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Abstract

Consistency of a database is as an important property that must be preserved at all times. In most
OODB systems today, application code can directly access and alter both the data as well as the structure
of the database. As a consequence application code can potentially violate the integrity of the database,
in terms of the invariants of the data model, the user-specified application constraints, and even the
referential integrity of the objects themselves. A common form of consistency management in most
databases today is to encode constraints at the system level (e.g., foreign keys), or at the trigger based
level (e.g., user constraints) and to perform transaction rollback on discovery of any violation of these
constraints. However, for programs that alter the structure as well as the objects in a database, such as an
extensible schema evolution program, roll-backs are expensive and add to the already astronomical cost
of doing schema evolution. In this paper, pre-execution formal verification of schema evolution programs
is proposed as an alternative solution to the traditional rollback solution for consistency management.
As part of this work we introduce the notion of contracts, i.e., pre- and post-conditions for an extensible
schema evolution program, and demonstrate that they can be specified using a familiar language, OQL.
We also demonstrate the ease and practicality of using a theorem prover for the formal verification of
schema evolution programs. The theorem prover tool can be set up initially with all the information
about the environment, i.e., the axioms of the database, the invariants and the basic schema evolution
primitives. A writer then of an extensible schema evolution program need only supply the contracts
and the program written in OQL to guarantee the correctness of their program. We highlight the
main features of the verification process using a complete walk-through example. The end result of
our approach is a more efficient consistency management framework that has limited overhead to the
users and yet provides flexibility to safely add new schema evolution transformations to the system while
assuming complete correctness.

Keywords: Schema Evolution, Object-Oriented Databases, Consistency Management, Contracts.

*This work was supported in part by several grants from NSF, namely, the NSF NYI grant #IRI 97-96264, the NSF
CISE Instrumentation grant #IRIS 97-29878, and the NSF grant #IIS 97-32897. Dr. Rundensteiner would like to thank our
industrial sponsors, in particular, IBM for the IBM partnership award and for the IBM corporate fellowship for one of her
graduate students Special thanks also goes to the PSE Team specifically, Gordon Landis, Sam Haradhvala, Pat O’Brien and
Breman Thuraising at Object Design Inc. for not only software contributions but also for providing us with a customized patch
of the PSE Pro2.0 system that exposed schema-related APIs needed to develop our tool.



1 Introduction

Consistency Specification and Management Approaches. The advances in both persistent languages
as well as in OODBtechnology have aided in making the distinction between applications and databases
transparent [Obj93, Tec92, Obj94]. In most OODB systems today, application code can directly access
and alter both the data as well as the structure of the database. As a consequence application code can
potentially violate the integrity of the database, in terms of the invariants of the data model and the user-
specified application constraints, as well as the referential integrity of the objects themselves. Thus, it is
required that the application programmer be aware of the invariants as well as the constraints of the database
and ensure that their code does not violate them. The application programmer is hence saddled with either
the manual exercise of verifying the application code, a tedious and un-reliable course mostly handled by
some amount of testing of the code [Pre97]; or with writing time consuming test programs to verify that the
database is in fact in a consistent state after the execution of the application code.

Support from existing databases is mostly in the form of a built-in pre-defined set of consistency
definitions, such as referential integrity [MS90], programming language kinds of consistency definitions
[VD91, AH90] such as assertions and exception handling mechanism in languages like C++, Java, Ada,
or domain constraints over only a subset of types such as constraints on collection types [SHO95]. Relational
database systems (RDBs) offer some control over constraint specification by users via the mechanism of
triggers. RDBs then apply roll-back semantics, i.e., if a constraint is not satisfied at the end of a transaction,
then the entire transaction is rolled back [EN96]. Active database systems [BCVG86, LLPS91, BK90] per-
haps provide the most powerful capabilities for constraint specification in the form of event-condition-action
(ECA) rules and then roll-back semantics for constraint management enforcement. While some researchers
have used ECA rules to implement consistency management capabilities, the semantics of consistency man-
agement are fairly different from reactive control [SHO95, KBS, BK92].

Verification as Consistency Management Technique. However, while this roll-back based support
for consistency management might be adequate for some types of application programs, it is a very expensive
management strategy for schema evolution programs. Consider a large schema evolution program which may
take over 24 hours [FMZ94]. A roll-back due to the detection of an erroneous condition in the 237¢ hour
is not an attractive or a viable option. It would be much preferable to have a guarantee of success before
executing the evolution program. To address this, in this paper we propose verification of schema evolution
programs prior to their execution.

Verification of any program relies on the knowledge that given a start state, the program code will take the
system to a desired final state. Thus, before verification can be applied, it becomes essential to describe these
states, the start and the final states. However, most programs only describe them implicitly as part of the
actual program code itself. For example, a statement such as if subclasses == 0 then deleteClass()
indicates implicitly a start state of the system by the conditional statement. The actual code of the system-
supplied schema evolution operation deleteClass () gives its behavior and thus implicitly the final state of
the system. However, such hard-coded states would require inference from the program code. This in general
is very difficult and inefficient and possibly intractable depending on the programming language. Moreover,
any change in the domain, such as a change in the underlying object model, may force a code change in
order to properly add new or adjust existing constraints. While these hard-coded constraints are still the
most common approach for this problem, this re-engineering effort is a tedious, expensive and error-prone
process and occurs usually as an after-thought. Moreover, it is not extensible. For instance, if a user were to
write a new complex schema evolution program [CJR98b], such an approach would not scale to ensure that
these programs now in turn guarantee the consistency of the database. The application programmer would
now need to also hard-code their constraints within their new evolution programs.

Applying Verification to Extensible Schema Evolution Facilities. To address this problem in this
paper we present a mechanism, called contracts, that allows the user to declaratively describe the constraints
under which an evolution program can be applied as well as the expected outcomes of the program. We
have adopted the notion of contracts from the programming language Eiffel [Mey92] and now apply it to
assure the consistency for an extensible schema evolution framework, SERF [CJR98b]. SERF [CJR98b]
allows its users to compose arbitrarily complex schema evolution transformations using the basic schema



evolution primitives (provided by the underlying OODB system) and OQL. As the OQL query language is
capable of invoking programs or methods in other languages such as Smalltalk, Java, C++ and OQL, we
can bind the notion of contracts to these languages. We have been able to show that OQL is sufficient for
expressing the contracts necessary to assure consistency of OODBs. This offers the added benefit that OQL
is a standard language familiar to database developers and thus offers ease of use to writers (compared to a
formal specification language).

The contracts are a key feature for the practicality of our overall verification approach. In this paper
we present a formal verification mechanism using theorem proving [BHJ196] that allows us to verify the
correctness of schema evolution programs in terms of the consistency constraints (system constraints and the
contracts) prior to their execution. This is a complimentary approach to current techniques of consistency
management such as transaction roll-backs as described above '. For highly expensive programs such as
schema, evolution, applying a theorem prover to verify the program is efficient compared to the potential
cost of transaction roll-backs. In this paper we demonstrate the practicality of our approach and present a
proof of concept by showing the verification of schema evolution transformations written in OQL. To reduce
the start-up of learning such a complex tool with a formal language and to make this approach more feasible
and practical, we propose developing a user-friendly theorem prover tool. The user would only need to input
the schema transformation with OQL contracts in order to use it.

Overview of the Paper. The rest of the paper is organized as follows: Section 2 reviews the SERF
framework. Section 3 presents an example that we use through-out this paper. Section 4 presents our
overall approach. Section 5 describes contracts as integrated with SERF and their advantages. Section 6
describes how to realize the key features of theorem provers for supporting the verification of schema evolution
programs. Section 7 demonstrates the verification process using an example. Section 8 presents related work,
and in Section 9 we give a summary of our work and future direction.

2 Review of the SERF Framework

In this section we present a brief overview of the extensible schema evolution framework, SERF [CJR98D]
which motivates this work. Schema evolution support today provide a fixed set of simple schema evolution
operations and thus are not able to cover all changes that a user might want to make to an object schema.
In SERF we address this limitation and allow users to customize semantics of transformations in a flexible
and re-usable manner [CJR98b]. Our approach is based on the hypothesis that complex schema evolution
transformations can be decomposed into a sequence of basic evolution primitives, where each basic primitive
is an invariant-preserving atomic operation with fixed semantics provided by the underlying OODB system.
To effectively combine these primitives and perform arbitrary transformations on objects within a complex
transformation, we rely on a standard query language, namely OQL [Cea97]. We have demonstrated that
a language such as OQL, which can be applied to both data and meta-data, is sufficient for accomplishing
schema evolution, thereby re-using existing technology. The SERF system is proposed as a value-added
re-structuring layer on top of existing database systems.

A SERF transformation flexibly allows a user to define different semantics for any type of schema trans-
formation (see Figure 1). However, these transformations are not re-usable across different classes or different
schemas. To address this, we have introduced the notion of templates in the SERF framework [CJRI8b].
A template uses the fact that meta knowledge can be accessed in the OODB’s system dictionary (as per
the ODMG standard). In addition a template is encapsulated via a name and a set of parameters to make
transformations generic and re-usable (Figure 2). Thus, when the example SERF template in Figure 2 is
instantiated with actual schema elements it results in the SERF transformation shown in Figure 1.

An implementation of the SERF framework, called OQL-SERF, has been developed at Worcester Poly-
technic Institute [CJR98a]. It is based on the ODMG standard and uses the ODMG object model, the
ODMG Schema Repository definition, and OQL. The system is being implemented entirely in Java and uses

IThe transaction roll-backs here provide a safety net for any violations that may go undetected during the verification
process.



begin tenplate inline (className, refAttrName)

{

refClass = element (
select a.attrType
from MetaAttribute a
where a.attrName = $refAttrName
and a.classDefinedln = $classNane; )

/'l Add the required attributes to the Person class define local Attrs(cName) as
add_attribute (Person, Street, String," "); | t c.local AttrList
add_attribute (Person, City, String," "); Step A vsfoemclvbt aCl ass ¢
add_attribute (Person, State, String," "); where c.metaCl assName = cName;
/1 Get all the objects for the Person class /1 get all attributes in refAttrName and add to className
define extents() as Step B for all attrs in local Attrs(refClass)

sel ect ¢ add-attribute($className, attrs, attrstype, attrs.default)

from Person c;
/'l Update all the objects /1 get all the extent
for all obj in extents(): Step C define extents(cName) as

obj .set (obj.Street, valueOf(obj.address.Street)) AND sel ect ¢

obj .set (obj.City, valueOf(obj.address.City)) AND from cName c;

obj .set (obj.State, valueOf(obj.address. State);

Il set: className.Attr = className.ref AttrName. Attr
I/l Delete the address attribute } Step B for all obj in extents($className):
delete_attribute (Person, address); for all Attr in local Attrs(refClass)
obj .set (obj.Attr, valueOf (obj.refAttrName. Attr))

Flgure 1: Inhne Tra.nsformatlon Expressed in OQL , del ete-attribute ($className, $refAttrNane);

with Embedded Evolution Primitives.

end tenplate

Legend: | cName: OQL variabl es
$cl assName: tenplate variabl es
refClass  user variables

Figure 2: The Inline Template.

Object Design’s Persistent Storage Engine (PSE) for Java as its back-end database [O’B97]. The system
was demonstrated at SIGMOD’99 [RCL*99] in May 1999 and will be released to public domain shortly.

3 Running Example: The Delete-Class Evolution Program

Consistency management requires the specification of comprehensive constraints that must be checked to
ensure that they are not violated. For example, the basic schema evolution primitive delete-class(C;) [PS87]
can only be applied when the class C; is a leaf class, i.e:

sub(C;) = 0} (1)

However, while this is a necessary and sufficient constraint for the delete of the HomeAddress class
specified in the schema depicted in Figure 3, it is no longer a sufficient stipulation for a schema that contains
references to other classes as in Figure 4.

For example, the delete of the leaf class Address in the schema in Figure 4 is a valid evolution operation
as per the constraints specified Equation 1. This however causes dangling references and hence compromises
the consistency of the system by violating both the structural integrity (schema-level) and the referential
integrity (object-level) of the system. Equation 2 provides a comprehensive list of constraints that should
perhaps be checked prior to the deletion of a class.

sub(C;)) = 0
in — degree(C;) = 0 (2)
Yo; € extent(t) : obj — in — degree(o;) = 0 for t=type(C;)

Today, while most state-of the art OODB systems allow the use of reference attributes, the delete-class()
primitive in these systems only needs to satisfy one constraint, i.e., the class being considered for deletion
must be a leaf class [Obj94, Obj93]. From the example shown here it can be seen that this can cause
inconsistencies.

4 Overall Approach: Contract-Based Pre-Execution Verification

In this section we introduce a two-step approach that helps address the problems of hard-coded constraints
and transaction roll-backs in the context of schema evolution programs. We propose an approach:
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e that allows the user to declaratively describe both the constraints under which an evolution program
can be applied and the behavior of the program, and

e that allows the user to use a formal verification mechanism using theorem proving to verify the cor-
rectness of their schema evolution programs.

4.1 Explicit Declarative Constraint Specification

From Equation 2 we can observe that when considering and compensating for the effects of reference at-
tributes as in the delete-class schema evolution primitive program, the actual functionality of the program
itself is not being changed. For example, for the delete-class example in Section 3, the program is still
simply deleting a class. However, the conditions or the constraints under which a class can be deleted are
changed. Namely to compensate for the consistency violations that could occur with reference attributes, the
delete-class program must now also consider all the classes that are referring to a particular class before
the class can be deleted. Thus, we now propose elevating the constraints which must hold true for the suc-
cessful execution of a program outside the actual program code a la software contracts in Eiffel [Mey92]. The
software contracts are classified into two categories pre-conditions and post-conditions. Pre-conditions
are the constraints that must be satisfied prior to the execution of the program code, and post-conditions
describe the state of the system after the execution of the program code.

We thus, as part of our approach, integrate the notion of contracts into SERF templates. Hence, any
schema evolution program, irrespective of the language it was written in, would be encapsulated and packaged
as a SERF template in our system which captures the pre-and post-conditions for the schema evolution
program. For example, the program for the schema evolution primitive delete-class would have a SERF
template that explicitly details its pre- and post-conditions as presented in Equation 2 irrespective of any
hard-coded constraints that may be part of the system-level implementation code of the primitive. Using this
approach, a user can now also describe the pre- and post-conditions for any new complex schema evolution
program that they may write, such as an inline SERF template (see Figure 2).

Advantages of Contracts. Contracts in general make the program easier to understand by others as
they abstract away from the actual code and are explicit declarations. Programs with contracts thus achieve
(potentially) higher level of re-use. In our specific case, SERF templates with contracts provide faster updates
to the OODB system when the underlying object model is updated, for example with the modeling support
of relationships. Namely, we would now simply add additional declarative constraints to existing schema
evolution primitive templates rather than having to update the system code. Moreover, a mechanism such
as formal verification can now be put to work to detect erroneous conditions prior to the execution of the
schema, evolution programs. This would help avoid the cost of roll-backs in cases of failure. Finally, the
post-conditions allow the user to verify that from the initial state of the system the final expected state is
reached, and thus determine the correct functioning of the program.

4.2 Consistency Management Via Verification

To fully exploit the potential benefits of contracts, the second step of our approach utilizes them to verify
the correctness of a SERF template. When a template is applied to a system that satisfies the template’s



pre-conditions, then the correctness of the template is verified if after execution it produces the state of the
system as specified by its post-conditions. This aids in ensuring the consistency of the OODB systems in
the presence of user-specified schema changes not only at the user-level (the state of the system is as per
user’s specification via the post-conditions) but also at the system-level (the new state of the system does
not violate the invariants of the system). One approach to verification is via extensive testing. However,
while widely used in industry [Pre97], this approach is error-prone as it is not feasible to test all possible
cases. Instead we take a more formal approach to verification.

We base our formal verification on theorem proving techniques [BHJT96] and demonstrate the practicality
of this technique for our application space. The theorem prover verification process is applied to SERF
templates at runtime as a pre-cursor to execution. As per the theorem prover, the set of pre-conditions
indicates a state of the system that must be satisfied prior to execution and the set of post-conditions the
final state of the system that the execution of the template program must achieve.

Advantages of Formal Verification as a Consistency Management Tool. The key advantage of
formal verification is to prevent a problem (a consistency violation) from occurring rather than either trying
to patch up after the fact or trying to recover from it via roll-backs. In the case of schema evolution programs,
there is a potential performance win over the strategy of doing roll-backs. One of the big advantages of SERF
are the SERF Template Libraries, a resource that can be re-used by a large software community. Verification
allows us to guarantee the correctness of the templates in this library.

5 Contracts in SERF Templates

Contracts bring forth many advantages as a mechanism that allows for easier reasoning and as a tool that
aids the formal verification of a program. As stated earlier, we have extended the SERF template to include
the notion of contracts. To allow for a seamless integration with SERF as well as for ease of usability,
we investigated the use of OQL as a user-friendly constraint specification language and found it to be
very adequate for our purposes. This offers the advantage of staying within the same language for SERF
templates, namely, the standard query language that should be familiar to anyone working with database
management systems (DBMS). Thus, the users don’t have to learn a new language. For programs that are
not written in OQL, this is still advantageous given the simplicity of OQL compared to formal specification
languages. Contracts are divided into two categories pre-conditions and post-conditions where the pre-
conditions are placed prior to any code and the post-conditions representing the state of the database after
the execution of the code are placed after the code.

Pre-Conditions for a Contract SERF Template. The constraints, termed pre-conditions, are placed
prior to any code (OQL statement) in a template. The pre-conditions are a logical expression separated
from the actual OQL statements representing the template body by means of the keyword requires and
are expressed in OQL 2. Each statement of Figure 6 shows the constraints for the delete-class primitive as
expressed in Equation 2 as a pre-condition.

The pre-conditions must all hold true before the actual schema evolution program (delete-class in this
example) can be executed.

Post-Conditions for a Contract SERF Template. The behavior of the primitives is declared by post-
conditions, a set of contracts that appear after the body of the actual schema change code at the end of
the SERF template. These post-conditions are preceded by the keyword ensures: and describe the exact
changes that are made to the schema by the evolution program. We extend the pre-condition verification
process to also do the post-condition verification, which then is responsible for validating that the schema
change specified actually accomplished what it set out to do.

Figure 7 shows the post-conditions of the delete-class primitive. Here the class C; is deleted and the
system must ensure that this has in fact occurred by checking the conditions shown in Figure 7. For
example, after deletion we do not expect the schema to have any class C; nor have any class referring via a

2The functions used here those shown in Table 3.



delete-class ( C; )
{
requires:
exists x in C:

x = C; and
exists y in types(C):

y = 0(C;) and
sub(C;) = 0 and
in-degree(C;) = 0 and
for all z in extent(C;):

obj-in-degree(z) = 0

schema evolution program

(delete-class) here
}
Figure 6: Pre-Conditions for Delete-Class Evolu-
tion Program

delete-class ( C; )
{ schema evolution program
(delete-class) here

ensures:
for all a in out-paths(C;):
not (exists b in in-paths(a.class):
b.class = C;) and
for all c in super(C;):
not(exists d in sub(c):
d=C; ) and
not(exists e in C:
e = C;) and
not(exists e in types(C):
e =0(Ci))
}

Figure 7: Post-Conditions for the Delete-Class
Evolution Program

relationship to the class C;. Thus, together the pre-conditions and the post-conditions declaratively define
both the constraints that must be satisfied prior to execution of the specified schema change as well as the

behavior of the change itself.

A declarative approach, such as offered by contracts, combined with SERF templates brings another
dimension to the extensibility of SERF. Using this mechanism we are able to describe contracts for any
evolution program using SERF as a wrapper. Figure 8 shows the Inline template of Figure 2, with its
contracts, the conditions under which it can be applied and the resultant schema after its application. The
pre-conditions here also describe the semantics under which the user thinks that the template would be valid.
For example, in Figure 8, the last pre-condition states that the inline transformation can only be done for

reference attributes that are not self-referential.

begin template inline (className, refAttr Name)
{
requires:
existsxinC:
x = className and
existsy in N(className):
y = refAttrName and
existszin C:
z = domain(refAttrName) and
not (className = domain(ref AttrName))

Body of Inline Template

ensures:

existsxinC:
x = className and
not (existsy in N(className):
y = refAttrName) and
for al ain N(domain(refAttrName)):
exists z in N(className):
z=a

}

end template

Figure 8: Inline Template with Contracts.




6 Theorem Prover for SERF Templates

6.1 Introduction

As noted in Section 4.1, contracts provide a mechanism for declaratively describing constraints and behavior.
In order for contracts to be an effective basis for constraint management, they need a mechanism that
performs their checking. Eiffel [Mey92] provides support for contract checking as part of its language compiler
itself. However, such an approach is limited to a particular language and also does not take into account
the outside invariants such as the invariants of the object model that may need to be maintained. In our
work we instead apply theorem provers [GSW95, BHJT96] as a mechanism for validating the correctness of
schema evolution programs via the use of contract SERF templates.

Proving correctness of programs requires knowledge about the initial (starting) state of a system, the final
states that need to be reached and a set of functions that are applied to reach the targeted states. Additional
constraints such as information and axioms about the given environment (such as the object model) form
a tangential part of the functions and must be maintained at all times. When repetitive applications of
functions are required, the final state of the system after the application of a previous function is regarded
as the initial state. If the final state is reached, the program is verified to be correct.

Theorem proving approaches verification by formalizing (a) a model of computation, (b) the specification
and (c) the rules of inference [BHJT96]. The axioms and other knowledge about the environment comprise
the model of computation, the pre- and post- conditions are the specification, i.e., the initial state of the
system as well as the final targeted state that must be reached. The rules of inference are the functions that
help reason about the validity of the path from the initial to the final states of the system. Table 1 shows
what these components correspond to in the context of our SERF database environment. In the following
subsections, we sketch out these three components for our problem domain to show the viability of theorem
provers for SERF templates (see also Table 1).

| Theorem Prover Component | SERF Components

Model of Computation Object Model, Invariants, System Functions
Specification SERF Contracts (Pre- and Post-Conditions)
Rules of Inference Schema Evolution Primitives

Table 1: Theorem Prover Components for the SERF Environment.

6.2 Model of Computation for SERF Templates

The model of computation formally describes the environment in which the theorem prover is being applied.
The SERF framework is based on the ODMG object model [Cea97]. Hence, the theorem prover must be
provided with a formal definition of the ODMG object model, its invariants and the functionality of each
of the system dictionary functions as described in Table 3. This model of computation is part of the setup
of the theorem prover system and thus would be generated once a-priori for the contract SERF system.
It would only need to be modified if and when there is a change in the environment itself, for example if
the object model changes. While different theorem provers use different languages [GM93, ORS92], for the
purpose of this paper, we assume the language of the theorem prover to be set-theoretic.

6.2.1 The Object Model

Table 2 gives a brief description of the components of the object model. In general, a schema that ties all
this together is as defined below.

Definition 1 A schema is a 7-tuple S = (C, 0, <, M, G, R, o) where

e G is a set of names disjoint from C,



| Term | Description
C The set of all class names in the system
types(C) | The set of all types in the system
o Mapping from C to types(C)
< The sub-typing relationship on types(C)
R The set of all relations in the system
obj The set of all objects in the system
0 An object that is a pair (o,v) where o = OID and v = value
Q Mapping from R to an ordered set of types in types(C)
M The set of all method signatures

Table 2: Components of the Object Model

e o is a mapping from C U G to types (C),

(C, o, <) is a well-formed class hierarchy,

M is a well-formed set of method signatures for (C, o, <),
e R is a finite set of relation names, and

e « is a mapping from R to an ordered pair of types.

A more thorough treatment of the formal description of the object model can be found in [AHV95].

System Functions. Table 3 describes some helper functions which are a part of the system definition. For
the theorem prover, the behavior of each of these functions is precisely defined in a set-theoretic language.

| Term | Description |
super(t) The set of all direct supertypes of type ¢
sub(t) The set of all direct subtypes of type t
super* (t) The set of all direct and indirect supertypes of type ¢
sub* (t) The set of all direct and indirect subtypes of type ¢
in-paths(t) The set of all paths <c,r> referring to type ¢
in-degree(t) The count of all paths referring to type t
out-paths(t) The set of all paths <t,r> going out of type ¢
out-degree(t) The count of all paths going out of typet
obj-in-degree(0;) | The number of objects referring to the object o;
obj-out-degree(0;) | The number of objects being referred to by the object o;

Table 3: Notation for Axiomatization of Schema Changes

Invariants of the Object Model. Table 4 presents the invariants for the ODMG object model.

6.3 Specification of SERF Templates

A theorem prover requires the specification of the initial state of the system as well as the final state that
needs to be verified. The contracts, i.e., the pre- and post- conditions as defined in Section 5, fulfill these
requirements by providing an initial state (the pre-conditions) that must be valid and an expected final state
(the post-conditions) that must be met. However, the theorem prover expects its inputs to be expressed in a
formal language. Hence these contracts need to be converted to the language of the theorem prover, i.e., in



Axioms | Description

Rootedness | T =root |V t € types(C), t € sub*(T)

Closure V t € types(C), super* (t) € types(C) | t = root )

Pointedness | L = leaf | sub(L ) =0

Nativeness | N(t) = The set of native (local) properties of type ¢

Inheritance | H(t) = The set of inherited properties of type ¢

Distinction | ¢ € C | ¢ is unique

Degree total in-degree (T-IN) / total out-degree (T-OUT) is an invariant

Table 4: Invariants of the Model

our case to a set-theoretic language. We have found based on an extensive study of templates [CR99] that our
OQL contracts can easily be expressed in set-theoretic notation. Figure 9 represents the specification of the
delete-class evolution program from Figures 6 and 7 and Figure 10 the inline template from Figure 8 in
set-theoretic notation. As part of our work, we are developing a translator tool that automatically translates
the OQL contracts to this set-theoretic language. This elevates the burden of writing contracts in a formal,
mathematical language from the user.

begin template delete-class ( C; ) l{)egin template inline ( Cs, 75 )
{
requires: requires:
C;eCA CseCA
o(C;) € types(C) A o(C,) € types(C) A
§ub(Ci):0A rs € N(Cs) A
in-degree(C;) = 0 A domain(rs) € C A
V 0; € extent(t) C, # domain(r,);

(obj-in-degree(o; ) = 0;)

delete-class-program (Ci); Body of inline template

ensures: ensures:
V < Cy,ry > € out-paths(C;) Cs,elC A
(< C; > ¢ in-paths(Cz)) A a(Cs) € types(C) A
V C, € super(C;) rs & N(Cs) A
(C; ¢ sub(Cz)) A domain(rs) € C A
CigCA V x € N(domain(r,))
a(Ci) ¢ types(C); (x € Cy);

! }
Figure 9: Delete-Class Primitive Template with

Figure 10: Inline Template with Set-Theoretic
Set-Theoretic Contracts

Contracts

6.4 Rules of Inference

The rules of inference are operations that move the system from one given state to another state, i.e., code
segments that take the system from an initial specification to a final specification. The body of a SERF
template, i.e., the actual schema evolution functions and OQL code, are hence the rules of inference in our
system.

For example each step (statement, OQL, or schema evolution function) of the inline template as shown in
Figure 1 is a rule of inference®. Each of these rules is applied one at a time to a given state of the system. For

3As a first step, we consider only a restrictive set of OQL for verification purposes as discussed in Section 6.3.



example, the pre-conditions given in Figure 10 represent the initial state of the system that must be satisfied
prior to any code checking. Here, the class className and the reference attribute refAttrName must exist
otherwise it is meaningless to proceed with the verification. Given this initial state, we proceed to apply
the first evolution change in the template, the add-attribute (statement 1). As part of our work, we have
wrapped each individual change primitive program in a SERF template with their specific contracts (see
Figures 9 and 10for example of this.). Hence forth we consider the contract SERF template for each evolution
primitive program. Thus, in this example the initial state of the system must meet the pre-conditions for
the add-attribute. The post-conditions specified by the add-attribute represent the final state S, and
are indicative of the behavior of the add-attribute change primitive. Figure 17 in Appendix A gives the
specification for the add-attribute function.

A subsequent evolution change, add-attribute, uses this state S, as its initial state against which its
preconditions must match. Table 5 represents the schema evolution operations that we consider as rules of
inference in our system. Appendix A gives the specification for each of the evolution primitive programs.

| Evolution Primitive | Description |
add-class(c, C) Adds new class ¢ to C in the schema S
delete-class(c) Deletes class ¢ from C in the schema S
add-ISA-edge(c,, cy) Adds an inheritance edge from ¢, to ¢,
delete-ISA-edge(cy, cy) Deletes the inheritance edge from ¢, to ¢,
add-attribute(cy, ay, t, d) Add attribute a, of type t and default value d to class c,
delete-attribute(cy, ay) Deletes the attribute a, from the class ¢,

add-reference-attribute(c,, 5, ¢y, d) | Add unary relationship from class ¢, to class ¢, named r, with
the default value d

delete-reference-attribute(cy, ;) Delete unary relationship in class ¢, named 7,

form-relationship(cy, 13, ¢y, Ty) Promotes the specified two unary relationships to a binary
relationship

drop-relationship(c,, 14, ¢y, Ty) Demotes the specified binary relationship to two unary
relationships

Table 5: Taxonomy of Basic Schema Evolution Primitives for Classes, Attributes and Inheritance Hierarchy.

In addition to the primitive evolution programs, we also consider the for-all OQL statement. This
is translated to a repetitive application of the loop body that results in a cumulative effect on the state of
the system. For example, for all x in attributeSet: add-attribute(C, x, default) results in the
application of the add-attribute primitive count (attributelist) times, where count gives the number of
elements in a set. The final state of the system will be the cumulative result of applying all add-attribute
primitives.

7 Formal Verification Process: Application to Inline Template

In this section, we illustrate the working of the theorem prover by a step by step verification of a template
(namely the inline template from Figure 10), thereby showing how theorem provers can be applied to
our domain for verification of schema evolution transformations. This is an automated process where the
computation model (Section 6.2) and the rules of inference (Section 6.4 and Appendix A) have already been
setup as part of the tool. The user only needs to input the specification contracts and the template code in
OQL.

The theorem prover proves the correctness of the inline transformation shown in Figure 2 by first proving
three theorems and then tying them together to prove the correctness of the inline transformation itself (the
fourth theorem). Each of the theorems specifies the properties of one of the evolution programs in the inline
transformation.
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Schema Evolution Primitive: add-attribute. The preconditions from the contract specification in
Figure 10 that must hold for add_attribute(Cs, a,, type, default) are given in Equation 3 *:

C, € CA
o(Cs) € types(C)A 3)
a;, ¢ N(Cs)

The desired postconditions expected after applying add-attribute are:

Cs € CA
o(Cs) € types(C)A
a; € N(Cs)A (4)
(Vx € sub*(Cy)
a, € H(x))

Theorem 1 If the add-attribute program is applied to arguments satisfying preconditions given in Equa-
tion 3, then the program results satisfy the postconditions given in Equation /.

Proof: Assume that the preconditions in Equation 3 hold. The add-attribute function adds the attribute
ag to the class Cy, i.e.
a; U N(Cy) } (5)

The add-attribute function also adds a, to all the subclasses sub* (C;) of Cs. Assume that the preconditions
in Equation 3 also hold for all sub*(Cs). Hence we have:

Vx € sub*(Cs) (6)
(az U H(x))

Here Equations 5 and 6 show the altered states of the system after the execution of each add-attribute
function. From Equations 5 and 6, we have the desired postconditions as specified in Equation 4. O
In Figure 2, line 1 shows a for—-all loop used to copy all the attributes of the class C4 to the class C, ®. At
the end of the for-all loop, with repetitive application of the add-attribute, the desired state is given by
the postconditions in Equation 7.

Cs € CA
a(Cs) € types(C)A
Vx € N(Cd) (7)
(z € N(Cs)A
Vy € sub*(Cs)
(z € H(y))

Theorem 2 If the add-attribute function is correct as per Theorem 1, then repetitive execution of the
add-attribute function with different arguments result in a cumulative effect such that postconditions given
in Equation 7 are satisfied.

Proof: (Proof By Induction)

Base Case: Assume that the class C;; © has only one attribute a. This reduces the for all statement
(line 1) to a simple add-attribute(Cs, a, a.attrType, a.defaultValue). We know by Theorem 1 that if
the pre-conditions given in Equation 3 hold for these arguments, then post-conditions as given in Equation 4
will also hold.

Induction Hypothesis: Assume that the theorem holds true when class Cy has k-1 attributes and they
are added to class Cj, i.e., the post-conditions given in Equation 7 are satisfied for k-1 add-attribute
applications.

4These are repeated from Figure 10 for convenience.
5These are the Person and the Address classes in the example.
6 Cy is the class that is being referred to by the reference attribute r in class Cs.
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Induction: Prove that the post-condition in Equation 7 holds when the class Cy has k attributes.

We know that the postconditions ( 7) hold when class Cy has k-1 attributes and they are added to the class
Cs. To add the kt" attribute to class C, we do: add-attribute(Cy, ai, ap.attrType, ay.defaultValue).
We know by Theorem 1 that if this satisfies the pre-conditions given in Equation 3, then the post-conditions
in Equation 4 hold true (Base Case). Combining the post-conditions for the addition of k-1 attributes
(Induction Hypothesis) with the post-conditions of the Base Case, we get the post-conditions as given in
Equation 7. O

Schema Evolution Function delete-attribute. First we give the initial state of the system, i.e., the
preconditions in Equation 8 that must be satisfied for the function delete-attribute(Cg, a;):

C, € CA
0(Cs) € types(C)A (8)
a; € N(Cy)

After the execution of the delete-attribute, the final state of the system is given in the post-conditions
in Equation 9.

a; ¢ N(Cs)A
Vx € sub*(Cs) 9)
(as ¢ H(x))

Theorem 3 If the delete-attribute function is applied to arguments satisfying precondition ( 8), then the
function results satisfy the postcondition ( 9).

Proof: The proof of this can be given in a manner similar to Theorem 1.

Schema Evolution Function delete-class. The necessary preconditions that must hold for the function
delete-class(C;) are given in Equation 10:

Cs € CA
a(Cs) € types(C)A
sub(Cs) = OA (10)
in — degree(Cs) = OA
Yo; € extent(t) : (obj — in — degree(o;) = 0)

The desired postconditions ( 11) after the application of the function delete-class are as given in Equa-
tion 11.

V< Cyyry > € out— paths(C;)
(<Ci> ¢ in— paths(Cy))A
VC, € super(C;) (11)
(Ci ¢ sub(Ca)A
C; ¢ CA
o(Ci) ¢ types(C)

Theorem 4 If delete-class function is applied to arguments satisfying preconditions in Equation 10, then
the function results satisfy the postconditions in Equation 11.

Proof: The proof of this can be given in a similar manner to the previous one.
The Inline Transformation Thus, to verify the correctness of the inline transformation, we chain the

results of Theorems 1, 2, 3 and 4. The overall pre-conditions for this are as given by Equation 12 7. The
execution of the inline transformation must result in the final state as specified by Equation 13 8.

"These are the overall pre-conditions for the inline template in Figure 10.
8These are the post-conditions for the inline template given in Figure 10.
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C; € CA
a; € N(C5)A
Cq = domain(az)A (12)
Cq € CA
Cs 7é Ca
C, € CA )
Cyq ¢ CA
Vx € N(Cq)
(x € N(Cs))N (13)
Vy € sub*(Cy)
(z € H(yA
a; ¢ Cy) )

Theorem 5 If Theorems 1, 2, 3, and 4 are satisfied in the order specified, then the inline transformation
satisfies the postconditions given in Equation 13.

Proof: The proof for this can be given by a combination of the postconditions in Equations 7, 9 and 11.
O

Using theorem proving techniques as shown for the template here it is possible to verify the correctness
of any given template. If at any point one of the sub-theorems is not satisfied, i.e., if Theorems 1, 2, 3, or
4 are not satisfied, the verification process is aborted and the template is not permitted to be executed.

8 Related Work

Basic Schema Evolution. The goal of schema evolution research is to allow schema evolution mechanisms
to change not only the schema but also the underlying objects to have them conform to the modified schema.
The first taxonomy of primitive schema evolution operations was defined by Banerjee et al. [BKKK87]. They
defined consistency and correctness of these primitives in the context of the Orion system. Until now, current
commercial OODBs such as Itasca [Inc93], GemStone [BMO*89], ObjectStore [Obj93], and O [Tec94] all
essentially handle a similar set of fixed evolution primitives; though based on their own respective object
models. In recent years, the advent of more advanced applications has led to the need for support of complex
schema evolution operations. Both Breche and Lerner [Bré96, Ler96] have investigated the issue of complex
operations. Lerner [Ler96] has introduced compound type changes in a software environment, i.e., focusing
on type and not on object instance changes. The SERF framework [CJR98b] presents a flexible way of doing
transformations by means of a re-usable, parameterized SERF template. However, none of these systems
provide any form of constraint specification or management other than hard-coded invariants.

Formal Verification Mechanisms. Formal verification is a powerful mechanism for providing proofs of
correctness for programs. There is a large body of work [GSW95, ORS92, Bla98, GM93] that has looked
into making such mechanisms somewhat semi-automated, called theorem provers. Work has focused on
formalizing software semantics and proving theorems about code and algorithms [GSW95, Bla98]. However,
no work has yet been done in applying formal verification as a technique for maintaining the consistency of
the database during schema evolution as done by our work.

Consistency Management. Support from ODBMS mostly follows the support that is already provided
by programming languages in terms of consistency definitions [VD91, AH90] such as assertions and exception
handling mechanisms in languages like C++, Java and Ada. Relational database systems (RDBMS) offer
some additional support in the form of triggers but only support roll-back semantics, i.e., if a constraint is
not satisfied at the end of a transaction, then the entire transaction is rolled back [EN96].

Active database systems [BCVG86, LLPS91, BK90] provide event-condition-action (ECA) rules that
are a mechanism for detecting the occurrence of some event and responding to it by some action. While
some researchers have used ECA rules to implement consistency management capabilities, the semantics
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of consistency management are fairly different from reactive control [SHO95, KBS, BK92]. Consistency
management activities are a required part of any computation in which constraints are enforced and failure
to satisfy the constraints may invalidate the activity. The failure to complete the activity associated with an
ECA rule, however, may not necessarily invalidate the activity associated with it. While it may be possible
to implement such semantics manually in some systems, it is not desirable to do so.

Much research has also been done in consistency management for software process languages. Tarr et al.
[TC98] have developed a consistency management system which allows for the specification of consistency
conditions and the degree of inconsistency tolerable by the user.

However, all above consistency management systems accept the fact that inconsistencies happen and try
to rectify the problem after the fact. We approach the problem by attempting to prevent the problem from
occurring by means of a pre-execution verification mechanism. Our approach could be combined with any
of these above approaches where these would provide a safety net.

9 Conclusions

In this paper, we describe a verification process for an extensible schema evolution system (SERF) and its
transformation programs (SERF templates) as a measure for assuring the consistency of the OODB system.
The practicality and the feasibility of the approach has been shown. While verification of programs has an up
front cost for the verification, consistency management in situations such as for schema evolution programs
which are extremely expensive to execute via prevention is a more effective and efficient mechanism compared
to transaction roll-backs.

We have demonstrated how consistency management via verification can be done when the programs are
schema, transformation programs. The verification technique however can be applied for different types of
programs and can thus be utilized for consistency assurance in general by any database system.
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A Taxonomy of Schema Evolution Operations

We also present here the contract-serf templates for each of the primitives specified in Table 5.

add-class ( C;, C)
{

requires:

C; ¢ CA
o(Ci) ¢ types(C)

add-class-primitive ( C;, C)

ensures:
C;,eCA
o(C;) € types(C)
C; € sub(root) A

}

Figure 11: Add-Class Primitive Template with
Contracts
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delete-class ( C; )
{

requires:

C;eCA

a(C;) € types(C) A

sub(C;) =0 A

in-degree(C;) = 0 A

Y 0; € extent(t)
obj-in-degree(0;) = 0 A

delete-class-primitive ( C;)

ensures:
V <Cyg, 1> € out-paths(C;)
<C;> ¢ in-paths(Cy) A
V C, € super(C;)
C; ¢ sub(C;) A
C; ¢ CAN
} o(C;) ¢ types(C)

Figure 12: Delete-Class Primitive Template with
Contracts




add-ISA-edge ( C;, C; )
{

requires:

C;, €CA

Cj €CA

a(C;) € types(C) A
o(C;j) € types(C) A
super(C;) = 0

add-ISA-edge-primitive ( C;, C})

ensures:
C; € sub(Cj) A
C; € super(C;) A
C; ¢ sub(root) A
H(C;) = N(C;) U H(C;) A
in-paths(C;) C in-paths(C;)

}

Figure 13: Add-ISA-Edge Primitive Template
with Contracts

form-relationship ( Cs, rsy, Cq, 14 )

{

requires:

Cs, CgeCA

0(Cs), 0(Cq) € types(C) A

rs € N(C5) A

rg € N(Cy) A

<Cs, rs > € in-path(Cy) A
<Cq, T4 > € in-path(Cs) A
a(rs) € types(C) x types(C) A
a(rq) € types(C) x types(C)

delete-reference-attribute-primitive ( Cs, r,
Cq, default)

ensures:
a~rg) = rs and a(ry) =14

}

Figure 15: Form-Relationship Primitive Tem-
plate with Contracts
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delete-ISA-edge ( C;, C; )
{

requires:

C; eCA

C;eCA

o(C;) € types(C) A
o(C;) € types(C) A
C; € super(C;) A
C; € sub(Cj)

delete-ISA-edge-primitive ( C;, C;)

ensures:
C; ¢ sub(C;) A
C; ¢ super(C;) A
C; € sub(root) A
H(C:) # N(C;) U H(C;) A
in-paths(C;) € in-paths(C;)

Figure 14: Delete-ISA-Edge Primitive Template
with Contracts

drop-relationship ( Cs, rs, Cq, rq )

{

requires:

Cs, CqgeCA

0(Cs), 0(Ca) € types(C) A

rs € N(Cs) A

rqg € N(Cd) A

<Cs, rs > € in-path(Cyg) A
<Cq, 14 > € in-path(Cs) A
a(rs) € types(C) x types(C) A
a(rq) € types(C) x types(C) A
a~Y(ry) = 15 and a(rs) = 14

delete-reference-attribute-primitive ( Cs, r,
Ca, default)

ensures:
=(a7(ry) = 15 and a(ry) =14 )

}

Figure 16: Drop-Relationship Primitive Tem-
plate with Contracts




add-attribute ( Cs, a,, t, default)

{

requires:

CseCA
a(C;) € types(C) A
az ¢ N(Cs)

add-attribute-primitive ( Cs, a,, t, default)

ensures:

Figure 17: Add-Attribute Primitive Template
with Contracts

add-reference-attribute ( Cs;, r, Cy, de-
fault)

{

requires:

C,,CqelCA
a(Cy), a(Cy) € types(C) A
r ¢ N(Cy)

add-reference-attribute-primitive ( Cs, r,
Cg4, default)

ensures:
r € N(Cs) A
<Cs,r> € in-path(Cq) A
<Cgq,r> € out-path(C;) A
V x € sub*(Cy)
<Cgq,r> € out-path(x)

}

Figure 19: Add-Reference-Attribute Primitive
Template with Contracts
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delete-attribute ( Cs, a;)

{

requires:

CseCA
a(Cs) € types(C) A
a; € N(Cy)

delete-attribute-primitive ( Cs, ag, t, de-
fault)

ensures:

Figure 18: Add-Attribute Primitive Template
with Contracts

delete-reference-attribute ( Cs, r)

{

requires:

re N(
domain(r ) ecC
a(domain(r))€e types( ) A
a(r) € types(C) x types(C)

delete-reference-attribute-primitive ( Cs, r,
C4, default)

ensures:
r ¢ N(Cs) A
<Cs,r> ¢ in-path(domain(r)) A
<domain(r),r> € out-path(Cs) A
V x € sub*(Cy)
<domain(r),r> ¢ out-path(x) A
a(r) ¢ types(C) x types(C)
}

Figure 20: Delete-Reference-Attribute Primitive
Template with Contracts




