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1.0  Introduction

Mathematical logic is the glue that binds together reasoning in many domains su
philosophy, digital hardware, logic programming, databases, and artificial intelligenc
software development, logic has played an important role in the area of program d
and verification, but on the whole its use has not been adopted in practice.

It has been suggested that logic should play a more significant part in software dev
ment than it currently does [4,27], the argument being that software behaviour cann
specified, predicted, or precisely documented without it. Engineers traditionally use m
ematics to describe properties of products such as bridges or machinery. It is unlikel
we could send a rocket to the moon without the precision of a mathematical theory. S
larly, software engineers should use mathematical logic to describe and understand
erties of their products, which are programs. Although ordinary programs can be wr
without the precision afforded by logic, complex programs are unlikely to work corre
without a good mathematical theory.

The argument for the use of logic (and formal methods in general) in software deve
ment is not generally accepted for a variety of reasons2. It is argued that the use of mathe
matical methods is expensive, unproven in large-scale development, and unsuppor
usable tools. Many papers (e.g. [6,10,12]) have discussed the reasons for practitione
adopting mathematical methods in full or in part. These arguments will not be recou
here, but it is clear that software professionals will not adopt mathematical methods
they are easy to use, improve our ability to deliver quality code on time, provide tool
port, and are founded on an appropriate educational programme. It is the educationa
gramme that we address in this paper.

Electrical engineers are taught mathematical methods (e.g. differential equatio
Laplace transforms) and tools (e.g. Matlab or Spice) for describing the properties o
cuits. Such methods and tools are a key component of an electrical engineering educ
Similarly, engineers use mathematical descriptions in discussions of the deformatio
beam, the flow of fluid in a pipe and the evolution of a chemical reaction. Methods, to
and curriculum components of similar simplicity and ease of use are needed for the e
tion and practice of software engineering.

In this paper, we provide an overview of how mathematics, and in particular logic,
be used throughout the software development cycle, and discuss what methods an
can be introduced in the computer science curriculum to support software develop
We provide some simple examples of methods and tools to motivate the material.

Organization of the paper
The paper commences with an overview of software engineering, its purpose, a

fundamental definitions. We describe a method for software design, using logic a
foundation. Logic is used for describing requirements, specifications, design, and
grams. We recap the calculational proof format, presented in [9], and thereafter appl
simple examples that illustrate the method. We discuss some of the existing tools th
support calculational proof and the use of logic for software design, and we discuss

2. But see Table 1 (end of Sect. 5.0).
The Logic of Software Design January 6, 2000 3
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logic can be integrated into a computer science curriculum, indicating our own ex
ences in doing so.

2.0  Software Engineering

A program is a description or specification of computer behaviour. A computer
cutes a program by behaving according to the instructions of the program. Hehne
writes: “People often confuseprogramswith computer behaviour. They talk about what a
program ‘does’; of course it just sits there on the screen; it is the computer that ‘d
something. They ask whether a program ‘terminates’; of course it does; it is the exec
that may not terminate. A program is not behaviour, but a specification of behavi
When the disk crashes or the arithmetical unit overflows the difference between a pro
and computer behaviour is obvious.

Think of it as follows: program + computer =machine. For example, an executing
application such as word processor is a machine similar to a typewriter, but with more
satility. Similarly, a software telephone switch is a machine — similar to an old-fashio
telephone exchange, except that the new kind of machine does not consist of
switches and clattering relays.

The purpose of software development is to build special kinds of machines — t
that can be physically embodied in a general purpose computer — merely by desc
them as programs. A general purpose computer accepts our description of the par
machine we want (as described in the program), and converts itself into the de
machine. We summarize below some insights into software development as describ
Jackson [15].

2.1  Requirements, Specifications and Programs
To construct a “software” machine, we must go through normal product developm

that engineers perform when constructing “hard” machines like typewriters, bridges
motors. This includes requirements elicitation, analysis, design, implementation, te
and documentation.

A software machine must ultimately be installed in the world and interact with it. T
part of the world in which the machine’s effects will be felt — and which is of most int
est to the customers of the machine — is called theexternalworld3 (denoted byW). So we
have a machineM and the external world that it interacts with,W. The phenomena ofW
predate the machineM. The machine designer (programmer) can describe the phenom
of W and possibly influence them; but, the designer does not create the phenomenaW.
By contrast, the machine is initially undetermined, and it is the designer who create
shapes the machine phenomena.

3. Jackson [15] callsW theapplication domain. We do not use the termapplication domainbecause this can be con-
fused with a generic domain denoting a class of applications (e.g. the process control domain) or an applicati
gram. The wordenvironmentis also used forW, but this suggests something that physically surrounds the mach
whereasW can also include intangible things such as the rules for safe aviation or employment legislation.
control theoretic literatureW is often calledthe plant andM is calledthe controller.
The Logic of Software Design January 6, 2000 4
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We need to pay serious attention toW. When developing a program to control a plan
we obviously need to understand how the plane works, how it lands and takes off on
ways, and how it can be controlled while in the air. We may also need to understand i
gibles associated with the external world, such as the rules for safe aviation.
understanding must be obtained prior to any attempt to design the data structures an
flow of the software program that will ultimately control the plane.

For example, the one-million line program GPS (Global Positioning System for s
lite navigation) involves an understanding of celestial mechanics, gravity, atomic cl
and cryptography. The phenomena of the external world domain for the GPS are di
from the phenomena (code and data structure) of the machine required to operate it.
larly, a telephone switch deals with telephone calls, a word-processing program deal
text, and a process control program deals with a chemical plant. These domains
phones, text and plants) are very different, and each has its own peculiar characte
that determine how it interacts with the machine.

The phenomena of the external world determine the customer’srequirements4. This is
what makes requirements capture an almost impossible task, because there is no
rigorously checking that we actually understood what the customer wanted whe
deliver the final machine. It is easy for a software developer to ignore the external w
domain (the realm of the customer’s true requirements), for it is more enjoyable to
directly to the machine where one can start implementing the “solution” immediately.
focusing on the machine too soon may quickly lead to confusion and ambiguity. If
were never quite clear on what our customers really wanted then the final product is
to disappoint them. This is also why programmers do not always thoroughly unders
the properties of their products, or apply accepted theory, even when it leads to bet
safer products.

Requirements are therefore about the phenomena of the external worldWand not about
the phenomena of the machineM. Not all the phenomena of the external world are nec
sarily shared with the machine. But the machine does share some phenomena w
external world. The machine can thus try to ensure that the requirements are satisfi
manipulating the shared phenomena at the interface ofW andM.

An example of a shared phenomenon is the event of a passenger sitting in an a
seat and pushing a button to turn on a light. The push of the button is a shared phe
non between the passenger (who is part ofW) and the aircraft control system (M). To the
passenger, the event is “push the button”; to the machine the event is “input sign
interrupt line”. Similarly, the state in which the machine emits a continuous beep is
same state in which the user of the machine hears the continuous beep.

2.2  The gap between requirements and programs
Not all the phenomena of the external world are shared with the machine. There

thus be a gap between the customer’s requirements and what the machine can
directly. We can think of the various phenomena with the help of Fig. 1, in which
is the set of all shared phenomena.

4. Certain select requirements may also refer to the phenomena of the machine, e.g. a requirement that the
must be well-structured and efficient.

W M∩
The Logic of Software Design January 6, 2000 5
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The requirementsRare described in terms of the phenomena ofW, so requirements may
involve phenomena that are not shared with the machine. The program that will runM
will be written in terms of the phenomena ofM. The traditional progression from require
ments to an implemented program is a way of bridging the gap between the phenom
W and those of .

A rational development process, where each step follows from the previous one
everything is done in the most elegant and economic order, does not really exist for
plex systems. Nevertheless, we can fake it [26]. We can try to follow an established p
dure as closely as possible, and the final product and documentation is the ideal that
have resulted had we not departed from the established procedure. There are a num
advantages to faking it in this way, despite numerous departures from the ideal: the
cess will guide us even if we do not always follow it; we will come closer to ration
development; and it will also be easier to measure progress.

Rational software development:

1. Elicit and document therequirementsR in terms of the phenomena ofW.

2. From R, expressed in terms ofW, derive aspecification of the machine,
expressed in terms of the shared phenomena . Specifications thus descri
interface or boundary between the machine and the external domain.

3. From the specification derive the program . The program refers
shared phenomena and internal phenomena ofM.

We must now provide a justification that the program satisfies its requirementR. To justify
this claim, we can reason as follows:

1. Argue that if the specification  is satisfied, then so is the requirement, i.e.

specification correctness: (1)

(we may use any knowledgeW that we have of the external world to prove the implic
tion).

2. Argue that if the machine behaves like , then specification is satisfi
i.e.,

implementation correctness: . (2)

The implication states that is a more specific or determinate product than
more abstract specification . This makes the program more useful and clos
implementation than the specification, for the program describes how the specific
is implemented, whereas the specification describes what must be implemented,

FIGURE 1. The phenomena of the external world domainW and the machineM

(From Jackson [15, p127])

External world domain W Machine M

M

M .spec
W M∩

M .spec M.prog

M .spec

W M.spec∧ R→

M .prog M.spec

M .prog M.spec→

M .prog

M .spec
The Logic of Software Design January 6, 2000 6
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out any unnecessary appeal to internal detail. An example of a specificatio
where is the final value of program variable . The specificati

asserts that the final value of must be either zero or one. An implementation o
specification is the program “ ”, which can be described in logic by the asser

. Since is a theorem of propositional logic, it follow
that the machine implementation satisfies its specification5.

3. Having shown specification and implementation correctness, we are then entitl
conclude that the machine correctly achieves the customer requirements, i.e.

system correctness: . (3)

In the development process described above, we made a distinction betweenspecifica-
tionsandrequirements. Actually, the term “specification” is one of a trio of terms: require
ments, specifications and programs.

Requirements are all about — and only about — the environment of the machine
the external world phenomena. The customer is interested in these external world
nomena — he wants the nuclear plant to run properly or the paychecks to be calcu
correctly. Some of the customer’s interests may coincidently involve shared phenome
the specification interface .

By contrast, programs are all about — and only about — the machine phenomena
grammers will surely be interested in phenomena at the interface ; this intere
motivated by the needs to obtain the data on which the machine must operate.

Specifications form a bridge between requirements and programs. Specification
only about the shared phenomena . Specifications are requirements of a kin
they are also partly programs. Since specifications are derived from customer re
ments by a number of reasoning steps, they may not make obvious sense to either th
tomer or the programmer. Although specifications are programs of a kind, they may n
executable (we prefer that they not be tainted by irrelevant machine detail).

The quality of the final software will depend critically on gettingW andR right. Jack-
son [15, p127] quotes a well-known incident in which a pilot landing his plane had tr
correctly, to engage reverse thrust, but the system would not permit it, with the resul
the pilot overshot the runway. The pilot could not engage reverse thrust because th
way was wet and the wheels were aquaplaning instead of turning. The control sof
allowed reverse thrust to be engaged only if pulses from the wheel sensors showed th
wheels were turning (which they were not; they were aquaplaning).

Fig. 2 shows the phenomena that we are concerned with. The requirement was

requirement R: .

The developers thought that the external world domain was described by

external world : (4)

5. In fact, it may take many successive steps to refine a specification into a program. See [11] for the relevant t

x′ 0= x′ 1=∨ x′ x

x

x := 1

x′ 1= x′ 1=( ) x′ 0= x′ 1=∨( )→

W M.prog∧ R→

W M∩

W M∩

W M∩

reverse_thrust_enabled moving_on_runway≡

W
moving_on_runway wheels_turning≡
wheels_turning wheel_pulses_on≡




The Logic of Software Design January 6, 2000 7
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So they derived the specification

machine specification : .

For the above description of the external world domain, specification correctnes
given by is indeed a theorem. Unfortunately, the developers did
understand the external world domain correctly. The first property given in (4) was in
a correct description of the external world domain, but the second property was not. W
the wheels are aquaplaning on a wet runway, the second property fails to hold, be
“ ” is true but “ ” is false. The correct description of the
external world was instead

With this correct description of the domain, a machine satisfying specification
listed above no longer satisfies the requirements, because specification correctness
longer holds. It is thus crucial to get an accurate description of the external world do

2.3  Descriptions
The central activity of software development is description. Any software project

need many different kinds of descriptions. These descriptions provide essential docu
tation of the software. Here are some of the main types of descriptions [25].

• Specificationsor requirementsstate therequiredproperties of a product (e.g.
and ). The difference between a requirement and specification was describ
Sect. 2.2.

FIGURE 2. Plane overshooting the runway

External world W Machine M

reverse_thrust_enabled
moving_on_runway

wheels-turning
wheel_pulses_on

machineM
wheel_pulses_on

reverse_thrust_enabled

machine interface

M .spec wheel_pulses_on reverse_thrust_enabled≡

W M.spec∧ R→

moving_on_runway wheels_turning

W:
moving_on_runway wheels_turning aquaplaning∨( )≡
wheels_turning wheel_pulses_on≡




M .spec

M .spec
R

The Logic of Software Design January 6, 2000 8
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• Behavioural descriptionsstate theactual properties of an entity or product. Behav
ioural descriptions describe the visible properties of an entity without discussing ho
was constructed. The external world description (4) is an example of a behavi
description — in this case it is not a product or program that is being described bu
environment (runway) in which the product (the plane) will operate.

• Constructive descriptionsalso stateactual properties of a program, but they als
describe how a program is composed of sub-programs down to executable code
gram text is an example of a constructive description. For example, the program te
the module in Fig. 6 describes how the body of the module is constructed from two
vate routines.

Specifications and requirements are expressed in what grammarians call the op
mood, i.e. they express a wish. Behavioral and constructive descriptions are expres
the indicative mood, i.e. they assert a fact. Thus, a description may include propertie
are not required, and a specification may include properties that a (faulty) product ma
possess.

We cannot necessarily tell from a list of properties whether we are dealing wi
behavioural description of an already existing product or with a specification of wha
hope will eventually become a product. It is therefore crucial for the writer to make
relevant distinction. Once we have demonstrated implementation correctness (2), t
specification itself becomes a description.

Although mathematics can be used for all descriptions, not all descriptions nee
mathematical. We can distinguish between rough sketches, designations, definition
refutable descriptions [15].

A rough sketch(e.g. Fig. 1) is a tentative and incomplete description of something
is being explored or invented. It uses undefined terms to record half-formed or vague
and is useful especially in the early development phase.

A designationsingles out some particular kind of phenomenon that is of interest, t
us informally in natural language how to recognize it, and gives a name by which it wi
denoted. Here are some designations:

-- wheels of plane x are turning

-- plane x aquaplaning on the runway

Definitions introduce new names in terms of already existing descriptions. Here
definition of : .

A refutable descriptiondescribes some domain, saying something about it that can
principal, be refuted or disproved.

Predicate logic provides a means for expressing refutable descriptions. A predica
be eithervalid (true in all behaviours of the product), acontradiction(false in all behav-
iours) orcontingent (true in at least one behaviour and false in at least one).

A useful predicate for specifications and requirements is one that is contingent.
predicatetrue (or any theorem for that matter) is not a useful specification of a prod
because any behaviour of the product satisfiestrue. So too,falseis not a useful specifica-
tion, since it is satisfied by no behaviour. A useful specification is one that satisfies
cisely and only those behaviours that we wish to observe in the product.

wheel_pulses_onx( ): BOOLEAN

aquaplanex( ): BOOLEAN

plane_movingx( ) plane_movingx( ) wheel_pulses_onx( ) aquaplanex( )∨≅
The Logic of Software Design January 6, 2000 9
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External world descriptions should also be refutable. For example, the external w
property “ ” (4) is refuted by an observation in which
“ ” is true but “ ” is false. This is exactly the behaviou
that is observed when the wheels aquaplane.

The use of mathematical descriptions throughout software documentation and des
an idealization. Not all requirements can be captured by predicates, at least not e
Sometimes rough sketches must be used, or we must resort to vague qualifications s
“approximately” or “preferably”. Requirements may change over time. Any change m
invalidate the entire logical structure (although engineers will often find ingenious way
preserving work already completed). The over-riding imperative to deliver a produc
time and within cost will often mean that logical analysis and calculation cannot alway
performed, at least in full detail.

The reality of software development does not mean that precise mathematical de
tions cannot find a place. The software engineer will seek a balance between
sketches and precise description and calculation. Useful software development me
allow the software engineer to choose the appropriate balance between mathematic
informal description.

3.0  Using Logic for Descriptions and Calculations

What kind of mathematics should software engineering students be taught? Like
engineering students, they should have a working knowledge of classical mathem
such as calculus, linear algebra and probability theory. But the description of soft
products requires the use of functions with many points of discontinuity. The study of
tinuous functions must thus be supplemented with that of predicate logic and dis
mathematics. The following example that will illustrate how logic may be used to

• make informal descriptions precise,

• calculate properties of products (by proving theorems), and

• understand the role of counterexamples.

3.1  Informal specification of the password module
Consider the following informal specification:

A personal digital assistant (PDA) needs a PASSWORD_MANAGEMENT
module that allows the user of the PDA to enter a password. The user
should not be allowed to access the verification routine more than six
times. The user gets only five tries at entering the password; if the user
entry matches the stored password, the PDA can be operated on by the
user. If the password does not match, the PDA remains inoperative. On the
sixth try, no password checking is done — instead an alarm flag is immedi-
ately raised. The alarm flag might be used by other modules to turn off the
PDA or inform the owner of an attempt at unauthorized access.

We use an Eiffel class [20] to specify the password management module. Eiffel
example of a development environment that can be used to build software seamlessl
specifications to programs. At any one time, the developer works on only one produ

wheels_turning moving_on_runway≡
moving_on_runway wheels_turning
The Logic of Software Design January 6, 2000 10
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the machine — which successive stages and activities will progressively enrich. This
not mean that there is only one view of the machine. A variety of views are available. E
view is a description of a different aspect of the machine. For example, the short form
a class documents the class interface, i.e. its exported features, their specification
post conditions), and the class invariant. The supplier of the class can view the interfa
well as the implementation. Class relationships such as the client-supplier relations
the inheritance relationship can be viewed. Classes can be grouped into clusters,
can be related to other clusters using the same relationships that are applied to
classes. The designer can start at the abstract architectural design level and then g
the Eiffel class skeletons, or can start working on individual classes and work up to
architectural design level, or can alternate between these two views.

3.2  Formalizing the specification — design by contract
A specification of the password management module is shown in Fig. 3. No implem

tation detail is given. The class starts by defining the various attributes (state) of the
ule. The behaviour of routineverify_user is specified by a precondition (therequire
clause) and a postcondition (theensureclause). The precondition describes the set of
initial states (prestates) and the postcondition describes the set of all final states
states) for the routine.

FIGURE 3. Eiffel specification of the password management module

class PASSWORD_MANAGEMENT
-- attributes, i.e. the state space
alarm: BOOLEAN -- signal illegal entry
operate: BOOLEAN -- user may operate PDA
p1: PASSWORD -- the password
i: INTEGER -- number of password tries

make(p2:PASSWORD) -- initialization routine
ensure

verify_user(p2: PASSWORD) -- routine to verify password p2
require
ensure

-- where

invariant -- all routines preserve the invariant
end

alarm¬ operate¬ i 0= p1 p2=∧ ∧ ∧

alarm¬ operate¬∧
g1 e1→( ) g2 e2→( ) g3 e3→( )∧ ∧

g1 old i 6< old p1 p2=∧≅

g2 old i 6< old p1 p2≠∧≅

g3 old i 6≥ old p1 p2≠∧≅

e1 i 0= operate alarm¬ p1 old p1=∧ ∧∧≅

e2 i old i 1+= o¬ perate alarm p1 old p1=∧¬∧∧≅

e3 i 0= o¬ perate alarm p1 old p1=∧ ∧∧≅











i 0≥
The Logic of Software Design January 6, 2000 11
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The precondition and postcondition express a contract between the client and th
grammer. The client has the obligation to invoke the routine only when the precond
holds; the client may benefit from the result of the routine as described by the postc
tion. The supplier of the routine (the programmer) has the obligation to ensure tha
postcondition holds; the precondition is a benefit to the supplier, for the routine nee
deal with cases not covered by the precondition. This is calleddesign-by-contractin
which the obligations and benefits of clients and suppliers are delineated.

In postconditions, the notationold expressiondenotes the value ofexpressionin the
prestate. Hence, specifies that the value ofi in the poststate must be pre
cisely one greater than the value ofi in the prestate. The routine parameter does n
change value, hence there is no old value for . The class invariant must be
served by each routine.

Eiffel directly supports contracts throughout the design cycle: (a) contracts describ
class interface, i.e. the benefits offered by the class to its clients without describing
these benefits are delivered; (b) contracts define the obligations of the author or supp
the class to the clients; (c) contracts can be checked at runtime; (d) contracts defin
cisely what an exception is (behaviour that does not satisfy the contract); (e) con
allow for sub-contracting so that the meaning of a redefined routine under inherit
remains consistent6; and (e) contracts provide documentation to both clients and supp
of classes. By writing well-designed preconditions, postconditions and invariants, as
as a carefully choosing names for classes and routines, we get theself-documenting prin-
ciple — the documentation of a class is developed hand-in-hand with the class a
stored together with the class; documentation is automatically extracted by tools from
class text itself at various levels of abstraction

The specification of the class using routine pre/postconditions and invariants is th
mal counterpart of the informal specification. The precision of the formal specifica
improves the documentation of the program as well as serving as a contract betwe
client and the supplier. In addition, the formal specification of the class can now be us
calculate the properties of the class. Here are some questions that we might want
about the specified class.

Conjecture 1 — input coverage: Is every input handled?
The postcondition ofverify_userroutine is in a special guarded expression form

where each guard describes a specific input and its corresponding consequ
describes the required output (Fig. 3). The specifier of the contract might therefore wa
show the validity of

. (5)

This conjecture asserts that any input satisfying the precondition must also satisfy th
junction of the guards in the postcondition. It is up to the client to ensure that the prec
tion is satisfied. If the conjecture holds then the specification has the desirable pro
that it deals explicitly with all inputs allowed by the precondition.

6. If a client of class RECTANGLE (which inherits from class POLYGON) calls a feature to calculate the perim
then we want to ensure that RECTANGLE does not redefineperimeterto calculate thearea instead. Redefinition
should change the implementation of a feature but not its essential meaning.

i old i 1+=( )
p2

p2 i 0≥

gi ei

old alarm( )¬ old operate( )¬∧ g(→ 1 g2 g3 )∨ ∨
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Input coverage (5) is not a theorem because the state described by the obser
is a counter-example to the

it. This counterexample informs the specifier that a certain input is unhandled. W
input? The user’s sixth attempt with at providing a password (in this case with a co
password). The informal specification states that on the sixth try an alarm should be r
irrespective of whether the supplied password is correct or not. However, the formal
ification would allow the alarm to continue to be disabled if the password is correct on
sixth try. The counterexample suggests that the guard of theverify_user routine be
redefined to . With this new definition we can prove that the input cover
conjecture (5) is a theorem by using the calculational Logic E [9]. We assume the ant
ent and prove under this assumption that the consequent is a theorem. The proof
forms the consequent  into a known theorem.

Assume: .

= < definitions of  >

= <distributivity of conjunction over disjunction (3.46) >

= <excluded middle(3.28) can be replaced bytrue using theorem equivalence TE>

= < identity of conjunction (3.39); definition of >

= < arithmetic:  >
-- (3.4). Q.E.D.

In the end, the assumption was not needed for the proof. The main point that we have
trated is that predicate logic is useful for making an informal specification precise. C
terexamples can show us when the specifications are ill-formed and proofs can
whether the specification has desirable properties.

The calculational Logic E used above is a useful tool. The inference rules for Log
are described in Fig. 4, and derived rules such as theorem equivalence (TE) are pro
in the Appendix (Sect. 6.0). Each step is justified by the inference rule Leibniz (repl
ment of equals for equals). A hint in angled brackets mentions the theorem used to o
the replacement expression (the numbers refer to theorem numbers in [9])7. Inference rule
Transitivity is applied five times to conclude that the predicate at the top is equivale
the predicate at the bottom. Finally, since the bottom predicate is itself a theorem,
ence rule Equinamity allows us to conclude that is also a theorem. Theequiv-

7. A list of the basic theorems of Logic E, including all the theorems used in this paper, can be obtained from
www.ariel.cs.yorku.ca/~logicE/misc/logicE_theorems.pdf.

old alarm( )¬ old operate( )¬ old i 6=( ) old p1 p2=( )∧ ∧ ∧

g3
g3 old i 6≥≅

g1 g2 g3∨ ∨

old alarm( )¬ old operate( )¬∧

g1 g2 g3∨ ∨

g1 g2,
old i 6< old p1 p2=∧( ) old i 6< old p1 p2=( )¬∧( ) g3∨ ∨

old i 6< old p1 p2=( old p1 p2=( )¬∨∧( ) g3∨

old i 6< true∧( ) g3∨

g3

old i 6<( ) old i 6≥( )∨

old i 6< old i 6≥∨( ) true≡
true

g1 g2 g3∨ ∨
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ale symbol (≡) is used for equality of two expressions that are both of type boolean
general, a calculational proof in Logic E mixes equalities (= or≡) and implications (→)
because the composition of the relations≡ and→ yields the relation→. For example, to
prove that  is a theorem, we need only write the following:

FIGURE 4. The calculational Logic E

A textbook for Logic E [9] provides a list of axioms for propositional logic, pred-
icate logic and theories in various discrete domains (e.g. sets, integers, combin
rics, and universal algebra).

In Logic E, the predicate is defined to be the same predicate as
except that every free occurrence of in is replaced by expression using co
textual substitution. For example, . Using
this notation, Logic E has 4 rules of inference:

An inference rule states that the predicate below the line is a theorem provided
predicates above the line are also theorems. From the axioms and rules of infere
the text derives a large number of useful theorems in various domains. Proofs
structured in the calculational style:

= < >

The above layout is justified by inference rule Leibniz. The hint is usually
obtained by applying rule Substitution to an axiom or theorem. Substitution is ofte
used without mention when it is obvious. Inference rule Transitivity is used to con
clude that the first expression in a sequence of calculational steps is equal to the
expression (or vice versa). Equanimity allows us to conclude that if the first expre
sion is a theorem, then the last expression is also a theorem. Since the use of in
ence rules is obvious from the structure of the proof, brevity and readability
achieved, and it is clear at each step what the justification for the step is. Some ad
tional theorems, that can be derived using the inference rules, include:

3.84(a):

3.84(b):

where  are expressions of the same type and  is a predicate.
Precedencefrom highest to lowest: (contextual substitution),old, ¬, ×, ÷, +,
−, <, >, ∈, =, ∨, ∧, →, ≡, (definition).

E z := P[ ] E
z E P

q q¬∨( ) q := x 5>( )[ ] x 5> x 5>( )¬∨( )=

Leibniz:
P Q=

E z := P[ ] E z := Q[ ]=
-------------------------------------------------------

Transitivity:
E1 E2= E2 E3=,

E1 E3=
------------------------------------------

Substitution:
E

E z := P[ ]
-----------------------

Equanimity:
E1 E1 E2≡,

E2
---------------------------

E z := P[ ]

P Q≡
E z := Q[ ]

P Q≡

e1 e2= E z := e1[ ]∧ e1 e2= E z := e2[ ]∧≡

e1 e2= E z := e1[ ]→ e1 e2= E z := e2[ ]→≡

e1 e2, E

x:=e[ ]
≅

A D→
The Logic of Software Design January 6, 2000 14
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= < hint why A = B >
B

⇒ < hint why B→ C >
C

= < hint why C = D >
D

Classical logic [5] seeks the minimum number of axioms and the simplest pos
rules of inference that are suitable for treating meta-theoretic results such as soundn
completeness8. However, actual proofs within the theory in realistic domains are of
long and tedious. The result is that Discrete Mathematical texts tend to pay lip servi
formal logic (usually in an introductory chapter) but soon resort to informal mathema
when the going gets tough. In the experience of the authors, the same problems ap
logics based on natural deduction or sequent calculi9. The informal proofs are often long
and obtuse compared to the corresponding Logic E proof; readers may verify th
attempting the proof of Sect. 6.2.2 in their favorite logic10. In addition to brevity, Logic E
is practical because it comes with a toolbox of theorems in a variety of discrete dom
[9]. The granularity of a proof step is adjustable; the hints at each step can be suffic
precise to allow the step to be rigorously checked if necessary, while allowing the p
writer the option of adjusting the size of the step (compressing many steps into one)
to keep the proof short.

The software engineering student will also want to make use of theorem provers
routine calculations. The use of theorem provers presupposes the type of know
developed by familiarity with logic E, both with regards to finding counterexamples
well as finding proofs. The following generalization of the input coverage conjecture il
trates the use of theorem provers such as PVS [24].

Conjecture 2 — implementability conjecture
An Eiffel specification of a routine with a precondition and a postcondition can

combined into a double-state predicate defined as . The dou
state predicate may have occurrences of variables prefixed withold, which refer to
the values of the free variables (attributes) in the prestate, as well as unadorned var
which refer to values of the variables in the poststate. The predicate asserts tha
holds in the prestate, then the routine terminates with true; otherwise any beha
including non-termination is acceptable. This captures the notion that the supplier o
routine is responsible for dealing only with inputs specified by the precondition.

8. Logic E is also sound and complete [33]. Understandably, Logic E emphasizes working within the theory over
theory while classical logic emphasize the meta-theory over theory.

9. Sequent calculi are useful in automated theorem provers; our point addresses hand proofs.

10. The proof is for theorem (10.14a). The point about this example is that it involves the development of a new
(conditional expressions) using the standard Logic E toolbox of axioms and theorems.

P Q
spec spec old P Q→≅

spec

spec P
Q
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A specification is implementable if each prestate has a well-defined poststate. The
consists of the attributes of the class as well as the arguments of the specified ro

Hence, routineverify_user has poststate and prestat
. Then

spec is implementable . (6)

The double-state specification for routineverify_useris

spec (7)

where the and are defined as before. Our second conjecture is that (6) is a th
given thatspecis as defined in (7). The proof of the conjecture can be done in Logic E,
we will do it using the PVS theorem prover as shown in Fig. 5. PVS proves the input

erage conjecture automatically (not shown). However, the implementability conjec
was proved with some interaction from the user using existential instantiation three t
This illustrates one of the issues involved in using theorem provers: where a theorem
not be discharged automatically, the user has to know a proof in outline in advan
order to provide proper guidance to the prover. We might also want to show that a sy
with the given specification has “nice” properties. For example, we might want to s
that , i.e. a consequence of theverify_userspecifi-

FIGURE 5. Using the PVS theorem prover to state and prove conjectures

password : THEORY
begin
passwordtype: TYPE

% attributes and routine argument p2
alarm,old_alarm,operate, old_operate: VAR bool
i, old_i: VAR nat
p1,p2,old_p1: VAR passwordtype

% double-state specification of verify_user
spec(i,old_i,operate,alarm,p1,old_p1,p2): bool =

(NOT old_alarm AND NOT old_operate)
IMPLIES
((old_i < 6 AND old_p1 = p2 IMPLIES

(i = 0) AND operate AND NOT alarm and p1 = old_p1)
    AND

(old_i < 6 AND old_p1 /= p2 IMPLIES
(i = old_i + 1) AND NOT operate AND NOT alarm AND p1 = old_p1)

    AND
(old_i >= 6 IMPLIES

alarm AND NOT operate AND i = 0 AND p1 = old_p1))

% Specification Implementability Conjecture
implentability : CONJECTURE

(EXISTS i, operate, alarm, p1:
NOT old_alarm AND NOT old_operate
IMPLIES
spec(i,old_i,operate,alarm,p1,old_p1,p2))

% By convention, above is universally quantified over all free variables
% PVS returns Q.E.D.
end password

σ
σ alarm operate p1 i p2, , , ,=

old σ old alarm old operate old p1 old i old p2, , , ,=

≅ old σ σ spec•∃( )•∀

≅ old alarm¬ old operate¬∧( ) g1 e1→ g2 e2→ g3 e3→∧ ∧( )→

gi ei

spec old P( )∧ old i( ) 6≥ alarm→( )→
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cation is that the alarm is raised on the sixth attempt. There is a simple proof in Logic
show that this conjecture is a theorem.

Once a module specification has been validated, Logic E and theorem provers c
used to develop programs from their contracts [1,7,11,21]. Although the complete d
opment from specifications to implementations can be done mathematically, this ma
always be necessary. Nor may it be necessary to provide a complete description or s
cation of all the properties of software products. Students need to develop skill in isol
useful and important properties.

3.3  Developing programs from specifications
We have seen that requirements and specifications are assertions in predicate ca

But programs can also be described by predicates [11]. The fundamental constru
sequential programs is the assignment statement, e.g. , which causes a cha
state in the machine. We have already see how a before/after predicate can be u
describe such changes. Using Eiffel notation we write

Eiffel convention for double-state predicates: . (8)

In the sequel, we use the Z convention [31] in which primed names such as an
denote the values of the variable in the poststate, whereas unprimed names such as

stand for their values in the prestate. The effect of the assignment can then be for
described by the predicate

Z convention for double-state predicates: . (9)

There is no essential difference between the Eiffel and Z convention. In both case
have designations for prestates and poststates. The prime notation is more concise

The program , which is the simultaneous assignment tox and y, is
described by: . Consider a specification o
a routine  of a class  defined as follows:

classC feature

x,y: INTEGER -- attributes

m -- routine to double  while keeping  constant, i.e.

-- :

end C

We can use logical calculation to derive an implementation (code) for the routinem from
the specification  as follows:

= <definition of >

= <Leibniz 3.84(a) >

= <arithmetic: >

= <definition of simultaneous assignment>
-- this is the implementation

x:=x y+

x old x old y+= y old y=∧
x′ y′

x
y

x′ x y+= y′ y=∧

x y := x y+ 2y, ,
x y := x y+ 2y, , x′ x y+= y′ 2y=∧≅ m.spec

m C

y x y–

m.spec x′ y′– x y–= y′ 2y=∧

m.spec

m.spec

m.spec

x′ y′– x y–= y′ 2y=∧

x′ 2y– x y–= y′ 2y=∧

x′ 2y– x y–= x′ x y+=≡

x′ x y+= y′ 2y=∧

x y := x y+ 2y, , m.prog
The Logic of Software Design January 6, 2000 17
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The above calculation derives a not totally obvious program , from
specification . Further refinement of the code might be needed if a programm
language is used that does not support simultaneous assignment, but the same kinds
culation apply to such derivations [11].

3.4  Logic as a design calculus
Logical connectives and quantifiers such as conjunction, implication and existe

quantification can be used as a design calculus for software development.
We have used implication for program refinement, also called program correctnes

A program implements a specification if , i.e. every behavio
satisfying the program description also satisfies the specification.

We can hide the internal behaviour of the program with the existential operator.
visible program behaviour is where stands for the local program variab
What is observed inside the machine is of no concern to a client of the machine. T
provided does not occur free in , program refinement becomes
This is because , provided does not occ
free in .

Conjunction is a general way to express connection and interaction in an assembly
structed from two or more components. If a specification is complex, we can decomp
into two sub specifications (or designs) and , provided . Ea
design can then be implemented by a separate program and , prov

and are theorems. The final implementation is
and we are guaranteed by propositional calculus that .

We showed how logic can be used for describing requirements, specifications, an
grams. We also showed that logic can be used as a descriptive calculus througho
software life-cycle including design, implementation, debugging (e.g. via assertion ch
ing) and documentation. The calculational format and theorem proving can be used i
ious phases of the software life-cycle, e.g. to derive a program that implemen
specification, or to establish that an assembly of components satisfies a requiremen
components satisfy their specifications. The calculational format has the virtues of br
and readability that make it easy to use, and the availability of the text [9] means tha
calculational format can be taught to students early in a Computer Science program

4.0  A simple case study — cooling tank

In the previous section, we described how calculational logic can be used in all ph
of software design. In this section, we present a small case study that will illustrate th
of logical methods and tools through all phases of software design from requiremen
implementation. The case study will also allow us to provide a calculational developm
of a useful theory for conditional expressions such as (if then else ) where is of
type boolean and are two expressions of the same type. For conciseness we u
abbreviation

(10)

x y := x y+ 2y, ,
m.spec

prog spec prog spec→

v∃ prog•( ) v

v spec v∃ prog•( ) spec→
v∀ prog spec→•( ) v∃ prog•( ) spec→≡ v

spec

D1 D2 D1 D2∧ spec→
prog1 prog2

prog1 D1→ prog2 D2→ prog1 prog2∧
prog spec→

b e1 e2 b
e1 e2,

b
e2

e1
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(see Appendix in Sect. 6.0). Logic E as described in [9] provides the two axioms

(10.9) (10.10)

for conditional expressions. We will need more powerful theorems to simplify calculat
We therefore refer the reader to the Appendix (Sect. 6.0) in which further theorems of
ditional expressions are listed. The Appendix also provides a proof of theorem (10
below, which is an illustration of the utility of Logic E for stating and developing new th
ory.

(10.14a):  provided that  is a theorem.

Theorem (10.14a) provides a method for simplifying a complex expression consistin
conditional subexpressions to a simpler expression with the conditional eliminated.
sider a variable with . It follows that is a the
orem. Using “IF-transform” reasoning (Appendix Sect. 6.2.3), the following is a theor

. (11)

We now present an informal description of the case study.

4.1  A cooling tank example
“A tank of cooling water shall generate a low level warning when the tank
contains 1 unit of water or less. The tank shall be refilled only when the low
level sensor comes on. Refilling consists of adding water until there are 9
units of water in the tank. The maximum capacity of the tank is 10 units, but
the water level should always be between 1 and 9 units. The sensor readings
are updated once every cycle, i.e. once every 20 seconds. Every cycle, one
unit of water is used. It is possible to add up to 10 units of water in a cycle”.
[22]

A programmer, looking at the above problem, might immediately write plausible c
for the controller module as shown in Fig. 6. The body of the module execu
“set_alarm; fill_tank” once every cycle.

Routine set_alarmraisesalarm flag if the tank level goes below 1 unit. Routin
fill_tanksets the tank input setpointin to 9 units if the tank level is already at 0 units and
8 units if the tank level is at 1 unit. In this way, the tank is refilled to exactly 9 units at
end of the cycle.

Apart from the fact that the program in Fig. 6 is wrong (as we shall see later), we
also not followed the recommended design method presented earlier (Sect. 2.0). In
without a specification that satisfies specification correctness (1), we cannot even be
debug the program.

Our rational software design method (Sect. 2.0) requires that we first divide the sy
of interest into the external world domainW and the machineM, and identify the relevant

b b
e2

e1 e1=→ b¬ b
e2

e1 e2=→

p E z := b
e2

e1→ p E z := e1[ ]→≡ p b→

x type x( ) NATURAL= x 0= x 1= x 1>∨ ∨

x′ x x 1≤( )
y
9

x 1≥( )
z
1–+=

x 0= x′ x 9 z–+=→( )
x( 1=∧ x′ x 9 1)–+=→
x( 1>∧ x′ x y 1)–+=→

≡
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phenomena. The external world domain, in this case, is the cooling tank with its outflo
waterout and inflow of waterin.

The rough sketch in Fig. 7 illustrates the phenomena of the external world dom
including phenomena shared with the machine (in, levelandalarm). The water outflowout
is not a shared phenomenon as the machine cannot measure it. The comment in the
indicates that the informal requirements cannot be precise; the figure therefore prov
precise description of the outflow as a function of water level. One of the benefits of m
ematical descriptions is that they can be used to remove ambiguities present in the
mal descriptions.

Having identified the phenomena of interest, the next step is to write the requirem
for the cooling tank. We assume that the machine will read sensorlevelat the beginning of
a cycle, immediately calculate the new values forin andalarm, and then repeat this action
at the beginning of the next cycle 20 seconds later. We may therefore describe the re
ments in terms of the variables of interest at the beginning and at the end of an arb
cycle.

cooling tank requirement  where: (13)

The initial value of the water level, the alarm signal, and the outflow are designate
level, alarm andout respectively. The value of the water level at the end of the cycle is d
ignated by . The requirement thus states that the final value of the water level
be between the stated bounds, the tank must be filled (at the end of the cycle) if it goe

FIGURE 6. Faulty code for the cooling tank example

Module controller
Inputs

level: LEVEL -- input from tank, where type LEVEL = {0 .. 10}
Outputs

alarm: BOOLEAN -- raises tank alarm.Initially false.
in: LEVEL -- setpoint for tank input valve. Initially 0.

Body
every 20 seconds
do
set_alarm; fill_tank
end

Private routines used in Body
set_alarm  is -- set the alarm if tank level is low

do
alarm := (level <= 1)
end

fill_tank  is -- fill tank if level is low, otherwise do nothing
do
if level = 0 then  in := 9
elseif level = 1 then in : = 8
else in : = 0
end

end

R R1 R2 R3∧ ∧≅

R1: 1 l≤ evel′ 9≤

R2: level′ level 1≤( )
level out–
9=

R3: alarm level 1≤≡





level′
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(at the beginning of the cycle), and the alarm bell must be sounded (at the beginning
cycle) if the level is low. The next step in the recommended design method is to des
the properties characterizing the external world domain.

external world description  where: (14)

The external domain property is derived from a physical law that says flow mus
preserved, i.e. the flow at the end of a cycle is what the original level was, adjusted fo
flows and outflows. Property asserts that the outflow at the beginning of a cycle is
unit (see informal description) unless there is no water left to flow out (this part was n
the informal description, but must be added if the description is to be precise).

In the absence of a controller (themachine), the “free” behaviour of the cooling tank
will not satisfy the requirements because inflow setpointin can be set to any value. In
order to satisfy the requirements, we must therefore specify a machine to control the
to meet the requirements.

The requirements and external world descriptions are allowed to refer to outflowout.
However, there is no sensor forout; hence, it is not a shared phenomenon, and the mach
may thereforenot refer to it. Here is a first attempt at the machine specification:

FIGURE 7. Rough sketch of the cooling tank identifying the phenomena of interest

external world phenomena
in, level: LEVEL -- phenomena shared with the machine
alarm: BOOLEAN
out: LEVEL -- phenomena not shared with the machine where

(12)

The informal requirements state: “every cycle, one unit of water is used”. This cannot be precise.
at the beginning of a cycle, then there may be no outflow in that cycle. The above law (12

assumes that the outflow is a function of level. This corresponds to a scenario in which the outflo
valve is (a) automatically opened only when the level reaches 1 unit, and (b) releases exactly 1 u
every cycle as long as it is open. It is up to the software engineer to ascertain from the domain
specialists the precise behaviour of the external world phenomena.

out if level 1 then 1 else 0≥( )=

level 0=

level

EXTERNAL DOMAIN

controller
water tank

alarm
bell

MACHINE DOMAIN

out

in

W W1 W2∧≅
W1: level′ level in out–+=

W2: out level 1≥( )
0
1=




W1

W2
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(15)

Our assumption is that the machine works much faster than the cycle time of the co
tank. Therefore, the machine instantaneously setsin and alarm to the values described
above at the beginning of each cycle. In conformance with our definition of what a spe
cation is, (15) refers to shared phenomena only.

The controller module described earlier (Fig. 6) implements the specification of (
The specification might at first sight appear correct, for it adds 9 units of water if the l
is zero and 8 units of water if the level is one (1 + 8 = 9); nothing is added otherwise. H
ever, the machine specification is wrong, as can be seen by a counterexample.

Consider a state at the beginning of a cycle in which . By the above speci
tion . By  it follows that , and hence by

so the requirement will not be satisfied because the tank is supposed to be at 9 u
water at the end of the cycle. The failed specification did not take into account the fac
there is an outflow of 1 unit when the level is at 1 unit (recall that there is zero out
when the level is zero). This counterexample was detected when the logical calculatio
specification correctness (1) was performed. A correct specification for the controlle

machine specification  where: (16)

which states that 9 units must be added irrespective of whether the level is zero un
one unit of water at the beginning of a cycle. Specification correctness (1) holds if we
show the validity of

(17)

which asserts that no matter whatlevel is at the beginning of a cycle (provided it is of typ
LEVEL), and provided the application domain satisfies external world descriptionW (14)
and the machine its specification, then the requirements will be satisfied. By Logic E
is the same as proving that

. (18)

in

if level 0 then 9=

elseif level 1 then 8=

elseif level 1 then 0>
=

alarm level 1≤≡∧

level 1=
in 8= W2 out 1= W1

level′ level in out–+=

8=

R2

M .spec M.s1 M .s2∧≅
M .s1: in level 1≤( )

0
9=

M .s2: alarm level 1≤≡



level: LEVEL W M.spec∧ R→•∀( )

0 level 10≤ ≤ W M.spec∧ R→( )→
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Gathering together all the information, we must prove:

The proof follows from three lemmas. can be obtained directly from (us
reflexivity of implication (3.71) ):

Lemma1: . (19)

Next, we prove the more specific requirement first, in anticipation that it may als
useful in deriving . In the proof of , it seems worth starting with since it has
most precise information (it is an equality, not an inequality). The resulting calcula
(see Fig. 8), which also uses assumptions  and , yields:

Lemma2: . (21)

The proof of Lemma2 is long (in fact, longer than we had hoped). The proof length is
to the need to do case analysis (see IF-transform in Fig. 8). It was precisely this case
ysis that provided a counterexample to the naive specification (15).

As we originally anticipated,  can be derived from  (see Fig. 9) to obtain

Lemma 3: . (23)

Using the three lemmas, a quick calculational proof shows the validity of specifica
correctness .

The cooling tank example can be checked automatically with the help of PVS (Fig
The PVS descriptions of the external world, requirements, and machine specificatio
the cooling tank are shown in the figure. Conjecturesystem_correctness(end of Fig. 10) is
proved automatically when submitted to the PVS prover. The PVS file also show
example of a sanity check to ensure that the outflow is correctly described.

4.2  Tools
Currently, a variety of tools are available that have been used in selected indu

applications (Table 1).We have shown the usefulness of PVS [24]. The specification
guage of PVS is based on a typed higher-order logic. The base types include uninter
types that may be introduced by the user and built-in types such as the booleans, in
reals, as well as type-constructors that include functions, sets, tuples, records, enu
tions, and recursively-defined abstract data types, such as lists and binary trees. PVS
ifications are organized into parameterized theories that may contain assump
definitions, axioms, and theorems. PVS expressions provide the usual arithmetic and

W0: 0 level 10≤ ≤

W1: level′ level in out–+=

W2: out level 1≥( )
0
1=

M .s1: in level 1≤( )
0
9=

M .s2: alarm level 1≤≡
R1: 1 l≤ evel′ 9≤

R2: level′ level 1≤( )
level o– ut
9=

R3: alarm level 1≤≡

-------------------------------------------------------------------------------

R3 M .s2
p p→

M .s2 R3→

R2
R1 R2 W1

W2 M .s2

W2 M .s1 W.d1∧ ∧ R→ 2

R1 R2

W0 W2∧ R2 R1→( )→

level: LEVEL W M.spec∧ R→•∀( )
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tural
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per-
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igned
of Z

eo-
cal operators, function application, lambda abstraction, and quantifiers, within a na
syntax. An extensive prelude of built-in theories provides useful definitions and lemm

The description language Z is based on a typed version of ZF set theory [31]. It is
haps the most widely used formal specification notation in industry, particularly
Europe. It has been harder to develop mechanized help for Z since it was not des
with automation in mind. Nevertheless, tools such as Z/Eves support the analysis

FIGURE 8. Calculational proof of Lemma2

= < definition of  >

= < assumption >

= < assumption >

= < definition of LEVEL; IF-transform leaving “IF” in last conjunct to conform to final form>

= < Leibniz substitution 3.84(b) to first two conjuncts>

= < arithmetic simplification >

= < theorem of prop. logic:  to first two conjuncts>

= < assumption  to reinsert >

= <arithmetic ; IF-transform >

= < definition of >

.

The above proof is based on the assumptions and . By EDT (see extended deduction th
rem in the Appendix) we have thus established the lemma

from which it is trivial to derive the lemma:

Lemma2: . (20)

W1

W1

level′ level in out–+=

W2

level′ level in level 1≥( )
0
1

–+=

M .s1

level′ level level 1≤( )
0
9

level 1≥( )
0
1

–+=

level 0= level′ level 9 0–+=→( )
l( evel 1=∧ level′ level 9 1)–+=→

level 1>(∧ level′ level 0 level 1≥( )
0
1)–+=→

level 0= level′ 0 9 0–+=→( )
level( 1=∧ level′ 1 9 1)–+=→

level 1>(∧ level′ level 0 level 1≥( )
0
1)–+=→

level 0= level′ 9=→( )
level( 1=∧ level′ 9)=→

level 1>(∧ level′ level level 1≥( )
0
1)–=→

p r→( ) q r→( )∧( ) p q∨ r→( )≡

level 1≤ level′ 9=→( )

level 1>(∧ level′ level level 1≥( )
0
1)–=→

W2 out

level 1≤ level′ 9=→( )
level 1>(∧ level′ level out)–=→

level 1≤ level 1>∨
level′ level 1≤( )

level o– ut
9

=

R2

R2

W2 M .s1
W2 M .s1∧ W1( R2)≡→

W2 M .s1 W1∧ ∧ R→
2
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specifications by syntax and type checking, schema expansion, precondition calcu
domain checking, and general theorem proving [30].

PVS and Z do not provide explicit support for the transition from specifications
implementations. The programming language Eiffel does provide lightweight for
methods support, especially with its clean implementation of design-by-contract. It
ideal tool for the development of programs from specifications. By contrast, the n
Java language — for all its important features, such as type safety, automatic garbag
lection, and web applets — does not even have the simple assert statement of
Although a certain amount of assert functionality can be implemented in a Java pro
[28], it does not match the Eiffel features for design-by-contract. This means that com
nents in Java cannot be specified with the same degree of precision or ease as th
Eiffel.

The B-Method (with associated machine support from the B-Tool) uses a Z-
Abstract Machine Notation (AMN), and it supports development of specifications
AMN all the way down to executable programs [1]. Perhaps the most well-known ex
ple using B is the development of the Paris Metro braking system software. In the
Metro, the choice was between reducing the timing between trains (by increasin
assurance in the system as a whole) or building a new tunnel at vast cost.

Students can be introduced to the use of automated tools, such as PVS or the B-T
the later stages of their undergraduate education, e.g., third or fourth year software
neering courses, and in particular after they have a thorough grounding in the calcula
Logic E. Without a grounding in logic, students will have difficulty understanding

FIGURE 9. Calculational proof of Lemma3

= < definition of ; IF-transform with CRb;assumption  to replace  >

= < (10.14b) with  >

⇒ < arithmetic:  and MON (see appendix Sect. 6.1) >

⇒ < assumption , arithmetic: , and MON >

= < Leibniz substitution 3.84(a) with  >

⇒ < weakening theorem (3.76b)  and MON >

= < arithmetic simplification >

= < definition of  and idempotency of disjunction (3.26), i.e.:  >

.

By EDT, we have established the theorem

Lemma3: (22)

R2

R2 W2 out

level 1≤ level′ 9=∧( )

level 1> level′ level level 1≥( )
0
1

–=∧( )∨

level 1> level 1≥→

level 1≤ level′ 9=∧( )
level 1> level′ level 1–=∧( )∨

level′ 9= R1→
R1 level 1> level′ level 1–=∧( )∨

W0: 0 level 10≤ ≤ level 1> W0∧ 2 level 10≤ ≤→
R1 2 level 10≤ ≤ level′ level 1–=∧( )∨

level level′ 1+=

R1 2 level′ 1+ 10≤ ≤ level′ level 1–=∧( )∨
p q∧ p→

R1 2( level′ 1+ 10)≤ ≤∨

R1 1( level′ 9)≤ ≤∨

R1 p p∨ p=

R1

W0 W2∧ R2 R1→( )→
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proof steps that they are applying, and they will certainly have complications in contin
proofs when difficulties or apparent dead-ends arrive.

4.3  Timed and Hybrid descriptions
In the cooling tank example, we abstracted out time by restricting our attention to a

gle arbitrary cycle. This prevents us from describing liveness properties such as “ev
ally the tank will be filled to 9 units of water”. To describe such properties we can ext
our logic with temporal operators so that we can assert conjectures such

. The temporal formula means eventually at some time after the in
state holds, and meansq holds continually. Thus means that in every state
a computation there is always some future occurrence ofp [19].

FIGURE 10. Automated PVS proof of the cooling tank system

tank: THEORY
BEGIN
LEVEL: TYPE  = {x:nat | x  <= 10}

% Designations. We use "level_f" for the final value of "level"
level, level_f, inn, out: VAR LEVEL
alarm: VAR bool

% Description of the external world domain
external_world (inn, out, level, level_f): bool =

out =  (IF level >= 1 THEN 1 ELSE 0 ENDIF)
AND
(level_f = level + inn - out)

% The requirements document
requirement (level,level_f,out,alarm): bool =

(1 <= level_f AND level_f <= 9)
AND
(level_f = (IF level <= 1 THEN 9 ELSE level-out ENDIF))
AND
(alarm = (level <= 1))

% The machine specification
machine_spec (level,inn,alarm): bool =

inn = (IF level <= 1 THEN 9 ELSE 0 ENDIF)
AND
alarm = (level <= 1)

system_correctness : CONJECTURE
external_world(inn,out,level,level_f)
AND
machine_spec(level,inn,alarm)
IMPLIES
requirement(level,level_f,out,alarm)

sanity_check : CONJECTURE
real_world_description(inn,out,level,level_f)
IMPLIES
(out = 0 OR out = 1)

END tank

he level 9=( ) ep
p hq hep
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Sometimes, even more specific timing information must be described. The pro
that the tank should always be filled to 9 units every 10 cycles (i.e. every 200 seconds
be expressed as  in real-time temporal logic [23].

In some situations a hybrid approach must be followed in which there is a mixtur
continuous and discrete mathematics. For example, in a more precise model of the o
we might want to express the relationship between the tank outflow and the valve s

 as

where is the total amount drained from the tank up to timet, and is the outflow
valve setting as a function of time.

The StateTime [23], STeP [18], and Hytech tools [2] are examples of toolsets tha
analyze and calculate properties of systems described with real-time temporal log
hybrid descriptions using algorithmic and theorem proving techniques. These tools e
the designer to analyze concurrent and nondeterministic reactive programs.

5.0  Discussion and Conclusions

Mathematical logic can be used throughout the software development life-cycle bo
a design calculus and for documenting requirements, specifications, designs, an
grams. The use of mathematical logic provides precision, the ability to predict behav
and a greater understanding of software, thus providing the developer with a tool ak
that used in other engineering disciplines. Learning the methods and tools of logic s
be an important component in the education of software professionals.

Critical skills include the ability to translate informal requirements into a form
description, the ability to reason about these descriptions by proving that putative co
tures are theorems, and the ability to find counterexamples to conjectures. Logic E
useful calculational logic for developing these skills in a variety of domains. Our deve
ment of a theory for conditional expressions (Sect. 6.2) illustrates the utility of the lo

Logic and logical calculation methods can and should be used right at the beginni
a computer science education. Here we summarize briefly a curriculum that makes
calculational methods, from introductory undergraduate courses, through upper-yea
ware engineering courses.

• The logic text by Gries-Schneider [9] can be used in two courses (each lasting a se
ter) in logic and discrete mathematics in the first and second years. This is based
idea of first teaching calculational logic, and then actually using the logic to rea
about the various discrete domains (sets, sequences, integers, combinatorics, rec
relations and algebra). This provides the student with familiarity and comfort in log
calculation right from the beginning. This course will also help in future material, s
as understanding design-by-contract and theorem provers. The first-year mathe
programme for CS students at York University teaches such courses, based o
Gries-Schneider text. These courses are taught by mathematicians in the Mathe
department. At first, there was a discomfort and outright opposition to the non-clas
approach both by faculty and students. Experience has gradually worn away the op

he≤200 level 9=( )

v t( )

td
d

out t( ) c1v t( ) c2level t( )+=

out t( ) v t( )
The Logic of Software Design January 6, 2000 27



year

ntract
unity
Java
atical

condi-
arnas
.

ate-
n-by-
used
ted

oofs
has a

, with
ON/
nted

using
ese
meth-

d as
anced
rac-25
the

current

tively in
urse.

got a B
tion and former opponents of the change are now somewhat supportive11. In one experi-
ment, we discovered a high correlation between students who do poorly in the first
logic course, and students who do poorly in the first year programming course12.

• The usual CS1 and CS2 courses can be taught in Eiffel, stressing design-by-co
[16,20]. The trend currently is to use Java in the first year. This provides an opport
for a text book for Java that will develop suitable design-by-contract constructs for
[28]. Until such books, and assertional techniques, for Java appear, use of mathem
logic in CS1 and CS2 courses that use Java may occur by treating pre- and post
tions as comments or annotations. The table specification methods developed by P
[27] may also be of help for languages that do not have design-by-contract built in

• A third-year course in the use of tools such as PVS and B-Tool can build on the m
rial of the first few years. Such a course could use languages that support desig
contract, such as Eiffel, in a software engineering project. PVS or B-Tool could be
to formally derive programs from specifications (that would be eventually implemen
in Eiffel). Calculational logic would be used as the foundation for understanding pr
and provers and to do small calculations by hand. The formal methods web site
list of courses with online material and using a variety of tools13.

• Comprehensive texts on object-oriented specification, design, and programming
emphasis on the production of quality software using design-by-contract and B
Eiffel are also available [20,34]. These texts can form the basis of object-orie
design courses in the 3rd and 4th years using “lightweight” formal-methods.

• A fourth year course can introduce the formal methods of reactive systems (e.g
STeP [18], SPIN [13] or SMV [3]). Suitable textbooks are available for each of th
courses [14], but more need to be written, emphasizing the use of mathematical
ods and calculation in design.

A variety of applications of formal methods to industrial systems have been reporte
shown in the Table 1. These applications can be used for case studies in more adv
classes. Students should also apply their skills to case studies such as that of the The
radiotherapy machines [17] and the Ariane 5 heavy launcher [16], which illustrate
need for professional standards in all aspects of design.

11. One former opponent of the approach has told the first author that, on pedagogical grounds, he supports the
curriculum and would not like to go back to the old approach.

12. A comparison was made between students on the mid-term test of the logic and programming courses respec
the fall term of 1998; 57 out of 64 students (89%) who failed the logic course also failed the programming co
The correlation between good students in logic and programming was less; 25 out of 46 students (54%) who
or higher in logic also got a B in programming.

13. http://archive.comlab.ox.ac.uk/formal-methods.html and follow the “Education” link.

TABLE 1. Some examples of the use of tools in industrial practice

Tool System Application

PVS hardware AAMP5 Microprocessora.

SMV hardware HP Summit Bus.

Spin communication protocol Ethernet collision avoidance.
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We should not underestimate the effect that education can have in practice. “Spice
general purpose electronic circuit simulation program that was designed by Donald P
son in the early 1970s at the University of Berkeley. Circuit response is determine
solving Kirchoff’s laws for the nodes of a circuit. During the early 1970s, Berkeley w
graduating over a 100 students a year who were accustomed to using Spice. They
working in industry and loaded Spice on whatever computers they had available. S
quickly caught on with their co-workers, and by 1975 it was in widespread use. Spice
been used to analyze critical analog circuits in virtually every IC designed in the Un
States in recent years [29].

In software development, the practitioner has to sub-ordinate everything to the
riding imperative to deliver an adequate product on time and within budget. This m
that the theory and tools we teach must be useful and as simple as possible. Lo
design-by-contract, Eiffel, and theorem-provers such as PVS embody useful theor
tools that can be taught and used now and that will contribute to professional engine
standards for software design and documentation.

6.0  Appendix on Logic E

6.1  Derived Inference Rules
The fact that conjunction is monotonic in its first argument is expressed by the theo

(4.2) Monotonicity of conjunction: .

Conjunction and disjunction are monotonic in both arguments, and implication is m
tonic in its second argument (its consequent). Derived rules MON and AMON gener
this type of argument to quantifiers [8].

Extended Deduction Theorem(EDT): Suppose we can prove provided we add t
(temporary) axioms to Logic E with the variables of the considered to
constants. Then  is a theorem.

software Requirement analysis of Space Shuttle
GPS Change Requests

Z/Eves communication protocol A Micro-flow modulator that controls
flow of information from a private sys-
tem to a public system.

PVS hardware/software IEEE-compliant subtractive division
algorithm.

B-tool software Paris metro.

a. PVS was used to specify and verify the Rockwell AAMP5 microprocessor hav-
ing 500,000 transistors; 108 out of the 209 instructions of the microcode were
described. The exercise found one error that was a missing requirement. Also
found, was a coding error (improperly sized stack) that would not have been
detected in ordinary assurance testing [32].

TABLE 1. Some examples of the use of tools in industrial practice

Tool System Application

p q→( ) p r∧ q r∧→( )→

Q
P1 P2 … Pn, , , Pi

P1 P2 … Pn∧ ∧ ∧ Q→
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and
(In the course of the proof of , inference rule Substitution may not be applied to
temporary axiom or to any temporary theorem that is derived in the course of the pro
the variable being substituted for appears in one of the original assumptions.)

6.2  Conditional expressions
We denote the conditional expression byIF whereIF is a function with three parame-
ters, i.e.

Hence, and for some type . It also fol
lows that . We assume that any use ofIF satisfies these typing constraints
The two axioms for reasoning about conditional expressions are [9]:

(10.9) (10.10)

6.2.1  Theorems of conditional expressions derived from the axiom:

(10.14a): provided that  is a theorem.

Modus Ponens MP:

Theorem Equivalence TE

Let  be a sub-formula of  where  is not within an operand of an
equivalence or inequivalence. The position of within haseven par-
ity if it is nested within an even number of negations, antecedents, 
ranges of universal quantifications; otherwise it hasodd parity.

Examples:
parity of  in

0 even
1 odd
0 even
2 even
2 even
1 odd

Monotonicity MON

 provided the parity of  in  is even

Anti-monotonicity AMON

 provided the parity of  in  is odd

Case Replacement CRa:

Case Replacement CRb:

(10.11) (10.12)

(10.13a):

provided

(10.13b)

provided

p p q→,
q

-----------------------

p q,
p q≡
------------

z E z
z E

E n z E

x z∨
x z∨( )¬
x¬( ) z→
z¬( ) x→
x z x∨ P•¬∀( )
x z x P•∨∀( )

p q→
E z := p[ ] E z := q[ ]→
------------------------------------------------------- z E

p q→
E z := p[ ] E z := q[ ]→
------------------------------------------------------- z E

q1 q2 q3∨ ∨

p

q1 p→( )

q2 p→( )∧

q3 p→( )∧ 
 
 
 
 

≡

-----------------------------------------------

q1 q2 q3∨ ∨

p

q1 p∧( )

q2 p∧( )∨

q2 p∧( )∨ 
 
 
 
 

≡

---------------------------------------------

Q

b
e2

e1

IF : BOOLEAN T T T→××
type b( ) BOOLEAN= type e1( ) type e2( ) T= = T

type IF( ) T=

b b
e2

e1

 
  e1=→ b¬ b

e2

e1

 
  e2=→

true
e2

e1 e1= false
e2

e1 e2=

b
e2

e1 b e1→( ) b¬ e2→( )∧=

type e1( ) type e2( ) BOOLEAN= =

b
e2

e1 b e1∧( )= b¬ e2∧( )∨

type e1( ) type e2( ) BOOLEAN= =

p E z := b
e2

e1→ p E z := e1[ ]→≡ p b→
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(10.14b): provided that  is a theorem.

(10.14c): provided that  is a theorem.

(10.14d): provided that  is a theorem.

Proof of theorem (10.11)

--- (10.9)[ ]

= <left identity of implication (3.73) (i.e. ) >

Hence, by Equanimity, (10.11) is a theorem.

6.2.2  Proof in Logic E for theorem (10.14a)
By the derived rule Modus Ponens (MP), it is sufficient to prove that

is a theorem. Here is the proof.

= < distribute implication over equivale (3.63) >

= < shunting (3.65) >

= < (3.66) on antecedent >

= <replaceb by true in theconsequent becauseb is in theantecedent (3.85b) >

= < axiom (10.11) for conditional expressions >

= < identity of equivale (3.3) >

= < right zero of implication (3.72) >
-- (3.3)

p E z := b
e2

e1∧ p E z := e1[ ]∧≡ p b→

p E z := b
e2

e1→ p E z := e2[ ]→≡ p b¬→

p E z := b
e2

e1∧ p E z := e2[ ]∧≡ p b¬→

true true
e2

e1 e1=→ b := true

true p→ p≡
true

e2

e1 e1=

p b→( ) p E z := b
e2

e1→ p E z := e1[ ]→≡ 
 →

p b→( ) p E z := b
e2

e1→ p E z := e1[ ]→≡ 
 →

p b→( ) p E z := b
e2

e1 E z := e1[ ]≡ 
 → 

 →

p p b→( )∧( ) E z := b
e2

e1 E z := e1[ ]≡ 
 →

p b∧( ) E z := b
e2

e1 E z := e1[ ]≡ 
 →

p b∧( ) E z := true
e2

e1 E z := e1[ ]≡ 
 →

p b∧( ) E z := e1[ ] E z := e1[ ]≡( )→

p b∧ true→

true
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6.2.3  “IF-transform” reasoning uses case replacement (CR) and (10.14)
Consider a variable  with . It follows that

(24)

is a theorem. We may then use derived rule CR, (10.14a) and (10.14c) to show that th
lowing is a theorem:

IF-transform :

Here is the proof.

= < case replacement (CRa) with (24) >

= < (10.14a) with  to first conjunct >

= < (10.14c) with  to first conjunct >

= < applying the same type of reasoning to the 2nd and 3rd conjunct >
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x type x( ) NATURAL=

x 0= x 1= x 1>∨ ∨

x′ x x 1≤( )
y
9

x 1≥( )
z
1–+=

x 0= x′ x 9 z–+=→( )
x 1= x′ x 9 1–+=→( )∧
x 1> x′ x y 1–+=→( )∧ 

 
 
 

≡

x′ x x 1≤( )
y
9

x 1≥( )
z
1–+=

x 0= x′ x x 1≤( )
y
9

x 1≥( )
z
1–+=→

x 1=∧ x′ x x 1≤( )
y
9

x 1≥( )
z
1–+=→

x 1>∧ x′ x x 1≤( )
y
9

x 1≥( )
z
1–+=→

x 0= x 1≤→

x 0= x′ x 9 x 1≥( )
z
1–+=→

x 1=∧ x′ x x 1≤( )
y
9

x 1≥( )
z
1–+=→

x 1>∧ x′ x x 1≤( )
y
9

x 1≥( )
z
1–+=→

x 0= x 1≥¬→
x 0= x′ x 9 z–+=→

x 1=∧ x′ x x 1≤( )
y
9

x 1≥( )
z
1–+=→

x 1>∧ x′ x x 1≤( )
y
9

x 1≥( )
z
1–+=→

x 0= x′ x 9 z–+=→
x 1=∧ x′ x 9 1–+=→
x 1>∧ x′ x y 1–+=→
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