permit it, with the result that
the pilot overshot the runway. The pilot could not engage reverse thrust because the run-
way was wet and the wheels were aquaplaning instead of turning. The control software
allowed reverse thrust to be engaged only if pulses from the wheel sensors showed that the
wheels were turning (which they were not; they were aquaplaning).

Fig. 2 shows the phenomena that we are concerned with. The requirement was
requirement R: reverse_thrust_enabled moving_on_runway
The developers thought that the external world domain was described by

Omoving on runwag wheels turnin
external world W: J- - ¥ = g (4)
CWheels_turningge  wheel_pulses_on

5. Infact, it may take many successive steps to refine a specification into a program. See [11] for the relevant theory.
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FIGURE 2. Plane overshooting the runway

External world W Machine M

. wheel_pulses_on
wheels-turning

reverse_thrust_enabled
moving_on_runway

machine Interfag

D

wheel_pulses_on

machineM

-
reverse_thrust_enabled

So they derived the specification
machine specificationM.spec wheel_pulses_oa reverse_thrust_enabled

For the above description of the external world domain, specification correctness (1)
given by W M.spec— R is indeed a theorem. Unfortunately, the developers did not
understand the external world domain correctly. The first property given in (4) was indeed
a correct description of the external world domain, but the second property was not. When
the wheels are aquaplaning on a wet runway, the second property fails to hold, because
“moving_on_runwayis true but “ wheels_turnifigs false. The correct description of the
external world was instead

~Omoving_on_runwa ( wheels_turning aquaplaring
'Ewheels_turnings wheel_pulses_on

With this correct description of the domain, a machine satisfying specificMiepec
listed above no longer satisfies the requirements, because specification correctness (1) no
longer holds. It is thus crucial to get an accurate description of the external world domain.

2.3 Descriptions

The central activity of software development is description. Any software project will
need many different kinds of descriptions. These descriptions provide essential documen-
tation of the software. Here are some of the main types of descriptions [25].

» Specification®r requirementsstate therequired properties of a product (e.¢i.spec
and R). The difference between a requirement and specification was described in
Sect. 2.2.
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» Behavioural descriptionstate theactual properties of an entity or product. Behav-
ioural descriptions describe the visible properties of an entity without discussing how it
was constructed. The external world description (4) is an example of a behavioural
description — in this case it is not a product or program that is being described but the
environment (runway) in which the product (the plane) will operate.

» Constructive descriptionslso stateactual properties of a program, but they also
describe how a program is composed of sub-programs down to executable code. Pro-
gram text is an example of a constructive description. For example, the program text for
the module in Fig. 6 describes how the body of the module is constructed from two pri-
vate routines.

Specifications and requirements are expressed in what grammarians call the optative

mood, i.e. they express a wish. Behavioral and constructive descriptions are expressed in

the indicative mood, i.e. they assert a fact. Thus, a description may include properties that
are not required, and a specification may include properties that a (faulty) product may not
possess.

We cannot necessarily tell from a list of properties whether we are dealing with a
behavioural description of an already existing product or with a specification of what we
hope will eventually become a product. It is therefore crucial for the writer to make the
relevant distinction. Once we have demonstrated implementation correctness (2), then a
specification itself becomes a description.

Although mathematics can be used for all descriptions, not all descriptions need be
mathematical. We can distinguish between rough sketches, designations, definitions, and
refutable descriptions [15].

A rough sketchl{e.g. Fig. 1) is a tentative and incomplete description of something that
is being explored or invented. It uses undefined terms to record half-formed or vague ideas
and is useful especially in the early development phase.

A designationsingles out some particular kind of phenomenon that is of interest, tells
us informally in natural language how to recognize it, and gives a name by which it will be
denoted. Here are some designations:

wheel pulses_dr): BOOLEAN

-- wheels of plane x are turning
aquaplang): BOOLEAN

-- plane x aquaplaning on the runway

Definitionsintroduce new names in terms of already existing descriptions. Here is a
definition of plane_movingx) :plane_movin¢x) O wheel pulses_dRr) [ aquaplanf) .

A refutable descriptiomdescribes some domain, saying something about it that can, in
principal, be refuted or disproved.

Predicate logic provides a means for expressing refutable descriptions. A predicate can
be eithervalid (true in all behaviours of the product),cantradiction(false in all behav-
iours) orcontingent(true in at least one behaviour and false in at least one).

A useful predicate for specifications and requirements is one that is contingent. The
predicatetrue (or any theorem for that matter) is not a useful specification of a product
because any behaviour of the product satighgs So too,falseis not a useful specifica-
tion, since it is satisfied by no behaviour. A useful specification is one that satisfies pre-
cisely and only those behaviours that we wish to observe in the product.

The Logic of Software Design January 6, 2000 9



External world descriptions should also be refutable. For example, the external world
property ‘wheels_turninge moving_on_runwdy(4) is refuted by an observation in which
“moving_on_runway is true but “ wheels_turnifigs false. This is exactly the behaviour
that is observed when the wheels aquaplane.

The use of mathematical descriptions throughout software documentation and design is
an idealization. Not all requirements can be captured by predicates, at least not easily.
Sometimes rough sketches must be used, or we must resort to vague qualifications such as
“approximately” or “preferably”. Requirements may change over time. Any change may
invalidate the entire logical structure (although engineers will often find ingenious ways of
preserving work already completed). The over-riding imperative to deliver a product on
time and within cost will often mean that logical analysis and calculation cannot always be
performed, at least in full detail.

The reality of software development does not mean that precise mathematical descrip-
tions cannot find a place. The software engineer will seek a balance between rough
sketches and precise description and calculation. Useful software development methods
allow the software engineer to choose the appropriate balance between mathematical and
informal description.

3.0 Using Logic for Descriptions and Calculations

What kind of mathematics should software engineering students be taught? Like other
engineering students, they should have a working knowledge of classical mathematics
such as calculus, linear algebra and probability theory. But the description of software
products requires the use of functions with many points of discontinuity. The study of con-
tinuous functions must thus be supplemented with that of predicate logic and discrete
mathematics. The following example that will illustrate how logic may be used to

* make informal descriptions precise,
» calculate properties of products (by proving theorems), and
» understand the role of counterexamples.

3.1 Informal specification of the password module
Consider the following informal specification:

A personal digital assistant (PDA) needs a PASSWORD_MANAGEMENT
module that allows the user of the PDA to enter a password. The user
should not be allowed to access the verification routine more than six

times. The user gets only five tries at entering the password; if the user
entry matches the stored password, the PDA can be operated on by the
user. If the password does not match, the PDA remains inoperative. On the
sixth try, no password checking is done — instead an alarm flag is immedi-

ately raised. The alarm flag might be used by other modules to turn off the

PDA or inform the owner of an attempt at unauthorized access.

We use an Eiffel class [20] to specify the password management module. Eiffel is an
example of a development environment that can be used to build software seamlessly from
specifications to programs. At any one time, the developer works on only one product —
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the machine — which successive stages and activities will progressively enrich. This does
not mean that there is only one view of the machine. A variety of views are available. Each
view is a description of a different aspect of the machine. For example, the short format of
a class documents the class interface, i.e. its exported features, their specifications (pre/
post conditions), and the class invariant. The supplier of the class can view the interface as
well as the implementation. Class relationships such as the client-supplier relationship or
the inheritance relationship can be viewed. Classes can be grouped into clusters, which
can be related to other clusters using the same relationships that are applied to single
classes. The designer can start at the abstract architectural design level and then generate
the Eiffel class skeletons, or can start working on individual classes and work up to the
architectural design level, or can alternate between these two views.

3.2 Formalizing the specification — design by contract

A specification of the password management module is shown in Fig. 3. No implemen-
tation detail is given. The class starts by defining the various attributes (state) of the mod-
ule. The behaviour of routingerify _useris specified by a precondition (thequire
clause) and a postcondition (tkesureclause). The precondition describes the set of all
initial states (prestates) and the postcondition describes the set of all final states (post-
states) for the routine.

FIGURE 3. Eiffel specification of the password management module

classPASSWORD MANAGEMENT
-- attributes, i.e. the state space

alarm: BOOLEAN -- signal illegal entry
operate BOOLEAN -- user may operate PDA
pl PASSWORD -- the password

i INTEGER -- number of password tries
makégp2:PASSWORD) -- initialization routine

ensure-alarmO-operatedi =00pl = p2

verify_use(p2: PASSWORD) -- routine to verify password p2
require —alarmJ-operate
ensure(g; - e;) 0(g9, - &) 0(9; - €3)
@, Dold i <6 Uold pl1 = p2
Egz Ooldi<60old p1# p2
0 .
[@; 0old i260old pl# p2
-- whereQ =~
e, 0i = 00operatell- alarndpl = old pl
0
e, Ui =oldi+10-operated- alarmd A = old p1

o _.
ey 0i = 00-operated] alarmd @ = old pl

invariant i =0 -- all routines preserve the invariant
end
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The precondition and postcondition express a contract between the client and the pro-
grammer. The client has the obligation to invoke the routine only when the precondition
holds; the client may benefit from the result of the routine as described by the postcondi-
tion. The supplier of the routine (the programmer) has the obligation to ensure that the
postcondition holds; the precondition is a benefit to the supplier, for the routine need not
deal with cases not covered by the precondition. This is callesign-by-contracin
which the obligations and benefits of clients and suppliers are delineated.

In postconditions, the notatioold expressiordenotes the value axpressionn the
prestate. Hencegj = old i +1) specifies that the value iof the poststate must be pre-
cisely one greater than the valueidh the prestate. The routine parameper does not
change value, hence there is no old valuegar . The class invarabt must be pre-
served by each routine.

Eiffel directly supports contracts throughout the design cycle: (a) contracts describe the
class interface, i.e. the benefits offered by the class to its clients without describing how
these benefits are delivered; (b) contracts define the obligations of the author or supplier of
the class to the clients; (c) contracts can be checked at runtime; (d) contracts define pre-
cisely what an exception is (behaviour that does not satisfy the contract); (e) contracts
allow for sub-contracting so that the meaning of a redefined routine under inheritance
remains consistehtand (e) contracts provide documentation to both clients and suppliers
of classes. By writing well-designed preconditions, postconditions and invariants, as well
as a carefully choosing names for classes and routines, we gatlfidlocumenting prin-
ciple — the documentation of a class is developed hand-in-hand with the class and is
stored together with the class; documentation is automatically extracted by tools from the
class text itself at various levels of abstraction

The specification of the class using routine pre/postconditions and invariants is the for-
mal counterpart of the informal specification. The precision of the formal specification
improves the documentation of the program as well as serving as a contract between the
client and the supplier. In addition, the formal specification of the class can now be used to
calculate the properties of the class. Here are some questions that we might want to ask
about the specified class.

Conjecture 1 — input coverage: Is every input handled?

The postcondition oWerify_userroutine is in a special guarded expression format,
where each guard describes a specific input and its corresponding conseguent
describes the required output (Fig. 3). The specifier of the contract might therefore want to
show the validity of

- (old alarm) O-(old operatg - (g, 0g,003). (5)

This conjecture asserts that any input satisfying the precondition must also satisfy the dis-
junction of the guards in the postcondition. It is up to the client to ensure that the precondi-
tion is satisfied. If the conjecture holds then the specification has the desirable property
that it deals explicitly with all inputs allowed by the precondition.

6. If a client of class RECTANGLE (which inherits from class POLYGON) calls a feature to calculate the perimeter,
then we want to ensure that RECTANGLE does not redgferémeterto calculate theareainstead. Redefinition
should change the implementation of a feature but not its essential meaning.
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Input coverage (5) is not a theorem because the state described by the observation
- (old alarm) O=(old operate O(old i = 6) O(old pl = p2) is a counter-example to the
it. This counterexample informs the specifier that a certain input is unhandled. Which
input? The user’s sixth attempt with at providing a password (in this case with a correct
password). The informal specification states that on the sixth try an alarm should be raised
irrespective of whether the supplied password is correct or not. However, the formal spec-
ification would allow the alarm to continue to be disabled if the password is correct on the
sixth try. The counterexample suggests that the gugrd ofeniéy user routine be
redefined tog; Dold i26 . With this new definition we can prove that the input coverage
conjecture (5) is a theorem by using the calculational Logic E [9]. We assume the anteced-
ent and prove under this assumption that the consequent is a theorem. The proof trans-
forms the consequent Cg, gy into a known theorem.

Assume -(old alarm) (0= (old operatg.

910,00
= < definitions ofg,, g, >
(oldi<60o0ld pl=p2)0O(oldi<60-(old pl = p2)) Ogs

= <distributivity of conjunction over disjunction (3.46) >
(oldi<60(old p1=p20-(old p1=p2))0g,

= <excluded middle(3.28) can be replacedrog using theorem equivalence TE>
(old i<60true) Og,

= < identity of conjunction (3.39); definition of >
(old i <6) O(old i=6)

= < arithmetic:(old i <6 Uold i = 6) =true >
true --(3.4). Q.E.D.

In the end, the assumption was not needed for the proof. The main point that we have illus-
trated is that predicate logic is useful for making an informal specification precise. Coun-
terexamples can show us when the specifications are ill-formed and proofs can show
whether the specification has desirable properties.

The calculational Logic E used above is a useful tool. The inference rules for Logic E
are described in Fig. 4, and derived rules such as theorem equivalence (TE) are provided
in the Appendix (Sect. 6.0). Each step is justified by the inference rule Leibniz (replace-
ment of equals for equals). A hint in angled brackets mentions the theorem used to obtain
the replacement expression (the numbers refer to theorem numbers.imfgfence rule
Transitivity is applied five times to conclude that the predicate at the top is equivalent to
the predicate at the bottom. Finally, since the bottom predicate is itself a theorem, infer-
ence rule Equinamity allows us to conclude thatlg, O g is also a theoremeding-

7. A list of the basic theorems of Logic E, including all the theorems used in this paper, can be obtained from http://
www.ariel.cs.yorku.ca/~logicE/misc/logicE_theorems.pdf.
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FIGURE 4. The calculational Logic E

A textbook for Logic E [9] provides a list of axioms for propositional logic, pred-
icate logic and theories in various discrete domains (e.g. sets, integers, combinato-
rics, and universal algebra).

In Logic E, the predicateE[z:=P] is defined to be the same predicate as
except that every free occurrenceof En is replaced by expredgion using con-
textual substitution. For examplégg O0-q)[q:= (x>5)] = (x>50-(x>5)) . Using
this notation, Logic E has 4 rules of inference:

. P=0Q o E

Leibniz: E[Z=P|=E[z=0] Substitution: —E[z:= P
E,=E,,E,=E o E,,E,=E

Transitivity; ——2—2 2 Equanimity: —————2

An inference rule states that the predicate below the line is a theorem provided the
predicates above the line are also theorems. From the axioms and rules of inférence,
the text derives a large number of useful theorems in various domains. Proagfs are
structured in the calculational style:

E[z:=P]
= <P=Q>
E[z:=Q]

The above layout is justified by inference rule Leibniz. The IRetQ is usyally
obtained by applying rule Substitution to an axiom or theorem. Substitution is pften
used without mention when it is obvious. Inference rule Transitivity is used to jcon-
clude that the first expression in a sequence of calculational steps is equal to the last
expression (or vice versa). Equanimity allows us to conclude that if the first expres-
sion is a theorem, then the last expression is also a theorem. Since the use qaf infer-
ence rules is obvious from the structure of the proof, brevity and readability is
achieved, and it is clear at each step what the justification for the step is. Some addi-
tional theorems, that can be derived using the inference rules, include:

3.84(a)e, = e, E[z:=¢] = e, =e,0E[z:=¢)]
3.84(b):e;=e, - E[z:=¢]] = e, =€, » E[z:= )]
wheree,, e, are expressions of the same typend s a predicate.
Precedencdrom highest to lowestfx:=e] (contextual substitutioald, -, X, +, +,
-<>0=00 -, 0O (definition).

ale symbol E) is used for equality of two expressions that are both of type boolean. In
general, a calculational proof in Logic E mixes equalities (=pand implications ()
because the composition of the relatieghand - yields the relation- . For example, to
prove thatA — D is atheorem, we need only write the following:
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A
= < hintwhy A=B >

B

O <hintwhy B - C >
C
= <hintwhy C=D >
D

Classical logic [5] seeks the minimum number of axioms and the simplest possible
rules of inference that are suitable for treating meta-theoretic results such as soundness or
completeness However, actual proofs within the theory in realistic domains are often
long and tedious. The result is that Discrete Mathematical texts tend to pay lip service to
formal logic (usually in an introductory chapter) but soon resort to informal mathematics
when the going gets tough. In the experience of the authors, the same problems apply to
logics based on natural deduction or sequent cédlcttie informal proofs are often long
and obtuse compared to the corresponding Logic E proof; readers may verify this by
attempting the proof of Sect. 6.2.2 in their favorite Idgitn addition to brevity, Logic E
is practical because it comes with a toolbox of theorems in a variety of discrete domains
[9]. The granularity of a proof step is adjustable; the hints at each step can be sufficiently
precise to allow the step to be rigorously checked if necessary, while allowing the proof
writer the option of adjusting the size of the step (compressing many steps into one) so as
to keep the proof short.

The software engineering student will also want to make use of theorem provers to do
routine calculations. The use of theorem provers presupposes the type of knowledge
developed by familiarity with logic E, both with regards to finding counterexamples as
well as finding proofs. The following generalization of the input coverage conjecture illus-
trates the use of theorem provers such as PVS [24].

Conjecture 2 — implementability conjecture

An Eiffel specification of a routine with a preconditi®h  and a postcondifon can be
combined into a double-state predicatgec  definedspgc] old P - Q . The double-
state predicatepec may have occurrences of variables prefixedoWdittwhich refer to
the values of the free variables (attributes) in the prestate, as well as unadorned variables,
which refer to values of the variables in the poststate. The predigate assertsfhat if
holds in the prestate, then the routine terminates \@th  true; otherwise any behaviour
including non-termination is acceptable. This captures the notion that the supplier of the
routine is responsible for dealing only with inputs specified by the precondition.

8. Logic E is also sound and complete [33]. Understandably, Logic E emphasizes working within the theory over meta-
theory while classical logic emphasize the meta-theory over theory.

9. Sequent calculi are useful in automated theorem provers; our point addresses hand proofs.

10. The proof is for theorem (10.14a). The point about this example is that it involves the development of a new theory
(conditional expressions) using the standard Logic E toolbox of axioms and theorems.
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A specification is implementable if each prestate has a well-defined poststate. The state
o consists of the attributes of the class as well as the arguments of the specified routine.
Hence, routineverify_user has poststateo = alarm, operate fA,i,p2 and prestate
old o = old alarm, old operateold p1,old i, old p2. Then

specis implementable 0 [Oold o« (o » speqg . (6)
The double-state specification for routirezify _uselis
spec O (-oldalarmOd-old operatg - (g9; - ¢, 00, - €, 005 - €3) )

where theg, andy; are defined as before. Our second conjecture is that (6) is a theorem
given thatspecis as defined in (7). The proof of the conjecture can be done in Logic E, but
we will do it using the PVS theorem prover as shown in Fig. 5. PVS proves the input cov-

FIGURE 5. Using the PVS theorem prover to state and prove conjectures

password : THEORY
begin
passwordtype: TYPE

% attributes and routine argument p2
alarm,old_alarm,operate, old_operate: VAR bool
i, old_i: VAR nat

pl,p2,0ld_pl: VAR passwordtype

% double-state specification of verify_user
spec(i,old_i,operate,alarm,pl,old_p1,p2): bool =
(NOT old_alarm AND NOT old_operate)
IMPLIES
((old_i < 6 AND old_p1 = p2 IMPLIES
(i = 0) AND operate AND NOT alarm and pl = old_p1)
AND
(old_i < 6 AND old_p1 /= p2 IMPLIES
(i=old_i + 1) AND NOT operate AND NOT alarm AND p1 = old_p1)
AND
(old_i >= 6 IMPLIES
alarm AND NOT operate AND i = 0 AND p1 = old_p1))

% Specification Implementability Conjecture
implentability : CONJECTURE
(EXISTS i, operate, alarm, p1:
NOT old_alarm AND NOT old_operate
IMPLIES
spec(i,old_i,operate,alarm,pl,old_p1,p2))
% By convention, above is universally quantified over all free variables
% PVS returns Q.E.D.
end password

erage conjecture automatically (not shown). However, the implementability conjecture
was proved with some interaction from the user using existential instantiation three times.
This illustrates one of the issues involved in using theorem provers: where a theorem can-
not be discharged automatically, the user has to know a proof in outline in advance in
order to provide proper guidance to the prover. We might also want to show that a system
with the given specification has “nice” properties. For example, we might want to show
thatspec( old B - ((old i) =6 - alarm) , i.e. a consequence of therify userspecifi-
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cation is that the alarm is raised on the sixth attempt. There is a simple proof in Logic E to
show that this conjecture is a theorem.

Once a module specification has been validated, Logic E and theorem provers can be
used to develop programs from their contracts [1,7,11,21]. Although the complete devel-
opment from specifications to implementations can be done mathematically, this may not
always be necessary. Nor may it be necessary to provide a complete description or specifi-
cation of all the properties of software products. Students need to develop skill in isolating
useful and important properties.

3.3 Developing programs from specifications

We have seen that requirements and specifications are assertions in predicate calculus.
But programs can also be described by predicates [11]. The fundamental construct of
sequential programs is the assignment statementxex+ y , Which causes a change of
state in the machine. We have already see how a before/after predicate can be used to
describe such changes. Using Eiffel notation we write

Eiffel convention for double-state predicatesx = old x+old y Oy = old v. (8)

In the sequel, we use the Z convention [31] in which primed names sugh as y' and
denote the values of the variable in the poststate, whereas unprimed names such as and
y stand for their values in the prestate. The effect of the assignment can then be formally
described by the predicate

Z convention for double-state predicatesx’ = X+ yy' = . 9)
There is no essential difference between the Eiffel and Z convention. In both cases we
have designations for prestates and poststates. The prime notation is more concise.

The programx, y = x+y, 2y , which is the simultaneous assignment tndy, is
described byx,y :=x+vy,2y 0O x' =x+ydy =2y . Consider a specificatimspec  of
aroutinem of aclas§€ defined as follows:

classC feature

X,y. INTEGER -- attributes
m -- routine to doubley while keeping—y  constant, i.e.
--m.spec. X-y' =x-yQy =2y

end C
We can use logical calculation to derive an implementation (code) for the rautirem
the specificatiom.spec as follows:

m.spec
= <definition ofm.spec>
X' —y =x-yly =2y
= <Leibniz 3.84(a) >
X' =2y =x—yQy =2y
= <arithmeticix —2y = x—y= x = x+y >
X' =x+yldy' =2y
= <definition of simultaneous assignment>
XY =X+Y,2y -- this is the implementatiom. prog
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The above calculation derives a not totally obvious progragn:= x + vy, 2y , from its
specificationm.spec . Further refinement of the code might be needed if a programming
language is used that does not support simultaneous assignment, but the same kinds of cal-
culation apply to such derivations [11].

3.4 Logic as a design calculus

Logical connectives and quantifiers such as conjunction, implication and existential
guantification can be used as a design calculus for software development.

We have used implication for program refinement, also called program correctness (2).
A program prog implements a specificatispec iprog- spec , i.e. every behaviour
satisfying the program description also satisfies the specification.

We can hide the internal behaviour of the program with the existential operator. The
visible program behaviour i€ prog) where stands for the local program variables.
What is observed inside the machine is of no concern to a client of the machine. Then,
providedv does not occur free Bpec , program refinement becgmesprog) — spec
This is becaus€llve prog -~ spe¢ = (Cve prog) — spec , provided does not occur
free in spec.

Conjunction is a general way to express connection and interaction in an assembly con-
structed from two or more components. If a specification is complex, we can decompose it
into two sub specifications (or designb) abd , providedOD, - spec . Each
design can then be implemented by a separate progresg, p eong) , provided
prog, - D, and prog, - D, are theorems. The final implementatiorpi®g, U prog, ,
and we are guaranteed by propositional calculusptag — spec

We showed how logic can be used for describing requirements, specifications, and pro-
grams. We also showed that logic can be used as a descriptive calculus throughout the
software life-cycle including design, implementation, debugging (e.g. via assertion check-
ing) and documentation. The calculational format and theorem proving can be used in var-
ious phases of the software life-cycle, e.g. to derive a program that implements a
specification, or to establish that an assembly of components satisfies a requirement if the
components satisfy their specifications. The calculational format has the virtues of brevity
and readability that make it easy to use, and the availability of the text [9] means that the
calculational format can be taught to students early in a Computer Science programme.

4.0 A simple case study — cooling tank

In the previous section, we described how calculational logic can be used in all phases
of software design. In this section, we present a small case study that will illustrate the use
of logical methods and tools through all phases of software design from requirements to
implementation. The case study will also allow us to provide a calculational development
of a useful theory for conditional expressions suchifab then e, elsee,) whereb is of
type boolean an@,, e, are two expressions of the same type. For conciseness we use the
abbreviation
bl (10)

€
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(see Appendix in Sect. 6.0). Logic E as described in [9] provides the two axioms
(10.9b ~ bl =¢ (10.101b ~ bl = e,

for conditional expressions. We will need more powerful theorems to simplify calculation.
We therefore refer the reader to the Appendix (Sect. 6.0) in which further theorems of con-
ditional expressions are listed. The Appendix also provides a proof of theorem (10.14a)
below, which is an illustration of the utility of Logic E for stating and developing new the-
ory.

(10.14a)p - E[z:z b|Zj = p- E[z:=e,] providedthap -~ b is atheorem.

Theorem (10.14a) provides a method for simplifying a complex expression consisting of
conditional subexpressions to a simpler expression with the conditional eliminated. Con-
sider a variablex withypd ¥ = NATURAL . It follows that=00x=10x>1 is athe-
orem. Using “IF-transform” reasoning (Appendix Sect. 6.2.3), the following is a theorem:

(x=0- X =x+9-2)
X' =x+(xsl)|3—(x21)|i =| O(x=1-x=x+9-1)|. (11)
O(x>1-x =x+y-1)

We now present an informal description of the case study.

4.1 A cooling tank example

“A tank of cooling water shall generate a low level warning when the tank

contains 1 unit of water or less. The tank shall be refilled only when the low

level sensor comes on. Refilling consists of adding water until there are 9

units of water in the tank. The maximum capacity of the tank is 10 units, but

the water level should always be between 1 and 9 units. The sensor readings

are updated once every cycle, i.e. once every 20 seconds. Every cycle, one

unit of water is used. It is possible to add up to 10 units of water in a cycle”.

[22]

A programmer, looking at the above problem, might immediately write plausible code

for the controller module as shown in Fig. 6. The body of the module executes
“set_alarm; fill_tankonce every cycle.

Routine set_alarmraisesalarm flag if the tank level goes below 1 unit. Routine
fill_tanksets the tank input setpoimtto 9 units if the tank level is already at O units and to
8 units if the tank level is at 1 unit. In this way, the tank is refilled to exactly 9 units at the
end of the cycle.

Apart from the fact that the program in Fig. 6 is wrong (as we shall see later), we have
also not followed the recommended design method presented earlier (Sect. 2.0). In fact,
without a specification that satisfies specification correctness (1), we cannot even begin to
debug the program.

Our rational software design method (Sect. 2.0) requires that we first divide the system
of interest into the external world domaiviand the machin®l, and identify the relevant
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FIGURE 6. Faulty code for the cooling tank example

Module controller
Inputs
level: LEVEL -- input from tank, where type LEVEL = {0 .. 10}
Outputs
alarm: BOOLEAN -- raises tank alarm.Initially false.
in: LEVEL -- setpoint for tank input valve. Initially 0.
Body
every 20 seconds
do
set_alarm; fill_tank
end
Private routines used in Body
set_alarm is -- set the alarm if tank level is low
do
alarm := (level <= 1)
end
fill_tank is -- fill tank if level is low, otherwise do nothing
do
if level =0 then in:=9
elseif level =1thenin:=8
else in:=0
end
end

phenomena. The external world domain, in this case, is the cooling tank with its outflow of
waterout and inflow of watein.

The rough sketch in Fig. 7 illustrates the phenomena of the external world domain,
including phenomena shared with the machinglévelandalarm). The water outflowout
is not a shared phenomenon as the machine cannot measure it. The comment in the figure
indicates that the informal requirements cannot be precise; the figure therefore provides a
precise description of the outflow as a function of water level. One of the benefits of math-
ematical descriptions is that they can be used to remove ambiguities present in the infor-
mal descriptions.

Having identified the phenomena of interest, the next step is to write the requirements
for the cooling tank. We assume that the machine will read sdegelat the beginning of
a cycle, immediately calculate the new valuesifoandalarm, and then repeat this action
at the beginning of the next cycle 20 seconds later. We may therefore describe the require-
ments in terms of the variables of interest at the beginning and at the end of an arbitrary
cycle.

i 1<level<9
O
cooling tank requirement R R, R, LJR; where:[R,: level = (level< 1)||9eve|_ out (13)
O
[Rs: alarm=level<1

The initial value of the water level, the alarm signal, and the outflow are designated by
level alarm andoutrespectively. The value of the water level at the end of the cycle is des-
ignated bylevel . The requirement thus states that the final value of the water level must
be between the stated bounds, the tank must be filled (at the end of the cycle) if it goes low
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FIGURE 7. Rough sketch of the cooling tank identifying the phenomena of interest

external world phenomena

in, level: LEVEL -- phenomena shared with the machine
alarm: BOOLEAN
out: LEVEL -- phenomena not shared with the machine where
out = (if level=1then 1 else Q (12)

The informal requirements state: “every cycle, one unit of water is used”. This cannot be precise. If
level = 0 at the beginning of a cycle, then there may be no outflow in that cycle. The above law (12)
assumes that the outflow is a function of level. This corresponds to a scenario in which the outflow
valve is (a) automatically opened only when the level reaches 1 unit, and (b) releases exactly| 1 unit
every cycle as long as it is open. It is up to the software engineer to ascertain from the domain
specialists the precise behaviour of the external world phenomena.

MACHINE DOMAIN EXTERNAL DOMAIN

water tank

(at the beginning of the cycle), and the alarm bell must be sounded (at the beginning of the
cycle) if the level is low. The next step in the recommended design method is to describe
the properties characterizing the external world domain.

W;: level = level+ in— out

external world description W W, W, where:[]

1 (14)
OW,: out = (levelz1)|;

The external domain property/, is derived from a physical law that says flow must be
preserved, i.e. the flow at the end of a cycle is what the original level was, adjusted for in-
flows and outflows. Propertyv, asserts that the outflow at the beginning of a cycle is one
unit (see informal description) unless there is no water left to flow out (this part was not in
the informal description, but must be added if the description is to be precise).

In the absence of a controller (tineaching, the “free” behaviour of the cooling tank
will not satisfy the requirements because inflow setpaintan be set to any value. In
order to satisfy the requirements, we must therefore specify a machine to control the flow
to meet the requirements.

The requirements and external world descriptions are allowed to refer to owtflow
However, there is no sensor fout, hence, it is not a shared phenomenon, and the machine
may thereforeot refer to it. Here is a first attempt at the machine specification:
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in = |elseif level=1 then 8

(15)

if level=0 then 9
Llseif level>1 then O]

Oalarm= levels 1

Our assumption is that the machine works much faster than the cycle time of the cooling
tank. Therefore, the machine instantaneously getnd alarm to the values described
above at the beginning of each cycle. In conformance with our definition of what a specifi-
cation is, (15) refers to shared phenomena only.

The controller module described earlier (Fig. 6) implements the specification of (15).
The specification might at first sight appear correct, for it adds 9 units of water if the level
is zero and 8 units of water if the level is one (1 + 8 = 9); nothing is added otherwise. How-
ever, the machine specification is wrong, as can be seen by a counterexample.

Consider a state at the beginning of a cycle in whskel = 1 . By the above specifica-
tionin = 8. By W, it follows thatout = 1 , and hence W,

level = level+ in— out
=8
so the requiremeri,  will not be satisfied because the tank is supposed to be at 9 units of
water at the end of the cycle. The failed specification did not take into account the fact that
there is an outflow of 1 unit when the level is at 1 unit (recall that there is zero outflow

when the level is zero). This counterexample was detected when the logical calculation for
specification correctness (1) was performed. A correct specification for the controller is:

. 9

M.s;:in = (levels1

machine specificationM.specd] Ms; OM.s, where:7 ( lo
[M.s,: alarm = levels1

(16)

which states that 9 units must be added irrespective of whether the level is zero units or
one unit of water at the beginning of a cycle. Specification correctness (1) holds if we can
show the validity of

(Olevel LEVELe WO Mspec— R) 17)

which asserts that no matter whaxtelis at the beginning of a cycle (provided it is of type
LEVEL), and provided the application domain satisfies external world descriptifi)

and the machine its specification, then the requirements will be satisfied. By Logic E, this
is the same as proving that

O<level<10 - (WO M.spec— R). (18)
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Gathering together all the information, we must prove:
W,: 0<level<10

W;: level = level+ in— out
W,: out = (levelz 1)|(1)

M.s;:in = (level< 1)|(9)

M.s,: alarm = levels1
R;:1<level<9

. _ 9
Ry: level = (levels1)|  orau
Ry alarm = levels1

The proof follows from three lemmask;  can be obtained directly fidns, (using
reflexivity of implication (3.71p - p ):

Lemmal:M.s, - R; . (19)

Next, we prove the more specific requirem@&gt  first, in anticipation that it may also be
useful in derivingR; . In the proof oR, , it seems worth starting with  since it has the
most precise information (it is an equality, not an inequality). The resulting calculation
(see Fig. 8), which also uses assumptiohs Mg , yields:

Lemma2W, OM.s; OW.d; - R, . (21)

The proof of Lemmaz2 is long (in fact, longer than we had hoped). The proof length is due
to the need to do case analysis (see IF-transform in Fig. 8). It was precisely this case anal-
ysis that provided a counterexample to the naive specification (15).

As we originally anticipatedr, can be derived fr@n  (see Fig. 9) to obtain
Lemma3: W,OW, - (R, - R;) . (23)

Using the three lemmas, a quick calculational proof shows the validity of specification
correctnesg$lllevel LEVELs WO Mspec- R)

The cooling tank example can be checked automatically with the help of PVS (Fig. 10)
The PVS descriptions of the external world, requirements, and machine specification for
the cooling tank are shown in the figure. Conjectsystem_correctne¢snd of Fig. 10) is
proved automatically when submitted to the PVS prover. The PVS file also shows an
example of a sanity check to ensure that the outflow is correctly described.

4.2 Tools

Currently, a variety of tools are available that have been used in selected industrial
applications (Table 1).We have shown the usefulness of PVS [24]. The specification lan-
guage of PVS is based on a typed higher-order logic. The base types include uninterpreted
types that may be introduced by the user and built-in types such as the booleans, integers,
reals, as well as type-constructors that include functions, sets, tuples, records, enumera-
tions, and recursively-defined abstract data types, such as lists and binary trees. PVS spec-
ifications are organized into parameterized theories that may contain assumptions,
definitions, axioms, and theorems. PVS expressions provide the usual arithmetic and logi-
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FIGURE 8. Calculational proof of Lemmaz2
Wl

= < definition ofw,; >
level = level+ in— out
= <assumptionw, >
level = level+ in—(levek l)\é
= <assumptionM.s, >
level = level+ (levek 1)\2—(Ieve|2 1)\3

< definition of LEVEL; IF-transform leaving “IF” in last conjunct to conform to final form>
(level=0 - level =level+9-0)
O(level=1 - level =level+9-1)

O(level>1 - level =level+0—(levelz 1)\(1))

< Leibniz substitution 3.84(b) to first two conjuncts>
(level=0 - level =0+ 9-0)
O(level=1 - level =1+9-1)

O(level>1 - level =level+0—(levelz 1)\(1))

= < arithmetic simplification >
(level=0 - level = 9)
O(level=1 - level =9)

O(level>1 - level = level-(level 1)|)

= < theorem of prop. logid(p - r)O(q - r))=(p0qg - r) to first two conjuncts>
(level<1 - level =9)

O(level>1 - level =level-(levek 1)\(1))

= <assumptionW, to reinsertout >
(levelsl - level =9)

O(level>1 - level =level- ouf
= <arithmeticlevel< 1 Olevel>1 ; IF-transform >

level = (level<1)[} .
= < definition ofR, >

R,.
The above proof is based on the assumptiogs  narg . By EDT (see extended deductign theo-
rem in the Appendix) we have thus established the lewgiaM.s, - (W; =R;)
from which it is trivial to derive the lemma:

Lemma2 W, OM.s; OW, - R,. (20)

cal operators, function application, lambda abstraction, and quantifiers, within a natural
syntax. An extensive prelude of built-in theories provides useful definitions and lemmas.
The description language Z is based on a typed version of ZF set theory [31]. It is per-
haps the most widely used formal specification notation in industry, particularly in
Europe. It has been harder to develop mechanized help for Z since it was not designed
with automation in mind. Nevertheless, tools such as Z/Eves support the analysis of Z
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FIGURE 9. Calculational proof of Lemma3
Ry
= < definition of R, ; IF-transform with CRtgssumptionW, to replaceout >
(levels1Olevel =9)

O(level> 1 Olevel = level-(levet 1)|)

= < (10.14b) withlevel>1 - level=z1 >

(levels 1 Olevel =9)
O(level>10Olevel =level-1)

ad <arithmetic:level =9 - R; and MON (see appendix Sect. 6.1) >
R, O(level>10level = level-1)
0 <assumptiorW,: 0 < level< 10, arithmeticilevel>10W, - 2<level<10, and MON >

R, O(2<level<100level = level-1)

= < Leibniz substitution 3.84(a) wittevel = level+1 >
R, O(2<level + 1< 100level = level-1)
ad <weakening theorem (3.76p)0qg - p and MON >
R, O0(2<level +1<10)
= < arithmetic simplification >
R,O(1<level<9)
= < definition ofR; and idempotency of disjunction (3.26), ielip = p >
R; .
By EDT, we have established the theorem

Lemma3:w,0W, - (R, - R;) (22)

specifications by syntax and type checking, schema expansion, precondition calculation,
domain checking, and general theorem proving [30].

PVS and Z do not provide explicit support for the transition from specifications to
implementations. The programming language Eiffel does provide lightweight formal
methods support, especially with its clean implementation of design-by-contract. It is an
ideal tool for the development of programs from specifications. By contrast, the newer
Java language — for all its important features, such as type safety, automatic garbage col-
lection, and web applets — does not even have the simple assert statement of C++.
Although a certain amount of assert functionality can be implemented in a Java program
[28], it does not match the Eiffel features for design-by-contract. This means that compo-
nents in Java cannot be specified with the same degree of precision or ease as those in
Eiffel.

The B-Method (with associated machine support from the B-Tool) uses a Z-like
Abstract Machine Notation (AMN), and it supports development of specifications in
AMN all the way down to executable programs [1]. Perhaps the most well-known exam-
ple using B is the development of the Paris Metro braking system software. In the Paris
Metro, the choice was between reducing the timing between trains (by increasing the
assurance in the system as a whole) or building a new tunnel at vast cost.

Students can be introduced to the use of automated tools, such as PVS or the B-Tool, in
the later stages of their undergraduate education, e.g., third or fourth year software engi-
neering courses, and in particular after they have a thorough grounding in the calculational
Logic E. Without a grounding in logic, students will have difficulty understanding the

The Logic of Software Design January 6, 2000 25



FIGURE 10. Automated PVS proof of the cooling tank system

tank: THEORY
BEGIN
LEVEL: TYPE ={x:nat|x <=10}

% Designations. We use "level_f" for the final value of "level"
level, level_f, inn, out: VAR LEVEL
alarm: VAR bool

% Description of the external world domain
external_world (inn, out, level, level_f): bool =
out = (IF level >=1 THEN 1 ELSE 0 ENDIF)
AND
(level_f = level + inn - out)

% The requirements document
requirement (level level_f,out,alarm): bool =
(1 <= level_f AND level_f <=9)
AND
(level_f = (IF level <= 1 THEN 9 ELSE level-out ENDIF))
AND
(alarm = (level <= 1))

% The machine specification

machine_spec (level,inn,alarm): bool =
inn = (IF level <= 1 THEN 9 ELSE 0 ENDIF)
AND
alarm = (level <= 1)

system_correctness : CONJECTURE
external_world(inn,out,level,level_f)
AND
machine_spec(level,inn,alarm)
IMPLIES
requirement(level,level_f,out,alarm)

sanity_check : CONJECTURE
real_world_description(inn,out,level,level_f)
IMPLIES
(out=0ORout=1)

END tank

proof steps that they are applying, and they will certainly have complications in continuing
proofs when difficulties or apparent dead-ends arrive.

4.3 Timed and Hybrid descriptions

In the cooling tank example, we abstracted out time by restricting our attention to a sin-
gle arbitrary cycle. This prevents us from describing liveness properties such as “eventu-
ally the tank will be filled to 9 units of water”. To describe such properties we can extend
our logic with temporal operators so that we can assert conjectures such as:
>(level = 9) . The temporal formula®p means eventually at some time after the initial
statep holds, andly meansolds continually. Thugsx>p means that in every state of
a computation there is always some future occurrenpgl®y.
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Sometimes, even more specific timing information must be described. The property
that the tank should always be filled to 9 units every 10 cycles (i.e. every 200 seconds) can
be expressed adsC_ o (level=9)  in real-time temporal logic [23].

In some situations a hybrid approach must be followed in which there is a mixture of
continuous and discrete mathematics. For example, in a more precise model of the outflow
we might want to express the relationship between the tank outflow and the valve setting
v(t) as

%out(t) = ¢, V(1) + cleveld

whereout(t) is the total amount drained from the tank up to tinaadv(t) is the outflow
valve setting as a function of time.

The StateTime [23], STeP [18], and Hytech tools [2] are examples of toolsets that can
analyze and calculate properties of systems described with real-time temporal logic or
hybrid descriptions using algorithmic and theorem proving techniques. These tools enable
the designer to analyze concurrent and nondeterministic reactive programs.

5.0 Discussion and Conclusions

Mathematical logic can be used throughout the software development life-cycle both as
a design calculus and for documenting requirements, specifications, designs, and pro-
grams. The use of mathematical logic provides precision, the ability to predict behaviour,
and a greater understanding of software, thus providing the developer with a tool akin to
that used in other engineering disciplines. Learning the methods and tools of logic should
be an important component in the education of software professionals.

Critical skills include the ability to translate informal requirements into a formal
description, the ability to reason about these descriptions by proving that putative conjec-
tures are theorems, and the ability to find counterexamples to conjectures. Logic E is a
useful calculational logic for developing these skills in a variety of domains. Our develop-
ment of a theory for conditional expressions (Sect. 6.2) illustrates the utility of the logic.

Logic and logical calculation methods can and should be used right at the beginning of
a computer science education. Here we summarize briefly a curriculum that makes use of
calculational methods, from introductory undergraduate courses, through upper-year soft-
ware engineering courses.

» The logic text by Gries-Schneider [9] can be used in two courses (each lasting a semes-
ter) in logic and discrete mathematics in the first and second years. This is based on the
idea of first teaching calculational logic, and then actually using the logic to reason
about the various discrete domains (sets, sequences, integers, combinatorics, recurrence
relations and algebra). This provides the student with familiarity and comfort in logical
calculation right from the beginning. This course will also help in future material, such
as understanding design-by-contract and theorem provers. The first-year mathematics
programme for CS students at York University teaches such courses, based on the
Gries-Schneider text. These courses are taught by mathematicians in the Mathematics
department. At first, there was a discomfort and outright opposition to the non-classical
approach both by faculty and students. Experience has gradually worn away the opposi-
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tion and former opponents of the change are now somewhat suppotftivene experi-
ment, we discovered a high correlation between students who do poorly in the first year
logic course, and students who do poorly in the first year programming ‘éourse

* The usual CS1 and CS2 courses can be taught in Eiffel, stressing design-by-contract
[16,20]. The trend currently is to use Java in the first year. This provides an opportunity
for a text book for Java that will develop suitable design-by-contract constructs for Java
[28]. Until such books, and assertional techniques, for Java appear, use of mathematical
logic in CS1 and CS2 courses that use Java may occur by treating pre- and postcondi-
tions as comments or annotations. The table specification methods developed by Parnas
[27] may also be of help for languages that do not have design-by-contract built in.

» A third-year course in the use of tools such as PVS and B-Tool can build on the mate-
rial of the first few years. Such a course could use languages that support design-by-
contract, such as Eiffel, in a software engineering project. PVS or B-Tool could be used
to formally derive programs from specifications (that would be eventually implemented
in Eiffel). Calculational logic would be used as the foundation for understanding proofs
and provers and to do small calculations by hand. The formal methods web site has a
list of courses with online material and using a variety of tbols

» Comprehensive texts on object-oriented specification, design, and programming, with
emphasis on the production of quality software using design-by-contract and BON/
Eiffel are also available [20,34]. These texts can form the basis of object-oriented
design courses in the 3rd and 4th years using “lightweight” formal-methods.

» A fourth year course can introduce the formal methods of reactive systems (e.g using
STeP [18], SPIN [13] or SMV [3]). Suitable textbooks are available for each of these
courses [14], but more need to be written, emphasizing the use of mathematical meth-
ods and calculation in design.

A variety of applications of formal methods to industrial systems have been reported as
shown in the Table 1. These applications can be used for case studies in more advanced
classes. Students should also apply their skills to case studies such as that of the Therac-25
radiotherapy machines [17] and the Ariane 5 heavy launcher [16], which illustrate the
need for professional standards in all aspects of design.

TABLE 1. Some examples of the use of tools in industrial practice

Tool System Application
PVS hardware AAMP5 Microprocessor
SMV hardware HP Summit Bus.
Spin communication protoco| Ethernet collision avoidance.

11. One former opponent of the approach has told the first author that, on pedagogical grounds, he supports the current
curriculum and would not like to go back to the old approach.

12. A comparison was made between students on the mid-term test of the logic and programming courses respectively in
the fall term of 1998; 57 out of 64 students (89%) who failed the logic course also failed the programming course.
The correlation between good students in logic and programming was less; 25 out of 46 students (54%) who got a B
or higher in logic also got a B in programming.

13. http://archive.comlab.ox.ac.uk/formal-methods.html and follow the “Education” link.
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TABLE 1. Some examples of the use of tools in industrial practice

Tool System Application

software Requirement analysis of Space Shutfle
GPS Change Requests

Z/Eves communication protocol A Micro-flow modulator that control$
flow of information from a private sys-
tem to a public system.

PVS hardware/software IEEE-compliant subtractive division
algorithm.
B-tool software Paris metro.

a. PVS was used to specify and verify the Rockwell AAMP5 microprocessor hav-
ing 500,000 transistors; 108 out of the 209 instructions of the microcode were
described. The exercise found one error that was a missing requirement. Also
found, was a coding error (improperly sized stack) that would not have been
detected in ordinary assurance testing [32].

We should not underestimate the effect that education can have in practice. “Spice” is a
general purpose electronic circuit simulation program that was designed by Donald Peder-
son in the early 1970s at the University of Berkeley. Circuit response is determined by
solving Kirchoff's laws for the nodes of a circuit. During the early 1970s, Berkeley was
graduating over a 100 students a year who were accustomed to using Spice. They started
working in industry and loaded Spice on whatever computers they had available. Spice
quickly caught on with their co-workers, and by 1975 it was in widespread use. Spice has
been used to analyze critical analog circuits in virtually every IC designed in the United
States in recent years [29].

In software development, the practitioner has to sub-ordinate everything to the over-
riding imperative to deliver an adequate product on time and within budget. This means
that the theory and tools we teach must be useful and as simple as possible. Logic E,
design-by-contract, Eiffel, and theorem-provers such as PVS embody useful theory and
tools that can be taught and used now and that will contribute to professional engineering
standards for software design and documentation.

6.0 Appendix on Logic E

6.1 Derived Inference Rules
The fact that conjunction is monotonic in its first argument is expressed by the theorem:

(4.2) Monotonicity of conjunctionfp —» q) - (pUr - qQr)

Conjunction and disjunction are monotonic in both arguments, and implication is mono-
tonic in its second argument (its consequent). Derived rules MON and AMON generalize
this type of argument to quantifiers [8].

Extended Deduction Theorem(EDT): Suppose we can prov@ provided we add the
(temporary) axiom#®,, P, ..., P, to Logic E with the variables of the  considered to be
constants. Ther, OP,0... OP, - Q is atheorem.
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Modus Ponens MP Let z be a sub-formula of where is not within an operand of an
P, P-Q equivalence or inequivalence. The positiorzof witlin  basn par-
q ity if it is nested within an even number of negations, antecedents, and
Theorem Equivalence TE ranges of universal quantifications; otherwise itddd parity
p, q Examples:
pP=q E n parity of z in E
Case Replacement CRa: xQOz 0 even
g, Uag, 0as -~(x02) 1 odd
(=x) > z 0 even
0 (ay - p)% (+2) - x 2 even
p=0 U(9, -~ p)O (Ox[=z0 x= P) 2 even
1l O (OxjzOx* P 1 odd
0 O(as » p)O
Monotonicity MON
Case Replacement CRb p-0Q . . . .
q, 00, 0ds E[z=p] - E[z:=q] provided the parity of irE is even
O
E (G p)% Anti-monotonicity AMON
=0 U(q Op)C -
P 1l 2 0 — P-9 —— provided the parity ot irE is odd
0 O(a, Op)O E[z:=p] - E[z:=q]

(In the course of the proof o , inference rule Substitution may not be applied to any
temporary axiom or to any temporary theorem that is derived in the course of the proof if
the variable being substituted for appears in one of the original assumptions.)

6.2 Conditional expressions

We denote the conditional expressnm|n IBywherelF is a function with three parame-
ters, i.e.

IF: BOOLEANX Tx T- T

Hence,typg ) = BOOLEAN andypd g) = typge) = T for some typ€ . It also fol-
lows thattypg IF) = T . We assume that any usellbfsatisfies these typing constraints.
The two axioms for reasoning about conditional expressions are [9]:

Op®0= o e
(10.9b - gbl'5 (10.101-b - %’|ezm‘e2

6.2.1 Theorems of conditional expressions derived from the axiom:

€ &
(10.11)true|ez = e (10.12)fa|se|ez =
(10.132)b| = (b ~ &) O(=b - &) (10.130)b| " = (b D)) O(~bDey)
2 2
providedtype g) = typg g) = BOOLEAN | providedtypd g) = typg ) = BOOLEAN

(10.14a)p - E[z:z b|Zj = p- E[z:=¢] provided thap - b is a theorem.
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(10.14b):p O E[z = b|zj = pUE[z:=¢] provided thap - b is a theorem.
(10.14¢):p - E[z:z b|Zj = p- E[z:=e)] provided thap - -b is a theorem.

(10.14d):p O E[z = b|21} = pOE[z:=e)] provided thap - -b is a theorem.

Proof of theorem (10.11)
true - true|zz=e1 - (10.9)[b :=true]

= <left identity of implication (3.73) (i.erue -~ p=p )>
true|Zi =g

Hence, by Equanimity, (10.11) is a theorem.

6.2.2 Proof in Logic E for theorem (10.14a)
By the derived rule Modus Ponens (MP), it is sufficient to prove that

(p - b) = EP - E[z:: b|ij =po E[z= eﬂ%

is a theorem. Here is the proof.

(p-b) - - E[z:z b|:j = p- E[z=e,]Y
= < distribute implication over equivale (3.63) >
(p-b) - - %[z:: b|:j =E[z:=¢)]F
= < shunting (3.65) >
(pO(p - b)) - %[z:: b|Zj =E[z:= e
= < (3.66) on antecedent >
. —
(pOb) ~ [ 2i= ]| =Elz:= e,If
= <replaceb by true in theconsequenbecaus® is in theanteceden(3.85b) >
(pOb) - BE[Z = true|:1} =E[z:= el]E

= < axiom (10.11) for conditional expressions >
(pOb) - (E[z:= ¢] =E[2:= g]])

= < identity of equivale (3.3) >
pOb - true

= <right zero of implication (3.72) >
true -(3.3)
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6.2.3 “IF-transform” reasoning uses case replacement (CR) and (10.14)
Consider a variable withypd 3 = NATURAL . It follows that
x=00x=10x>1 (24)

is a theorem. We may then use derived rule CR, (10.14a) and (10.14c) to show that the fol-
lowing is a theorem:

(x=0-x"=x+9-2)g
O(x=1- X =x+9-1)3
O(x>1 - X' =x+y-1)01

IF-transform : X' = X + (X< l)|3—(x2 1)|i =

oo™

Here is the proof.
X' = X+ (X< 1)|3—(x2 1)|i

= < case replacement (CRa) with (24) >

1

X=0 5 X =X+ (X< 1)|3—(x2 1)|,

Ox=1- x' = x+ (X< 1)|3—(x2 1)|;
Ox>1 - X' = X+ (X< 1)|j—(xz 1)|;
= < (10.14a) withx =0 - x<1 to first conjunct >
X=0-5 X =X+9—(x= 1)|i
Ox=1- X' =X+ (X< 1)|3—(x2 1)|;
Ox>1 - X' =X+ (X< 1)|3—(x2 1)|i

= < (10.14c) withx=0 - -x=1 to first conjunct >
X+9-2z

X=0 X

Ox=1- X !

z

X+ (X< 1)|3—(x2 1)|
Ox>1 - X' = x+(x< 1)|§-(xz 1)|;

= < applying the same type of reasoning to the 2nd and 3rd conjunct >
X=0-X =x+9-2
Ux=1-x=x+9-1
Ox>1 - X =x+y-1
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