EXPECTATION FORMATION
IN MULTI-AGENT DESIGN SYSTEMS

DAN L. GRECU, DAVID C. BROWN

Al in Design Group

Computer Science Department

Worcester Polytechnic Institute

Worcester, MA 01609, U.S.A.

E-mail: dgrecu@cs.wpi.edu, dcb@cs.wpi.edu

1.0 Introduction

It has become obvious in recent years that design systems need, or at least can
benefit from, some type of learning (Duffy 1997). So far the effort to bring learn-
ing into design systems has addressed this need in a very specific way. Develop-

ers- have singled oug priori a particular learning target, and have shaped the

design system to acquire data for the learning task. Thus, a developer decided

beforehand that the design system would learn how to classify (Reich and Fenves

1991); how to rank designs (Murdoch and Ball 1994); that it would develop rela-

tions between design concepts (Maher and Li 1994); or that it would acquire

descriptions that lead to structurally optimal designs. Depending on the pre-
defined learning task, design systems were ‘crafted’ to collect the appropriate
information to achieve their learning goal.

The learning approach described above responds to two types of demands
formulated by developers and designers:

1. It may be the case that tliesignemeeds design information or designing
information that is otherwise not available, and therefore requests that such
information be learned by the design system. Situations of this type are often
encountered when the designer needs to solve optimization problems for
which data is hard to acquire and/or process (Figure 1a).

2. As design systems become more complexdineloperdecome those that
are in need of information. If a developer finds it difficult to provide a certain
kind of knowledge when crafting the design system, he/she has the option of
building a learning component into the design system that will acquire the
missing knowledge (Figure 1b). The learned knowledge is typically design-
ing knowledge (problem-solving and other design process knowledge) that
the design system will use in generating future designs.

1. In this paper we refer to the experts in charge of creating design systevelapersand to
the experts that create design artifacts in a particular design donussigisers.
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Figure 1.Control and use of learning in a design system

In both cases learning is procedural, i.e., it is implemented through proce-
dures that always use the same sources of information for learning, and are
always geared towards the same type of learning target(s).

What if the designer requires other types of information to be learned? How
can a developer, who realizes that he/she needs to provide the design system with
new kinds of design information, redirect the learning component towards new
learning targets? The answer liesr@iengineeringhe design system’s learning
procedure so that it can capture new types of training data, and use it to classify
or predict new types of design or design process values.

Another important observation is that in both cases the learning supports the
human. In the first case the learning component supplies the designer with techni-
cal design data, whereas in the second case it serves as an acquisition tool for
information items indicated by the developer.

In this paper we investigate a ‘learning in design’ model that differs substan-
tially from previous models. In this work, learning has a strong declarative
dimension, as the sources for the learning information and the learning targets are
not built into the learning mechanism. They are specified in a declarative manner,
and are the result of other reasoning processes in the design system.

This flexibility in instantiating a learning mechanism in various contexts pro-
vides the challenge of how to leave the control of the learning in the ‘hands’ of
the design system (Figure 1c). We are investigating how a design system can use
the learning towards targets that it seletielf. To demonstrate the autonomy of
the learning, independent from the designer and developer, we will also show that



the proposed learning model enables a design syltesarch and find informa-
tion sourceghat will support the learning processes it has initiated.

To provide a strong motivation for this type of learning we will place our dis-
cussion in the context of multi-agent design systems (MADS), where the criteria
for defining the exact dimensions of learning processes from the beginning are
particularly hard to define.

The rest of the paper proceeds by presenting the need for learning, and the
nature of design agents and their decision-making. We then discuss the use of
expectations, as well as when and how they can be learned. Finally, a system
called LEAD is presented and experiments with it are discussed.

2.0 Distributed Design

2.1 FROM EVALUATION NEEDS TO LEARNING

As the complexity of design problems that fall into the realm of Al steadily
increases, more and more design systems are developed as distributed environ-
ments, whether as collaborative design systems (Malone 1998), or as multi-agent
design systems (Lander 1998). Collaborative design systems operate at the high
end of design complexity, and attempt to integrate the work of human experts that
contribute to the development of a product. Multi-agent systems focus on small
scale design problems, however with little or no human involvement during the
design process.

Both approaches involve considerable integration problems. The ‘designers’,
be they humans or agents, proceed with their individual problem solving task,
only to realize at some point that their partial solutions are inconsistent, or do not
achieve the desired design requirements. Design expertise is not additive, in the
sense that simply the presenceatif the domain design knowledge needed to
solve a design problem does not create a skilled ‘designer’, whether this designer
is a design team or a multi-agent design system.

Good designing relies, amongst other things, on the ability to relate design
decisions with the rest of the design, both temporally and spatially. Isolated
design takes an immediate perspective, where a decision can be adopted if its pre-
conditions are met ahe current time poinby the information available ithe
limited design contexdf a given designer. In contrast, skilled designers often take
a decision before all the underlying information becomes available, by relying on
good (perhaps heuristic) evaluation mechanisms to compensate for the missing
information. They are able to look at the impact of the decision further “down the
road”, and to rule out decision options that may fail. They are also able to con-
sider the ramifications of the preconditions of the decision, and look at elements
from the global design environment that may cause the decision to fail.

Clearly, all the skills outlined above rely on some kind of evaluation. To take
decisions early, before all the components of the decision are confirmed, requires
consideration of these missing components. To weigh the potential problems or



benefits of a decision, one needs to evaluate the impact of the decision by predict-
ing the values with which the decision may come in conflict, or by predicting the
goals that it may ‘serve’. Experts resort to the integration of preliminary evalua-
tions made with partial data into the decision-making heuristic. This enhances a
decision’s sensitivity to the larger design context,

The ability to evaluate can be learned. In this learning task the learning target
is the object of the evaluation. Consider, for example, the need to evaluate the
area of a chair seat during chair design before the parameter values that define the
area have been decided. The designer has to identify the design or design process
elements available at that particular point on which to base the evaluation.

Will the chair seat be supported by one central foot, by three, or by four legs?
Will the seat be curved or flat? Will the seat be made of wood, plastic or metal?
Does the maximal cost of the chair have an impact on the surface of the seat? All
these factors, once pruned to a relevant set, will represent potential indicators that
might be used to predict the seat area. An experienced designer will know how to
quickly acquire representative values for these indicators, allowing him/her to
make good predictions for the chair seat area early in the design process.

Little in a designproblemindicates that there will be a need to evaluate the
area of a chair seat. This need will become clear only after repeated design ses-
sions. Therefore, the need for a learning component in the design system, capable
of handling this type of evaluation, will arise from tliesigning process,e.,
only after the developers have completed the design system.

How does this analysis relate to the discussion of the learning approaches in
the first section? First of all, as the next section will point out in more detail,
learning clearly becomes an integration tool in a distributed design system, and
this remains true whether the system is a collaborative design environment or a
multi-agent design system. Distribution eliminates the presence of a complete
global image of the design, and it also abolishes the single designing perspective.
Evaluation and learning become tools to regain some of the advantages lost to the
fragmentation of designing.

Since we are interested in design systems that are completely autonomous in
their design task, we will restrict our further discussion to multi-agent systems.
Under this assumption it is clear that the type of learning we are looking at is
intended to support the design system itself. The learning component neither pro-
vides additional design information to an external designer, nor does it directly
respond to developergre-specifiecknowledge insertion goal through learning.
The essential elements of the learning process are to be determined by the agents
themselveswhatto learn aboutwhereto look for supporting information, and
whento initiate a learning process in the first place.

2.2 THE DESIGN AGENT WORLD

Consider a multi-agent system for basic chair design. Agents are in charge of
various aspects of designing, such as seat design, backrest design, frame design,



and assessment based on ergonomic and cost criteria. Design agersjgdtaak
izedknowledge about the problem domain in which they operate. Based on the
tasks they executeagent functionalitiesinclude decision-makingabout the
design components (e.g., seat, backrest and frame)catiguing of design
aspects (e.g., ergonomics and cost).

Within its ‘society’ an agent may know about the roles or specializations of
the agents with which it interacts, about when to act, how to communicate, and
how to solve conflicts with other agents. However, it is not realistic to expect an
agent to be able to anticipate or to compute the behavior of all the other agents in
the system (Cherniak 1986; Russell and Wefald 1991).

We would like to have a system where design agents base their decisions on
all the knowledge that is available in the design system, and where they know the
possible consequences @ferypotential decision. The utilities associated with
these consequences would drive the decision selection, and would allow agents to
precisely respond to design goals (Figure 2).
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Figure 2.Agent decision-making in design



In reality agents have only limited information about how other agents oper-
ate, about their knowledge, and their internal reasoning strategies. Furthermore,
agents typically see only the part of the design covered by their domain compe-
tence. As a result, agents base their decisions on the knowledgaaktieyand
not on the knowledge that is available in the system. After a decision has been
taken an agent masometimeg&now someof the consequences of a decision it
has made, but it cannot know or compute all the consequences of its decisions.
Decision making and decision analysis require some means to compensate for
information that is not available at that point or cannot be deduced.

The difference between the “ideal” and the “real” setting in a multi-agent
design system calls for the support of learning to acquire knowledge that can be
helpful in the design process. This knowledge is inherently heuristic, since it
results from design experience. Human designers perceive the need to learn,
delimit the learning setting, and accumulate observations with considerable ease.
Neither of these skills is a trivial task for a design agent. We now describe a
model that implements precisely these features into a design agent.

3.0 Expectations in Design

3.1 USING EXPECTATIONS IN DESIGN

Expectations are a form of empirically derived knowledge that compensate for
the absence of deductively derived knowledge. Expectations express the belief
that an event will happen, and describe the circumstances or conditions under
which that event will happen. They are typically created because limited
resources, such as time or information, prevent the holder of the expectation from
establishing a proven causal relationship between the set of conditions and the
ensuing situation.

In a multi-agent design system, expectations represent the knowledge of
agents that events will occur in a pre-defined way: for example, that design
parameters will be within specific ranges, that responses from other agents will
arrive within a given amount of time, or that decisions will lead to given out-
comes. Figure 3 shows an example of an expectation, expressed as a rule. The
conditions for the cost expectation include conditions related to the design and to
the design agents.

Expectations are precisely the form of knowledge one would like to have
when a decision needs to be taken, and some of the pre-conditions for that deci-
sion have not yet been confirmed. Alternatively, one might use expectations to
determine the consequences of a decision. For example, an agent might use an
expectation, such as the one described in figure 3, when deciding the frame mate-
rial for a chair to make sure that a cost constraint will not be violated.



conditions L .
design information
IF
The frame material is aluminum
The seat is covered in leather
There is no cost agent present

THEN design agent information
The chair price will exceed $100

assertion

Figure 3.Design expectation example

Expectations are of particular benefit in a multi-agent system where agents
would be otherwise isolated in their own domain niches. There are two aspects to
expectations that makes them particularly appealing. First, from the point of view
of their contents, they tend to combine information from outside of an agent’s
own realm. Expectations are typically formed in an area where an agent does not
have the ability to reason in detail. Second, expectations are always generated in
response to an information need. This guarantees that a learning process based on
expectations can be confined within semantically meaningful limits, and that it
will not attempt to acquire information that is questionable from the point of view
of its usability.

3.2 LEARNING EXPECTATIONS

3.2.1 Human learning
The task of acquiring expectations is not as intuitive as are the possibilities for
their use. From the very beginning we should make a clear distinction between
learning expectationsind learning from expectation violationghe latter is a
topic which has been investigated in some well-known models, such as the Res-
corla-Wagner psychological theory (1972) that states that “organisms only learn
when events violate expectations,” and in Roger Schank’s model of dynamic
memory (1984) that contends that expectation failures prompt humans to memo-
rize new information, and describes how expectations can be revised through
explanation processes.

There is considerably less work that attempts to explain how expectations are
acquired in the first place. In psychological research, the speed with which expec-



tations are generated and applied by humans has led to the conclusion that the
process of expectation formation and use is not highly deliberative. Research in
this direction has proven very difficult since subjects “while engaging in interac-
tion, typically are not aware of how expectation states are formed, what states are
formed, or how these states are transformed into behavior” (Berger et al. 1985).

Expectations have been strongly tied to the ability to work in teams. Witten-
baum et al. (1996) describe how working groups develop a tacit coordination
through “the synchronization of the members’ actions based on unspoken
assumptions about what others in the group are likely to do” (p. 129). Their
research shows that expectations refer to a task domain, including the steps that
are part of the task, the goals that are pursued, and the quality criteria. They also
refer to the participants in the task, the decisions they take, and the circumstances
under which they act or react. One of the important conclusions they draw is that
expectations are developed based on carefully selected cues, and are not simply
associations between any factors that might correlate with the target of the expec-
tation.

Expectation learning requires the identification of tdeaditionsthat predict
values for the object on which the expectation focuses, i.e.tatget of the
expectation. Statements that assign values or ranges to the target aressdied a
tions Expectation learning amounts to a ‘causal reasoning’ process — a search for
the conditions that might influence the assertion. Recent research in understand-
ing the mechanisms that underlie causal reasoning has identified two major
stages within this process: the use of causal mechanisms to delimit acaeiddf
date conditionsand the use of covariational principles to extract from the candi-
date conditions the subset thatrédevantfor predicting the assertion (Koslowski
1996).

The causal mechanisms involved in the first stage of the expectation learning
process play a fundamental role in focusing the learning process. A pure covaria-
tional process would be simply overwhelmed by the number of influence factors
it would have to consider. It has been argued that people rely only on statistical
associations to identify causes and explain events, and deviations from this
behavior were regarded as cognitive biases (Tversky and Kahneman 1974). A
significant body of evidence indicates that this is the case only when any other
evidence or information is lacking. However, domain experts tend to go through a
causal attribution stage in which they use domain specific knowledge to reason
about possible causes for an event, prior to proceeding to a do correlation analy-
sis between the variations in the conditions and the variation of the expectation
assertion (Hilton 1990; Koslowski 1996; Shultz et al. 1986).

3.2.2 When do agents acquire expectations
We first have to decidevhena design agent is going to initiate an expectation
learning process. Our approach is to have design agents learn in response to a



repeated, specific need for information during designing. This need for informa-
tion is defined in a domain-independent manner, and can fall into one of the fol-
lowing categories: a) Preparing the information for a design decision; b)
Assessing the impact of a design decision.

a) Preparing the information for a design decision

Design agent decisions are based on information expressed as preconditions.

If the design decision has to be taken before all the information needed to evalu-
ate the preconditions is available, the design agent will use expectations to com-
plete the information.

Examples of situations that require or could benefit from the use of expecta-

tions as substitutes for precondition information are:

1.
2.

The agent is required to provide a decision within a given time.

The decision-making information built into the agents is cyclic, and therefore
one of the agents has to make a decision before all the needed preconditions
are satisfied by information in the design environment.

Since the order of decisions influences the design and the design process, tak-
ing a decision earlier can benefit other agents that rely on the information
resulting from the decision.

The range of situations is not limited to the ones presented above. Each of these
situations in turn requires some comment.

The first situation occurs if there is a partial ordering of the actions of design
agents which is reflected in a design plan. In such cases, agents may be
required to complete a task before another agent can proceed, and, if possible,
will have to substitute for missing information.

The second situation can be avoided only if a formal verification process can
secure that there are no circular dependencies between the knowledge of the
MADS agents. Such techniques are difficult to implement over an agent set.
Circular dependencies typically occur because of design constraints that span
several agents, and removing them amounts to a constraint problem-solving
task across agents. If none of the agents uses an evaluation, it is possible that
the design agents will make decisions which result in conflicts. Alternatively,
MADS developers can compile out the circular dependencies by introducing
estimates. However, this approach is subject to the types of limitations dis-
cussed in the first part of the paper.

The use of expectations in this third case can significantly enhance the range
of options that are available in terms of the configuring the overall design pro-
cess. However, the expectation has to be a reliable substitute for the actual
information lest its use actually represents an impediment to the design pro-
cess.



a) Assessing the impact of a design decision

Design agents evaluate the consequences of their decisions by inferring ahead
as to whether the decision value will satisfy constraints or support goals. In doing
so, itis likely that some of the information required in the inference process is not
yet available, and therefore the agent will attempt to substitute for it with an
expectation.

Imagine the frame design agent, in our chair design problem, making a deci-
sion about the frame material. Before committing to the design decision the agent
may verify whether the decision will satisfy cost constraints. Therefore it will
need to know the conditions that influence the cost, and the specific correlations
between the values for the determined conditions and the cost ranges. An expec-
tation such as the one described in Figure 3 could be critical in validating the
agent’s decision before all the cost components are known. Alternatively, the
frame design agent may take a decision which is perfectly valid at that point, that
will be used by other agents, only to be later invalidated in a cost analysis pro-
cess.

3.2.3 How agents acquire expectations

Once an agent decides to acquire an expectation it initiates a learning process.
The agent knows the expectation target at this point, and will try: a) to identify
features or conditions in the design environment that influence the expectation
target, and b) to determine the conditieelluesthat predict given target values or
ranges.

Accordingly, the design agent implements two-stage expectation learning
(Figure 4). In the first stagesausal attribution, the agent uses causal mecha-
nisms to select candidate conditions from the external world and from its own
domain-specific knowledge that, in some combination, might affect the expecta-
tion target. Subsequently, these conditions are submitteddwariational anal-
ysis to select the candidateelevant conditions, i.e., the subset impacting the
target. In the process of covariational analysis the agent also determines the spe-
cific expectation values that predict target values.

a) Causal attribution

The determination of plausible causes for the modification of a design ele-
ment is typically a domain dependent process. While some of the knowledge
used in causal attribution is social knowledge about group processes, a consider-
able amount of knowledge is rooted in the specific design domain of the MADS.

Causal attribution is a decomposition and propagation process from the target
to features in the design domain or in the designing process that are known at the
point when the expectation learning process is initiated. The process of causal
attribution is iterated on these features, until the propagation reaches features that
are known at the moment when the expectation is needed. The knowledge that



supports the causal attribution process may ‘cross’ from features into the design

domain to features in the designing process, or vice versa.
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Design conditions determines
relevant
conditions and
their values
O
oH _
expectation
Other conditions
agents \

Figure 4.Expectation learning

Below we present examples of knowledge categories that we believe to be
suitable for causal attribution in design problems. The use of specific types of
knowledge depends on the knowledge representation, and on the reasoning pro-
cesses implemented in the MADS.

1. Structural design knowledgrupports the decomposition of causal attribu-
tion based on structural criteria. For example, if the target of the expectation is
the weight of a chair, and the chair is composed of a frame, a backrest, and a seat,
the causal attribution process will focus on these three design features as possible
conditions for the expectation. The decision to proceed depends on whether the
features are known at the point where the expectation is needed.

2. Design features that share design constraiwith the expectation target
provide candidates for the expectation condition since the modification of the
constraint components is likely impact the target values.

3. Representations of dependencigsavailable, provide a rapid method to
elicit features influencing an expectation target. Belief net structures and influ-
ence diagrams explicitly introduce design features that are causally connected to
the expectation target.

4. Task decompositiois useful in cases where an explicit task representation
is available within the MADS, and when tasks result in the computation of design



features. Once a task is known to impact a design feature, the causal attribution
process needs to identify the design elements that underlie the computation car-
ried out by the task.

5. Agent domaingrovide another means to relate an expectation target with
the agents’ tasks or actiondgent functionalitieswhen known to be relevant for
deciding or agreeing on the value of the expectation target, can be used either to
further look into their actions, or simply to relate the target value with their
involvement in the design process (see example in Figure 3).

Overall, there is no universal set of knowledge entities to serve as a base for
the causal attribution process. In this respect, the learning becomes dependent on
the domain and functionality of the MADS, and needs to be supported during the
development process. Since a some of the knowledge involved in causal attribu-
tion refers to the knowledge of the MADS itself, and is meta-knowledge, it often
needs to be provided by the developer or there needs to be a capability to main-
tain and update this knowledge during the design process.

b) Covariational analysis

The covariational analysis is an inductive learning stage in which expecta-
tions are seen as concepts. The expectation conditions are the concept features,
while the ranges for the expectation target values, such as the weight ranges of
the chair in the previous example, represent the concept classes. The inductive
learning algorithm learns a representation for the concept that will predict the
class (range) of the expectation target from the values of the features identified as
expectation conditions.

We should remember at this point that in the previous stage the design agent
has identified a set afandidateconditions that it feels are relevant. This means
that some of the conditions may not influence the expectation target at all. Other
conditions may be redundant, and therefore can the pruned. Hence, the task of the
covariational analysis is to determine a minimal subset of conditions that yield a
sufficiently accurate prediction of the expectation targaetjto learn the condi-
tion values that help make the classification of the target into ranges or classes
(e.g., the price exceeds $100).

3.2.4 How agents validate expectations

Expectations are set up empirically, and therefore some validation process is
required before using them. During the validation process an expectation is used
to make predictions wherever the expectation assertion is needed. Given that the
use of the expectation may actually alter the designing process, the validation is
carried out in two phases.

In a first phase the expectation is used for predictions at the moment where it
is needed, however, designing proceeds as if the expectation had not been avail-
able. The value that was predicted by the expectation is then compared with the
final value resulting from the design process. If the expectation is violated, that is,



if the resulting value does not match the predicted assertion, the agent needs to
review the expectation. We call this phasmntextual validationsince the expec-
tation is validated in a designing context similar to the one where the need for the
expectation was identified.

In a second phase, the expectation is not only used to make a prediction, but it
is actually used in the design process. Again, the expected value is compared with
the final value resulting from the design process. We call this ptawantic val-
idation, since it proves the validity of the expectation in a wider context, that may
have been modified by the use of the expectation itself.

Figure 5 illustrates how an expectation is reviewed if it does not match the
outcome of the design process. However, the process is generic and gets applied
differently depending on the phase where the expectation is rejected.

If the expectation is rejected in the first phase, contextual validation, the agent
will collect additional training data from both the cases where the expectation
succeeds (positive training instances), and where it fails to predict the value of the
target resulting from the design (negative training instances). The concept
description of the expectation is updated with the new training data. This first
phase is again followed by the semantic validation process.

Detect
expectation
violation

no

Eliminate
expectation

Validate
expectation

Figure 5.Expectation validation

If the expectation fails in the semantic validation phase, the agent proceeds to
collect training cases from situations where the expectation is actuaéy
These training cases are added to the initial ones, where the expectation was
learned without being used, and thus the expectation will cover both types of sit-
uations.

In both cases, the review process can be repeated for a pre-defined number of
times. If the expectation does not reach a stable state, where no recent changes
have been made, the agent will drop the expectation.



Several causes can prevent an expectation from being accepted. The causal
mechanisms can lack sufficient coverage, preventing the inclusion of important
discriminating conditions in the candidate set. Another possibility stems from the
fact that several expectation learning processes can proceed simultaneously in
several of the agents, thus changing their decisions and their behavior. If one of
the changing elements associated with an agent is included among the conditions
of an expectation that is developed by another agent, it is likely that this expecta-
tion will take a longer time to ‘stabilize’, or may lead to it being eliminated.

4.0 The LEAD System

LEAD is a system foiLearning Expectations inAgent-basedesign that was
developed based on the framework described above and implemented in CLIPS
(Giarratano and Riley 1998). In LEAD, agents act as design specialists and as
group members. There are no agent hierarchies or relations between the agents
that create rigid ‘links’ between them. However, the types of interactions between
agents are predetermined, and they essentially represent the rules that create the
group behavior. The interactions result dynamically, at run-time, and originate in
the problem the system attempts to solve. The agents have complete autonomy in
organizing their actions, with regard to the decisions they take as design special-
ists, or to their interactions with the rest of the group.

The agent model has evolved from the Single Function Agent (SiFA) para-
digm (Dunskus et al. 1995), and includes specialized, knowledge-based design
agents with precise functionality. Each agent has a predefined function in the
design process. The agent types currently implemented in LEAD are:

- Designers agents that are responsible for taking design decisions, such as
selecting values for design parameters, or creating links between design compo-
nents in a configuration process.

- Critics: agents that criticize design aspects, such as design parameter values,
or weak properties of component configurations. Beyond revealing undesirable
properties of the design, critics may point out constraints or quality requirements
that are not met by the design aspect on which they focus.

- Praisers agents that praise design aspects which rate particularly highly
from a given point of view. Positive evaluations are important when designers
have to decide which parts of the design need to be revised and which ones
should preferably remain unchanged.

The agent function types are not necessarily limited to those described. The
final application domain and the scale of the multi-agent system are the factors
that ultimately decide the agent types to be included in the system.

All design agents have a restricted domain, the set of design elements that are
the object of an agent's functionality. In parametric design problems, an agent’s
domain can be as narrow as a single design parameter. Several agents, of various



functionalities, can have overlapping domains. For example, the material for a
component can be decided by a designer agent, and criticized by a cost critic.

Learning in LEAD is supported by two different components:

1) Thecausal attribution componeltidentifies candidate conditions that may
influence the expectation target. The primary body of knowledge underlying the
causal attribution process is a model of the artefact being designed, including
structural relationships, and function-structure relationships, describing the com-
binations of design parameters that help achieve specific functions, such as back
support, stability, comfort etcetera in the example chair domain. The causal attri-
bution knowledge also includes a description of the association between design
parameters and agents. This allows LEAD to relate agent actions (e.g. decision,
critique, request, conflict etc.) with the variation of a specific design parameter.

2) The covariational analysis componenses wrappers for relevant condi-
tion selection. Wrappers (Kohavi and John 1998; Liu and Setiono 1998) apply an
induction algorithm to a training data set. The experiments are run by eliminating
different sets of features from the training data instances. Specifically, wrappers
eliminate conditions from the candidate condition set.

The wrapper method proposes a subset of features that are relevant for the
identification of a given class. Features are considered relevant if their “values
vary systemically with category membership” (Gennari, Langley, and Fisher
1989), in our case, with the ranges of the expectation target. For this purpose the
wrapper maintains several subsets of candidate features. An accuracy testing
component determines the performance of each subset, and eliminates or adds
new subsets of features, by providing information to a feature selector.

Wrappers have the major advantage of being able to work with different
learning algorithms, as long as the algorithms have the same interface. They have
also been proven to be effective in pruning large initial sets of features (Kohavi
and John 1998). Therefore, even if the agent does not have a strong set of causal
mechanisms for setting up a new expectation and producing a small set of candi-
date conditions, the wrapper technique can partially compensate for this weak-
ness. LEAD uses the MLC++ wrapper developed by SGI (1996).

5.0 A Design Problem

LEAD is currently applied to and tested using a parametric chair design problem.
The reason for choosing this application domain is that besides the structural
design issues, there are a considerable number of global constraints, which can-
not be individually covered by any of the agents. These constraints stem prima-
rily from the posture requirements for the human body, and from the use of the
chair in conjunction with other furniture (table, desk, operator console etc.) for
different functions: such as resting, writing, reading, manipulating controls, etc.
For example, Figure 6a indicates the relationship between optimum manual
control areas and the angle of the backrest. Figure 6b shows the weight distribu-



tion for a particular angle of the backrest and seat position. This illustrates how
structural computations can be strongly influenced by the type of activity per-
formed by the person in the chair.
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Figure 6.a) Optimum manual control areas in relation to angle of backrest;
b) Distribution of body weight on the universal test seat
for a given seat position and backrest angle (McCormick 1964)

Even for basic chairs, the requirements generated by the need to conform to
the human body are complex, and vary depending on the height and age of the
person. Designers try to respond to different categories of users and customers.
Therefore they use different constraints and different computational methods to
compute the chair's parameters for different users.

Ergonomic criteria relate these parameters to ensure basic standards for
healthy seating. For example, one criterion restricts the amount of pressure that
can be applied directly through the bones. This constraint includes the seat
height, a chair frame parameter, as a person that has no support through the heels
will have a higher percentage of his/her body weight supported by the seat.

It further depends on the angle between the backrest and the seat, also a frame
parameter, as a closed angle raises the upper body to a vertical position, and
increases pressure on the bones. The pressure can be reduced by the decision to
use a lumbar support—a backrest parameter. The use of a padded seat, may further
reduce the direct bone pressure.

This type of analysis illustrates some of the overarching constraints that char-
acterize the chair design problem. Hence the agents’ have an opportunity to make
use of expectations to compensate for the part of the constraint that is ‘invisible’
to them and is handled by other agents.

6.0 Experiments with LEAD

For our design learning experiments we use a set of five agents: a seat design
agent, a backrest design agent, a frame design agent, an ergonomic critic, and a



cost critic. The learning mechanisms are implemented only in the designer
agents, since they are the only decision-making agents in LEAD.

To illustrate the system we will discuss an example of expectation learning
extracted from LEAD. The example describes the acquisition of an expectation
that is acquired in order to evaluate the consequences of a decision.

The ergonomic critic determines that the distance between the front side of
the seat and the backrest is too large (Figure 7). This may have two causes: the
depth of the seats( depth is too large, or the distance between the back end of
the seat and the seat reference is too |largeo§.

Thes_depttparameter is decided by the seat designerstipmsparameter is
determined by the frame designer. It can be assumed that, since both agents have
released these parameter values, they do not violate any of their individual design
constraints.

br_thick

seat reference

s_height

Figure 7.Schematic representation of chair parameters

The ergonomic critic will also make available the maximal allowed range for
the distance between the front of the seat and the seat reference (17 in.). Based on
this information the seat designer decides to acquire an expectation about the dis-
tance between the back end of the seat and the seat refergmuse (

The frame design agent’s preconditions are such that it will decide the param-
eterss_posandbr_pos(the analogous parameter for the backrest) only after the
backrest and seat design are completed. Therefore, at the point where it decides
s_depththe seat designer cannot verify whether the constraint will be violated.
Hence an expectation would be useful.

Once the critique is posted, the design progresses through a conflict resolu-
tion process, implemented as a relaxation of the decision taken by one of the two
agents: in this case the seat designer. However, this is a solution only for that par-
ticular design session, and the situation wigoccurevery time the design con-
text repeats itself.



After a preset number of violations of the constraint, the seat designer will
initiate an expectation learning process $oipos The expectation will be used
every time the agent has to make a decisiorsfatepth and before posting it in
the design system.

Alternatively, the seat designer might request an estimats fposfrom the
backrest designer. Since the backrest designer does not have the necessary infor-
mation to carry out the computation (not necessarily only because of the seat
designer), it will need in turn to substitute for the missing information through
expectation learning.

This would transform the expectation learning of the seat designer for the
purpose of evaluating thmonsequencesf a decision into an expectation learning
process of the backrest designer for the purpose of providing information for an
early decision.

In the causal attribution phase the seat designer uses the design model and
the design constraints to determine a set of candidate conditions that may impact
the range ok_pos.The values ofk_posare discretized in ranges of 0.5 in, and
each range will represent a class for the expectation targeis.Figure 8 illus-
trates the five candidate condition identified by the seat designer:

position of Expectation
seat (s_pos)| target

position of height of thickness of height of angle btw
backrest (br_pos)|backrest (h_pos)\oackrest (br_thick))|seat (s_height)seat & backrest
T (a_seat_br)
NA
l NA
height of

user (u_height)

Figure 8.Candidate conditions for the expectation target identified through the causal
attribution procesNA = not available)

The first three parameters are decided by the backrest agent, which has pre-
ceded the seat agent in the design process, and are therefore known. The last two
parameters will be decided by the frame designer and are unavailable at this
point.

The seat designer will attempt to further the causal attribution process for the
two unavailable parameters. The only available information that it has to continue
this process is a constraint that relates the height of the wseeightwith
s_poss_depths_height and therefore the agent conjectures that the height of



the user may causally influence the height of the seat. At the end of the causal
attribution process the four candidate condition that will be subject to covaria-
tional analysis arbr_pos h_pos br_thick,andu_height

Once a learning process is started LEAD is run through a set of similar design
problems to the one which has generated the expectation learning. For each
design session, the agent will acquire the values of the candidate conditities
point where it would need to use the expectatanmd the value of the expectation
targetafter the design session has completédch data set represents a training
instance that will be used by the machine learning component included in the
wrapper.

The LEAD wrapper component selects two conditions as part of the expecta-
tion condition set, the thickness of the backrdst thick), and the height of the
user (1_heighj}, as the subset of conditions that yields the highest prediction
accuracy (in this case 93%). It should be noted, however, that the set of condi-
tions is not accepted as valid if the prediction accuracy does not satisfy a minimal
threshold determined by the developer at system design time.

7.0 Discussion and Conclusions

Clearly the approach we have introduced here needs to be validated in several
respects. For example, given that the frame designer will proceed after the seat
designer, it is possible that the frame designer agent will change its decision
abouts_posbased on the new values fer depthproposed by the seat designer.
This situation can be compensated for in the second validation phase (semantic
validation) when the seat designer would validate the expectation with training
instances collected after the expectation was used.

What happens if the expectation is invalidated in a design process where the
expectation is used? Besides being used as a negative training instance for learn-
ing, the design agent implementation can retract the facts that were generated
based on that expectation, and resume the design process without using the
expectation.

Expectations summarize behaviors that are not explicitly represented any-
where else in the system, or at least are not available to the agent. Given their
empirical status, expectations need to be evaluated primarily from the point of
view of the quality of the design. This requires additional test runs, and verifica-
tion on problems that differ in requirements. Although the learning process asso-
ciated with an expectation stops after the validation has been successful, the
agent needs to maintain the tentative character of the acquired knowledge, and be
able to further verify its validity and revise its status if required.

Expectations are a vital component of a large high-quality design system. As
the need for them cannot be completely determined in advance, they must be
learned when a need is detected. Causal attribution and covariational analysis
combine to provide a powerful technique for the formation of expectations.
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