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Abstract

Abstract

Large-scale information systems typically contain autonomous information sources (ISs) that dy-
namically modify their content, interfaces as well as their query services regardless of the data ware-
houses (views) that are built on top of them. Current view technology fails to provide adaptation
techniques for such changes giving support to only static views in the sense that views become unde-
�ned when ISs undergo capability changes. We propose to address this new view evolution problem -
which we call view synchronization - by allowing view de�nitions to be dynamically evolved when they
become unde�ned. The foundations of our approach to view synchronization include: the Evolvable-
SQL view de�nition language (E-SQL), the model for information source description (MISD), and
the concept of legal view rewritings. In this paper, we now introduce the concept of the strongest
synch-equivalent view de�nition that explicitly de�nes the evolution semantics associated with an
E-SQL view de�nition. Plus, we propose a strategy and proofs of correctness for transforming any
user-speci�ed E-SQL view de�nition into the strongest E-SQL query. We also present the Complex
View Synchronization (CVS) algorithm that fully exploits the constraints de�ned in MISD by al-
lowing relation substitution to be done by a sequence of joins among candidate relations. Examples
illustrating this multi-step approach are given throughout the paper.

Keywords: Self-adapting views, view synchronization and preservation, data warehouse, large-space information
space, information descriptions, evolving information sources.

1 Introduction

Advanced applications such as web-based information services, data warehousing, digital libraries, and data

mining typically operate in an information space populated with a large number of dynamic information sources

�This work was supported in part by the NSF NYI grant #IRI 94-57609. We would also like to thank our industrial sponsors, in
particular IBM for the IBM Partnership Award and our collaborators at IBM Toronto for their support.



(ISs) such as the WWW [Wid95]. The ISs in such environments are usually distributed, have distinct schemas,

support di�erent query languages, update not only their content but also their capabilities1, and even join or

leave the environment frequently. In order to provide easy access to information in such environments, relevant

data is often retrieved from several sources, integrated as necessary, and then materialized at the user site as

what's called a view.

Views in such environments introduce new challenges to the database community [Wid95]. In our prior

work [RLN97, LNR97a], we have identi�ed view evolution caused by capability changes of one or several of the

underlying ISs as a critical new problem faced by these applications. The problem is that current view technology

is insu�cient for supporting 
exible view de�nitions. That is, under current view technology, views are static,

meaning views are assumed to be speci�ed on top of a �xed environment and once the external ISs change

their capabilities, the views de�ned upon them become unde�ned. In our prior work, we have proposed a novel

approach to solve this view in
exibility problem [RLN97, LNR97b, NLR97].

Namely, we have designed a framework for view adaptation in these evolving environments, called EVE (Evolv-

able View Environment), which supports to \preserve as much as possible" of the view instead of completely

disabling it with each IS change. While the evolution of views is assumed to be implicitly triggered by capability

changes of (autonomous) ISs in our work, previous work that dealt with view rede�nition (e.g., by Gupta et al.

[GJM96] and Mohania et al. [MD96]) typically assumed that the view rede�nition was explicitly requested by

the view developer at the view site, while the underlying information sources remained unchanged. Furthermore,

previous work Gupta et al. [GJM96], Mohania et al. [MD96], etc., has focused on the maintenance of the mate-

rialized views after such view rede�nition and not on the modi�cation of the view de�nitions themselves as done

in our work.

One key component of our EVE framework is the view de�nition language E-SQL (essentially SQL extended

with view evolution preferences) that allows the view de�ner to control the view evolution process by indicating

the criticality and dispensability of the di�erent components of the view de�nition. For example, a view de�ner

could indicate that the attribute Name is indispensable to the view, whereas the attribute Address is desirable

yet can be omitted from the original view de�nition, if keeping it becomes impossible, without jeopardizing the

utility of the view.

A second key component of our EVE framework is a language for capturing descriptions of the content,

capabilities as well as interrelationships of all ISs in the system. Descriptions of ISs expressed in this language

are maintained in a meta-knowledge base (MKB) available to the view synchronizer during the view evolution

process. In order to keep our approach general we only consider basic types of constraints in our model that

are likely to be applicable to a wide range of information sources ranging from more structured DBMSs to more

unstructured web resources. For this reason, constraints such as keys and functional dependencies that are not

captured by models of most ISs are not relied upon in our approach. Instead we focus on the more di�cult

problem of how to perform query rewritings even when given only minimal amounts of meta-knowledge.

1Capabilitieshere refer to information such as their schema, their query interface, as well as other services o�ered by the information
source.
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Given a view de�ned in E-SQL and a MKB, we present in this paper a formal foundation for what are legal

rewritings of the view a�ected by capability changes. This includes both evolution semantics associated with

E-SQL evolution parameters as well as properties that new components used to replace the obsolete ones must

have. The E-SQL view de�nition language allows any combination of the evolution parameters to be set for

the view components in order to simplify the speci�cations task for the users. Because of the relationships

between components, e.g., an attribute in the SELECT clause is coming from a relation in the FROM clause, the

synchronization process cannot take full advantage of the apparent 
exibility of all combinations of evolution

parameters. We introduce the synch-equivalence concept to express the real evolution 
exibility of an E-SQL

view de�nition. We also present a strategy for �nding the strongest synch-equivalent E-SQL de�nition for a given

view speci�cation, and prove that our transformation rules are correct. Finding the synch-equivalent de�nitions

is essential for helping the view de�ner to understand the semantics associated with a view de�nition and makes

the implicit E-SQL evolution semantics explicit.

Based on this formal foundation, we then propose a strategy for solving the view synchronization problem. Our

view synchronization algorithm �nds valid replacements for a�ected (deleted) components of the existing view

de�nitions based on the semantic constraints captured in the MKB. Rather than just providing simple so-called

`one-step-away' view rewriting [LNR97b, LNR97a], these replacements may correspond to possibly complex pieces

of information from several ISs. For this, our solution succeeds in determining view rewritings through multiple

join constraints given in the MKB. To demonstrate our approach, we present algorithms for handling the most

di�cult capability change operator, namely, the delete-relation operator, in depth in this paper. The proposed

strategy is shown to �nd a new valid de�nition of a view in many cases where current view technology would

have simply disabled the view, and where our proposed one-step view synchronization (SVS) [LNR97b] would

have failed to locate a suitable solution.

The remainder of the paper is structured as follows. In Section 2, we present our EVE solution approach. In

Section 3, we present the IS description model MISD. The extended view de�nition language E-SQL designed

to model evolution preferences is presented in Section 4. Section 5 describes the formal basis for correct view

synchronization, while Section 6 introduces the concept of the strongest synch-equivalent view de�nition and

provides algorithms of how to compute it. In Section 7 we introduce the CVS algorithm for synchronizing views

based on the proposed formal model. Section 8 lists related work, and Section 9 presents our conclusions.

2 Background

2.1 EVE: The Evolveable View Environment

We give a brief architectural overview of the Evolveable View Environment (EVE) we have designed for view

synchronization in order to set the context for the remainder of this paper (Figure 1). The EVE environment is

populated by a possibly large number of heterogeneous ISs. These ISs are autonomous in the sense that they are

free to change their capabilities dynamically at any time without regard to views de�ned upon them. Similar to

other large-scale systems [NR98a], an IS is integrated into the EVE framework via a wrapper (e.g., [PGMU96]),
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called the Information Source Interface (ISI), that translates between IS's native language and model to a common

model understood by the EVE system. While the EVE framework is generally applicable, we restrict ourselves

in this paper to EVE's common data model being a relational one. The ISI is assumed to be intelligent enough

to extract not only raw data, but also metadata about the IS, such as changes at the schema level of the IS,

performance data, or relationships with other ISs.

. . .. . .
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Figure 1: The EVE Framework: View Synchronization in an Evolving Environment.

When an IS joins the EVE framework, it advertises to the meta knowledge base (MKB) its capabilities (e.g.,

the type of queries or interfaces supported), data model (e.g., the semantic mappings from its concepts to the

concepts already in the MKB), and data content (see Section 3) ([NR97])2. The IS descriptions collected in

the MKB are critical for identifying alternate view de�nitions when synchronizing a view (see Section 7). The

knowledge about the views, such as the E-SQL view de�nitions and the locations of the views, is stored in the

view knowledge base (VKB).

Our view evolution module consists of two tools: the view synchronizer (the topic of this paper) that evolves

the speci�cations of views themselves and the view maintainer (not further focussed upon in this paper) that is

responsible for bringing the view extents up-to-date after view synchronization in the case when the views are

materialized.

After EVE learns about a capability change of an IS, the view synchronizer identi�es all views in the VKB that

are potentially a�ected by a capability change of an IS. It then explores alternate techniques for query rewriting

of the view de�nition VD of an a�ected view with the goal of meeting all view preservation constraints in the

2The information providers have strong economic incentives to provide the meta knowledge of their individual ISs as well as of
the relationships with other ISs, since populating the MKB not only advertises their resources to potential view users, but it also
increases the utilization of their data set in cases where users of other competitive ISs are in need of alternate sources (especially, if
they o�er the same information at a better price).
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view de�nition (expressed in E-SQL). For this, it extracts appropriate information from the MKB about other

ISs so to use this as replacement of the a�ected view components. The view synchronization is concerned with

synchronizing the a�ected view de�nition so that it remains both valid and consistent with the view evolution

parameters as well as with all IS constraints kept in the MKB.

After view synchronization is complete, the view maintainer works with the query executor to get appropriate

information from one or more ISs in order to �x the extents of all evolved views. In this context, the query

executor translates query requests into several smaller query fragments to be sent to individual ISs and then

assembles the results submitted from the ISs into one coherent response.

2.2 Running Example: The Travel Agency Service

To demonstrate our solution approach, we use a travel agency service provider as running example. Below we

describe the relevant base information (expressed using relations in our system), while additional relations and

views are de�ned on top of these relations later in the paper, as needed.

IS 1: Personal Customer Information
Content Description: Customer(Name, Address, PhoneNo, Age)
IS 2: Vacation Tour Information
Content Description: Tour(TourID, TourName, Type, NoDays)
IS 3: Vacation Tour Participants Information
Content Description: Participant(Participant, TourID, StartDate, Location)
IS 4: Flight Reservation Information
Content Description: FlightRes(PName, Airline, FlightNo, Source, Dest, Date)
IS 5: Insurance Information
Content Description: Accident�Ins(Holder, Type, Amount, Birthday)
IS 6: Hotel Information
Content Description: Hotels(City, Address, PhoneNumber)
IS 7: Renting Companies Information
Content Description: RentACar(Company, City, PhoneNumber, Location)

Figure 2: Information Sources Content Descriptions

Example 1 Consider a large travel agency which has a headquarter in Detroit, USA, and many branches all

over the world. It helps its customers to arrange 
ights, car rentals, hotel reservations, tours, and purchasing

insurances. Therefore, the travel agency needs to access many disparate information sources, including domestic as

well as international sites. Since the connections to external information sites, such as the overseas branches, are

very expensive and have low availability, the travel agency materializes the query results (views) at its headquarter

or other US branches (at the view site). A part of relevant ISs is summarized in the table in Figure 2.

Assume the headquarter maintains complete sets of information of the customers, tours, and tour partic-

ipants in the following formats: Customer(Name, Address, PhoneNo, Age), Tour(TourID, Tour-

Name, Type, NoDays) - where Type = fluxurious; economy; super-valuedg, and Participant(Participant,

TourID, StartDate, Location) that states which customer joins which tour starting on what day. We further

assume the local branches keep partial sets of information of its local customers, the tours o�ered locally, and the

participation information of its local customers. The 
ight reservation information FlightRes(PName, Air-

line, FlightNo, Source, Dest, Date) is managed by each individual airline company. Insurance information
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Accident�Ins(Holder, Type, Amount, Birthday) is kept by each individual insurance company.

3 MISD: Model for Information Source Description

While individual ISs could be based on any data model, we assume that the information source interface (ISI)

agent of an IS describes the schema exported by the IS as a set of relations IS:R1, IS:R2; : : : ; IS:Rn that reside

at the IS. A relation description contains three types of information specifying its data structure and content,

its query capabilities as well as its relationships with exported relations from other ISs that semantically express

the operations allowed between ISs. The descriptions of the ISs are stored in the meta knowledge base (MKB)

(see Figure 1) and are used in the process of view evolution, when alternative rewritings must be found for the

a�ected views after a capability change at an IS3. Below we introduce the MISD model as used by the remainder

of this paper. All MISD constraints are summarized in Figure 3 [LNR97a, LNR97b].

Name Syntax
Type Integrity Constraint T CR:Ai = (R(Ai) � Typei(Ai))

Order Integrity Constraint OCR = (R(A1; : : : ;An) � C(Ai1 ; : : : ;Aik))
Join Constraint J CR1;R2 = (C1 AND � � � AND Cl)
Partial/Complete Constraint PCR1;R2 = (� �A1

(�C( �B1)
R1) � � �A2

(�C( �B2)
R2))

� 2 f�;�;�;�;�g

Figure 3: Semantic Constraints for IS Descriptions.

3.1 Data Content Description

The model used to describe the basic units of information available in each of the ISs is the relational model. A

base relation is an n-ary relation, with n � 2. A relation name is not required to be unique in the MKB, but

the pair (IS name, relation name) is. A relation R is described by specifying its information source and its set of

attributes as follows:

IS:R(A1; : : : ; An): (1)

3.2 Type Integrity Constraints

Each attribute Ai is given a name and a data type to specify its domain of values. This information is speci�ed

by using a type integrity constraint with the format Typei(Ai). A type constraint for a relation R(A1; : : : ; An) is

speci�ed as:

R(A1; : : : ; An) � Type1(A1); : : : ; T ypen(An) (2)

which says that an attribute Ai is of type Typei, for i = 1; : : : ; n. For simplicity, we assume that the attribute

types are primitive. If two attributes are exported with the same name, they are assumed to have the same type

(which must be re
ected by the type constraints for their relations).

3We assume in this paper that information sources support at least SPJ (SQL) queries with conjunctions of primitive clauses in
the WHERE clause, and thus we are not discussing how query capabilities are described in our system [NR98a].
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3.3 Order Integrity Constraints

The order constraints specify data constraints that are satis�ed by any tuple of a relation at any time. For a

relation R(A1; : : : ; An), an order constraint is de�ned by:

R(A1; : : : ; An) � C(Ai1 ; : : : ; Aik) (3)

where (Ai1 ; : : : ; Aik) is a subset of the attributes of R and C(Ai1 ; : : : ; Aik) is a conjunction of primitive clauses

de�ned over the attributes. A primitive clause has one of the following forms: < attribute � name > � <

attribute�name > or < attribute�name > � < value > with � 2 f<;�;=;�; >g. Expression (3) speci�es that

for any state of the database R, and for any tuple t 2 R, C(t[Ai1 ]; : : : ; t[Aik])
4 is satis�ed.

Example 2 An insurance relation Expensive-Insurance, containing all expensive accidental insurances that

cover more than $1; 000; 000, can be expressed by the following order constraint:

Expensive-Insurance(Holder, Type, Amount, Birthday) � (Amount > 1; 000; 000):

3.4 Join Constraints

In order to evolve views de�ned over a set of relations exported from di�erent ISs, the IS description also contains a

speci�cation to characterize the IS content in terms of its relationship with other sources in the environment. A join

constraint is used to specify a meaningful way to combine information from two ISs, i.e., a join condition between

two relations is used to capture our knowledge of their interrelationship. The join condition is a conjunction of

primitive clauses (not necessarily equijoin clauses). Formally, a join constraint is of the form:

J CR1;R2 = (C1 AND � � � AND Cl) (4)

where C1; : : : ; Cl are primitive clauses over the the attributes of R1 and R2. Expression (4) gives a default, legal

join condition that could be used to join R1 and R2, specifying that the join relation J = R1 1(C1��� AND ���Cl) R2

is a meaningful way of combining the two relations.

Example 3 For our running Example 1, some of the join constraints are given in the table of Figure 4 (the

underlined names are the relations for which the join constraints are de�ned).

For example, for the relations Customer(Name, Address, PhoneNo, Age) and Person(SSN, Name,

PermanentAddress), the join constraint J CPerson, Customer = (Person.Name=Customer.Name AND

Person.PermanentAddress=Customer.Address ) states that the two relations Customer and Person can

be meaningfully joined on the attributes Name and Address.

4The expression t[A] refers to the value of the attribute A in the tuple t.
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JC Join Constraint

JC1 Customer.Name = FlightRes.PName

JC2 Customer.Name = Accident�Ins.Holder AND Customer.Age > 1
JC3 Customer.Name = Participant.Participant

JC4 Participant.TourID = Tour.TourID

JC5 Hotels.Address = RentACar.Location
JC6 FlightRes.PName = Accident�Ins.Holder

Figure 4: Join Constraints for Example 1

3.5 Partial/Complete Information Constraints

The partial/complete (PC) information constraints make it possible to describe that a fragment of a relation is

part of or equal to a fragment of another relation for all extents of the two relations. The PC constraints are used

to decide if an evolved view is equivalent, subset of, or superset of the initial view. For two relations R1 and R2,

the PC information constraint is given by:

PCR1 ;R2 = (�Ai1 ;:::;Aik
(�C(Aj1 ;:::;Ajl

)R1) � �An1 ;:::;Ank
(�C(Am1 ;:::;Amt )

R2)) (5)

where � is f�;�;�g for the partial (� and �) or complete (�) information constraint, respectively;

Ai1 ; : : : ; Aik ; Aj1; : : : ; Ajl are attributes of R1; and An1 ; : : : ; Ank; Am1
; : : : ; Amt are attributes of R2. The sets

Ai1 ; : : : ; Aik and An1 ; : : : ; Ank are such that for s = 1; k the attributes Ais and Ans have the same type.

Example 4 To give an example, Eq. (6) states that the relations Person and Customer have the same data for

the attributes Name and Address for customers age 1 or older. (This means that the relation Person contains

SSN only for persons older than 1 year.)

PCPerson, Customer = (�Name, PermanentAddress (Person) � �Name, Address(�Age>1Customer)) (6)

Using the PC information constraints and type constraints we can, for example, de�ne that two relations are

equivalent: (1) they have attributes of the same types (expressed by type constraints); and (2) their extents are

the same (expressed by a PC constraint).

3.6 Attribute Function-Of Constraints

The attribute function-of constraint relates two attributes by de�ning a function to transform one of them

into another. This constraint is speci�ed by:

FR1:A;R2:B = ( R1:A = f(R2:B) ) (7)

where f is a function5. The function-of constraint FR1:A;R2:B speci�es that if there exists a meaningful way of

combining the two relations R1 and R2 (e.g., using join constraints) then for any tuple t in the join relation J ,

we have t[R1:A] = f(t[R2:B]).

Example 5 For our running Example 1, function-of constraints are given in the table of Figure 5.

5Note that the inverse of f is not required to exist, and hence if an inverse is available it must be explicitly listed as R2:B =
f�1(R1:A).

8



F Function-of Constraints

F1 Customer.Name = FlightRes.PName
F2 Customer.Name = Accident�Ins.Holder
F3 Customer.Age = (today - Accident�Ins.Birthday)/ 365
F4 Customer.Name = Participant.Participant

F5 Participant.TourID = Tour.TourID
F6 Hotels.Address = RentACar.Location
F7 Hotels.City = RentACar.City

Figure 5: Function-of Constraints for Example 1.

4 Extending SQL for Flexible View Synchronization

In this section, we present the EVE view de�nition language (E-SQL), which is an extension of SQL aug-

mented with speci�cations for how the view de�nition may be synchronized under IS capability changes. Evo-

lution preferences, expressed as evolution parameters, allow the user to specify criteria based on which the

view will be transparently evolved by the system under capability changes at the ISs. In this paper, we as-

sume SELECT-FROM-WHERE views de�ned as in Equation (8) with a conjunction of primitive clauses in the

WHERE clause.

CREATE VIEW V (B1; : : : ; Bm) (VE = �V ) AS
SELECT R1:A1;1(AD = AD1;1;AR = AR1;1); : : : ; R1:A1;i1(AD = AD1;i1 ;AR = AR1;i1); : : :

Rn:An;1(AD = ADn;1;AR = ARn;1); : : : ; Rn:An;in(AD = ADn;in ;AR = ARn;in)
FROM R1(RD = RD1;RR = RR1); : : : ; Rn(RD = RDn;RR = RRn)
WHERE C1(CD = CD1; CR = CR1) AND : : : AND Ck(CD = CDk; CR = CRk)

(8)

Figure 6: Syntax of E-SQL View De�nition.

View Evolution Parameters

Evolution Parameter Semantics Default Value

Attribute- dispensable (AD) true: the attribute is dispensable false
false: the attribute is indispensable

replaceable (AR) true: the attribute is replaceable false
false: the attribute is nonreplaceable

Condition- dispensable (CD) true: the condition is dispensable false
false: the condition is indispensable

replaceable (CR) true: the condition is replaceable false
false: the condition is nonreplaceable

Relation- dispensable (RD) true: the relation is dispensable false
false: the relation is indispensable

replaceable (RR) true: the relation is replaceable false
false: the relation is nonreplaceable

View- extent (VE) �: the new extent is equal to the old extent �
�: the new extent is a superset of the old extent
�: the new extent is a subset of the old extent
�: no restrictions on the new extent

Figure 7: View Evolution Parameters of E-SQL Language.

As indicated in Figure 7, each component of the view de�nition (i.e., attribute, relation or condition) has
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attached two evolution parameters. One, the dispensable parameter (notation XD, where X could be A, R or C

for attribute, relation or condition component, respectively) speci�es if the component could be dropped (value

true) or must be present in any evolved view de�nition (value false). Two, the replaceable parameter (notation

XR, where again X could be A, R or C for attribute, relation or condition component, respectively) speci�es

if the component could be replaced in the process of view evolution (value true) or must be left unchanged as

de�ned in the initial view (value false).

In Figure 7, each type of evolution parameter used by E-SQL is represented by a row in that table. Figure 7

has three columns: column one gives the parameter name and the abbreviation for each parameter, column two

the possible values each parameter can take on plus the associated semantics, and column three the default value.

When the parameter setting is omitted from the view de�nition, then the default value is assumed. This means

that a conventional SQL query (without explicitly speci�ed evolution preferences) has well-de�ned evolution

semantics in our system, i.e., anything the user speci�ed in the original view de�nition must be preserved exactly

as originally de�ned in order for the view to be well-de�ned. Our extended view de�nition semantics are thus

well-grounded and compatible with current view technology.

The general format of the extended view de�nition language is given in Eq. (8) in Figure 6. The view

interface �BV = (B1; : : : ; Bm) corresponds to the local names given to attributes preserved in the view V, the set

fAj;1; : : : ; Aj;ijg is a subset of the attributes of the relation Rj for all j = 1; n; any Ci, i = 1; k, is a primitive

clause de�ned over the attributes of relations in the FROM clause. All parameters VE ;AD;AR;RD;RR; CD,

and CR are de�ned as described in Figure 7.

Next, we use one example to demonstrate the usage of and interactions among proposed evolution parameters,

while an extensive justi�cation for the design of this language plus many more examples can be found in [NLR97].

Example 6 In our Example 1, let's assume that the travel agency has a promotion for the customers who travel

to Asia. Therefore, the travel agency needs to �nd the customers' names, addresses, and phone numbers. The

travel agency is either going to send promotion letters to these customers or call them by phone. The query for

getting the necessary information can be speci�ed as follows:

CREATE VIEW Asia-Customer AS

SELECT Name, Address, PhoneNo
FROM Customer C, FlightRes F
WHERE (C.Name = F.PName)

AND (F.Dest = 'Asia')

(9)

Eq. (9) is a static SQL query. Next, we incorporate view evolution parameters into Eq. (9) that indicate

restrictions and preferences on how the view Asia-Customer may be evolved when the environment changes.

Assume the travel agency is willing to accept the query results with the customer's names and addresses only.

That is, the company is okay to put o� the phone marketing strategy, if the customer's phone number attribute

PhoneNo is deleted from the relation Customer for some reason and a suitable substitute cannot be found. The

10



user can state this preference in the SELECT clause (Eq. (9)) by using the attribute dispensable parameter AD.

SELECT Name (AD = false);Address (AD = false);PhoneNo (AD = true)

The user may want to guide the system as to whether it is acceptable for an attribute to be obtained from other

sources besides the original relation. For example, if the user only accepts the customer name and address to

come from the relation Customer, but agrees to have the phone number come from other source(s), then the user

can augment the SELECT clause (Eq. (9)) with the attribute replaceable parameter.

SELECT Name (AR = false);Address (AR = false);PhoneNo (AR = true)

Further, let's assume the person who de�nes the Asia-Customer view is willing to accept a view without

the second (local) condition speci�ed, as long as the equijoin condition is kept6. As a consequence (if the local

condition is dropped), the promotion invitation letters are sent to all customers traveling by air. The user can

specify her preference by adding the condition-dispensable parameter to the conditions in the WHERE clause of

Eq. (9).

WHERE (C.Name=F.PName)(CD = false)AND(F.Dest='Asia')(CD = true)

If the user requires the rede�ned view extent to be either equivalent to or larger than the original view extent, the

user sets the view-extent parameter (VE) to �. This means any substitution of a relation, condition, or attribute

should make the new view extent at least as large as the original view extent for the view synchronization process

to be valid. For example, if originally the Asia-Customer view returns the customers who travel to Japan,

Korea, or Hong Kong, then the view is still valid if in addition to these customers it also returns the customers

who travel to Thailand and Malaysia.

CREATE VIEW Asia-Customer AS (VE = �)

Putting together all view evolution parameters proposed above with the initial view de�nition from Eq. (9), we
get Eq. (10).

CREATE VIEW Asia-Customer (VE =�) AS

SELECT Name, Address;PhoneNo (AD = true, AR = true)
FROM Customer C (RR = true);FlightRes F
WHERE (C.Name = F.PName)AND (F.Dest = 'Asia') (CD = true)

(10)

In Eq. (10), wherever no view evolution parameter values are speci�ed for a view component, then the default

values are assumed as indicated in Figure 7. To name a few, Name and Address attributes in the select clause

are indispensable and nonreplaceable, and the relation FlightRes is indispensable and nonreplaceable.

6Note that in general dropping a local condition is more acceptable than dropping a join condition, since dropping a join condition
may change the view de�nition dramatically. For example, removing the only join condition between two relations, that returns some
subset of tuples, ends up with a Cartesian product of these two relations, which then returns all pairwise combinations of tuples from
both relations as the view result.
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5 Formal Foundation for View Synchronization

In this section we give a formal de�nition of what is considered to be a legal view rewriting for a view which

became obsolete due to a capability change of an underlying information source.

5.1 Notations

First we introduce some basic de�nitions that are used to introduce the concept of legal view rewritings. For

two relations R and R0 with di�erent attribute sets (i.e., denoted by Attr(R) and Attr(R0)) such that Attr(R)\

Attr(R0) 6= ;, we compare the extents of the two relations by comparing the projections on their common

attributes. De�nitions 1 and 2 introduce this concept of equivalence with respect to common subset of attributes,

which we call �-equivalence, while Table 8 summarizes the other set operations de�ned on this common-subset-

of-attributes notion.

De�nition 1 Common-Subset-of-Attributes of R with respect to R0. Let R and R0 be two relations.

R�(R0) denotes the projection of relation R on the common attributes of R and R0. That is, R�(R0) =

�Attr(R)\Attr(R0)R.

De�nition 2 �-Equivalence. We say that a relation R is �-equivalent with relation R0 denoted by R �� R0, i�

(I) 8t 2 R; 9 t0 2 R0 s.t. t[Attr(R) \Attr(R0)] = t0[Attr(R) \Attr(R0)]. That is, R�(R0) � R0�(R).

(II) 8t0 2 R0; 9 t 2 R s.t. t0[Attr(R) \Attr(R0)] = t[Attr(R) \Attr(R0)]. That is, R0�(R) � R�(R0).

Name Set Operator Semantics

�-equivalent R =� R0 8 t0 2 R0, 9 t 2 R s.t. t0[Attr(R)\Attr(R0)] = t[Attr(R)\Attr(R0)] and
8 t0 2 R0;9 t 2 R s.t. t0[Attr(R)\Attr(R0)] = t[Attr(R)\Attr(R0)]

�-subset R0 �� R 8 t0 2 R0, 9 t 2 R s.t. t0[Attr(R)\Attr(R0)] = t[Attr(R)\Attr(R0)]
�-superset R0 �� R 8 t 2 R, 9 t0 2 R0 s.t. t[Attr(R)\Attr(R0)] = t0[Attr(R)\Attr(R0)]

�-intersection R \� R0 fz j 9 t 2 R and 9 t0 2 R0; s:t:; t[Attr(R)\Attr(R0)] = t0[Attr(R)\Attr(R0)];
z = t[Attr(R)\ Attr(R0)]g

�-di�erence R n� R0 fz j 9 t 2 R and 6 9 t0 2 R0; s:t:t[Attr(R)\Attr(R0)] = t0[Attr(R)\Attr(R0)];
z = t[Attr(R)\ Attr(R0)]g

Figure 8: Set Operators on the Common Subset of Attributes.

5.2 Legal Rewriting: The Semantics for View Synchronization

The capability changes \delete�attribute R:A" and \delete�relation R" are said to a�ect views that refer to

that particular attribute or relation in their de�nitions. As we will see in this paper, the algorithms for view

synchronization could also change other components of the original view de�nition besides the deleted components,

i.e., other indirectly a�ected components. For example, replacing an attribute R:A after the capability change

\delete�attribute R:A" could result in substituting the entire relation R by some other relation S (even though

the relation R without the attribute A is still available). Thus, we distinguish between two types of components of

12



an a�ected view: the ones that are directly related to the deleted component (we called them a�ected components)

and those that are not a�ected by a capability change (una�ected components).

Namely, for the capability change \delete�attribute R:A" with R:A in the SELECT or WHERE clause of the

view V , we have:

� The attribute R:A in the SELECT clause of V (if R:A 2 Attr(V )) is a directly a�ected component;

� The relation R in the FROM clause of V is an indirectly a�ected component;

� All attributes of relation R other than R:A that appear in the SELECT clause of V are indirectly a�ected

components;

� All conditions using the attribute R:A in the WHERE clause of V are directly a�ected components;

� All conditions using attributes of relation R (other than R:A) in the WHERE clause of V are indirectly

a�ected components.

And for the capability change \delete�relation R" with R in the FROM clause of the view V , we have:

� The relation R in the FROM clause of V is a directly a�ected component;

� All attributes of relation R that appear in the SELECT clause of V are directly a�ected components;

� All conditions using attributes of relation R in the WHERE clause of V are directly a�ected components.

The semantics of the evolution parameters impose that all indispensable components of a view must be pre-

served in any synchronized view de�nition (either exactly as they are in the original view de�nition or possibly

replaced if they are replaceable). For a delete capability change, all directly a�ected components must be replaced

or dropped in order for the view de�nition to satisfy the evolution parameters. Thus, the following theorem

establishes a necessary (but not su�cient) condition for a view de�nition to be evolvable.

Theorem 1 If the view V is evolvable under a capability change ch then all the directly a�ected components are

not both indispensable and nonreplaceable, i.e., their evolution parameters are not (XD = false;XR = false).

Proof. The proof is immediate and hence omitted here.

De�nition 3 Let ch be a capability change and the view V be evolvable under the capability change ch (Theorem

1). Let MKB and MKB' be the state of the meta knowledge base containing the IS descriptions right before and

right after the change ch, respectively7. We say that a view V 0 is a legal rewriting of the view V under capability

change ch if the following properties hold:

P1. The view V 0 is no longer a�ected by the change ch, i.e., V 0 has no directly a�ected components.

P2. The view V 0 can be evaluated in the new state of the information space (i.e., V 0 contains only elements

7We assume that the meta knowledge base MKB is evolved into MKB' to re
ect the change ch using the approach described in
our technical report ([NLR97]). This evolution of the MKB is relatively straightforward, and hence a description of it is omitted here.
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de�ned in MKB').

P3. The view extent parameter VE = � (� 2 f�;�;�g) of V (Fig. 7) is satis�ed by the view V 0. I.e.,

V 0��V (11)

is true for any state of the underlying information sources (�� is the �-set operator corresponding to � as de�ned

in Table 8).

P4. All evolution parameters attached to the view components such as attributes, relations or conditions of

the view V are satis�ed by the view V 0.

The property P4 from De�nition 3 states that all any legal rewriting V 0 of the view V must preserve all

indispensable components. For example, all indispensable attributes from the SELECT clause (i.e., the ones

having AD = false in V ) of the view V must appear in the SELECT clause of the view V 0 as well. De�nition 4

speci�es how the evolution parameters are set for the new view de�nition V 0.

De�nition 4 Evolution Parameter Assignment. When a view component X0 is used to replace an a�ected

view component X, the evolution parameters associated with X0 are set by the following rules:

� Rule 1. If X0 is used to replace exactly one view component X of the original view V , the new evolution

parameters are set to be the same as those of the original component X. If a view component is replaced by

more than one new view component, we say that each of the new view components replaces exactly one view

component and this Rule 1 applies for each of the new view components.

� Rule 2. If a new view component X0 is used to replace more than one view component of the original view

X1(XD = val1;1;XR = val1;2), : : :, Xk(XD = valk;1;XR = valk;2) where XD and XR are view dispensable

and replaceable evolution parameters, respectively, and vali;j 2 ftrue; falseg their values. We set the evolu-

tion parameters of components X 0 as: (XD = val1;1 AND � � � AND valk;1; XR = val1;2 AND � � � AND valk;2).

De�nition 3 gives the general semantics that the evolution parameters in an E-SQL view de�nition impose on

the view evolution process. Conforming with De�nitions 3 and 4, a view V evolved in V 0 with some una�ected

components dropped would be considered legal as long as all evolution parameters of V are satis�ed and all

evolution parameters of V 0 are appropriately set.

Example 7 The view given in Equation (12)8 could be legally evolved under the capability change delete�attribute

R:A in di�erent ways: (1) dropping the directly a�ected component R:A and leaving anything else unchanged

(Equation (13)); and (2) dropping the directly a�ected component R:A and, as well, dropping the una�ected

component R:C (Equation (14)).

8Default values for evolution parameters are not shown in the de�nitions.
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CREATE VIEW V (VE =�) AS

SELECT R:A(AD = true;AR = true);
R:B(AD = true)
R:C(AD = true)

FROM R(RR = true)
WHERE R:B > 200

(12)

CREATE VIEW V1(VE =�) AS

SELECT R:B(AD = true)
R:C(AD = true)

FROM R(RR = true)
WHERE R:B > 200

(13)

CREATE VIEW V2(VE =�) AS

SELECT R:B(AD = true)
FROM R(RR = true)
WHERE R:B > 200

(14)

Because view synchronization algorithms primarily are concerned with a�ected components, we make a distinc-

tion between legal view rewritings that are obtained by modifying only a�ected components (leaving all una�ected

components intact), called base rewritings, and those that have una�ected components modi�ed as well (e.g., re-

placed or dropped), called derived rewritings. Namely, in base rewritings all \linked" a�ected components are

either all replaced, all dropped or all unchanged. For example, if we �nd a replacement for an attribute R:A, then a

rewriting is called a base rewriting if all occurrences of R:A in replaceable components are replaced (even though

the evolution parameters would have allowed for example to drop a condition referring to R:A). If a relation S

replaces a relation R (i.e., relation S has replacements for some attributes of R) then a base rewriting must have

preserved all attributes that could be replaced from S. Formally, we give the following de�nitions for base and

derived rewritings.

De�nition 5 Base View Rewriting. Let a view V 0 be a rewriting of the view V after a \delete�relation" or

\delete�attribute" capability change. We say that V 0 is a base view rewriting if

B0. V 0 is a legal rewriting of V (by De�nition 3).

B1. All una�ected view components of V are still in V 0.

B2. If an (directly or indirectly) a�ected attribute R:A in V has a replacement attribute S:B in V 0, then any

replaceable component referring to R:A (i.e., an attribute in the SELECT clause or a condition in the

WHERE clause of V ) must appear in V 0 with R:A replaced by S:B.

B3. If an indirectly a�ected relation R is still in the FROM clause of the view V 0, then all its indirectly a�ected

attributes that are referred to in V and are not replaced in V 0 must appear in V 0 as well.
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De�nition 6 Derived View Rewriting. Let a view V 0 be a base rewriting of the view V by De�nition 5. Then

a view V 00 is a derived rewriting of the view V 0 i�:

D0. V 00 is a legal rewriting of V (by De�nition 3).

D1. V 00 is obtained from V 0 by dropping dispensable components (a�ected or una�ected components of V ), i.e.,

components with dispensable evolution parameters set to true (XD = true).

In the following we give examples of base and derived rewritings for di�erent replacement strategies and

capability changes.

Example 8 Let V be de�ned by the Equation (15). Given the capability change \delete-attribute R:A", we give

some examples of base (Equations (16),(17)) and derived (Equations (18),(19),(20)) rewritings of the view V .

CREATE VIEW V (VE =�) AS
SELECT R:A(AD = true;AR = true);

R:B(AD = false;AR = false);
R:C(AD = true;AR = false)

FROM R(RD = false;RR = true)
WHERE (R:B � value)(CD = true; CR = false)

(15)

Legal Base Rewritings of the view V .

The a�ected component R:A is dropped. Since R:A is no longer in R and it is dispensable in V , dropping it

from the view gives a base rewriting (one can verify that all the above conditions B0, B1 and B3 are satis�ed).

Therefore, we get a legal base rewriting V 0 (V 0 is �-equivalent to V , i.e., V 0 �� V ):

CREATE VIEW V 0(VE =�) AS
SELECT R:B(AD = false;AR = false);

R:C(AD = true;AR = false)
FROM R(RD = false;RR = true)
WHERE (R:B � value)(CD = true; CR = false)

(16)

The a�ected component R:A is replaced with S:A0 using a join relation between R and S. If �S:A0;S:B0S =

�R:A;R:BR, then the view V 00 de�ned in Equation (17) is a legal based rewriting (e.g., V 00 �� V ), i.e., all the

properties from De�nition 5 are satis�ed9.

CREATE VIEW V 00(VE =�) AS
SELECT S:A0(AD = true;AR = true);

R:B(AD = false;AR = false);
R:C(AD = true;AR = false)

FROM S(RD = true;RR = true); R(RD = false;RR = true)

WHERE (S:B0 = R:B)(CD = true; CR = true)AND

(R:B � value)(CD = true; CR = false)

(17)

9View synchronization algorithms for \delete�attribute" are given in our previous work in [LNR97a, LNR97b].
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Legal Derived Rewritings of the view V .

The base rewriting V 0 de�ned in Equation (16) has three derived rewritings: one in which the attribute R:C

is dropped from the SELECT clause (its dispensable evolution parameter is AD = true) (Equation (18)); one in

which the condition referring the attribute R:B is dropped (its dispensable evolution parameter is CD = true)

(Equation (19)); and one in which both of these two components are dropped (Equation (20)).

CREATE VIEW V 0
1(VE =�) AS

SELECT R:B(AD = false;AR = false);
FROM R(RD = false;RR = true)
WHERE (R:B � value)(CD = true; CR = false)

(18)

CREATE VIEW V 0

2 (VE =�) AS
SELECT R:B(AD = false;AR = false);

R:C(AD = true;AR = false)
FROM R(RD = false;RR = true)

(19)

CREATE VIEW V 0(VE =�) AS
SELECT R:B(AD = false;AR = false);
FROM R(RD = false;RR = true)

(20)

All three rewritings are derived

rewritings, i.e., the properties from De�nition 6 are satis�ed. Note that they don't satisfy conditions imposed to

qualify as base rewritings (by De�nition 5). For example, the derived rewriting V 0
1 de�ned in Equation (18) has

the attribute R:C available in the relation R from the FROM clause, but it gets dropped from the SELECT clause

thus violating condition B3 from De�nition 5.

5.3 Correctness Criteria for View Synchronization

We assume SELECT-FROM-WHERE views de�ned by an E-SQL view de�nition as shown in Equation (8) with a

conjunction of primitive clauses in theWHERE clause. We assume that a view V is de�ned such that all attributes

used in the WHERE clause in an indispensable condition are among the preserved attributes (i.e., the attributes

in the SELECT clause) (inheriting the evolution parameters from the condition they come from). In the following

we use the term view element to refer to a pair composed of a view component such as an attribute, relation or

condition used in the view de�nition together with the set of evolution parameters attached to it. If an attribute,

relation or condition has no evolution parameters associated with it in the view de�nition, we assume that the

view element corresponding to it has the default parameters as de�ned in Section 4.

De�nition 7 Let ch be a capability change, and let MKB and MKB' be the state of the meta knowledge base

containing the IS descriptions right before and right after the change ch, respectively10. Then a view V 0 is a

minimal legal rewriting of the view V under capability change ch if the following properties hold:

10We assume that the meta knowledge base MKB is evolved into MKB' to re
ect the change ch using the approach described in
our technical report ([NLR97]). This evolution of the MKB is relatively straightforward, and hence a description of it is omitted here.
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M1. V 0 is a base legal rewriting (De�nition 3, De�nition 5).

M2. The de�nition of the view V 0 is consistent with the constraints of the evolved MKB'. That is, any new

element in V 0 (e.g., new condition in the WHERE clause) is backed up by the existence of a supporting

constraint in MKB'. Put di�erently, new elements appear in the view V 0 only if they are required to replace

existing elements that, after a delete-relation or delete-attribute change, must be replaced by other elements.

Thus, we have the following cases:

Case 1. A new element f(S:A0)(AD = ADA;AR = true) could appear in the SELECT clause of V 0 if it replaces

exactly one a�ected element (Section 5.2) R:A(AD = ADA;AR = true) from the SELECT clause of

V 11. The attributes f(S:A0) and R:A must have the same type and the following condition must hold:

9R1; R2; : : : ; Rn such that R1 = R and Rn = S, 9 fJ CRi;Ri+1 j J CRi;Ri+1 a join constraint in MKB;

i = 1; n� 1g and it exists a function-of constraint FR:A;S:A0 = (R:A = f(S:A0)) in MKB. That is, for

any tuple t in the join relation:

R1 1JCR1;R2
R2 1JCR2;R3

� � � 1JCRn�1;Rn Rn (21)

we have t[R:A] = f(t[S:A0]).

All relations from the expression (21) (except relation R if R is to be dropped) must appear in the

FROM clause of the view V 0 and all primitive clauses (except the ones involving attributes of R if R is

to be dropped) from the set of join constraints used in expression (21) must appear in the WHERE clause

of the view V 0. Moreover, all occurrences of the attribute R:A in the conditions of the WHERE clause

of V must be replaced by f(S:A0) in V 0.

Case 2. A new element C(CD = CDC ; CR = CRC)12 could appear in the WHERE clause of V 0 if it is a primitive

clause in one of the sequences of join constraints used to replace an attribute R:A as in Case 1.

Case 3. A new element R(RD = RDR;RR = RRR) could appear in the FROM clause of V 0 if it appears in

one of the sequences of joins used to replace an attribute R:A as in Case 1.

M3. The de�nition of the view V 0 is minimal with respect to the set of new relations in the FROM clause and the

set of new conditions in the WHERE clause. That is, if we drop a newly added relation from the FROM clause

or a newly added condition from the WHERE clause of V 0, the modi�ed de�nition doesn't satisfy properties

M1 and M2 any longer. M3 imposes that the new view de�nition cannot have new extraneous elements added

that are not needed in the view, such as an extra attribute in the SELECT clause or an extra relation in the

FROM clause that serves no purpose13.

11In Section 5.2 we established what are the a�ected components for a given capability change. Note that the attribute R:A must
be replaceable, i.e., its attribute-replaceable parameter AR must be set to true.

12The evolution parameters are set as de�ned in De�nition 4.
13We impose the minimality property only for avoiding the introduction of new elements into V . Conforming to this de�nition, two

view rewritings V 0 of V one containing all attributes from V that are marked as dispensable and the other one with all dispensable
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Example 9 Let a view V be de�ned in Equation (22).

CREATE VIEW Asia-Customer (AsiaName, AsiaAddress, AsiaPhone) (VE =�) AS

SELECT C.Name, C.Address(AD = false;AR = true);C.PhoneNo
FROM Customer C, FlightRes F
WHERE (C.Name = F.PName) AND (F.Dest = 'Asia')

(22)

And let's assume that change ch is \delete attribute Address from the relation Customer". We have to �nd

a replacement for this attribute that could be obtained from a chain of join constraints de�ned in MKB'. Let's

assume we have the following constraints in MKB:

(i) The relation Person is de�ned by Person(Name, SSN, PAddress);

(ii) J CCustomer, Person = (Customer.Name = Person.Name) ;

(iii) FCustomer.Address, Person.PAddress = (Customer.Address = Person.PAddress) ;

(iv) PCCustomer, Person = (�Name, PAddress(Person) � �Name, Address(Customer)).

It is easily veri�able that the new view de�nition Asia-Customer' de�ned in Equation (23) is a legal rewriting

(new elements are underlined) of Equation (22):

CREATE VIEW Asia-Customer' (AsiaName, AsiaAddress, AsiaPhone) (VE =�) AS
SELECT C.Name, P.PAddress (AD = false;AR = true);C.PhoneNo

FROM Customer C, FlightRes F, Person P
WHERE (C.Name = F.PName) AND (F.Dest = 'Asia')

AND (P.Name = C.Name)

(23)

This legal rewriting uses the join constraint J CCustomer, Person (de�ned in (ii)) to obtain the address from the

relation Person by using the join relation
�
Customer 1JCCustomer, Person

Person
�
in the WHERE clause,

and the function-of constraint de�ned in (iii). Then the evolved view de�nition given in Equation (23) has all

the properties M1 to M3 from De�nition 3. Thus it is a legal rewriting. Note, that we can prove that for the

evolved view de�ned by Equation (23), the extent parameter \VE =�" is satis�ed given the PC constraint from

(iv): i.e., for any state of the relations Customer, Person and FlightRes, we have Asia-Customer' �

Asia-Customer.

Example 10 Queries that violate at least one of the properties from De�nition 3 are given below:

(A) The evolution parameters from the initial query V are not satis�ed by attribute Address being dropped. Thus

property M1 is violated (i.e., the view obtained is not a legal rewriting (De�nition 3)):

CREATE VIEW Asia-Customer(VE =�) AS
SELECT C.Name, C.PhoneNo
FROM Customer C, FlightRes F
WHERE (C.Name = F.PName) AND (F.Dest = 'Asia')

(24)

attributes dropped are both legal. On this venue, we incorporated into EVE a cost model to di�erentiate between the \quality" of
these two alternative yet legal rewritings [LKNR98].
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(B) The expression used to obtain a replacement for the attribute Customer.Address is not merged into the

new de�nition by failing to add the join condition in the WHERE clause, thus violating M2:

CREATE VIEW Asia-Customer(VE =�) AS

SELECT C.Name, P.PAddress (AD = false;AR = true), C.PhoneNo

FROM Customer C, FlightRes F, Person P
WHERE (C.Name = F.PName) AND (F.Dest = 'Asia')

(25)

This is an example when failing to add the join constraint between the relations Customer and Person in the

WHERE clause results in the new view including meaningless tuples (coming from the Cartesian product between

the new relation Person and the rest of the view).

6 Finding Strongest E-SQL View De�nition: Resolution of Depen-

dencies between E-SQL Evolution Parameter Settings

Our view de�nition language E-SQL allows any combination of the evolution parameters to be set for the view

components. Because of the close relationship between components, e.g., an attribute in the SELECT clause

is coming from a relation in the FROM clause, the synchronization cannot take advantage of the apparent full


exibility of all possible evolution parameter combinations. For example, consider a view V having an attribute

R:A(AD = false;AR = false) in the SELECT clause and the relation R(RD = true;RR = true) in the

FROM clause. Even though the parameters associated with the relation apparently permit it, the view could never

be synchronized by dropping or replacing the relation R. Both of these actions would not satisfy the evolution

parameters for the attribute R:A (even though they are allowed by the evolution parameters of the relation R).

Thus, we can safely assume that the view de�nition V 0 having the component R(RD = false;RR = false) in

the FROM clause is \synch-equivalent" to the original view. Synch-equivalence concept is de�ned to mean that

any synchronization algorithm that fails for V 0 would have failed for V as well; and any algorithm that succeeds

for V 0 would have succeeded for V as well.

In the following we give some criteria of how to �nd a \synch-equivalent" de�nition of a view V that expresses

the real evolution 
exibility of the initial view de�nition. Finding the synch-equivalent de�nitions is essential for

helping the view de�ner to understand the semantics associated with a view de�nition14 (it makes the implicit

evolution semantics explicit).

De�nition 1 We say that two views V1 and V2 are synch-equivalent if they di�er only in the evolution param-

eters of their components and for any state of the MKB and a change ch, any synchronization algorithm �nds

the same set of base rewritings (De�nition 5) for the two views.

14The process of de�ning a view should be an interactive process: the user de�nes an E-SQL view, EVE �nds the synch-equivalent
de�nition, the user decides if this is what he meant or not with the process continuing until an agreement is reached.
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De�nition 2 Over the set of all evolution parameters of a component C of a view V , f(XD = false;XR =

false), (XD = true;XR = false), (XD = false;XR = true), (XD = true;XR = true)g (with X one of

A, R or C for attribute, relation or condition component, respectively) we introduce a partial order \stronger

than", denoted by �. We say that one value is \stronger than" another value, i.e., (XD = d1;XR = r1) �

(XD = d2;XR = r2) if and only if for a view de�nition V1 with the evolution parameters for the component

C (XD = d1;XR = r1) and a view de�nition V2 identical to V1 but having the evolution parameters for the

component C (XD = d2;XR = r2), any base rewriting (De�nition 5) found by a synchronization algorithm for

the view V1 is also found by the same algorithm for the view V2, for any state of the MKB and capability change

ch.

Note that the relation \stronger than" is indeed a partial order: it is re
exive (any pair of evolution parameters

is \stronger than" itself by De�nition 2), transitive and antisymmetric. From De�nition 2, it is easy to see that

\stronger than" inequalities from Equations (26) and (27) are true and they de�ne a partial order over the set of

all evolution parameter values for a component C.

(XD = false;XR = false) � (XD = true;XR = false) � (XD = true;XR = true) (26)

(XD = false;XR = false) � (XD = false;XR = true) � (XD = true;XR = true): (27)

In Equation (26), the evolution parameters (XD = false;XR = false) is stronger than the evolution parameter

(XD = true;XR = false) given that all the rewritings of a view V1 with a component C(XD = false;XR =

false) must contain this component unchanged, while the rewritings for a view V2 di�ering from V1 only in the

component C(XD = true;XR = false) could preserve C or drop it. Thus, any view synchronization algorithm

applied to the view V2 �nds all the rewritings corresponding to the view V1 plus possibly some new rewritings

when C is dropped.

De�nition 3 We say that the view V1 is \stronger than" the view V2, denoted by V1 � V2 if (1) they di�er

only in the evolution parameters of their components and (2) for any component C(XD = d1;XR = r1) of the

view V1 and its corresponding component C(XD = d2;XR = r2) in V2, we have (XD = d1;XR = r1) � (XD =

d2;XR = r2).

Our goal is to �nd the \strongest" view de�nition that is synch-equivalent to the initial view. This then

represents exactly the evolution semantics any view synchronization algorithm attaches to the original view

de�nition (even if not stated explicitly). In other words, an E-SQL view de�nition is at all times only evolved

according to the evolution parameters of its strongest view de�nition.

De�nition 4 We say that V 0 is the strongest synch-equivalent de�nition of the view V i� (1) V 0 is synch-

equivalent to V , (2) V 0 � V and (3) there exists no other view V 00 such that V 00 � V 0 and V 00 is synch-equivalent

to V .
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In the Tables 9, 10, 11 and 1215 we give the transformation rules for changing a view de�nition into a synch-

equivalent one. Any transformation applied to a view V gives a \stronger" view de�nition and at the same time

a synch-equivalent one.

R:A(AD;AR)
n R:A(false; false) R:A(true; false) R:A(false; true) R:A(true; true)

(C = R:A � const)(CD;CR)

C(false; false) - R:A(false; false) R:A(false; false) R:A(false; false)
C(true; false) C(false; false) - - -

C(false; true) C(false; false) - - R:A(false; true)
C(true; true) C(false; false) - C(false; true) -

Figure 9: Transformation rules for a condition (C = R:A � const) in WHERE clause and its attribute R:A in
SELECT clause.

R:A(AD;AR)
n R:A(false; false) R:A(true; false) R:A(false; true) R:A(true; true)

R(RD;RR)

R(false; false) - - - -
R(true; false) R(false; false) - - -

R(false; true) R(false; false) - - -
R(true; true) R(false; false) - - -

Figure 10: Transformation rules for a relation R in FROM clause and an attribute R:A in SELECT clause.

C(CD; CR)
n C(false; false) C(true; false) C(false; true) C(true; true)

R(RD;RR)

R(false; false) - - - -
R(true; false) R(false; false) - - -

R(false; true) R(false; false) - - -
R(true; true) R(false; false) - - -

Figure 11: Transformation rules for a relation R in FROM clause and a condition C in WHERE clause using an
attribute R:A.

Example 11 To illustrate some of the transformation rules, let's consider the view V de�ned by Equation 28.

CREATE VIEW V AS

SELECT X:A(AD = true;AR = true); Y:A(AD = true;AR = true); : : :
FROM X;Y; : : :
WHERE (X:A > Y:A(CD = false; CR = true)); : : :

(28)

This case corresponds to column three, row ten in the Table 12. If the attribute X:A is deleted, the a�ected

15Note that in all the de�nitions related to the strongest synch-equivalent de�nition associated to a view, we are talking about base
rewriting concept de�ned in De�nition 5.
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C(CD; CR)
n C(false; false) C(true; false) C(false; true) C(true; true)

(X:A(AD;AR); Y:A(AD;AR)
(X;Y ) 2 f(R; S); (S; R)g

X:A(false; false)
Y:A(false; false) - C(false; false) C(false; false) C(false; false)

X:A(false; false)
Y:A(true; false) Y:A(false; false) - - -

X:A(false; false)
Y:A(false; true) Y:A(false; false) - - C(false; true)

X:A(false; false)
Y:A(true; true) Y:A(false; false) - Y:A(false; true) -

X:A(true;false)
Y:A(true; false) X:A(Y:A)(false;false) - - -

X:A(true;false)
Y:A(false; true) X:A(Y:A)(false;false) - - -

X:A(true;false)
Y:A(true; true) X:A(Y:A)(false;false) - Y:A(false; true) -

X:A(false; true)
Y:A(false; true) X:A(Y:A)(false;false) - - C(false; true)

X:A(false; true)
Y:A(true; true) X:A(Y:A)(false;false) - Y:A(false; true) -

X:A(true; true) X:A(false; true)
Y:A(true; true) X:A(Y:A)(false;false) - Y:A(false; true) -

Figure 12: Transformation rules for the attributes R:A and S:B in SELECT clause and a condition C in
WHERE clause using both attributes.

condition in the WHERE clause C = (X:A > Y:A(AD = false;AR = true)) must be replaced given its evo-

lution parameters. Thus a replacement for the deleted attribute X:A must be found and used in any legal base

rewriting V 0. Then by De�nition 5, all occurrences of the attribute X:A must be substituted by this replacement

in V 0, including the component X:A(AD = true;AR = true) in the SELECT clause. Thus, regardless how the

replacements are found, any legal base rewriting must have the component X:A(AD = true;AR = true) or a

replacement of it in the SELECT clause. This behavior never takes advantage of the evolution parameter \AD =

true", and it is consistent to having \AD = false" instead. This explains why the transformation rule from column

three, row ten in the Table 12 changes the evolution parameters for the component X:A(AD = true;AR = true)

to X:A(AD = false;AR = true).

To �nd the strongest synch-equivalent view for a given view de�nition, we apply the transformation rules for

all pairs of related components, until no more modi�cations could be done.

Theorem 2 By applying the above transformation rules to an E-SQL view V until no more rules can be applied,

the strongest synch-equivalent view de�nition is obtained.

Theorem 3 The strongest synch-equivalent view de�nition V 0 of a view V can be obtained by a sequence of

transformations de�ned in the Tables 9, 10, 11 and 12.

Due to space limitation, we omit here the proofs for the Theorems 2 and 3. We just make the observation
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that by applying any transformation rule from Tables 9, 10, 11 and 12 to a view de�nition V , a synch-equivalent

view de�nition Vst is obtained. This process of applying the transformation rules ends after a �nite number of

transformations (i.e., no more transformations could be applied after a �nite number of transformations) and the

result doesn't depend on the order of the transformations.

De�nition 5 We call two evolution parameter values P1 and P2 of a component C incompatible if for any view

V having the component C, there don't exist two synch-equivalent de�nitions V1 and V2 stronger than V with the

evolution parameters of the component C set to P1 and P2, respectively.

For example, evolution parameters (XD = false;XR = true) and (XD = true;XR = false) are incompatible:

there are no transformation rules that could be applied to an original view de�nition for a component C such

that the two evolution parameters are obtained in stronger synch-equivalent de�nitions. From our transformation

rules, we can conclude that the only incompatible evolution parameters are (XD = false;XR = true) and

(XD = true;XR = false); and (XD = true;XR = true) and (XD = true;XR = false).

Given the above transformation rules and Theorems 2 and 3, we can now prove that there is only one minimal

synch-equivalent de�nition for any E-SQL view.

Theorem 4 The strongest synch-equivalent de�nition is unique for an E-SQL view V .

Proof. Let's assume that there are two view de�nitions Vst1 and Vst2 quali�ed to be the strongest synch-equivalent

for the same view V such that neither Vst1 � Vst2 nor Vst2 � Vst1 hold. Two strongest view de�nitions of the

same view V cannot be compared because a component has in the two views incompatible parameters; or because

not all parameters in one of the view are \stronger than" the corresponding parameters in the other view (as

required by De�nition 3.) Formally, we can have two cases: (I) there must exist a component C in V such that

the evolution parameters Pst1 of C in Vst1 is incompatible with the evolution parameters P2 of C in Vst2; or (II)

there exist two components C1 and C2 in V with the evolution parameters are set to P1;1 and P2;1 for C1 in Vst1

and Vst2, respectively; and the evolution parameters are set to P1;2 and P2;2 for C2 in Vst1 and Vst2, respectively.

In case (I), the only values of evolution parameters that are incompatible are (XD = false;XR = true) and

(XD = true;XR = false); and (XD = true;XR = true) and (XD = true;XR = false). Let's assume that

Pst1 = (XD = false;XR = true) and P2 = (XD = true;XR = false). The only way the component C of V

could be transformed to have P1 and P2 in minimal synch-equivalent de�nitions, is for it to have the evolution

parameter (XD = true;XR = true) in the original view. From Theorem 3 we have that the views Vst1 and Vst2

are obtained by applying only the transformations rules from Tables 9, 10, 11 and 12 which don't contain any

transformation that would change an evolution parameter in P2 = (XD = true;XR = false). Thus, this case

cannot occur while applying the transformation rules.

Case (II) could be proven never to happen using the transformation rules given in Tables 9, 10, 11 and 12.

The discussion is omitted here for space reasons.

Q.E.D.
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7 View Synchronization: The CVS Algorithm

7.1 Three Steps of the View Synchronization Process

We propose a three-step strategy for the view synchronization process:

Step 1. Given a capability change ch, our system will �rst evolve the meta knowledge base (MKB) itself by

detecting and modifying the a�ected MISD descriptions found in the MKB. Figure 13 summarizes the types of

capability changes EVE can handle as well as if they must be evolved (denoted by ?) under a capability change.

capability n constraint type integrity order integrity attribute join partialncomplete
change constraint constraint function-of constraint constraint info constraint

delete-attribute ? ? ? ? ?

add-attribute - - - - -
change-attribute-name - - - - -
delete-relation ? ? ? ? ?

add-relation - - - - -
change-relation-name - - - - -

Figure 13: MKB Evolution under Capability Changes.

Step 2. Given a capability change ch of an underlying IS, EVE detects if the de�nition of the view V (in VKB) is

a�ected by the change ch when the state of the knowledge base is MKB. Namely, EVE will return one of of the

following three results:

� The view de�nition cannot be synchronized - the view V is a�ected by the change ch but cannot be evolved

under any circumstances. This would occur if there exists at least one view component (i.e., attribute, relation

or condition) a�ected by the change that is indispensable and nonreplaceable (i.e, the attached dispensable

and replaceable parameters are both false). This necessary condition is given by the Theorem 1, i.e., if the

view doesn't satisfy it then the view cannot be evolved.

� The view de�nition can be synchronized - the view V is a�ected by the change ch but it may be possible to

�nd a legal rewriting. Note that even if the view is evolvable (Theorem 1) then the EVE system may still

fail to evolve the view if the a�ected components cannot be found in some other ISs.

� The view de�nition is not a�ected by the change ch - In this case, Step 3 below is skipped, and the view

synchronization process terminates.

Step 3. Lastly, for a�ected yet potentially evolvable views (those corresponding to Step2, second case above) we

apply some view synchronization algorithm to �nd legal rewritings for view de�nitions guided by constraints

imposed by the view evolution preferences as well as by the knowledge captured in the evolved MKB'.

Due to limited space, the rest of the paper concentrates on the most di�cult step of the view synchronization

process, namely, the third one. We present a synchronization process referred to as Complex View Synchronization

(or short, CVS) as solution approach for this third step.
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7.2 Basics of the CVS Algorithm

We now describe our solution for the third step of the view synchronization process given in Section 7.1, namely,

the actual rewriting of an a�ected view de�nition. As already indicated in Figure 13 of Section 7.1, four of the six

capability change operations we consider can be handled in a straightforward manner. Namely, the add-relation

and add-attribute capability changes do not cause any changes to existing (and hence valid) views, and we assume

that our current system will not further optimize existing views based on this new knowledge. The two rename

capability change operators, rename-relation and rename-attribute, are caught by the name mapping service in

the MKB and hence also do not require any synchronization of views.

However, the two remaining capability change operators, i.e., delete-attribute and delete-relation, cause existing

views to become invalid and hence need to be addressed by the view synchronization algorithm. Below, we

present the algorithm for handling the most di�cult operator, namely, the delete-relation operator, in depth. The

algorithm for the delete-attribute operator is a simpli�ed version of the delete-relation algorithm given below, and

is omitted in this paper due to space limitations. Our Complex View Synchronization (CVS) algorithm

could be easily adapted for the delete-attribute operator.

We make the following assumptions in order to keep the discussion simple, however, our described solution can

be easily extended to handle less restrictive cases. One, given a \delete-relation R from IS" request, we assume

that an a�ected view query V uses R only once in the FROM clause. Our CVS algorithm could be easily adapted

for a more general case when the relation R appears more than once in the FROM clause. Two, we assume that

any join constraint in MKB is augmented with the order constraints de�ned for the relations involved in that join

constraint. The computation of this integrated representation of constraints from the MKB is straightforward,

and is omitted here for space reasons [NLR97]. We now start by giving some de�nitions of concepts needed to

characterize valid replacements of view components.

Example 12 To illustrate the steps of our approach for rewriting, we will use the view de�ned by query 29 below

and the change operator \delete relation Customer" both over the schema of our running example (Example 1).

The view Customer-Passengers-Asia de�nes (passenger; participant) pairs of passengers 
ying to Asia and

participants to a tour in Asia that 
y and start the tour at the same day, respectively. Such a view could be used

to see what participants of a tour are 
ying to \Asia" on the same day as the tour starts.

CREATE VIEW Customer-Passengers-Asia (VEV ) AS
SELECT C.Name (AD = false;AR = true), C.Age (AD = true;AR = true),

P.Participant (AD = true;AR = true), P.TourID (AD = true;AR = true)
FROM Customer C (RD = true;RR = true), FlightRes F (RD = true;RR = true),

Participant P (RD = true;RR = true)
WHERE (C.Name = F.PName) (CD = false; CR = true) AND (F.Dest = 'Asia')

AND(P.StartDate = F.Date) AND (P.Location = 'Asia')

(29)
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Figure 14: The Hypergraph H(MKB) for Example 1 and View (29).

7.3 Mapping the MKB to a Hypergraph Representation

Generally, a database schema can be represented as a hypergraph whose nodes are the attributes and whose

hyperedges are the relations [Ull89, GL94]. Inspired by this representation, we represent the set of attributes

and the set of relations described in MKB by a hypergraph that is extended with extra nodes corresponding to

the join constraints in the MKB and extra edges corresponding to the function-of constraints. Below we give the

formal de�nition of a hypergraph representation of a MKB and in Figure 14 we give an example of its graphical

representation.

De�nition 8 Meta Knowledge Base Hypergraph H(MKB). Given a meta knowledge base MKB, we de�ne

the hypergraph associated with the MKB as a four-tuple

H(MKB) = fA(MKB);J (MKB);S(MKB);F(MKB)g, where:

� (A(MKB) [ J (MKB) ) is the set of nodes of the hypergraph where:

(1) A(MKB) are the attribute-nodes corresponding to the attributes de�ned in MKB; and

(2) J (MKB) are the J C-nodes corresponding to the join constraints de�ned in MKB.

� (S(MKB) [ F(MKB)) is the set of edges for the hypergraph where:

(1) S(MKB) are the relation-edges corresponding to the set of relations de�ned in MKB. For R a relation in

MKB, the relation-edge R contains the set of attribute-nodes and J C-nodes corresponding to the attributes

of relation R and to the join constraints de�ned for relation R, respectively.
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(2) F(MKB) are the F-edges corresponding to the set of function-of constraints de�ned in MKB. For F a

function-of constraint in MKB, the F-edge representing F contains two attribute-nodes corresponding to the

attributes used in F .

Example 13 Figure 14 depicts the hypergraph for the MKB of our travel agency example (Example 2) where:

A(MKB) = f Name, Address, Phone, Age, Tour.TourID, TourName, Tour.Type, NoDays, Partic-

ipant, TourID, StartDate, Participant.Location, PName, Airline, FlightNo, Source, Dest, Data,

Holder, Type, Amount, Birthday, Hotels.City, Hotels.Address, Hotels.PhoneNumber, Company,

City, PhoneNumber, RentACar.Location g (see Fig. 2);

J (MKB) = f JC1, JC2, JC3, JC4, JC5, JC6 g (see Fig. 4);

S(MKB) = f Customer, Tour, Participant, FlightRes, Accident-Ins, Hotels, RentACar g (see Fig.

2);

F(MKB) = f F1, F2, F3, F4, F5, F6, F7 g (see Fig. 5);

The notations used for the graphical representation in Figure 14 and their connections with the elements of

H(MKB) are given in the table below.

H(MKB) element MKB Concept graphical symbol

attribute-node A attribute A �lled circle labeled
with the attribute name A

J C-node J Ci join constraint J Ci empty circle labeled
with the join constraint name JCi

relation-edge R relation R a circle with attribute-nodes
and J C-nodes inside; labeled with relation name R

F-edge Fj function-of constraint Fj a line connecting two attribute-nodes;
labeled with function-of constraint name Fj

Note that two relation-edges can share a J C-node if and only if it corresponds to a join constraint de�ned in

MKB for the two relations.

We say that a hypergraph is disconnected if one can partition its hyperedges into nonempty sets such that no

hypernode appears in hyperedges of di�erent sets. If such partition doesn't exist, then we say that the hypergraph

is connected. Using these de�nitions, one can de�ne connected sub-hypergraphs of a disconnected hypergraph

as being its maximal connected components. For our problem, we are interested in �nding the connected sub-

hypergraph that contains a given relation R.

De�nition 9 Connected Sub-Hypergraph HR(MKB). For a relation R, we de�ne the sub-hypergraph

HR(MKB) of the hypergraph H(MKB) as being the connected sub-hypergraph that contains the relation-edge

R plus all other hypernodes and hyperedges connected to it. Namely, HR(MKB) is de�ned by:

HR(MKB) = fAR(MKB);JR(MKB);SR(MKB);FR(MKB)g (30)
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where (1) AR(MKB); JR(MKB), SR(MKB) and FR(MKB) are subsets of A(MKB), J (MKB), S(MKB)

and F(MKB), respectively; (2) R is a relation-edge in SR(MKB); and (3) HR(MKB) is a connected sub-

hypergraph of H(MKB).

Note that because J C-nodes are the only shared nodes between relation-edges in H(MKB) and because

HR(MKB) is a connected sub-hypergraph, we have: 8 S1, S2 2 SR(MKB), there exists a sequence of join

constraints J CS1;R1 ; : : : ;J CRn;S2 de�ned in MKB, with R1; : : : ; Rn 2 SR(MKB) such that the following join

relation can be de�ned S1 1JCS1;R1 R1 � � � 1 � � � 1JCRn;S2 S2.

Example 14 Figure 14 depicts two connected sub-hypergraphs for the hypergraph H(MKB) for Example 1.

For R = Customer, the connected sub-hypergraph HCustomer(MKB) is the connected sub-hypergraph drawn on

the top left of the Figure 14.

7.4 R-mapping from a View into MKB Hypergraph

Given a view de�nition referring to a relation R and an MKB, we want to determine which parts of the a�ected

view de�nition need to be replaced when R is dropped. To �nd possible replacements, we must look in the MKB

for join constraints related to the relation R that are also used in the view de�nition. That is, the view could be

seen as a join between a join relation de�ned using only join constraints from MKB and some other relations (the

rest of the view de�nition). As we will show later, if R is to be dropped, our synchronization algorithm will try

to substitute the a�ected part of the view de�nition with another join relation de�ned using join constraints from

MKB. De�nition 10 formally de�nes this relationship between a view de�nition and the (default) join constraints

in MKB related to the relation R that could potentially be exploited to locate replacements for R.

De�nition 10 R-mapping of a view query V into sub-hypergraph HR(MKB). For a view query V

de�ned as in Eq. (8) and a relation R from the FROM clause of the view query V , we de�ne the R-mapping of V

into HR(MKB) by R-mapping(V , HR(MKB)) = (Max(VR);Min(HR)) to be a pair of two subexpressions one

constructed from the view query V and the second one constructed from the connected sub-hypergraph HR(MKB)

such that the following must hold:

(I) The expression Max(VR) is of the form:

Max(VR) = Rv1 1CRv1 ;Rv2
� � � 1CRvl�1 ;Rvl Rvl (31)

such that relations fRv1; : : : ; Rvlg(3 R) are from the FROM clause of V , and fCRv1 ;Rv2
; : : : ; CRvl�1

;Rvl
g are con-

junctions of primitive clauses from the WHERE clause of V . A conjunction CRvs�1
;Rvs

contains all the primitive

clauses that use only attributes of relations Rvs�1 and Rvs (both local and join conditions).

(II) The expression Min(HR) is of the from:

Min(HR) = Rv1 1JCRv1 ;Rv2
� � � � � � 1JCRvl�1 ;Rvl

Rvl (32)

where relations fRv1 ; : : : ; Rvlg � SR(MKB), and fJ CRv1 ;Rv2
; : : : ;JCRvl�1

;Rvl
g � JR(MKB).
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(III) The relation de�ned by Max(VR) is contained in the relation de�ned by Min(HR):

�
Rv1 1CRv1 ;Rv2

� � � 1 � � � 1CRvl�1 ;Rvl
Rvl

�
| {z }

Max(VR)

�
�
Rv1 1JCRv1 ;Rv2

� � � 1 � � � 1JCRvl�1 ;Rvl
Rvl

�
| {z }

Min(HR)

(33)

(IV) The expression Max(VR) is maximal with the properties (I) and (III). I.e., there is no other relations from

the FROM clause and primitive clauses from the WHERE clause of the view V that could be added to it and still

be able to �nd a subexpression in HR(MKB) such that (II) and (III) are satis�ed.

(V) The expression Min(HR) is minimal with the properties (II) and (III). I.e., we cannot drop a relation or a

join condition from it and still have (II) and (III) satis�ed.

Note that Equation 33 implies that there exists a conjunction of primitive clauses CMax=Min such that

Max(VR) = �CMax=Min
(Min(HR)) (34)

The goal of De�nition 10 is to �nd the expressions Max(VR) andMin(HR) such that the view V could be written

as:

V = � �BV

0
BB@��CMax=Min

(Min(HR))
�

| {z }
Max(VR)

1CRest Rest

1
CCA (35)

where �BV is the view interface (see Eq. (8)), CRest and Rest are the rest of the primitive clauses and relations in

V , respectively. Rest is a join relation containing relations from the FROM clause that don't appear inMin(HR).

Example 15 In Figure 14, the minimal subexpression Min(HCustomer) of HCustomer(MKB) is marked by bold

lines and corresponds to:

Min(HCustomer) = FlightRes 1(FlightRes.PName=Customer.Name)| {z }
JC1

Customer (36)

The maximal subexpression Max(Customer-Passenger-AsiaCustomer) of the view de�ned by Eq. (29) and the

relation Customer is:

Max(Customer-Passenger-AsiaCustomer) = FlightRes 1�(FlightRes.PName = Customer.Name)
AND (FlightRes.Dest = 'Asia')

�
| {z }

CFlightRes, Customer

Customer

= �FlightRes.Dest = 'Asia'| {z }
CMax=Min

(Min(HR)) (37)
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The relation de�ned by Eq.(37) is contained in the relation de�ned by Eq. (36) and they are maximal and minimal,

respectively, with this property. I.e., the relation de�ned by Eq. (37) is the maximal subexpression in the view

de�ned in Eq. (29) having the properties (I) to (III): if we add a new relation from the query (29) to it, we

cannot �nd any longer a subexpression of H(MKB) so that these properties hold. The same we can say for the

subexpression de�ned by Eq. (36) to be minimal with the properties (I) to (III).

Observation. To �nd two expressions Max(VR) and Min(HR) with the property (III), it is su�cient ([Ull89])

to have that each join constraint J CS;S0 of expression Min(HR) (Eq. 32) is implied by the corresponding join

condition CS;S0 of expression Max(VR) (Eq. 31), where S; S0 2 fRv1; : : : ; Rvlg.

Computing R-mapping(V , HR(MKB)) = (Max(VR);Min(HR)).

To �nd Max(VR) and Min(HR) having the above property, we start by selecting all relations S that join with

R in V with a join condition CR;S such that 9J CR;S in MKB, and CR;S implies J CR;S . Then for the relations

found by this �rst step, we recursively �nd others that are joined with them in V with join conditions that imply

the corresponding join constraints in MKB, until we cannot �nd any new relation to add. Min(HR) is the join

of the relations found using the join constraints from MKB. Max(VR) is the join of the relations found using the

join conditions from the WHERE clause of V .

7.5 R-replacements Associated With R-mappings

Intuitively, we now have found the maximal part of the view de�nition that \relates" to our MKB (De�nition 10).

So now we can ask how this part (i.e., Max(VR)) is a�ected by the relation R being dropped. And, further, we

need to determine how we can �nd new join relations from the MKB that can replace a�ected view components

in the view de�nition (i.e.,Max(VR)). The next de�nition identi�es what are the most useful candidates for such

replacement that we can construct using join constraints de�ned in MKB. Note that at this point we don't worry

about the relationship between the R-mapping and the potential candidates (e.g., subset, equivalent or superset).

Our goal is to �nd all possible replacements for the relationMax(VR) (Equation 35). Only after that, when given

the view-extent parameter VEV (Section 4) and the PC constraints from MKB (Section 3), we want to choose

the ones that satisfy the properties of legal rewritings (see De�nition 3).

De�nition 11 R-replacement(V;HR(MKB)). For a given query V and the MKB, we compute a set of expres-

sions constructed from HR(MKB) that don't contain R and could be used to meaningfully replace the maximal

subexpression Max(VR) in V . Let MKB' be the meta knowledge base evolved from MKB (see Section 7.1) when

relation R is dropped; and H0
R(MKB0) be the sub-hypergraph of HR(MKB) obtained by erasing relation-edge

R. We de�ne R-replacement(V;HR(MKB)) = fMax(V1;R); : : : ;Max(Vl;R)g to be a set of subexpressions con-

structed from H0
R(MKB0) and Max(VR) such that a subexpression Max(Vj;R) has the following properties:

(I) Max(Vj;R) = �C0Max=Min

�
R1 1JCR1;R2

� � � 1JCRk�1;Rk Rk

�
with R1; : : : ; Rk and J CR1;R2 ; : : : ;JCRk�1;Rk in

H0
R(MKB0).

(II) R doesn't appear in Max(Vj;R). I.e., R not among R1; : : : ; Rk.
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(III) The expression Min(HR) without R, Min(H0
R), could be mapped into Max(Vj;R). That is, if Min(HR) is

given by the Eq. (32) then: fRv1; : : : ; Rvlg n fRg � fR1; : : : ; Rkg and (fJ CRv1 ;Rv2
; : : :J CRvl�1

;Rvl
g nfJ CS;S0 j

S = R or S0 = Rg) � fJ CR1;R2 ; : : :J CRk�1 ;Rkg. I.e., the expression Max(Vj;R) must contain all the elements

of the expression Min(HR) una�ected by dropping relation R.

(IV) For any attribute A 2 R that is indispensable and replaceable in the view de�nition, the expressionMax(Vj;R)

contains a relation S 2 fR1; : : : ; Rkg such that there exists a function-of constraint FR:A;S:B = (R:A = f(S:B))

in MKB. We call the relation S a cover for the attribute A and the attribute f(S:B) a replacement for the

attribute A in Max(Vj;R).

(V) The conjunction C0Max=Min is obtained from conjunction CMax=Min by substituting the attributes of R with

their replacements (see (IV)) if any, or dropping primitive clauses that are dispensable and for which no re-

placement was found for their attributes.

Erasing R from the connected sub-hypergraph HR(MKB) could lead to a disconnected sub-hypergraph

H0
R(MKB0). If H0

R(MKB0) is disconnected and the relations left in Min(H0
R) are in disconnected compo-

nents then the set R-replacement(V;HR(MKB)) is empty.

Example 16 In Figure 15, the expression Min(H0
Customer) de�ned by Eq. (36) is marked with bold lines:

Min(H0
Customer) = (FlightRes).

If relations left in Min(H0
R) are in a connected component of H0

R(MKB0), we construct the set

fMax(V1;R); : : : ;Max(Vk;R)g as in the following algorithm.

Computing R-replacement(V;HR(MKB)).

Step 1. First, we �nd all the relations that could qualify as covers for the indispensable and replaceable attributes

of V as required by property (IV) of De�nition 11. That is, for any indispensable attribute A of R from the

SELECT clause, we �nd Cover(A), a set of pairs (relation, function-of) fromH0
R(MKB0) such that 8(S; (R:A =

f(S:B))) 2 Cover(A), S is in H0
R(MKB0) and there exists a function-of constraint FR:A;S:B in MKB such that

FR:A;S:B = (R:A = f(S:B)).

If there exists an indispensable attribute A of R such that Cover(A) = ;, then the set R-

replacement(V;HR(MKB)) is empty. In other words, no replacement can be found.

Step 2. Using the covers found at Step 1, we construct the expressions Max(Vj;R) as required by properties (I)

and (III) of De�nition 11. In H0
R(MKB0), an expression Max(Vj;R) corresponds to a connected \path" that

must contain all the join constraints (i.e., J C-nodes) and relations (i.e., relation-edges) left in Min(H0
R) plus

for each indispensable attribute A of R, one relation (i.e., the relation-edge) from the Cover(A). The expression

Max(Vj;R) is obtained by adding to this connected path, the conjunction C0Max=Min de�ned by property (V) of

De�nition 11.

Example 17 We give here an example of how R-replacements are constructed for the view de�ned by Eq. (29)

and R = Customer. H0(MKB0) is depicted in Figure 15.
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Figure 15: The Hypergraph H0(MKB') for Example 1, View (29) and \delete-relation Customer" operator.

Step 1. In our example, the only indispensable attribute of relation Customer is Customer.Name. Using the

hypergraph depicted in Figure 15, we �nd: Cover(Customer.Name) =

f ( Accident�Ins, F2 = (Customer.Name = Accident�Ins.Holder)),

( Participant, F4 = (Customer.Name = Participant.Participant) ),

( FlightRes, F1 = (Customer.Name = FlightRes.PName) ) g.

Step 2. Following property (V) of De�nition 11, we have that C0Max=Min = (FlightRes.Dest = 'Asia').

Let us now construct the candidate expressions Max(Customer-Passenger-Asiaj;Customer) and de�ne what

is the replacement for the attribute Customer.Name.

(1) For the

cover ( Accident�Ins, ( Customer.Name = Accident�Ins.Holder ) ) 2 Cover(Customer.Name), we

�nd the following expression that has all the properties from De�nition 11.

Max(Customer-Passenger-Asia1;Customer) =(38)

�(FlightRes.Dest = 'Asia')| {z }
C0Max=Min

0
B@ FlightRes| {z }
Min(H0

Customer)

1(FlightRes.PName = Accident�Ins.Holder)| {z }
JC6

Accident�Ins| {z }
in Cover(Customer.Name)

1
CA

(2) For the

cover ( Participant, ( Customer.Name = Participant.Participant ) ) 2 Cover(Customer.Name) we
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see that there is no connected path in H0(MKB0) (Figure 15) that contains this cover and the relation FlightRes

(from Min(H0
Customer)). Thus we cannot generate any replacement for

Max(Customer-Passenger-AsiaCustomer) using this cover.

(3) For the cover ( FlightRes, ( Customer.Name = FlightRes.PName ) ) 2 Cover(Customer.Name),

we �nd the following expression that has all the properties from De�nition 11.

Max(Customer-Passenger-Asia2;Customer) = (39)

�(FlightRes.Dest = 'Asia')| {z }
C0Max=Min

0
B@ FlightRes| {z }
Min(H0

Customer );in Cover(Customer.Name)

1
CA

7.6 Putting it all Together: The CVS Algorithm

Now we are ready to give the Complex View Synchronization (CVS) algorithm that has as input a view

query V , the MKB and a change \delete relation R", and returns all legal rewritings (see De�nition 3) of the

view V .

Complex View Synchronization (CVS) Algorithm :

CVS(V , ch =delete�relation R, MKB, MKB')

INPUT:

view de�nition V de�ned as in Equation (8);

change ch = \delete-relation R";

MKB represented by the hypergraph H(MKB);

evolved MKB' represented by the hypergraph H0(MKB0).

OUTPUT:

A set of legal rewritings V1; : : :Vl of V .

Step 1. Construct the sub-hypergraph HR(MKB) as de�ned in De�nition 9.

Step 2. Compute R-mapping(V , HR(MKB)) = (Max(VR);Min(HR)) as de�ned in De�nition 10.

Step 3. Compute R-replacement(V , H0
R(MKB0)) = fMax(V1;R); : : : ;Max(Vk;R)g as de�ned in De�nition 11. If

R-replacement(V , H0
R(MKB0) = ; then the algorithm fails to �nd an evolved view de�nition for the view V .

Step 4. An evolved query V 0 is found by replacing Max(VR) with Max(Vj;R) in Equation 35; and then by

substituting the attributes of R in V with the corresponding replacements found in Max(Vj;R). Because some

more conditions are added in the WHERE clause (corresponding to the join conditions in Max(Vj;R)), we have

to check if there are no inconsistencies in the WHERE clause. Example 18 below gives some examples of evolved

view de�nitions generated by Step 4 for the view de�ned by the Equation (29).

Step 5. Set the E-SQL evolution parameters for all V 0 obtained at Step 4 as de�ned in Section 5, De�nition 4.

Step 6. All the rewritings obtained by Step 4 have properties M2, and M3 from De�nition 7, Section 5.3. At this

step, we have to check for which rewriting V 0 obtained in Step 4 the extent parameter VEV of the query V is
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satis�ed in order to see if the property P3 from De�nition 3 is satis�ed and hence property M1 (De�nition 7)

is satis�ed. This issue is similar to the problem of answering queries using views which was extensively studied

in the database community [CKP95, LSK95]. However, in our problem domain, we have an added issue of the

availability of the set of partial/complete information constraints de�ned in MKB' that could be used to compare

the extent of the initial view V and the extent of the evolved view V 0. This development is beyond the scope of

current paper but our current work is starting to address this problem [NR98b].

Example 18 For our view Customer-Passenger-Asia de�ned by Equation (29), we now show how to apply

Steps 4 and 5 from the CVS algorithm and �nd replacements under the change \delete relation Customer".

The expression Max(Customer-Passenger-AsiaCustomer) =

0
BB@FlightRes 1�(FlightRes.PName = Customer.Name) AND

(FlightRes.Dest = 'Asia')

� Customer

1
CCA (Example 15, Eq. (37)) could be replaced

by one of the following expressions found at Step 3 of the CVS algorithm:

(1) Max(Customer-Passenger-Asia1;Customer) =

�(FlightRes.Dest = 'Asia')( FlightRes 1(FlightRes.PName = Accident�Ins.Holder) Accident�Ins).

For this particular case, we see that the attribute Customer.Age is also covered by the relation Accident�Ins

with the function-of constraint F3 = (Customer.Age = (today � Accident�Ins.Birthday)=365). In this

case, we can replace the attribute Customer.Age in the view, too. A new rewriting of Equation (29) using

this substitution as well is given by Equation (40). There are no contradictions in the WHERE clause after the

replacements are done.

CREATE VIEW Customer-Passengers-Asia1 AS

SELECT AI.Holder (AD = false;AR = true), f(AI.Birthday) (AD = true;AR = true),

P.Participant (AD = true;AR = true), P.TourID (AD = true;AR = true)
FROM Accident�Ins AI (RD = true;RR = true), FlightRes F (RD = true;RR = true),

Participant P (RD = true;RR = true)
WHERE (F.PName = AI.Holder) (CD = false; CR = true) AND (F.Dest = 'Asia')

AND(P.StartDate = F.Date) AND (P.Location = 'Asia')

(40)

(2) Max(Customer-Passenger-Asia2;Customer) = �(FlightRes.Dest = 'Asia')FlightRes.

A new rewriting of the query (29) is given by the query (41). There are no contradictions in the WHERE clause
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after the replacement is done.

CREATE VIEW Customer-Passengers-Asia2 AS

SELECT F.PName (AD = false;AR = true),

P.Participant (AD = true;AR = true), P.TourID (AD = true;AR = true)
FROM FlightRes F (RD = true;RR = true),

Participant P (RD = true;RR = true)
WHERE (F.Dest = 'Asia')

AND(P.StartDate = F.Date) AND (P.Location = 'Asia')

(41)

Step 6 in the CVS algorithm requires to verify that the view-extent evolution parameter is satis�ed by rewritings

found in the previous steps of the algorithm. Unlike the approach proposed for query rewriting using materialized

views [LRU96, SDJL96, CKP95, LMS95] our proposed techniques address new issues: (1) �nding view rewritings

that are not necessarily equivalent to the original view de�nition (VE 2 f�;�;�g), (2) using semantic contain-

ment information expressed using PC-constraints for proving that candidate rewritings satisfy the view-extent

evolution parameter, and (3) preserving at least indispensable attributes from the SELECT clause if preserving all

is not possible. Due to the space limitation we don't present here our work done in this direction [NR98b], insead

we simply give an example for when the view-extent parameter could be shown to be satis�ed by a PC-constraint.

Example 19 Let's assume that the view Customer-Passengers-Asia has the view-extent evolution parameter

VE set to \�". And the PC-constraint shown in Equation (42) is de�ned in MKB between the relation Customer

and the relation FlightRes (i.e., the Customer relation has all the passenger names from FlightRes relation).

Then we can prove that the view Customer-Passengers-Asia2 de�ned in Equation (41) is satisfying the view-

extent evolution parameter. I.e., Customer-Passengers-Asia2 �� Customer-Passengers-Asia for any

states of the relations involved in the views (as required by De�nition 3, Section 5).

PCCustomer,FlightRes = (�Name(Customer) � �PName(FlightRes)) (42)

Indeed, let t0 2 Customer-Passengers-Asia2 be a tuple in the new view. Then it must exist the tuples tF 2

FlightRes, and tP 2 Participant that generate the tuple t0. But from the PC-constraint de�ned in Equation

(42) there must exist a tuple tC 2 Customer having the same value for the attribute Name as the tuple tF

has for the attribute PName. One can easily see that the tuples tC; tF and tP generate a tuple t 2 Customer-

Passengers-Asia such that t =� t0.

8 Related Work

To our knowledge, we are the �rst to study the problem of view synchronization caused by capability changes

of participating information sources. In [RLN97], we establish a taxonomy of view adaptation problems that

identi�es alternate dimensions of the problem space, and hence serves as a framework for characterizing and hence

distinguishing our view synchronization problem from other (previously studied) view adaptation problems. In
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[LNR97a, LNR97b], we then lay the basis for the solutions presented in this current paper by introducing the

overallEVE solution framework, in particular the idea of associating evolution preferences with view speci�cations.

However, formal criteria of correctness for view synchronization as well as actual algorithms for achieving view

synchronization with complex substitutions for \delete-relation" capability change are the key contributions of

this current work. Moreover, we introduce in this paper the concept of the strongest synch-equivalent view

de�nition that makes the implicit semantics of the view evolution parameters explicit and give the transformation

rules for �nding it for a E-SQL view de�nition.

Gupta et al. [GJM96] and Mohania et al. [MD96] address the problem of how most e�ciently to maintain

a materialized view after a view rede�nition explicitly initiated by the user takes place. They study under

which conditions this view maintenance can take place without requiring access to base relations, i.e., the self-

maintainability issue. Their algorithms could potentially be applied in the context of our overall framework, once

EVE has determined an acceptable view rede�nition. Their results are thus complimentary to our work.

In the work of Levy et al. [LSK95], a global information system is designed using the world-view approach

where the external information sources are described relative to the uni�ed world-view relations. The language

used here to describe external relations relative to the world-view schema parallels our MKB description language,

except the fact that we don't have an apriori de�ned schema. Further, we introduce the concept of a join constraint

in our model that allows expressing default conditions among external relations that should be used by the system

to attempt to integrate information instead of evaluating (blindly) all possible Cartesian combinations based on

value matches (full disjunction) [NR98a, NR97]. The problem of view evolution as posed by our work, i.e., that

the world view itself may evolve, is not discussed in [LSK95].

Papakonstantinou et al. [PGMW95, PGMU96] are pursuing the goal of information gathering across multiple

sources. Their proposed language OEM assumes queries that explicitly list the source identi�ers of the database

from which the data is to be taken. Like our MISD model, their data model allows information sources to describe

their capabilities, but they don't assume that these capabilities could be changed and thus they do not address

the view synchronization problem.

EVE system can be seen as an information integration system using view technology to gather and customize

data across heterogeneous information sources. On this venue, related work that addresses the problem of

information integration are among others the SIMS [AKS96] and SoftBot [EW94] projects. In the SIMS project,

a uni�ed schema is apriori de�ned and the user interaction with the system is via queries posed against the

uni�ed schema. Although addressing di�erent issues, SIMS's process of translating a user query into subqueries

targeting external relations raises some of the same problems as �nding the right substitution for an a�ected view

component in EVE. The SoftBot project has a very di�erent approach to query processing as they assume that

the system has to discover the \link" among data sources that are described by action schemas. While related to

our view synchronization algorithms CVS, the SoftBot planning process also has to discover connections among

information sources when very di�erent source description languages are used. None of the two projects address

the particular problem of evolution under capability changes of participating external information sources.
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Research on query reformulation using materialized views Levy et al. [LRU96, LMS95, SDJL96] considers

the problem of replacing an original query with a new expression containing materialized view de�nitions such

that the new query is equivalent to the old one. To the best of our knowledge, there is no work done in this

context of query reformulation using views with the goal of generating queries without equivalence (e.g., the new

reformulated query could be a subset of the original query). This approach to query reformulation [LMS95] has

some similarities with our view synchronization process, but again it is set in a di�erent environment and has

di�erent goals. Namely, we have extended the idea of query reformulation by using a well-de�ned query language

E-SQL to specify constraints on query reformulation, thus, when in compliance with those constraints, we allow

the view rede�nitions to be for example a subset or a superset of the original view. And, if not possible to

preseve all view attributes (from the SELECT clause), our view rede�nition semantic allows to specify evolution

preferences that add 
exibility and in the same time let the view de�ner control the view evolution process.

In the University of Michigan Digital Library project [NR98a], we have proposed the Dynamic Information

Integration Model (DIIM) to allow information sources to dynamically participate in an information integration

system. The DIIM query language allows loosely speci�ed queries that the DIIM system re�nes into executable,

well-de�ned queries based on the capability descriptions each information source exports when joining the DIIM

system. For this, the notion of connected relations is introduced as a natural extension of the concept of full

disjunction [GL94]. In the default case when only natural joins are de�ned in the IS descriptions in the MKB it

then can be shown that the semantics of these two concepts (connected rules and full disjunction) are equivalent

[NR98a]. AI planning techniques are used in DIIM for query re�nement. In EVE, instead, we now assume that

precise (SQL) queries are used to de�ne views (instead of loosely-speci�ed ones), and thus query re�nement in

the sense of DIIM is not needed.

9 Conclusion

Our work is the �rst to study the problem of view evolution in a dynamic environment [RLN97, LNR97a, LNR97b,

NLR98, LKNR98, NR98b]. In our EVE system, views survive even when the underlying ISs upon which they are

de�ned change their capabilities. One key component of our solution approach is the design of a view speci�cation

language based on SQL , called E-SQL, that incorporates user preferences for view evolution. In order to �nd

alternative replacements for components of a view a�ected by IS capability changes, EVE maintains descriptions

of the capabilities of ISs as well as interrelationships between ISs in a meta-knowledge base (MKB).

Equipped with E-SQL and the MKB, we propose in this paper strategies for the view synchronization process.

First we introduce a formal de�nition of what is a legal rewriting for an a�ected view de�nition. Then, we

de�ne the concept of synch-equivalence that expresses the real evolution 
exibility of an E-SQL view de�nition.

We also propose a general strategy for �nding the strongest synch-equivalent E-SQL de�nition for a given view

speci�cation, and provide proofs of the uniqueness of one such strongest de�nition.

In this paper, we next present the Complex View Synchronization (CVS) algorithm that fully exploits the

constraints de�ned in MISD by allowing relation substitution to be done by a sequence of joins among candidate
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relations. It can be shown that CVS meets all preservation constraints in the view de�nition, while �nding

appropriate information from other ISs as replacement for a�ected components. CVS �nds a new valid rewriting

of a view in many cases where current view technology would have simply disabled the view, and where our

previous one-step view synchronization (SVS) [LNR97b] would have failed to locate a suitable solution. Examples

to illustrate the main ideas are given throughout the paper. In particular, we treat in depth view evolution caused

by the \delete-relation" capability change. To summarize, the main contributions of this paper are:

� We have presented a formal description of when a view rewriting generated as response to an IS capability

chance is considered to be legal.

� We introduce in the concept of synch-equivalence between E-SQL speci�cations to express the real evolution


exibility of an E-SQL view de�nition.

� We give a general strategy for �nding the strongest synch-equivalent E-SQL de�nition for a given view

speci�cation, and prove this transformation process to always generate the unique strongest solution.

� We have designed a solution approach for view synchronization that achieves view rewriting by exploiting

chains of multiple join constraints given in the MKB.

� To demonstrate our solution approach, we have presented the Complex View Synchronization (CVS)

algorithm for handling the most di�cult capability change operator, namely, the \delete-relation" operator.

This work has opened a new problem domain important for a wide range of modern applications, and we thus

expect that much future research will be conducted within the context of our proposed framework. Examples of

EVE work to be done include the exploration of alternate view evolution preference models, MKB evolution as

well as cost models for maximal view preservation [LKNR98].
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