
Adaptation of Software Components

George T. Heineman
Computer Science Department

WPI
Worcester, MA 01609

heineman@cs.wpi.edu
WPI-CS-TR-99-04

Abstract

One of the many difficulties in making Component-Based Software Engineering (CBSE) a reality is the adaptation of
software components that may be required when constructing applications from COTS components. We surveyed the
literature to discover various approaches to component adaptation and evaluated these approaches against a set of
requirements for component adaptation mechanisms. We also discuss differences between adaptation of software components
and extension of object-oriented classes.

1. Introduction

The closing sentence of a recent report on the current state of CBSE states that the growing use of external components will
demand improvements in how components are documented, assembled, adapted, and customized [3]. This position paper
addresses the issue of adaptation.

We have argued in [5,6,7,8] that a true component marketplace will only exist when application builders can adapt software
components to work within their application. For this position paper, we surveyed the literature for different approaches to
adapting software components. Our primary contribution is to show that component adaptation is a highly relevant problem to
CBSE. Component adaptation is sufficiently different from software evolution that it requires new techniques and certainly
new understanding to solve its challenges.

We first motivate the need to adapt third-party COTS components after they have been designed, implemented, and made
available for purchase. We then discuss the differences between adaptation of components and adaptation of object-oriented
programs. We then evaluate various approaches to component adaptation against a set of requirements for adaptation
mechanisms.

2. Motivation

An application builder has designed and partially implemented a software system using several reusable in-house software
components. The builder finds an externally available third-party software component that satisfies some desired functionality
or behavior. Because there are such difficulties in accurately specifying software, however, the builder is not totally sure that
the component will completely perform all the desired tasks; in fact, the component may contain additional unneeded features
that are incompatible with the original system. There is enough evidence, however, to install the component and try to use it,
so the builder proceeds.

The application builder must then integrate the component into the original system; this task may be complicated by syntactic
incompatibilities between the interfaces that need to communicate with one another. The builder can either a) modify the
original system to overcome these incompatibilities; b) modify the component; or c) introduce a component adaptor [18] or
some other wrapper between the system and the component. As Hölzle shows, however, there are complications when
multiple components must communicate with each other while they are contained within some form of wrapper object [9].

Once all syntactic problems are overcome, however, there will likely still be situations where the functionality or behavior of
the component needs to be modified according to the needs of the application builder. Component designers cannot, of
course, foresee every possible use of their component, and they cannot respond to every modification request from their users.
We need to create mechanisms, therefore, whereby application-builders can easily adapt third-party components without
requiring knowledge of the source code

As more and more third-party components are added to the application -- or when an application is constructed entirely from

1 of 5 2/11/99 10:27 AM

Adaptation of Software Components http://www.cs.wpi.edu/~heineman/papers/CBSE2-wkshp.htm

such components -- the only solution that will scale is one that minimizes the effort to make modifications to the original
application and to adapt the software components.

2.1 Adaptation, Evolution, Customization

The players in this drama are the component designer and the application builder. We make the distinction between software
evolution, where component designers modify the software component they designed, and adaptation, where an application
builder adapts a third-party component for a (possibly radically) different use. If the component designer were requested to
adapt a component, the designer would likely select a minimal set of changes because of direct knowledge of the component.
The application builder does not have this advantage, nor will the builder be able to acquire this knowledge simply from the
source code and documentation. The application builder, thus, needs help to successfully adapt components.

We also differentiate adaptation from customization; an end-user customized a software component by choosing from a fixed
set of options (such as OIA/D). An end-user adapts a software component by writing new code to alter existing functionality
or behavior.

2.2 Differences between adapting components and classes

Object-Oriented Design (OOD) embodies the principle of design for change, a design principle first stated by Parnas [15] that
encourages Software Engineers to modularize code to minimize the impact of future changes. OOD has two mechanisms that
serve this purpose. First by designing classes with a public interface and private implementation, a class supports information
hiding. The class designer can insulate the clients of the class from the internal implementation, which usually changes more
frequently than the interface definition. Second, inheritance is a mechanism by which an object acquires characteristics from
one or more other objects [1]. Inheritance can be classified as essential, referring to the inheritance of behavior or an
externally visible characteristic, or incidental, referring to the inheritance of part, or all, of an underlying implementation of a
more general object. Object-oriented designers learn early on that incidental inheritance, done strictly for the purpose of
reusing existing code, leads to poor design.

In the Software Architecture literature, inheritance is a modeling vehicle used by various Architectural Description Languages
(ADLs), such as ACME [4] to specify when interface inheritance occurs (there are exceptions, notably the use of
object-oriented typing as seen in [17]). We argue that inheritance should not be used to create new components from parts of
old components.

However, one of the major differences between CBSE and OO is that engineers wishing to adapt an existing object-oriented
program must perform the difficult task of understanding (often complex) class hierarchies. In particular, the adapter must
determine the set of classes to modify to make the change such that the original integrity is not broken. Often, additional leaf
classes are added to the hierarchy to avoid changing the original class structure when it would have been better to make
modifications to existing classes. There is, thus, a tacit assumption with Object-Oriented technology that the designer of the
system and the maintainer/adapter are one and the same. We seek to find ways for an application builder to adapt a
component with only knowledge of its documented interface.

3. Requirements for Component Adaptation

Figure 1 contains the requirements for component adaptation techniques that we compiled from various articles [8,2,10]. It
may not be possible for an adaptation mechanism to satisfy each requirement, since these requirements are drawn from
disparate sources. There is no clear indication on how to prioritize these requirements. Note that some of the requirements in
Figure 1 are partly contradictory: R2 and R4, for example. Others are strongly related, such as R5 and R7. By evaluating
component adaptation mechanisms against these requirements, we can determine those requirements that are the most useful.

2 of 5 2/11/99 10:27 AM

Adaptation of Software Components http://www.cs.wpi.edu/~heineman/papers/CBSE2-wkshp.htm

1. Black Box - The person adapting the component should only need to understand the interface to the component.

2. Transparent - the client of the adapted component, as well as the component itself, should be unaware of the
adaptation between them.

3. Flexible - it should be possible to induce a wide range of adaptations (functional as well as behavioral).

4. Embedded - The adaptation mechanism should be built into the component.

5. Language Independence - the adaptation mechanism should not specifically depend on any one programming
language.

6. Composable - the adapted component should continue to be composable with other components; the actual
adaptation should be composable with other adaptations.

7. Reusable - one should be able to reuse the code written to adapt a component.

8. Architecturally Aware - A component-based application should have some global concept of architecture, and the
specification and/or implementation of the adaptation should be visible at this architectural level.

9. Configurable - An adaptation mechanism should be capable of applying the same particular adaptation (a generic
part) to a particular set of target characteristics (the specific parts). Synonymous with Repeatable or
Template-drive.

Figure 1a: Requirements for component adaptation mechanisms

Adaptation Mechanism R1 R2 R3 R4 R5 R6 R7 R8 R9

Metaobject Protocols [17] Yes Yes Yes Yes1 No1 Yes Yes Yes Yes

Active Interfaces [5] Yes Yes6 Yes Yes Yes No5 Yes Yes No

Superimposition [2] Yes Yes Yes Yes No4 Yes Yes No Yes

Binary Component Adaptation [10] Yes Yes9 Yes No No3 Yes8 No No No

Inheritance2 Yes Yes Yes Yes No4 No No No No

Open Implementation [11] Yes No No Yes Yes No7 No No No

Copy-Paste2 No Yes Yes No Yes No No No No

Wrapping2 Yes No No No Yes Yes No No No
1 Reflection is required.
2 These basic techniques are carefully analyzed in [2]. See [8] for supporting evidence.
3 BCA theoretically will work on object code compiled from any high-level language, but there are serious obstacles to such
efforts; the current prototype works with Java.
4 The language must be object-oriented.
5 Active interfaces can be composable if the individual adaptations themselves are programmed as such.
6 Once this mechanism is built into the component, the component is unaware of its workings.
7 All adaptations are chosen from pre-selected implementation strategy code; there is an opportunity for a component to
replace such strategy code as part of the adaptation, but the authors admit the difficulty of such a task [11].

3 of 5 2/11/99 10:27 AM

Adaptation of Software Components http://www.cs.wpi.edu/~heineman/papers/CBSE2-wkshp.htm

8 Although not discussed as such in [10], it should be straightforward to apply BCA to a previously adapted component.
9 The Java compiler was modified to transparently resolve client references to adapted code.

Figure 1b: Comparison Matrix

3.1 Adaptation as a facet of Integration

Incorporating third-party software components will always require integration, but there is not enough emphasis on the
necessary adaptation that must take place. Again, we differentiate adaptation from customization whereby the customer
simply selects from a pre-determined set of options. Some have proposed wrapping or mediation as integration mechanisms,
but these only partially satisfy the integration aspects, and do not solve the problems of adaptation.

3.2 Architectural evolution

Figure 1 lists only those approaches that adapt a software component to create a new component. There are several research
efforts concerned with Architectural Evolution, namely the addition, removal, or replacement of components, connectors, or
changes to the configuration of components and connectors. Some examples are ArchStudio [14] and Simplex [16]. There are
also different efforts towards creating software systems whose architecture can change dynamically at run-time to adjust as
needed to changing circumstances; these are dynamic versions of architectural evolution.

4. Discussion

The comparison matrix in Figure 1 reveals various correlations between the requirements and mechanisms. There is strong
agreement that requirements R1-R4 are suitable for adaptation mechanisms (as shown in the upper left quadrant). This
reflects, perhaps, the fact that requirements R1 (Black-Box), R2 (Transparent), and R4 (Embedded) relate to structural issues.
R3 (Flexibility) is perhaps a poor measure since it is subjective (for example, the Wrapping mechanism is marked as not
being flexible based on its inability to adapt the internal behavior of the component being wrapped).

The lower right quadrant of the matrix strongly agrees that the various mechanisms (Inheritance, Wrapping, and Copy-Paste)
are not satisfactory. This is not surprising, considering that these have been used by [8,2] as a control to compare adaptation
mechanisms. Open Implementation was developed to help the designer of a component create a highly customizable
component, rather than one that would be easy to adapt.

The upper right quadrant contains mixed results, and instead of being used to globally select which adaptation mechanism is
"best", these results should be used to guide component designers to select the adaptation mechanism best suited to their own
concerns. For example, Language Independence (R5) is not an agreed upon requirement, but this should not affect component
designers since they will select adaptation mechanisms best suited for the language in which they implement their component.
It is unlikely (although still probable) that a component designer would select a programming language for the ease in which a
third-party application builder would be able to adapt the component.

There is a direct correlation between R2 (Transparent) and R3 (Flexibility) that is certainly not evident simply from the list of
requirements. One conclusion to be drawn is that mechanisms are most flexible when they do not introduce additional
coupling between the adapted component and the target application. A strong correlation exists between R7 (Reusable) and
R8 (Architecturally aware). This is interesting since it suggests that adaptation mechanisms that focus on the global
architecture are able to reuse local adaptations in powerful ways. A negative correlation exists between R5 (Language
Independence) and R9 (Configurable) which suggests more research needs to be performed to find ways to make adaptation
mechanisms more generic.

 5. Conclusion

This evaluation survey provides an interesting overview of the state-of-the-art in component adaptation and provides a good
starting point for discussions on the nature of component adaptation mechanisms. This material belongs in various sections of
the proposed strawman outline for the workshop. Under the Technology supporting CBSE (Section 3), reusable components
must be discussed within the framework of how application builders will adapt them. Integration technologies should not be
limited to Run Time support; rather it should include such static mechanisms as discussed in this paper. Finally, from a
philosophical perspective, it is important to differentiate software reuse (which traditionally has been a means of reusing

4 of 5 2/11/99 10:27 AM

Adaptation of Software Components http://www.cs.wpi.edu/~heineman/papers/CBSE2-wkshp.htm

functional code libraries or frameworks) from reusable components (which bring in the notion of adapting behavior).

Acknowledgements

This work is sponsored in part by National Science Foundation grant CCR-9733660.

References

1. Edward V. Berard, Essays on Object-Oriented software engineering, Volume I, Prentice Hall, 1993.
2. Jan Bosch, Superimposition: A component adaptation technique, submitted for publication,

http://bilbo.ide.hk-r.se:8080/~bosch/papers/compadap.ps.
3. Alan W. Brown and Kurt C. Wallnau, The current state of CBSE, IEEE Software, Vol. 15, No. 5, September/October

1998.
4. David Garlan, Robert T. Monroe, and David Wile, ACME: An architecture description interchange language, In

Proceedings of IBM Centre for Advanced Studies Conference (CASCON'97), pp. 169-183, Ontario, Canada,
November 1997.

5. George. T. Heineman, A model for designing adaptable software components, Twenty-second International
Conference on Computer Software and Applications Conference (COMPSAC), pp. 121-127, Vienna, Austria, August
1998.

6. George T. Heineman, Adaptation and software architecture, Third International Workshop on Software Architecture,
Orlando, Florida, November 1998.

7. George. T. Heineman, Composing software systems from adaptable software components, DARPA/OMG workshop on
Compositional Software Architectures, Monterey, California, January 1998.

8. George T. Heineman and Helgo Ohlenbusch, Towards a theory of component adaptation, Technical report
WPI-CS-TR-98-20, Worcester Polytechnic Institute, submitted for publication.

9. Urs Hölze, Integrating independently-developed components in object-oriented languages. In O. Nierstrasz, editor,
Proceedings ECOOP'93, LNCS 707, pp. 36-56, Kaiserslautern, Germany, Springer-Verlag, July 1993.

10. Ralph Keller and Urs Hölze, Binary component adaptation, Technical report TRCS97-20, University of California,
Santa Barbara, December 1997.

11. Gregor Kiczales et al. Open implementation design guidelines, in 19th International Conference on Software

Engineering, pp. 481-490, May 1997.
12. Nenad Medvidovic, Peyman Oreizy, J. Robbins, and Richard N. Taylor. Using object-oriented typing to support

architectural design in the C2 style. SIGSOFT’96. pp 24-32. San Francisco, CA, October 1996.
13. Peyman Oreizy, Decentralized software evolution. In Proceedings of the International Conference on the Principles

of Software Evolution (IWSPE 1), Kyoto, Japan, April 1998.
14. Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor, Architecture-based runtime software evolution. The

Proceedings of The International Conference on Software Engineering 1998 (ICSE'98). Kyoto, Japan, April 19-25,
1998.

15. David L. Parnas, On the criteria to be used in decomposing systems into modules, Communications of the ACM, Vol.
5, No. 12, pp. 1053-1058, December 1972.

16. L. Sha, R. Rajkumar, and M. Gagliardi, Evolving dependable real-time systems, IEEE Aerospace Applications
Conference. New York, NY, pp. 335-346, 1996.

17. Ian Welch and Robert Stroud, Adaptation of connectors in software architectures, In Third International Workshop on
Component-Oriented Programming (WCOP'98), Brussels, Belgium, July 1998.

18. D. M. Yellin and R. E. Strom, Protocol specification and component adaptors, ACM Transactions on Programming
Languages and Systems, 19(2):292-333, March 1997.

5 of 5 2/11/99 10:27 AM

Adaptation of Software Components http://www.cs.wpi.edu/~heineman/papers/CBSE2-wkshp.htm

