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Abstract

As web data becomes more essential in our work and play and it keeps growing in an explosive
way, web view mechanisms are extensively employed to offer customized value-added services to
customers and they are usually materialized to achieve fast query response time. However, the
dynamicity problems of the underneath web information is not as easy to tackle as it is in the
context of conventional database systems. Developing maintenance techniques for materialized web
views over dynamic web data sources becomes more challenging because of the lack of a schema
restricting the structure of all the web data sources and the shareability of web data sources enabling
each update on a single data source to potentially affect many others in the web data graph. To
compute web view “patches” for its incremental maintenance in response to an update, a large
amount of accesses back to base data is usually inevitable, but it is obviously not desirable because
of the likelihood of severe impact from the heavy network overhead and the intense contention
for base data. In this paper, given a web view specification defined over a hierarchical web data
graph, we analyze the query pattern, conduct the evaluation strategy along aggregation paths as
to distill a subgraph of web data objects, for which we set up an index structure. By utilizing the
precomputed value aggregation results stored in such an index, our algorithms show that both web
view computation and its maintenance can be done more efficiently. Cost analysis and experiment
studies on the gains of our incremental maintenance approach compared to the state-of-art solutions
are also conducted.

Keywords: Web View, Incremental View Maintenance, Query Graph, Aggregation Path Index, Self-

maintenability, Query Performance.

1 Motivation

1.1 Introduction
As web data becomes more essential, a lot of work focusses on developing database and XML tools to
aid the modeling of web data [PGMW95] and integration of diverse web data sources into one “unified”
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resource. Techniques are being developed for querying web data sources as well as for building web views
over them. Given that the volume of data available on the web is growing exponentially, web view mechanisms
[LMSS95, SDJLI6] are extensively employed to offer customized value-added services to customers. They
can serve as filters over the huge network of inter-connected web sources and integrated bits and pieces of
“raw” web data into a “personalized” view.

To achieve fast query response time, web views are often materialized. However, the dynam-
icity problems of information joining in as a new data source and leaving to be not available any
more is not as easy to tackle as it is in conventional database systems. In the latter context ma-
terialized view mechanisms and their maintenance issues have for long been one well-studied topic
[AMR*98, GGMS97, GM95, GMS93, KLMR97, RKRC96, SLT91]. Developing maintenance techniques
for materialized web views over dynamic web data sources becomes more challenging because of the lack of a
schema restricting the structure of all the web data sources and the shareability of web data sources enabling
each update on a single data source to potentially affect many others in the web data graph [CAW98]. To
compute web view “patches” for its incremental maintenance in response to an update, a large number of
accesses back to base data is usually inevitable. It is however obviously not desirable because of the likelihood
of severe impact from the heavy network overhead and the intense contention for base data.

In this paper, we model the distributed web data sources as a hierarchical graph model, over which a web
view can be specified. A strategy based on separating the web view evaluation into two phases is developed.
We analyze the query pattern, conduct the first phase evaluation along aggregation paths so to distill a
subgraph of web data objects and then set up index structures for them. By utilizing the value evaluation
results that are computed along aggregation paths and storing them in such indexes in the second evaluation
phase, we can conduct both the web view computation and its maintenance more efficiently. Especially in
the process of maintaining a materialized web view, our approach can lead to big savings in terms of the
costs of access time of the base data compared to alternate solutions in the literature by integrating the

updated objects with their precomputed aggregation results.

1.2 Related Work

Incremental view maintenance techniques attempt to reduce the number of references back to remote dis-
tributed base data sites through a better utilization of local data resources. The naive recomputation method
would heavily impact the query performance and worsen the load on base data sites. An incremental view
maintenance approach considers referencing back to base data as the last resort and investigates strategies
to minimize the examing scope of base data. If incremental maintenance can be done using the local cache
site information only, we call this view self-maintainable with respect to these updates.

There is some work tackling the view maintenance problem in the context of semi-structured data
available on the web. Suciu et al. [Suc96] assume semistructured data to be rooted graphs, composed of a
subset (subtrees) by union, concatenation, juxtaposition and recursion operations. For both the relational

and the nested relational models that are subsumed, the queries are join-free but the lengths of traversal



paths are not restricted. Zhuge and Garcia-Molina [ZG98a] address general issues related to graph-structured
views and their view maintenance. They simplify views by only considering select-project view specifications
over tree-structured databases, and the resultant view is a flat collection of objects without any edges between
objects.

Zhuge et al. [ZG98b] also study the characteristics of self-maintainability that can be utilized to avoid
any access to base data for irrelevant updates. They also show how to perform those tests when different
update information is available. But this strategy is not an all-purpose solution, especially it would turn back
to conventional maintenance techniques for those relevant updates while no improvement can be achieved in
these cases. The limitation of their work also lies in the strong assumption of a simple view specification.

Abiteboul et al. [AMRT98] generalize these previous studies to cover arbitrary graph-structured
databases. Their approach can handle joins and the resultant view is a structured sub-graph of the base
graph instead of just a flat collection of objects. Their incremental maintenance algorithm minimizes the
searching scope by directly applying the updated object instance to the view specification, thus it avoids
the accesses to all the other objects within the same target set of the corresponding variable. This approach

needs an auxiliary structure for the relevant objects of the variables that appear in the web view specification.

1.3 Contributions

The contributions of our work are:

e Propose the Query Graph (QG) to represent explicitly the path query pattern over data graph required

by a web view.

e Develop a view evaluation strategy to reuse the common aggregation path index structure among a set
of web view specifications, which have the same path specification, but may differ from each other in

value predication or view selection predicates.

e Establish the Aggregate Path Index (APIX) for objects that conform to the path specification and

accommodate their value evaluation aggregation results.

o Describe algorithms for efficiently deriving a variety of view selections and maintaining the materialized
web view upon updates by checking self-maintainability and cheaper computation of web view “patches”

(in terms of minimizing accesses to base data) based on the APIX.

e Analyze the cost of our approach and demonstrate that it wins over alternative state-of-art solutions.

1.4 OQutline

In Section 2, we give a detailed specification of the basic concepts of web views, the web data model, our
assumptions and the problem description. In Section 3, we present our basic solution approach surrounding

the QG and the APIX structures. In Section 4, our maintenance algorithms are described under different



update scenarios. Cost analysis and experiment studies on the comparison of the costs between our algorithm

and the state of art solutions is conducted in Section 5. We wrap up our discussion in Section 6.

2 Background on Web Views

2.1 Web Data Model

Numerous data models have been proposed in the literature for semi-structured data [Aro97, Mih96, AMM97,
FFLS97, CRCK98]. Recently, XML is emerging as a standard of universal data exchange format on the
Internet and it utilizes a hierarchical structure with rich, powerful links and naming mechanisms. We believe
that these qualities of XML make it a perfect fit for modeling web data sources. Hence, we vision that web
data sources can be structured as a hierarchical graph model by parsing each tagged XML element as an
object and by capturing each hyper-link of XML as a direct edge attached with a label indicating the type
of this parent-child relationship. Basically, the model suggested for XML objects is quite similiar to the
Object Exchange Model (OEM)[PGMW95] but has some extensions (such as each object has knowledge of

its parent object).
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Figure 1: Motivating Web Database Example

Figure 1 shows the structure of our running example E-mall web database. An E-mall integrates
information sources from a large amount of shops, each of which has its products advertised. For instance,
most of the shops within this E-mall have their names, sale categories and product information published.
For each product, information such as its name, price and component items are expected to be provided.
However, this product information structure is not fixed and can be flexible. We characterize basic features

of a database as below:

e A database is a single-rooted, labeled, acyclic directed graph. Root is the only entry point of it. Each

node in the graph is an object with a unique oid (such as é10) and a unique label (such as kit). Each



object can have multiple parent objects but with the same label linked to it. Each labeled edge represents

a single-step path from a parent object to its child object.

e Each object in OEM is either atomic or complex. An atomic object has a value of one primary type
(such as an integer, string, or image). The value for a complex object can be seen as a collection of
subobjects taking the form of <label, oid> pairs. A complex object never has a primary type value
of itself (as in XML, the value for one attribute of an XML element can be modeled as a child atomic
object).

e An object with the Null value is a specific case. An object in such a state can either become a complex
object by adding an outgoing edge to an atomic object, or turn out to be a real atomic object by
changing the null value to a value of another primary type. On the other hand, a complex object can

be changed back to an atomic object by removing all the links to its child objects.

2.2 Web View Specification

In this paper, we focus on exact path expressions that specify each single-step path. We give the general

form of a WVS as:

Define web view favorite_products as

select ¢, k, p — a view variable list

from E-mall.shop s, s.category c, s.kit k, k.price p, k.item i — a set of path conditions

where ¢ = "toy” and p < $50 and z = "book” — a set of value predicates

with k.category c, k.price p — a web view construction statement

Figure 2: Example Web View Specification

In our WVS definition, the selection list can specify more than one type of object to be returned by the
path and value conditions that consider joins.

Given the example in Figure 1, the WVS is shown in Figure 2 get a collection of favorite_products, each
of which is found in “toy” shops of this E-mall, costs less than $50, and at least contains one item of book.
This web view is constructed by each product object with its category and price object. Variables (such as s,
k, ¢, p and 1) that are attached to both ends of each path are designated for a set of objects respectively (for
example, s is binding to the object set of &2, €3, €4). Variables can be distinguished according to their
location in the global graph.

2.3 Basic Types of Web Updates

Like previous work [AMR™98], we consider three types of basic updates on web data source: Ins, Del and
Chg. <Ins, o1, I, 0o> and <Del, 01, I, 02> represent the insertion and deletion of the edge with label [ from
object 01 to object 02. <Chg, o, OldVal, NewVal> denotes the change of the value of the atomic object o
from OldValto NewVal. For both insertion and deletion, 0; must be a complex object while 0, can be either

an atomic object or a complex one.



Note that these basic update transactions would affect nothing if 0; is an unreachable object, and this
reachability of o; will not be changed by an Ins or Del operation since it is at the start of the edge . On the
other hand, o, together with all its descendant objects becomes reachable after an insertion operation while

it may be unreachable after a deletion operation.

3 Evaluation Strategy for Web View

In the web data graph, there is no strict schema restriction. Note however that WVS asserts over such a
data graph a query specification, that imposes a query pattern to filter out only objects that conform to
their corresponding aggregation paths. In this section, we study this query pattern imposed by a WVS,
characterize it by exploiting a structural graph of aggregation paths, and develop our evaluation strategy
based on it. Then we introduce an APIX structure for those objects to store their value evaluation results

that are computed along these aggregation paths.

3.1 Query Pattern of Web View Specification

When initially setting up a web view, we need to access the base data to identify the relevant information.
The WVS asserts a query pattern over the base data graph with two kinds of condition restrictions — Path
Conditions (PC) and Value Conditions (VC).

3.1.1 Path Conditions and Value Conditions

Web view evaluation involves path evaluation and value evaluation. The PC reflects the evaluation criteria
on an object conforming the path specifications of the WVS. It corresponds conceptually to an overall path
pattern graph structure, within which each object falls into one type of evaluation pattern on its outgoing
aggregation path set. This road-map-like query pattern serves as a filter to distill out of the base data graph
a small conforming subgraph. The VC on the other hand, only includes value evaluation criteria on atomic
objects. In addition, there exists an implicit value aggregation function for each complex object to compute
its aggregation value result along its required path set. The final web view consists of objects that satisfy
both the PC and the VC. Based on the separation of these two types of conditions in a WVS, we propose
a two-phase-evaluation strategy by first applying an overall path pattern graph against the base data graph
for path evaluation and second by propagating bottom-upwards the computation of the aggregation values

for the value evaluation starting from the primitive conditions at the atomic leaf objects.

3.1.2 Query Graph

Definition 1 (Condition Relevant Path — CRP) Each single-step path that is represented as a label
in the from as well as in the where clauses in a WVS is relevant to the path evaluation, and thus is referred to
as a Condition Relevant Path (CRP). In general, we refer to CRP in two different contexts. A complete

path that concatenates adjacent one-step paths starting from the root variable and ending with some atomic



variable, we express it using a specific term of a-CRP in this global context. For a variable v, the term

v-CRP denotes the aggregation single-step path set that is imposed in such a local situation.

Example 1 For the given example in Figure 1, the single-step paths (each with two variables attached at

both ends) in the WVS (given in Figure 2) are (e is the root variable for E-mall).
eshop s, s.category ¢, s.kit k, k.price p, kitem ¢
Three complete a-CRPs (attached variables are eliminated to avoid the interference):
E-mall.shop.category, E-mall.shop.kit.price, E-mall.shop.kit.item

The v-CRP for the root variable e is: shop. There is a procedure of computing v-CRP sets from a given set

of complete a-CRPs of the WVS (given in Figure 2):

a-CRP;: E-mall.shop.category
o-CRP: E-mall.shop.kit.price
a-CRP;3: E-mall.shop.kit.item

a-CRPs

Query Graph

We see for our given example, this would be done as follows. a-CRP, and a-CRP3 overlap with a-
CRP, for the segment of E-mall.shop but not after variable s. While they diverge from each other after
their common segment of E-mall.shop.kit. Thus we obtain for variable s (represents E-mall.shop) its v-CRP

set is category and kit and for k (represents E-mall.shop.kit) its v-CRP set is price and item.

Definition 2 (Query Graph — QG) We construct an overall path pattern graph structure by overlapping
the common segments of the a-CRPs and refer to this resultant graph as the Query Graph (QG) of a
WVS. The QG can act as an overall query pattern against the base data graph for conducting the path

evaluation.

Example 2 A Query Graph corresponds to the WVS (given in Figure 2). Variables marked by * are those
that have its v-CRP set composed of more than one member outgoing path. Thus a type value aggregation
function is prepared for each object of such variables. The QG summarizes all the path conditions and

graphically illustrated the v-CRP set of each variable within it.

Given a set of WVSs, that have the same path specification part but may differ from each other in
value predication or view selection parts, we can capture them by the same QG, i.e., the same path query

pattern.

3.2 Our Two-Phase-Evaluation Strategy

Path evaluation is usually conducted in a Depth-First-Search (DFS) traversal process [AQM197, Abi97]. The

path evaluation may be conducted for the same object several times accessing it each time it is involved in the



evaluation of one single path condition. Also, once we reach an atomic object via such a DFS path evaluation,
we evaluate its VC (refered to as value evaluation) and then traverse upwards for other unprocessed path
evaluations. This way, path evaluation and value evaluation are mixed, leading to evaluation efficiency.
Hence, we propose our two-phase-evaluation strategy that separates path evaluation from value evaluation.
In particular, for each object touched in a Breadth-First-Search (BFS) traversal, conduct a once-and-for-all

path evaluation against its v-CRP path set.

fmi

"book" 6 game“ ”puzzle“
1
(a) Evauation Passage Graph of the Example Database
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(b) Seed truth values assigned according to the value evaluation of the atomic objects
Figure 3: Evaluation Passage Graph

With the QG serving as the guide for the required query paths and variables within it indicating their
v-CRP sets, we first conduct the path evaluation. The result of the path evaluation pass is a subgraph of
web data objects that are distilled from the base data graph. We refer to such a wirtual subgraph structure
as the Evaluation Passage Graph (EPG) (see Figure 3) and build an Aggregate Path Index (APIX) for
objects captured by it.

3.2.1 Aggregate Path Index

Path evaluation proceeds as a BFS traversal process starting from the root object. For each object encoun-
tered in the traversal, we set up its APIX structure and initialize some auxiliary information needed for the
second phase of computing value evaluation aggregation results.

The structure of APIX for each trapped object, as shown in Figure 4, is a cross-tabular: One tuple for
each distinct object (for example, object &3); One column for each outgoing path member in its v-CRP set
(represented by its corresponding variable, i.e., two columns for object &3 are “category” ¢ and “kit” k).
Each cross-bar hosts three measures of the child oid set of one outgoing path type (for example, &9, &10 is
the child object set targeted by the “kit” path of object &3), the oids, the Count of children objects of each



path type, and the cumulative truth value CT derived from each set of children objects, respectively. These
three measures capture structural path information for the objects that conforms to the G, hence we name
it Aggregate Path Index.

APIX for objects of “kit” (k):
APIX for objects of “shop” (s):

c k
c 5 oids {&15} | {&16}
oids | {&8} | {&9,%10} & [Count 1 !
&3 [Count [ 1 2 olds | (18] | {&19]
oids [ {&12) [ [&10.&13] &10 | Count 1 1 !
fed | Count [ 1 2 oids | [&21] | [RI0.822.823]
&13 [Count | 1 3
CT [0 T

Figure 4: Aggregation Path Index (APIX)

Besides these three explicit measures for each child object set of an object, as illustrated in Figure 4,
there are more measures associated with an object. They are the aggregated truth value T and the signal
In_EPG indicating whether the object itself belong to the EPG (if not, the space allocated for such index
information can be released), and the only parent object set (since each object except the root has a unique

type of incoming edges in Section 2).

3.2.2 Path Evaluation

Now we illustrate the process of path evaluation by procedure PFE (see Figure 3.2.2. Starting from an object
o (usually it is the root object since BFS(”root”) is called), a BFS traversal of the base data graph conducts
the evaluation for each encountered object against its aggregation path set. If the object has all types of the
outgoing paths that are asserted by its corresponding v-CRP set, we mark its In_EPG as True and assign it
an APIX tuple of its type. For example, since the v-CRP set for variable sis category and kit, object &2 fails
the path evaluation because it lacks the “kit” type of child object, while object &3 meets the requirement
and is thus distilled.

Along with the traversal, we fill in the oids and the Count information (see Figure 3.2.2). At the end of
this path evaluation pass, an EPG of data objects has been distilled with their path index as well as some

initialization information captured in the APIX structure.

3.3 Aggregation Function for Value Evaluation

Value predicates specified in a WVS can be directly dealt with by the evaluation on atomic objects. Then
these value evaluation results need to combined with the path evaluation results of the distilled subgraph of
objects, each of which has an aggregation function attached for propagating upwards the value evaluation

results of its children objects. For example, in Figure 3, the truth value of the object with oid &9 is the



Procedure BFS (Labels)
// Labels is a queue that stores labels to be evaluated on;
// BFS gets a label [ from the top of Labels and evaluates the object set of I
get a label [ from the queue Labels;
if the end variable v of [ is a leaf variable
if Labels is empty
return;
else  // begin setting up API structure for the variable v
for each of its v-CRP label [;
// put it into the end of queue Labels;
Labels = Labels + [j;
// initialize information for its child object set
Objs[li] = null; Count[li] = 0; CT[l] = 0;In_.EPG = True;
for each of the child object o;;
0.0bjs[li] = 0.Objs[li] + 0453
o.Count[li] ++;
if 0.Count[li] =0
0.In_ EPG = False;
BFS (Labels);

Figure 5: Path Evaluation

conjunction of the truth values of its children objects &15 and &16.

We start the value evaluation from the atomic objects of the FPG, and assign for each a truth value
true/false, or 1/0 based on if complying with the predicates of the WVS. Figure 3 shows the truth values
that are attached to the atomic objects of the EPG (as shown by the Figure 3). For example, 1 is the truth
value for object &8 that is binding to variable ¢, since it satisfies the predicate asserted on ¢: “exists x in c:

999

x = "toy

Theorem 1 (Up-Propagating Truth Values) Each value aggregation function is decided by the aggre-
gation path pattern of a variable, thus for objects with the same v-CRP pattern the function is the same.
However, the aggregation result for each object is decided by its actual measures. The CT value for each of
its children object sets is derived by a cumulative computation of the T value of all children object members
within the set, then its own T value is computed via a conjunction of all the derived CT values for its children

object sets.

The reason for the conjunctive method to compute the truth value 7 from all the C'T values of its path
divisions is obvious: the aggregated paths at their meeting point naturally assert to all the participated
paths a conjunctive relationship, that reflects both the path evaluation and the value evaluation. However,
within the same path division, all the children objects are under the same value evaluation and thus are
considered by their parent object as one single contributor to the value evaluation result along this path.
The aggregation conducted in difference place is coordinated in a bottom-up way, like the reverse process of
BFS. At the end of this pass of value evaluation, all the truth T values for objects of EPG are obtained via

this up-propagation.

3.4 Deriving the Web View

For each data object distilled by the path evaluation, its APIX structure is constructed to capture its

aggregation path pattern as well as to accommodate its materialized value evaluation result. Thus a variety
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Figure 6: Aggregation Function for CT Value Computation

of web views could be easily derived by reusing this APIX structure.

Definition 3 (View Variables & View Paths) In a WVS, a list of variables specified in the select clause
indicates the desired data, called View Variables (VV). A View Path (VP) is a path that leads to a
VV.

Example 3 Both the a-CRPs and VPs can be shown in one QG by augmenting the QG with dashed path
segments of the VPs. The overlapped path segment of a VP with the QG is called View Passing Path.
In the QG depicted in Figure View Path and Query Graph, there are six complete a-CRPs and the dashed
path is the VP to a VV.

Web View Object Selection

e select a view variable list
; from a single-path set (attached with two variables,

\,55 vy and v2) of all CRPs
f \.7 foreach single-path

View Path and Query Graph apply each possible pair of bindings of satisfiable
o1 and o> to v; and vs.
with view constructs

Theorem 2 (View Objects Selection) Each view object set can be selected via the objects that are

along the View Passing Path and with satisfiable value evaluation results (T values are 1s).

The reason lies in the simple fact that the objects of the EPG with satisfiable T values indicate that
they successfully passed both the path evaluation and the value evaluation and thus lead to the right view
objects to be chosen. Thus no matter how many view variables are specified in the WVS, their view objects

can easily be retrieved by utilizing the satisfiable objects along their View Passing Paths. Once we have



retrieved all desired view objects, restructuring among them becomes a trivial job using local computation
costs only.
Satisfiable objects are applied to their corresponding variables in the WVS to generate the web view as

shown by the Web View Object Selection procedure.

4 Approach for Materialized Web View Maintenance

To keep a materialized web view up-to-date with dynamic web data sources, we now propose efficient

maintenance algorithms based on the cached APIX structure.

4.1 Checking Self-Maintainability

Updates are said to be irrelevant to the materialized web view if they would not cause any effect to it. With
the local materialized auxiliary information stored in the API structure, we have a set of self-maintenance
tests that avoid any remote access to base data for such cases. We illustrate a complete list of our best cases
in which irrelevant updates are discovered by our algorithm. The last two of them cannot be identified by

other approaches without an APIX [ZG98b].

e For a <Chg, o, OldVal, NewVal> update, if the value evaluation result of its OldVal is the same with
that of its NewVal, then this update is irrelevant. For example, given the base databases example shown
by Figure 1, < Chg, €6, "fashion”, ”bakery”> is an obviously irrelevant update since neither “fashion”

nor “bakery” belong to the category of “toy”.

e For an Ins or Del operation, if either 0; or 0y do not belong to any of the CRPs, then the update is
irrelevant. For example, operation <Ins, &2, "location”, €24> (assume the value of the atomic object
&24 is "boston”) has nothing to do with the path evaluation thus no effect on the materialized web

view.

e In a <Del, 01, I, 05 > case, if neither 0; nor oy is an object with its information materialized in the
APIX, then it is is irrelevant. An example for this case is <Del, €2, "name”, é5>, before which &2
wasn’t materialized in the APIX since it didn’t pass the path evaluation. Thus deletion of such object

would have no effect on the materialized view.

e For a <Chg, o, OldVal, NewVal> transaction, in which its value evaluation result is changed from true
to false, we check whether any parent object of o is materialized in the APIX. If no such parent object
exists, this update is irrelevant. For example, if the value for object &6 is changed to “toy”, there is
still no chance for re-evaluating its value since the path evaluation is stopped by its parent object &2,

which doesn’t have an outgoing path “kit”.



The above checks indicate a sequence from simple to complex. The first test only requires to check on
the Chg update type and the old and new values of the updated object. The second one needs to check on
the path relevance of the affected object pair. These first two kinds of self-maintenance checks also appear
in other work [ZG98b]. Our self-maintenance tests are more effective as they are able to also discover the

last two cases of irrelevant updates based on the information materialized in the APIX.

4.2 Accessing Base Data

After these self-maintainability tests, only relevant updates remain. Hence we now would need to refer back
to base data for maintaining the materialized web view and also the APIX. The maintenance task of the
materialized APIX includes adding/deleting object tuples and keeping their measures up-to-date according
to the structrual changes as well as the modified value evaluation results. The latter could in turn trigger
maintenance procedures for maintaining the materialized web view. Later we show that the cost of this
maintenance approach in terms of the number of accesses to base data is much reduced compared to the
alternate solutions.

Procedure Ins (o1, I, 02)

If oo ¢ EPG Procedure Del (01, I, 02)
BFS(I) from o0y // result in a 02-”EPG”; If o, ¢ EPG or 0, ¢ EPG
If oo ¢ "EPG” or 02.T =0

Judged to be an Irrelevant Update;
Judged to be an Irrelevant Update;

it exit;
elseeXl ’ o1.Count[l]—;
if 0 ¢ EPG if 0;.Count[l]] = 0
re-evaluate on ol; drop o1 from APT;
else propagate the effect to parent objects.
cache o0, in EPG; else
01.Count[l] ++; 01.CT[]] ++; 01.CT[] -;
if 01CT[l] >0and 0,. T =0 if OlcT[l] =0
for each of other labels [* 01.T = 0;
01.T = 0,.T x 0,.CT [I]; propagate the effect to parent objects.
if 01.T =1
propagate on its parents
Figure 7: Insertion Maintenance on APIX Figure 8: Deletion Maintenance on APIX

4.2.1 Insertion Scenarios

Maintenance of the APIX upon an insertion case <Ins, 01, I, 03> is shown in procedure Ins(oy, I, 0) (see

Figure 7). More tuples of objects are usually newly cached into the APIX due to the insertion updates.
The edge [ has beed checked by the self-maintainability test and hence is sure to be one of the CRPs. We

conduct the two-phase-evaluation on the data subgraph starting from o,. If the aggregated value evaluation

result of 0o turns out to be 0, then this insertion is an irrelevant update. Otherwise the method Inc_CT is



called for propagating the effect of the newly added edge to the satisfiable object o;.

We have no materialized information about an object if it fails the path evaluation of its v-CRP set.
Thus if 0; wasn’t materialized in the API at that time, then the newly introducted edge ! from 0; to o0y
causes us to re-evaluate the v-CRP set of o;. Only if the path evaluation succeeds for 0; and none of its
parent objects also wasn’t materialized in the API, then the next upper level path evaluation is carried on.
Otherwise, if the path evaluation for o, fails, we can stop the process since the update is already judged to
be irrelevant. If the path evaluation for o; succeeds and o01’s parent objects exist in the API, then the former
broken path passages via these objects to 02 now are conductive. Along with this upwards path evaluation,
we carry on the value evaluation and accommodate their value evaluation results in the APIX (see Figure 9).

We present two insertion cases to illustrate the effect on the materialized API of the maintenance process.

Scenario 1: <Ins, &2, "kit”, &10> : Scenario 2: <Ins, &10, "item”, &16> :
C k C k
oids {66} | {&10} oids {&15} | {&16}
&2 [ Count | 1 1 &9 [Count [ 1 1
CT 1 7 CT I 0
oids {&8} | {&9,&10} oids {&18} | {£16,619}
&3 [Count [ 1 2 &10 [ Count | 1 1
CT 1 1 CT 1 2
oids | {&12} [ {&10,&13] oids | {&21] | {&19,&22,%23]
&4 [Count [ 1 2 &13 [ Count | 1 3
CT 0 1 CT 0 1

Figure 9: Updated Aggregation Path Index (APIX)

4.2.2 Deletion Scenarios

Upon a deletion case <Del, o1, I, 02>, the update first is screened for irrelevancy by the self-maintainability
test if either of or 02 does not exist in the APIX. However, if 0; has the only one outgoing path of type
1 to 09, this deletion would dissatisfy the aggregation path restriction on 0; and thus cause the deletion of
its tuple from the APIX. Correspondingly, we propagate the effect of this deletion. The deletion procedure
Del(oy, 1, 05) is depicted in Figure 8.

4.2.3 Change Scenarios

A <Chyg, o, OldVal, NewVal> update is a relevant if it bears different value evaluation results for o before
and after its value change. If the value evaluation of NewValis 1 (i.e., the value evaluation of OldVal is
0), then it equals to a set of <Ins, o1, I, 0> insertions, each of which with [ standing for the only type of
incoming edge of o and with o; representing one of the parent objects of o. Similiarly, if the value evaluation
of NewVal is 0 (i.e., the value evaluation of OldVal is 1), then it is equivalent to a set of <Del, o1, I, 0>

deletions.



4.3 Computation of Web View “Patches”

The maintenance of the materialized APIX involves the adding or deleting data object tuples and fixing
value evaluation results of some data objects. In the APIX, the newly appeared true/(1) T values of data
objects, either from the added data object tuples or due to the changed value evaluation results of data
objects, would trigger the ADD maintenance statements for computing web view “patches”. On the other
hand, the disappeared true/(1) T values of data objects, either by the deletion of such data object tuples or

due to the changed value evaluation results, would trigger the DEL maintenance statements.

Example 4 We log the For generating view objects “patches” to be added, we can apply the ADD mainte-

nance statements shown as below:
ADD+ = select a view path list
from view paths
foreach view passing path
applying each possible pairs of bindings of objects with new true/1 T values

5 Evaluation on Costs for Web View Maintenance

Like others’ work, we assume that the main cost of the computation of a web view can be estimated in terms
of the numbers of base objects being fetched. This is based on the fact that each object of base databases
could be quite large in storage and its retrieval takes time. In fact, one could even assume that these objects
(XML documents, for example) lie on different servers on the Internet. Hence, each base data object access

may require a URL locating and an http transfer across networks.

5.1 Cost Factors

Next we consider key factors that account for the cost. The first two features depend on the query pattern,

as shown by Figure 3.2.2, while the last two are more overall measures of a base database.
e C(object occurrences) : how many object instances bind to that variable.
e M (outgoing label diversity) : how rich in types of outgoing query paths a variable is.
e H(height of base data graph) : length of the longest path from the root to some atomic object.
e N(total number of base data objects) : the size of the base database.

From the first two parameters, we can estimate the population of the children objects of an object based
on its binding variable characteristics. M % C' is the rough number of children for an object if C is fairly
uniform. If the directed graph structure is balanced (the path lengths of atomic objects do not differ much

from each other) and the deviation of M for each variable is quite small, then the data object explosion rate



along one level down can be estimated as M x C. Thus after H levels down, the number of atomic data
instances is about (M * C')¥. The total number of base data objects is a sum of the number of objects at
each level.

On the reverse side, we use C’ to measure how many parent object instances an object has. The
incoming label diversity M7/ is 1 according to our data model specification. Usually, C7 is much smaller
than C. Alternative maintenance techniques access base data from the root object may result in a large
examination space. Our maintenance approach is carried on in a reverse direction. Starting from the
touched object, our method to do maintenance examines upwards the parent objects, whose structual and
value evaluation relevant information is already computed in the initialization phase and materialized in the
API structure. Integrating this precomputed aggregation information with those of the updated object, we
can quickly derive the new effects. The cost is a function of C7 instead of in the order of M x C.

The cost spend in the evaluation phase is decided by a Reduction Factor for each variable that describes
the ratio of the number of objects being filtered out to the whole size of this object set. We formulate below

the costs for the evaluation and maintenance phases.

5.2 Web View Computation Cost during the Evaluation Phase

Using the web view specification in Figure 2 to evaluate the base database shown as Figure 1, both the naive
algorithm and Abiteboul’s algorithm [AMR™98] conduct a DFS traversal during their evaluation phase, and
the total number of objects they access is:

Costerd, = C. + Cs + Cc+ Cy, + Cp + C; (with C. = 1)

Costtydd = C. + C; + Co+ C + Cp + C;

In both the naive algorithm and Abiteboul’s algorithm, an object is evaluated no matter if it really
has a complete set of outgoing paths that comform to its v-CRP or not. For example (see Figure 1), object
&6 of variable c is evaluated in both the naive algorithm and Abiteboul’s algorithm even if it does not have
an outgoing path to objects of variable k. Such kind of accesses to base data objects is a waste of time.
Our evaluation strategy conducts a once-and-for-all path evaluation in the process of BFS traversal and
thus eliminates the unqualified objects from the evaluation space at a much earlier time. In this way, we

considerably reduce the number of accesses to base data. We later refer to our approach as APIX as opposed

to the other two approaches of naive and abit.

Theorem 3 (Reductive Factor for Objects to be Evaluated) During the evaluation phase, how
much we cut down the costs is decided by the Reductive Factor. Assuming a uniform distribution of all
combination probabilities of the outgoing paths of an object, the Reductive Factor for each variable is the
ratio of the occurrences that at least encompass the required outgoing path set to the total occurrences. It

is in the inverse proportion to an exponential function whose base is 2 and exponent is the number of the



required outgoing paths by its v-CRP set. This Reductive Factor also indicates the storage space size needed

by the APL

Tlustrating it in more detail, suppose that for a variable v, we have M joint paths (outgoing labels) to
evaluate and each of these paths leads to a variable v; (i is from 1 to M). The evaluation of the subobjects
of any variable v; is worthwhile only if it also has subobjects of all the other M — 1 variables. By a uniform
distribution, the probability of having all the other M — 1 variables is 21\,,%1 By applying this formula to
the evaluation cost of objects of variable e and s in our example database, e has just one path leading to s,
thus 21%1 = 1 times of the object occurrences of s need to be evaluated. While s has two joint paths to
be evaluated, thus 22%1 = % times of the object occurrences of variable ¢ and k need to be evaluated. The

access cost caused by using our approach is:

Costyigh = Ce + 1%Cs + 35C.+ $Cr + $Cp + 3Ci (with C. = 1)

5.3 Referring Back Cost during Maintenance Phase

For below, suppose an operation <Ins, $9, “item”, $24> happens with the value of the atomic object $24
being “book”. Thus $9 is 0; and $24 is 02, and o; is binding to variable k.

The maintenance by the naive approach involves the total recomputation of the view against the base
databases. Hence the cost is the same as that of the initial phase.

Costiiaint = C, + C5 + Ce+ Cr + Cp + C;

Abiteboul’s algorithm still needs to go back to the root object and re-evaluate the base data. However,
it can apply &9 directly to variable k while saving the accesses to other objects of k. For example, for <Ins,
$9, “item”, $24>, Abiteboul’s algorithm needs to access all the objects that are attached to e, s and ¢ and
one object $9 of variable k while ignoring all the other (Cr — 1) objects. Also, the objects to-be-evaluated
of variables p and i (descendant variables of variable k) are restricted to only those descendant of $9.

Let the object occurences of variable p and i stemming from the object &9 are C,, and C; respectively,
then the number of total objects accessed using Abiteboul’s algorithm is:

Costpirt = C, + Cy + Ce+ 1 + C) + Cf

As proposed in Section 4, our algorithms can avoid a large number of the accesses to base databases by
detecting irrelevant updates. Even in the worst case when access to base databases is inevitable, we access
only the base data objects from the affected one (i.e., &9). Thus the accesses to the objects of s and ¢ are
saved. The maximum number of total base objects evaluated by our algorithm under the same situation as
Abiteboul’s is:

Costgint = 1 + 3C), + 3C|



5.4 Cost Comparison of Experimental Results in Three Scenarios

Experiment tests on the maintenance costs under three different update scenarios to the base database
(see Figure 1) are shown in Figure 10. The database contains one E-Mall, 1000 shops, 100 products and
2 categories per shop, and 10 items and 1 price per kit, and possibly other portions of database that are
irrelevant to the WVS. We observe from the experiment result that, in an Ins update situation, the cost of
maintenance is mainly associated with the size of the subgraph starting from the affected object. A deletion
involves the propagation of the changed value evaluation result or the dropping of object tuples at the local
APIsite. The number of the affected object tuples is in linear relation with the height of the affected object.
An Udp update is most expensive since it affects an atomic data object, which is at the bottom of the data

graph. The maintenance involves a longest reverse evaluation from bottom upwards.
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Figure 10 also shows that our approach wins significantly over the other two methods especially in the

Del and Udp situations. In the second experiment, we use a view specification containing a chain of eight

one-step paths in the from clause:

select z; from A.L1 z1, z1.L 23, ..., z7.L zg;

Figure 11 shows that our algorithm achieves the more significant improvement in the terms of maintenance
costs for deletion cases if the deletion update occurs closer to the root object. This is because the higher the
objects are (opposed to the lowest atomic objects), the shorter pathes they may go through to propagate up
their dropped/changed value evaluation information to maintain the APIX.

For the experiment shown by Figure 12, we use the example WVS shown in Figure 2. We increase the
number of shops in the database from 1000 to 5000, and keep the same average ratio of kits per shop, items
per kit, etc. Therefore, when the number of shops doubled, for example, the size of its subgraph is doubled.
We conduct three kind of insertion operations by adding the edges kit , category and item respectively to
the database and test the costs caused by our algorithm against Abiteboul’s. We see that both sets of

maintenance costs grow linearly with the size of relevant subgraph. Our approach gains much compared
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Figure 12: Varying the database size

to the alternative one when inserting a lower object such as item (we thus observe an opposite prefer from
deletion cases). The reason for this is that the access time to the base data by our insertion maintenance
approach is related to the size of subgraph that stems from the inserted data.

All three experiments are designed to be similiar to Abiteboul’s work [AMRY98] to set up a reality
uniform testbed based on which the experimental results can be compared against. These experimental
studies help us to identify suitable cases for our algorithm: (1). The richer the WVS is in terms of path
conditions and strict value predictates. Then, the base database is evaluated against a more complex QG
and the evaluation is more effective to screen out undesired objects. (2). A big database bears a larger ratio
of the average of object occurrences to the label diversity, this indicating a good reduction factor. (3). Del
operations happening to the upper objects while the Ins operations occuring the lower ones. (4). Expense
on storage is less important compared to the network communication or the times of connections to be

established.

6 Conclusion

In general, previous techniques for incremental web view maintenance simply recompute it from scratch or
just integrate the updated object directly with the variable it is binding to in the web views. We propose
an index-like mechanism A PIX, which construct itself according to the aggregation path restriction by the
WVS and accommodates the conforming objects togther with their value evaluation results. This way, a set
of web views specifications can reuse their common part of path evaluation criteria and compute the final
view objects to restructure the web views from. Also, the updated objects can be explored on to derive the
web view “patches” to be integrated into the materialized web view.

We conduct the cost analysis and the experimental studies on the maintenance performance comparisons



with the alternative solutions at the state-of-art. Both the theoretical analysis and the experimental results
show that our approach win over its competitors most of the time and in some cases the gains of our strategy
are significantly with more probablity of self-maintenability or fewer accesses to base data. We develop a
set of efficient strategies as for the initialization phase of web view evaluation as well as its incremental
maintenance.

We use XML files to simulate web data sources and have implemented the web view mechanism based
on that. We plan to extend our web view specification for accommodating also regular path expressions,
and develop more general APIX structure to allow for such an extension. We find that the storage space
APIX can be economized by compressing a multi-step non-branching paths into one single-step path. The
corresponding maintenance strategy is possible. Finally, we would like to consider exploiting XML schema,

its linking mechanism and query language to optimize the web view maintenance.
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A Appendix

A.1 Pseudo Code for Path Evaluation Algorithm

Procedure Path_Evaluation (o)

if BFS_CRPs ({"root"}, {0}) =True
generate a"EPG" from o by including
objectsthat their In EPG=T

}
Boolean BFS (Labels, Objs)
{ inthas_obj =0;
get al from queue Labels;
if theending variable of I, visaleaf variable
if Labelsis empty
return True;
else {
for each li in v-CRP, put li in Labels;
for each object o of Objd[l] {
o.set_labels;
if 0In_.EPG=T {
has_obj ++;
for each label li ino.Label[ ]
Objg[li] = Objg[li] + 0.0bj4li];
}

}
if has obj =0
return Falseg;

return BFS_CRPs (Labels, Objs);
}

Object ::
Member
BooleanIn EPG=F; int T=1,;
Set Labels=0; Set Objs[ ] = ©;
int Count[]=0; int CT[]=0;
}

Method set_L abels
{ binding o with variable v;
if visavariable for leave nodes
In_EPG = True;
else{
for each li in v-CRP {
Labels= Labels +{li};
Objg[li] = null; Count[li] =0;
CT[li] =0;
for label li, for each of its paired subObj aij {
Obj[li] = Objg[li] + {0ij};
Count[li] ++;

}

}
for each label Ii in Label[ ] {
if Count[li] =0
In_EPG = False;
}

}
}

(a) Path Condition Evaluation Conducted in a BFS Traversa

(b) Joint Variable Objects Index Structure Initialization

Figure 13: Path Evaluation Algorithm

A.2 Pseudo Code for Aggregation Function

Procedure Compute_Truth (EPG)

According to the QG within this EPG,

excluding leaf variables,
for each variable v {
for each o of variablev;
o.comp_CT;

/IAggregation Function for computing truth value;

sort the variables bottom-up in a partial order;

Object :: Method comp_CT
{ T=1
for each label li in Label[ ] {
for label li, for its paired subObj oij {
CT [li] =CT [li] + 0i}.T;
if (CT[li]==0) {
T=0;
exit;
}
}
}

}

Figure 14: Aggregation Function for CT Value Computation




A.3 Pseudo Code for Insertion and Deletion Algorithm

{

}
{

}

Procedure Ins (01, |, 02)

If 020EPG {
PE(02); // resultin asub-"EPG" from 02;
If 020"EPG" or 02.T=0{
Judged to be an Irrelevant Update;
exit;
}
ese {
if o10EPG
re-evaluate on 01;
else {
cache 02in EPG;
0l.Count[l] ++; 01.CT[I] ++;
if 01.CT[l] >0andol.T=0 {
for each of other labelsli
01.T =0l.T x o1.CT [li];
if 01.T=1
propagate on its parents
}
}
}
}

Procedure Del (01, |, 02)

If (ol O0EPG) or (02 0 EPG) {
Judged to be an Irrelevant Update;
exit;

}
01.Drop_Obj (1);

Object ::

Method Inc_CT(l)
{ CT[I] ++;
if CT[I1=1{
for each label li in Label[ ] other than |
T=TxCT[lil;
if CT=1
for each of its parent 0" with label 11
0".Inc_CT (Il);
}

}
Method Dec_CT (I)
{ CT1] --;
if CT[1]=0 {
T=0;
for each of its parent 0" with label Il
o .Dec_CT (lI);
}
}

Method Drop_Obj (I)
{ Countfl]--;
if Count[l] =0{
In_EPG =F;
for each parent 0" with label Il to it
o".Drop_Obj (I1);
}

else
Dec_CT(l);
}

Figure 15: Maintenance Algorithms under Insertion and Deletion Scenarios




