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Abstract

Data warehouses (DW) are built by gathering information from several information sources (ISs)
and integrating and materializing it into one repository customized to user’s needs. Some of the most
recently proposed algorithms for the incremental maintenance of such materialized DWs, such as SWEEP
and PSWEERP, offer several significant advantages over previous solutions, such as high-performance, no
potential for infinite waits and reduced remote queries and thus reduced network and IS loads. However,
similar to many other algorithms, they still have the restricting assumption that each IS can be composed
of just one single relation. This is unrealistic in practice. In this paper, we hence propose a solution to
overcome this restriction. The Multi-Relation Encapsulation (MRE) Wrapper supports multiple relations
in information sources in a manner transparent to the rest of the environment. The Multi-Relation
Encapsulation Wrapper treats one IS composed of multiple relations as if it were a single relation from
the DW point of view; thus it can easily be plugged into existing incremental view maintenance algorithms
without any change. Hence, our method maintains all the advantages offered by existing algorithms in
the literature in particular SWEEP and PSWEEP, while also achieving the additional desired features
of being non-intrusive, efficient, flexible and well-behaved.



1 Introduction

Data warehousing (DW) [WB97, Wid95, GMLWZ98, GM96] is a popular technology to integrate data from
heterogeneous information sources (ISs) in order to provide data to for example decision support or data
mining applications [CD97]. Once a DW is established, the problem of maintaining it consistent and up-
to-date of the underlying ISs remains a critical issue. It is popular to maintain the DW incrementally
[AAS97, MKK97, KLMRO7] instead of recomputing the whole extent of the DW after IS updates due to the
large size of DWs and the enormous overhead associated with the DW loading process.

In recent years, there have been a number of algorithms proposed for incrementally view maintenance, e.g,
[ZGMHW95, ZGMW96, AAS97, ZDR99]. ECA [ZGMHWO95] handles view maintenance under concurrent
data updates of one centralized IS, while Strobe [ZGMW96], SWEEP [AAS97] and PSWEEP [ZDR99] handle
distributed ISs. However, SWEEP and PSWEEP represent a significant improvement over Strobe in terms
of performance (the number of messages and data sizes transferred between the DW and the ISs). PSWEEP
is essentially a parallelized extension of SWEEP and thus offers several orders of magnitude in a performance
increase over SWEEP given a system setup supporting multiple threads.

Furthermore, the Strobe [ZGMW96] family of algorithms is subject to the potential threat of infinite
waiting, i.e., the DW extent may never get updated. The SWEEP [AAS97] and PSWEEP [ZDR99] family of
algorithms eliminate this limitation by applying local compensation techniques. This avoids the need for a
quiescent state of the environment before being able to update the DW. But like many other DW maintenance
algorithms in the literature [ZGMHW95] both SWEEP and PSWEEP assume that each information source
only contains one single relation. This is unrealistic in practice as most real data sources often contain 10s,
100s or more relations. It is thus important to be able to support multiple relations for each information

source.

1.1 Motivation

Originally, SWEEP and PSWEEP have assumed that there is only one relation per IS. Below we now
demonstrate that the local correction techniques they used will not work in the case of multiple relations

per IS.

Example 1 Given two information sources IS1 and 1S5. Ry and Ry are two relations of 1S, and Rz is a
relation of IS>. Assume that we have a data warehouse defined by V = Ry WX Ry X R3. Now, there is a data
update AR3 of Rs in 1Ss. To calculate the incremental change of this update on the DW extent, denoted by
AV, the SWEEP mediator would send down the following maintenance query to I1S;:

MQ = AR3 X (R; X Ry).

If a data update ARy occurs however while the MQ query is send down, then the wrapper would send
back the following (incorrect) query result to the mediator:

MQ@QR=AR3 X (R1 Dol (R2 + ARQ)).



This is obviously incorrect because of the effect of the concurrent data update ARy. The SWEEP mediator
handles this case by local compensation. This is the key feature of SWEEP that guarantees that SWEEP
can successfully avoid an infinite wait, because any remote query send by SWEEP would raise the possibility
of further concurrent data updates (DUs) requiring compensation. But here ARs X (Ry X AR»y) cannot be
locally compensated because we need information about the extent of Ry for this purpose. However, Ry is not
locally available in the DW, and hence to get the correct result, the mediator needs to generate a query and

send it down to 1S;. In short, the local compensation, the main feature of SWEEP, is broken.
[

To handle this problem, one alternative intuitive solution to this problem may be to model each relation

R; of an IS; as a separate information source IS;;.

Example 2 Using the scenario as in Example 1, we now treat each relation as a separate IS. Assuming
there is a data update AR3 of R3 in ISs. To calculate the incremental change AV, the SWEEP mediator
would sequentially need to first send down a MQ to 1S1; and then one to I512.

The MQ) sent to 1S, is defined by: M Q1 = AR3 X R;.

When the query result MQR, comes back from 1511, then the mediator tests if there is any concurrent
data update and then sends another query down to ISy, which actually at same 1.5y :

MQ2=MQR: X R,.

If o data update ARs occurs before the MQ query is being processed in 1Sia, the query result MQRx
returned would be:

MQRy; = MQRy X (Ry + ARy)

The correct result however should have been: MQR = MQR X Rs.

SWEERP detects the concurrent data update ARs and applies local compensation to remove MQR; X AR,
to get the correct AV .

From Example 2, we notice that SWEEP can indeed support multi-relation ISs by treating each relation
as a separate IS. However, this solution suffers from numerous shortcomings. First, the mediator would have
to send down separate MQs to the same IS multiple times (one for each relation in it). In Example 2, the
mediator sends MQ queries down to I.S; twice to calculate AV, since IS; holds 2 relations. If there were
10 relations for each IS, then to handle one update, the DW has to send 10 sub-queries to and receives 10
query result messages from the IS as compared to one message exchange only.

In summary, the main drawbacks of this solution are:

e Network Overhead: The IS is connected to the DW by a network. To maintain the materialized
view, the DW has to send queries down independently to each of the relations. This is big burden on

the network.



e IS Overhead: Each individual IS needs to receive, handle and process n times ( assume n represents
the number of relations utilized in this IS) different queries instead of just one single query. This places
a burden on the IS, potentially affecting not only the handling of this one DU but also the response

time of other users of this IS.

¢ DW Overhead: The DW has more work in terms of having to send queries and collect answers
from the independent relations. Together with the added delay from IS query processing and network
delays, this would delay the update of the view extent of the data warehouse as it will take longer to

get decisions made. So the DW has longer periods of being out-of-date.

1.2 Our Approach

To overcome the limitation of the strawman solution described in the Section 1.1 we instead propose a more
efficient solution, namely a Multi-Relation Encapsulation Wrapper that treats one IS composed of multiple
relations as if it were a single relation from the DW point of view. Like any traditional wrapper, our wrapper
accepts queries from data warehouse, sends the query down to the IS, gets query results from the IS and
returns them back to the data warehouse. It will also send data update messages to the data warehouse.
The basic idea here is to treat an IS composed of multiple relations as one local view so that the DW will
be aware of this one local view relation instead of the relations for each IS. Hence, existing algorithms for
DW maintenance from the literature would function unchanged within this environment once enhanced by
our Multi-Relation Encapsulation Wrapper.

This implies that the wrapper will need to receive queries from the DW expressed against one relation,
namely, the view relation modeling the content of the IS, and then translate this query down into one
processable by the actual IS. Similarly, the wrapper will translate on update message for one relation into an
update message with respect to the view relation of the IS. In order to calculate the effect of one data update
on the whole IS without the threat of an infinite wait, the wrapper needs to adopt a local compensation
strategy.

The Multi-Relation Encapsulation Wrapper we propose has the following capabilities:

e Supports multiple relations in one IS.

e Encapsulates the local IS specific update detection and query processing and makes them transparent

to the DW system, and it can easily be plugged into practice all current DW environments.

e Handles the local concurrent data updates and thus portrays correct update messages to the upper

layer.

A DW framework that uses our Multi-Relation Encapsulation Wrapper will have the following benefits:



e Keeps all the benefits of the previous algorithms, because the DW layer can be used directly from the
literature without any change (e.g., local to global name mapping). For example, using the PSWEEP’s
DW mediator, we can keep the performance benefits gained by PSWEEP [ZDR99].

e Handles concurrent DUs happening at the IS locally by using a local correction (LC) technique in the
wrapper. Hence, there is no potential infinite waiting of processing the queries and propagating the

data updates in concurrent data updates environment.
As we will demonstrate in this paper, our Multi-Relation Encapsulation Wrapper meets the following goals:

e non-intrusive: It does not require any modification to the existing processes and algorithms in a DW
system. In particular, we do not want to impose additional modifications on the processing that the
DW mediator, e.g., the SWEEP or PSWEEP algorithm, must perform. That is, the interface of the
DW layer with the IS layer should remain unchanged, and the fact that the view relation models many

actual IS relations should be transparent.

e efficient: It maintains all benefits of the previous view maintenance solutions proposed in the liter-
ature, while in addition offering improved performance to the overall process. Unlike the candidate
solution described in Section 1.1, it should preserve the property of [AAS97] to do local and not remote
compensation, as well as the property of PSWEEP [ZDR99] to allow for parallel view maintenance at

the DW layer by instantiating multiple view maintenance threads.

e flexible: It has limited requirements upon the underlying environment, in particular, the information
sources still should be allowed to be semi-autonomous. This means that ISs do not need to assist us
with the DW maintenance process beyond reporting individual data updates or processing queries send

down to them by the wrapper.

e well-behaved: It passes up view maintenance query results that properly incorporated the effects
of all local concurrent data updates that take place while determine the query result. This MQR

compensation should not require any infinite wait.

Outline: In Section 2, the DW model with the Multi-Relation Encapsulation Wrapper to support multiple
relations per IS is given. Section 3 analysis the Multi-Relation Encapsulation Wrapper. In Section 4, the
Multi-Relation Encapsulation Wrapper architecture and algorithm is presented. Section 5 describes the

related work of the Multi-Relation Encapsulation Wrapper. Conclusions are discussed in Section 6.

2 The Data Warehouse Model Augmented with the Multi-Relation
Encapsulation Wrapper

For this work, we assume a standard three-tier DW architecture as depicted in Figure 1. In general, the

environment is divided into three layers, the data warehouse layer, the mediator layer and the information



source layer with wrappers. The three layers are respectively connected by a FIFO network.

Assumption 1 The order in which the mediator layer receives messages from an IS is the same as the order

in which each IS sends out the messages, i.e., there is a FIFO network connecting them.

’ User applications \
e
W
DW Layer arehouses

Middle Layer Mediator
IS Laver/ / \

Wrapper Wrapper e Wrapper

Figure 1: Data Warehousing Architecture

At the DW layer, the DW is materialized and directly responds to query requests by the users. At the
middle layer, the mediator integrates the changes into the DW by merging the updates of the ISs with the
data already present in the DW and resolving possible update anomalies. At the IS layer, the wrapper
detects changes at its designated IS and propagates the changes in the generic form to the upper layer, i.e.,
the mediator.

Table 1 shows the notation we use in this paper.

There is a lot of work in the literature on the DW layer of concurrency control [KM99] and middle layer
of view maintenance [ZGMHW95, ZGMW96, AAS97, ZDR99]. In this paper, we fully focus on the design

of the wrappers for such concurrent environment.

2.1 Requirements of the Mediator

The mediator integrates the changes from the ISs into the DW by merging the updates with the data already
present in the DW and resolving possible update anomalies. For every view located in the data warehouse,
there is one mediator. The mediator is responsible for collecting messages from the corresponding wrappers
at the ISs and maintaining the materialized view stored in the data warehouse.

Our claim is now that the utilization of the proposed Multi-Relation Encapsulation Wrapper will allow
us to plug in any of the existing incremental view maintenance algorithms without requiring any major

change to the mediator. The only change we need is to add (or change) the module for initialization of the



Notation | Meaning

MQ Maintenance query from mediator to wrapper.
LQ A local query to generate AIS from AR

LQR The query result of LQ

LMQ The localized Maintenance query.

LMQR The query result of LMQ. Same as the MQR.
MQR The query result of MQ.

V_IS; An local view definition stored in an I.S; wrapper. Same as LQ.
AQ Assemble query used by VM in DW.

WMQ Wrapper Message Queue.

oMQ Order-Assignment Message Queue.

AR; A data updates from relation R;.

AIS Effect of a DU of a relation to the whole IS.
AIS(R;) | AIS generated from data update R;.

AV _IS; AIS from IS;.

Table 1: Notation and Meaning

system, in particular to help to properly utilize the view query needed by the DW from the Multi-Relation
Encapsulation Wrapper.
The general requirements of the mediator that can cooperate with the Multi-Relation Encapsulation

Wrapper are described as below:

1. The mediator is responsible for only one view definition in the data warehouse.

2. The mediator can maintain the data warehouse under the distributed environment where every IS at

least has one relation.

3. The mediator handles the concurrent DUs for the view maintenance.

The initialization phase of the DW framework should decompose the view definition (local view) for every
IS wrapper and generate a assembly query locally to maintain the materialized view. Then it will use the

local view to initialize the corresponding wrapper for each IS.

Example 3 As an example of a typical mediator architecture, let’s describe the mediator of SWEEP [AAS97].
The mediator is only responsible for maintaining one view. For each data update reported by an IS wrapper,
the mediator will send incremental maintenance queries (MQ) down to the individual ISs to calculate the
incremental view changes of the data update on the DW extent (AV ). Once it receives query results MQR
from all relevant ISs, it integrates them into the data warehouse as shown in Figure 2.

The mediator is composed of the Assign Time Stamp process, the Update Message Queue process, the View
Maintenance process, and the Query Engine process. The View Maintenance module generates incremental
view maintenance queries (MQ) for a specific AIS to maintain the data warehouse. The Query Engine

process sends the maintenance queries (MQ) down to the corresponding ISs and collects answers (MQRs)
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Figure 2: Mediator of PSWEEP

from all ISs and collects them into one AV . The Assign Time Stamp process will assign a local time stamp to
all incoming messages, i.e. AIS ' and return query result MQR. The time stamps will be used by the Query
Engine process to detect and compensate the concurrent DUs while processing the maintenance queries. The
Update Message Queue process is used to buffer all the incoming data updates (AIS). The Assign Time
Stamp process, Update Message Queue process, Query Engine process and View Maintenance process together

can handle the concurrent DUs while maintaining the data warehouse.

2.2 Assumptions for the Multi-Relation Encapsulation Wrapper

In order to make the Multi-Relation Encapsulation Wrapper work smoothly, we place the following assump-

tions on the DW environment.

Assumption 2 The communication between the wrapper and the DBMS of that IS where the wrapper is
located is FIFQO.

Assumption 2 can easily hold because the wrapper is built upon a centralized local IS. Furthermore, to
erase any effect of interdependence among the ISs and focus on the wrapper of the individual IS, we have

Assumption 3

Assumption 3 All ISs are independent from each other, in the sense that a data update at one IS will not

propagate into other ISs.

lHere AIS is the same as AR because of the assumption that each IS contains only one relation.



All the relations, which are involved in the local view of the Multi-Relation Encapsulation Wrapper,
generally have some kind of relationships with one another, i.e., relations should be connected by a join

condition in the local view, otherwise the AIS might be large for a specific AR.

3 Analysis of Requirements of the Multi-Relation Encapsulation
Wrapper

The primary functionalities of the Multi-Relation Encapsulation Wrapper are the same as those of any other
basic wrapper to provide a unified interface to report data update messages and to process queries from the
mediator.

Beyond the basic requirements, The Multi-Relation Encapsulation Wrapper offers the additional func-
tionality of supporting multiple relations and handling concurrent local DUs. To support multiple relations
in one information source, the Multi-Relation Encapsulation Wrapper stores one local view definition for
each view of the DW. This view definition generated at the system initialization time will be used to calcu-
lates the AIS for each AR. The Multi-Relation Encapsulation Wrapper does not actually materialize the
local view, instead it directly calculated the AIS by doing joins of the AR and the underlying relations of
that IS specified by the local view.

3.1 Black-box Analysis of the Multi-Relation Encapsulation Wrapper

If we treat the Multi-Relation Encapsulation Wrapper as a black-box, we can identify the following inputs,

outputs, and function requirements.

Input: The wrapper receives maintenance queries (MQs) from the mediator, query results (LMQRs

and LQRs) from the its designated IS, and AR from the IS.

Output: The wrapper sends AISs and MQRs to the mediator, forwards LMQ queries to the ISs used
to process the MQ, sends LQ queries down to the IS relations to calculate the AIS(R;) from
AR;.

Function: || (1) The wrapper generates AIS for each AR; with R; being a relation in IS. (2) The
wrapper processes the MQ and returns the MQR. (3) The wrapper ensures the correct order
of returning messages. If the AIS is sent to DW by the wrapper before the MQR, then
the MQR is generated to include the effects of the AR. Vice versa, if the MQR is returned
before ATS(R), then the MQR will not include the effect of AR.

3.2 White-box Analysis of the Multi-Relation Encapsulation Wrapper

Every information source will have a wrapper for every mediator of the data warehouse DW that integrates

data from two or more relations from this information source. In order to ensure the functionalities described



in Section 3.1, we have following implementation requirements:

1. Local View Definition:
The calculation of AIS out of each AR is based on the local view definition established for the
materialized view defined in the DW.

2. Local Correction:
The calculation of AT Ss for any AR will be corrected locally in the wrapper by some local compensation
(LC) technique in the concurrent data updates environment. For each AR, there is one AIS generated
and sent to the mediator.

3. Single Transaction to Calculate the MQR
The MQ is executed by the wrapper and the MQR is returned to the mediator. The MQR contains
the effect of all concurrent ARs that happened at the IS during the execution.

4. Order Reassignment to Ensure Correctness

AIS and the MQR will be sent in such an order that the later one will have the effects of the previous

one incorporated.

The data update calculation has to be done in the sequential way and apply the local compensation
techniques on it, otherwise IS cannot report the AIS for a specific AR because of other continuous happened
concurrent ARs. Hence the IS wrapper can not process other queries due to waiting for this calculation of
the AIS. Then the whole maintenance process in the mediator will be blocked and waiting for that specific

IS. Therefor, the wrappers have to use the local correction techniques to calculate the AIS.

Theorem 1 AV calculated from AIS is identical to AV calculated directly from AR.

3.3 System Initialization

To use the Multi-Relation Encapsulation Wrapper in the DW system, the following operations are required

during system initialization.

1. The user view definition at the DW will be decomposed into local view queries for each of the involved

ISs.
2. There is one assembly view based on the local views, which is stored in the mediator.
3. The DW system initializes the wrappers of informations sources by their respective local views.

Example 4 This initialization process is described using the same scenario as Example 1 in Section 1.
Assume that we have a data warehouse built upon two information sources ISy and IS>. Table 2 shows the

schema of the relations in each IS. Assume in the data warehouse, we have a view as defined in Figure 3 2.



| IS name | Relation Name | Attribute Name |

ISl Rl (A7 C)
R2 (D, E)
15, R3 (B, F)

Table 2: Relation Structure

DW View Q1:

CREATE VIEW V AS

SELECT A B

FROM 1S1.R1, IS1.Ry, 155.R;3
WHERE I1S8,.R,.C =15,.R;.D AND

IS;).Ry.E = IS5.R3.F

Figure 3: Data Warehouse View Definition

During the initialization phase of the mediator, query Q1 will be decomposed into query Q2 for IS7 and
query Q3 for 1S, to create the local views. As we can see from Figure 4, the local views only contain o subset

of information of one information source as required by the DW view.

Local View Q2 of 15, Local View Q3 of 15;:

CREATE VIEW V_IS; AS CREATE VIEW VIS, AS
SELECT AE

SELECT B, F
FROM Ri, R» FROM R
WHERE Ri.C=R,D 3

Figure 4: Local Views at the Information Sources

The assembly query Q4 depicted in Figure 5 uses sub-queries Q2 and Q3 to initialize the mediator. The
mediator is based on the assembly query Q4 defined in Figure 5, which is used to maintain the DW instead

of the initial user provided query Q1.

4 Design of the Multi-Relation Encapsulation Wrapper Module

4.1 Architecture of the Multi-Relation Encapsulation Wrapper

Figure 6 shows the Multi-Relation Encapsulation Wrapper architecture. The data structures in the wrapper
include a Wrapper Message Queue and an Order Message Queue. The Wrapper Message Queue is used to

buffer all the incoming data updates (AR) from relations and MQ from the mediator. The Order Message

2The view V is defined in a extended SQL format that can specify the information sources.
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DW Assembled Query Q4:

CREATE VIEW V AS

SELECT A, B

FROM V_ISy, VIS
WHERE V_ISL.E = V_ISs.F

Figure 5: Assembly Query

MQR M AlS
= | [
Order Assignment
(with Order Message Queue)
Q
MQR Localized AlS
Processor
o e 25 Processor
Processor WMQ
Tiver I OR ron |
Assign Time Stamp

T T T
< L L L
LMQ LMQR AR LQR LOQ

Legend: | Module | ———> DataFlow

Figure 6: Architecture of the Multi-Relation Encapsulation Wrapper

Queue is used to buffer and reorder the output messages (MQR and AIS) in order to ensure the messages
will be send to the mediator in the correct order.

The Multi-Relation Encapsulation Wrapper is composed of the Assign Time Stamp process, the Localized
Processor process, the Query Processor process, the Update Processor process, and the Order Assignment.

The Localized Processor accepts MQ from the mediator. It localizes MQ in the sense of translate MQ
into a query LMQ understood by the IS.

The Assign Time Stamp process will assign a local time stamp to all incoming messages, i.e. AR and
LMQR from the underlying relations. The time stamps will be used by the Query Processor to ensure the
sequential handling of incoming messages.

The Update Processor calculates AIS for AR. For this purpose, it first generates local queries (LQ)
based on the local view definition stored in the wrapper at system initialization for a specific AR to produce
AIS. Then it sequentially processes the LQ to calculate AIS and fix any concurrency update problem by

using a local compensation technique.
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The Query Processor handles messages in the Wrapper Message Queue sequentially. There are two
kinds of messages in WMQ: LMQ and AR. When the Query Processor gets a LMQ from the WMQ), it will
send the LMQ down to the IS relations and get the LMQR back within one transaction. The LMQR is
forwarded to the Order Assignment Processor. When the Query Processor gets AR from the WMQ), it will
forward it to the Update Process.

The Order Assignment processor reorders the message (e.g., AIS and MQR) sequence and sends them
to the mediator. It sends MQR and AIS back to the mediator according to their time stamp to ensure the

correct sending sequence.

Theorem 2 As long as the wrapper sends AILS and MQR in the order that the later one will have the effect

of all the previous data updates, the mediator can correctly maintain the DW.

4.2 Calculating AIS under Concurrent DUs

As we stated before, the Multi-Relation Encapsulation Wrapper reports AIS for every AR. Because we do
not actually materialize local views in the wrapper, the wrapper needs to send down a query LQ to the IS

relations to calculate AIS for each AR and the AIS(R) should only have an effect of AR.

Theorem 3 There will be no potential threat of an infinite waiting when the wrapper calculate AIS for a

AR by using a local compensation technique to handle concurrent DUs.

The example below shows how the Multi-Relation Encapsulation Wrapper correctly calculates AIS from

AR under concurrent data update environment by using a local compensation technique.

Example 5 IF an IS has two relations Ry and Ry. At first, ARy arrives at the wrapper from Ry at time
t1. The wrapper will calculate AIS(R1) and report it to the mediator. To calculate AIS(Ry), the wrapper
sends down a query LQ to Rs.

LQ =AR; X Ry

If a concurrent data update ARy happens when the AIS(Ry) is being calculated, the wrapper receives
ARs from Ro with time stamp t2 and gets the query result LQR back with time stamp t3.

LQR = ARy X (R2 + ARs) = (AR1 X Rs) + (AR; X ARy)

The query result LQR has an effect of ARy, which is incorrect. When the wrapper gets the LQR back, it
will check their time stamp. From t2 < t3, the wrapper detects that a concurrent data update had occured.
The wrapper knows the need to eliminate ARy from AIS(Ry). Although the wrapper does not store any view,
it has the information of ARy and ARs. It is easy to get the correct result by using a local compensation
technique as for example defined in [AAS97].

LQR=LQR—-AR; X AR,

So, the correct AIS(R;y) is sent to the mediator by the wrapper.

12



4.3 Algorithm of the Multi-Relation Encapsulation Wrapper

Based on the previous description of the key features of the Multi-Relation Encapsulation Wrapper, we now
can give pseudo code of the Multi-Relation Encapsulation Wrapper module. Figure 7 depicts the software
module that is employed at the Multi-Relation Encapsulation Wrapper for multi-relation simulation.

The Query Processor is used to process the query LMQ. Because the wrapper is only for one IS, the
relations in the same IS are local and centralized. The LMQ can be sent to the DBMS of the IS and the
DBMS processes LMQ and sends the query result LMQR back to wrapper in one transaction.

The Update Processoris invoked for every update received at the wrapper to generate AIS. It sequentially

calculate the AIS and erases any abnormal behavior by local correction techniques [AAS97].

Theorem 4 Though the calculation time of independent AISs may be different for the different IS wrappers
and the order in which they are received by DW may be not the same as the order in which the AR actually
happened in real time, this receive order will not affect the final correctness of the data warehouse after

updating.

PROCESS QueryProcessor;
BEGIN
WHILE WMQ not empty

REMOVE a Message FROM WrapperMessageQueue;

IF the Message is LMQ THEN
SEND LMQ to Relations /*to calculated AV (LMQR)*/
RECEIVE LMQR FROM Relations
t= getCurrentTime();

OrderAssignment(LMQR, t);

ELSE /*Message is AR need calculate AIS */
UpdateProcessor(Message. AR, i,Message.t)
OrderAssignment(AIS);

ENDIF

ENDWHILE
END QueryProcessor;

MODULE Multi-Relation Encapsulation Wrapper;
CONSTANT
GLOBAL DATA
V: RELATION; /* Initialized to the correct view */
WrapperMessageQueue: QUEUE initially 0;
OrderMessageQueue: QUEUE initially 0;

PROCESS UpdateProcessor(AR: Relation; UpdateSource:
INTEGER; TimeStamp: INTEGER): RELATION
VAR
AIS, TemplS: RELATION;
j: INTEGER;
BEGIN
AIS = AR;
/* Compute the left part of the AIS from AR */
FOR (j = UpdateSource -1; j > 1; j-) DO
TemplS = AIS;

PROCESS OrderAssignment(QueryResult,t);
VAR

SEND AIS to Source Relation i; e TEGER;
RECEIVE AIS FROM Sour Relation i; )
IF 3(AR, j,t) € WrapperMessageQueue IFrtfeOQ“e’yRes““ is LMQR THEN

Then AIS = AIS - ARj X TemplS;
ENDIF
ENDFOR;
/* Compute the right part to the AIS from AR */
FOR (j=UpdateSource+1; j < n; j++) DO
TemplS = AIS;
SEND AIS to Source Relation i;
RECEIVE AIS FROM Sour Relation i
IF 3(AR,j,t) € WrapperMessageQueue
Then AIS = AIS - ARJ' X TemplS;
ENDIF
ENDFOR;
RETURN AIS;
ENDAREA

END UpdateProcessor;

PROCESS AssignTimeStamp;
VAR

t: TIME; /* current system time at the IS */

BEGIN

LOOP
RECEIVE Message FROM Relation i and LMQ FROM Local-

izeProcess() as received order;

t= getCurrentTime();
APPEND (Message,i,
FOREVER;

t) TO WrapperMessageQueue;

END AssignTimeStamp;

WHILE WMQ is not empty
IF 3(AR,t') AND (¢! < t)
r=1;
IF (AR,t’) is not in OMQ /*Order Message Queue*/
APPEND (AR,t’) TO OMQ;
ENDIF
ELSE
BREAK;
ENDIF
END WHILE
IF (r = 0)
SEND LMQR TO Mediator;
ELSE
APPEND (LMQR,t) TO OMQ;
ELSE /*Query Result is AIS*/
SEND AIS(R) TO Mediator;
IF AR is in OMQ
DELETE AR FROM OMQ;
WHILE head of OMQ is LMQR
DELETE LMQR FROM OMQ;
SEND LMQR TO Mediator;
END WHILE
ENDIF
END OrderAssignment;

BEGIN /* Start Multi-Relation Encapsulation Wrapper Processes */

StartProcess(AssignTimeStamp);
StartProcess(QueryProcessor);
END Multi-Relation Encapsulation Wrapper Process

Figure 7: Pseudo Code of the Multi-Relation Encapsulation Wrapper Module
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4.4 Multi-Relation Simulation Example in the Multi-Relation Encapsulation
Wrapper

Here is an example of how the data updates of the underlying information sources are handled by the

Multi-Relation Encapsulation Wrapper. The system has been initialized as described in Section 3.3.

Example 6 Assume there is a data update AR3 on relation Rs of IS>. The Update Processor of the wrapper
of ISy will generate the query LQ based on Q3 to calculate AV _IS5(R3). Then the wrapper reports the effect
of ARg, that is AV _I1S5(R3) to the data warehouse.

After receiving AV _1S2(R3) from ISs, the mediator will generate maintenance query Q5 defined in
Figure 8 with AV _1S5(R3) and send the M@ to 151 to calculate AV'.

MQ Q5:

SELECT A,B

FROM VIS, AV_IS,
WHERE V_IS.E=AV_IS,.F

Figure 8: Maintenance Query (MQ) Send to IS

After the wrapper of 1S1 receives MQ Q5 from the mediator, the Localized Processor merges the MQ)
query Q5 and the local view Q2 to generate LMQ (Figure 9). The Assign Time Stamp of the wrapper of
I1S; assigns o time stamp to this LMQ query and buffers in the WMQ). The Query Process gets LMQ from
the WMQ. To execute the query LM(Q) 6, the QueryProcess sends LM Q6 to base data base relations of
1S and gets the query result LM QR back in one transaction.

Assuming there is concurrent data update ARy when LMQ Q6 is being executed, the wrapper will assign
the local time to ARy and the Update Processor will generate AIS1(Rs). The query result LMQR of LMQ
Q6 will have the effect of AR>. When Order Assignment receives the LMQR @6, it knows that there is a
concurrent data update ARo by checking the local time stamp scheme. So it buffered the LMQR in the QM
until AIS1(R2) is also received by the Order Assignment. Then it returns AIS;(R2) followed by the query

result LMQR that is to ensure the later one has the effect of the previous data updates incorporated.

LMQ Q6:
SELECT A, B
FROM (SELECT A, E FROM R,, R, WHERE R,.C = R,.D) AS V_IS;,AV _IS,

WHERE  V_IS,.E = AV_IS,.F

Figure 9: Localized Maintenance Query (LMQ) in IS

The mediator will receive a AIS1(R3) followed by the query result MQR (Q5) from IS;. AV is calculated.
Then mediator knows that the MQR has an effect of AIS1(R2) by this receive order and AISi(R3) is a
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concurrent data updates. Hence the local compensation will erase the effect of the concurrent data update of

AISi(R2) and then the data warehouse is correctly updated.

5 Related Work

View maintenance methods concentrate on incrementally maintaining the extent of the DW. Zhuge et al.
[ZGMHW95, ZWGM97] introduce the ECA algorithm for incremental view maintenance under concurrent
IS data updates restricted to one centralized IS. Hence there is no distinction between the relations and IS. In
Strobe [ZGMW96], they extend their approach to handle multiple ISs. Agrawal et al. [AAS97] propose the
SWEEP-algorithm that can ensure the consistency of the data warehouse in a larger number of data updates
compared to the Strobe family of algorithms. Though their work has reduced the total number of remote join
queries, their work is based on the single relation ISs. In a separate work, we have proposed the PSWEEP
algorithm [ZDR99] that improves the performance of SWEEP by parallelizing the view maintenance processes
of SWEEP. However, PSWEEP is also assumes the limitation of only one relation per IS. In this paper, we
are instead considering how to apply those algorithms into a more realistic environment where there are
more than one relation at one IS by providing an Multi-Relation Encapsulation Wrapper. Thus our work is
complimentary to previous mentioned view maintenance algorithms.

Wrapper’s main tasks are to map between data models, e.g., local to global model, or web to relational
model. Wrappers can be used to present a simplified interface, to encapsulate diverse sources so that they
all present a common interface, to add functionality to the data source, or to expose some of the data
source’s internal interfaces. There are a lot of recent work on wrapper toolkits. Our work instead focuses on

reconstructing the source data and providing the data to the upper level.

6 Conclusions

The SWEEP [AAS97] and PSWEEP [ZDR99] algorithms have the least limitations compared to alternate
incremental view maintenance algorithms in the literature [ZGMHW95, ZGMW96]. However they can only
support one relation per information source, which is unrealistic in practice as most real data sources have
several facts of information. In this work, we propose a Multi-Relation Encapsulation Wrapper to overcome
this problem. The main features of the Multi-Relation Encapsulation Wrapper are: 1. Supports multiple
relations per IS by treating one IS composed of multiple relations as if it were a single relation from the
DW point of view. 2. Is transparent to the DW system and thus can easily work with many mediators
while keeping all the benefits of other incremental view maintenance algorithms. 3. Generates AIS for each
AR under concurrent data updates environment by using a local compensation technique. 4. Sends AIS

and MQR to the mediator in an order that the later one has the effect of the previous data updates. IN
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summary, our solution of the Multi-Relation Encapsulation Wrapper maintains all the advantages offered by

existing algorithms in the literature in particular SWEEP and PSWEEP, while also achieving the additional

desired features of being non-intrusive, efficient and flexible. We are currently in the process of enhancing

our distributed data warehouse system EVE by this wrapper techniques.
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