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Abstract

This paper investigates the nature of the process in programming by which
a new level of abstraction is constructed by building upon an existing one. The
process is called abstraction. The purpose of the investigation is to provide an
informal characterization of abstraction, as a conceptual foundation for subse-
quent development of a mathematical theory of abstraction.
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1 Introduction

This paper is the first step toward developing a mathematical model of the process
in programming by which a new level of abstraction is constructed by building upon
an existing one. The process is called abstraction. The goal of the paper is to de-
velop a more detailed characterization of abstraction — not a mathematically rigorous
characterization, which this paper necessarily precedes, but an informal working def-
inition and conceptual framework that, once established, could serve as a conceptual
foundation for subsequent development of mathematical theory.

The expression “level of abstraction” has been around for some time. It has
been in use in programming at least since the mid-1960’s (e.g., [Land66]), well before
“abstraction” became a prominent buzzword in programming language design.! Con-
ceivably, “level of abstraction” may, like “bug” for a system flaw [Tenn91], predate
computers entirely.

§2 provides a broad perspective on the treatment of abstraction in existing litera-
ture, both within and without computer science. §3 develops the proposed ‘informal
working definition’ of abstraction. Concluding comments are made in §4.

2 Other senses of ‘abstraction’

This section considers treatments of abstraction in previous (primarily academic)
work, covering a wide range of subjects. It is intended to provide a fair sample of
the existing literature, but is by no means a comprehensive survey, which given the
amount of material involved was deemed impractical.

In study of the existing literature, the definition of the term abstraction can easily
become a serious stumbling block. Researchers often either don’t define the word, or
worse, provide a definition that doesn’t accurately reflect the way they actually use
it. To combat this difficulty, the sampling in this section particularly emphasizes the
differences between the various definitions, and meanings, of abstraction.

2.1 Metaphysics

The basic scholarly meaning of “abstraction” belongs to the philosophical subject of
metaphysics, and is actually one of the primary meanings of the term in common
English usage (in contrast to many philosophical terms that depart rather abruptly
from everyday speech). An excellent articulation of the common metaphysical sense of
the word occurs in the authoritative second edition of Webster’s unabridged dictionary
[Webs50]:2

! The apotheosis of “abstraction” as a buzzword dates approximately to the late 1970’s.

2This definition is easily the most lucid and complete I have encountered. It dates back, with
minor rewording, well into the nineteenth century, possibly far enough to have been written person-
ally by Noah Webster. Evidence in the phrasing suggests direct study of the works of John Locke



Definition 2.1 Abstraction: ... 3. Metaph. Act or process of leaving out of
consideration one or more qualities of a complex object so as to attend to others.
O

The entry goes on to elaborate that abstraction encompasses both the act of consid-
ering a single object independent of some of its qualities, and the act of considering
a quality or qualities independent of any particular objects.

Some philosophers use the term analysis for consideration of an object indepen-
dent of some qualities, reserving abstraction for consideration of a quality independent
of any object [Abst11]. Webster’s broader definition is more in keeping with the gen-
erality intended here.

2.1.1 TUniversals

Any philosophical discussion of abstraction is centrally concerned with universals. A
universal is, in essence, an idea with some degree of generality. (Formal definitions
of universal quickly get mired in philosophical jargon.) The nature of universals was
the only aspect of metaphysics — other than the question of the existence of God —
that got much attention in Europe during the middle ages. There are three schools
of thought:

Realism is based on Plato, and says that universals are real. In its extreme form,
it says that only universals are real, while material objects are not real.

Nominalism is the opposite of realism. Traditionally credited to William of Ock-
ham, it says that universals have no existence.® In the extreme form of this theory
(more extreme than, in particular, Ockham’s position), material objects cannot be
similar to each other; when several material objects are called by the same name, the
only thing they have in common is that they are called by the same name.

Conceptualism is an intermediate ground, notably advocated by John Locke. It
says that universals exist, but only as concepts.

2.2 Symbolic logic

Symbolic logic recognizes three abstraction operators, each of which binds free vari-
ables in the expression to which it is applied.

The class abstraction operator for variable z, denoted 7, binds free variable z in a
boolean expression, to denote the class of objects = for which the expression is true.*

and, possibly, Aristotle.

30ckham wasn’t the first advocate of nominalism, but he was a very effective one. Being very
good at what he did has served his reputation in good stead over the centuries. He didn’t invent
the Principle of Economy (entities should not be multiplied unnecessarily), either, but he wielded it
so incisively that to this day it is called Occam’s Razor. (See [Copl63].)

“The notation used here for class and relational abstraction was adapted from Frege by Russell;
the standard notation for function abstraction is traditionally credited to Alonzo Church, [Chur41].
The examples here are borrowed from [Quin47].



For example, Z(z ¢ z) specifies the class of all objects x that are not elements of
themselves.

The relational abstraction operator for variables x and y, denoted Zy, binds free
variables z and y in a boolean expression, to denote the relation consisting of pairs
(x,y) for which the expression is true. For example, Zy(3z)((z € Z) A (z x z = y))
specifies the set of all pairs of integers (x,y) such that y is a multiple of x.

The functional abstraction operator for variable x, denoted Az, binds free variable
x in an expression, to denote the function whose value on input z is denoted by the
expression. For example, Az (x?) specifies the function that squares its input.®

2.3 Artificial Intelligence

In automated problem-solving, it is often desirable to simplify a given problem by
temporarily disregarding some details. This technique, called abstraction, has been
recognized for decades, and has actually been implemented in numerous systems;
but only recently has a general mathematical foundation been proposed for it, as in
(for example) [Giun92]. Similarly to the intent of the current work, [Giun92] begins
by explicating the concept to be mathematized, and then uses that explanation as
a blueprint in developing the mathematical model. The following definitions are
summarized from that paper.

Definition 2.2 (AI, informal) Abstraction:

1. The process of mapping a representation of a problem, called (following histori-
cal convention) the “ground” representation, onto a new representation, called
the “abstract” representation, which:

2. helps deal with the problem in the original search space by preserving certain
desirable properties and

3. is stmpler to handle as it is constructed from the ground representation by
“throwing away details”. O

Definition 2.3 (AI, formal) A formal system ¥ is a triple (A, A, ) where A is
the language, €2 is the set of axioms, and A is the deductive machinery of >. The
set of sentences (theorems) that can be deduced from Q via A is TH(X) C A.

An abstraction, written f : ¥; = Yo, is a pair of formal systems (3, ¥,) with
languages A; and A, respectively and an effective total function fj : A; — As.

Abstraction f : Xy = X5 is TI (Theorem Increasing) iff « € TH(X;) im-
plies fa(a) € TH(X3); TD (Theorem Decreasing) iff @ ¢ TH(X;) implies fa(a) &
TH(X,); and TC (Theorem Constant) iff it is both TI and TD. O

5The use of a dot after the functional abstraction operator, although commonplace today, was
reserved in [Chur41] as a shorthand for functions of multiple arguments. Thus Azy.M = Az(\yM).



These definitions simplify the problem of mathematizing an informally conceived
process by separating it into two parts — a purely mechanical operation (Part 1 of
the informal definition), and its motivation (Parts 2-3). In the formal definition, an
abstraction per se models only the purely mechanical operation, and consequently
needn’t meet the motivational criteria. Aspects of the motivation are addressed by
the subsequent definition of well-behavedness properties for instances of the operation
(Theorem Increasing, etc.).

2.4 Program semantics

Full abstraction, in the realm of formal semantics of programs, refers in general to
a mapping between semantic models that occurs without loss of information. This
general description actually covers two slightly different uses.

1. When comparing programming languages, a fully abstract translation from lan-
guage L1 to language L, is a mapping of terms in £; to terms in £, that pre-
serves partial ordering of terms based on their observable consequences. (For
the rigorous mathematical definition, see [Riec91].)

Conceptually, the existence of a fully abstract translation from £; to £y indi-
cates that L is ‘at least as abstract’ as Lo, since all behavioral information
represented by terms in £, is also represented by corresponding terms in L.

2. When considering a single programming language, a denotational semantics of
the language is fully abstract if, whenever two programs have distinct denota-
tions, they also have distinct operational semantics [Schm86].

Another commonly used term, in both formal program semantics and applied pro-
gram translation, is abstract interpretation. An abstract interpretation of a program
p is a processing of p that determines some aspects of the semantics of p without
performing all the details of the computation. The purpose of such an exercise is,
in general, to answer decidable questions about the semantics of p without directly
confronting the halting problem. Typical examples of abstract interpretation are
strictness analysis (which identifies terms that definitely denote L) and totality anal-
ysis (which identifies terms that definitely do not denote L).

2.5 Programming language design

In the field most directly relevant to the current work, programming language design,
the term abstraction is used with a fairly high degree of consistency in meaning. Most
researchers would agree that the following are all examples of abstraction.

e Use of symbolic names for constants/variables.

e Definition of procedures and functions (procedural or functional abstraction).
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e Definition of new data types, especially when packaged with associated opera-
tions (data abstraction).

e Definition of new control structures (control abstraction).b

There is some variation in usage between authors. For example, [Gabr89] adds to the
list syntactic abstraction, by which is meant the use of syntax macros. [Guar78| re-
marks that built-in facilities of a programming language can be abstractions, whereas
most authors only explicitly discuss user-defined abstractions. But minor variations
aside, these four items form essentially the complete canon of abstraction in program-
ming language design.

Many authors in this field who work extensively with abstraction also offer an
explicit definition of the term. Here are some examples:

Abstraction is the generalization from a collection of objects that all of
the items in the collection share some properties that are important for a
given purpose. — [Guar78, p. 4]

Programming languages are notational systems that facilitate program-
ming . . . by providing concise notations . .. together with facilities for defin-
ing new notation. We call these latter features definitional mechanisms
or abstraction mechanisms. — [Hilf83, p. 1]

Abstraction in programming is the process of identifying common pat-
terns that have systematic variations; an abstraction represents the com-

mon pattern and provides a means for specifying which variation to use.
— [Gabr89, p. 2-8]

The first of these definitions seems to be drawn from the metaphysical tradition
(§2.1). The second is almost as general as the definition that will be proposed here in
§3 (Definition 3.1). The third appears to require that all abstractions be parametric
(“have systematic variations”). None of the three definitions fits particularly well
with the four canonical forms of abstraction; the parametric definition from [Gabr89]
doesn’t even gracefully encompass the use of symbolic names, and none of the defi-
nitions offers any obvious reason for the canonical list to be exhaustive.

Yet in practice, all three quoted works actually use the term abstraction for es-
sentially just the canonical forms. Evidently, the authors’ understanding of the term
was properly drawn from their experience of the canon, and the explicit definitions
are merely explanatory (if not patently aesthetic) rather than predictive.

2.6 Comments

Recognizing the breadth of variation in definitions of abstraction is a great help to
understanding the extant literature on the subject. But are any of those definitions

6Researchers surveying the subject usually mention control abstraction mostly to remark that it
is grossly underutilized. See for example [Guar78, Gabr90].



relevant to the current general study of the construction of new levels of abstraction?

One tempting connection to programming practice that ought to be quashed
sooner rather than later is the suggestive occurrence of the word object in Defini-
tion 2.1 (§2.1). Remember that that definition hails from metaphysics. Notwith-
standing occasional claims by some of the more ardent OOP enthusiasts, the word
object in modern programming is a specialized technical term for a particular kind of
abstract data structure. It isn’t at all the common English usage of the word, and
shouldn’t be expected to correspond too closely to that usage. If an analogy with
OOP should eventually emerge as a natural feature of a general theory of abstrac-
tion, that would be an interesting result; but attempting to build in such an analogy
would only compromise the generality of the theory. So for the moment, analogies
with OOP will be avoided.

That said, the metaphysical sense of abstraction is still a tempting candidate
for use in the current work. Of all the definitions enumerated above, Definition 2.1
comes closest to capturing what all the others have in common; presumably it is the
ancestral meaning from which the others have evolved. As noted in §2.5, it has been
proposed as a general definition for programming language design [Guar78].

It also isn’t difficult to view some of the more common abstractive programming
techniques as examples of the metaphysical definition. Enforced information hiding,
in which some of the attributes of a module — or any other kind of program entity —
are not available outside a certain scope, is evidently considering an object indepen-
dent of some of its qualities. Any polymorphic use of data types/classes is, at least
in most programming languages, considering qualities independent of any particular
objects.

This sort of reasoning by cases, however, is a trap. Showing that the metaphys-
ical definition is consistent with certain existing techniques doesn’t detract from its
credibility, but it can never positively support it, either. For a general theory of the
subject, what is needed is a definition whose logical completeness is obvious, and from
which specialized cases can be identified by logical partitioning, with no possibility
that anything could have been omitted.

There is, moreover, a fundamental problem in applying the metaphysical definition
to the general process of constructing levels of abstraction. Metaphysical abstraction
is a process of leaving out information. How, then, can it describe a constructive
process? One might argue that whatever is constructed was already implicitly present;
but in that case the opposite problem occurs: If nothing new has been added, then
it isn’t clear than anything has been left out, either.

Another candidate that deserves some mention is that proposed for programming
language design by [Hilf83] (see §2.5) — ‘facilities for defining new notation’ are called
‘abstraction mechanisms’. This is, in a sense, the complement of the metaphysical
definition: It readily encompasses the construction of new program entities, which



the metaphysical definition stumbled over; but it doesn’t clearly address the issue of
information hiding, which was the metaphysical definition’s particular forte.

Since we don’t want a piecewise definition, we can’t simply splice together the
metaphysical and notational definitions. What is needed is a fresh approach — which
is what §3 provides.

3 Abstraction in programming

This section develops a subjective model of abstraction in programming, as a yardstick
against which the merits and demerits of rigorous mathematical models can be judged.
Following a strategy akin to that noted in §2.3, the working definition itself addresses
only the purely mechanical operation of abstraction in programming.

3.1 Working definition

Any source code element — say, a function declaration in an HLL (High-Level Lan-
guage) — may be thought of as modifying the programming language in which it
occurs. A standard programming language is, then, simply the starting point from
which a source text diverges by a series of modifications. This view has been called,
aptly, programming as language development [Chri88]. It is well represented in the
literature of programming methodology, e.g., [Dahl72, Wino79], and forms the basis
for an entire family of mathematical formalisms called adaptable grammars [Shut93,
Part I].

Based on the principle of programming as language development, one might for-
mulate a definition like this:

Abstraction: The act or process of transforming one programming language into
another. O

(This is, again, a purely mechanical characterization.)

This definition misses something of the flavor of abstraction, at least of the sort
we have been considering. Abstraction such as the function declaration mentioned
above is a transformation that occurs “from within”. That is, the transformation uses
facilities that were available in the programming language before the transformation.
Do all abstractions (in programming) have this property? It will be argued later in
the section that yes, they can be assumed to have, without loss of generality.

Definition 3.1 (in programming) Abstraction: The act or process of trans-
forming one programming language into another by means of facilities available in
the former language. The two languages are called respectively the domain and
codomain of the abstraction. O



Some readers may be initially disconcerted — the author certainly was, despite
having years to mentally prepare himself — by the explicit depiction of a malleable
programming language, constantly shifting at the whim of the programmer. It is
more usual to think of a programming language as something vast and monolithic,
the fixed medium of discourse for entire software modules comprising possibly tens or
hundreds of thousands of lines of source code each. Defining a new one usually takes
years of labor by a standards committee.”

One might conclude that the term “programming language” is being used in the
definition with an unconventional meaning — in which case, some other term ought
to be substituted that doesn’t carry so much excess conceptual baggage. But in fact,
the conventional meaning is exactly what is wanted, baggage and all. The malleable
programming language only appears unfamiliar because we have been looking at
it on an unfamiliar scale. Note that each abstraction is induced by a source text
(the “means ... available in the [domain language]”).® The domain language of the
abstraction may be the output of a standards committee, or it may be the codomain
of some other abstraction; but either way, it is the fized medium of discourse for
the inducing text — be it a dozen-line function declaration or a million-line module
declaration. How monolithic this makes the domain language look will depend on the
text length.

3.2 Incremental vs. radical abstraction

Discussions of abstraction in programming usually distinguish between fized abstrac-
tions provided by the core language, and user-defined abstractions that must be
constructed by the programmer; e.g., [Guar78, Hilf83]. The fixed/user-defined dis-
tinction per se is not suited to the current work, because it primarily concerns when
abstraction took place — before or after the current programmer came into the picture
— rather than how it took place, which is of principal interest here. An analogous
distinction is made here between radical and incremental abstraction.

Definition 3.2 Incremental abstraction: An abstraction that modifies a pro-
gramming language gradually, by means of selective changes. O

An HLL function declaration is an incremental abstraction; it modifies the language
by adding a new operator, but the original language remains otherwise intact.

Definition 3.3 Radical abstraction: An abstraction that replaces one program-
ming language with another wholesale, by means of explicit computation. O

"There may be a lesson here about doing things by committee, but that wasn’t the point I was
trying to make.

8For purposes of informal discussion, it will be assumed that the means of abstraction is a string
of symbols. This simplification is unnecessary in general; however, symbol strings are the canonical
means of abstraction, and alternative means will always have similar formal properties.



The canonical example of radical abstraction is an HLL compiler written in an as-
sembly language, which radically abstracts from (apparently — but see below) the
assembly language to the HLL.

Under Definition 3.1, the domain of an abstraction is the language whose facilities
are actually used to accomplish the transformation. This didn’t seem overly contro-
versial in §3.1, because the only abstractions considered there were incremental. The
domain and codomain of an incremental abstraction are self-evident (modulo we’re
working without mathematically rigorous definitions, of course).

Radical abstraction, however, poses an interesting problem.

Example 3.1 Suppose a compiler f, written in C, compiles Scheme programs into
assembly language. Obviously, f is a radical abstraction — in fact, it is just the sort
of thing that Definition 3.3 was designed for. But how, exactly, does this scenario
square with the model of abstraction presented in §3.17

Since the effect of f is to let the programmer write programs in Scheme, it
appears (weasel words already!) that the codomain of f is Scheme. What, then,
should be considered the domain of f? C? Assembly language?

This is, of course, a trick question: Not enough information has been provided.
Before settling on an answer to the question, we will have to extend the basic
assumptions of the scenario; and before we do that, we will first have to examine
more closely the implications of the assumptions we have already made. ¢

3.3 Domain, codomain, and means

An abstraction should not necessarily be thought of as a function in the set-theoretic
sense. Even if languages were to be formally defined as sets®, the act of mutating one
set to form another does not necessarily define a mapping from elements of the one
to elements of the other. Nevertheless, conventional notation f: A — B will be used
here to mean that an abstraction f has domain A and codomain B.

Section 3.1 claimed there would be no loss of generality by assuming that every
abstraction is achieved “by means of facilities available in [its domain]”. In the case
of incremental abstraction, as already noted, the “means” is a string permitted by the
domain language. Notation meansof (f) will be used here to denote the text string
that induces an abstraction f.!° Evidently meansof(f) is defined at least whenever
f is incremental.

9Most definitions of programming language involve more internal structure than the word set
entails. In the treatment of abstraction in [Shut99b], programming languages will in fact be defined
as sets; but that exception will serve mostly to illustrate why it shouldn’t be done.

10The assumption that meansof (+) is single-valued, i.e., a function, is mathematically useful inde-
pendent of the current assumption that the means of abstraction is a symbol string. For example,
there is no apparent difficulty in positing enough distinct abstractions to have one for each permis-
sible string; but if it were desirable, for some reason, to associate multiple alternative strings with
each abstraction, one could interpret this by saying that the means of abstraction is a set of strings.



Abstraction is composable. That is, if f: A — B and ¢: B — C, it makes sense to
talk about the composite abstraction go f: A — C'. When g and f are both induced
by text strings, g © f is simply the effect on A of the concatenation of the source code
elements associated with f and g; that is, meansof (g© f) = meansof (f) meansof (g).
Composition of abstractions is evidently associative.!!

An abstraction f may be represented diagrammatically as an arrow, labeled by
its inducing text, between two points representing its domain and codomain. The
simple generic form of such a diagram would be

domain meansof (f) ,.codomain
language language

Example 3.1 (continued) The source code for Scheme compiler f is written
in C, and therefore induces an incremental modification to the C programming
environment. Thus,

C  {(compiler source) modified C
language language

Similarly, using compiler f, a Scheme programmer may construct a new program
by incremental modification of the initial Scheme environment.

(program source) _modified
~ Scheme

Scheme *

Obviously, the ‘modified C language’ node in the first diagram is not the same as the
‘Scheme’ node in the second; so somehow we have to get from one to the other. This
missing bridge between the two nodes is qualitatively different from the abstractions
shown in the previous diagrams: it’s radical. Since radical abstraction f must be
identified with some part of this path, and the C-to-Scheme bridge is conveniently
available, we choose to call the bridge f.

(compiler source) meansof () (program source)
C modified C Scheme modified
language language Scheme

1A formal prerequisite for any means of abstraction will be that it have an associative binary
operation, so that meansof (-) can map into it while preserving associative composition of abstrac-
tions. Note that sets of symbol strings, alluded to in the previous footnote, have associative binary
concatenation.

The situation is strikingly suggestive of category theory. Programming languages are objects,
abstractions are arrows between them. Arrows have associative composition, and each object has
an identity arrow: the null abstraction, induced in the canonical example by a text string of length
zero. meansof (+) is a functor.
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This diagram supposes, of course, that meansof is defined on this f at all.

What does f accomplish? Intuitively, f should indicate that the C source code
has come to an end, and then execute it — perhaps by compiling it and running the
resultant binary image. In the real world, typically, these operations would be per-
formed in the command shell of an operating system. This suggests a solution: Let
string meansof (f) belong to a meta-language, with its own inducing texts and ab-
stractions, within which both C and Scheme (and, presumably, assembly language)
are embedded.

Framing the entire example in the context of a meta-language might produce
something like the following.

initial OS state
command to compile following C source code)

C language _

) C source code for Scheme compiler)
modified C language )

terminator for C source code)

command to compile following Scheme source code)

Scheme
Scheme source code)

modified Scheme

(

(

(

second OS state (
(

, (
third OS state

terminator for Scheme source code)

Figure 1: Meta-language for radical abstraction

The radical abstraction f from the previous diagram appears here as the composi-
tion of two abstractions, ‘terminator for C source code’ and ‘command to compile
following Scheme source code’.

It is now possible to answer the original question: The domain of f is the
modified C language induced by the compiler source code. Ironically, though, that
question is no longer particularly interesting; it’s now dwarfed by issues of meta-
language, semantics, and the relationship between abstraction and computation.
O

3.4 Grokking abstraction

There are (as already implied) several lessons to be learned from the resolution of
Example 3.1.

For one thing, the distinction between incremental and radical abstraction, which
was originally framed in terms of intention (“selective changes” versus “explicit com-
putation”), is closely related to semantic shifts between different conceptual levels
of language. Such shifts of level also occur within a typical programming language
as well, at levels ranging from vast modules and packages to small nested loops and
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conditionals. The obvious conclusion is that the distinction between incremental and
radical abstraction may be merely one of subjective scale. A more subtle inference is
that hierarchical (“context-free”) phrase structure may play a pivotal role in abstrac-
tion, at least as it occurs in artificially constructed language systems.

Another important point concerns equivalence of programming languages.

Consider the (infinite) directed graph of all abstractions radiating outward from
a central point — say, from the ‘C language’ depicted in Figure 1. Each legal C
program text induces an abstraction from the root node to some modified C language.
One such language is depicted in the Figure, along with a chain of four additional
abstractions leading to further languages beyond it. There are also infinitely many
other abstractions, and languages, branching outward from that modified C language;
and the same must be true of other modified C languages in the graph.

Consider any two such modified C languages, C'; and C5. Each of C, C5 may be
the starting point for an infinite web of additional abstractions. Evidently, if some
text t3 induces an abstraction with domain C;, but does not induce an abstraction
with domain Cs, then these two languages cannot truly be said to have identical
semantics, because there is an observable difference in their consequences. In fact, we
have the following general principle: Let G; be the subgraph of all abstractions and
languages reachable from Cf; and similarly G from Cj.

01<G1

C

language

02<G2

Then languages C; and C5 cannot have identical semantics unless GG; and G, are
isomorphic; that is, unless G; and G, have the same shape and the same inducing
texts on corresponding abstractions.

This principle can be taken even further. From the example of compiler f, we
already know that the meta-language of Figure 1 contains some information about
the runtime behavior of C programs. So why shouldn’t we choose the meta-language
so that it contains all information about the runtime behavior of C programs? In-
teractive behavior, for example, can be described readily by interleaving substrings
describing input and output; and so on. Isomorphism of reachable subgraphs may
then be considered, in principle, a sufficient as well as necessary criterion for the
semantic equivalence of programming languages.

The meansof (-) operator already implicitly casts abstraction as a purely syntactic
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phenomenon.'? What has now emerged is that, by doing so, we do not have to give
up on semantic abstraction — because we are now in a position to view semantics
itself as a purely syntactic phenomenon.

The dividing line between syntax and semantics has always been a sticky issue in
computer science. Between context-free syntax and run-time semantics, there is a no
man’s land sometimes called static semantics.'®> Programming language abstraction
issues usually fall squarely into no man’s land.

What we are doing here, in effect, is consigning to syntax not only the disputed
territory — no man’s land — but the entire battlefield.

In retrospect, one can see that this outcome was inevitable. A theory of ab-
straction that applies only to syntax, or only to semantics, would have to be judged
profoundly incomplete; and a piecemeal theory that handles the two cases separately
must always be suspected of lacking generality. A single uniform theory requires a
single uniform view of the subject matter. That the uniform view appears rather
syntactic is natural but not really partisan; it only explicitly acknowledges the meta-
language that semanticists use to address their subject. (If anyone can rightfully
claim victory here, it is the semioticians.)

4 Conclusion

This paper has constructed an informal model of the process by which new levels of
abstraction are built from old ones.

The problem of construction has been simplified by separating the nuts-and-bolts
view of abstraction as a mechanical operation, from higher-level motivational issues.
The current work focuses on the mechanics of abstraction. Abstraction is defined as
the transformation of one programming language into another by means of facilities
available in the domain language (Definition 3.1). Each complete system of abstrac-
tions is modeled as a directed graph (or, more precisely, a category) whose nodes are
languages and whose edges are abstractions.

On closer consideration of the mechanical model, it appears that in practice (on
artificially constructed languages) there is a definite hierarchical structure to the
abstraction process. By extending the hierarchy upward, the entire semantics of arbi-
trary computations can be captured within the model, so that abstraction ultimately
subsumes computation.

The purpose of the informal model is to clarify what it is that a formal Theory of
Abstraction should capture. The next step will be to identify particular features that

12The syntactic flavor of meansof (-) is partly an artifact of the current emphasis on symbol strings;
but since all means of abstraction must have a concatenation-like operation, the impression of syntax
will tend to linger on into more general mathematical treatments.

13Critics maintain, in polite or not-so-polite phrases, that only an ignoramus would mistake
context-dependent syntax for any kind of semantics. For a taste of the debate, see [Meek90]. The
simple misunderstanding that ultimately causes the debate is neatly cleared up in [Knut90].
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a formal mathematical model must have in order to capture various aspects of the
informal concept. This agenda will be pursued, at least initially, in [Shut99b|, which
will investigate the merits and demerits of a formal theory of abstraction in which
programs are modeled as flat strings of symbols.
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