
An Experiment in Component Adaptation�

George T. Heineman

Helgo O. Ohlenbusch

WPI
Computer Science Department

100 Institute Road
Worcester, MA 01609 USA

(508) 831-5502
fheineman,helgog@cs.wpi.edu

WPI-CS-TR-99-34

ABSTRACT
Adapting existing code to include additional functional-
ity or behavior is a common theme in software engineer-
ing. As component-based software engineering achieve
greater widespread use, there will be a distinct need to
support such third-party adaptation. This paper de-
scribes several component adaptation techniques from
the literature We evaluate these adaptation techniques
by comparing their use in adapting an existing compo-
nent in a sample application. Our experience leads us
to a better understanding of the similarities and di�er-
ences between existing adaptation techniques and sug-
gests principles for component designers and adapters.

Keywords
Software Components, Component Adaptation

1 INTRODUCTION
A driving force behind component-based software en-
gineering is the idea of \plug-and-play" programming.
Components, it appears, combine the best features of
object-oriented technology and reusable software. We
must admit, however, that the promise of building soft-
ware systems from highly-reusable software components
has not yet been achieved. One reason for this lack
of success is the di�culty in integrating independently
developed black-box components into a target software
application. Often, new features need to be integrated
with the component, resulting in extraordinary e�ort in
wrapping or working around the �xed component. To
reduce the integration and adaptation costs, we need to
�nd strategies for adapting existing code.

There are many obstacles to simply reusing indepen-
dently developed software components. It is often di�-
cult to locate a component with the speci�ed function-
ality; then, once a component is found that (perhaps

�This paper is based on work sponsored in part by National

Science Foundation grant CCR-9733660.

Draft of paper submitted to ICSE 2000.

only closely) matches the desired need, there may be
incompatible interfaces. Finally, it is a technical chal-
lenge to use a software component in a di�erent manner
than for which it was designed and documented. Even
after overcoming architectural mismatch [8], there is of-
ten a large problem in simply integrating the component
into an application. For this paper, we assume that an
application builder has somehow located a component
developed by a third party and is ready to integrate the
component into a target application.

We believe component-based software will only become
widespread when third-party application builders can
adapt components to integrate them into a target ap-
plication. Consider the following de�nition:

A software component is a unit of composition
with contractually speci�ed interfaces and ex-
plicit context dependencies only. A software
component can be deployed independently and
is subject to composition by third parties. [29]

The component interface provides no insight into adap-
tation, and the de�nition does not even admit to compo-
nents being subject to such adaptation. A component
can be released with a special source code license al-
lowing code modi�cations. The Hot Java Component
from javasoft.com, for example, is released with this
intriguing message:

A source code license allows developers to view
and modify the source code. You might want
this extra
exibility to custom-�t the HTML
Component to very small devices or to add or
integrate functionality to the product. [16]

This is hardly adequate support for adapting this com-
ponent. Designing for change is an established con-
cept in software engineering that requires the designer
to consider future extensions when designing a compo-
nent [27]. However, there is an understanding that the
original design team will be extending the component.
We suggest that a component be deployed with a rich

description of its behavior and a mechanism that shows
how to incorporate new code with the component dur-
ing adaptation. In this paper we do not consider the
description language further, although there are many
Architectural Description Languages available for such
purpose [2, 20, 21]. We focus here on several candi-
date adaptation techniques that may prove indispens-
able for component adaptation. Designing for adapta-
tion suggests that the designer provide extra features
to enable third-party application builders to adapt the
component.

Adaptation, Evolution, and Customization
There is a distinction between software evolution and
adaptation. Evolution occurs when a software compo-
nent is modi�ed by the original component design team
or by programmers hired to maintain the component.
It is assumed that the software engineers can freely
modify the source code of the component and then the
evolved component will become available for purchase
and reuse. In contrast, adaptation occurs when an ap-
plication builder acquires a third-party component, C,
and creates a new component CA to use within a target
application. Adapted components are generally not in-
tended for public use, and reuse of CA will occur only
within the company that adapted component C.

To further emphasize the di�erence between evolution
and adaptation, assume that the source code is available
and that the component design team and the applica-
tion builder each wish to extend the component with
the exact same behavioral change. When the design
team performs the extension, they typically have a full
understanding of the component's design and will likely
select the optimal changes to make. The application
builder, in contrast, does not have the time to com-
prehensively understand the source code and seeks to
learn just enough to make the desired changes. The ap-
plication builder may be unable to overcome the many
obstacles to component adaptation without a suitable
adaptation technique.

There is also a distinction between adaptation and cus-
tomization. End-users customize a software component
by choosing from a �xed set of options that are already
pre-packaged inside the software component. End-users
adapt a software component for a new use by writing
new code to alter existing functionality; customization,
thus, has a limited range.

Figure 1 presents our perspective on component adap-
tation. Given a software component (represented by a
small black square), the large oval represents the space
of possible evolution paths for a component, one of
which is shown by the arrow. The distance between
two points in the �gure is proportional to the di�erence
between the components represented by those points.

Component

EvolutionAdaptation Customization

Figure 1: Perspective on Adaptation, Customization,
and Evolution

The component has a pre-packaged set of options that
enables customization, as represented by the small dark-
gray circle; the distance between a customized compo-
nent and its original is very small. The oddly shaped
light-gray region represents the possible adaptations
that can be performed by an application builder. The
area for each region is proportional to the situations in
which the component can be reused. To maximize the
reuse potential for a component, we need to understand
the types of possible adaptations.

Software Architecture
Software architecture is commonly de�ned as a level
of design that speci�es the overall system structure of
a software application [9]. Because a component is
adapted to operate within the context of a larger appli-
cation, there needs to be a global understanding of the
interaction between the component and the application
as well as a detailed understanding of the adaptations
to the component itself. An Architectural Description
Language (ADL) should be used to create speci�cations
that re
ect both such aspects.

Early work in Software Architecture focused on catego-
rizing di�erent architectural styles, sets of design rules
for composing an application from inter-connected com-
ponents [1]. Many ADLs have been proposed that can
describe, model, and analyze the speci�c architecture
for a software systems [2, 20, 21]. Implicitly, however,
the target audience for an ADL speci�cation has been
the designers and developers of the original system. We
believe that an ADL speci�cation for a component must
describe the �xed and extensible features of a compo-
nent and provide a guide for its adaptation. This is a
responsibility that has not yet been fully addressed by
the software architecture community.

Component adaptation is strongly related to Architec-
tural Evolution, a research area concerned with the
addition, removal, or replacement of components or
connectors that comprise a component-based applica-
tion [23, 26]. Adaptation techniques are di�erent since
they focus on creating an adapted component CA from

2

Selected Component

Glue Code

Requires Interface
for Target Application

LEGEND

Target Application

App

C

Figure 2: Adaption context

an existing component C. Whether dynamic [3, 26] or
static [15], architectural evolution is not a competing
technology, but one that should be used in conjunction
with component adaptation techniques.

Overview
In Section 2 we present a set of adaptation techniques
drawn from the literature. We then describe in Section 3
the results of an experiment that applies these tech-
niques to add two new features to an existing software
component. Finally, we evaluate the adaptation tech-
niques and the results of the experiment against a set of
requirements consolidated from the individual require-
ments for each technique. The discussion in Section 4 is
based in part on the success (and failure) documented
in the experiment.

There are several contributions of this paper. First, we
describe the results of an experiment that shows the
use of the adaptation techniques side-by-side. Second,
we describe active interfaces [12], a speci�c adaptation
technique that increases the ability to adapt and inte-
grate software components. Third, we identify a set of
principles to guide designers and component adapters
in software component adaptation.

2 COMPONENT ADAPTATION
TECHNIQUES

The primary function of adaptation is to adapt the be-
havior of a component C to integrate it within a target
application app. Consider �gure 2. The target appli-
cation, App, has an interface it expects C to support.
The identi�ed component may provide most of the ex-
pected behavior, but not enough; in the �gure, there
is glue code written which, in conjunction with C, pro-
vides the necessary adapted behavior. We consider the
adapted component CA to be the glue code together
with the original component. Following the type frame-
work of Medvidovic et al. [23], we seek a solution that
creates a new component that has the same interface
and implementation, but a di�erent behavior (as seen
by the target application). Once all techniques are in-
troduced, we will proceed to the experiment.

Active Interfaces
A component interface is de�ned by the set of interfaces
that it implements; in [12] we argue that this interface
must play a greater role in helping application builders
adapt the component. An active interface for a compo-
nent can be programmed to take action when a method
is invoked. There are two phases to a method request:
the before-phase occurs before the component performs
any steps towards executing the request; the after-phase
occurs when the component has completed all execu-
tion steps for the request. We also consider the internal
component interface consisting of private and protected
methods. Although private to the component, these in-
ternal methods are able to support an active interface
and can have their own before-phase and after-phase.
Revealing the internal interface of a component in this
way does not reveal its implementation because no code
can be written to access the private attributes or meth-
ods.

An active interface allows user-de�ned callback meth-
ods to be invoked at each phase for a method and thus
may augment, replace, or even deny a method request.
Brie
y, each component has an associated component
arbitrator that maintains the callback methods installed
for the active interface. The arbitrator and the com-
ponent communicate through a special Adaptable in-
terface. An adaptation to a component is speci�ed at
an architectural level and is translated into lower level
adaptations. This approach is more general than the
standard means of interposing proxies or wrappers [7]
between components to intercept method requests.

The active interface mechanism, as described, is limited
to adapting the behavior of a component at the standard
interface boundaries. In general, a component designer
can reveal key policy decisions of the component to be
adapted. In this way, the interface for the component is
augmented, as in Open Implementation [18], to enable
key decisions to be adapted. The adaptation technique
of active interfaces is supported by the internal adap-
tation mechanism of a component arbitrator. Such an
arbitrator can easily be integrated into any component
as shown in [13].

Referring back to Figure 2, we observe that the active
interface technique builds a mechanism directly into C

such that the glue code can be tightly integrated with
C without requiring the application builder to directly
modify C. In this fashion, one bene�t of this technique
is its ability to make direct behavioral changes to C

without modifying its source code.

Subclassing
Inheritance is a mechanism that allows an object to
acquire characteristics from one or more objects [5].
Essential inheritance relates to the inheritance of be-

3

havior and other externally visible characteristics of an
object while incidental inheritance emphasizes the in-
heritance of part or all of the underlying implementa-
tion of a general object. Essential inheritance is a way
of mapping real-world relationships into classes and is
used mostly during the analysis and design phase of an
object-oriented project. Incidental inheritance often is
a vehicle for simply reusing or sharing code that already
exists within another class.

Inheritance is both an adaptation technique and mech-
anism. It is automatically built-in to any component
written using an object-oriented language like Java or
C++. Inheritance has the bene�t that newly created
subclasses are separate from the original component be-
ing adapted. However, component adaptation through
inheritance often reverts to incidental inheritance since
the adapter must have detailed understanding of the
internal behavior and functionality of a superclass to
implement a successful change. In e�ect, the glue code
in Figure 2 is the extra methods written in the various
subclasses of the classes from which C was composed.

Open Source
Open Source modi�cation occurs when the application
builder applies the necessary changes directly to the
source code for a component. Naturally, such an ap-
proach is possible only if the source code is available
and if the application builder is capable of understand-
ing the component's code well enough to make the de-
sired changes. There are no supporting mechanisms for
this technique, and we include this technique solely as
a baseline for comparison. Increasingly, however, more
software systems are being developed and deployed us-
ing this basic technique. Regarding the adaptation con-
text in Figure 2, there is no need to construct glue code
since component C is directly modi�ed to create com-
ponent CA.

Wrapping
As an adaptation technique, wrapping can be used to
alter the behavior of an existing component C. A wrap-
per is a container object that wholly encapsulates C and
provides an interface that can augment or extend C's
functionality. Bosch separates wrapping, whereby the
behavior of C is adapted, from aggregation where new
functionality is composed from existing components [6].
H�olzle argues that wrapping leads to poor performance
as well as an excessive amount of adaptation code [30].
The Adapter and Decorator patterns from [7] are useful
ways in which to coordinate the controlled extension of
classes, but it is typically very hard to impose a design
pattern onto an existing class hierarchy. The Wrapping
technique typically has no supporting adaptation mech-
anism.

3 DESCRIPTION OF THE EXPERIMENT
Experiment objectives
The experiment was designed to test the following hy-
potheses:

� H1: Can one adapt an independently-developed
component to change its behavior to perform
within an application.

� SH1: Is it possible to adapt a component without
directly accessing or modifying its source code.

� H2: Is the Active Interface technique a more ef-
fective adaptation mechanism than subclassing or
wrapping

Design
When designing this experiment, we had to choose be-
tween a controlled experiment vs. a �eld study. As
presented in [28], �eld studies are bene�cial since they
generate results from the real application of software en-
gineering techniques but the variability in the environ-
ment may make it hard to generalize the results. Con-
trolled experiments, alternatively, enable one to create
reproducible results, but then there may be di�culty in
applying these results back to a real software engineer-
ing environment.

The experiment was part of an introductory graduate
course in the design of software systems. There were
twenty-one student subjects (5 part-time graduate stu-
dents, 3 undergraduate seniors, and 13 full-time gradu-
ate students). On a �ve point scale (5 being the highest)
the average language pro�ciency of the subjects was 2.7
(C++ and Java) and 4 (C); they had on average 4.1
years of C coding experience but less than 1 year of Java
experience. It is safe to say that most of this experience
was based on their academic experience.

The subjects were each allowed to volunteer to em-
ploy one of the adaptation techniques presented earlier.
This created groups of size nine (Active Interfaces), four
(Open Source), four (Subclassing), four (Wrapping).
The experiment was performed in November 1999 over
a seven-day period.

There are several threats to the validity of the exper-
iment. First, there may be varying skills between the
individual groups; we observed that the average C cod-
ing experience (in years) for the four groups was (4.5,
5, 4, 3.3). We decided to carry out the experiment us-
ing a component implemented in Java in part because
most of the students had little experience using Java.
In this way, they would be forced to focus on the design
of the experimental task before jumping into the imple-
mentation. Second, the results may not generalize be-
cause of factors speci�c to the component used and/or
the tasks carried out. We believe the results general-
ize because the experimental task is a common one in

4

Figure 3: TableBean component

software engineering, namely, adding a new behavioral
feature to an existing code unit. The component used in
the experiment was composed of eight Java classes and
two interfaces totaling 2778 lines of code. The subjects
had used the component in an earlier assignment and
so would have been familiar in its usage, though not its
implementation.

Tasks
Figure 3 shows TableBean, a Java component that dis-
plays String values in a two-dimensional matrix. Using
the interface setTableValue (int c, int r, String

s), TableBean can be programmed to display a string in
the table cell at column c and row r. Figure 3 contains
a sample applet, app, that allowed a user to enter text
into a selected cell in the TableBean; the target cell is
selected using the mouse.

The TableBean component was presented to the sub-
jects as a collection of objects and classes encapsulated
in a single Java package. The task of the subjects was
to create a new component (that could be instantiated
as tbA) with the following additional features:

Problem A (Formatter): Adapt TableBean
to allow formatting information to be associ-
ated with individual table cells. Each format
string is of the form \n.d" where n speci�es the
count of digits to show from the integer por-
tion of a number and d speci�es the count of
decimal digits to show (if more decimal digits
exist they are to be truncated). If the contents
of the table cell is a number, it should be dis-
played according to its corresponding format.
For example, if the format for location (2; 3)
is \3:3" and the string value \3.14159" is en-
tered for that cell, the TableBean should show
\ 3.141".

Problem B (Background): Adapt Table-
Bean to provide an interface for specifying a

Adaptation Technique Use-Case Design Coding

Active Interfaces 1.48 1.77 13.12

Open Source 1.25 1.44 8.63

Wrapping 1.00 1.46 11.25

Subclassing 0.77 1.75 3.00

Adaptation Technique Success F1 Success F2

Active Interfaces 6-3 6-3

Open Source 2-2 3-1

Wrapping 2-2 1-3

Subclassing 0-4 0-4

Figure 4: Table of Results

background color for a table cell if the value of
the string stored in that cell is less than zero.

Both problems require additional behavior to be inte-
grated into the component.

Results
The columns in the �rst table of Figure 4 refer to
the time spent (in hours) while performing Use-case
analysis, Pseudo-code design, and then implementation.
There was wide variance in the coding numbers, with
some subjects giving up after only two hours while oth-
ers struggled \up to 40 hours" without success. The
second table shows the success ratio, with active inter-
face being the most likely to succeed and subclassing
the least likely.

4 EVALUATION
Before we evaluate the results of the experiment, we re-
turn to the adaptation techniques used and focus on the
requirements proposed individually for these techniques.

Requirements
We compiled a list of requirements from the litera-
ture [6, 12, 17]. We considered three additional require-
ments for this paper and have consolidated the total list
to a set of eleven possible requirements which we have
divided into requirements on CA and C, requirements
on the adaptation technique, and requirements on the
adaptation mechanism.

Adapted component CA and original component C

1. Homogeneous { the code that uses CA should use
CA in the same manner as it would have used C

([12], was transparent in [6]).

2. Conservative { aspects of C there were not adapted
should be accessible without explicit e�ort by CA
(was included as transparent in [6]).

3. Ignorant { C should have no knowledge of its adap-
tations (was included as transparent in [6]).

4. Identity { C should continue to retain its own iden-
tity as a separate entity; this eases the way in

5

which future updates of the component will be han-
dled [17].

5. Composable { CA should itself be open to future
adaptations; it should be straightforward to com-
pose together a set of desired adaptations [6].

Adaptation technique

6. Black-box { the adaptation technique should have
no knowledge of the internal implementation of
C [6, 17].

7. Architectural focus { The adaptation technique
should create a global description of the architec-
ture of the target application together with a mod-
i�ed speci�cation of CA [11].

8. Framework & language independent { the adap-
tation technique must not be dependent upon the
component framework to which C belongs. For ex-
ample, the technique must function equally well on
CORBA [10] and JavaBeans [22] components.

Adaptation mechanism

9. Con�gurable { the adaptation mechanism should
be parameterizable; that is, it should be possible
to apply a particular adaptation (the generic part)
to many di�erent components (the speci�c part) [6].

10. Embedded { the adaptation mechanism must exist
within C before C can be adapted into CA [12].

11. Language independent { the adaptation mechanism
must not be dependent upon the language used to
implement C [12].

Review
As a general rule, these requirements help to decrease
coupling. For example, if a component is not ignorant
of its adaptations, then coupling increases between the
original component C and its adaptations. If an adap-
tation mechanism is dependent upon a particular lan-
guage, there is an increased coupling between the com-
ponent and the mechanism. Other requirements ensure
that the basic properties of components are retained,
namely that the adapted component continues to be
composable and reusable. It is not necessary for a par-
ticular adaptation mechanism to satisfy all of these re-
quirements.

Some adaptation mechanisms require a component to
be designed in a speci�c way for adaptation to occur
(consider customizable black-box adapters [4]) and are
thus inapplicable in most cases. We feel it is still rea-
sonable for an adaptation mechanism to suggest minor
extensions to the implementation of a component.

There were some requirements identi�ed that we dis-
carded for this paper. For example, Bosch required that

a component technique should be reusable such that a
generic adaptation to be reused, or a speci�c modi�-
cation can be applied to multiple components [6]. We
feel that this is simply an extension of being con�g-
urable. We also considered that a technique should be
reversible, that is, it should be possible to always re-
vert to an earlier adaptation, or in fact, to the original
component instance itself. We decided that this should
be supported not by the adaptation technique, but by
a suitable con�guration control mechanism.

In general these requirements are focused entirely on
the mechanisms and the techniques and have little to do
with how the subjects employed the mechanisms. As we
review the experimental results, we have the following
observations:

� Subclassing { The subjects that selected subclass-
ing were frustrated in their attempts by the im-
plementation of TableBean. One subject showed a
successful solution but then admitted that he had
modi�ed TableBean to reclassify a privatemethod
as protected. The key lesson to be learned from
using this technique is that component developers
must ensure that protected methods exist, other-
wise the subclass will act as a foreign class. We
expect that the subjects tried so hard to get the
subclass technique to work, they failed to observe
that they could have implemented the subclass as
a wrapper to successfully solve the adaptation.

The result of the subclass group was surprising be-
cause this is one of the �rst techniques suggested
when new behavior needs to be added to object-
oriented software. Clearly, the component designer
needs to be aware of future use of the component
and must take steps to correctly classify private

methods vs. protected ones. Some of the subjects
complained that it was risky to override methods
sight-unseen with their own implementation.

� Wrapping { The subjects that selected wrapping
also had a di�cult time in successfully carrying out
the adaptation. In the comments, they admitted
that at times they looked at the source code to
TableBean so they could \understand how it func-
tioned to better adapt it." This impulse would
be reduced through better documentation and/or
speci�cation. Since Wrapping is so commonly used
as the technique for integrating independent com-
ponents, the results question this blind assumption.
The subject that succeeded in using Wrapping to
implement feature F2, for example, essentially had
to re-implement the inner paint method for the
TableBean to produce the altered behavior. This
is likely to be a common situation for Wrapping
when an adaptation requires only a minor tweak to

6

existing functionality.

� Open Source { the subjects that selected open
source felt they were very successful in adapting
the component to include the new features. At
the same time, however, they felt intimidated by
the large body of code that they had to read
through and understand as they made the individ-
ual changes. Several of the subjects pointed out
that such direct code-level changes would require a
sophisticated con�guration control system to man-
age the multiple versions created with each succes-
sive adaptation. The Open Source subjects exhib-
ited the least time spent in Use Cases and Design,
no doubt because they felt obligated to start right
in with the existing code. In their comments, the
subjects stated that they would prefer an adapta-
tion technique that did not require such deep in-
volvement with the source code of the component.

� Active Interface { the subjects that selected active
interface spent the longest time in programming the
assignment, yet they had the highest success ratio
on both features. This occurred even though fea-
ture F2 was more di�cult to introduce into Table-
Bean than feature F1.

The comments revealed some of the reason for their
success. One subject appreciated the ability to de-
bug the component by inserting printing callbacks
at key methods; in this way, he was able to bet-
ter understand the interaction between the vari-
ous internal methods. One subject liked the incre-
mental behavior of adding methods one by one to
the adapted component. In general, they felt there
were many aspects in common with subclassing and
wrapping.

5 RELATED WORK
This paper presents a framework for comparing adap-
tation techniques for software components. This work
is closely related to several areas of prior research. The
�rst area is the software architecture community. There
are many ADLs de�ned (such as [20, 21, 2]) and they
have been used to describe and analyze speci�c software
architectures to detect race conditions and deadlock sit-
uations. Our work is perhaps the �rst in the commu-
nity to target the use of ADLs as a vehicle for specify-
ing and instrumenting adaptations for software compo-
nents; by doing so, we will be able to take advantage
of the powerful analyses o�ered by the community. Re-
cent work proposed by Medvidovic and Rosenblum [24]
identi�es various domains of concern in software archi-
tecture to better understand the requirements for future
ADLs. Component adaptation is directly related to the
domain of architectural evolution, as well as others in
their framework, and not enough ADLs support it.

The second related area is research in software evolu-
tion in general. Much emphasis has been placed on the
role that adaptive maintenance plays in increasing the
functionality of existing systems [15]. The evolver of the
system, however, has direct knowledge of how the sys-
tem was originally designed and constructed. The clos-
est related work is the research by Peyman on decen-
tralized software evolution [25]. Peyman analyzes the
di�erent ways in which software can be evolved \post-
deployment" by a third-party, but the focus has been on
adding components into an existing architecture, not
on adapting existing components. Ben-Shaul has de-
�ned a framework for increasing the functionality of mo-
bile code through dynamic update re
ection [14]. This
project de�nes both a component model and a powerful
mechanism for adding or replacing existing functionality
in a component. We are currently investigating how to
use our CSL approach to help de�ne and specify these
dynamic adaptations.

DRADEL [23] shows how a system evolves to substi-
tute new components that support new requirements.
However, it doesn't show whether the new component
C' is derived from C or simply written from scratch.
DRADEL can be used to ensure that an adaptation can
be used within the given system and thus provides us
with an instant type-checking regiment for the adapta-
tion techniques proposed in this paper so long as there
is an architectural focus.

Lieberherr's Demeter project [19] promotes adaptive
programming as a technique for increasing the evolvabil-
ity of a program by creating
exible interactions among
objects. It is not speci�cally targeted towards adapting
third-party components, but it is clear that components
developed using Demeter would have a greater chance
of being adapted. This further supports our argument
that the adaptation mechanism must be built into a
component for application builders to adapt the com-
ponent. Techniques such as component adaptors [31]
that overcome syntactic incompatibilities between com-
ponents, however, do not address the need to adapt soft-
ware components.

Lastly, we distinguish our work from the many ef-
forts in de�ning component frameworks. Component
frameworks o�er a standardized platform in which com-
ponents can communicate and interoperate, seemingly
\plug-and-play". However, these frameworks require all
components to adhere to a strict standard and set of
assumptions, requiring existing components to be re-
tooled to the standard. Also, there will continue to be
a need for application builders to adapt components to
work. A good component framework o�ers
exibility
and tailorability, but this in no way satis�es the need to
adapt existing components to meet additional require-
ments.

7

6 CONCLUSION
This paper compared various approaches to adapt-
ing software components. We believe this area of re-
search needs much investigation since current state-of-
the-practice of component-based software engineering is
unable to achieve its promised goals. To summarize, we
have shown that the application builder needs mecha-
nisms that will help adapt software components for their
own special needs.

We surveyed various approaches for component adap-
tation and collected together a set of requirements by
which we compared the techniques. We carried out an
evaluation of several techniques by adapting an exist-
ing component within a sample application. We plan to
carry out more controlled experiments to further judge
and compare the various adaptation techniques.

Component designers should be aware that they cannot
hope to produce software components that satisfy all
needs, so they should �nd ways in which their compo-
nents can be adapted as needed. Parnas observed that
software should be designed to be easily extended and
contracted [27]; the di�culty, of course, lies in foresee-
ing exactly what features will be adapted. The insight
to active interfaces is that a component can be
exible
enough to handle unforeseen situations. Our work is
a step towards realizing the goal of having a market-
place of software components with supporting technolo-
gies aiding both application builders and component de-
signers.

The experiment revealed certain behavior among those
adapting software components. First, developers do
not want to access the source code directly { this runs
counter to the increasing trend towards open source
software projects. Second, developers need more de-
tailed descriptions of the interface for a component than
simply the API. Often the largest time spent during the
adaptation was in trying to �gure out exactly what the
code did.

Thus when thinking about the de�nition of a software
component, we clearly need more documentation that
describes how to use the component; and, by extension,
how to adapt the component. By analogy consider the
di�erence between high-precision machine manufactur-
ing vs. building a product (i.e., book shelves) at home.
With modern manufacturing, parts are milled to within
one-thousandth of an inch and then precisely placed by
expensive, specially built factories of machines. The av-
erage adult can assemble furniture at home without spe-
cialized tools because (1) only standard tools are needed
for the assembly otherwise they are provided; and (2)
the way in which the parts are assembled has built-in
degrees of freedom to allow construction without costly
precision.

If we are to achieve component-based software engineer-
ing, it must be easy to construct systems from compo-
nents, and we believe focusing on component adaptation
will increase the use and reuse of software components.
The authors would like to acknowledge the hard work
of the students in CS509 as they participated in the
experiment.

REFERENCES

[1] G. D. Abowd, R. Allen, and D. Garlan. Formal-
izing Style to Understand Descriptions of Software
Architecture. ACM Transactions on Software En-
gineering and Methodology, 4(4):319{364, October
1995.

[2] R. J. Allen, D. Garlan, and J. Ivers. Formal Mod-
eling and Analysis of the HLA Component Inte-
gration Standard. In Sixth International Sympo-
sium on the Foundations of Software Engineering,
November 1998. to appear.

[3] J. Andersson. Reactive Dynamic Architectures. In
3rd International Workshop on Software Architec-
ture, pages 1{3, Orlando, FL, November 1998.

[4] B. K�uc�uk and M. N. Alpdemir and R. N. Zo-
bel. Customizable Adapters for Blackbox Com-
ponents. In O. Nierstrasz, editor, Third Interna-
tional Workshop on Component-Oriented Program-
ming (WCOP'98), Brussels, Belgium, July 1998.

[5] E. V. Berard. Essays on Object-Oriented Software
Engineering. Prentice-Hall, Englewood Cli�s, New
Jersey, 1993.

[6] J. Bosch. Superimposition: A component adapta-
tion technique. Technical Report TR, Department
of Computer Science and Business Administra-
tion, University of Karlskrona/Ronneby, Septem-
ber 1997.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Software.
Addison-Wesley, Reading, MA, 1995.

[8] D. Garlan, R. Allen, and J. Ockerbloom. Architec-
tural Mismatch or Why it's Hard to build Systems
out of Existing Parts. In 17th International Con-
ference on Software Engineering, pages 179{185,
Seattle, WA, April 1995.

[9] D. Garlan and M. Shaw. An Introduction to
Software Architecture, volume I of Advances in
Software Engineering and Knowledge Engineering.
World Scienti�c Publishing Company, New Jersey,
1993.

[10] O. M. Group. CORBA standard. Internet site
(http://www.omg.org).

8

[11] G. T. Heineman. Adaptation and Software Archi-
tecture. In 3rd International Workshop on Software
Architecture, pages 61{64, Orlando, FL, November
1998.

[12] G. T. Heineman. A Model for Designing Adaptable
Software Components. In 22nd Annual Interna-
tional Computer Software and Applications Con-
ference, pages 121{127, Vienna, Austria, August
1998.

[13] G. T. Heineman and G. E. Kaiser. An Architecture
for Integrating Concurrency Control into Environ-
ment Frameworks. In 17th International Confer-
ence on Software Engineering, pages 305{313, Seat-
tle, WA, April 1995.

[14] O. Holder and I. Ben-Shaul. A Re
ective Model
for Mobile Software Objects. In Proceedings of the
17th International Conference on Distributed Com-
puting Systems (ICDCS98), pages 339{346, Balti-
more, Maryland, May 1997.

[15] C. B. Jaktman. Understanding the Evolu-
tion/Maintenance Relationship in Software Archi-
tectures. In International Workshop on Empirical
Studies of Software Maintenance WESS'97, Bari,
Italy, October 1997.

[16] Javasoft.
http://java.sun.com/products/hotjava/bean/index.html.

[17] R. Keller and Urs H�olzle. Binary Component
Adaptation. Technical Report TRCS97-20, De-
partment of Computer Science, University of Cali-
fornia, Santa Barbara, December 1997.

[18] G. Kiczales, J. Lamping, C. Lopes, C. Maeda,
A. Mendherkar, and G. Murphy. Open Implemen-
tation Design Guidelines. In 19th International
Conference on Software Engineering, pages 481{
490, May 1997.

[19] K. Lieberherr. Adaptive Object-Oriented Software:
The Demeter Method with Propagation Patterns.
PWS Publishing Company, 1996.

[20] D. C. Luckham, L. M. Augustin, J. J. Kenney,
J. Veera, D. Bryan, and W. Mann. Speci�cation
and Analysis of System Architecture using Rapide.
IEEE Transactions on Software Engineering, April
1995.

[21] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer.
Specifying Distributed Software Architectures. In
Fifth European Software Engineering Conference,
Barcelona, Spain, 1995.

[22] Sun Microsystems, Inc. JavaBeans 1.0 API Speci-
�cation.
Internet site (http://www.javasoft.com/beans),
December 4, 1996.

[23] N. Medvidovic, D. S. Rosenblum, and R. N. Tay-
lor. A Language and Environment for Architecture-
Based Software Development and Evolution. In
21st International Conference on Software Engi-
neering, pages 44{53, May 1999.

[24] N. Medvidovic and R. N. Taylor. A Framework for
Classifying and Comparing Architectural Descrip-
tion Languages. In Proceedings of the 6th European
Software Engineering Conference ESEC '97, 1997.

[25] P. Oreizy. Decentralized Software Evolution. In
Proceedings of the International Conference on the
Principles of Software Evolution (IWPSE 1), Ky-
oto, Japan, April 1998.

[26] P. Oreizy, N. Medvidovic, and R. N. Taylor.
Architecture-based runtime software evolution. In
International Conference on Software Engineering,
Kyoto, Japan, April 1998.

[27] D. L. Parnas. Designing Software for Ease of Ex-
tension and Contraction. IEEE Transactions on
Software Engineering, 5(6):310{320, March 1979.

[28] L. Prechelt and B. Unger. A Series of Controlled
Experiments on Design Patterns: Methodology
and Results. In Proceedings Softwaretechnik '98
(Softwaretechnik-Trends), pages 53{60, September
1998. http://wwwipd.ira.uka.de/~prechelt/
Biblio/patseries_st98.ps,g% z.

[29] C. Szyperksi and C. P�ster. Workshop on
Component-Oriented Programming, Summary. in
m�uhlh�auser M. (ed.) special issues in object-
oriented programming - ecoop'96 workshop reader.

[30] Urs H�olzle. Integrating Independently-Developed
Components in Object-Oriented Languages. In O.
Nierstrasz, editor, ECOOP '93 Conference Pro-
ceedings, LNCS 707, pages 36{56, Kaiserslautern,
Germany, July 1993. Springer-Verlag.

[31] D. M. Yellin and R. E. Strom. Protocol Speci-
�cation and Component Adaptors. ACM Trans-
actions on Programming Languages and Systems,
19(2):292{333, March 1997.

9

