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Abstract

We consider the problem of maintaining a binary search tesg)(that minimizes the average ac-
cess cost needed to satisfy randomly generated requests. We analyze scenarios in \shigstes are
generated according to a vector of fixed prabtés which isunknown Our approach is statistical.

We devise policies for modifying the tree structure dynamically, using rotatioascgssed elements.
The aim is to produce good approximations of the optimal structure of the tree, while keeping the number
of rotations as small as possible. The heuristics we propose achieve a close approximation to the optimal
BST, with lower organization costs than any previously studied.

We introduce théMove OncegMmO) rule. The average access cost to the treder this rule is shown to
equal the value achieved by the common Migve to the RootMTR). The advantage ofio overMTR and
similar rules is that it relocates each of the items in the tree at most once. We show that the total expected
cost of modifying the tree by theo rule is close ta(12/3 — 2) rotations (in a tree witm items). This
holds independently of the access prabtbs and the number cdiccesses to the tree.

Next we combine thero rule with reference counters, one per item, that provide estimates of the
reference probabilities. We define the rideucs, and show, that for any anda > 0, it achieves a cost
that approaches the optimum up to a differencé wfith probability higher than * a, within a number
of accesses that is@portional ton/ (03?).
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stopping point.

*Part of the work was performed in the Dept. of Computer Science, The University of Houston, Houston Tx 77204-3475, USA.
*Author supported in part by the Technion V.P.R. Fund — E. and J. Bishop Research Fund, and by the Fund for the Promotion of
Research at the Technion.



Hofri, Shachnai: Reorganizing Binary Search Trees... 2

1 Introduction

The Binary Search Tre€BsT) is commonly used for storing lists of entries that satisfy a total order. The
advantage of a tree is that it allows an efficient search in the list. Typically, the search is most efficient when
the tree is kept as balanced as possible, and when popular elements are close to the root. We study methods
that maintain @8sT in a nearly optimal form.

We consider a fixed set of records in random storagke,= {Ry,...,R,}. The recordR; is uniquely
identified by the ke\;, for 1 <i < n. The keys satisfy a total order, and the set is maintainedesra
The records are accessed according to dinamial distribution driven by the geference probabilityector
(RPV), p= (p1,---, Pn). Thus,R may be requested at any stage with the same probapilitpydependently
of previous requests and the state of the tree — and in particular of the locaipimdhe tree. This is called
theindependent reference modetm). Since therpv andL do not change, the passage of time is realized
by the sequence of references. There is no other notion of time in the model.

Each reference requires a search for a record in the tree. The cost of a single access is defined as the
number of key-comparisons needed to locate the specified record. This eqdeafsiis the tree.

The order by which the records are initially inserted into the tree is assumed to be random (with equal
probability over all possible permutations. The implications of this assumptions are discussed further in the
note to Theorem 3 below). Different initial-insertion sequences usually result in different trees, with very
large range of expected access costs.

The access probdities listed in therPv p are assumed unknowwerethey known, we could restructure
the tree, using a known dynamic-programming approach to provide the smallest possible expected cost. Since
therPVis constant, so would be the optimal structure. Witmknown, we are reduced to looking at policies
that use the accumulating reference history to adapt the tree structure, with the goal of rearranging the records
so that the expected access cost is minimized.

The reorganization process incurs a cost as well: the manipulations performed on the tree when its struc-
ture is modified. The only operations used for thism@tations operations that exchange the ‘rotated’ node
with its parent, while maintaining the key-order in the tree. Figure 1 shows the tree modifications that result.
Note that the inverse of the rotation operation is a rotation as well. The cost of the reorganization is defined
as the number of rotations, since each rotation requires essentially the same computing time.
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Figure 1: Single left-child and right-child rotations that refle&} < K, < (B) < Kp < (C)
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The two cost components of key comparisons and rotations are deno@drmR respectively. A few
performance measures which are of interest in this context are:

1. Gy — The access cost following tmath reference (and possible reorganization}; O.
2. C—The asymptotic access cost, especially its expected &|Ge,
3. R—The work done in reorganizing the tree, such as the moments of the total number of rotations.

In addition to the limiting expectation of the random variaBleit is interesting to consider the rate at
whichC, approaches this limit: since most data processing systems exist for a finite time only, a policy which
reduces the access cost promptly may be preferable to one that does it more slowly, even ifitigedost
of the latter is somewhat lower.

The problem of reorganizing BST to minimize the average access cost has been widely studied. Most
of the work we have seen focus either on the asymptotic val@ of an “amortized” analysis of the cost,
which combinesC andR, but is limited to considering a worst-case scenario [8, 19, 16]. Typically, such an
approach only yields bounds. Such an analysis cannot assess the advantages of methods that rely on properties
of thelrM (on the other hand, since it considers the worst case, the bounds it produces apply to more diverse
scenarios, in particular — where tl/av assumption does not hold). The results in [4] refer to the case when
the elements of thepv are known only up to a permutation.

Some of the research focused on the situation whererkés known with the goal of finding the optimal
tree — or achieving a nearly optimal one, with a smaller computational effort. An early outline is given in [15].

A survey of more recent work on balancedTs appears in [18]. Recently, parallel algorithms have been
considered for construction of optimal and nearly optis®is ([2, 13]).

In this paper we devise and analyze policies which achieve a close approximation to the sptinveth
lower organization costs than any of the previously studied heuristics.

Section 2 defines some additional notation, and presents the dynamic-programming algorithm that con-
structs the optimal tree for a knovkPv. In Section 3 we discuss tidove OncgMo) rule, which achieves
the same co<t as theMove to the RoofMTR) rule ([1]), but requires at most— 1 reorganization steps for
any reference sequence to the tree.

We then propose in section 4 a method for approximating the optimal search tree, which improves the
asymptotic average cost obtained by th@or MTR. Our method, which we caMove Once and Use Counter
SchemémMoucs) guarantees, that for adyanda > 0, the tree is dynamically reorganized until the average
access cost is withid of the optimal cost, with probability of at least-1a. We obtain a distribution-free
bound on the running time of the algorithm, which is lineanifthe size of the tree) and/10&?).

2 Preliminaries

Let C(T,) denote the average access cost gsa T of n elements, with the access probaies py,. .., pn,
then, with the root at level O,

C(Ty) = 1—|—il pi - (level(R)). 1)

Under thelrMm, for any set of keys with a giverpv, there exists an optimatatic BST. We denote by
C(oPT|p) the average access cost in such an optimal tree.
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The optimal tree structure and its expected cost are straightforward to compute using the following Dy-
namic Programming equations, which need to be satisfied at every internal node (adapted from [15]). Let
C(i, j) be the expected access cost of the optimal subtree that consists of rBgard, 2, ...,R;. Then
C(0,n) is C(oPTip), as defined above. We also defimg = y;_, p«. These costs satisfy the Bellman equa-
tions

ci,i) = o,
Cli.)) = Tiynj+min(Cli.k—1)+Clk ])) @

When the access proldities areunknown a dynamic reorganization of the tree may be used to achieve an
approximation of the optimal order. Some of the well known modification rules are studied in [1] and [4].
Various performance measures were considered for this model. With a given reorganizatioB jpolkitgn
unknownrpvV p, the following costs are used below:

1. The average access cost afterritle referencem > 0, denoted by, (B|p),
n
Cm(Blp) = 1+ Zpi-E[Level(i)lB&L 3)
i=

Note: the expected level at which an item may be found, under a pBlicy determined not only by
the sequence of accesses: it also depends onitla state of the tree, possibly as a result of the order
the elements were inserted into the tree. As a rule we average over all possible insertion sequences,
considering them equiprobable

Under certain policies, the initial state becomes irrelevant following a large number of references
and the changes in the tree they trigger. In particular, this holds for any reorganization policy which
approaches the optimal tree (or the optimal expected cost only) after a sufficiently long sequence of
searches.

2. The expected access cost in theifing state:
C(Blp) = lim Cu(B|p).
3. The total expected number of rotations induced by an input string, characterized either by its size (e.g.

mrequests) or by the number of distinct records it references. In particular — by a sequence that contains
each record at least once.

3 The Move Once MO) Rule

3.1 The Average Cost of a Single Access

Allan and Munro [1] analyzed the Move To the RoottR) rule in detail, assuming them. This rule is the
counterpart of the Move To the FromatF) rule for linear lists: a referenced record is rotated to the root of

IThis doesottranslate to a uniform distribution over initial tree states, since the number of sequences that result in a given tree
state is not the same for all tree states. Happily, more-balanced trees occur more frequently than badly skewed ones, which have
normally (much) higher access costs.
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the tree (unless it is there already). They showed an upper bound on th€(matie|p)/C(orPT|p) for any
distribution (their Theorem 3.3), and also estimated its rate of convergence (their Theorem 5.1).

TheMTR rule is on the one hand more attractive thanntte for a linear list, since the limiting value of
its access cost can be shown to be closer to the optimal cost; on the other hahdothponent of its cost is
even more pronounced than with a list, where any rearrangement uses the same time; here, moving a record to
the root uses the same number of rotations as the number of steps to reach the record in the first place. Hence
it makes sense to look for rules that use less expensive modifications. In [10] we showed that for a linear list,
moving a record at most once (when it is first referenced) to the tail of the sublist of records that were moved
before, achieves the same expected cost asitife at any finite time. We propose to use the same principle
for reorganizingdsTs: a record is only moved the first time it is referenced. It is then rotated towards the root,
until its parent is a record that has already been referenced. The first referenced record goes of course all the
way to the root. Hence the name Move OnK)).

Allan and Munro [1] consider a similar rule, calling it the First Request Rule, and show it has the same
asymptoticost as theaTrR. However, forBsTs, just as for linear lists, more can be claimed:

Theorem 1: Let aBST be referenced according to them with therpv p. The rulesvTR andmo have the
same expected access costs for the mth request, for ang.m

We use in the proof the following result.

Lemma 2: For a given initiaBsT, let Tz(l) be theBST resulting from processing the reference stiiingth
the reorganization rulB. Then

Turr(1) = Tuo(17),
where the stringR is the reverse of.

We give a detailed proof of the lemma in the Appendix.

Proof of Theorem 1. We naturally assume that both rules start with the same tree (or with trees selected
at random using the same initial distribution). Under ikia, any reference stringand its reversé® have
precisely the same probability, hence #ueess costs of the two rules are identically distributed; for our needs
only the equality of the expectations matters. The equality may seem surprising, since usually the rules con-
struct for thesamenput string two entirely different trees. The important difference is th@auses far fewer
rotations tharmTr, and moreover, the latter churns its tree indefinitely, whexeasests after a time which

has a finite expectation. O

Hence we can use the results in [1] for the average cost wmdketo state the following theorem.

Theorem 3: ([1]): The expected access cost tesr reorganized with the1o policy, after m references, is
given by

2pip; m{ Pi+P;  2pip;
Cm(MOp) = 1+ L LT L (R R (4)
( 1§i;§n i, J J—-1+1 TG j
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Note: This result applies when the tree is considered to have been initiated by a uniformly distributed insertion
sequence. If it were created by the same applications which gave riserp\hvee used above, then its initial
form has the asymptotic distribution induced by th@ policy. This has then the limiting expected value
2 - N
Cmolp) =1+ 5 2B (5)

1<iS<n T4

and themo policy calls for no more modifications.

3.2 The Expected Number of Rotations

The variableR,, the total number of rotations theo policy requires to organizegsT of sizen (that is created
by a random sequence) till all records have basressed at least once, characterizes the cost of implementing
this policy.

The size of such a sequence is known as the length of the Coupon Collector Search. This process is
discussed in detail in [5]. Its length depends critically onre; the expected value of the length is smallest
whenp is uniform, and equals therH, (H, is thenth harmonic number, and approaches &symptotically).

While the number of rotations for the first few references would be typicaldfiogn), we should expect
most subsequent references to require few rotations, if any.

The number of rotation®), for a tree of sizen depends on two distributions. One generates the insertion
sequence that creates the initial tree, and the second governs subsegeesés — this is the abarev. In
fact, it would be more accurate to say it depends on the relation between the two distributions. This general
statement has an exception: if the first distribution is uniform — every permutation of the records is equally
likely to serve as the insertion sequence — tRgdoesnotdepend on the accergv. The reason is apparent
from the equation we derive now. Consider the first reference. It addresses someRigawhérel is the
position of that record in the total order of the keys. Since the tree was created with the uniform distribution,
then regardless of the valuesladnd of the access prohitity p;, the depth of the recorR, is distributed as
Dy, (= the depth of a randomly selected node in a randomly constrested- independently of. Hence we
may assume that the variablesampled according to the accessv, is uniformly distributed onl, n]. Dy is
also the number of rotations that bring it to the root. Once this is done it will have two subtrees df-sikes
andn- I, and again, their structure is that of randomly crea@gts. Themo policy translates to independent
reorganization of the subtrees; we find then

Rh=Dn+R-1+Rn- (6)

The statistics oD,, are well known; it satisfies a recursion even simpler than ()= 1+ D,_1+ Dp_,.
From this it is easy to obtain ifgrobability generating functiofpGH, the expected value and its variance,
respectively:

o = -z a- v 7))
dh = EIDi=2(1+3)Hh—4

Uy = V[Dn]=2(n+5)Hy/n+4[1— (n+H?/n— (n+1)HZ/n?.
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We useH{? to denote theith second-order harmonic number, that converges promptty/.
Let us return to rotations: Taking expected values (with respect to the entire access sequence used by the
MO policy) of equation (6) we derive the first-order difference equation

n n+2
rn+1 = E[Rnt1] = dnp1— mdn—F mrm (7)
which has the immediate solution
rn= 2n(H? — 1) — 2H, + 2HP. 8)

For not-too-smalh, a good approximation af, is given byr, ~ n(1%/3 - 2) — 2logn + 2.3950.

The total expected number of rotatiguesr recordin the tree is then less than 1.3.

ThePGF of R, does not appear to be easy to obtain. Even the varigneeV/[R,)], which satisfies a relation

very much like (7), does not seem to have a useful closed form representation. An asymptotic estimate is
obtainable, though the explicit form is very complicated. It boils down to

Vn & 1.165381 — 4logfn— 10.617725logn+ O(1). (9)

The main information this result provides is that for large trees the distribution is very tightly centered at the
mean value.

4 Reference Counters and Approximately Optimal Trees

The glaring difference between the use of reference counters for the reorganization of linear listssred of

is that for the first storage mode, the Counter Schenge-(the policy that keeps the records ordered by their
counters—converges to the optimal order without any extra costs, while unless tree reorganization is “free,”
there appears to be no such simple rulegfers that results in an optimal structure.

4.1 The Counter Scheme and Dynamic Programming

In [11] the cs was shown to be optimdbr linear lists not only asymptotically, but also for evefipnite
reference string. It is tempting to search such a rulestors. This does not seem to exist. In particular,
the so-called “monotoniBsT’, which like thecs keeps records with higher counters closer to the root, will
usually fail to result in the optimal structure, for the same reason that udingwnrPV to structure e&8ST
monotonically fails to reproduce the tree which is computed by the Dynamic Programomnalgorithm of
section 2.

It is also known that the cost of the monotonic tree can be unboundedly higher than that of the optimal
one (specifically — their ratio can be as high as rougfilipgn, [17]).

But all is not lost. We can combine theo and thecs with the Dp algorithm as follows. The counters
provide estimates for therPv which could be used ipP to produce a tree which is the optimal one for the
estimates (but would usually be in fact suboptimal). The computation takes a (constant) ®mé)inthis is
non-trivial for a large tree. Hence we would like to do it once, and to do it right. This requires

1. That the estimates should be good enough for the deviation from optimality to be tolerable.
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2. An efficient management of the counters, that will minimize their space overhead. As we show below,
the total number of references needed is typically a moderate multipie Bience, unless for some
reason very small counting registers must be used, we need not worry about their potential overflow.

These points—especially the second one—suggest that the procedure needs a stopping criterion, a way to
determine when the estimates are good enough to stopahghase. The criterion must connect the total
number of references (possibly with some information about the estirratgdand the nearness of the sub-
optimal value to the optimal one. We suggest the following compound pmilinycs (for Move Once and

Use Counter Scheme):

Reorganization Ruleoucs. This rule has two phases:

Phase A: Use the rulgo and also compile reference counteZsfor R, during a total ofmg references. A
suitable value fomy is shown below.

Phase B: us¢Ci/my} as estimates for thepv; compute the “ostensibly optimaBsT using them as input
for the DP algorithm, restructure the tree accordingly and stop reorganizing.

For the access cost during Phase A we have an explicit, if cumbersome result in equation (4).

Allen and Munro use equation (4) to show that KmeR rule produces a tree with an expected access cost that
differs from its limiting value by at most one, withimlogn/e| reference& They also show, however, that
this limiting value,C(MTR|p), can exceed the optimal one by some 40%. We would like to do better.

In the following result we quantify the efficiency of t®ucs rule in terms of convergence to the optimal
tree vs. the length of the request sequence. We shall see that large trees need even less references in phase A
than Allen and Munro suggest, and provide expected access cost which is close to the optimum.

Denote bﬁ(opﬂ p) the expected access cost to the tree built in Phase B for the espirttateeRPV p.

Theorem 4: For any unknowrrRpv p, d > 0anda < 1,
Prob(|C(opPTjp) — C(oPTlp)| > §) < a (10)

after a sequence of raccesses to the tree, where

 5.23m

Fa ()

Note: Below we compare thigy with n', the number of references found empirically to be needed to
approach the optimal cost to the desired level.

We use in the proof the following lemmas, which relate weights (= access plitibapof subtrees to
their position in the optimassT. We remind the reader that the level of a node was defined as its distance
from the root.

Lemmab: LetT be an optimabsT as given in Figure 2 (possibly a subtree of the compet®. Node B is
at level 2, and P is the weight of T. Leg,p, pr denote the weights of the nodeg B respectively, Pis the

2The remarkable fact about this value is that it is far smaller than the expected number of references before all records are
referenced at least once!
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Figure 2: The optimal tre@

weight of the tree rooted at t, ang s the weight of the tree rooted at B, and fox i < 4, B are the weights
of the subtrees;TthenvVa € [0, 1]

eitherR<aP or < (1-a)P. (12)

We give the proof in the Appendix. Lemma 6 improves the bound on the maximal level of an item in an
optimalBST as given in [9].

Lemma6: For anyRPV ps,..., Py corresponding to the recordsiR. ., R,, such that S= 3L, pi < 1, if L
is the level of Rin an optimalesT (where the level of the root 3), then

p<obth (13)
where¢ is given by(v/5— 1)/2, the celebrated golden ratio.

Proof: ~ Using Lemma 5, the proof is similar to the proof of Lemma 2 in [17]. In addition we get-an
fortiori bound (read: possibly poor) by replacing the weight of a subtree by that of its root. [

a\n 10 20 50 100 200
0.25| 0.0141 0.0164 0.01768 0.01816 0.01766
0.1 | 0.00961 0.0108 0.00895 0.00843 0.008D7
0.05| 0.00715 0.0064 0.00538 0.00462 0.004405
0.01| 0.00223 0.0017 0.00132 0.00109 0.000971

Table 1: The required length for the reorganization process undecs to approach the optimum within a
differenced = 0.25 with probability higher than % a (The table shows the ratio' /my).
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Proof of Theorem 4: Let fj be the estimate fap, obtained after a sequencerofreferences, and lét I be
the levels ofR; in the optimal trees fop,p respectively. Using the optimality d¢f;} for {;},

C(oPTip) ~C(oPTp)| = ‘;ﬂ P —_Zihpi‘ (14)

I_n iPi —éhpi‘ : (15)

n R n ~
< 2 iPi —i;hpi 12
Therefore, fo® > 0 and 0< a < 1, it is sufficient to look for the minimal value of satisfying
n n 6
PI’Ob( 2 i Bi —i;hpi > E) <a, (16)
and a similar relation witth replacingl; (for which thesame mwould suffice, since th& are the optimal

levels for the estimated probabilitigs).” Now, sinceC,(m) has the marginal distribution Bim, p;), we can
compute the moments of the estimapedJSing the Chebyshev inequality in relation (16) we solveti@and

have
Zil pi(1-pi) gp.pjll
< 62 Zil pi(1—pi), 17)

where the last inequality amounts to neglecting the (negative) covariances between the counters. From
Lemma 6 we havd; < 1+logp;/log¢, hence

n
m< %Z(Hlog pi/10ge)*pi(1- pi). (18)
Each of the terms in the sum is at most mag 1) (1+log pi/10g®)?pi(1— pi) = 1.33371.. (atp; ~ 0.071),
yielding the bound in (11). [
o\n 50

0.9 | 0.032794

0.7 | 0.025901

0.4 | 0.016375

0.2 | 0.010796

0.1 | 0.006905

0.06 | 0.004883

0.01 | 0.001184

0.001| 0.000072

Table 2: The ration' /my for n= 50 anda = 0.15.

Note: The procedure we used to derive the bound in (11) suggests that for most distributions, the stopping
point for the execution ofmoucs is significantly lower. Table 1 verifies this for a large set of randomly
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generatedkPvs: We computed the access prottieibs from a vector(xy, ..., X%,), such that ~ U(0,1), and
pi :Xl/Z]va 1<i<n,

We estimated the stopping point for a set of 500rPVs, for each pairn,a), with = 0.25. Table
1 presents the ratiof /my (using the average of the 500 values). The results are consistent with the linear
dependence of the bound an However, for most of th&pPvs we tried, the constant was evidently much
smaller. In addition, Table 1 suggests that the stopping point dependg®®iiot some 0< y < 0.5, whereas
we could only proved a bound usiyg= 1. Table 2 shows that for fixed valuesmfinda, the ratiomp/m’
is a decreasing function @t It is more likely then, that the stopping point depends pd dr even a smaller
value rather than /2. n

We can summarize our empirical results on the stopping poimascs in the following

Conjecture 7: For any unknowrrpPv p, the expected access cost t@®ar rearranged by thevoucs
approaches the optimal average cost within a differencg efith probability higher tharl — a, following
c-n/&aY references, for some small constant d, x approximatelyl and0 < y < 0.5.

4.2 The Counter Scheme and Weight Balanced Trees

As the computation of the approximation to the optimal tree req@(@8) steps, we are interested in a more
efficient construction ofearlyoptimal BsTs. This holds even when thepv is known, unlike our statistical
scenario, when the truly optimal tree is available. A suitable candidate appears taonmeghebalanced tree
which is constructed as follows:

Weight Balancing Rulg9]): Choose the root so as to equalize the weight of the left and right subtree as much
as possible, then proceed similarly on the subtrees.

Itis shown in [7], that a weight balanced tree is constructible with time and space compleRitg)in

Bayer shows in [3], that for a giveRPvV p, the average access cost to the weight balanced tree, denoted by
C(ws|p) satisfies

C(ws|p) —C(oPT|p) < IgH +Ige+ 1 ~ IgH + 2.4427... < 1.45InInn+ 2.45, (19)

whereH = 5 pilgp! is the entropy of thekpv p. SinceH € [0,Ign], this bound looks acceptable. We
describe in the next section the usage of a scheme which keeps the tree weight-balanced, in terms of the
counters of the keys. Its performance is given by the following Theorem. Den@i(aﬂzm p) the cost of the
balanced tree constructed by the estinpater the rpvp.

Theorem 8: Forany d > 0and0 < a < 1, and for any unknowRrpv p,
Prob(|C(ws|p) — C(ws|p)| > &) < q, (20)
after a sequence of raccesses to the tree, where

5236,
- ®a

We use in the proof a bound on the structure of these trees that appears identical with the one derived in
Lemma 6 for the optimasT; it was first shown by Mehlhorn in [17]:

(21)



Hofri, Shachnai: Reorganizing Binary Search Trees... 12

Lemma9: ([17]) For anyRPV py,..., pn corresponding to the recordsiR. ., R, such that S= 3L, pi < 1,
if L; is the level of Rin the weight balanced tree (where the level of the ro®)jthen

p< ot (22)
with ¢ as defined in Lemma 6.

Proof of Theorem 8: Using the proof of Theorem 4, wii(opTp) andC(opT|p) replaced byC(ws|p) and
C(ws|p) respectively, andi, | denoting the levels dR; in the weight balanced trees fprprespectivelymg
satisfies equation (17). The bound is obtained by using Lemma 9. [
The identical bounds on the structure of those two types of trees suggest at once that they are typically
rather close, and that these bounds do not characterize them very tightly.

5 Discussion

We have studied reorganization rules foBsr, where accesses to the tree are generated independently by a
fixed unknown distribution. We showed that when the distribution is static for sufficiently long durations, the
Moucs rule:

(i) provides an on-going reorganization of the tree which improves the expected access cost and requires a
low number of rotations,

(i) yields on termination a search tree with access cost which is arbitrarily close to that of the optimal
tree, using statistics accumulated from a reference sequence with length which is linear in the number
of elements (for relatively large the length of this sequence is comparable with, or smaller than the
expected number of references till all records are touched once).

It is an open challenge to derive a bound on the stopping poimtafcs that corresponds more closely
to the experimental results, as summarized in Conjecture 6. It is our belief that the discrepancy does not
represent a possible worst case, but rather our failure to bound the sums that appear in equation (14) more
tightly.

A different, interesting rule, which also reorders the tree while updating the counters, is based on the
near-optimal weight-balanced tree: during the reference sequence the tree is kept weight-balanced as esti-
mated by the counters. Since the difference between the estimates and the true accetisigsalzmiveases
monotonically (in expectation), we conjecture that this rule provides at each stage a closer approximation to
the weight-balanced tree which could be constructgdivere known.

In fact, we have shown that for any distribution, the cost of the estimated weight balanced tree approaches—
as close as we wish—the cost of the “true” weight-balanced tree (based amkhewnrpPv p) within a
number of accesses that is lineanin

The relative efficiency of theio rule compared to the scheme which keeps the tree weight balanced by
the counters is still open. For loragcess sequences, we would expectmbeto be inferior with respect to
the total average cost of the sequence, but it will retain its advantage of low reorganization cost.

The main assumption driving the results above is the stationarity of the reference process. While systems
may rest unchanged over periods long enough for the analysis to be applicable, they all do change ultimately.
Itis of interest to extend the results to quasi-stationary systems. Whemrthehanges slowly over time there
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is nothing to be gained from the presented approach, but it can be useful for systempbasgéstructure.
During each phase, guaranteed to be at l€asferences long, and average therpv is fixed. Consider the
following scheme:

1. Keep reference counters and store their values é¢@mcesses. The tree is reorganized so as to keep
it weight-balanced by the counters. Call a sequend¢ iquests gegment

2. After every segment, test for the hypothesis that the counters accumulated in the last two segments
where generated by identical distributions. If the hypothesis is rejected, reset the counters.

This opens the door to a large number of statistical inference problems, that we expect to address in a forth-
coming paper.

Another issue concerns the cost of computing (which includes the construction of) the optimal tree. The
best known algorithm, as presented in Section 2, &4 steps—with a non-trivial coefficient—and has the
same space complexity [14]. We showed that produces a tree with a “nearly optimal” cost — though its
shape could differ radically from that of the optimal one. The question, whether a more efficient algorithm is
available which uses the structure of the tree as a starting point, is still open.
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Appendix

Proof of Lemma 2: Consider an arbitrary pair of record§,andR;. We look at the sufficient and necessary
conditions forR, to be an ancestor dR; in Tutr(l) and Tuo(l) and call themCurr(i, j) and Cuoli, j)
respectively. The structure of tBsT is determined (uniquely) once we specify the ancestor-offspring relation

for all pairs of nodes in the tree. Therefore our claim will be established if we show that alsgatigfies

Cwmoli, j) for all i and j iff Cytr(i,j) holds inIR for all pairs. The concept dhterval setis useful for

this discussion. Such a set comprises two records and all other records with keys that lie between them. Let
Ki < Kj, then the corresponding set is denoted3jy, j). Throughoutthe discussion below we assume w.n.l.g.
thatK; < K; so that the first one of the pair of sé®i, j) andIS(j,i) is non-empty. We avoid sticky notation

by assuming all records were referenced at least once. For sufficiently long reference strings this holds with
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an arbitrarily high probability (On the other hand, we should mention that wherpthie far from uniform
we expect to obtain informative reference counts long before the above assumption is satisfied). Whatever the
case may be, all the claims here hold also for strings that cover only part of the set of records.

The proof devolves from properties of the rotation operation. Refer to Figure 1. We shall say that “the
rotated node” is the one that gets to a higher (=lower numbered) level. The second node taking part in the
rotation is “the lowered node”. The salient properties are:

(& When a node is rotated it continues to be an ancestor to all of its previous offspringe@meso
to the lowered node and its other subtree. The effect of a sequence of rotations of a single node is
cumulative.

(b) A lowered nodédosesas offspring the rotated node and its left subtree when the rotation is to the right
(or the right one, when the rotation is to the left).

A T1 T2 T3

Figure3: (@) T (b) T

Claim 10: (i) Cuo(i, j) is: R is the first node to be referenced in(ilg).
(i) Cwurr(i, ) is: R is the last node to be referenced infilg).

Proof:  The proof of (i) is immediate if we consider the subtree in the initial tree that coni&(ing).
References (and the consequent rotations) of records outside of this subtree do not change its structure, but
may change its level only. References to records in it which are outsit&iof), beforeR; is used, will
make them ancestors of the enti8d, j). OnceR is referenced (and rotated as high as necessary) it will be
ancestor to all other nodes (i, j), and since it will not be lowered again, this relation will be maintained
indefinitely. Hence the sufficiency.
For the necessity: If sonf& € IS(i, j), k#1, j is referenced beforg;, it will put R andR; in its two separate
subtrees, again indefinitely. And lastlyRj is the first to be referenced I8(i, j) it will be the ancestor oR;.

Part (ii) is due to the fact that a referenced node is rotated all the way to the root. For sufficiency: at the
last reference t& it reaches the root, and all the resti$fi, j) is in its right subtree. Subsequent references
to records with lower keys (which are in the left subtreeRyf will leave it as ancestor of al5(i + 1, j).
References to records with keys higher thi@nwill get during their sequence of rotations to hdSg + 1, j)
in their left subtrees, and will allow; to retain its ancestry with respect to this set (property (b) above). The
necessity is similar to the previous case. A subsequent reference to an intermediatiSiey)iwill place
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R andR; in two disjoint subtrees. n
The statement of the lemma is now obvious. O

We remark that similar considerations also allow us to determine conditions under®ytgnods up as
theimmediateparent ofR;: in Tuo(l) it is required thaR; andR; were the first two records fron$(i, j) to
be referenced, in that order, and the same state will be foufigsia(l) whenR; andR, were the last two
records referenced, in that order, frdi, j).

Proof of Lemma 5: If B < aPwe are done. Otherwise we consider the case where
R >aP. (23)
Without loss of generality, we assume tlRat 1. There are two geometrically different cases:

1. If Bis in the left subtree df (as in Figure 2), then by the optimality @f rotatingt to the root would
resultin a possibly non-optimal tree, i.e.

Pc+Ps < pr+Ps, (24)
therefore, sinc® = p, + Ps+ P4,
a< pt+Ps+Ps<pr+Ps+Py, (25)
Hence
Pe=1-(pr+Ps+Pi+p) <1-(pp+Ps+Ps) <1l-a. (26)

2. Bisin the right subtree df as shown in Figure 3(a), then the expected access cosistat most the
average access costTo(as given in Figure 3(b), and obtained by rotatityice), thus

Pr+Ps>2pg+Pi+P> PR (27)
and sinceyy +P3s = 1—R, using (23) we find
PB<1-R<l-a (28)

(Observe, that the case wheiig the root of the right subtree ofis symmetric). [



