
REASONING WITH DESIGN RATIONALE

J. BURGE, D. C. BROWN
AI in Design Research Group
Department of Computer Science
WPI, 100 Institute Road
Worcester, MA 01609, USA

Abstract. Design Rationale (DR) consists of the decisions made
during the design process and the reasons behind them. Because it
offers more than just a “snapshot” of the final design decisions, DR is
invaluable as an aid for revising, maintaining, documenting,
evaluating, and learning the design. Much work has been performed
on how DR can be captured and represented but not as much on how
it can be used. In this paper, we investigate the use of DR by
building InfoRat, a system that inferences over a design’s rationale in
order to detect inconsistencies and to assess the impact of changes.

1. Introduction

Standard design documentation consists of a description of the final design
itself: effectively a “snapshot” of the final decisions. Design rationale (DR)
offers more: not only the decisions, but also the reasons behind each decision,
including its justification, other alternatives considered, and argumentation
leading to the decision (Lee, 1997). This additional information offers a
richer view of both the product and the decision making process. DR is
invaluable as an aid for revising, maintaining, documenting, evaluating, and
learning the design.

If design rationale were available, designers revising a design could use it
to determine the original designer’s intent, as well as determining what
alternatives had already been considered and why they were rejected. This
can help to avoid duplicating work that was done on a previous iteration
through the design. In some cases, the reasons for making a decision may no
longer be valid, and choosing a different alternative may be preferable. For
example, one part may have been chosen over another because there was a
surplus of them and the price was low. If this is no longer true, another part

2 J. BURGE AND D.C. BROWN

might be more cost effective. Rationale can also serve as a form of
“corporate memory” providing valuable insight into a design that would
otherwise be lost if designers leave the company (Peña-Mora and Vadhavkar,
1996, Brice and Johns, 1998).

In this paper, we describe InfoRat (Inferencing over Rationale), a system
that inferences over a design’s rationale in order to detect inconsistencies and
to assess the impact of changes. The analysis consists of two types of
inferences: syntactic to inference over the “structure” of the rationale, and
semantic, to look at the content.

The paper is structured as follows: in section 2, we discuss the problem of
capturing, representing, and using design rationale. In section 3, we describe
related work. Section 4 describes our approach, including a description of the
sample problem used in the paper. Section 5 describes the implementation of
the system and gives an example, while section 6 states our conclusions and
plans for future work.

2. The Design Rationale Problem

Most work on design rationale has concentrated on capture and
representation. Capturing, or recording, design rationale is a particularly
difficult problem. Recording all decisions made, as well as those rejected, can
be time consuming and expensive. The more intrusive the capture process,
the more designer resistance will be encountered. Because it is time
consuming and viewed as documentation, DR capture is viewed as
expendable if deadlines are an issue (Conklin and Burgess-Yakemovic, 1995).
Documenting the decisions can impede the design process if it is viewed as a
separate process from constructing the artifact (Fischer, et al., 1995). Also,
designers are reluctant to take the time to document the decisions they did not
take, or took and then rejected (Conklin and Burgess-Yakemovic, 1995).

The representation of DR has also been studied extensively. Design
rationale representations range from formal to informal. A formal approach
allows the computer to use the data but does not always output information in
a form that a human can understand. In addition, it requires that data be
provided to the system in a more rigid format. An informal approach provides
data in formats that are easily generated and understand by a human but can
not easily be used by the computer (e.g., natural language). Semi-formal
approaches attempt to use the advantages of both approaches.

While capture and representation are important for design rationale, the
real value of a system is how well the rationale can be put to use. Capturing
large amounts of detailed rationale is not useful if it is never looked at again.
If rationale is useful to the designers, there is a greater incentive for the
designer to assist with the capture of the needed information, particularly if

REASONING WITH DESIGN RATIONALE 3

the designer who is recording it can immediately use the rationale. Also,
knowing how the information will be used provides guidance about what
information should be captured and how it should be represented. These are
the key reasons why our research concentrates on DR use.

3. Related Work

How the DR can be used depends its representation format and content.
Shipman and McCall (1996) describe three perspectives on design rationale:
argumentation, documentation, and communication. Argumentation and
documentation focus on the design decisions and the reasons behind them.
The difference is that the goal of documentation is to convey understanding to
people outside the project, while argumentation has the additional goal of
structuring how the designer approached the problem. The communication
perspective is an attempt to capture naturally occurring design
communication, such as e-mail, meeting minutes, etc. Design Rationale can
also be viewed as a design history – the sequence of events that occurred
while performing the design (Garcia, 1993). In this case, the focus is more on
what actions were taken over time and less on the reasons behind them.

Design Rationale representations vary from informal representations such
as audio or video tapes, or transcripts, to formal representations such as rules
embedded in an expert system (Conklin and Burgess-Yakemovic, 1995). A
compromise is to store information in a semi-formal representation that
provides some computation power but is still understandable by the human
providing the information. Semi-formal representations are often used to
represent argumentation.

There are several argumentation notations. Design Space Analysis (DSA)
uses the Questions, Options, and Criteria (QOC) representation (MacLean, et
al., 1991). This notation is used by Desperado (Ball, et al., 1999). QOC
represents the argumentation as questions, options, and criteria for choosing
the options. Another notation is Issue Based Information Systems (IBIS),
used by gIBIS (graphical IBIS) and itIBIS (text based IBIS) (Conklin and
Burgess-Yakemovic, 1995). IBIS represents the argumentation as issues,
positions, and arguments. IBIS is the basis of another notation, PHI that is
used in JANUS (Fischer, et al., 1995). PHI captures similar concepts to IBIS
but links them together differently. There have also been many notations
created for specific DR tools. Examples of this are DRCS (the Design
Rationale Capture System) (Klein, 1992) and DRIM (Design
Recommendation and Intent Model) (Peña-Mora, et al., 1995). DRCS
represents argumentation using entities and claims about the entities. DRIM
is used in SHARED-DRIM, which captures recommendation, justification,
and intent for each participant in the design process. InfoRat bases its

4 J. BURGE AND D.C. BROWN

representation on DRL (Decision Representation Language), the
representation used by SIBYL (Lee, 1990). DRL is described later in this
paper.

There are also many different ways to capture DR. One approach is to
build the rationale capture into a system used for the design task. Active
Design Documents (ADD), a system that does routine, parametric design
(Garcia, et al., 1993), uses rationale already built into a knowledge base and
associates it with the user’s decisions. Some systems capture DR by
integrating the system into an existing design tool. This is done by M-LAP
(Machine-Learning Apprentice System) (Brandish, et al., 1996). In M-LAP,
user actions are recorded at a low level and formed into useful sequences
using machine-learning techniques. This is also done in the RCF (Rationale
Construction Framework) (Myers, et al., 1999). RCF uses its theory of
design metaphors to interpret actions recorded in a CAD tool and convert
them into a history of the design process. DHT (Design History Tool) (Chen,
et al., 1990) is also integrated with a design tool and captures the history as a
byproduct of the designing process. Some systems, such as itIBIS and gIBIS
(Conklin and Burgess-Yakemovic, 1995) require that rationale be captured in
a specific format, while others, such as HOS (Hyper-Object Substrate)
(Shipman and McCall, 1996), use data captured informally during the design
process and convert it into a useable form.

DR has a variety of uses. Systems such as JANUS (Fischer, et al., 1995),
critique the design and provide the designers with rationale to support the
criticism. Others, such as SYBIL (Lee, 1990), verify the design by checking
that the rationale behind the decisions is complete. SHARED-DRIM (Peña-
Mora, et. al, 1995) uses DR for conflict mitigation in collaborative design
efforts. PTTT (Process Technology Transfer Tool) (Brown and Bansal,
1991) is used to transfer process design information between development and
manufacturing. DME (Device Modeling Environment) (Gruber, 1990) is
used to generate documentation “on demand” about electromechanical
devices.

Less work has been done to study the usefulness of DR. Field trials were
done using itIBIS and gIBIS for software development at NCR (Conklin and
Burgess-Yakemovic, 1995). Capturing rationale was found to be useful
during both requirements analysis and design. In particular, several errors
were found during design that would not have been uncovered until much
later when the code was written. IBIS also helped with team communication
by making meetings more productive. A study was also performed using DR
documents to evaluate a design (Karsenty, 1996). In this study, 50% of the
designers’ questions were about the rationale behind the design and 41% of
these questions were answered by the recorded rationale. The rationale had
been recorded manually using the QOC method.

REASONING WITH DESIGN RATIONALE 5

4. Approach

In the InfoRat approach, design rationale is viewed as a bridge between
design phases. The design begins with a set of requirements defining the
system being designed. These requirements are then mapped to goals and, if
required, sub-goals. Goals and sub-goals then can be satisfied by one or more
alternatives. Each alternative then maps to an artifact, or a requirement for
the next stage of design. The rationale for each choice is represented as
arguments, expressed as claims, for or against each alternative. Figure 1
shows how design rationale links the requirements and the design.

Requirement

Goal Alternative Claim

Artifact

Requirement
Space

Rationale
Space

Design
Space

Figure 1. Design Rationale in the Design Process

The resulting rationale serves both to document the design and to provide a
means for design verification. This verification involves ensuring that the
design is consistent and complete, i.e., all requirements correspond to goals
and all goals have selected alternatives. The following subsections describe
the important aspects of this approach.

4.1 EXAMPLE PROBLEM

For illustration purposes, a simple example of a traffic light design (Gogolla,
1998) was used. This was done to provide rationale that was simple to
construct but rich enough to demonstrate the concepts.

The traffic light example describes the high level design of the traffic
lights for an intersection between two streets where one street had a heavier
flow of traffic than the other, except during rush hour. This intersection also
had frequent traffic turning from travelling South to travelling East. In
addition to supporting those aspects of the intersection, the light system also
had to be designed so that it would handle failure as safely as possible.
Figure 2 shows the intersection.

6 J. BURGE AND D.C. BROWN

N

Heavier Flow
of Traffic

Figure 2. Intersection Diagram

This results in the following requirements for the traffic light
system:

• Use four traffic lights
• Provide safe traffic flow
• Allow for heavier traffic on the North-South road
• Allow for traffic turning South to East
• Safely handle light failures

Each of these requirements can be satisfied in a number of ways. For
example, choosing four traffic lights involves deciding what types of phases
the lights should have, deciding if all four lights should be identical, and
deciding if the lights should have arrows for turning or not. Providing safe
traffic flow requires controllers for the lights to ensure that traffic can not be
flowing on the E-W road at the same time that it is flowing on the N-S road.
There are also a number of ways that the heavier traffic flow on the N-S road
can be handled. Sensors can be used to monitor the flow of traffic or the
lights can go to flashing yellow or red at times when traffic on the E-W road
is lighter. Assistance for turning can be provided by delaying the lights or by
using turn signals. There are also different ways that light failures that can be
handled. One way is to shut down the intersection completely, although it
might be better to turn it into a “four way stop” so that some traffic flow can
still occur.

4.2 REPRESENTATION

As described above, there are a variety of methods for representing rationale.
In order to support inferencing, a structured or semi-structured representation
is required. The representation chosen is a subset of that used in DRL (Lee,
1990). For DRL, the elements represented are artifact, requirement, goal,

REASONING WITH DESIGN RATIONALE 7

alternative, claim, group, viewpoint, and question. DRL also supports several
relations between these elements including: is-a-part-of, is-a-subclass-of, is-
argument-for, and is-argument-against.

The InfoRat system implements a subset of these elements: requirement,
goal, alternative, and claim. It also allows several relationships: supported-
by, sub-goal, alternative-for, argument-for, and argument-against. Figure 3
shows the elements represented in InfoRat and the relationships between
them.

has-argument-against

has-argument-for
has-alternative

Goal Alternative Claim

Requirement

has-subgoal one-to-many

many-to-many

Figure 3. Design Rationale Elements

As the figure indicates, each goal can have multiple sub-goals, an
alternative can be used to satisfy more than one goal, and a claim can be an
argument for or against multiple alternatives. Figure 4 shows the goals as
well as a partial set of alternatives and claims for the requirement to use four
traffic lights.

against against againstfor

forfor

satisfied-by satisfied-by

subgoalsubgoal

satisfied-by

Four Traffic
Lights

Arrows

Select
Configuration

Select
Directionals

Select Types
of Phases

Select Four
Lights

No
Arrows

NOT
Safety

Simplicity

AffordabilitySafety

NOT
Affordability

NOT
Simplicity

subgoal
Requirement

Goal

Alternative

Claim

Figure 4. Subset of Alternatives for Requirement “Four Traffic Lights”

8 J. BURGE AND D.C. BROWN

When a claim is used as an argument for or against an alternative, it is
given a “rating” between one and ten to indicate its importance in the design
decision. These ratings can be added together to indicate the overall rating for
an alternative. For example, if the alternative “Arrows” (as shown in Figure
4) has a claim in its favor of “Safety”, with a rating of seven, and claims
against it of “NOT Affordability”, with a rating of two and “NOT
Simplicity”, with a rating of one, its overall rating would be four.

4.3 INFERENCES

The InfoRat system inferences over the rationale to check for completeness
and consistency. The inferencing can be broken into two categories: syntactic
inferencing that uses the structure of the rationale, and semantic inferencing
that looks at the contents/values of the different rationale elements.

Syntactic inferencing looks for the following inconsistencies in the
rationale: requirements with no corresponding goals, and goals (or sub-goals)
with no selected alternatives. The syntactic checks are primarily concerned
with ensuring that the rationale is complete. Figure 5 shows the requirement
“Four Traffic Lights” and its relationships. In this example, the goal “Select
Type of Directionals” has two alternatives but neither has been selected.
Figure 6 shows a syntactic check that looks to see if there are any
requirements that do not trace to goals with selected alternatives. This check
detects that the requirement “Four Traffic Lights” was not satisfied. Both
these figures, as well as those that follow, show actual output from InfoRat.

Requirement: Four Traffic Lights
 Goals:
 Goal: Select Four Lights
 Subgoals:
 Goal: Select Types of Phases
 Alternatives:
 German 4-Phase Lights
 Italian 3-Phase Lights (Selected)
 Goal: Select Type of Directionals
 Alternatives:
 Light w/o Turn Signals
 Light with Turn Signal
 Goal: Select Light Configuration
 Alternatives:
 Mixed Light Types (Selected)
 All Lights the Same

Figure 5. Goals and Sub-goals for the Unsatisfied Requirement

REASONING WITH DESIGN RATIONALE 9

* Verify Design Rationale *

Choose one of the following:

 1: Show Full Verification Report
 2: Check for Unsatisfied Requirements
 3: Check for Unsubstantiated Alternatives
 4: Check for Non-Optimal Alternatives
 5: Check for Contradictory Arguments

 E: Exit Menu

Enter Selection: 2

Unsatisfied Requirements:
 Four Traffic Lights

Figure 6. Unsatisfied Requirement Check

Semantic inferencing looks at the reasons for and against the alternatives.
There are three types of discrepancies looked for: selected alternatives where
the arguments against the alternative outweigh the arguments for the
alternative, as shown in Figure 7, selected alternatives where the alternative
selected is not the best choice, as shown in Figure 8, and selected alternatives
where the same argument is used both for and against the alternative, as
shown in Figure 9.

Arguments AGAINST outweigh FOR:

 For Goal: Priority to NS Traffic
 Selected Alternative: Configuration Changes w/Time
 (Rating = -3)

Figure 7. Arguments Against Outweigh For

Best Alternative not chosen for Select Light Configuration
 Selected Alternative: Mixed Light Types
 (Rating = 3)
 Best Rated Alternative: All Lights the Same
 (Rating = 5)

Best Alternative not chosen for Priority to NS Traffic
 Selected Alternative: Configuration Changes w/Time
 (Rating = -3)
 Best Rated Alternative: Sensor Controlled E/W
 (Rating = -2)

Figure 8. Best Alternative Not Chosen

10 J. BURGE AND D.C. BROWN

Enter Selection: 5
Same argument for and against:
 For Goal:If EW traffic, no NS traffic
 Alternative: Individual Light Control
 Claim FOR:Safety and Claim AGAINST: Safety

 For Goal:If NS traffic, no EW traffic
 Alternative: Individual Light Control
 Claim FOR:Safety and Claim AGAINST: Safety

Figure 9. Contradictory Arguments

4.4 VOCABULARY

In order to support semantic inferencing, it is necessary to have a known
vocabulary for claims (arguments for or against an alternative). The
vocabulary consists of two categories: a pre-defined, standard vocabulary,
and a user-defined, domain-oriented vocabulary. We refer to these as the
Standard Claim Vocabulary and the User-Defined Claim Vocabulary
respectively.

The Standard Claim Vocabulary is pre-defined to match the design task.
For software design, a vocabulary has been built based on the “ilities”
(Filman, 1998). Figure 10 shows the Standard Claim Vocabulary used by
InfoRat.

Standard Arguments:

 Affordability
 Safety
 Availability
 Simplicity
 Reliability
 Adaptability
 Configurability
 Trustability

Figure 10. Standard Claim Vocabulary

Claims can be added to the User-Defined Claim Vocabulary at
any time during the design process. These are arguments that are
specific to the design project. Figure 11 shows the User-Defined
Claim Vocabulary for the traffic light design problem.

REASONING WITH DESIGN RATIONALE 11

User Defined Arguments:

 Starves one direction
 Optimizes Traffic Flow

Figure 11. User Defined Claim Vocabulary

5. Implementation and Examples

InfoRat has been implemented in CLIPS (CLIPS, 1998) and performs three
main functions: Rationale Browsing, Rationale Modification, and Rationale
Verification. Figure 12 shows the InfoRat main menu.

* InfoRat Main Menu *

Choose One of the Following:

 1: Browse DR
 2: Verify DR
 3: Modify DR

 E: Exit System

Figure 12. InfoRat Main Menu

5.1 BROWSE RATIONALE

The browse function is used to examine the rationale stored in the system.
The designer can examine the status of each element and its relationship with
other element. Figure 13 shows the six browsing options offered.

12 J. BURGE AND D.C. BROWN

* Browse Design Rationale *

Choose one of the following:

 1: List DR Element Types
 2: Browse Requirements
 3: Browse Goals
 4: Browse Alternatives
 5: Browse Arguments
 6: Browse Version History

 E: Exit Menu

Figure 13. Browse Design Rationale

The first option, List DR Element Types, allows the user to quickly view
the different DR elements currently in the system. Figure 14 shows the choice
of element types presented.

* List DR Elements *

Choose DR Element:

 1: Requirement
 2: Goal
 3: Alternative
 4: Argument

 E: Exit Menu

Figure 14. List DR Elements

Figures 15 through 17 show the element listings for requirements, goals,
and alternatives.

Requirements:

 Four Traffic Lights (Satisfied)
 Safe traffic flow (Satisfied)
 Traffic heavier N-S (Satisfied)
 Frequent South to East Turning Traffic (Satisfied)
 Safely Handle Light Failures (Satisfied)

Figure 15. Requirement Listing

REASONING WITH DESIGN RATIONALE 13

Goals:

 Select Types of Phases (Satisfied)
 Select Type of Directionals (Satisfied)
 Select Light Configuration (Satisfied)
 If EW traffic, no NS traffic (Satisfied)
 If NS traffic, no EW traffic (Satisfied)
 Safe Flow of Traffic (Satisfied)
 Priority to NS Traffic (Satisfied)
 Turn Assistance to SE Traffic (Satisfied)
 Select Four Lights (Satisfied)
 Stop all if Light Fails (Satisfied)

Figure 16. Goal Listing

Alternatives:

 German 4-Phase Lights
 Italian 3-Phase Lights (Selected)
 Light with Turn Signal (Selected)
 Light w/o Turn Signals
 All Lights the Same
 Mixed Light Types (Selected)
 Central Light Controller (Selected)
 Individual Light Control
 Blinking Red/Yellow
 Sensor Controlled E/W
 Configuration Changes w/Time (Selected)
 Turn Arrow for S->E (Selected)
 Delayed Green
 All Lights go to Blinking Red (Selected)
 All Lights go to Solid Red

Figure 17. Alternative Listing

The remaining options give the user a more detailed view of each element.
Figure 6 (in Section 4) showed the information displayed about a requirement
and its goals. Figure 18 shows the contents of an alternative, Blinking
Red/Yellow.

Each rationale element contains a version number and a description of the
element. The version number is used to keep track of changes in the rationale
so that it can be determined if the state of any rationale element was changed
during the design process. The description is used to describe the element to
the user. InfoRat also allows the user to view the version history to see the
changes made to the rationale and the reasons for the changes in the rationale.
Figure 19 shows an example of a version history.

14 J. BURGE AND D.C. BROWN

Alternative: Blinking Red/Yellow

 Alternative for:
 Priority to NS Traffic (Not Selected)

 Claims For:

 Claim: Simplicity
 Applicability: IS
 Weight: 3

 Claim: Affordability
 Applicability: IS
 Weight: 4

 Claims Against:

 Claim: Safety
 Applicability: NOT
 Weight: 7

 Claim: Starves one direction
 Applicability: IS
 Weight: 7

Figure 18. Alternative Blinking Red/Yellow

Version History:
 Version: 1

 Change: Removed claim [Safety] from
[Configuration Changes w/Time]

Reason: Duplicate Argument

 Version: 2
 Change: Removed claim [Affordability] from

[All Lights the Same]
Reason: Contradiction with another argument

 Version: 3
 Change: Added new Argument: [Optimizes Traffic Flow] for

Alternative: [Mixed Light Types]
Reason: Mixed lights can optimize flow

Version: 4
 Change: Removed claim [Safety] from

[Individual Light Control]
Reason: Individual lights are less safe (synch problems)

 Version: 5
 Change: Changed weight of argument [Optimizes Traffic Flow]

to 5
 Reason: Traffic flow is very important

Figure 19. Version History

REASONING WITH DESIGN RATIONALE 15

The first two changes were made in response to errors detected by InfoRat.
The remaining three could either be triggered by the system or in response to
changes in the requirements. Notice that the reasons given for the first two
changes are reasons for changes to the rationale, not reasons for changes to
the design.

5.2 VERIFY RATIONALE

InfoRat verifies rationale by generating several different verification reports.
The system can check for unsatisfied requirements (requirements that do not
have goals associated or that have goals associated where the goals and their
sub-goals do not map to selected alternatives), unsubstantiated alternatives
(alternatives with a negative overall rating), non-optimal alternatives (when
the alternative selected for a goal has a lower overall rating than one or more
of the other alternatives for that goal), and contradictory arguments
(arguments where the same argument is used for and against an alternative).
InfoRat can also perform a summary check for all of these problems and
produce a report. Figure 20 shows an example of a complete verification
report.

Unsatisfied Requirements:
 None!

Arguments AGAINST outweigh FOR:
 For Goal: Priority to NS Traffic
 Selected Alternative: Configuration Changes w/Time
 (Rating = -3)

Best Alternative not chosen for Select Light Configuration
 Selected Alternative: Mixed Light Types
 (Rating = 3)
 Best Rated Alternative: All Lights the Same
 (Rating = 5)
Best Alternative not chosen for Priority to NS Traffic
 Selected Alternative: Configuration Changes w/Time
 (Rating = -3)
 Best Rated Alternative: Sensor Controlled E/W
 (Rating = -2)

Same argument for and against:
 For Goal: Select Light Configuration
 Alternative: All Lights the Same
 Claim FOR: Affordability and Claim AGAINST: Affordability
 For Goal: If EW traffic, no NS traffic
 Alternative: Individual Light Control
 Claim FOR: Safety and Claim AGAINST: Safety
 For Goal: If NS traffic, no EW traffic
 Alternative: Individual Light Control
 Claim FOR: Safety and Claim AGAINST: Safety

Figure 20. Full Verification Report

16 J. BURGE AND D.C. BROWN

5.3 MODIFY RATIONALE

InfoRat allows the user to modify the different DR elements. Figure
21 shows the modification choices.

* Modify Design Rationale *

Choose one of the following:

 1: Modify Requirements
 2: Modify Goals
 3: Modify Alternatives
 4: Modify Arguments

 E: Exit Menu

Figure 21. Modify Rationale Options

For requirements, the user is allowed to add a requirement, delete a
requirement, or change which goals are associated with the requirement.
Goals can either be associated or disassociated with the requirement. If a
requirement is deleted, the delete cascades, i.e. any goals, sub-goals, and
alternatives that only relate to this requirement are also removed.

For goals, the user can add a new goal or modify a goal already in the
system. Allowable modifications for existing goals are adding a sub-goal,
deleting a sub-goal, adding an alternative, removing an alternative, or
selecting an alternative. When an alternative is selected, any alternative for
that goal that may have been selected earlier is deselected to ensure that only
one alternative can be selected for a goal.

For alternatives, the user again has the option of adding a new alternative
or modifying an existing one. For an existing one, the user must first specify
which goal the alternative is for. This is required because an alternative can
apply to more than one goal. The user is then presented with several options
for changing the arguments for and against the alternative. Figure 22 shows
the options for modifying alternatives.

REASONING WITH DESIGN RATIONALE 17

* Modify Alternative *

Target Goal: [Select Light Configuration]
Target Alternative: [Mixed Light Types]

Choose one of the following:

 1: Select the Alternative
 2: Add an Argument for the Alternative
 3: Add an Argument against the Alternative
 4: Remove an Argument for/against the Alternative
 5: Change the weight of an Argument for/against the
 Alternative

 E: Exit Menu

Figure 22. Modify Alternative Options

For arguments, the only option is adding additional arguments. When
each modification is made, the user is prompted for a reason for the change.
This provides additional information that can be retrieved by the user as part
of the version history.

6. Conclusions

InfoRat supports a designer by inferencing over DR to check for
completeness and consistency. This augments existing approaches, such as
constraint satisfaction, that only reason about the design.

A predefined vocabulary is provided so that the contents of the arguments
can be used for inferencing. The user can extend this vocabulary by adding
additional arguments that are more design problem specific. When the user
modifies the design rationale, the system prompts them for modification
rationale. This combination of a standard, machine-interpretable vocabulary
and user-supplied rationale allows the design history to be kept, and enables
the system to reason over the rationale.

One drawback to InfoRat is that it does not eliminate the need to manually
enter the DR. This, however, was not the focus of our research. Ideally, DR
capture should be a byproduct of the design process, not a separate task that
creates more work for the designer. One way to make this process easier is to
integrate InfoRat with a design tool.

The target domain for InfoRat is software design. There are several points
in the software design process where InfoRat could obtain information from
software tools. These include the CASE tools used in software design to
capture the initial DR elements, configuration management tools used to aid

18 J. BURGE AND D.C. BROWN

in capturing the design history, and problem reporting tools used to capture
the reasons why the design required modification as well as what changes
were made.

Besides tool integration, future work for InfoRat includes adding the
ability to form “groups’’ of rationale elements, allowing InfoRat to scale to
larger design problems. InfoRat also needs to be extended from supporting
the initial high level design stage, as shown in this paper, to supporting
multiple stages in the design process. In addition, more investigation is
needed to see how InfoRat could be used to support teams of designers who
may not agree on the claims for and against the alternatives. The integration
of modification rationale with design rationale also needs attention. Finally,
the user interface needs to be replaced with a Graphical User Interface (GUI).

The concepts developed in this work, as demonstrated by the InfoRat
system, provide a new and different way of looking at DR use. Intelligent
reasoning over DR will provide more beneficial use for the collected DR than
just its retrieval and presentation. Such reasoning can provide strategic
guidance for the design process. In addition it can provide a novel way of
checking for design quality, as designs with poor rationale are less likely to be
of high quality. We believe that this research provides a new view of how to
use Design Rationale whose development has great potential.

Acknowledgements

We would like to thank George Heineman for his discussions about how design rationale
could be used to support the software design process. The first author was supported by
WPI’s Robert S. Park Fellowship while performing this work.

References

Ball, L., Lambell, N., Ormerod, T., Slavin and S., Mariani, J.: 1999, Representing
Design Rationale to Support Innovative Design Reuse: A Minimalist
Approach, from Proceedings of the 4th Annual Design Research Thinking
Symposium, MIT, May 1999.

Brandish M., Hague, M. and Taleb-Bendiab, A.: 1996, M-LAP: A Machine
Learning Apprentice Agent for Computer Supported Design, AID’96 Machine
Learning in Design Workshop.

Brice, A. and Johns, B.: 1998, Improving process design by improving the design
process, QSL-9002A-WP-001, QuantiSci, October 1998.

Brown, D. C. and Bansal, R.: 1991, Using Design History Systems for Technology
Transfer, in Computer Aided Cooperative Product Development, D. Sriram, R.

REASONING WITH DESIGN RATIONALE 19

Logcher and S. Fukuda, eds., Lecture Notes Series, No. 492, Springer-Verlag,
New York, pp. 544-559.

Chen, A., McGinnis, B., Ullman, D. and Dietterich, T.: 1990, Design History
Knowledge Representation and Its Basic Computer Implementation, The 2nd

International Conference on Design Theory and Methodology, ASME,
Chicago, IL, pp. 175-185.

Conklin, J. and Burgess-Yakemovic, K.: 1995, A Process-Oriented Approach to
Design Rationale, in Design Rationale Concepts, Techniques, and Use, T.
Moran and J. Carroll, (eds), Lawrence Erlbaum Associates, Mahwah, NJ, pp.
293-428.

Filman, R. E. : 1998, Achieving Ilities, Workshop on Compositional Software
Architectures, Monterey, California, Jan. 1998.
http://www.objs.com/workshops/ws9801/papers/paper046.doc.

Fischer, G., Lemke, A., McCall, R. and Morch, A.: 1995, Making Argumentation
Serve Design, in Design Rationale Concepts, Techniques, and Use, T. Moran
and J. Carroll, (eds), Lawrence Erlbaum Associates, pp. 267-294.

Garcia, A., Howard, H. and Stefik, M.: 1993, Active Design Documents: A New
Approach for Supporting Documentation in Preliminary Routine Design, Tech.
Report 82, Stanford Univ. Center for Integrated Facility Engineering, Stanford,
CA.

Gogolla, M.: 1998, UML for the Impatient, Research Report 3/98, Universität
Bremen

Gruber, T.: 1990, Model-based Explanation of Design Rationale, in Proceedings of
the AAAI-90 Explanation Workshop, Boston, July 30, 1990.

Karsenty, L.: 1996, An Empirical Evaluation of Design Rationale Documents, in
Proceedings of the Conference on Human Factors in Computing Systems,
Vancouver, BC, April 13-18.

Klein, M.: 1993, DRCS: An Integrated System for Capture of Designs and Their
Rationale, in Artificial Intelligence in Design ‘92, Gero, J. (ed.), Kluwer
Academic Publishers, pp. 393-412.

Lee, J.: 1990, SIBYL: A qualitative design management system. In P.H. Winston
and S. Shellard (eds), Artificial Intelligence at MIT: Expanding Frontiers,
Cambridge MA: MIT Press, pp. 104-133.

Myers, K., Zumel, N. and Garcia, P.: 1999, Automated Capture of Rationale for the
Detailed Design Process, In Proceedings of the Eleventh National Conference
on Innovative Applications of Artificial Intelligence, AAAI Press, Menlo Park,
CA, pp. 876-883.

Peña-Mora, F. and Vadhavkar, S.: 1996, Augmenting design patterns with design
rationale, Artificial Intelligence for Engineering Design, Analysis and
Manufacturing, 11, Cambridge University Press, pp. 93-108.

20 J. BURGE AND D.C. BROWN

Peña-Mora, F., Sriram, D. and Logcher, R.: 1995, Design Rationale for Computer-
Supported Conflict Mitigation, ASCE Journal of Computing in Civil
Engineering, pp. 57-72.

Lee, J.: 1997, Design Rationale Systems: Understanding the Issues, IEEE Expert,
Vol. 12, No. 3, pp. 78-85.

Shipman, F. and McCall, R.: 1996, Integrating different perspectives on design
rationale: Supporting the emergence of design rationale from design
communication, Artificial Intelligence for Engineering Design, Analysis, and
Manufacturing, 11, Cambridge University Press, pp. 141-154.

CLIPS Reference Manual: 1998, Volume I: Basic Programming Guide, Version
6.10, http://www.ghgcorp.com/clips/download/documentation.

