WPI-CS-TR-99-03 January 1999

Recursive Adaptable Grammars

by
John N. Shutt

Computer Science
Technical Report
Series

3 2 E P ¢.

— 1L

=

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280

Recursive Adaptable Grammars

John N. Shutt
jshutt@cs.wpi.edu
Computer Science Department

Worcester Polytechnic Institute
Worcester, MA 01609

January 1999

Abstract

This paper presents the Recursive Adaptable Grammar (RAG) formalism.
RAGs allow arbitrary Turing-powerful language analysis to be described en-
tirely in terms of a single level of “context-free” derivation. RAGs superficially
resemble a limited form of Extended Attribute Grammars (EAGs); but while
the EAG derivation step relation may entail arbitrary subsidiary computations,
the normal RAG derivation step relation is elementary. The RAG formalism
is introduced and defined; basic properties of the formalism are shown; and a
well-behavedness property called strong answer-encapsulation is developed.

Contents
1 Introduction

2 Mathematical preliminaries

3 RAGs
3.1 Overviewo e e e e e e
3.2 Algebras
3.3 Grammars e e e e e e e e e e
3.4 Derivation

4 An example
5 Basic results

6 Answer-encapsulation

© © 1 O

7 Normal RAGs 17

8 Conclusions 20
Acknowledgments 21
Bibiography 21

List of Definitions

3.1 Vocabulary 7
3.2 Terminal algebra oL 7
3.3 Answer algebrao oL 7
3.4 Queryalgebrao 8
3.5 Configuration algebra o000 8
3.6 Unboundrule oo 9
3.7 Boundrule 9
3.8 Instance of an unbound ruleo o000 oL 9
3.9 Recursive adaptable grammar0 0000000 9
3.10 Bound ruleset of a RAG 0o 9
3.11 RAG derivation 9
4.1 Ruleequation 10
4.2 Concatenation of rule equations 11
6.1 Semantic equivalence L oL 14
6.4 Weak answer-encapsulation, 15
6.5 Safeoperator 15
6.6 Strong answer-encapsulation 0000000 15
7.1 Non-circular RAG, left-to-right RAG 17
7.2 Normal RAG 18
List of Theorems
2.1 Existence of Q-extensions 4
5.1 Termination of RAG derivations 12
5.2 Equivalence of query and pair derivations 13
6.2 =g is an answer equivalence 14
6.3 (cor) Answer-euqgivalence of terminalso 15
6.7 (lem) Answer-encapsulation; safe frameworks 15
6.8 (lem) Distribution of concatenation over derivation 16
6.9 Safety of concatenationo L0000 16
6.10 Safety of union, mapping, star 17

i

6.11 Existence of unsafe frameworks 17
7.3 Normal RAGs accept all r.e. languages 18
7.4 Normal RAGs compute all r.e. functions 19

List of Equations

N O Ot W N

Binding of rules based on pgo 9
Rule equation for terminals 11
Rule equation for concatenation 11
Rule equation for union L. 16
Rule equation for mappingo 17
Rule equation forstar 0L 17
An inherently unsafe rule equation 17

il

v

1 Introduction

Historically, formal grammar models have run a three-legged race between technical
simplicity, conceptual clarity, and computational power. Technical simplicity makes
a model easy to work with mathematically; conceptual clarity makes it easy to work
with practically; and computational power makes it applicable to more, and more
substantial, languages. Context-free grammars (CFGs) are technically simple and
conceptually elegant, but lack power. Unrestricted Chomsky grammars are techni-
cally simple and Turing-powerful, but in general rather opaque. Attribute grammars
are understandable (up to a point) and Turing-powerful, but technically elaborate,
involving arbitrary extra-derivational computations. And so on.

The Recursive Adaptable Grammar (RAG) model is designed to realize all three
of these desirable qualities in a single framework. More precisely, it is meant to
combine the following four properties. (Technical simplicity and conceptual clarity
are distributed across Properties 2—4.)

1. The model is Turing-powerful.

2. The central computational mechanism of the model is the reflexive transitive
closure of a derivation step relation (accommodating inductive reasoning).

3. The derivation step relation is elementary, in the sense that it is generated in a
computationally trivial way (facilitating inductive reasoning).

4. The step relation is generated from a set of production rules with one-to-many
structure (supporting derivation trees).

Unrestricted Chomsky grammars have all but Property 4; CFGs have all but Prop-
erty 1. Knuth’s Attribute Grammars (AGs; [Knut90]) achieve Turing power by adding
a ‘semantic’ phase of computation separate from the derivation relation; consequently,
AGs have all but Property 2 — the derivation relation is no longer central to compu-
tation, but merely the less powerful, though more lucid, half of it.

Extended Attribute Grammars (EAGs; [Mads80]) are a reformulation of AGs
that restores Property 2 by absorbing the semantic phase of computation into the
derivation step relation. A finite description of the grammar is used to generate
a (usually) infinite set of production rules, using an infinite nonterminal alphabet
constructed by attaching lists of attribute values to atomic nonterminal symbols;
derivation then proceeds in the usual CFG fashion. Although the derivation step
relation in EAGs is once again central to the computational process, it is no longer
elementary: The generation of production rules may require use of arbitrarily powerful
semantic functions. Hence, EAGs have all but Property 3. Other prominent two-level
grammar models, such as van Wijngaarden grammars!, similarly lack Property 3.

LA straightforward technical explanation of van Wijngaarden grammars is [Shut93, §2.3.1]. The
original paper is [Wijn65].

Recursive Adaptable Grammars (RAGs) use a technique similar to that of EAGs
to generate an infinite set of production rules, but (normally) do not perform any
substantial computation on semantic expressions during rule generation. Instead,
semantic evaluation takes place within the derivation itself, across an unbounded
number of additional derivation steps — unbounded because semantic evaluation
“recursively” employs the same facilities as any other RAG derivation, and is thus
Turing-powerful.

This paper presents the basic theory of RAGs. The RAG model was first proposed
in [Shut93]; definitions here differ slightly from, and supersede, the earlier work.

Familiarity with the basic concepts of initial algebra semantics is assumed; partic-
ulars of the approach used here are summarized in §2. Some familiarity with EAGs
would be helpful.

RAGs and RAG derivation are defined and explained in §§3-4. §5 proves some
basic formal properties of all RAGs; §6 treats an important behavioral restriction
called strong answer-encapsulation; and §7 develops a RAG normal form. §8 sums

up the preceding material, and briefly discusses some possible research applications
of the RAG model.

Note: Adaptable grammars

Most programming languages are not context-free, because of context-dependent fea-
tures such as lexical scope or static typing; but they are what might be termed locally
context-free, in that the set of permissible expressions within a small region in a par-
ticular program can be described by a CFG [Cara63]. Over the years, a number of
grammar models have been proposed that attempt to capture this intuitive notion by
means of a varying set of production rules [Chri90, Shut93]. Grammars under such
models are termed adaptable grammars.

More precisely, a grammar model is considered adaptable iff it allows for the
explicit manipulation of rule sets from within the grammar. Adaptable grammar
models are classified as imperative or declarative.

An imperative adaptable grammar varies the rule set between sentential forms in a
derivation. Each sentential form thus has its own associated rule set. A more concrete
way of putting it is that the rule set varies over time during parsing. Unfortunately,
the consequences of associating a given rule set with a given sentential form depend
on what criterion will be used to decide which rule to apply: In effect, the meaning
of the grammar is dependent on the parsing algorithm.

A declarative adaptable grammar varies the rule set between nodes in a derivation
tree. The rule set is thus essentially an attribute (as in AGs), with rule set variations
following the structure of the derivation tree. The meaning of a declarative adaptable
grammar is independent of order of rule application.

In addition to its purely conceptual merits, declarative grammar adaptability offers
a way to describe non-context-free language features in terms of context-free structure,

increasing the computational power that can be achieved without resorting to more
opaque techniques such as arbitrary semantic functions. Therefore, it was adopted
as a basic strategy in the design of the RAG model. RAGs are declarative adaptable
grammars.

2 Mathematical preliminaries

This section clarifies certain basic mathematical terminology, notation, etc. that will
be assumed hereafter, but which may vary between authors. Most of the section
concerns universal algebra (also called one-sorted algebra); note particularly that the
definitions of ¥X-morphism and Y- and Q-extension are more general than those used
by many authors.

Set difference is denoted A — B = {z | (x € A) A (x € B)}. The power set, or set
of all subsets, of a set A is P(A).

A signature X is a set of operators indexed by arity; arities are nonnegative inte-
gers. The set of operators of arity n in X is denoted ¥,,. A Y-algebra A consists of
a set called the carrier of A, and for each operator ¢ € ¥, a function o4 of arity n
over the carrier of A, called the operation named by o. (Notation o4 will be strictly
observed only in this section; elsewhere, the operation named by ¢ may be ambigu-
ously denoted ¢.) The carrier of A is ambiguously denoted A, hence o4 : A™ — A.
A function of arity 0 is treated as a constant, hence o € ¥, implies 04 € A. The
signature of an algebra A is denoted X 4.

For algebras A and B and signature ¥ C ¥4 N Xpg, a Y-morphism f from A to
B is a function from the carrier of A to the carrier of B, such that f distributes
over all the operations named by X; that is, 0 € %, implies f(oa(ai,...,a,)) =
os(f(a1),..., f(an)).? All X-algebras together with all ¥-morphisms between them
form a category Algs.

An expression formed from operators in signature ¥, conforming to the arities
of the operators, is called a Y-term. The term algebra of Y, denoted Ty, has as
carrier the set of all ¥-terms, and for each operator o € ¥,, the obvious construction
operation, ory,(T1,...,7) = 0(71,...,7,). Tx is initial on Algy. For any algebra A,
the unique X 4-morphism from 7%, to A is denoted evaly. An algebra A is minimal
iff evaly is surjective.

A wariable set V over signature X is an ordered set of symbols disjoint from 3.
For variable set Y over ¥, ¥(Y) denotes the signature constructed by adding the
variables of Y to ;. Terms over ¥(Y') are called polynomials in variables Y over X.
The term algebra of polynomials in Y over (the signature of) algebra A is denoted
A(Y) = T5,(v). The number of distinct variables in a polynomial 7 is its arity,
denoted ar(w). If mg,...,m, € A(Y), ar(m) = n, and z1,...,2, are the distinct

2Some authors require the domain and codomain of a ¥-morphism (here, A and B) to be X-
algebras. The definition here is more permissive.

variables of 7y in the order imposed by Y, then the construct mo(7y,...,7,) denotes
the polynomial obtained from 7y by replacing each instance of z; in my with .

By convention, variable sets are implicitly assumed to be disjoint from all signa-
tures under consideration, except when explicitly included by construction, as in a
polynomial signature ¥(Y). One therefor speaks simply of a wvariable set, without
saying what signature it is over.

For given algebra A, variables Y, and assignment 6 : Y — A, there is exactly one
Y 4-morphism 0 : A(Y) — A such that Vy € Y, 0(y) = 6(y). A Y-equation is a pair
of polynomials over signature ¥. A Y-algebra A satisfies Y-equation e = (my, mo) iff
for every possible assignment # : Y — A of the variables Y in e, (m) = (). A
Y-equation (71, o) is conventionally written m; = .

A specification is a pair 2 = (X,) of a signature ¥ and a set £ of ¥-equations.
An Q-algebra is then a Y-algebra that satisfies all the equations in £. Alg, is the
category of all (2-algebras together with all ¥-morphisms between them. For any
possible specification €2, there exists an initial algebra on Alg; further, this initial
algebra is minimal.

The string specification is Qgty = (Xgtr, Estr), Where Xgtp consists of the empty
string and binary concatenation, denoted respectively by A and juxtaposition; and
Estr consists of equations A = z, Az = z, and z(yz) = (zy)z, in variables z,y, z.
For finite alphabet Z, treated as a signature whose operators are all of arity zero, the
string algebra over Z, denoted Z*, is the initial algebra over Qg UZ = (Egt,UZ, Egtr)-

An algebra B is an extension of an algebra A iff there is an injective 3 4-morphism
from A to B. If A is minimal and B is an extension of A, it is conventionally
assumed that the carrier of A is a subset of the carrier of B, and the X 4-morphism
between them is the inclusion mapping (¢ +— a); one then writes A C B. For
signature X, algebra B is a X-extension of algebra A iff B is an extension of A and
Yp—X4 C X C Xp. For specification Q = (X, &), algebra B is an Q-extension of
algebra A iff B is a Y-extension of A and B satisfies all the equations in €.

The following result will be needed for certain basic constructions in §3.

Theorem 2.1 Suppose A is a minimal algebra, 2 = (X, £) a specification, and C
the category of all 2-extensions of A together with all (3 U3 4)-morphisms between
them. If C is nonempty, then there exists an initial algebra on C, and further, this
initial algebra is minimal.

A proof of this result constructs specification Q' = (X U4, EU{r = 7' | evala(r) =
evaly(7')}), and shows that the initial algebra on Algg, is initial on C if C is
nonempty. Details occur in [Shut93, §5.2.4].

3 RAGs

The first subsection below introduces basic ideas underlying RAG derivation. Its
purpose is to provide a conceptual framework, into which the elements of the formal

4

model can be placed. No attempt is made to provide a complete picture of the
formalism; that is left for §§3.2-3.4, which define the formal elements of the model in
stages, motivated in terms of the conceptual framework.

3.1 Overview

A RAG derivation tree is decorated with values from an algebraic domain called an
answer algebra; such values are called answers. The answer algebra of a RAG G is
denoted Ag. Each leaf node is labeled by a single answer, called the syntaz at that
node. Each parent node is labeled by an ordered pair of answers, called respectively
the metasyntax and semantics at that node.

e Syntax plays the same role in RAG derivation as terminal symbols, and terminal
strings, do in CFG derivation.

e Semantics is, conceptually, a synthesized attribute. The semantic value at a
parent node p is usually thought of as denoting the “meaning” of the syntax on
(the fringe of) the branch descending from p. The semantics at the root node
of the tree is thus understood as the meaning of the entire sentence derived by
the tree. CFGs have no counterpart to the semantic role.

e Metasyntax is conceptually an inherited attribute. It plays essentially the same
role in RAG derivation as nonterminal symbols do in CFG derivation: It de-
notes the set of possible branches that can descend from the parent node p on
which it occurs, including the syntax at the fringe, the semantics at p, and ev-
erything between. The metasyntax of the root node entirely determines what
language is being generated; in the canonical case, the metasyntax at the root
is a designated element of Ag called the start symbol of G.

Figure 1 shows a RAG derivation tree. The grammar used is one that will be
explored in detail in §4, following the formal definition of the model in §§3.2-3.4.
The terminal alphabet of the grammar is Z = {a, b, ¢}, and the language accepted is
L(G) = {www | w € Z*}. The tree shown derives the sentence ababab.

The basic strategy of the grammar is that metasyntactic value star(letter) accepts
any string w € Z*, and synthesizes w as its semantic value. The remaining two
branches of the tree then use this synthesized value as metasyntax. In any RAG, when
a terminal string is used as metasyntax, it generates itself as syntax and synthesizes
itself as semantics; so these two branches generate the same string w as the first did.
String w is also used as the semantics at the root node.

Superficially, this tree is generated by syntax production rules

(s,ab) — (star(letter), ab){ab, ab)(ab, ab)

and so on. These are called bound rules, and actually occur only toward the end of
the process that generates the derivation step relation.

(s, ab)

T

(star(letter),ab) (ab,ab) {ab,ab)

SN N

(star(letter),a) (letter, b) ab ab

SN

(star(letter), A) (letter, a) (b, b)

(A A) (a,a)

S

A a

Figure 1: RAG derivation tree

The step relation generation process begins with a function called the rule function
of G, conventionally denoted pg or simply p, which maps each possible metasyntactic
value z € Ag into a set p(z) of unbound rules, which have the same general structure
as bound rules, but with unbound variables in positions ordinarily provided from
elsewhere in the tree (inherited metasyntax on the left side of the rule, synthesized
semantics on the right); and polynomials in those positions presumably computed
by the rule (metasyntax on the right side, semantics on the left). For example, the
aforementioned bound rule is instantiated from the unbound rule

(vo,v1) — (star(letter), vy){vy, vo)(v1, v3)

with bindings vy = s and v; = vy = v3 = ab.

The metasyntactic variable vy on the left side of an unbound rule r must be
bound to a metasyntactic value z € Ag such that r € p(z) — that is, an answer z
that “owns” r. vy is thus analogous to self in Smalltalk, or this in Java or C++.
The remaining variables in r can be bound to any answers at all. However, only
certain choices of values will lead to successful derivations; for example, in the above
unbound rule, no complete derivation can result unless v; = vy = v3.

3.2 Algebras

The theory of a CFG is founded on two finite alphabets, one nonterminal and one
terminal; call them N and Z. Two infinite domains are constructed from these
alphabets and play essential roles in the theory: the set (N U Z)* of strings over
the combined alphabets, and the set Z* of terminal strings. The derivation step is a
binary relation on (VU Z)*, while the language generated is a subset of Z*.

The theory of a RAG is founded on a nonterminal signature 3 and terminal
alphabet Z. A hierarchy of four algebras is constructed from these elements — from
smallest to largest, the terminal®, answer, query, and configuration algebras. The
RAG derivation step will be defined (in §3.4) as a binary relation on the configuration
algebra; the language generated is a subset of the answer algebra (and, usually but
not necessarily, of the terminal algebra).

The following three operators are reserved for special uses in the RAG model: The

query operator, shorthand name gry, of arity 2, with infix notation x : y; the pairing
operator, shorthand pair, arity 2, notation (z,y); and the inverse operator, shorthand
inw, arity 1, notation Z. It will be convenient to associate with each of these reserved
operators o a signature 3}, consisting of only that operator; hence, Yqry, Epair’ and
Yiny-
Definition 3.1 A wvocabulary is a pair V = (X, Z), where X is a signature; Z is
a finite alphabet; ¥ is disjoint from the string signature over Z; and ¥ does not
contain the query, pairing, or inverse operator. Z is called the terminal alphabet,
and X the nonterminal signature.

In the example from §3.1 above, the terminal alphabet is {a, b, c}, and there are
three nonterminal operators: nonterminal constants (operators of arity zero) s and
letter, and nonterminal unary operator star.

Definition 3.2 Given vocabulary V = (X, Z), the string algebra Z* is called the
terminal algebra over V, and denoted Ty, = Z*. Elements of Ty, are called terminals.

Definition 3.3 Given vocabulary V = (X, Z), the initial (X U Qg4)-extension of
Ty is called the answer algebra over V, and denoted Ay. Elements of Ay are called
answers. Elements of Ay — Ty are called nonterminals.

The explicit inclusion of the string specification ()¢t in the construction of Ay causes
the usual laws of concatenation (associativity, left/right identity) to apply to non-
terminal strings. Had Ay been defined simply as the initial ¥-extension of Ty, the

3The name terminal algebra here clashes with category-theory usage by some authors, for whom
terminal algebra is the dual of initial algebra. Mitigating this difficulty, the term final algebra is also
commonly used for the categorical concept.

usual laws would not apply to Ay — Ty, because of the way algebraic extensions were
defined in §2.

As noted in §3.1 above, the values that decorate derivation trees belong to the
answer algebra. There is no formal prohibition against nonterminal syntax, although
in practice, syntax is usually terminal because the subjective purpose of construct-
ing a RAG is usually to define a language of terminal strings. From a strictly for-
mal perspective, terminals will play no special role until the introduction of answer-
encapsulation in §6.

Definition 3.4 Given vocabulary V = (X, Z), the query algebra over V, denoted
Qy, is the initial Yqry-extension of Ay. Elements of Qy are queries.

The existence of @)y for every vocabulary V' is guaranteed by Theorem 2.1.

Recall from §1 that in the RAG model, “semantic evaluation takes place within the
derivation itself, across an unbounded number of additional derivation steps”. The
query operator is the vehicle through which this evaluation occurs. For answers z and
Y, query x : y designates the semantic value synthesized when metasyntax x recognizes
syntax y. In the example from §3.1 above, s:ababab would evaluate, across multiple
derivation steps, to value ab.

Definition 3.5 Given vocabulary V = (3, Z), the configuration algebra over vo-
cabulary V', denoted Cy/, is an extension of Ay as follows. Suppose v is a variable.
Let Q, €)' be the specifications

Q = (S {v=71} ~
u (Eqry U¥pair U Ziny), {v =7})

Then Cy is the initial -extension of the initial Q-extension of Ay. Elements of
Cy are configurations.

The existence of Cy for every vocabulary V is guaranteed by Theorem 2.1. By
construction, Ty C Ay C Qv C Cy.

By the two-stage construction of Cy from Ay, equation v = v holds for all con-
figurations v, but v = v holds only when v is an answer. This is because, under the
definitions in §2, if F is an 2-extension of D, then the elements of the difference set
E — D are constrained only by the equations in €2, not by any other equations that
may hold in D.

The pairing operator is used in bound and unbound rules, as illustrated above
in §3.1, to group together a metasyntactic value with its associated semantic value.
The inverse operator, on the other hand, is a purely technical contrivance. It never
occurs in bound or unbound rules; it only arises in intermediate configurations in a
derivation, where it is used to regulate the process of query evaluation.

3.3 Grammars

Definition 3.6 An unbound rule over vocabulary V is a structure of the form
(vo,e0) — toler, vi)ti(ea, va)ta - (en, vn)ly

where n > 0, the ¢, are answers over V, the v, are variables, and the e, are
polynomials in Qv (v, ...,v,). The domain of all unbound rules over V' is denoted
Ry .

Definition 3.7 A bound rule over vocabulary V is a structure of the form

(a0, q0) — to{q1,a1)t1{(qe, a2)ta - - - {Gn, an)tn

where n > 0, the ¢, and a; are answers over V', and the ¢, are queries over V.

Definition 3.8 For unbound rule r over V, an instance of r is a bound rule
obtained by assigning answers over V' to the variables in r, and evaluating both
sides of r in C'y, under that assignment. The set of all instances of unbound rule r
over V is denoted [y (7).

Note that the variables in an unbound rule r are assigned values from Ay, but the
left and right sides of r are polynomials over Cy, not Ay. A bound rule is a pair of
configurations.

Definition 3.9 A recursive adaptable grammar (RAG) is a four-tuple G = (3, Z, p,
s), where V = (3, 7) is a vocabulary, p : Ay — P(Ry), and s € Ay. pis the rule
function, and s the start symbol, of G. Subscript G may be used in place of subscript
V' wherever the latter could occur; thus answer algebra Ag, etc. The rule function
of an arbitrary grammar G is denoted pg, and the start symbol s¢.

3.4 Derivation

Definition 3.10 For RAG G and answer a € Ag, fc(a) denotes the following set
of bound rules.

Bo(@) = {(wa) > c| (@) >) € folr) forsome 7 € pa(a)} (1)
The union of Bz (a) for all answers a € Ag is denoted §(G).

Set Bg(a) is analogous to the set of all rules in a CFG with a particular nonterminal
a on their left hand sides. The constraint built into Equation 1 is that, when binding
an unbound rule ({vo, e9) —) € p(a), the leftmost variable vy must be bound to a.
Informally, §3.1 noted the resemblance of vy to self in OOP. Formally, in derivations
this constraint will prevent a pair (a,c) from being expanded via an instance of an
unbound rule r unless r € p(a). The left side of the pair may, consequently, be
thought of as an inherited attribute that determines how a derivation tree can grow
downward from a given node; cf. the note on adaptable grammars at the end of §1.

9

Definition 3.11 The derivation step relation for a RAG G is the minimal binary
relation = over (g satisfying the following axioms. Throughout the axioms, a,
g, and ¢, without or without subscripts or primes, are assumed to be universally
quantified over Ag, g, and Cg, respectively.

Axiom 3.11a (rule application) If ({a,q) — ¢) € §(G) then (a,q) z c.

Axiom 3.11b (substitution) Suppose o # inv is an operator of arity
n over Cg, and for some 1 < k < n, ¢; = ¢;. Let ¢ = ¢; for all j # k.
Then o(cy,...,ca) 2 o(ch, ...,).

r¥n

Axiom 3.11c (inversion) If c; = ¢, then ¢; = ¢1.
Axiom 3.11d (query reduction) a;: (a1, as) = as.

The derivation relation for G is the reflexive transitive closure of =, denoted = .
The transitive closure of = is denoted %> . The language accepted by an answer
a € Agis Lg(a) = {z € Ag | (a,y) Z = for some y € Ag}. The language accepted
by G is L(G) = Lg(sg). The (in general, multivalued) partial function computed by
an answer a € Ag is the function f, such that Vr,y € Ag, fu(z) =y iffa:z = y.
The partial function computed by G is fg = fs,-

Axioms 3.11a and 3.11b closely parallel the definition of a Chomsky derivation step
relation. Axiom 3.11a corresponds to the Chomsky proposition that x — y implies
x = y (modulo the Axiom’s telltale use of the inverse operator). Axiom 3.11b yields
as a corollary the proposition that z = y implies prq = pyq.

Axioms 3.11c and 3.11d only come into play if the query operator is used. Their
net effect (in concert with the use of the inverse operator in Axiom 3.11a) is the
following result, which will be proven later as Theorem 5.2.

Vr,y,2 € Ag, x:yzz iff (2,2) 2y

As discussed in §3.1 above, the elements x, y, z in this ternary relation are the meta-
syntax x, syntax y, and semantics z. In a derivation tree based on the ternary rela-
tion, the root node would be labeled by (z, z), while the fringe of the tree would be y.
The ordinary derivation (z, z) = y may be thought of as constructing this derivation
tree from the top down. It will emerge in §§4-5 that, in effect, the query derivation
r:y => z constructs the same derivation tree from the bottom up (achieving this
reversal of direction by means of the inverse operator).

4 An example

Just as a CFG is often specified by simply enumerating its production rules, leaving
the nonterminal and terminal alphabets implicit, a RAG may be specified by a series
of equations that define the behavior of its rule function.

10

Definition 4.1 Suppose G is a RAG, and X a subset of the signature of Ag. A
rule equation over X is an equation of the form

plo(x1,...;20)) = f(x1,. o, Zn, p(z1)y ..., p(20))

where o € 3, the x; are variables, f : AZ X P"(Ra) — P(Rg), and for all inputs w
to f, every answer operator (i.e., terminal or nonterminal operator) that occurs in
f(w) also occurs in either ¥ or w. The rule equation specifies 0. G satisfies the rule
equation iff the equation holds for p = pg when the x; are universally quantified
over Ag.

Conventionally, rule equations are provided for each of the nonterminal operators,
and the start symbol is assumed to be nonterminal constant s. The rule equations
for terminal operators are not specified. It is assumed that

VieTs, pa(t) = {{vo,t) =1} (2)

Hence ¢:¢ 2> t. The assumed rule equation for binary concatenation, although con-
ceptually quite simple, requires some technical care to avoid variable-name collisions.
It uses the auxiliary concept of concatenation of unbound rules.

Definition 4.2 Suppose r and 7’ are unbound rules. The concatenation rr' is
constructed as follows. Let r = ({vg,e0) — 7) and ' = ({vg,€p) — 7'). Assume
without loss of generality that vy is the only variable-name shared by r and r’. Then
rr’ = ({vo, e9ep) — 7').

The conventional rule equation is then

plab) = {rars | (ra € pla)) A (ry € p(b))} (3)
The grammar in the following example is the same one used earlier in §3.1.

Example 4.3 Let Z be the alphabet Z = {a,b,c}, and let G be the following
RAG.

p(letter) = { (vo,v1) = (z,v1) | z€Z }
_ (vo,v1) — (A, 01)
plstar(z)) = { (vo, v1v2) — (star(z), vi){x, ve)
p(s) = { (vo,v1) — (star(letter),vi){vi,vo)(vs,v3) }
Nonterminal constant letter accepts a single letter z € Z, and synthesizes se-
mantic value z. To be precise, ((letter, z) — (z,2)) € fg(letter), therefore by Ax-

iom 3.11a, (letter, z) => (2,2); and by Equation 2, ({(z,2) — z) € Bg(z), therefore
by Axiom 3.11a, (z,z) = 2. Putting these together,

(letter,z) = (z,2) = =z

11

or, in brief, (letter, z) = z. The language accepted by letter is Lg(letter) = Z.

Nonterminal operator star takes an argument z, accepts the Kleene closure of
L (), and synthesizes the concatenation of the semantic values assigned by z to
the substrings. In this case, the argument is letter, and

p(star(letter)) = {<<U0’U1> = (A }

vo, 11v2) — (star(letter), v;)(letter, vq)

Technically, (¢ (star(letter)) contains bound rules with all possible bindings for v;
and vg; but the only such bound rules that can be useful in deriving an answer are
those of the forms

(star(letter), A}y — (A A)
Ywe Z*x € Z, (star(letter),wz) — (star(letter), w)(letter, z)

Axiom 3.11a converts these bound rules to derivation steps. Axiom 3.11b allows
the steps to be chained together so that, by induction, for any string of symbols
W=2x1- T, € L",

(star(letter),w) = (X, A)(letter,z;) - - - (letter, z,)
Combining this with the earlier results for letter, (star(letter),w) = w. The lan-
guage accepted by star(letter) is Lg(star(letter)) = Z*.
Knowing this, the only useful bound rules in 3g(s) are

Vwe Z*, (s,w) — (star(letter), w){w,w){w, w)

Combining the results on star(letter) with Equation 2 and Axioms 3.11a and 3.11b,
(s,w) > www for all w € Z*. The language accepted by s is Lg(s) = L(G) =
{www | w e Z*}. L

Since (s,w) = www, by Axiom 3.1lc, www Z» (s,w). By Axiom 3.11b,
siwww = s:(s,w). By Axiom 3.11d, s:(s,w) = w. Therefore, s:www = w.
s computes the function f(www) = w on Lg(s); hence G computes f.

5 Basic results

In most grammar models, there is no way for a terminal string to occur as the left
side of a derivation step; therefore, once a terminal string has been derived, compu-
tation necessarily halts. The corresponding result for the RAG model would be that
an answer cannot occur as the left side of a derivation step; but no such result holds
because, by Axiom 3.11c, ¢ => a for a € Ag implies a => €. Thus, in general, deriva-
tion can continue indefinitely after an answer has already been derived. However,
the following theorem shows that once an answer has been derived, it is pointless
to carry the derivation further because it cannot possibly converge to an answer a
second time.

12

Theorem 5.1 If G is a RAG, a € Ag, and a 2> ¢, then ¢ € Ag.

Proof. Suppose G is a RAG. We will construct two sets of configurations, L and
R (short for left and right), such that LU R = Cg — Ag; ifc = ¢ and ¢ € AgU L
then ¢ € L; and if ¢ = ¢ and ¢ € Ag U R then ¢’ € R. Given such sets L and R, if
a € Ag and a %> c then ¢ € R, and therefore ¢ & Ag.

Let IT be the set of all polynomials over Cg of the form 7 (7, ..., m,) such that =
is a polynomial of arity n > 1 over Ag, one of the 7y is just a variable, and the rest of
the 7 are terms over Cg. (That is, IT is the set of all polynomials of arity 1 over Cg
such that no instance of the variable occurs within an argument of the query, pairing,
or inverse operator.) Let Kj for k > 0 be the following hierarchy of sets.

Ky ={m(o(c1,¢2)) | m € I, o € {qry, pair}, and ¢;,c € Cg}
Vn>1, K,={r(e)|nellandce K,_1}
L= Ka
n>0

R=J Kus

n>0

By construction, any configuration that involves the query or pairing operator is in
some Kj. Because a = @ for all a € Ag, any configuration that doesn’t involve the
query or pairing operator is in Ag. And by construction the K are disjoint from Ag;
therefore, LUR = Cqg — Ag.

Suppose z = y. It will be shown that ify € AgUL thenz € L, and if r € AgUR
then y € R. Because = is the minimal relation satisfying its axioms, z = y must
follow from one of Axioms 3.11a, 3.11d by a finite number of deductive steps via
Axioms 3.11b, 3.11c. Proceed by induction on the number of deductive steps.

Base case. If x => y is implied by Axiom 3.11a, thenz € L-Randy € AgUL—R.
If x = y is implied by Axiom 3.11d, then x € L — R and y € Ag.

Inductive step. Suppose the propositions hold for ¢ = ¢/, and z => y follows from
c => ¢’ by a single deductive step using Axiom 3.11b or 3.11c. Let x = o(z1, ..., 7,)
and y = o(y1,...,Yn), Where o is an operator of arity n on Cg.

Suppose o is the inverse operator. Then 2 = ¢ and y = ¢ If y € Ag U L, then
¢ € Ag UR, by inductive hypothesis ¢’ € R, and v = ¢/ € L. Similarly, if v € AgUR
then y € R.

Suppose o is the query or pairing operator. Then = and y are both in L — R.

Suppose o isn’t the query, pairing, or inverse operator. Then for some 1 < k < n,
Ty =cz> ¢ =y, and for all j # k, z; = y;. If v € Ag, then 2, € Ag, by inductive
hypothesis yr € R, and y € R. Similarly, if y € Ag then x € L. On the other hand,
suppose x € R; then one of the z; must be in R. If i # k, then y; = z; € R; if i = k,
then y; € R by inductive hypothesis. Either way, y; € R, so y € R. Similarly, ify € L
then z € L. O

13

Theorem 5.2 If G is a RAG and z,y,z € Ag, then

viy=z iff (z,2) 2y

Proof. Suppose (z,2) = y. By Axiom 3.11c¢, y = (x,z). By Axiom 3.11b,
r:y 2 z:(x,2). By Axiom 3.11d, z:(x, z) 2> z. Therefore, z:y = 2.

On the other hand, suppose z:y = 2. Of the four derivation axioms, only 3.11b
and 3.11d can imply a derivation step with a left-hand side of the form c:d. If such
a step is implied by Axiom 3.11b, its right-hand side will have the form ¢’ : d’, where
c =z ¢ and d Z> d'. If the step is implied by Axiom 3.11d, it will have the form

x':(z',2') = 2/, where 2', 2" € Ag. Therefore, z:y = 2 implies

. * LA V| ! *
vy = :2,d) > > oz

*

where z = x'

y Y ;::> Wa and ./L'I,z, € AG- By Axiom 3'11C’ (xl’z,> ;:> Y- By
Theorem 5.1, z' =

zand 2/ = 2. O

6 Answer-encapsulation

A technical similarity has already been noted, in §3.1 and again in §3.4, between the
binding constraints on the metasyntactic variable of an unbound rule (Equation 1)
and the meaning of self in OOP. By implication, RAG answers are compared to
OOP objects. This high-level analogy between answers and objects forms the basis
for an important RAG well-behavedness criterion called answer-encapsulation.

The idea behind answer-encapsulation is that when two answers have the same
“interface”, they cannot be distinguished in any way. The notion of “interface” is
formalized by the following definition of semantic equivalence. In essence, answers
x,x' are semantically equivalent if (1) they accept the same syntax Lg(x) = Lg(2'),
and (2) given any syntax y, they synthesize semantically equivalent answers z, z’.

Definition 6.1 Suppose G is a RAG. A semantic equivalence for G is an equiv-
alence relation = on Ag such that, for all z,2',y,2 € Ag, if 2 =2’ and 2:y 2> 2
then 32’ = 2 such that z':y => 2’. The union of all semantic equivalences for G' is
a relation denoted =¢. Answers a, b are semantically equivalent iff a =g b.

Theorem 6.2 Suppose G is a RAG. Then =g is a semantic equivalence for G.

Proof. By construction, =¢ is reflexive and symmetric, and Vz,z',y,2 € Ag, if
r =g 2’ and z:y Z> z then 32’ =g 2 such that z':y = 2'. It therefore suffices to
show that = is transitive.

Let = be the transitive closure of =g. =¢C=. By construction, = is an equiv-
alence relation. Suppose z,1',y,2 € Ag, + = 2', and 7:y => 2. Then there exists a

14

finite sequence of answers xz,...,z, such that x = 2y, 2’ = z,,, and for 1 < k < n,
Tr_1 =g Tk. Therefore, there exist answers zy,...,2, such that z = 2z, and for
1 <k <n, 21 =¢ % and 751y => 2. In particular, z, = z and 2’:y = 2,,
therefore = is a semantic equivalence, and by construction of =g, =C=,. O

Corollary 6.3 Suppose G is a RAG, and pg obeys Equation 2. Then for all
r,y€lg, v =qyiff z =y.

Proof. Suppose G is a RAG, pg obeys Equation 2, and z,y € Tg. If x = y, then
T =g y because =g is reflexive. If z # y, then Lg(z) # Lg(y), so © Zg y. O

Definition 6.4 Suppose G is a RAG. G is weakly answer-encapsulated iff =g is a
congruence on Ag.

That is, if o has arity n on Ag, and ax, =¢ b for all 1 < k < n, then o(a,...,a,) =¢
o(by,...,b,). Weak answer-encapsulation superficially delivers the intended property,
that semantically equivalent answers “cannot be distinguished” (by substituting one
for another as arguments to o).

However, weak answer-encapsulation is a holistic property of pg, a net consequence
of how all the rule equations of GG interact with each other. When constructing RAGs
in practice, it is convenient to be able to design the rule equations separately, yet
guarantee that when combined they will produce an answer-encapsulated RAG. The
following definitions provide a formal basis for such a guarantee.

Definition 6.5 Suppose G is a RAG, ¢ an operator of arity n on Ag. o is G-safe
iff, given any answers ai,...,a, and by,...,b, with a; =g b; for all 1 < 1 < n,
o(al, .. .,an) =q O'(bl, e ,bn)

Thus, G is weakly answer-encapsulated iff all the operators on Ag are G-safe.

Definition 6.6 A RAG framework is a tuple F = (X, E), where X is a signature
and € is a set of rule equations over ¥. A RAG G satisfies F ifft ¥ C X4, and G
satisfies all e € £. The class of all RAGs satisfying F is denoted Gr. F is satisfiable
iff G# is nonempty. F is safe iff, for every operator o specified by any e € £, and
for every G € G, o is G-safe.

A RAG G is strongly answer-encapsulated iff there exists a safe framework F =
(3, &) such that & specifies all the operators on Ag, and G satisfies F.

Lemma 6.7 Suppose G is a RAG. If G is strongly answer-encapsulated, then G
is weakly answer-encapsulated.

Suppose F; = (X1, &) and Fy = (X9, E9) are safe frameworks, and let Fy UF, =
(31 UX5, & UE). Then Fy U F, is also a safe framework.

Suppose F is a framework, and all the operators specified by F have arity 0.
Then F is safe.

15

Proof. The first two results follow trivially from Definition 6.6. By Definition 6.5,
if G is a RAG and o a constant operator on Ag, then o is G-safe; it follows that a
framework that only specifies constant operators must be safe. O

The remainder of this section is concerned with proving the safeness — or in one
case, unsafeness — of particular frameworks. Beyond the simple results of Lemma 6.7,
no general framework safeness theorems will be offered here; there is one such gen-
eral theorem in [Shut93, §6.3.1], but it employs extensive formal machinery for an
elaborate result of rather limited utility.

Lemma 6.8 Suppose G is a RAG that satisfies Equation 3, z,y,2 € Ag, :y = 2,
and x = z1---x,. Theny = y;---y, and z = 21 --- 2z, such that xy:yx g> 2, for
1<k<n.

Proof. Suppose G etc. as in the lemma. By Theorem 5.2, (z,z) 2 y. By the
derivation axioms (Definition 3.11), there exists an unbound rule r € pg(x) and a
bound rule ({z,q) — ¢) € Bg(r) such that ¢ = y and ¢ = 2, so that

(r,2) =2 (2,9 =z c 2> ¥

G G G

By Equation 3, there must exist unbound rules 7, € pg(zx), and bound rules ((z,)
— ¢k) € Pg(rk), such that ¢ = ¢;---¢, and ¢ = ¢;---¢,. Again by the derivation
axioms, since ¢ =z y there must exist y; such that y = y,---y, and ¢; Z> y; and
since ¢ => z, 2 such that z = 2z;---2, and g& => yx. Therefore, by Theorem 5.2,
Tk Yk 5 2 O

Theorem 6.9 If F is a framework containing Equation 3 and no other, then F is
safe.

Proof. Suppose G is a RAG that satisfies Equation 3. Let = be the unique
binary relation over Ag such that a = b iff there exist aq,as, by, by such that a =
ai1az, b = biby, a1 =g b1, and ay =g by. It suffices to show that = is a semantic
equivalence, hence concatenation is G-safe. Suppose z,2',y,2 € Ag, 7:y 2> 2, and
x = z'. By construction, x = x;29 and 2’ = 2!z}, such that x; =¢ 2| and zy =¢ 5.
By Lemma 6.8, y = 1192 and z = 2129 such that z;:1; g> z1 and To: ¥y ? 29.
By Theorem 6.2, 321,25, € Ag such that 2y =¢ 21, 2 =¢ 25, z}:y1 3z 2, and
Ty 1Yy => zy. Since G obeys Equation 3, biby:y1y2 => 212y. By construction, 212, =
Z1%9 = Z. |

Here are some other commonly used rule equations.

sallb) = {(vo,m) = (a,m}} @

<U0, ’U1> — <b, ’U1>

16

dlat) = { (od) = (ao)) (5)
plstar(a)) = { (o,) = A } 6)

(vo, 11v9) — {a,vq)(star(a), vs)

The binary operator of Equation 4, when supported by that rule equation, is conven-
tionally called the wunion operator; the binary operator of Equation 5, the mapping
operator. ([a,b] maps answers recognized by a into semantic value b.) By convention,
RAGs will be assumed to satisfy Equations 4—6 unless otherwise stated.

Theorem 6.10 A framework containing Equation 4 and no other is safe. A
framework containing Equation 5 and no other is safe. A framework containing
Equations 6 and 3 and no others is safe.

These results can be proved by the same straightforward technique that was used
for Theorem 6.9, extending =4 over the specified operator to an equivalence = and
showing that = is a semantic equivalence. The only complication is that the star
operator must be shown G-safe by induction on derivation length, using Equation 3
in the inductive step.

As a contrast to the above examples, consider the following rule equation. (This
equation was an early candidate for the mapping operator, and the concept of answer-
encapsulation was motivated partly from studying it.)

pla.b)) = { (vi,b) = a} (7)

Theorem 6.11 If F is a satisfiable framework that includes Equation 7, then F
is not safe.

Proof. Suppose F is satisfiable and includes Equation 7. Suppose G € G has
an operator o of arity zero in Ag with Lg(c) = {o} and 0:0 2> 0. (One can always
construct such a G.) By Equation 7, Lg([o,0]) = {0} and [0,0]:0 Z> o, therefore
[0,0] =g 0. However, Lg([[o, 0], 0]) = {[o, 0]} # Lg([o,0]), so the mapping operator
is not G-safe. O

7 Normal RAGs

This section defines the class of normal RAGs, which are simply RAGs that have
several convenient well-behavedness conditions, and shows that this restricted class
of RAGs is Turing-powerful.

One of the conditions for normality is non-circularity. This is essentially the
same concept as in the theory of attribute grammars; but whereas determining AG
non-circularity is a computationally complex problem involving interactions between
semantic rules of different syntax productions [Knut90], RAG non-circularity can be
determined separately for each unbound rule.

17

Definition 7.1 Suppose r is an unbound rule

(vo,€0) — toler, v1)t1 - {en, Un)ty

Then r is non-circular iff there exists a permutation k1, ..., k, of the integers from
1 to n such that for all 1 <4 < n, e uses only variables vy and {vg; | j < i}
Further, r is left-to-right iff the identity permutation k; = ¢ satisfies this condition.
A RAG G is non-circular iff for all @ € Ag and all r € pg(a), 7 is non-circular; and
left-to-right iff all such r are left-to-right.

Recall that, by design, the RAG derivation step relation was meant to be “gen-
erated in a computationally trivial way” (§1, Property 3). There are three distinct
computational activities involved in generating the RAG step relation, i.e., determin-
ing all possible right-hand sides for a given left-hand side or vice versa: (1) deciding
equality of terms over Cg; (2) computing pg of a given term over Ag; and (3) uni-
fying a term over Cz with one side of a step in one of Axioms 3.11a-3.11d (the main
top-level activity, which may invoke both of the preceding two, and may recursively
invoke itself on a subterm).

Because of the way the hierarchy of algebras over a RAG was constructed in Defi-
nitions 3.1-3.5, deciding equality of terms is straightforward. The following definition
of normal RAG restricts the rule function in a way that keeps it ‘elementary’ as well.

Definition 7.2 A RAG G is normal iff G satisfies Equations 2 and 3; G is strongly
answer-encapsulated and non-circular; and all of the nonterminal operators of G are
specified by rule equations of the form

m — 7
plo(x1,...,2,)) = { : }

Tm — T,
where the 7 and 7}, are polynomials over Cg.

Note that rule equations of this form, besides assuring that the rule function will be
easy to compute, also make non-circularity (and even more so, left-to-right-ness) easy
to check.

Theorem 7.3 Suppose G is an unrestricted Chomsky grammar. Then there exists
a normal RAG H such that L(H) = L(G).

Proof. Suppose G = (Z, T, R, s) is an unrestricted Chomsky grammar; here, 7 is
the finite alphabet of symbols, 7' C Z the terminal alphabet, R C Z x Z the finite set

18

of production rules, and s € Z — T the start symbol. Let H be a RAG with terminal
alphabet Z, start symbol sentence, and the following rule equations.

string = star (|_| z)

ZEZ
terminal = star (LI t)
teT
rule = |_| (o, O]
(B—a)ER
p(step) = { (vo,v1vov3) — (string,vi)(rule, v)(string, vs) }
. B (vo,) — s
plderive) = { (v, derive:v;) — (step,wvi)
p(sentence) = { (vp,derive:v;) — (terminal, v;) }

H is left-to-right. The above rule equations are for constants, hence safe by Lemma
6.7; and all other rule equations of H are conventional; hence H is strongly answer-
encapsulated. So H is normal.

Nonterminal string recognizes any string w € Z*, and synthesizes semantic value
w; i.e., string:w = w. Nonterminal terminal does the same except that it recognizes
only terminal strings w € T C Z*. Nonterminal rule recognizes the right side of any
production rule of GG, and synthesizes the left side of that production rule; thus, if
(¢ = B) € R, then (rule,a) = f3, or equivalently, rule:$ = «. Nonterminal step
recognizes the right side of any derivation step of (G, and synthesizes the left side of
that step; thus, if z = y, then (step, z) = y, or equivalently, step:y = .

Nonterminal derive recognizes s, the start symbol of GG; and also recognizes the
right side of any derivation step of G' whose left side is recognized by derive. So, by
induction, derive recognizes exactly the sentential forms of G — that is, Ly (derive) =
{we Z*| sz w}

Therefore, nonterminal sentence recognizes just those terminal strings that are
also sentential forms of G; that is, Lg(sentence) = L(G). O

Theorem 7.4 Suppose M is a deterministic Turing machine with input alphabet
T and tape alphabet Z, and fy; : T — Z* is the partial function computed by M.
Then fjs is computed by some normal RAG G.

Proof. Suppose M etc. as in the theorem. Let x be a symbol not in Z, and let
H be an unrestricted Chomsky grammar that accepts the language L(H) = {z *x y |
fu(z) = y}. Following the proof of Theorem 7.3, construct RAG G with nonterminal

19

sentence that recognizes exactly L(H); and add a new start symbol start, where

out = star(l_l[A,z])

2€Z
p(start) = { (vo,v2) — (terminal, v;){out, vo)(sentence:(vy * va),vs) }

Nonterminal terminal is part of the construction from the earlier proof; it recognizes
any string over the terminal alphabet of H. Nonterminal out always recognizes A,
and synthesizes (“at random”) any string over alphabet Z. Nonterminal sentence,
also from the earlier proof, recognizes any string in L(H), and synthesizes \.

Of the three pairs on the right side of the unbound rule for start, the first recognizes
any string over Z U {x}; the second recognizes A; and the third recognizes A — if it
recognizes anything. However, the left component of the third pair cannot be reduced
to an answer unless the values z, y synthesized by the first two pairs satisfy fy(z) = y.
The value synthesized by start is then y. Hence, start:z Z> fa(z). O

8 Conclusions

The stated design goal of the RAG model was to combine Turing power with ‘technical
simplicity’ and ‘conceptual clarity’ in a single grammar formalism.

Conceptual clarity was approached (and, one hopes, achieved) by paralleling the
broad structure of CFGs. RAGs have four components analogous to those of a CFG;
the finite CFG nonterminal alphabet is generalized to an arbitrary nonterminal sig-
nature, and the finite CFG rule set is replaced by a rule function. Also, RAG rules
have the one-to-many structure of CFG rules, supporting use of derivation trees.

At a more technical level, RAGs resemble EAGs. RAG unbound rules are anal-
ogous to EAG rule forms, with compound structures (RAG pairs, EAG attributed
nonterminal forms) where a CFG rule would have nonterminal symbols. The analogy
extends fairly well to the binding of variables to produce bound rules, and moderately
well to the use of bound rules in inducing the derivation step. The elementarity of
the derivation step is reconciled with Turing power by introducing the query oper-
ator for all nontrivial computation within a pair, and distributing query evaluation
over an unbounded number of derivation steps through the purely technical device of
the inverse operator. (The inverse operator is purely technical in the sense that, for
purposes of language definition or parsing, the meaning of a RAG can be understood
entirely without it, provided Theorems 5.1 and 5.2 are accepted without proof.)

What emerges, rising above these technical devices back to the purely conceptual
level, is a characteristically RAG view of derivation as a ternary relation between
metasyntax, syntax, and semantics. At the heart of this notion is the equivalence in
Theorem 5.2, which (as just noted) is readily understood without resort to the tech-

20

nical details that support it. This equivalence gives rise, in turn, to the conceptually
“recursive” nature of the model.

In a RAG derivation tree, each parent node is labeled with its metasyntax and
semantics, while its syntax is the fringe of its branch. At both conceptual and, to
some extent, technical levels, metasyntax is an inherited value in the tree: The model
fixes its value at the root node, and Equation 1 uses the metasyntax at a parent
node to fix the set of rules that can be used to expand downward from that node.*
Semantics is then — especially in a non-circular RAG — conceptually synthesized.

Behind the stated goals of the RAG design, there is a broader agenda. Program-
ming language design is replete with traditionally desirable language properties that
are notoriously subjective, such as ‘simplicity’, or ‘abstraction’. M. Felleisen took
a first step toward formalizing such notions in [Fell90], which proposed a definition
for expressiveness. That work was fairly successful in capturing the essence of the
concept of “syntactic sugar”, but its definitions do not seem able to encompass the
ability to express abstractions [Shut99]. The RAG design was intended to provide
an ideal tool for formally analyzing otherwise subjective language properties: Con-
ceptual clarity provides an extensive interface with subjective concepts, maximizing
opportunities for the grammar model to be applied to the problem; technical simplic-
ity makes formal analysis easier; and Turing power maximizes the generality of the
analysis.

Acknowledgments

The author would like to thank Roy Rubinstein and Mike Gennert for their thoughtful
comments on the content and presentation of this paper.

References

[Cara63] Alfonso Caracciolo di Forino, “Some Remarks on the Syntax of Symbolic
Programming Languages”, Communications of the ACM 6 no. 8 (August
1963), pp. 456-460.

[Chri90] Henning Christiansen, “A Survey of Adaptable Grammars”, SIGPLAN No-
tices 25 no. 11 (November 1990), pp. 35-44.

[Fello0] Matthias Felleisen, “On the Expressive Power of Programming Languages”,
in Neil D. Jones, editor, ESOP ’90: 3rd European Symposium on Program-
ming [Copenhagen, Denmark, May 15-18, 1990, Proceedings| [Lecture Notes
in Computer Science 432], New York: Springer-Verlag, 1990, pp. 134-151.

4One could imagine variants on the formalism in which an altered Equation 1 might cause meta-
syntax to be synthesized.

21

[Knut90]

Donald Ervin Knuth, “The Genesis of Attribute Grammars”, in Pierre De-
ransart and Martin Jourdan, editors, Attribute Grammars and their Ap-
plications [International Conference WAGA| |Lecture Notes in Computer
Science 461], New York: Springer-Verlag, 1990, pp. 1-12.

[Mads80] Ole Lehrmann Madsen, “On Defining Semantics by Means of Extended At-

[Shut93]

[Shut99]

[Wijn65]

tribute Grammars”, in Neil D. Jones, editor, Semantics-Directed Compiler
Generation [Proceedings of a Workshop, Aarhus, Denmark, January, 1980]
[Lecture Notes in Computer Science 94], New York: Springer-Verlag, 1980,
pp- 259-299.

John N. Shutt, “Recursive Adaptable Grammars”, Master’s Thesis, Worces-
ter Polytechnic Institute, Worcester, Massachusetts, 1993; Emended, June
4, 1998.

John N. Shutt, “S-Expressiveness and the Abstractive Power of Pro-
gramming Languages”, technical report, Worcester Polytechnic Institute,
Worcester, Massachusetts, 1999. To appear.

Aad van Wijngaarden, “Orthogonal design and description of a formal lan-
guage”, Technical Report MR 76, Mathematisch Centrum, Amsterdam,
1965.

22

