WPI-CS-TR-99-32 Feb 1999

The RE-WEB Approach towards Web View Generation
and Restructuring: Re-usable ODMG-based Templates

by

Kajal T. Claypool
Elke A. Rundensteiner
Li Chen
Bhupesh Kothari

Computer Science
Technical Report
Series

=2

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280

The RE-WEB Approach towards Web View
Generation and Restructuring: Re-usable
ODMG-based Templates*

Kajal T. Claypool, Elke A. Rundensteiner, Li Chen, Bhupesh Kothari

Department of Computer Science
Worcester Polytechnic Institute

Worcester, MA 01609-2280
{kajal|rundenst|lichen|bhupesh }@cs.wpi.edu

Abstract

In our emerging digital paper-less society, massive amounts of information is being maintained in on-line
repositories and diverse web site representations of this information must be served over the internet to
different user groups. E-commerce and digital libaries are two representative sample applications with such
needs. In this paper we have presented a database-centric approach called Re-WEB that addresses this
need for flexible web site generation, restructuring, and maintenance simply by embracing object-oriented
database technology. Namely, by associating web semantics with the modeling constructs of the ODMG
object model, view schemata map to web site layouts and database objects map to actual web pages. By
generating and restructuring objects views, a large class of web site structures (web views) can thus be
supported using this Re-WEB approach. And, the DBMS in Re-WEB, having full knowledge of the logical
structure of web views defined over the database, can thus bring standard database techniques to bear for
efficiently maintaining the web views. To ease the process of web site specification and construction, we also
propose the notion of generic web view transformations that can be encapsulated into reusable templates.
Genericity and reusability of the templates is achieved due to the parameterization of the transformations
on the one hand, and the query-based access to the system dictionary on the other hand, allowing the
transformation to both inquire about as well as manipulate classes at the schema level at run time. We
demonstrate in this paper that these generic web view transformations, if collected in a template library,
have the potential to represent a valuable resource for simplifying the web generation and restructuring
process. To the best of our knowledge, Re-WEB is the first web site management system focussing on
the issue of reusable view generation templates at the content and not at the presentation style level of
abstraction.

*This work was supported in part by several grants from NSF, namely, the NSF NYI grant #IRI 94-57609, the NSF CISE
Instrumentation grant #IRIS 97-29878, and the NSF grant #IIS 97-32897. Dr. Rundensteiner would like to thank our industrial
sponsors, in particular, IBM for the IBM partnership award. Li Chen would also like to thank IBM for the IBM corporate
fellowship. Special thanks also goes to the PSE Team specifically, Gordon Landis, Sam Haradhvala, Pat O’Brien and Breman
Thuraising at Object Design Inc. for not only software contributions but also for providing us with a customized patch of the
PSE Pro2.0 system that exposed schema-related APIs needed to develop our tool.

Keywords: Web Views, ODMG, OQL, Object Views, Reusable Transformations, Restructuring.

1 Introduction

In this paper we present a database-centric approach for flexible web site generation and re-structuring
called Re-WEB. Unlike other web site management approaches [AMM, FFLS97, AM98] that invent either
specialized web query languages, web page scheme languages, or web hypergraph data models, the key
principle underlying Re-WEB is that we embrace existing object-oriented database (OODB) technology
[Cea97]. We demonstrate that OODB systems are suitable and in fact sufficient for supporting a wide variety
of diverse web site views over the same underlying data simply by associating web semantics with the object
model constructs. In this first version of Re-WEB, we focus on Java’s binding of the ODMG model only and
define web semantics for it. In Re-WEB, thus a view schema over an OODB system unambiguously represents
the complete structure of a web site defined off that database as well as the content of the corresponding
web page objects. As commonly done in other approaches [CL97], the addition of visual presentation styles
to be applied to the web site structure specifying for example font sizes or list indent bullets is done in a
separate stage of the web site generation process.

Our Re-WEB approach[CRCK98] being based on the standard ODMG object model, offers numerous
advantages. First and foremost, we can bring standard database technology to bear on our problem. For
instance, the OQL query language can be utilized to restructure the database and consequently to specify
object views that effectively model restructured web sites. Query processing technology can be exploited
to optimize the restructuring queries for view schemata and hence indirectly also the web site generation
process. The DBMS, having full knowledge of the structure of web pages defined over the database, can thus
be in control of efficiently keeping the web pages up-to-date with the underlying database.

However, although OODB systems provide powerful transformation capabilities in the form of a query
language, such queries are typically quite complex to specify — especially for web site designers that may not
be familiar with database technology in general and query languages in particular. We note that there are
certain restructurings that are rather common, such as for example the combination of two types into one
based on some condition or the flattening of one complex referenced type into its referring type possibly to
several levels of nesting. It thus may be possible to capture some of the complex yet reoccuring restructurings
in the form of transformations that can be made use of by web designers. However, the provision of any such
fixed set of transformations would not be satisfactory, as it would be very difficult for any one user or system
to pre-define all possible semantics and all possible transformations that could be required by a user in the
future. In the context of Re-WEB, we address this by using the concept of schema transformations that use
a database query language to combine schema manipulation, evolution primitives and object transformations
[CJRI8b]. A la SERF [CJR98a, Jin98, Nat98, CJR98c] we use a technique for generalizing these schema
transformations and encapsulating them as (transformation) templates such that they are applicable to any
schema and thus are re-usable for building new transformations.

In this paper, we demonstrate with the help of several examples that a transformation library of these
generic web view transformations can be a valuable resource for simplifying the web generation and restruc-
turing process. To the best of our knowledge, Re-WEB is the first web site management project focussing
on the issue of reusable view generation templates. To recap, the notion of the reusable view generation
templates [CJR98d] thus gives users:

e The flexibility to define the transformation semantics of their choice .

LOf course, it is always possible to write ad-hoc one-time-usage OQL queries as well, if and when needed.

e The extensibility of defining new complex transformations meeting user-specific requirements that can
be added to the library.

e The generalization of these transformations to templates to make them applicable to any schema, and
thus to be re-usable for different web view generation purposes.

e The ease of template specification by programmers and non-programmers alike due to the exclusive
usage of standard ODMG constructs.

e The speed of allowing web-site designers to rapidly specify rather diverse sets of web sites due to the
utilization of pre-defined transformations,

e The soundness of these user-defined transformations in terms of assuring schema consistency[CJR98d].

e The portability of these transformations across OODBs as libraries.

Re-WEB is fully compliant with the ODMG standard. It is build using the ODMG object model, applies
the OQL query language as the database transformation language, works with an ODMG-compliant system
repository, and assumes Java’s binding of ODL. Our Re-WEB approach thus is general and could easily be
ported from our platform (which is the PSE system by Object Design Inc.[O’B97]) to other ODMG-compliant
platforms. Experiences we gain from our on-going development effort of building the Re-WEB prototype
thus may directly benefit others that want to incorporate the Re-WEB approach into their system.

To summarize, the contributions of this Re-WEB project include:

¢ the identification of a novel approach for powerful web-site generation and restructuring based solely on
standard database technology achieved by associating web semantics with different database constructs
both at the schema and at the data level,

e a rich variety of diverse web views supported by the system due to the utilization of OQL as the
underlying transformation specification language,

¢ the notion of reusable transformation templates for powerful web site restructuring, offering a wide array
of advantages to both end-users and developers as detailed above,

e the development of a library of web schema transformations that represents a potentially valuable
resource for both novice and expert web-site designers (parallelling the concept of HTML style files),

e the design and partial implementation of the Re-WEB system using standard ODMG-compliant tech-
nology as a proof of concept of the Re-WEB approach. The use of ODMG increases the portability of
our tool to other OODB systems.

The rest of the paper is organized as follows. Section 2 describes the web semantics model we associate
with ODMG model constructs. Section 3 represents the overall Re-WEB approach, including detailed
examples demonstrating the utility of our approach. Section 4 covers work related, while Section 5 concludes
this paper.

2 Web Semantics for the ODMG Object Model

The ODMG Object Model is based on the OMG Object Model for object request brokers, object databases
and object programming languages [Cea97, Clu98]. For the purpose of the Re-WEB framework we limit our
description of the ODMG Object Model to Java’s binding of the object model and define web semantics for
it, while extensions of our web semantics for other ODMG modelling constructs is possible in the future.

Types. The basic category for an ODMG compliant database is types (are also referred to as classes). The
type definition gives the structure and the behavior specification for its instances. Correspondingly in our
Re-WEB model, the structure of a type is interpreted as modelling the web-page-structure for a given
web page. There is a one-to-one correspondence between a type in an OODB and a web-page-structure
of a web page.

Objects. The basic modeling primitives for an ODMG compliant database are objects and literals (or
immutable objects) both of which are categorized by their types. Thus an object in the OODB system
is interpreted to represent an individual web-page object whose structure is defined by its web-page-
structure, i.e., the type of the object. As per ODMG, each object has a unique object identifier that
persists through the lifetime of the object and serves as a means of reference for other objects. We parallel
this in our web semantics by mapping an object identifier to a URL. Thus each web-page object has a
unique URL.

Literals. Literals, on the other hand, do not have object identifiers and a change to a literal results in a
new literal. ODMG defines different types of literals such as atomic literals, structure literals and collection
literals. A literal of any type is translated to a web-item on the web-page of its containment object. For
example, an atomic literal such as string for a given database object is represented as a web-item which
in this case is its value inside its web-page object.

Collection Objects. The ODMG object model defines collection objects to be composed of distinct ele-
ments, each of which can be an instance of a type, another collection or a literal type. A collection object is
a special object that has no object identifier associated with it and hence in our web semantics the collection
object corresponds to a web-list which is a special kind of a web-item. For example, a collection (list)
of literals is mapped to an (ordered) list of structured web-items on a web-page and a list of objects is
mapped to an ordered list of URLs.

Extent of Types. Although Java’s binding of the ODMG model does not as yet support the notion of
extents, we have found it to be a necessary extension to the binding when working with object databases.
We define web semantics for an extent in terms of the elements of the extent, i.e., the number of elements
in an extent is the equal to the number of web-pages being modelled.

Inheritance. Although ODMG defines multiple inheritance, Java’s binding of ODMG Model supports only
single inheritance 2. For our web semantics we flatten the class hierarchy, i.e., if a type has three (3) inherited
attributes and two (2) local attributes, then the web-page-structure for the type will contain all five (5)
web-items. Thus while We exploit inheritance for the incremental specification of web-page-structures,
there is no explicit mention of inheritance expressed between web-layouts.

Schema. An ODMG schema is composed of a set of object and literal type definitions and a class
hierarchy. A database schema as per our web semantics hence models a web-site by defining its structure,
called its web-site-structure. Given an ODMG schema corresponds to a set of type definitions, a web-
site-structure for a given web-site corresponds to a set of web-page-structures. Lastly, a database associated
with an ODMG schema corresponds to the set of all web pages generated using the above mapping.

2We deal with the eztends relationship which does specialization of one class to another.

XML markup as a Metalanguage. In Re-Web project, we choose the uprising Extensible Markup
Language (XML)[xml98a] as an intermedia to represent the ODMG object model. Later on it is associated
with diverse stylesheets for multiple and flexible web pages output, thus the presentation is independent from
the semantics contents and can free content authors from style issues. Basically, XML is a good candidate
to be a universal data exchange format. It acts as a common syntax for expressing structure in data, which
is tagged for its content or meaning. The hierarchy of tagsets is called Document Type Definition (DTD)
of this XML, placing constraints and semantic interpretations on a data set, can be treated as one kind
of schema or type of such set of XMLs. XML data model is a tree-structured nodes, each node is a XML
element and can be mapped to the literal in ODMG data modle. Each XML file can be considered as a
unique object to convey certain information. XML separates content from presentation, Web builders have
a new way to control design, display, and output issues. Style sheets are the answer to be applied to the
XML files to get the real web pages.

1 summarizes the web and XML semantics that we have defined for the ODMG object model.

ODMG Primitives XML Semantics WEB Semantics

Schema set of DTDs web-site-structure

Type DTD web-page-structure

Object XML file web-page

OID Name Space URL

Collection of objects | Collection of XML files web-list of URLs

Atomic literal Atomic element web-item

Struct literal Structured element structured web-item

Collection of Literals | Collection of elements web-list of web-items

Extent of a type set of XML files of one DTD | set of web-pages for a web-page-structure

Table 1: Web Semantics for ODMG Object Model

Figure 1 shows an example of a set of web pages created from the depicted schema and the underlying
database using the web semantics mapping shown in Table 1. Here for each object of the class Course and of
the class Professor, we create a web-page. The structure of each web page, i.e., the web-page-structure,
is given by the definition of the respective classes. The Course class has a collection property taught-by that
contains instances of the Professor class who teach the particular course. This is reflected in the Course
web-page as a list of URLs (using underlined names, for clarity) that point to the respective Professor
web-page. Atomic literals are translated as web-items? such as name, description, etc.

3 The Re-WEB Framework

3.1 Features of the Re-WEB Framework

The WEB semantics for the ODMG object model as described in Section 2 translate the database semantics
of types and objects to the WEB semantics of web-page layouts and web-pages themselves. Hence, for each
view schema and associated database there is exactly one web site layout and a set of web pages that could be
generated. Thus, alternative web sites with alternative layouts can be generated simply by describing diverse
view schemas over the database. To arrive at the desired set of web-pages, we simply have to re-structure
the database types and objects such that they accurately reflect the layout and content of the web-pages
themselves.

3For clarity we have shown the property name and then the actual value of the property for the particular object.

Legend for Schemaand Data:
Course taughtBy Professor
name name
description email
location address Class 11 C!as ‘
time courses phoneNum Classname Relationship
taughtBy courses
Schema
L:nClass
Relationship o
[Obia] [obi1] Struct
< Structname
Advanced Databases p| SH.Waverly m:n Class
Requires Databases 101 wave@cswpi.edu Relationship
Fuller 320 Fuller 116
2:30-5:30pm -
obi2] Object v
Classincludes
Advanced OS Tom Dooley Struct ¢
Requires OS 101 dooley@cs wpi.edu
Fuller 320 Fuller 117
1:30-3:300m -
Included Literal opject refer$ce
Animation ~ Roberto Bagio
Requires Graphics 101 > edu
Fuller 320 Fuller 118
=11 999-9999
Data
_—
Course Name: Advanced Databases Legend for Web Peges:
Description: Requires Databases 101 ——————— ‘ web link
Name: SH. Waverly
Location: Fuller 320
Email: wave@cs.wpi.edu| single page
Time: 3:30-5:30pm 7
Location: Fuller 116
TaughtBy:
Phone Num: 999-9999 i
SH.Waverly . acollection of pages
Courses:
Thomis, Do ol content in a page
d ed Databases pag
{; Advanced OS _anriname: value ‘
[/ indent means nested list
e
Web Pages

Figure 1: The Schema, the Database, and the Corresponding Web Pages.

The goal of the Re-WEB framework is to support arbitrary user-customized and possibly very complex
database schema transformations thereby supporting a flexible, powerful and customizable way of generating
web-pages. A declarative approach to writing these transformations is to use OQL together with a view
mechanism. OQL, a declarative language, can express a large class of view derivations and also has the
expressive power for realizing any arbitrary object manipulations to transform objects from one type to any
other type. Moreover, OQL can invoke any required system methods for supporting the view mechanism.
Sometimes, however, creating a new view schema may be an overkill. A web site may simply need to be
adjusted requiring the corresponding schema, to be slightly modified perhaps by the addition of an attribute
or the deletion of one. We hence propose the use of schema evolution primitives for in-place manipulation
of the schema. Thus transformations using OQL, schema evolution primitives and a view mechanism can
be utilized for the generation of new view schemata, i.e., new web sites, as well as for the re-structuring of
existing view schemata, i.e., existing web sites.

However, writing these transformations for the re-structuring of the database is not a trivial task as
the view definition queries can be very complex. Similar to schema evolution transformations, however, it
is possible to identify a core set of commonly applied transformations [BKKK87, CJR98b]. For example,
flattening a set of objects such that they appear as a list of web-items rather than a list of URLs is a
common transformation that can be applied for different web layouts. Thus in our framework through the
use of the Schema Repository we offer re-use of transformations by encapsulating and generalizing them
and assigning a name and a set of parameters to them. From here on these are called view transformation
templates or templates for short. Further we propose the development of a library of such templates. This is
an open, extensible framework as developers can add new templates to the library, once they identify them
as recurring. We envision that a template library could become an important resource in the web community
much like the standard libraries in the programming environment.

In summary, a view transformation in our framework lets the user combine an object transformation
language with a standard set of schema evolution primitives and view primitives to produce arbitrarily
complex transformations. Moreover, these transformations are generalized and stored in a standard library
for later re-use. Transformations in this general form are called templates in the framework and the library,
the template library. The Re-WEB framework through this powerful re-structuring mechanism succeeds in
giving the user the flexibility to define web-site structures of their choice, the extensibilty of defining new
complex structures through new view transformations, and the re-usability of these structures through the
notion of view transformation templates.

3.2 Re-WEB Architecture

Figure 2 gives the general architecture of the Re-WEB framework. The components listed on the top half
of the figure make up the framework and thus are to be provided by any implementation realizing the Re-
WEB framework. The components listed below the line represent system components that we expect any
underlying OODB system to provide. These system components of an OODB include:

e Schema repository. For a view transformation to be generalizable to a template, we need to be able
to query and access the metadata in some form (as will be explained below.). Most OODB systems
indeed do provide access to the metadata.

e Schema Manager. View transformations, complex or simple, as defined by the Re-WEB framework
rely on the underlying OODB to provide a view mechanism and also support for some in-place schema
manipulations.

¢ Query language. Re-WEB requires the OODB system to provide a query language capable of express-
ing a large set of view definitions and of transforming objects of one type to another type. If needed,
the query language must also be capable of invoking any view mechanism primitives and the schema
evolution primitives. We note that a query language, like OQL, has the expressibility power to do all
of the above.

¢ Object manipulations. Beyond selection, the query language should provide some support for creat-
ing, deleting and modifying objects. OQL provides this through the invocation of system-defined update
methods.

¢ Web Layout Generator. In Re-Web project, we choose XML as a metalanguage to represent the
ODMG data model. Here the Web Layout Generator can generate from a schema of ODMG model into
a set of XML formatted files for the Web structure. For each class in OODB system, a XML DTD is
generated and for all the extends of this class, correspondingly, the generator produces a set of XML
files of the same DTD. According to the DTD, we select XML Stylesheet Language (XSL) to specify
the association of presentation style with XML information. XSL is consist of a location mechanism
(context, selector, pattern, query) capable of addressing into XML structure and an action performed
on the located content.

e Web Layout Manager. As stated before, our Re-WEB system has the powerful re-structuring mecha-
nism to allow the user the flexibility to define web-site structures, which represent the semantics content
of web pages and the links between them, we also want to have web page layout styles separated from
their contents to make reuse of data and get multiple output formats. Our Web Layout Manager serves
for this aim. It associats style with XML data, allows interchange of data among different users and
authoring, editing, browsing, viewing tools, enables both authors/publishers and users to determine
presentation of marked up data and allows for the packaging of ”document types” that can be shared
and reused.

e Web Page Generator. Based on the DTDs generated from Web Layout Generator, we can apply
diverse stylesheets onto them to get any effection we want for web pages. In our Re-Web system, The
Web Page Generator is actually a XSL engine that performs a transformation process that can convert
one XML document to a HTML document. This transformation process is running on a XML document
with a XSL stylesheet to drive a style-attachment process to creates the formatted output. Arbortext
company has just released its XSL tool called XML Styler[xml98b], many other companies or individuls
also propelled such process by providing their tools[ie498, Tho98, Cla9g].

Web-Site Layout Schema Template
Web | Administrator Editor Browser Editor
Internet Server

Interface

\ \
Browser yits iews $dits

Web Layout Schema Template
Manager Manager

— >
Web Layout Template
Library Library
Template
Processor

Web Page| gets
4P| Generator |

Web Layout
Generator

Browser http|
| [gets uses I
['Web-SERF Framework executes
Yy A 4
o — Schema g‘ﬁ‘:‘y
M anager queries Engine

operates ‘ ‘()erates \

D D
Schema Object | * queries
Repository| |Repository|

OODB System (PSE,

Figure 2: Architecture of the Re-WEB Framework.

Figure 3 also shows how the framework modules and the system modules interact with each other.
Re-WEB targets users such as web-site administrators that need to generate or maintain web pages over
the underlying database. The Schema Browser lets the user view and browse both view as well as base
schemata. In order to construct a schema modeling a desired web site structure, the web administrator
can either choose a suitable view transformation template from the template library, write a re-usable and
generalized template using the Template Editor, or simply write an OQL query transformation. The
Template Processor instantiates and executes a given view template using the parameters suppiled by
the user . In general, a template ® uses a query language to query over the schema repository, i.e., the
metadata and the application objects. The template also uses the query language to invoke both the view
schema, primitives and the schema evolution primitives for creating and storing views in the database and
for modifying the schema types, and system-defined functions for updating the object instances.

With the underlying view schema in the right structural form, the Web Layout Generator can be
invoked to generate a web layout using the web semantics (see Section 2) that are defined for the underlying
object model ®. Presentation styles can be applied to the web layout produced by the Web Layout Generator
and this layout can then be used to generate the actual web pages by retrieving objects associated with the
view schema from the database and populating the web pages.

4 An instantiated template is a sequence of pure OQL statements.

5 Although we distinguish between a transformation and a template, unless explicitly stated we use the term template to
refer to both.

8Generating a schema implies generating an entire web site and hence a web-site layout, whereas generating only a type
generates a web-page layout.

Create web-pages?

yes
A

y
Does schema structuré™ yes
match ?
No|
Find appropriate view ™ no | Write transformation

transformation? template

yes
A 4

Apply the transformation | failure
and execute template

=I Error message to User

successful
A 4

Invoke the ReeWEB web
page generation tool

Dump out
Web views
in XML

Sel ect/Edit
stylesheet

'

Apply XSL stylesheet "
using Lotus XSL Engine WEB Pages Generated!!!!

Figure 3: Interaction of the Different Modules in the Re-WEB Framework.

3.3 Re-WEB View Transformation Templates

The goal of a view transformation in the context of Re-WEB is to re-structure a given set of types in order
to create a view schema modeling the desired layout of a web site. A view transformation combines a query
language with a standard set of view and schema evolution primitives to produce other more complex view
transformations.

This is an alternative view schema and web site view of the example in Figure 1. For example, in
Figure 1, the layout of the web page reflects the structure of the given schema. However, this web-page
layout may not meet the user’s requirements and the user may instead desire a web view of the same data as
depicted in Figure 4. The generation of the web view depicted in Figure 4 from the database schema given
in Figure 1 first necessitates a re-structuring of the underlying database to correctly reflect the layout of the
web-page. We use a Re-WEB view transformation to obtain the required structure of classes in a re-usable
manner.

We illustrate the steps involved in a view transformation using this example. The example transforma-
tion we work with is convert-to-literal that is defined as the replacement of a collection of referenced types
with a collection of structures with the same definition. For example, to get from the schema in Figure 1 to
the schema in Figure 4, the convert-to-literal of the attribute taught_by defined for the class Course from a
collection of objects of type Professor to a collection of literals of Struct-Professor structure type. Fig-
ure 5 shows the convert-to-literal view transformation expressed in our framework using OQL, view creation

Course Course::Professor|
name name ‘
description .| email
location address Course Name: Advanced Databases
time phoneNum
taughtBy o .
Description: Requires Databases 101
Schema L ocation: Fuller 320
Obj4 .
SH. Waverly Time: 3:30-5:30pm
Advanced Databases Wa‘\‘/e@cs.wpi.edu
Fuller 116
Esﬂ:y:;gmbases o1 999-9999 T aught By:
3:30-5:30pm
ProfName: SH.Waverly
T Dool
dooley @eswpi e
Advanced 05 il Email: wave@cs.wpi.edu
Requires OS 101
T305300m Location: Fuller 116
— S.H. Waverly
pave@cswpied Phone Num: 999-9999
999-9999
Animation
Requires Graphics 101
Fuller 320 ProfName: Thomas Dooley V
9:30-11:30pm Roberto Bagio
bagio@cs.wpi.edu
Fuller 118
Data 9;93999

Figure 4: The DB Schema and the Matching Web Page Generated from them.

and definition, oql statements, schema modification primitives, and system-defined update methods. In this
example, the object.set () methods are the system-provided methods.

e Step A: Query the MetaData. To make a transformation general and re-usable for any possible
schema in the form of a transformation template, it is necessary that a user be able to query the
metadata using a query language. This information can then be used to make decisions about changes
to the schema. In Figure 5 this step denoted by Step A retrieves the complex property type contained
in the collection taught_by.

Step B: Define the Views. In OQL named queries are treated as a view mechanism. Thus, OQL can
be used to define a view based classes that exist in the database. This view definition gives not only
the definition of a view but also allows the selection of the extent of the view from the database. Step
B of Figure 5 shows the definition of a view over the Course base class that structurally maintains all
the properties of the base class Course but defines the extent of the view to only have the Computer
Science courses.

Step C: Create the Views. View support by OODB systems is often offered in terms of some
view primitives to create view classes and named view structures with a query language providing the
definition. Step C in Figure 5 shows the primitive for creating the view class CourseView from the
base class Course and using the definition ViewDef.

Step D: Change the Schema. We require that all structural changes, i.e., changes to the base schema
as well as the view schema, are exclusively made through the schema evolution primitives. This helps
us in guaranteeing the schema consistency after the application of a transformation [CJR98d]. The
information gathered in Step A can provide the metadata to be changed as well as provide information
needed for determining how to change the metadata, both serving as input to these schema, evolution
primitives. For example, Step D in Figure 5 shows the addition of an attribute to the view class
CourseView through the add_attribute primitive.

10

/'l RefClass is the class that needs to be flattened.
Ref Cl ass = el ement (
select a.AttrType
from MetaAttribute a
where a.AttrName = taught By
and a.Cl assDefinedln = Course) = Professor;

Step A

/1 a view definition.
define ViewDef (ViewClass)
select ¢
from ViewCl ass ¢
where c.department = "Conputer Science";

Step B

/1 creating a view class for the main class, also

/'l invoke the view definition for getting objects for view class CourseView.
create_view_class (Course, CourseView, ViewDef(Course));

/1 flatten the RefClass to a structure. Step C

create_view_struct (RefClass, Struct-Professor);

/1 add a new attribute Struct-Professor as a structure for CourseView.
add_attribute (CourseView, Struct-Professor,
col lection<Struct-Professor>, null); } Step D
/1 Get all the objects of a class
define Extents (ClassNane)
select ¢
from Cl assNane c; Step E
/Iconvert the collection of oids to a collection of structures.
define flattenedCollection (Struct-Professor, Professor, Object, taughtBy)
select (Struct-Professor *)p.*
from Professor p
where exists (p in object.taughtBy)

/1 for each object of CourseView, change it’'s taughtBy to Struct-Professor
/'l structure of its referring RefClass' object collection.
for all object in Extents(CourseView)
obj ect.set(object.Struct-Professor,
flattenedCol | ection(Struct-Professor, Professor, object, taughtBy));

Step F

/1 remove the taughtBy from CourseView.
del ete_attribute (CourseView, taughtBy);

Step G

Figure 5: Convert-to-literal Transformation.

e Step E: Query the Objects. As a preliminary to performing object transformations, we need to
obtain the handle for objects involved in the transformation process. This may be objects from which
we copy object values (e.g., Professor objects in Step E) or objects that are modified (e.g., CourseView
objects in Step F).

e Step F: Change the Objects. Although not an essential for all view transformation (for example,
an identical view does not require this), the next step to any view transformation logically is the
transformation of the objects to conform to the new view schema. Through Step E, we already have
a handle to the affected object set. Step F in Figure 5 shows how a query language like OQL and
system-defined update methods, like obj.sef(...), can be used to perform object transformations.

In general, a view transformation in our Re-WEB framework uses a query language to query over the
schema repository, i.e., the metadata and the application objects, as in Steps A and E. The transformation
also uses the query language for views, i.e., to define new views, and due to lack of full view support in OQL
to invoke operations to store these views in the database as shown in Step B and Step C. The schema
evolution primitives for in-place schema structural changes and the system-defined functions for updating
the objects can also be invoked from OQL, as in D and Step F.

A Re-WEB transformation as given in Figure 5 allows a user to flexibly define view transformations.
However, they are not re-usable across different schemas, for example the given transformation works for
only the Professor and the Course class. For this reason, Re-WEB adopts the notion from SERF [CJR98D)]
and introduces the notion of templates. A template is an arbitrarily complex transformation that has been
encapsulated and generalized with a name and a set of parameters.

11

By parameterizing the variables involved in a transformation such as the input and the output classes,
e.g., the Course and Professor classes in our example, and their properties, e.g., the taught_by attribute in
our example, and assigning a name to the transformation e.g., convert-to-literal in our example, a transfor-
mation becomes a generalized reusable transformation applicable to any application schema. Figure 6 shows
the generalized convert-to-literal transformation of Figure 5 as a template. Vice versa, the convert-to-literal
template shown in Figure 6 can be instantiated with the variables Course and taught by and results in
the Re-WEB transformation depicted in Figure 5. A Re-WEB template is thus a named sequence of OQL
statements extended with parametrization that can be translated down to pure OQL statements during the
process of instantiation.

Sonme naned queries are pre-defined as foll ows:

/1 usign named query for view definition
define ViewDef (Viewd ass)

select ¢

fromViewd ass c;

I/ Get all the objects of a class
define Extents (cNane)

select ¢

fromcNane c;

/'l convert the coll. of oids to a coll. of structs.
define flattenedCol | ection(StructNane, Refd ass, Object, AttrToFlatten)
sel ect (StructNane)p.*
fromRefd ass p
where exists(p in Chject. AttrToFlatten)

begin tenplate convert-to-literal (M nd assNane, MainVi emNane,
AttrToFl atten, StructNane)
{

/1 Define the class that needs to be flattened.
ref d ass = el enent(
sel ect a.attrType
fromMetaAttribute a
where a.attrName = $AttrToFl atten
and a. cl assDefinedln = $Mai nC assNane) ;

Il Create a view class using the view prinitive
create_view class ($Mai nC assName, $Mai nVi ewNamre
Vi ewDef ($Mai nCl assNane));

/Il Flatten refdass to a struct using the system nethod
create_view struct (refd ass, $StructNane);

/1l a new attribute to hold the structure in the
add_attribute ($Mai nVi ewNane, $Struct Nane,
col | ecti on<$Struct Nane>, null);

/1l convert the collection of oids to a collection of structures
for all obj in Extents($MainVi ewNanme)
obj . set (obj . $Struct Nane,
flattenedCol | ection($Struct Name, refC ass, obj, $AttrToFlatten));

/1 renmove the attributetoFl atten
del ete_attribute($Mai nViewNarme, $AttrToFl atten);

Figure 6: Convert-to-literal Template.

Here we show an example of how to do such restructuring as multi-leveled nested inline by making use
of the basic inline template, we could see that once we have some core templates for the basic transformation
operations, we can flexibly construct arbitrary complex ones by easily reusing the core templates.

In this example of Figure7, we are assuming that we have a chain of classes, that is, we want to
encapsulate all the information into the main class A1ClassName. These classes are chained together via
the link A1AttrToFlatten in Al1Classname to its referred class. In this example, we call such classes being
referred to RefClass. Here we are given a chain of AttrToFlatten attributes through which we could follow

12

begin tenplate Nested-convert-to-literal (AlQ assNane, ALVi ewNane, AlAttrToFl atten,
AlStruct Nane, A2AttrToFl atten, A2StructName, .., AnAttrToFlatten, AnStructNane)
{

var A2Refd ass, A2ViewNane, .., AnRefd ass, AnVi ewNane;

/1 find the class on the next nested | evel to be flattened.
A2Ref Ol ass = el ement (
sel ect a.AttrType
fromMetaAttribute a
where a. AttrNane = $AlAttrToFl atten and a. d assDefinedln = $A1C assNane);

/1 define the view for the next nested |evel class.
A2Vi ewNane = (string *)A2Refd ass + "View'; ..,

/1 go deep down to the nost nested |evel.
A3Refd ass = .., A3ViewNane = ..,

AnRef O ass = el ement (
sel ect a.AttrType
fromMetaAttribute a
where a. AttrName = $A<n-1>AttrToFl atten and a. O assDefinedln = $A<n-1>Refdass);

AnVi ewNane = (string *)AnRefd ass + "View';

/1 fromthe innerest level up to the top level, do convert.
convert-to-literal ($AnRefd ass, $AnVi ewName, $AnAttrToFl atten, $AnStruct Nane)

convert-to-literal ($A<n-1>RefC ass, $A<n-1>Vi ewNane, $A<n- 1>Attr ToFl atten, $A<n- 1>Struct Nane)
/1 finally, we get all levels of classes inlined in one class.

convert-to-literal ($A10 assName, $A1Vi ewNane, $AlAttrToFl atten, $ALStruct Nane)
}

Figure 7: Nested inline template by reusing basic inline template.

all the chained classes. Thus in the template we declare all these classes as A2RefClass, A3RefClass and
so on through the last one that has an attribute to be flattened, also apply the same declaration processes
for ViewName, i.e, A2ViewName, A3ViewName, etc. Then we could reuse the basic inline template we
introduced before in Figure 6, inlining the neighbouring classes from the innermost cascadingly up to the
top-most level. At the end, we will reach the main class A1ClassName now completely flattened out.

In summary, the templates provide users not only with the advantages achieved by our transformations,
i.e, a user can specify their own semantics for transformations, but also allows reusability of these transforma-
tions by parameterizing them. By the example of Figure 7, we could see that this thus makes the templates
reusable and applicable to any application schema for the generation of a wide variety of web structures.
Further we propose the development of a library of such templates. Such a template library could become an
important resource in the web community much like the standard libraries in the programming environment.

4 Related Work

Numerous approaches have been proposed in the literature that try to model semi-structured data such as
web pages. They typically invent either some modeling language from scratch or they design some extensions
specific to web constructs such as URL, links, ordered lists, etc., to existing languages to enable querying of
the web. WebOQL [AMO98] is one such example with its data model being based on extended OEM model—-
hypertrees, with abstractions for references, collections, nesting and ordering to model web structures. It’s
not as light as OEM [PGMW95] or similiar models and not as heavy-weight as the more traditional schema-
based models. WebOQL synthesized ideas from diverse Web query languages, such as WebSQL [MMM96],
W3QS [KS95] and UnQL [BDHS96], all of which share the notion of viewing the Web as a database that can
be queried using a declarative language. WebOQL focusses on schema-free data modeling, thus supporting
to capture web site structures and the restructuring of sites while querying the web. Our work now instead
focusses on flexible and reusable mechanisms for web site construction and management exploiting standard
schema knowledge and not on the issue of sprawling queries over the web.

Our Re-WEB approach has been inspired by web site restructuring systems like Araneus[AMM] and
Strudel [FFLS97], and like them, we also exploit the knowledge of a web site’s structure for defining alterna-

13

tive views over its content. Araneus’s approach is highly-typed: pages in the web site must be classified and
formally described before they can be manipulated. Although the Araneus Data Model (ADM) describes
page schemes in a manner similar to ours, they utilize relational database technology as backend data repos-
itory. This thus forces them to flatten the structure of a web site down into relational tables when loading
web data, and to again determine some means of adding web structure back to the tuples stored in the tables
when presenting them back to the web. The relational model chosen for the intermediate repository is not
the most natural model for capturing the complexity of the web page structures being modeled and thus
requires a step of indirection for data flows in both directions, i.e., from and to the web. In Re-WEB, we thus
advocate the use of object data models and particular the ODMG object model as intermediate modeling
paradigm. For this reason, for the step of mapping from relational tables (or views) down to structured
web pages, the Araneus project developed a separate web page layout language called Penelope that defines
the web page structure by specifying nested page layout statements. This is not needed in our Re-WEB
approach where the hyper-graph structure of a web site can be modeled by simply associating implicit web
semantics with the standard ODMG object model.

Strudel [FFLS97] advocates the separation of a web site management system into three separate layers:
the underlying data model, the logical site structure and the final visual presentation of web pages. Strudel
uses a graph-based data model with nodes representing either documents or atomic values and with arcs
with strings standing for attribute names. Being based on a proprietary hypergraph model, Strudel also
proposes a new language for manipulating and querying this graph. Any such approach based on a new
proprietary model and language has to re-investigate many database issues that otherwise could be addressed
by already established technologies for commercial database systems. For example, to efficiently maintain
the consistency between web site views and the database, new view maintenance techniques may have to
be designed, even though such problems already have solutions in standard OODB technology. For this
reason, our approach instead is firmly grounded on standard OO modeling and particular the ODMG object
model, allowing us on the one hand to take full advantage of mature database techniques that are likely to
be cost-efficient as well as to share new techniques we design to be easily transferrable to other systems that
are based on the ODMG standard.

To summerize, here we give a comparison between our Re-WEB approach with other systems from such
perspectives as the data sources they are exploiting, the data models they are based on, their respective query
languages and querying capabilities, their restructuring methods and their web page rendering mechanisms.

Data Model
Query

Restructure

Render Page

OEM
Gragh Traversal

Query & Restruc-
ture
Apply HTML
Template

Extended OEM
Gragh Traversal

Query & Restruc-
ture & Render
Page

No Separate Ren-
der Phase

Relational Model
Projection & Se-
lection & Join
Page Schema De-
fine Language

Apply Style Sheet

Strudel ‘WebOQL Araneus ReWeb
Data Source Semi-Structured Semi-Structured Data Stored in | Data Stored in
Data Data RDB OODB

ODMG Model
oQL

SERF Template

Dump DB to XML
& Apply XSL

Table 2: A Comparision Between Related Systems

From Table2, we observe that these different web site management systems make different assumptions
to their systems. Both Strudel and WebOQL are targetting at semi-structured data available on the web,
the data source has little restriction to its schema and thus is modeled as a light weighted object model —
Object Exchangable Model (OEM), which is basically a graph of notes and thus the main query operation

14

on the data model can be treated as graph traversal; Araneus project is using a relational model to manage
their source data (or anyway, they need a strict way to convert the web based available data into the
relational model). And they have their own ADM model as the page scheme onto which the source data
can be mapped (basically, the mapping are embeded selection, projection and join operations) using their
self-defined language Penelope; Similiar to Araneus system, our Re-Web project also relies on the mature
database techniques but makes use of ODMG model to define web semantics. This approach is natural in
the sense that there indeed exists much information somewhat restricted by structure and could be modeled,
managed and queried by OODB.

For the task of restructuring the web site, Strudel system needs to have the knowledge of the data
graph beforehand and then performs the restructuring instruction while WebOQL can do the restructuring
dynamically while querying the gragh. Araneus uses their own page schema define language (i.e, Penelope)
to do the constructing of the web page schemes from the data cells in the relational tables. In our Re-
Web approach, OQL query language and SERF template can be utilized to restructure the database and
consequently to specify object views that effectively model restructured web sites.

As for the final web page rendering phase, WebOQL has no separate such phase while Strudel and
Araneus apply HTML template and self-defined stylesheet respectively, all of them are using procedu-
ral stylesheets to implement the formatting process. As a constract, Re-Web project adopt a declarative
stylesheet — XSL to provide constraints to the formatting process, which is emprinted the describing char-
acteristics and constraints versus saying what to do using programming (scripting) languages.

To date, there are already many commercial tools out there for having web-pages constructed almost
automatically based on a well-structured database. It’s true that a webmaster or system administrator can
build dynamic pages much faster and easier using Active Server Pages by the tools of Microsoft, like InterDev.
These approaches are based on the technologies for the postprocessing of the query results from the backend
databases. Their methods start from the point that the results are already uploaded to the client sides from
the databases. Whatever the web pages they restructure or the web applications they develope would have
no effect at all on the underlying databases nor have any way being reflected there and thereby would not
be reused.

As we mention in Table 2, Re-Web dumps the web views out in XML format and then flexibly applies
diverse XSL style sheets to generate the most effective web pages. We are choosing XML since it is receiving
tremendous praise for being the universal data format for the Web, and there exist OODB companies that
have commercial XML tools for creating data-driven Web applications with high-performance and scalable
data management services for server-side XML. For example, Object Design Inc. bases its many products
on ObjectStore, a leading object database management system (ODBMS), providing full server-side XML
data management.

Distinguished from many such approaches, which are based on new proprietary models and languages
and have to re-investigate many database issues, Our approach instead is firmly grounded on standard OO
modeling and particular the ODMG object model, allowing us on the one hand to both take full advantage
of mature database techniques that are likely to be cost-efficient as well as to share new techniques we design
to be immediately transferrable to other systems that are based on ODMG.

5 Conclusions

In this paper we have presented a database-centric approach for flexible web site generation, restructuring,
and maintenance, called Re-WEB, that is completely based on object-oriented database technology. A large
class of web site layouts (web views) can be supported using this Re-WEB approach. The DBMS in Re-
WEB, having full knowledge of the layout structure of web views defined over the database, can thus bring

15

standard database techniques to bear for efficiently maintaining web views. The specification of complex,
possibly deeply nested OQL queries needed to specify some transformations to map from one view schema
to another one is however not trivial. To address this issue and thus ease the process of web site specification
and construction, we now propose the notion of generic web view transformations that can be encapsulated
into reusable templates. Genericity and reusability of templates is achieved due to the use of named, typed
transformations and the query-based access to the system dictionary, allowing the transformation to both
inquire as well as manipulate classes at the schema level at run time. We demonstrate in this paper that
these generic web view transformations, if collected in a template transformation library, have the potential
to represent valuable resource for simplifying the web generation and restructuring process. To the best of
our knowledge, Re-WEB is the first web site management project focussing on the issue of reusable view
generation templates.

Acknowledgments. The authors would like to thank students at the Database Systems Research Group
at WPI for their interactions and feedback on this research. In particular, we are grateful to Jin Jing,
Chandrakant Natarajan, Xin Zhang, Anuja Gokhale, Parag Mahalley, Swathi Subramanian and Jayesh
Govindrajan for their input on the implementation of the SERF and CHOP tools using PSE Pro2.0.

References

[AM9g] G. Arocena and Alberto Mendelzon. WebOQL: Restructuring Documents, Databases, and
Webs. In In IEEFE Int. Conf. on Data Eng., pages 24-33, 1998.

[AMM] P. Atzeni, G. Mecca, and P. Merialdo. To Weave the Web. In VLDB’97, pages 206-215.

[BDHS96] P. Buneman, S. Davidson, G. Hillebrand, and D. Suciu. A Query Language and Optimiza-
tion Techniques for Unstructured Data. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, Montreal, Canada, pages 505516, 1996.

[BKKKS87] J. Banerjee, W. Kim, H. J. Kim, and H. F. Korth. Semantics and Implementation of Schema
Evolution in Object-Oriented Databases. SIGMOD, pages 311-322, 1987.

[Cea9T] R.G.G Cattell and et al. The Object Database Standard: ODMG 2.0. Morgan Kaufmann
Publishers, Inc., 1997.

[CJR98a] K.T. Claypool, J. Jin, and E.A. Rundensteiner. OQL_SERF: An ODMG implementation of the
template-based schema, evolution framework. Technical Report WPI-CS-TR-98-14, Worcester
Polytechnic Institute, July 1998.

[CJRI98b] K.T. Claypool, J. Jin, and E.A. Rundensteiner. SERF: Schema Evolution through an Ex-
tensible, Re-usable and Flexible Framework. In Int. Conf. on Information and Knowledge
Management, pages 314-321, November 1998.

[CJR98c] K.T. Claypool, J. Jin, and E.A. Rundensteiner. SERF: Schema Evolution through an Exten-
sible, Re-usable and Flexible Framework. In Int. Conference on Information and Knowledge
Management, pages 314-321, November 1998.

[CJR98d] K.T. Claypool, J. Jin, and E.A. Rundensteiner. SERF:Schema Evolution through an Extensi-
ble, Re-usable and Flexible Framework. Technical Report WPI-CS-TR-98-9, Worcester Poly-
technic Institute, May 1998.

[CLIT] L. F. Cruz and W. T. Lucas. Delaunay: a Visual Framework for Multimedia Presentation. In
IEEE Symposium on Visual Languages (VL °97), 1997.

[Cla9g] James Clark. Jade from James Clark: hitp://www.jclark.com/jade/. 1998.

[Clu9g] S. Cluet. Designing OQL: Allowing objects to be queried. Journal of Information Systems,
23(5):279-305, 1998.

16

[CRCKOS]

[FFLS97]

[ie498]
[Jin98]

[KS95]
[MMMO6]
[Nat98]

[0'B97]
[PGMW95]

[Tho9s]
[xml98a]

[xml98b]

K.T. Claypool, E.A. Rundensteiner, L. Chen, and B. Kothari. Re-usable ODMG-based Tem-
plates for Web View Generation and Restructuring. In CIKM’98 Workshop on Web Informa-
tion and Data Management (WIDM’98), Washington, D.C., Nov.6, 1998.

M. Fernandez, D. Florescu, A. Levy, and D. Suciu. A Query Language for a Web-Site Manage-
ment System. SIGMOD, 26(3):4-11, September 1997.

XSL support in IE4 from Microsoft: hitp://www.microsoft.com/xml/xsl/. Microsoft Inc., 1998.

J.Jin. An Extensible Schema Evolution Framework for Object-Oriented Databases using OQL.
Master’s thesis, Worcester Polytechnic Institute, May 1998.

D. Konopnicki and O. Shmueli. W3QS: A query system for the World Wide Web. In Int.
Conference on Very Large Data Bases, pages 54-65, 1995.

A. Mendelzon, G. Mihaila, and T. Milo. Querying the World Wide Web. In Conference on
Parallel and Distributed Information Systems, pages 80-91, 1996.

C. Natarajan. CHOP: An Optimizer for Schema Evolution Operation Sequences. Master’s
thesis, Worcester Polytechnic Institute, June 1998.

P. O’Brien. Making Java Objects Persistent. Java Report, 1(1):49-60, 1997.

Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object Exchange Across Heteroge-
neous Information Sources. In IEEE Int. Conf. on Data Engineering, pages 251-260, 1995.

Henry Thompson. XSLJ from Henry Thompson: hitp://www.ltg.ed.ac.uk/ ht/xslj.html. 1998.

Extensible Markup Language (XML™™): http://www.w3.org/XML/. World Wide Web Consor-
tium, 1998.

XML Styler from ArborText: http://www.arbortext.com/zmlstyler/. Arbortext Technology,
1998.

17

