
WPI-CS-TR-98-24 November 1998

View Maintenance after View Synchronization

by

Anisoara Nica

Elke A. Rundensteiner

Computer Science

Technical Report

Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280



View Maintenance after View Synchronization �

Anisoara Nicay and Elke A. Rundensteinerz

(y) Department of EECS (z)Department of Computer Science
University of Michigan, Ann Arbor Worcester Polytechnic Institute

Ann Arbor, MI 48109-2122 Worcester, MA 01609-2280
anica@eecs.umich.edu rundenst@cs.wpi.edu

Abstract

Adaption of data warehouses is a critical task in dynamic environments such as the WWW where the un-
derlying information sources (IS) change not only their contents but also their schemas. While current view
technology assumes that the ISs do not change their schema, our Evolvable View Environment (EVE) project
addresses this problem by evolving the view de�nitions a�ected by IS schema changes, which we coin view syn-

chronization. In EVE, the view synchronizer rewrites the view de�nitions by replacing view components with
suitable components from other ISs. However, after such a view rede�nition process, the view extents, if ma-
terialized, must also be brought up-to-date. In this paper, we propose strategies to address this incremental
adaptation of the view extent after view synchronization. One key idea of our approach is to regard the complex
changes done to a view de�nition after synchronization as atomic units and to handle them in one optimized
batch process, instead of treating the changes as a sequence of several primitive rede�nitions. Second, we exploit
knowledge of how the view de�nition was synchronized, especially the containment information between the
old and new views, to achieve e�cient view adaption. As we will demonstrate both these techniques lead to
increased e�ciency in view adaption. Third, we deal with the added di�culty that the IS schema evolution
that triggered the view rede�nition also may have removed the base information required for adaption from the
IS. We illustrate that our techniques would successfully adapt views under the unavailability of base relations
while currently known maintenance strategies from the literature would fail. Our experimental results conducted
for comparing our solution approach to that of recomputation and rede�nition techniques demonstrate that we
achieve a performance gain of approximately 400% when the di�erence between the old and new extents is fairly
small while being comparable with these alternate techniques in all other scenarios.

Keywords: Materialized view maintenance/adaptation, Warehouse data maintenance, Evolving information
sources, View synchronization and preservation, Information descriptions.

1 Introduction

One important problem faced by applications using views is that current view technology only supports static

view de�nitions meaning that views are assumed to be speci�ed on top of information sources that do not change

their schema. Once the underlying ISs change their schema (as is common for example for autonomous sources

connected on the WWW), the views derived from them become unde�ned. We call this the view synchronization

problem. In our previous work [RLN97], we introduced a taxonomy of view adaptation problems that shows

�This work was supported in part by several grants from NSF, namely, the NSF NYI grant #IRI 94{57609, the NSF CISE
Instrumentation grant #IRIS 97{29878, and the NSF grant #IIS 97{32897. Dr. Rundensteiner would like to thank our industrial
sponsors, in particular, IBM for the IBM partnership award and for the IBM corporate fellowship for one of her graduate students.

1



how the view synchronization problem is di�erent from maintenance after data updates [GM95] or after explicit

user-speci�ed rede�nition of the view [GMR95, MD96].

Our Evolvable View Environment EVE approach [RLN97, LNR97a, NLR98] focuses on the problem of data

warehouse maintenance when base relations exhibit schema-level changes. In our previous work [LNR97b, NLR98,

NR98a] we proposed di�erent strategies for rewriting view de�nitions triggered by IS schema changes so that they

are well-de�ned over the modi�ed information space. Our proposed view synchronization algorithms also attempt

to �nd view rede�nitions that meet view preservation constraints speci�ed by the view user, such as constraints

imposed on the view extent or the view interface type. Unlike the strategies proposed for query rewriting using

views in the database literature ([LRU96, SDJL96]), our proposed techniques address three new issues: (1)

�nding view rewritings that are not necessarily equivalent to the original view de�nition as long as they meet

user requirements1, (2) using semantic containment information for replacing the deleted information; and (3)

preserving only indispensable attributes from the SELECT clause if preserving all is not possible.

In this paper, we now address a new problem that arises in the context of view synchronization under capability

changes. Namely, if the views are materialized at the data warehouse site, then after the view synchronization

process modi�es the view de�nition the view extents must be brought up to date as well. This problem is similar

to the explicit view rede�nition problem that has recently been studied in the literature [MD96, GMR95]. That

is, the view de�nition changes triggered by the IS changes could be mapped into a sequence of primitive changes

assumed to be explicitly requested by a user for the view de�nition [MD96, GMR95]. Once this mapping is

established, one can apply the maintenance-after-rede�nition strategies proposed in [MD96, GMR95] for each

such simple2 change. However, as we will show here, treating synchronization as a sequence of primitive changes

is very ine�cient for keeping the view extent up-to-date. When the to-be-deleted attribute is still available during

maintenance, we can treat our maintenance after view synchronization similar to the explicit view rede�nition

problem: the view de�nition changes done by the view synchronization process could be seen as a sequence

of simple primitive changes of di�erent types explicitly requested on the view de�nition. However, as we will

demonstrate, this strategy is very ine�cient as in the case of view synchronization the changes done to a view

de�nition are fairly complex and intermediate results for each primitive change could potentially be huge. Hence,

while the use of existing techniques is feasible for these cases, it is still not recommended to use them.

More importantly, the techniques proposed in [MD96, GMR95] would completely fail in the context of view

synchronization when view maintenance is done after the capability change took place at the base relation site.

The reason for this is that the deleted attribute or deleted relation that is to be queried during maintenance may

no longer be available at the base relation site. The maintenance strategies for view rede�nition proposed thus far

in the literature all had made the simplifying assumption that the base relations don't change and are available

during the process of maintenance. This is clearly an incorrect assumption in modern dynamic information

1We de�ned an extended view de�nition language (a derivative of SQL, which we call Evolvable-SQL or short E-SQL) that
incorporates user preferences for change semantics of the view de�nition.

2A set of primitive changes are de�ned in [MD96, GMR95], such as drop an attribute from the SELECT clause, add a relation to
the FROM clause.

2



environments. In our system, a new challenge arises: after a capability change of an autonomous IS, the EVE

system has no longer access to the old data in the changed relation. For example, after an attribute A is dropped

from a base relation R and the view de�nition V is being evolved accordingly by dropping a condition using the

attribute R:A, one can no longer access the dropped attribute R:A, when attempting to maintain the a�ected

view.

In this paper we propose view maintenance strategies after view synchronization that regard complex changes

(the synchronization process in general changes components in one pass in all three clauses: SELECT , FROM and

WHERE ) of the view de�nition as atomic operations and handle associated maintenance tasks, such as querying

ISs, as e�ciently as possible. Moreover the maintenance strategies take advantage of the knowledge of how the

view rewritings were obtained, especially the containment information between the old and new view extents,

which is available in our system due to the view rewritings being performed by the system itself. The proposed

techniques are general enough to be also applicable when complex (simultaneous) view rede�nitions are explicitly

done by the user and directly applied to the view de�nition.

In summary, the contributions of this current work are: (1) we introduce a new view adaptation problem,

namely view maintenance after view synchronization and distinguish it from the view rede�nition problem treated

in [MD96, GMR95]; (2) we present strategies for the view maintenance after view synchronization for di�erent

sets of assumptions such as the availability of the to-be-deleted relation during the maintenance process, view

evolution parameter values, and types of containment constraints; (3) we demonstrate that our techniques succeed

in cases when those previous techniques would fail; and (4) we conduct experiments that compare our proposed

strategies with rematerialization and rede�nition techniques; the results illustrate the performance gains of our

new algorithms of 400% over two other methods of view maintenance after rede�nition.

The remainder of the paper is structured as follows. In Section 2 we discuss work related to the view adaptation

problems we consider in EVE. In Section 3 we present the general EVE approach, in particular, a synchronization

algorithm. Section 4 gives an extensive example of mapping the view maintenance after synchronization problem

to the rede�nition problem. In Section 5 we introduce strategies for view maintenance after synchronization.

Section 6 summarizes the experimental results while Section 7 concludes the paper.

2 Related Work

To our knowledge, we are the �rst to study the problem of view synchronization caused by capability changes

of participating information sources. In [RLN97], we establish a taxonomy of view adaptation problems that

identi�es alternate dimensions of the problem space, and hence serves as a framework for distinguishing our

view synchronization problem from other (previously studied) view adaptation problems. In our previous work

[LNR97a, NLR98, LNR97b, NR98a, NR98b], we introduce the overall EVE solution framework, and proposed

diverse view synchronization strategies each based on the availability of di�erent semantic constraints between ISs,

such as join or containment constraints. In [LKNR98] we propose a cost model to rank the set of view rewritings

found by the view synchronization process based on their expected maintenance costs and divergence from the

3



extent. In this paper, we now present a �rst solution for incremental view maintenance after synchronization.

View maintenance after data updates was extensively studied in the literature [Wid95, GM95, BLT86, AAS97].

The main distinction between the classical view maintenance problem and our problem of maintenance after

synchronization is the type of changes that trigger the maintenance process. In the case of maintenance after

data updates, the changes are at the data level. That is, individual tuples of one of the base relations used

in the view are changed. However, in the case of maintenance after synchronization there are three potential

changes: (1) a schema-level change in one of the base relations (e.g., \delete-attribute A"); (2) this generally

implies data changes as well in this base relation (e.g., all values for attribute A for all tuples get deleted), and

(3) schema changes in the view de�nition itself (the view de�nition is synchronized to no longer be referring to

the attribute A). This distinction makes the two problems complementary and, as we will propose in this paper,

some subproblems arising in the process of view maintenance after synchronization can be reformulated so that

techniques developed for view maintenance after data updates can now also be applied to solve them.

Gupta et al. [GMR95] and Mohania et al. [MD96] address the problem of how most e�ciently to maintain a

materialized view after a view rede�nition explicitly initiated by the user takes place. They study under which

conditions this view maintenance can e�ciently take place with minimum access to base relations. In both

approaches [GMR95, MD96], the base relations are assumed to remain unchanged (i.e., the data in the base

relations is still available during the maintenance process). We compare our novel solutions to their techniques

in our experiments, when appropriate.

Research on query reformulation using materialized views [LMS95, SDJL96] considers the problem of replacing

an original query with a new expression containing materialized view de�nitions such that the new query is

equivalent to the old one. To the best of our knowledge, there is no work done in this context of query reformulation

using views with the goal of generating queries without equivalence but rather with some more relaxed view extent

relationship (such as, the new reformulated query could be a subset of the original query).

3 EVE: The Evolvable View Environment Approach

In this section we review the principles of view synchronization in the context of EVE that are needed for the

reminder of this paper.

3.1 MISD: The Model for Source Description

While individual ISs could be based on any data model, the schema exported by an IS when joining our inte-

grated system is assumed to be described by a set of relations IS:R1, IS:R2; : : :, IS:Rn. Besides these schema

descriptions, our system has knowledge about the relationships among di�erent ISs as we describe below. The

descriptions of the ISs are stored in the meta knowledge base (MKB) and are used in the process of view evolution

[LNR97a].

Example 1 We will use the following example in the rest of the paper. Consider a large travel agency that has

the headquarter in Detroit, USA, and many branches all over the world. It helps its customers to arrange 
ights,

4



IS # Descriptions

IS 1 Customer(Name, State, Phone, Age)
IS 2 FlightRes(PName, Airline, FlightNo, Source, Dest, Date)
IS 3 Accident�Ins(Holder, Type, Amount, Age)

Figure 1: Content Descriptions for Ex. 1

car rentals, hotel reservations, tours, and purchasing insurances. Some of the IS descriptions in the MISD format

are listed in Fig. 1.

While the MISD model provides many types of semantic constraints [LNR97a, NLR98], below we only discuss

those used in the remainder of this paper. A relation R is described by specifying its information source and

its set of attributes as IS:R(A1; : : : ; An). Each attribute Ai is given a name and a data type to specify its

domain of values. This information is speci�ed by a type integrity constraint of the format R(A1; : : : ; An) �

Type1(A1); : : : ; T ypen(An). It says that an attribute Ai is of type Typei, for i = 1; : : : ; n. If two attributes are

exported with the same name, they are assumed to have the same type.

Name Syntax
Type Integrity Constraint T CR:Ai = (R(Ai) � Typei(Ai))
Partial/Complete Constraint PCR1;R2 = (�Ai1 ;:::;Aik (�C(Aj1 ;:::;Ajl )R1) � �An1 ;:::;Ank (�C(Am1

;:::;Amt
)R2))

� 2 f�;�;�;�;�g

Figure 2: Semantic Constraints for IS Descriptions.

The partial/complete containment constraints (denoted by PC-constraint) describe that a fragment of a relation

is part of or equal to a fragment of another relation for all extents of the two relations. The PC-constraints,

sometimes referred as containment, are used to decide if an evolved view is equivalent, subset of, or superset of

the initial view. For two relations R1 and R2, the PC constraint is given as in Figure 2 where � is f�;�;�g for the

partial (� and �) or complete (�) information constraint, respectively; Ai1 ; : : : ; Aik , Aj1 ; : : : ; Ajl are attributes

of R1; and An1 ; : : : ; Ank, Am1
; : : : ; Amt

are attributes of R2. The sets Ai1 ; : : : ; Aik of R1 and An1 ; : : : ; Ank of

R2 are such that they pair-wise match, i.e., so that any attribute R1:Ais, for s = 1; : : : ; k, has the same type as

R2:Ans.

Example 2 The constraint in Eq. (1) states that the projection of relation Accident�Ins is a subset of the

projection of relation Customer for the attributes Holder and Age, and Name and Age, respectively, with the

some select conditions on both relations.

PCCustomer;Accident�Ins =
�Accident�Ins.Holder,Accident�Ins.Age (�(Accident�Ins.Amount> 1;000; 000) AND (Accident�Ins.Age < 50)Accident�Ins)

� �Customer.Name,Customer.AgeCustomer
(1)

3.2 E-SQL: The Evolvable SQL View De�nition Language

In this section, we introduce Evolvable-SQL, representing one possible approach toward attaching evolution

semantics to view de�nitions. E-SQL is an extension of the SQL view de�nition language (a detailed description

of E-SQL can be found in [LNR97b]) that allows user evolution preferences to be speci�ed for the view components.

Evolution preferences, expressed as evolution parameters, allow the user to specify criteria based on which the

5



view will be evolved by the system under capability changes at the ISs. As indicated in Fig. 3, each component

Evolution Parameter Semantics
Attribute- dispensable (AD) true: the attribute is dispensable

false: the attribute is indispensable
replaceable (AR) true: the attribute is replaceable

false: the attribute is nonreplaceable

Condition- dispensable (CD) true: the condition is dispensable
false: the condition is indispensable

replaceable (CR) true: the condition is replaceable
false: the condition is nonreplaceable

Relation- dispensable (RD) true: the relation is dispensable
false: the relation is indispensable

replaceable (RR) true: the relation is replaceable
false: the relation is nonreplaceable

View- extent (VE) �: the new extent is equal to the old extent
�: the new extent is a superset of the old extent
�: the new extent is a subset of the old extent
�: the new extent could be anything

Figure 3: View Evolution Parameters of E-SQL Language.

of the view de�nition (i.e., attribute, relation or condition) has attached two evolution parameters. One, the

dispensable parameter (notation XD, where X could be A (for attribute), R (for relation) or C (for condition))

speci�es if the component could be dropped (true) or must be present in any evolved view de�nition (false).

Two, the replaceable parameter (notation XR) speci�es if the component could be replaced in the process of view

evolution (true) or must be left unchanged as de�ned in the initial view (false). In Fig. 3, each type of evolution

parameter used by E-SQL is represented by a row in the table. Column one gives the parameter name and its

abbreviation while column two lists the possible values each parameter can take (default values are underlined).

Note that an E-SQL view de�nition having all evolution parameters set to the default values is semantically

equivalent to the conventional SQL view de�nition, i.e., it cannot be evolved.

Example 3 Let's assume a web-based travel agency TRAV has a promotion for its customers who travel to Asia

by air. TRAV either sends promotion letters to these customers or calls them by phone. Therefore, it needs to

�nd the customers' names, addresses, and phone numbers. The E-SQL de�nition of this Asia-Customer view is

shown in Eq. (2).

CREATE VIEW Asia-Customer (VE =�) AS

SELECT C.Name (AR = true), C.State (AR = true),

C.Phone (AD = true)

FROM Customer C (RR = true); FlightRes F

WHERE (C.Name = F.PName) AND (F.Dest = 'Asia') (CD = true)

(2)

Assume the company is willing to put o� the phone marketing strategy, if the customer's phone number cannot

be obtained, e.g., the information provider of the Customer relation decides to delete Phone. This preference

is stated in the SELECT clause of Eq. (2) by the attribute-dispensable parameter AD = true for the attribute

Phone. In addition, if the travel agent is willing to accept the customer information from other branches, we

set the relation-replaceable parameter RR in the FROM clause to true for the relation Customer. Further, let's

assume TRAV is willing to o�er its promotion to all the customers who travel by air, if identifying who travels to

6



Asia is impossible (i.e., the second WHERE condition cannot be veri�ed). This preference can be explicitly speci�ed

by associating the condition-dispensable parameter CD = true with that condition in the WHERE clause. The

evolution parameters having default values are not shown.

3.3 Formal Foundation for View Synchronization

For two relations R and R0 with di�erent attribute sets Attr(R) and Attr(R0) such that Attr(R) \Attr(R0) 6= ;,

we compare the extents of the two relations by comparing the projections on their common attributes. Fig. 4

summarizes all �-set operations de�ned on this common-subset-of-attributes notion, as well as �-equality among

tuples.

Name Set Operator Semantics

�-equivalent R =� R0 8 t0 2 R0, 9 t 2 R s.t. t0[Attr(R)\Attr(R0)] = t[Attr(R)\Attr(R0)] and
8 t0 2 R0;9 t 2 R s.t. t0[Attr(R)\Attr(R0)] = t[Attr(R)\Attr(R0)]

�-subset R0 �� R 8 t0 2 R0, 9 t 2 R s.t. t0[Attr(R)\Attr(R0)] = t[Attr(R)\Attr(R0)]
�-superset R0 �� R 8 t 2 R, 9 t0 2 R0 s.t. t[Attr(R)\ Attr(R0)] = t0[Attr(R)\Attr(R0)]
�-equality t =� t0 t 2 R, t0 2 R0, s:t:t[Attr(R)\ Attr(R0)] = t0[Attr(R)\ Attr(R0)];

Figure 4: Set Operators Augmented by the Notion of Common Subset of Attributes.

We use the notation Attr(V (R))SELECT(d; r) or Attr(V (R))WHERE(d; r) to denote all attributes of the relation R

that are in the SELECT or WHERE clause of the view V with the evolution parameters set to d and r ( d and r can

be false (f) or true (t)), respectively. These and others notations are summarized in Fig. 5.

Notation De�nition

Attr(V (R))SELECT(d; r) fR:A j R:A in SELECT clause of V s.t. AD(R:A) = d AND AR(R:A) = rg

Attr(V (R))SELECT [d;r2ffalse;truegAttr(V (R))SELECT(d; r)

Attr(V (R))WHERE(d; r) fR:A j R:A in a condition C in WHERE clause of V s.t. CD(C) = d AND CR(C) = rg

Attr(V (R))WHERE [d;r2ffalse;truegAttr(V (R))WHERE(d; r)

Attr(V (R))LOCAL
WHERE

fR:A j R:A in a local (select) condition C in WHERE clause of V g

Attr(V (R))JOIN
WHERE

fR:A j R:A in a join condition C in WHERE clause of V g

Attr(V (R)) Attr(V (R))SELECT[ Attr(V (R))WHERE

Figure 5: Notations for Attribute Sets.

The capability changes such as \delete�attributeR:A" and \delete�relationR" are said to a�ect views that refer

to that particular attribute or relation in their de�nitions. For example, for the capability change \delete�relation

R" with R in the FROM clause of the view V , the components of V that use R are said to be a�ected. These are:

(1) the relation R in the FROM clause of V ; (2) all attributes of relation R that appear in the SELECT clause of V ;

and (3) all conditions using attributes of relation R in the WHERE clause of V .

The semantics of the evolution parameters impose that all indispensable (i.e., the components with their

dispensable evolution parameter set to false) components of a view must be preserved in any synchronized view

7



de�nition (either exactly as they are in the original view de�nition or possibly replaced if they are replaceable).

For a delete capability change, all directly a�ected components must be replaced or dropped in order for the view

de�nition to satisfy the evolution parameters. Thus, a legal rewriting V 0 of an a�ected view V must satisfy the

evolution parameters attached to each view component of V as well as the view-extent parameter of V (de�ned

in Fig. 3). This latter condition requires that the extent of the view rewriting V 0 must be in the relationship

speci�ed by the view evolution parameter with the old view extent. For example, if the view-evolution parameter

VE is \�", then V 0 �� V must be true after the view synchronization process.

3.4 The POC Strategy for View Synchronization

In the following, we introduce one of the view synchronization strategies used by our EVE system, namely

the PrOject Containment (POC) algorithm [NR98a]. The POC algorithm uses containment information for

replacing the deleted relation with another relation such that the rede�ned view satis�es the evolution parameters

imposed by the E-SQL view speci�cation. That is, all indispensable view components are preserved in the new

view rewriting and the view-extent evolution parameter is satis�ed.

We assume an E-SQL SPJ view V de�ned as in Eq. (3) with R a relation in the FROM clause. We emphasize

in the view de�nition the attributes of the relation R used in the view because we will study the e�ect of the

capability change \delete�relation R" on the view V . In order for the view V to be evolvable under this capability

change, the view de�nition (Eq. (3)) must have the following properties: (1) there are no attributes of R in the

SELECT clause with evolution parameters (false; false), hence Attr(V (R))SELECT(f ; f) = ; (line 2 in Eq. (3)),

(2) the relation R in the FROM clause is replaceable (RR = true) (line 4 in Eq. (3)), and (3) attributes of R

used in the WHERE clause are referred to in conditions with evolution parameters di�erent than (false; false),

thus Attr(V (R))WHERE(f; f ) = ; (line 5 in Eq. (3)). The WHERE clause of the view V contains a conjunction of

primitive clauses denoted by CV referring only to the attributes in Attr(V (R))WHERE(f ; t), Attr(V (R))WHERE(t; t),

Attr(V (R))WHERE(t; f) and �W ( �W doesn't contain attributes from R).

CREATE VIEW V (VE = �) AS

SELECT Attr(V (R))SELECT(f ; t); Attr(V (R))SELECT(t; t); Attr(V (R))SELECT(t; f);
R1: �D1; : : : ; Rn: �Dn

FROM R(RR = true); R1; : : : ; Rn

WHERE CV(Attr(V (R))WHERE(f ; t); Attr(V (R))WHERE(t; t); Attr(V (R))WHERE(t; f); �W )

(3)

When a relation R is deleted, the POC algorithm must determine which alternate relation S is suitable for

replacement of R in the view V (Eq. (3)) in order to construct a rewriting V 0. Assume a relation S has been

found to be a suitable replacement for R in V (Eq. (3)) based on the Conditions 1 trough 4 given below. Then

POC will generate the view V 0 in Eq. (4) from V (in Eq. (3)) by replacing R with S and all attributes of R with

their replacement in S (as stated in Condition 1). V 0 obtained in this way is shown in Eq. (4) with the new view

components underlined.

8



CREATE VIEW V 0 (VE = �) AS

SELECT S(Attr(V (R))SELECT(f ; t)); S(Attr(V (R))SELECT(t; t)); R1: �D1; : : : ; Rn: �Dn

FROM S;R1; : : : ; Rn

WHERE CV(S(Attr(V (R))WHERE(f ; t); S(Attr(V (R))WHERE(t; t)); �W )
(4)

In Eq. (4) S(: : :) denotes the attribute replacements from S: �B corresponding to attributes of R that have

replacements. CV(S(Attr(V (R))WHERE(f ; t)); S(Attr(V (R))WHERE(t; t)); �W ) is the conjunction of primitive clauses

in the WHERE clause of the view V (Eq. (3)) where attributes of relation R were replaced by the corresponding

attributes in S: �B. Next we describe the four conditions of relations replaceability that are su�cient (but not

necessary) for the view rewriting V 0 found by POC to be a legal rewriting. The proof can be found in [NR98a].

A relation IS2:S is said to be a replacement for IS1:R by POC if the following conditions are satis�ed:

Condition 1: Project-Relation Containment. Assume that Eq. (5) is true for all states of relations R and

S, i.e., the following PC-constraint is de�ned in the MKB:

PCS;R = (� �B(S) � � �A(R)) ; � 2 f�;�;�;�g: (5)

The attributes S: �B � Attr(S)3 are called replacements for the attributes R: �A � Attr(R). We use the notation

S(R:Ai) to indicate the replacement attribute of the attribute R:Ai in S. That is, if the attribute R:Ai 2 R: �A

has the same position as the attribute S:Bi 2 S: �B in the vectors R: �A and S: �B, respectively, the replacement of

the attribute R:Ai is S:Bi denoted by S(R:Ai) = S:Bi. If an attribute R:C doesn't have a replacement in S (i.e.,

R:C 62 R: �A) then S(R:C) = ;.

Condition 2: IndispensableEvolutionParameters Satisfaction. The relation S must contain replacements

for at least all attributes of the relation R that are indispensable and replaceable in the view V , that is, all

attributes of R in the SELECT clause with AD = false and AR = true and all attributes of the relation R that

appear in the WHERE clause in a condition C with CD = false and CR = true. This is formally stated in Eq.

(6):

Attr(V (R))SELECT(f ; t) [ Attr(V (R))WHERE(f ; t) � R: �A: (6)

Condition 3: View-Extent Satisfaction. This condition expresses the properties that must hold for the

PC-constraint de�ned by Eq. (5) in order for the view-extent evolution parameter VE of the view V (Eq. (3)) to

be satis�ed if the attributes of relations R in V are to be replaced by their replacements in S.

Case 1. VE = � or �. This case requires that all conditions in the WHERE clause of the view V be preserved

regardless of their evolution parameters (Eqs. (7), (8)) in order to guarantee that the view-extent parameter is

satis�ed, i.e., V 0 �� V .

Attr(V (R))WHERE(t; f ) = ; (7)

Attr(V (R))WHERE(f ; t) [ Attr(V (R))WHERE(t; t) � R: �A (8)

3We use the notationX: �B to denote an ordered set of attributes of the relationX. And, we use Attr(X) for the set of all attributes
of relation X.

9



Case 2. VE = �. In this case, the view extent evolution parameter VE =� would be satis�ed even if the view

is evolved by dropping conditions from the WHERE clause. However, we impose that at least the attributes of

relation R used in the join conditions in the WHERE clause are replaced by attributes from S: �B. This condition is

formalized in Eq. (9):

Attr(V (R))JOIN
WHERE

(t; f) = ; (9)

Attr(V (R))JOIN
WHERE

(f; t) [ Attr(V (R))JOIN
WHERE

(t; t) � R: �A

Case 3. VE = �. As in Case 2, the view can be evolved by dropping conditions from the WHERE clause given

that there is no restriction on the view extent parameter VE =�. However, we impose that at least the attributes

of relation R used in the join conditions in the WHERE clause are preserved by S: �B. This condition is expressed

in Case 2, Eq. (9).

Condition 4: Relationship between VE and PC-constraint. If the value of the view-extent parameter VE

is di�erent than \don't care", i.e., VE 6=�, then the values of VE and the PC containment relationship � (Eq.

(5)) must satisfy the property given in Eq. (10).

if view-extent parameter VE = �; then � must be �; (10)

if view-extent parameter VE = �; then � must be � or �; and

if view-extent parameter VE = �; then � must be � or �.

Example 4 We now illustrate the POC algorithm using the view Customer-Passengers de�ned to select all cus-

tomers that 
y in \Asia" and are younger than 20. The E-SQL view de�nition for Customer-Passengers is given

in Eq. (11).

CREATE VIEW Customer-Passengers (VE = �) AS

SELECT C.Name (AD = false;AR = true), C.Age (AD = true;AR = true)
C.Phone (AD = true;AR = true)

FROM Customer C (RD = true;RR = true), FlightRes F (RD = true;RR = true),
WHERE (C.Name = F.PName) (CD = false; CR = true) AND (F.Dest = 'Asia') AND

(C.Age < 20)(CD = false; CR = true)

(11)

We assume the capability change \delete-relation Customer". In the MKB, a PC-constraint is de�ned between

the relations Customer and Accidental�Ins as shown in Eq. (12).
PCAccident�Ins;Customer = (�Accident�Ins.Holder,Accident�Ins.Age (Accident�Ins)

� �Customer.Name,Customer.Age(Customer))
(12)

The elements of the view Customer�Passengers relative to relation Customer are given in Fig. 6.( The notations

used are de�ned earlier in Fig. 5.)

The relation Accident�Ins has all the properties required by Conditions 1 to 4 falling into Case 1 in Condition

3: � in our PC-constraint from Eq. (12) is �, and all attributes from Attr(V (R))WHEREhave replacements in

Accident�Ins (Fig. 6). Then we can conclude that the only view-extent evolution parameter value for the view

Customer�Passengers could be VE =� (thus � in Eqs. (11) and (13) must be �). The POC algorithm obtains the

legal view rewriting Customer�Passengers' de�ned in Eq. (13).

10



Element of V De�nition

Attr(V (R))SELECT(f; t) Customer.Name
S(Attr(V (R))SELECT(f; t)) Accident�Ins.Holder
Attr(V (R))SELECT(t; t) Customer.Age, Customer.Phone

S(Attr(V (R))SELECT(t; t)) Accident�Ins..Age
Attr(V (R))WHERE(f; t) Customer.Name, Customer.Age

S(Attr(V (R))WHERE(f; t)) Accident�Ins.Holder, Accident�Ins.Age

Figure 6: Elements of the Customer-Passengers View Relative to Customer Relation.

CREATE VIEW Customer-Passengers' (VE =�) AS

SELECT A.Holder (AD = false;AR = true), A.Age (AD = true;AR = true)

FROM Accident�Ins A (RD = true;RR = true);FlightRes F (RD = true;RR = true),

WHERE (A.Holder = F.PName) (CD = false; CR = true)AND(F.Dest = 'Asia')

AND(A.Age < 20)(CD = false; CR = true)

(13)

4 Applying Techniques for Maintenance after View Rede�nition to

Maintenance after View Synchronization

Let's assume that we could apply the techniques for view maintenance after rede�nition [GMR95, MD96] to bring

the view extent up-to-date after view synchronization by treating the (possibly complex) view synchronization

changes as a sequence of primitive view rede�nition changes. [GMR95] de�nes the set of primitive changes such as

drop/add an attribute from/to the SELECT clause, drop/add a condition from/to the WHERE clause, and drop/add

a relation from/to the FROM clause.

Assume the capability change \delete-relationR" applied to a base relationR causes a complex change to a view

V replacing the view components referring to this relation by the corresponding components from a replacement

relation S. The complex view change initiated by the POC algorithm for �nding legal view rewritings for an

a�ected view V (Eq. (3)) is equivalent to the following sequence of primitive changes applied directly to the view

de�nition V :

S1. Drop the select conditions referring to attributes of relation R from the WHERE clause, i.e., the ones using

the attributes Attr(V (R))LOCAL
WHERE

(f; t), Attr(V (R))LOCAL
WHERE

(t; t) and Attr(V (R))LOCAL
WHERE

(t; f)4.

S2. Drop the join conditions referring to attributes of relation R from the WHERE clause of the view V , i.e., the

ones involving attributes from Attr(V (R))JOIN
WHERE

(f; t), Attr(V (R))JOIN
WHERE

(t; t) and Attr(V (R))JOIN
WHERE

(t; f).

S3. Drop relation R from the FROM clause and the attributes Attr(V (R))SELECT(f; t), Attr(V (R))SELECT(t; t) and

Attr(V (R))SELECT(t; f) from the SELECT clause of the view V .

4In [GMR95], the equijoin conditions are treated di�erently than the select conditions involving only one relation. Hence we need
to separate the condition treatment into the two steps S1 and S2.

11



S4. Add relation S to the FROM clause; add the replacement attributes of S to the SELECT clause, i.e.,

S(Attr(V (R))SELECT(f; t)) and S(Attr(V (R))SELECT(t; t)) are added to the SELECT clause.

S5. Add the join conditions for which replacement attributes were identi�ed from the relation S into the

WHERE clause of the view V ; i.e., the predicates CV (S(Attr(V (R))JOIN
WHERE

(f; t)), S(Attr(V (R))JOIN
WHERE

(t; t))) are

added to the WHERE clause of V .

S6. Add the local (select) conditions referring to attributes of S (replacing attributes of R) to the WHERE clause

of the view V . Thus, the predicates CV(S(Attr(V (R))LOCAL
WHERE

(f; t)); S(Attr(V (R))LOCAL
WHERE

(t; t))) are added to

the WHERE clause of the view V .

The above approach has two major drawbacks. One it can be used only if the relation R is still available even

after the capability change \delete�relation R" has taken place. The reason for this is that, for example, step S1

is using relation R to retrieve more tuples from R. Two, intermediate steps such as S1 or S2 could considerably

increase the size of the intermediate views, requiring unnecessarily overhead in term of source I/O time, messages

exchanged, as well as overall computation time during querying the ISs for either R and/or S multiple times (see

Example 5).

Example 5 Let's now apply the steps S1 through S6 listed above for Example 4. Assume that the cardinalities

of the relations are jCustomerj = 40000, jFlightResj = 20000, jAccident�Insj = 30000 and jCustomer-Passengersj

= 1000. In Table 1, we show the intermediate results for the steps S1 through S6 listed above, where steps S4

and S5 were combined into one operation for simplicity. In this example, the biggest intermediate result of 10000

tuples is obtained by dropping relation Customer from the view, before using relation Accident�Ins for rewriting.

Even if the �rst steps S1 through S3 were to be combined, the intermediate result of 10000 tuples would have to be

kept before joining with relation Accident-Ins. The �nal rewritten view Customer-Passengers' has only 400 tuples

and in this particular example, we can prove that these tuples were in the view Customer-Passengers to begin with.

This suggests that a strategy for directly �nding the tuples that have to be deleted is preferable to dealing with

these six small rede�nitions one at a time.

Step Primitive View Size # Tuples retrieved from

change after change Customer FlightRes Accident�Ins

S1 Drop C.Age < 20 8000 40000 10000 0

S2 Drop C.Name = F.PName 10000 0 10000 0

S3 Drop Customer, C.Name 10000 0 0 0

Drop C.Age, C.Phone
S4, Add Accident�Ins 6000 0 0 6000

S5 Add A.Age, A.Holder
Add A.Age < 20

S6 Add A.Holder = F.PName 400 0 10000 0

Table 1: Cardinalities of Intermediate Results for Steps S1 through S6.

In the above example, we show that in the case of the view rede�nition caused by view synchronization it

is ine�cient to consider the complex synchronization change as a sequence of local changes and to apply the

12



maintenance techniques proposed in the literature for view rede�nitions [GMR95] to handle each of these view

changes one by one. In the example below, we now demonstrate applying the view rede�nition techniques is not

only very expensive but in fact impossible under capability changes due to the fact that the strategy proposed in

[GMR95] assumes that nothing changes at the IS site.

Example 6 Consider the step S1 in Example 5 that has as goal to drop the local condition (C.Age < 20) from

the WHERE clause of the view Customer-Passengers. The extent of the rede�ned view will be bigger than the

one of the original view, and by [GMR95] the new view after this one local change would be computed as

Customer-PassengersS1 = Customer-Passengers [Customer-Passengers+, where Customer-Passengers+ is de�ned in

Eq. (14):

Customer-Passengers+ =
(SELECT C.Name, C.Age;C.Phone

FROM Customer C , FlightRes F
WHERE (C.Name = F.PName) AND (F.Dest = 'Asia') AND

(NOT (C.Age < 20)))

(14)

Note that the expression Customer-Passengers+ is referring to the attribute Customer.Age which having been

dropped is no longer available at the site of the relation Customer. Hence, this expression cannot be evaluated,

and the view maintenance strategy fails.

5 Materialized View Maintenance after View Synchronization

Using the knowledge of the containment between the to-be-deleted and replacement relations of the view rewriting

V 0 generated by POC, we now propose techniques to directly �nd the tuples that need to be deleted from or added

to the view V to obtain V 0. We give a set of maintenance strategies for di�erent combinations of system parameters

such as the types of view de�nitions and values of the view-extent evolution parameter (f�;�;�;�g). Moreover,

we consider two possible scenarios de�ned by the availability of the deleted relation: the deleted relation is still

available at the maintenance time (e.g., before change noti�cation) and the deleted relation is not available at

the maintenance time (e.g., after change noti�cation). For all cases, we assume that we don't maintain duplicate

counts. We assume that the old extent of the view V , the replacement relation S, and all other relations used in

the FROM clause of the view V 0 are available during maintenance.

The cases we handle are described in Table 2.

We discuss in great detail Cases 1 through 4 of the strategy SYNCMAB and Cases 11 through 14 of the

strategy SYNCMAA which are summarized in Figs. 7 and 8, respectively. The rest of the cases summarized in

Figs. 9 and 10 are similar and hence are not further discussed.

Below there are four general strategies the optimizer can choose from for computing the view extent of the

view rewriting V 0:

(I) rematerialization strategy: compute the view from scratch given its new de�nition (Eq. (4));

13



Availability of deleted base relation
(View De�nition, VE) YES NO

(SPJ ,�) Case #1 Case #11
(SPJ ,�) Case #2 Case #12

(SPJ ,�) Case #3 Case #13
(SPJ ,�) Case #4 Case #14

(AGGR-SPJ ,�) Case #5 Case #15
(AGGR-SPJ ,�) Case #6 Case #16
(AGGR-SPJ ,�) Case #7 Case #17

(AGGR-SPJ ,�) Case #8 Case #18

Table 2: Cases of Maintenance after View Synchronization.

(II) SYNCMAB strategy: use the containment information between the to-be-deleted relation R and its replace-

ment S given by the PC-constraint de�ned in Eq. (5) and apply the maintenance strategies we propose below

for Cases 1 through 8. The name SYNCMAB stands for SYNChronization-driven view MAintenance Before

IS changes;

(III) SYNCMAA strategy: apply specialized techniques for computing V 0 for the case when relation R is not

available as applicable for Cases 11 to 18. The name SYNCMAA is an acronym for SYNChronization-driven

view MAintenance After IS changes;

(IV) rede�nition strategy: apply maintenance techniques for view rede�nition for each primitive change in the

sequence of changes necessary to obtain the new de�nition V 0 (see example in Section 4).

In all cases when the deleted relation is still available, i.e., SYNCMAB strategy for Cases 1 through 8, we

can take advantage of the relationship given by the PC-constraint de�ned by Condition 1, namely, Eq. (5):

PCS;R = (� �B(S) � � �A(R)). Hence, the SYNCMAB strategy involves computing the di�erence-set between the

to-be-deleted relation R and its replacement relation S (from the PC-constraint). This makes it possible to use

view maintenance techniques for data updates [GM95, BLT86, AAS97, Qua96] to incrementally maintain the view

rewriting V 0. In other words, we can recast our problem into a known data update propagation problem, and thus

solve it in this new context. SYNCMAA strategy (Cases 11 through 18) is characterized by the unavailability of

the relation R which implies that the di�erence between R and S cannot be found and hence we have to apply

di�erent algorithms for incrementally computing the new view extent.

In Section 5.1, SYNCMAB strategy (Cases 1 through 8) is presented, i.e., we de�ne the techniques of using

the containment information between R and S to compute the view extent of V 0. In Section 5.2, the SYNCMAA

strategy (Cases 11 through 18) is given, i.e., we outline algorithms for maintenance after synchronization problem

when relation R is no longer available at the time of maintenance.

14



5.1 SYNCMAB Strategy: Maintenance after View Synchronization when the
Deleted Relation is Available

Cases 1 through 8 are summarized in Figs. 7 and 8. The �rst column refers to the case and sub-case numbers

as presented below. The second column lists the set of conditions de�ning each case, namely, the value of the

view-extent parameter VE , the relationship between the original view V and new view V 0 and the containment

constraints between the deleted-relation R and its replacement S. The last column contains the steps of our

maintenance algorithm as discussed in more detail below.

# Parameters Maintenance Strategy

1:1
2
3:1

VE =� j � j �
V 0 �� V

R available
� = �

�S: �B(S) = �R: �A(R)

INSERT INTO V 0

(SELECT Attr(V (R))SELECT(f; t); (Attr(V (R))SELECT(t; t) \ R: �A);
R1: �D1; : : : ; Rn: �Dn

FROM V )

1.2

VE = �; V 0 �� V
R available
� = �

�S: �B(S) � �R: �A(R)

0. CREATE VIEW V 0
AS

SELECT Attr(V (R))SELECT(f; t); (R: �A \ Attr(V (R))SELECT(t; t))
R1: �D1; : : : ; Rn: �Dn

FROM R;R1; : : : ;Rn
WHERE CV(R: �A \ Attr(V (R))WHERE( ; t); �W )

INSERT INTO V 0

(SELECT Attr(V (R))SELECT(f; t); (R: �A \ Attr(V (R))SELECT(t; t));
R1: �D1; : : : ; Rn: �Dn

FROM V )

1. �R� =

(SELECT R: �A \ (Attr(V (R))SELECT( ; t) [ Attr(V (R))WHERE)
FROM R

WHERE CV(Attr(V (R))LOCAL
WHERE

))
EXCEPT

(SELECT S: �B \ S(Attr(V (R))SELECT( ; t) [ Attr(V (R))WHERE)
FROM S

WHERE CV(S(Attr(V (R))LOCAL
WHERE

)))

2. �V 0
� =

(SELECT Attr(V (R))SELECT(f; t); (R: �A \ Attr(V (R))SELECT(t; t));
R1: �D1; : : : ; Rn: �Dn

FROM �R�;R1; : : : ;Rn
WHERE CV(Attr(V (R))JOIN

WHERE
; �W ))

3. V 0
� = V 0 n�V 0

�

4. INSERT INTO V 0 (SELECT � FROM V 0
�)

3.2

VE = �; V 0 �� V
R available
� = �

�S: �B(S) � �R: �A(R)

0. ;

5. �R+ =

(SELECT S: �B \ S(Attr(V (R))SELECT( ; t) [ Attr(V (R))WHERE)
FROM S

WHERE CV(S(Attr(V (R))LOCAL
WHERE

)))
EXCEPT

(SELECT R: �A \ (Attr(V (R))SELECT( ; t) [ Attr(V (R))WHERE)
FROM R

WHERE CV(Attr(V (R))LOCAL
WHERE

)

6. �V 0
+ =

(SELECT Attr(V (R))SELECT(f; t); (R: �A \ Attr(V (R))SELECT(t; t));
R1: �D1; : : : ; Rn: �Dn

FROM �R+;R1; : : : ; Rn
WHERE CV(Attr(V (R))JOIN

WHERE
; �W ))

7. V 0
+ = V 0 [�V 0

+

8. INSERT INTO V 0 (SELECT � FROM V 0
+)

4

VE = �; V 0 �� V
R available
� = �

�S: �B(S) � �R: �A(R)

0. , 1. , 2. , 5. , 6. ,

9. V 0
�;+ = V 0 n �V 0

� [ �V 0
+

10. INSERT INTO V 0 (SELECT � FROM V 0
�;+)

Figure 7: SYNCMAB Strategy: SPJ View Maintenance after View Synchronization (Cases 1-4 as De�ned in
Table 2).

15



# Parameters Maintenance Strategy

5:1
6
7:1

VE =� j � j �
V 0 ��gr V
R available
� = �

�S: �B(S) = �R: �A(R)

INSERT INTO V 0

(SELECT grAttr(V (R))(f; t); (grAttr(V (R))(t; t) \ R: �A);
R1: �D1; : : : ; Rn: �Dn

F 0(aggAttr(V (R))(f; t); (aggAttr(V (R))(t; t) \ R: �A); �F )
FROM V )

8f(X)(= F ) in F9f 0(Y ) in F 0; s:t: (f(X); f 0(Y )) 2
f(MAX(X);MAX(F )); (MIN(X);MIN(F )); (SUM(X); SUM(F ));
(COUNT (�); SUM(F ))(AVG(X); SUM(FxF 0)=SUM(F 0))jF 0 = COUNT (�)g

5.2

VE = �; V 0 ��gr V
R available
� = �

�S: �B(S) � �R: �A(R)

0. CREATE VIEW V 0
AS

SELECT grAttr(V (R))(f; t); (grAttr(V (R))(t; t) \ R: �A);
R1: �D1; : : : ; Rn: �Dn

F(aggAttr(V (R))(f; t); (aggAttr(V (R))(t; t) \ R: �A); �F )
FROM R;R1 ; : : : ;Rn

WHERE CV(Attr(V (R))WHERE( ; t); �W )
GROUP BY grAttr(V (R))(f; t); (grAttr(V (R))(t; t) \ R: �A);

R1: �D1; : : : ; Rn: �Dn

INSERT INTO V 0

(SELECT grAttr(V (R))(f; t); (grAttr(V (R))(t; t) \ R: �A);
R1: �D1; : : : ; Rn: �Dn

F 0(aggAttr(V (R))(f; t); aggAttr(V (R))(t; t) \ R: �A); �F )
FROM V )

1. �R� =

(SELECT R: �A\
(grAttr(V (R))( ; t) [ aggAttr(V (R))( ; t) [ Attr(V (R))WHERE)

FROM R
WHERE CV(Attr(V (R))LOCAL

WHERE
))

EXCEPT

(SELECT S: �B\
S(grAttr(V (R))( ; t) [ aggAttr(V (R))( ; t) [ Attr(V (R))WHERE)

FROM S
WHERE CV(S(Attr(V (R))LOCAL

WHERE
)))

2. Update the AGGR-SPJ view V 0 after base relation data update

\delete-tuples �R�" [Qua96]

4. INSERT INTO V 0 (SELECT � FROM V 0)

7.2

VE = �; V 0 ��gr V
R available
� = �

�S: �B(S) � �R: �A(R)

0. ;

5. �R+ =

(SELECT S: �B\
S(grAttr(V (R))( ; t) [ aggAttr(V (R))( ; t) [ Attr(V (R))WHERE)

FROM S

WHERE CV(S(Attr(V (R))LOCAL
WHERE

)))
EXCEPT

(SELECT R: �A\
(grAttr(V (R))( ; t) [ aggAttr(V (R))( ; t) [ Attr(V (R))WHERE)

FROM R

WHERE CV(Attr(V (R))LOCAL
WHERE

)

6. Update the AGGR-SPJ view V 0 after base relation data update

\add-tuples �R+" [Qua96]

8. INSERT INTO V 0 (SELECT � FROM V 0)

8

VE = �; V 0 �� V
R available
� = �

�S: �B(S) � �R: �A(R)

0. , 1. , 5. ,

8. Update the AGGR-SPJ view V 0 after base relation data update

\add-tuples �R+"
AND \delete-tuples �R�" [Qua96]

10. INSERT INTO V 0 (SELECT � FROM V 0)

Figure 8: SYNCMAB Strategy: AGGR-SPJView Maintenance after View Synchronization (Cases 5-8 as De�ned
in Table 2).

16



SYNCMAB - Case 1: SPJ views, VE =�, relation R is available. This is the case when the containment constraint

used for synchronization de�ned in Condition 4 from Section 3.4 is �S: �B(S)��R: �A(R) (Eq. (5). � has to be either

� or � as given in Eq. (10). Thus we have two cases, � =� and � =�:

SYNCMAB - Case 1.1: � =�. We can prove that in this case V 0 =� V with V and V 0 de�ned in Eqs. (3) and

(4), respectively. The proof can be found in [Nic98] and is based on two facts: (1) all a�ected attributes from the

WHERE clause of V have replacements in S: �B (Condition 3) and (2) the PC-constraint (Eq. (5)) states that the

projection on attributes of R used in V is equal to the projection on attribute of S used in V 0.

Algebraically, V 0 is a projection of V on attributes from the SELECT clause having replacements in S, i.e., all

attributes from Attr(V (R))SELECT(f; t) and some of the attributes in Attr(V (R))SELECT(t; t)) plus the attributes from

all the other relations used in the view (i.e., R1: �D1; : : : ; Rn: �Dn). This algebraic expression of V 0 is given in Eq.

(15).

V 0 = �(Attr(V (R))SELECT(f;t);(Attr(V (R))SELECT(t;t)\R: �A);R1: �D1;:::;Rn: �Dn)(V ) (15)

Given that V 0 is simply a projection of V , V 0 can be locally adapted by applying a simple projection query on

the materialized view V as shown in Eq. (16).

INSERT INTOV 0

(SELECT Attr(V (R))SELECT(f; t); (Attr(V (R))SELECT(t; t) \R: �A);
R1: �D1; : : : ; Rn: �Dn

FROM V )

(16)

SYNCMAB - Case 1.2: � =�. In this case, we know that the view rewriting V 0 is a subset of the view V , i.e.,

V 0 �� V
5, based on the containment constraint � �B(S) � � �A(R). Eq. (5) expresses that the replacement relation

S is a subset of the current relation R. Let the view V 0 be obtained from the view V by projecting out the at-

tributes of R that are not replaced by attributes of S in the view V 0 (i.e., the attributes fromAttr(V (R))SELECT(t; f)

that cannot be replaced in any legal rewriting as they are nonreplaceable) and dropping the conditions from the

WHERE clause referring to attributes that have no replacements in S: �B. V 0 is de�ned in Eq. (17).

CREATE VIEW V 0
AS

SELECT Attr(V (R))SELECT(f ; t); (R: �A\Attr(V (R))SELECT(t; t))
R1: �D1; : : : ; Rn: �Dn

FROM R;R1; : : : ; Rn

WHERE CV(R: �A \Attr(V (R))WHERE( ; t); �W )

(17)

V 0 is de�ned in Eq. (17) and is initialized as de�ned in Eq. (18). Note that the extent of V 0 is not up-to-date

(i.e., consistent to the base relations used in its de�nition) when its WHERE clause (Eq. (17)) is di�erent than the

5The full proof is given in [Nic98].

17



WHERE clause of the view V . The reason for this is that some predicates were dropped in V 0 thus its extent could

be bigger than the extent of V .

INSERT INTO V 0

(SELECT Attr(V (R))SELECT(f; t); (R: �A \Attr(V (R))SELECT(t; t));
R1: �D1; : : : ; Rn: �Dn

FROM V )

(18)

First we compute the set-di�erence between the relation R and S (i.e., the set of tuples in R that are not in

S), denoted by �R�, that satis�es the local conditions on R used in the WHERE clause of the view V . This set is

de�ned by Eqs. (19) and (20) in algebraic and SQL notation, respectively:

�R� = �R: �A\(Attr(V (R))SELECT( ;t)[Attr(V (R))WHERE)(�CV(Attr(V (R))LOCALWHERE
)(R))

n �S(R: �A\(Attr(V (R))SELECT( ;t)[Attr(V (R))WHERE))(�CV(S(Attr(V (R))LOCALWHERE
))(S)) (19)

�R� =
(SELECT R: �A\ (Attr(V (R))SELECT( ; t) [Attr(V (R))WHERE)

FROM R

WHERE CV(Attr(V (R))LOCAL
WHERE

))
EXCEPT

(SELECT S: �B \ S(Attr(V (R))SELECT( ; t) [Attr(V (R))WHERE)
FROM S

WHERE CV(S(Attr(V (R))LOCAL
WHERE

)))

(20)

The set-di�erence �R� corresponds to a set of tuples from the relation R that generate a set of tuples in V

which are not in V 0. Thus we need to determine this set and use it to compute the extent of the view V 0.

If we propagate these \deletions" to the rewritten view V 0 (by erasing the corresponding tuples from the

view V 0) the view extent obtained { denoted by V 0
+ { is equal to the view extent of the view V 0. That is, let

R� = R n� �R�, and let V 0
� be obtained from V 0 by replacing relation R with R� (note that the attributes of

relation R used in V 0 are all also attributes of R�, from Conditions 2 and 3, Section 3.4). Then, V 0
� is de�ned

as in Eq. (21).

CREATE VIEW V 0
� AS

SELECT Attr(V (R))SELECT(f ; t); (R: �A\Attr(V (R))SELECT(t; t))
R1: �D1; : : : ; Rn: �Dn

FROM R�; R1; : : : ; Rn

WHERE CV(R: �A \Attr(V (R))WHERE( ; t); �W )

(21)

The maintenance techniques to obtain the view V 0
� using the materialized view V 0 could be any of the view

maintenance after data deletion strategies proposed in the literature [GM95, BLT86, AAS97]. For example, one of

18



the techniques [BLT86] is to �rst compute relation �V 0
� (de�ned in Eq. (22)) to consist of tuples of V 0 generated

by the \deleted" tuples of �R�, and then to compute the rest of the tuples as V 0
� = V 0 n �V 0

�.

�V 0
� =

(SELECT Attr(V (R))SELECT(f ; t); (R: �A \Attr(V (R))SELECT(t; t));
R1: �D1; : : : ; Rn: �Dn

FROM �R�; R1; : : : ; Rn

WHERE CV(Attr(V (R))JOIN
WHERE

; �W ))

(22)

Having computing the extent of the view V 0
�, we then can use it to (locally) update the view V 0. The

maintenance equation computing the �nal desired V 0 is given by Eq. (23).

INSERT INTOV 0

(SELECT Attr(V (R))SELECT(f; t); (R: �A\Attr(V (R))SELECT(t; t));
R1: �D1; : : : ; Rn: �Dn

FROM V 0
�)

(23)

We can prove that the above computation of the extent of view V 0 is correct based on the observation that in

this particular case, all the conditions from the WHERE clause of the view V are preserved in the view de�nition

V 0 as imposed by Condition 2, Section 3.4.

SYNCMAB - Case 2: SPJ views, VE =�, relation R is available. This case can be treated exactly as Case 1.1

above, with � =� as imposed by Condition 4. The strategy is outlined in Fig. 7.

SYNCMAB - Case 3: SPJ views, VE =�, relation R is available. In general, in this case the view rewriting V 0 is

bigger than the view V , V 0 �� V 6. � used in the PC-constraint (Eq. (5)) must be � or � as imposed by

Condition 4, Eq. (10). Thus we have to discuss the two cases of � =� and � =�:

SYNCMAB - Case 3.1: � =�. In this case, we can prove that V 0 =� V , i.e., this is identical to the Case 1.1 from

above. The maintenance equation is given by Eq. (16) (see also Fig. 7).

SYNCMAB - Case 3.2: � =�. We proved in [Nic98] that the view rewriting V 0 is a superset of the view V , i.e.,

V 0 �� V based on the given PC-constraint (� �B(S) � � �A(R)) in Eq. (5). Let the view V 0 be obtained as above

(Eq. (17)) from the view V by projecting out the attributes of R that are not replaced by attributes of S in the

view V 0, plus dropping the conditions from the WHERE clause whose attributes have no replacements in S.

As in Case 1.2, we can compute the set-di�erence between the relation R and S, denoted this time by �R+.

The set-di�erence �R+ can be seen as modeling the set of new (inserted) tuples into relation R. This set of tuples

in S that are not in R is de�ned by Eqs. (24) and (25), respectively in relational algebra and in SQL notation:

�R+ = �S(R: �A\(Attr(V (R))SELECT( ;t)[Attr(V (R))WHERE))(�CV(S(Attr(V (R))LOCALWHERE
))(S))

6The full proof is given in [Nic98].

19



n �R: �A\(Attr(V (R))SELECT( ;t)[Attr(V (R))WHERE)(�CV(Attr(V (R))LOCAL
WHERE

)(R)) (24)

�R+ =
(SELECT S: �B \ S(Attr(V (R))SELECT( ; t) [Attr(V (R))WHERE)

FROM S

WHERE CV (S(Attr(V (R))LOCAL
WHERE

)))
EXCEPT

(SELECT R: �A \ (Attr(V (R))SELECT( ; t) [Attr(V (R))WHERE)
FROM R

WHERE CV (Attr(V (R))LOCAL
WHERE

))

(25)

Note that in Case 3.2, the set �R� as de�ned in Eq. (20) is empty. And vice versa, in Case 1.2, the set �R+

de�ned by Eq. (25) is empty. If we propagate these \insertions" to the view V 0 (by incrementally inserting new

tuples in the view V 0), the view extent obtained, denoted by V 0
+, is equal to the extent of the view V 0. That

is, let R+ = R [� �R+, and V 0
+ (Eq. (26)) be obtained from V 0 by replacing relation R with R+ and dropping

the clauses from the WHERE clause that are dropped in the view rewriting V 0. Condition 2 in Section 3.4 imposes

that only local conditions could be dropped. Thus the conditions preserved in the view V 0 (and V 0
+) are the select

conditions referring to attributes in R: �A\ (Attr(V (R))LOCAL
WHERE

(f; t)[Attr(V (R))LOCAL
WHERE

(t; t)) and all join conditions

referring to attributes in Attr(V (R))JOIN
WHERE

.

CREATE VIEW V 0
+ AS

SELECT Attr(V (R))SELECT(f ; t); (R: �A\Attr(V (R))SELECT(t; t))
R1: �D1; : : : ; Rn: �Dn

FROM R+; R1; : : : ; Rn

WHERE CV(R: �A \Attr(V (R))WHERE( ; t); �W )

(26)

We have again reduced our problem of view maintenance after synchronization into the problem of maintenance

under tuple insertions into one of the base relations. Hence, we can apply maintenance techniques designed to

incrementally compute V 0
+ from the view V 0 [GM95, BLT86, AAS97]. To give an example, we can compute

V 0
+ = V 0 [ �V 0

+ [BLT86], where �V 0
+ (Eq. (27)) is the set of tuples of the view V 0 generated by �R+. Then we

can compute �V 0
+ by applying view maintenance techniques for the view V 0 under insertion of the tuples �R+

in the base relation R [BLT86].

�V 0
+ =

(SELECT Attr(V (R))SELECT(f ; t); (R: �A \Attr(V (R))SELECT(t; t));
R1: �D1; : : : ; Rn: �Dn

FROM �R+; R1; : : : ; Rn

WHERE CV(Attr(V (R))JOIN
WHERE

; �W ))

(27)

20



After V 0
+ is computed, we then can use it to (locally) set the view V 0 using the maintenance strategy given by

Eq. (28).

INSERT INTOV 0

(SELECT Attr(V (R))SELECT(f; t); (R: �A\Attr(V (R))SELECT(t; t));
R1: �D1; : : : ; Rn: �Dn

FROM V 0
+)

(28)

The proof that this proposed technique computes the correct view extent of V 0 is based on the two facts: (1)

only select conditions on R are dropped from the view rewriting V 0 and (2) the given PC-constraint is PCS;R =

(�S: �B(S) � �R: �A(R)).

SYNCMAB - Case 4: SPJ views, VE =�, relation R is available. In this case the view rewriting V 0 could contain

some of the tuples from V (but not necessarily all) and some new tuples. Thus, the technique we propose

here is to compute �rst both �V 0
� and �V 0

+ as de�ned above in Eqs. (22) and (27), respectively. If we de�ne

V 0
�;+ = V 0 n V 0

� [ V 0
+, then the view V 0 is computed as expressed in Eq. (29) (see Fig. 7):

INSERT INTOV 0

(SELECT Attr(V (R))SELECT(f; t); (R: �A\Attr(V (R))SELECT(t; t));
R1: �D1; : : : ; Rn: �Dn

FROM V 0
�;+)

(29)

Example 7 We give the following example to illustrate the most general case (Case 4) of the SYNCMAB strategy

when the view extent evolution parameter is �. Let's assume the view Customer-East is de�ned in Eq. (30) and the

PC-constraint de�ned in Eq. (31). The capability change is \delete-relation Customer". A legal rewriting found

by applying the POC algorithm is the view Customer-East' (Eq. (32)), where only the attributes Customer.Name

and Customer.Age were replaced in the SELECT clause, and the local condition C.State = \MA00 was dropped from

the WHERE clause (its dispensable parameter CD was set to true).

CREATE VIEW Customer-East (VE =�) AS

SELECT C.Name (AR = true), C.Age (AD = true;AR = true)
C.Phone (AD = true;AR = true)

FROM Customer C (RD = true;RR = true),
FlightRes F (RD = true;RR = true),

WHERE (C.Name = F.PName) (CR = true) AND (F.Dest = 'Asia') AND

(C.Age < 20)(CR = true)AND
(C.State = \MA00)(CD = true; CR = true)

(30)

PCCustomer;Accident�Ins = (�Accident�Ins.Holder,Accident�Ins.Age (Accident�Ins)
� �Customer.Name,Customer.Age(Customer))

(31)

21



CREATE VIEW Customer-East' (VE =�) AS

SELECT A.Holder (AR = true), A.Age (AD = true;AR = true)

FROM Accident�Ins A (RD = true;RR = true);

FlightRes F (RD = true;RR = true),

WHERE (A.Holder = F.PName) (CR = true)AND(F.Dest = 'Asia')

AND(A.Age < 20)(CR = true)

(32)

Customer

Name Age State Phone

John 19 MA 111-1111

Mary 18 MA 222-2222

Bob 17 ON 999-9999

Bill 19 CA 888-8888

....

FlightRes

PName Dest

John Asia

Mary Asia

Bob Asia

Gill Asia

....

Accident-Ins

Holder Age

Mary 18

Bob 17

Gill 16

....

Table 3: Data for the Relations Used in Example 7.

The steps in the SYNCMAB strategy (see Fig. 7) presented above are for this example the following:

0. The view Customer-East0 is de�ned as in Eq. (33) and its extent is initialized with the set f(John; 19),

(Mary; 18)g given the extents of the relations Customer and FlightRes from Table 3. Note that this extent is not

up-to-date given the de�nition of the view Customer-East0.

1. The expression �Customer� is f(John; 19)g (Fig. 7).

5. The expression �Customer+ computes f(Gill; 16); (Bob; 17)g (Fig. 7). Note that the relation �Customer+

contains a new tuple (Gill; 16) found only in the relation Accident-Ins plus a �-common tuple (Bob; 17) of the

relations Customer and Accident-Ins. The tuple (Bob; 17) was not part of the initial view Customer-East as it fails

the select condition (C.State =0 MA0) that now was dropped from the rewriting Customer-East'.

CREATE VIEW Customer-East0 AS

SELECT C.Name, C.Age
FROM Customer C, FlightRes F
WHERE (C.Name = F.PName) AND (F.Dest = 'Asia')AND (C.Age < 20)

(33)

Step 9. is (arti�cially) considering two types of data-updates in the relation Customer:

(i) insertion of the tuples from �Customer+: the extent of the view Customer-East0 is now

f(John; 19); (Mary; 18); (Gill; 16); (Bob; 17)g;

(ii) deletion of the tuples from �Customer�: the extent of the view Customer-East0 is now

f(Mary; 18); (Gill; 16); (Bob; 17)g.

In the step 10. , we set the extent of Customer-East' to f(Mary; 18); (Gill; 16); (Bob; 17)g. This corresponds

exactly to its de�nition from Eq. (32).

22



# Parameters Maintenance Strategy

11:1
12
13:1

VE =� j � j �
V 0 �� V

R NOT available
� = �

�S: �B(S) = �R: �A(R)

INSERT INTO V 0

(SELECT Attr(V (R))SELECT(f; t);
(Attr(V (R))SELECT(t; t) \ R: �A);
R1: �D1; : : : ; Rn: �Dn

FROM V )

11.2

VE = � V 0 �� V
R NOT available

� = �
�S: �B(S) � �R: �A(R)

0. CREATE VIEW V 0
AS

SELECT Attr(V (R))SELECT(f; t); (R: �A \ Attr(V (R))SELECT(t; t))
R1: �D1; : : : ; Rn: �Dn

FROM R;R1; : : : ;Rn
WHERE CV((R: �A \ Attr(V (R))WHERE( ; t); �W )

INSERT INTO V 0

(SELECT Attr(V (R))SELECT(f; t); (R: �A \ Attr(V (R))SELECT(t; t));
R1: �D1; : : : ; Rn: �Dn

FROM V )

1. �R� =

(SELECT R: �A \ (Attr(V (R))SELECT( ; t) [ Attr(V (R))WHERE)
FROM V )

EXCEPT

(SELECT S: �B \ S(Attr(V (R))SELECT( ; t) [ Attr(V (R))WHERE)
FROM S

WHERE CV(S(Attr(V (R))LOCAL
WHERE

)))

2. �V 0
� =

(SELECT Attr(V (R))SELECT(f ; t); (R: �A \ Attr(V (R))SELECT(t; t));
R1: �D1; : : : ;Rn: �Dn

FROM �R�; R1; : : : ; Rn
WHERE CV(Attr(V (R))JOIN

WHERE
; �W ))

3. V 0
� = V 0 n�V 0

�

4. INSERT INTO V 0(SELECT � FROMV 0
�)

13.2

VE = �; V 0 �� V

R NOT available
� = �

�S: �B(S) � �R: �A(R)

0. ;

5. �R+ =

(SELECT S: �B \ S(Attr(V (R))SELECT( ; t) [ Attr(V (R))WHERE)
FROM S

WHERE CV(S(Attr(V (R))LOCAL
WHERE

)))
EXCEPT

(SELECT R: �A \ (Attr(V (R))SELECT( ; t) [ Attr(V (R))WHERE)
FROM V )

6. �V 0
+ =

(SELECT Attr(V (R))SELECT(f; t); (R: �A \Attr(V (R))SELECT(t; t));
R1: �D1; : : : ;Rn: �Dn

FROM �R+;R1; : : : ;Rn
WHERE CV(Attr(V (R))JOIN

WHERE
; �W ))

7. V 0
+ = V 0 [�V 0

+

8. INSERT INTO V 0(SELECT � FROMV 0
+)

14

VE = �; V 0 �� V
R NOT available

� = �
�S: �B(S) � �R: �A(R)

0. , 1. , 2. , 5. , 6. ,

9. V 0
�;+ = V 0 n �V 0

� [ �V 0
+

10. INSERT INTO V 0(SELECT � FROMV 0
�;+)

Figure 9: SYNCMAA Strategy: SPJ View Maintenance after View Synchronization (Cases 11-14 as De�ned in
Table 2).

23



# Parameters Maintenance Strategy

15:1
16
17:1

VE =� j � j �
V 0 ��gr V

R NOT available
� = �

�S: �B(S) = �R: �A(R)

INSERT INTO V 0

(SELECT grAttr(V (R))(f; t); (grAttr(V (R))(t; t) \R: �A);
R1: �D1; : : : ; Rn: �Dn

F 0(aggAttr(V (R))(f; t); (aggAttr(V (R))(t; t) \ R: �A); �F )
FROM V )

8f(X)(= F ) in F9f 0(Y ) in F 0; s:t: (f(X); f 0(Y )) 2
f(MAX(X);MAX(F )); (MIN(X); MIN(F )); (SUM(X); SUM(F ));
(COUNT (�); SUM(F ))(AVG(X); SUM(FxF 0)=SUM(F 0))jF 0 = COUNT (�)g

15.2

VE = �; V 0 ��gr V
R NOT available

� = �
�S: �B(S) � �R: �A(R)

0. CREATE VIEW V 0
AS

SELECT grAttr(V (R))(f; t); (grAttr(V (R))(t; t) \ R: �A);
R1: �D1; : : : ;Rn: �Dn

F(aggAttr(V (R))(f; t); (aggAttr(V (R))(t; t) \ R: �A); �F )
FROM R;R1; : : : ; Rn

WHERE CV(Attr(V (R))WHERE( ; t); �W )
GROUP BY grAttr(V (R))(f; t); (grAttr(V (R))(t; t) \ R: �A);

R1: �D1; : : : ;Rn: �Dn

INSERT INTO V 0

(SELECT grAttr(V (R))(f; t); (grAttr(V (R))(t; t) \R: �A);
R1: �D1; : : : ; Rn: �Dn

F 0(aggAttr(V (R))(f; t); aggAttr(V (R))(t; t) \ R: �A); �F )
FROM V )

1. �R� =

(SELECT R: �A\
(grAttr(V (R))( ; t) [ aggAttr(V (R))( ; t) [ Attr(V (R))WHERE)

FROM V )
EXCEPT

(SELECT S: �B\
S(grAttr(V (R))( ; t) [ aggAttr(V (R))( ; t) [ Attr(V (R))WHERE)

FROM S

WHERE CV(S(Attr(V (R))LOCAL
WHERE

)))

2. Update the AGGR-SPJ view V 0 after base relation data update

\delete-tuples �R�" [Qua96] (delete whole groups)

4. INSERT INTO V 0 (SELECT � FROM V 0)

17.2

VE = �; V 0 ��gr V
R NOT available

� = �
�S: �B(S) � �R: �A(R)

0. ;

5. �R+ =

(SELECT S: �B\
S(grAttr(V (R))( ; t) [ aggAttr(V (R))( ; t) [ Attr(V (R))WHERE)

FROM S

WHERE CV(S(Attr(V (R))LOCAL
WHERE

)))
EXCEPT

(SELECT R: �A\
(grAttr(V (R))( ; t) [ aggAttr(V (R))( ; t) [ Attr(V (R))WHERE)

FROM V )

6. Update the AGGR-SPJ view V 0 after base relation data update

\add-tuples �R+" [Qua96] (only new groups)

8. INSERT INTO V 0 (SELECT � FROM V 0)

18

VE = �; V 0 �� V
R NOT available

� = �
�S: �B(S) � �R: �A(R)

0. , 1. , 5. ,

8. Update the AGGR-SPJ view V 0 after base relation data update

\add-tuples �R+" AND \delete-tuples �R�" [Qua96]
(add/delete whole groups only)

10. INSERT INTO V 0 (SELECT � FROM V 0)

Figure 10: SYNCMAA Strategy: AGGR-SPJView Maintenance after View Synchronization (Cases 15-18 as De-
�ned in Table 2).

24



5.2 SYNCMAA Strategy: Maintenance after View Synchronization when Deleted
Relation is NOT Available

In the following we de�ne the SYNCMAA strategy for handling the Cases 11-14 corresponding to SPJ synchronized

views when the to-be-deleted relation R is no longer available for maintenance after synchronization. The SYNC-

MAA strategy uses the knowledge of the relationship between V 0 and V given by the view extent parameter

VE which could be �, �, � or �. These relationships are de�ned in Section 3.3 using set semantics. We make

the assumption that in any rewriting of the view V , all join attributes of R replaced in the WHERE clause of V 0

are among the attributes replaced in the SELECT clause, i.e., S(Attr(V (R))SELECT) � S(Attr(V (R))JOIN
WHERE

). We refer

to this assumption in the rest of this section as the inclusion assumption. Note that when the view rewriting

V 0 has this property, the view maintenance after synchronization could be done in most cases more e�ciently

by applying the SYNCMAA strategy for Cases 11 through 14 even if the relation R is still available during the

maintenance.

The SYNCMAA strategy proposed below assumes that while the relation R is no longer available, the old view

extent of V , the replacement relation S, and the rest of the relations in the FROM clause of V 0 (R1; : : :Rn) are

still available. On the other hand, in the SYNCMAB strategy, the possibly remote relation R was queried as well

which in general will increase the costs of computation, for example, the amount of information sent/retrieved in

the process of maintenance.

The SYNCMAA strategy applies the same principle for incrementally computing the view extent V 0 as the

SYNCMAB for Cases 1 through 4, namely, reducing the problem of computing V 0 to a problem of view mainte-

nance after data updates for the view V 0. Fig. 9 summarizes the cases we present below.

SYNCMAA - Case 11: SPJ views, VE =�, relation R is NOT available. This is the case when Condition 4 im-

poses that � in Equation (5) is either � or � (Eq. (10)). Thus we have the two cases of � =� and � =�:

SYNCMAA - Case 11.1: � =�. We treat this case exactly like for the SYNCMAB strategy, Case 1.1, as it doesn't

require access to the relation R. The computation of the view rewriting V 0 is given in Fig. 9.

SYNCMAA - Case 11.2: � =�. The view rewriting V 0 is a subset of the view V , i.e., V 0 �� V . Let the view

V 0 be de�ned as in Section 5.1, Eq. (17) and be initialized as in Eq. (18). Because the inclusion assumption is

imposed for any rewriting of the view V , V 0 has the property that all attributes from the WHERE clause of the

relation R are in the SELECT clause as well. As in Case 1.2 of the SYNCMAB strategy, we want to compute the

set-di�erence between the relation R and S. This time the relation R is no longer available. Hence we cannot

use the de�nition given in Eq. (20) for �R�. The new de�nition of the set-di�erence �R� (given in Eq. (34))

computes the set of tuples from the view V that cannot be generated by any tuples in the relation S.

25



�R� =
(SELECT R: �A\ (Attr(V (R))SELECT( ; t) [Attr(V (R))WHERE)

FROM V )
EXCEPT

(SELECT S: �B \ S(Attr(V (R))SELECT( ; t) [Attr(V (R))WHERE)
FROM S

WHERE CV(S(Attr(V (R))LOCAL
WHERE

)))

(34)

We treat again the set-di�erence �R� as a set of tuples deleted from relation R and propagate these \deletions"

to the view V 0. With the inclusion-assumption imposed on the de�nition of the view V 0, namely that all the

WHERE attributes of R in V 0 are among the SELECT attributes, we can prove that the view extent obtained after

propagation (denoted by V 0
�) is equal to the view extent of the view V 0. The proof is immediate from the formulas

of the relations �R�, V 0
� and V 0. The maintenance techniques used for propagation of the \deletions" to the view

V 0 could be any view maintenance after deletion strategies proposed in the literature [GM95, BLT86, AAS97].

In Fig. 9 we give one of the techniques (same as in SYNCMAB strategy, Case 1.2).

SYNCMAA - Case 12: SPJ views, VE =�, relation R is NOT available. This case is treated exactly as Case 11.1

and is summarized in Fig. 9.

SYNCMAA - Case 13: SPJ views, VE =�, relation R is NOT available. In general, in this case the view rewriting

V 0 is a superset of the view V , V 0 �� V 7 as imposed by Condition 4, Eq. (10). � used in the PC-constraint (Eq.

(5)) must be � or � which we treat separately in the two Cases 13.1 and 13.2 below.

SYNCMAA - Case 13.1: � =�. In this case, we can prove that V 0 =� V ([Nic98]), thus the appropriate mainte-

nance equation is given in Fig. 9. This is the same as for the Cases 11.1 and 12.

SYNCMAA - Case 13.2: � =�. We proved in [Nic98] that the view rewriting V 0 is a superset of the view V , i.e.,

V 0 �� V . As in Case 1.2 for the SYNCMAB strategy, we want to compute the set-di�erence between the relation

R and S, denoted by �R+. The expression of �R+ given in Eq. (35) computes the set of tuples in S that are

potential candidates to generate new tuples in V 0.

�R+ =
(SELECT S: �B \ S(Attr(V (R))SELECT( ; t) [Attr(V (R))WHERE)

FROM S

WHERE CV (S(Attr(V (R))LOCAL
WHERE

)))
EXCEPT

(SELECT R: �A \ (Attr(V (R))SELECT( ; t) [Attr(V (R))WHERE)
FROM V

(35)

If we propagate these \insertions" to the view V 0, the view extent obtained (denoted by V 0
+) is equal to the

view extent of the view V 0. We have again reduced our view maintenance after synchronization problem to

7See [Nic98], for the proof.

26



maintenance under tuple insertion in one of the base relation. Thus we can apply maintenance techniques to

incrementally compute the view V 0
+ from the view V 0 [GM95, BLT86, AAS97]. After view V 0

+ is computed, we

then can use it to (locally) set the view V 0. The maintenance equation for the view V 0 is given in Fig. 9 under

the Case 13.2.

SYNCMAA - Case 14: SPJ views, VE =�, relation R is NOT available. We apply the same techniques as in Case

4 by �rst computing both �V 0
� and �V 0

+ as for Cases 11.2 and 13.2, respectively. If we de�ne V 0
�;+ = V 0 n V 0

� [ V 0
+,

the view V 0 is computed as expressed in Fig. 9, Case 14.

Example 8 Let's consider again Example 7 from Section 5.1 and apply the SYNCMAA strategy de�ned above

when the relation Customer is not available. The view Customer-East is de�ned in Eq. (30), while the view rewriting

under the capability change \delete-relation Customer"(found by the POC algorithm is the view Customer-East'

(Eq. (32)). Note that Customer-East' has all the attributes of the relation Accident-Ins (replacing attributes of

the relation Customer) from the WHERE clause among the attributes in the SELECT clause. Thus, we can apply the

techniques de�ned above for Case 14 of the SYNCMAA strategy, when the view extent evolution parameter is

�, and the PC-constraint is given in Eq. (31). We now go over the steps de�ned in Table 9 for this particular

example.

In step 0. , the view Customer-East0 is de�ned as in Eq. (33) and its extent is initialized with the set

f(John; 19); (Mary; 18)g. We assume the states of the relations Customer, FlightRes, and Accident-Ins given in Ex-

ample 7. Without using the deleted relation Customer, the expression �Customer� (Eq. (36)) generates the tuple

f(John; 19)g (step 1. ), while the expression �Customer+ (Eq. (37)) results in the tuples f(Gill; 16); (Bob; 17)g

(step 5. ).

Step 9. considers two types of data-updates to the relation Customer: (1) insertion of the tuples from

�Customer+; and (2) deletion of the tuples from �Customer�. The view Customer-East0 after these updates

is f(Mary; 18); (Gill; 16); (Bob; 17)g. In step 10. the extent of the view rewriting Customer-East' is set to the

extent of the expression Customer-East0 and now corresponds to its �nal de�nition given in Eq. (32).

�Customer-East� =
(SELECT Name, Age

FROM Customer-East)
EXCEPT

(SELECT Holder, Age

FROM Accident-Ins

WHERE (Age < 20))

(36)

�Customer-East+ =
(SELECT Holder, Age

FROM Accident-Ins

WHERE (Age < 20))
EXCEPT

(SELECT Name, Age

FROM Customer-East)

(37)

27



6 Experimental Results

We now present the experimental results obtained by comparing our proposed view maintenance techniques with

two alternative solutions: view rematerialization and view rede�nition techniques.

6.1 Description of the Experimental Process

We conduct the experiments using the following strategies. For a given E-SQL view de�nition V and a capability

change ch \delete-relation ", we �rst obtain a view rede�nition V 0 by applying the POC algorithm (Section 3.4).

For each pair V and V 0, we generate SQL code for computing the view extent of the new view V 0 in three ways:

(1) apply the techniques presented in Section 5, namely the SYNCMAB strategy8;

(2) compute the view V 0 directly from its de�nition (rematerialization strategy);

(3) apply techniques for view rede�nition (rede�nition strategy).

The strategies for SYNCMAB , rede�nition and rematerialization store the results into a new view leaving the

old extent unchanged, i.e., we don't use in-place adaptation. Each SQL maintenance code obtained is submitted

to the database interface of the commercial database system (we used Sybase) and executed there. We start the

timer before sending the SQL code and stop the timer when the results are received back at the DB interface.

Thus all the measurements charted in the following sections represent elapsed time for execution of the SQL

queries. The database system used is SYBASE SQL Server running on a UNIX machine with 128MB RAM

memory.

6.2 Description of the TPC-D Benchmark Schema and Database

The sample database used for these experiments is conforming to the TPC-D benchmark [TD95]. The TPC-D

benchmark database schema which we use unchanged is described in Figure 6.2. The boxed attributes correspond

to the primary keys. The formula such as SF*200k attached to the PART table represents the cardinality of the

table. The size of the tables are factored by a SF (Scale Factor) to obtain a chosen database size. The names of

the attributes when used in the rest of this section are pre�xed by the string in the parenthesis following a table

name (e.g., we use p-name to refer to the attribute name of the relation PART (p-)).

6.3 View De�nitions Design for Experimental Evaluation

We have designed several experimental scenarios, each testing di�erent cases of maintenance after synchronization

methods for the SYNCMAB strategy as illustrated in Figs. 7 and 8. Figs. 12 and 13 depict a pair of view

de�nitions. The labels above the arrows between the two view de�nitions indicate the case numbers discussed

in the previous section in Table 2 that need to be applied for maintenance. For all four view de�nitions, the

8Note that we cannot compare the SYNCMAA strategy with rede�nition strategy as the latter requires the to-be-deleted relation
to be still available, and hence the rede�nition strategy cannot be applied in any case when the SYNCMAA strategy can be. The
SYNCMAA and SYNCMAB strategies di�er only in the computation of the expressions �R+ and �R�. For this computation, the
SYNCMAA strategy accesses only the replacement relation S and the old view extent V , while the SYNCMAB strategy accesses the
replacement relation S and the to-be-deleted relation R. Hence, in general, we expect the SYNCMAA strategy to outperform the
SYNCMAB strategy given that R is a remote relation (i.e., not at the view site).

28



PART (p-)
SF*200k

partkey

name
mfgr

brand
type
size

container
retailprice
comment

SUPPLIER1/2(s-)
SF*10K

suppkey

name

address
nationkey
phone

acctbal
comment

PARTSUPP (ps-)
SF*800K

partkey

suppkey

availqty

supplycost
comment

CUSTOMER (c-)
SF*150K

custkey

name
address

nationkey
phone
acctbal

mktsegment
comment

LINEITEM (l-)
SF*6000K

orderkey

partkey

suppkey

linenumber

quantity
extendedprice
discount

tax
return
ag
linestatus

shipdate
commitdate
receiptdate

shiptdate
shipinstruct
shipmode

comment

Figure 11: The TPC-D Benchmark Database Schema.

variable enclosed in curly braces (i.e., fbalng) is the parameter we use to vary the view sizes by randomly

choosing its values from a range of possible TPC-D values. The values for the parameter fbalng in the predicates

(SUPPLIER1.s-acctbal > fbalng) and (SUPPLIER2.s-acctbal > fbalng) are chosen from [0:::10; 000:00]. The

relations SUPPLIER1 and SUPPLIER2 are de�ned like the relation SUPPLIER in Fig. 6.2 in terms of their

schema type. The extent of the relation SUPPLIER2 is a subset of the relation SUPPLIER1, ranging in our

testbed in size from 0% to 100% of SUPPLIER1 size. The tables used for each test are populated at a scale factor

SF=0.1 totaling 100M of data. All the base tables are physically ordered by their primary keys.

CREATE VIEW V 1 AS

SELECT s suppkey;s name;
s address; s nationkey;
s acctbal; s comment;
ps availqty; s quantity

FROM SUPPLIER1 S1;
PARTSUPP P;
LINEITEM L

WHERE S1:s acctbal > fbalng and
S1:s suppkey = P:ps suppkey and
S1:s suppkey = L:l suppkey and
P:ps partkey = L:l partkey

SYNCMAB - Case 1
=)

SYNCMAB - Case 3
(=

CREATE VIEW V 2 AS

SELECT s suppkey;s name;
s address; s nationkey;
s acctbal; s comment;
ps availqty; s quantity

FROM SUPPLIER2 S2;
PARTSUPP P;
LINEITEM L

WHERE S2:s acctbal > fbalng and
S2:s suppkey = P:ps suppkey and
S2:s suppkey = L:l suppkey and
P:ps partkey = L:l partkey

Figure 12: Cases 1 and 3 de�ned in Table 2 for SPJ Views: View De�nitions for V 1 and V 2.

We use the test cases depicted in Fig. 12 to measure the performance of our maintenance techniques when the

view to be synchronized is an SPJ view and the PC-constraint is a subset (Case 1.2), equivalent (Cases 1.1 and

3.1) or superset (Case 3.2). In our scenarios, the PC-constraint is de�ned as SUPPLIER1 � SUPPLIER2. We

describe the results obtained in these tests in Sections 6.4 and 6.5.

For the views V 3 and V 4 shown in Fig. 13 that contain aggregate attributes, we measure the performance

29



CREATE VIEW V 3 AS

SELECT s suppkey; s name;
s address; s nationkey;
s acctbal; s comment;
ps availqty; SUM(s quantity)

FROM SUPPLIER1 S1;
PARTSUPP P;
LINEITEM L

WHERE S1:s acctbal > fbalng
S1:s suppkey = P:ps suppkey
S1:s suppkey = L:l suppkey
P:ps partkey = L:l partkey

GROUP BY s suppkey; s name;
s address; s nationkey;
s acctbal; s comment;
ps availqty

SYNCMAB - Case 5
=)

SYNCMAB - Case 7
(=

CREATE VIEW V 4 AS

SELECT s suppkey;s name;
s address; s nationkey;
s acctbal; s comment;
ps availqty; SUM(s quantity)

FROM SUPPLIER2 S2;
PARTSUPP P;
LINEITEM L

WHERE S2:s acctbal > fbalng
S2:s suppkey = P:ps suppkey
S2:s suppkey = L:l suppkey
P:ps partkey = L:l partkey

GROUP BY s suppkey;s name;
s address; s nationkey;
s acctbal; s comment;
ps availqty

Figure 13: Cases 5 and 7 de�ned in Table 2 for Aggregation Views: View De�nitions for V 3 and V 4.

of our maintenance techniques again for di�erent types of the PC-constraint expressed as a subset (Case 5) or

superset (Case 7). The experimental results are showed in Figs. 18 and 19 for Case 5, and 20 and 21 for Case 7.

6.4 Maintenance after Synchronization for Views with Deletion

The charts in Figs. 14 and 15 summarize our results for Cases 1.1 and 1.2 for di�erent sizes of the original view V 1

and the synchronized view V 2 and for di�erent sizes of the to-be-deleted relation SUPPLIER1 and its replacement

SUPPLIER2. In these cases only deletion is performed by our SYNCMAB strategy (see Fig. 7). Given that the

keys of the relations SUPPLIER1 and SUPPLIER2 are preserved in the views V 1 and V 2, respectively, we expect

the deletion operation performed by SYNCMAB strategy to be very cheap and hence our technique is expected

to outperform the other two methods.

The graphs in Fig. 14 are derived by varying the fbalng parameter and thus controlling the view sizes to range

from 0 to 10; 000:00 tuples. The x-axis values correspond to the fraction of tuples from SUPPLIER1 participating

(i.e., generating tuples) in the view V 1, while the y-axis indicates the elapsed time measured in seconds. Each

chart corresponds to a di�erent setting of the di�erence size between the to-be-deleted relation SUPPLIER1 and

its replacement SUPPLIER2 ranging from SUPPLIER2 = 100% SUPPLIER1 (in the �rst chart) to SUPPLIER2

= 20% SUPPLIER1 (in the last chart). For each chart, the elapsed time increases proportionally with the percent

of the relation SUPPLIER1 generating tuples in the view V 1 corresponding to the x-axis values. In our setting,

these percents directly in
uence the size of the original view V 1 as well as the new synchronized view V 2. This

explains why the elapsed time for all three techniques increase to the right when the sizes of the two views V 1

and V 2 are increasing.

The SYNCMAB strategy, Case 1, in this scenario when the new view V 2 is a subset of the original view V 1,

computes �R� and only deletes tuples from V 1 to �nd the extent of V 2. The keys of the relations SUPPLIER1

and SUPPLIER2 are preserved in the views V 1 and V 2, respectively, and hence the deletion operation is very

e�cient once the set �R� is computed. By contrast, the other two methods have to recompute all tuples of the

view V 2 which explains why their elapsed times are almost the same for all measurements. The results in all

charts show a clear win of more than 400% of the SYNCMAB method compared to the other two methods.

30



In Fig. 15 we have the same experimental results represented in graphs from Fig. 14, depicted now with the

x-axis representing the size of the di�erence between SUPPLIER1 and SUPPLIER2. This time, we plot together

results corresponding to two cases: V 1 � V 2 (Case 1.1 of the SYNCMAB strategy) and V 2 � V 1 (Case 1.2 of

the SYNCMAB strategy). The upper chart depicts the results of the experiments falling in the Case 1.1, (i.e.,

V 1 � V 2). We can see that in this case the SYNCMAB strategy will only compute the empty set �R� and

hence no deletion is performed. The SYNCMAB strategy accesses only relations SUPPLIER1 and SUPPLIER2

in order to compute the set �R�. On the other hand, the other two methods recompute everything from scratch,

being completely insensitive that the di�erence between the old and the new views is an empty set. These

di�erent techniques of computing V 2 justify that the elapsed time for the SYNCMAB strategy is signi�cantly

below the times measured for both rematerialization and rede�nition methods. While our method computes only

the di�erence between the old and new extents and hence, reuse the old extent, the other two strategies recompute

tuples that were available in the old extent.

The bottom chart corresponds to Case 1.2 of the SYNCMAB strategy when the view V 2 is a proper subset

of the original view V 1. The SYNCMAB method needs to compute the non-empty set �R� and use this set to

delete appropriate tuples from V 1. The deletion is very e�cient when the keys of the relations SUPPLIER1 and

SUPPLIER2 are preserved in the old and new views, respectively. The performance of the SYNCMAB strategy

for this case is below the performance obtained for the SYNCMAB strategy for Case 1.1 (upper chart), but it

still exceeds the other two methods by a wide margin of up to 400%.

6.5 Maintenance after Synchronization for Views with Insertion

The charts in Figs. 16 and 17 summarize our results for Cases 3.1 and 3.2 when the sizes of original and rewritten

views are varied as well as the sizes of the to-be-deleted relation SUPPLIER2 and its replacement SUPPLIER1.

In both Figs. 16 and 17, the x-axis and y-axis are de�ned as explained above in Section 6.4.

Our SYNCMAB strategy must perform insertion under capability change \delete-relation SUPPLIER2" (see

Fig. 7). The �rst step of the SYNCMAB technique for Case 3 is to compute the expression �R+ and then

propagate these insertions into the new view V 1. We expect the SYNCMAB strategy to perform very well

when the size of �R+ is relatively small which implies the number of tuples generated by �R+ in V 1 is smaller

than the size of V 1. But when the size of the expression �R+ is close to the size of the replacement relation

SUPPLIER1, the SYNCMAB strategy practically computes the view V 1 from scratch when propagating these

insertions into V 1. In this latter case, we expect the performance of our strategy to be close to the performance

of the rematerialization strategy.

The charts in Fig. 16 show that the SYNCMAB algorithm begins to perform not so well when the di�erence

between the deleted relation SUPPLIER2 and the new replacement relation SUPPLIER1 is increasing and hence

a bigger set of new tuples has to be computed for the new extent (i.e., �R+ is increasing). The increased elapsed

time of the SYNCMAB strategy toward the left side of the charts correspond to bigger sizes of the expression

�R+. All charts show a crossover point where the SYNCMAB strategy that �rst takes advantage of the expression

�R+ being empty set or relatively small, becomes inferior to the other two methods. The inferior performance

31



on the left side of the charts is explained by the fact that the SYNCMAB strategy does the same amount of

computation the rematerialization, for example, is doing plus computing �rst the relation �R+ (see Fig. 7). Note

that even when the di�erences between the relations SUPPLIER1 and SUPPLIER2 are big, our algorithm is still

doing very well when �R+ is small (the right side of the chats in Fig. 16).

In Fig. 17 we have the same experimental results represented in graphs from Fig. 16, depicted now with

x-axis representing the size of the di�erence between SUPPLIER1 and SUPPLIER2. The upper chart depicts

the results of the experiments falling in the Case 3.1, (i.e., V 1 � V 2) corresponding to the expression �R+

being empty set and hence the SYNCMAB strategy is not performing any insertion. The SYNCMAB strategy

in this case accesses only relations SUPPLIER1 and SUPPLIER2 in order to compute the set �R+ while the

other two methods recompute everything from scratch. These computations justify that the elapsed time for

the SYNCMAB strategy is signi�cantly below the times measured for both rematerialization and rede�nition

methods.

The bottom chart corresponds to Case 3.2 of the SYNCMAB strategy when the rewritten view V 1 is a proper

superset of the original view V 2. The SYNCMAB method needs to compute the non-empty set �R+ and use

this set to insert appropriate tuples into the view V 1 that are not in V 2. The insertion is done by computing

these new tuples with the elapsed time being directly in
uenced by the size of the set �R+. The performance of

the SYNCMAB strategy for this case is then comparable to the other two methods when the size of the relation

�R+ is closed to the size of the replacement relation SUPPLIER1.

6.6 Discussion of the Experimental Results

The experiments presented in this section demonstrate a number of interesting points. First, they show that in

all the cases the knowledge of how the rewritten view is obtained by the synchronization process can be exploited

resulting in big performance gains by the SYNCMAB strategy. This information is the most valuable when the

new rewriting view is equivalent to the original view and hence the SYNCMAB strategy performs very little

computation to �nd the new view extent accessing only the to-be-deleted relation and its replacement. The gains

in these cases are over 400% over the other two methods in our experimental setting. When deletion and insertion

must be performed, the SYNCMAB strategy still outperforms the other two methods when the sizes of the �R�

and �R+ are smaller relative to the size of the replacement relation. In these cases, the SYNCMAB strategy

brings the new view extent up to date with minimumamount of work as the only expensive computation is directly

in
uenced by the sizes of �R� or �R+. In the worst case scenario, when the size of �R+ is close to the size

of the replacement relation, the SYNCMAB strategy must perform the same amount of work as other methods

for propagating insertions plus the extra computation for �nding the expression �R+ to begin with. In our

experimental setting, the worst performance the SYNCMAB strategy displays is 115% of the performance of the

rematerialization techniques. The 15% corresponds to extra time spent by the SYNCMAB strategy for computing

the set �R+. This penalty of 15% can be considered by an optimizer for assessing di�erent maintenance strategies

to be applied when the new view extent contains new tuples. In the case when the size of �R+ is close to the

size of the replacement relation, rematerialization should be preferred. When the deletion must be performed,

32



the SYNCMAB strategy could be very e�cient if keys are preserved in the view de�nitions.

7 Conclusions

While our previous work studied the problem of adapting view de�nitions themselves in order to keep views up

and running in a dynamic environment [RLN97, LNR97a, NLR98, LKNR98, NR98c], in the present paper we

address a new view extent adaptation problem.

The main contributions of this paper are:

� We describe a new view adaptation problem arising from view synchronization under capability changes,

which we coin view maintenance after view synchronization.

� We distinguish this new problem from the explicit view rede�nition problem, and demonstrate that the

existing techniques for view rede�nition from the literature [GMR95, MD96] would fail in several cases when

applied to this new maintenance problem.

� We propose a series of maintenance strategies based on di�erent system parameters such as the availability

of base relations and the types of the view-extent evolution parameter. The proposed solution regards

the complex changes done to the view de�nition by the view synchronizer as one atomic change and thus

attempts to handle it in one optimized batch strategy. We exploit knowledge of how the view de�nition was

synchronized, especially the containment information between the old and new views, to achieve e�cient

view adaption.

� We show via examples that our solutions work when other would fail and, in general, the view maintenance

strategies proposed in this work are more e�cient than previously known approaches for this problem of

maintenance after view synchronization.

� We have performed a systematic experimental evaluation of our proposed algorithms. The experiment com-

pares our techniques with rematerialization and rede�nition strategies using the TPC-D benchmark [TD95].

Our experimental results demonstrate that we achieve a performance gain of approximately 400% when

the di�erence between the old and new extents is fairly small while being comparable with these alternate

techniques in all other scenarios.

In this work we have presented techniques for view maintenance after synchronization. The proposed strategies

are however general enough to be used in other frameworks where complex (simultaneous) view rede�nitions are

speci�ed by the user and directly applied to the view de�nition.

The work presented here has open a large spectrum of new problems to be solved, in general, for view adaptation

under capability changes, and, in particular, for view synchronization and view maintenance after synchronization

problems as de�ned in this paper. A most interesting problem is combining the process of view synchronization

with data updates as it is very likely a data warehouse system to have to process capability changes and data

changes in the same time. Extensive research has been done in the context of data warehouse maintenance

33



under simultaneous data updates at distributed sources [ZGMHW95, ZWGM97]. We believe that more complex

strategies must be designed to deal with the adaptation of the data warehouse under simultaneous capability

changes and data updates of the underlying information sources [ZR98].

References

[AAS97] D. Agrawal, A. El Abbadi, and A. Singh. E�cient View Maintenance at Data Warehouses. In
Proceedings of SIGMOD, pages 417{427, 1997.

[BLT86] J. A. Blakeley, P.-E. Larson, and F. W. Tompa. E�ciently Updating Materialized Views.
Proceedings of SIGMOD, pages 61{71, 1986.

[GM95] A. Gupta and I.S. Mumick. Maintenance of Materialized Views: Problems, Techniques, and Appli-
cations. IEEE Data Engineering Bulletin, Special Issue on Materialized Views and Warehousing,
18(2):3{19, 1995.

[GMR95] A. Gupta, I.S. Mumick, and K.A. Ross. Adapting Materialized Views after Rede�nition. In Pro-
ceedings of ACM SIGMOD International Conference on Management of Data, pages 211{222, 1995.

[LKNR98] A. J. Lee, A. Koeller, A. Nica, and E. A. Rundensteiner. Data Warehouse Evolution: Trade-o�s
between Quality and Cost of Query Rewritings. Technical Report WPI-CS-TR-98-2, Worcester
Polytechnic Institute, Dept. of Computer Science, 1998.

[LMS95] A.Y. Levy, A.O. Mendelzon, and Y. Sagiv. Answering Queries Using Views. In Proceedings of
ACM Symposium on Principles of Database Systems, pages 95{104, May 1995.

[LNR97a] A. J. Lee, A. Nica, and E. A. Rundensteiner. Keeping Virtual Information Resources Up and
Running. In Proceedings of IBM Centre for Advanced Studies Conference CASCON97, Best Paper
Award, pages 1{14, November 1997.

[LNR97b] A. J. Lee, A. Nica, and E. A. Rundensteiner. The EVE Framework: View Synchronization in Evolv-
ing Environments. Technical Report WPI-CS-TR-97-4, Worcester Polytechnic Institute, Dept. of
Computer Science, 1997.

[LRU96] A. Y. Levy, A. Rajaraman, and J. D. Ullman. Answering queries using limited external processors.
In Proceedings of the Fifteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, pages 227{237, Montreal, Canada, 3{5 June 1996.

[MD96] M. Mohania and G. Dong. Algorithms for Adapting Materialized Views in Data Warehouses.
International Symposium on Cooperative Database Systems for Advanced Applications, December
1996.

[Nic98] A. Nica. View Evolution Support for Information Integration Systems over Dynamic Distributed
Information Spaces. PhD thesis, University of Michigan in Ann Arbor, 1998.

[NLR98] A. Nica, A. J. Lee, and E. A. Rundensteiner. The CVS Algorithm for View Synchronization in
Evolvable Large-Scale Information Systems. In Proceedings of International Conference on Ex-
tending Database Technology (EDBT'98), pages 359{373, Valencia, Spain, March 1998.

[NR98a] A. Nica and E. A. Rundensteiner. The POC and SPOC Algorithms:View Rewriting using Contain-
ment Constraints in EVE. Technical Report WPI-CS-TR-98-3, Worcester Polytechnic Institute,
Dept. of Computer Science, 1998.

[NR98b] A. Nica and E. A. Rundensteiner. Using Complex Substitution Strategies for View Synchroniza-
tion. Technical Report WPI-CS-TR-98-4, Worcester Polytechnic Institute, Dept. of Computer
Scien ce, 1998.

[NR98c] A. Nica and E. A. Rundensteiner. Using Containment Information for View Evolution in Dynamic
Distributed Environments. In Proceedings of International Workshop on Data Warehouse Design
and OLAP Technology (DWDOT'98), Vienna, Austria, August 1998.

[Qua96] D. Quass. Maintenance Expressions for Views with Aggregation. In Proceedings of the Workshop
on Materialized Views: Techniques and Applications, June 1996.

[RKL+98] E. A. Rundensteiner, A. Koeller, A. Lee, Y. Li, A. Nica, and X. Zhang. Evolvable View Envi-
ronment (EV E) Project: Synchronizing Views over Dynamic Distributed Information Sources.
In Demo Session Proceedings of International Conference on Extending Database Technology
(EDBT'98), pages 41{42, Valencia, Spain, March 1998.

[RLN97] E. A. Rundensteiner, A. J. Lee, and A. Nica. On Preserving Views in Evolving Environments.
In Proceedings of 4th Int. Workshop on Knowledge Representation Meets Databases (KRDB'97):
Intelligent Access to Heterogeneous Information, pages 13.1{13.11, Athens, Greece, August 1997.

34



0

50

100

150

200

250

300

0 20 40 60 80 100

tim
e(

se
c)

% of SUPPLIER1  tuples in the SPJ View V1

SUPPLIER2 == SUPPLIER1

Rematerialization
Redefinition
SYNCMAB

0

50

100

150

200

250

300

0 20 40 60 80 100

tim
e(

se
c)

% of SUPPLIER1  tuples in the SPJ View V1

SUPPLIER2 = 90% SUPPLIER1

Rematerialization
Redefinition
SYNCMAB

0

50

100

150

200

250

300

0 20 40 60 80 100

tim
e(

se
c)

% of SUPPLIER1  tuples in the SPJ View V1

SUPPLIER2 = 80% SUPPLIER1

Rematerialization
Redefinition
SYNCMAB

0

50

100

150

200

250

300

0 20 40 60 80 100

tim
e(

se
c)

% of SUPPLIER1  tuples in the SPJ View V1

SUPPLIER2 = 70% SUPPLIER1

Rematerialization
Redefinition
SYNCMAB

0

50

100

150

200

250

300

0 20 40 60 80 100

tim
e(

se
c)

% of SUPPLIER1  tuples in the SPJ View V1

SUPPLIER2 = 60% SUPPLIER1

Rematerialization
Redefinition
SYNCMAB

0

50

100

150

200

250

300

0 20 40 60 80 100

tim
e(

se
c)

% of SUPPLIER1  tuples in the SPJ View V1

SUPPLIER2 = 50% SUPPLIER1

Rematerialization
Redefinition
SYNCMAB

0

50

100

150

200

250

300

0 20 40 60 80 100

tim
e(

se
c)

% of SUPPLIER1  tuples in the SPJ View V1

SUPPLIER2 = 40% SUPPLIER1

Rematerialization
Redefinition
SYNCMAB

0

50

100

150

200

250

300

10 20 30 40 50 60 70 80 90 100

tim
e(

se
c)

% of SUPPLIER1  tuples in the SPJ View V1

SUPPLIER2 = 20% SUPPLIER1

Rematerialization
Redefinition
SYNCMAB

Figure 14: Case 1, for the SPJ view V 1, the legal rewriting V 2 when V 2 � V 1 using PC-constraint SUPPLIER2
� SUPPLIER1: the experimental results for maintenance after synchronization with deletion by varying the size
of the SUPPLIER2 when SUPPLIER2 � SUPPLIER1.

35



0

50

100

150

200

250

300

20 30 40 50 60 70 80 90 100

tim
e(

se
c)

SUPPLIER2 = % SUPPLIER1

V2 ==  V1

Rematerialization
Redefinition
SYNCMAB

SYNCMAB strategy, Case 1.1: V 2 � V 1

0

50

100

150

200

250

300

20 30 40 50 60 70 80 90

tim
e(

se
c)

SUPPLIER2 = % SUPPLIER1

V2 <  V1

Rematerialization
Redefinition
SYNCMAB

SYNCMAB strategy, Case 1.2: V 2 � V 1

Figure 15: Case 1, for the SPJ view V 1, the legal rewriting V 2 when V 2 � V 1 using PC-constraint SUPPLIER2
� SUPPLIER1: the experimental results for maintenance after synchronization with deletion by varying the
di�erence between V 2 and V 1: Cases 1.1 (upper chart) and 1.2 (bottom chart).

36



80

100

120

140

160

180

200

220

240

260

280

300

10 20 30 40 50 60 70 80 90 100

tim
e(

se
c)

% of SUPPLIER1  tuples in the SPJ View V1

SUPPLIER1 = 110% SUPPLIER2

Rematerialization
Redefinition
SYNCMAB

80

100

120

140

160

180

200

220

240

260

280

10 20 30 40 50 60 70 80 90 100

tim
e(

se
c)

% of SUPPLIER1  tuples in the SPJ View V1

SUPPLIER1 = 130% SUPPLIER2

Rematerialization
Redefinition
SYNCMAB

80

100

120

140

160

180

200

220

240

260

280

300

10 20 30 40 50 60 70 80 90 100

tim
e(

se
c)

% of SUPPLIER1  tuples in the SPJ View V1

SUPPLIER1 = 140% SUPPLIER2

Rematerialization
Redefinition
SYNCMAB

80

100

120

140

160

180

200

220

240

260

280

10 20 30 40 50 60 70 80 90 100

tim
e(

se
c)

% of SUPPLIER1  tuples in the  SPJ View V1

SUPPLIER1 = 150% SUPPLIER2

Rematerialization
Redefinition
SYNCMAB

80

100

120

140

160

180

200

220

240

260

280

10 20 30 40 50 60 70 80 90 100

tim
e(

se
c)

% of SUPPLIER1  tuples in the  SPJ View V1

SUPPLIER1 = 140% SUPPLIER2

Rematerialization
Redefinition
SYNCMAB

80

100

120

140

160

180

200

220

240

260

280

10 20 30 40 50 60 70 80 90 100

tim
e(

se
c)

% of SUPPLIER1  tuples in the SPJ View V1

SUPPLIER1 = 170% SUPPLIER2

Rematerialization
Redefinition
SYNCMAB

80

100

120

140

160

180

200

220

240

260

280

10 20 30 40 50 60 70 80 90 100

tim
e(

se
c)

% of SUPPLIER1  tuples in the SPJ View V1

SUPPLIER1 = 180% SUPPLIER2

Rematerialization
Redefinition
SYNCMAB

100

120

140

160

180

200

220

240

260

280

10 20 30 40 50 60 70 80 90 100

tim
e(

se
c)

% of SUPPLIER1  tuples in the SPJ View V1

SUPPLIER1 = 190% SUPPLIER2

Rematerialization
Redefinition
SYNCMAB

Figure 16: Case 3, for the SPJ view V 2, the legal rewriting V 1 when V 1 � V 2 using PC-constraint SUPPLIER1
� SUPPLIER2: the experimental results for maintenance after synchronization with insertion by varying the size
of the SUPPLIER1 when SUPPLIER1 � SUPPLIER2.

37



80

100

120

140

160

180

200

220

240

260

280

110 120 130 140 150 160 170 180

tim
e(

se
c)

SUPPLIER1 = % SUPPLIER2

V2 ==  V1

Rematerialization
Redefinition
SYNCMAB

SYNCMAB strategy, Case 3.1: V 1 � V 2

160

180

200

220

240

260

280

300

110 120 130 140 150 160 170 180

tim
e(

se
c)

SUPPLIER1 = % SUPPLIER2

V1 >  V2

Rematerialization
Redefinition
SYNCMAB

SYNCMAB strategy, Case 3.2: V 1 � V 2

Figure 17: Case 3, for the SPJ view V 2, the legal rewriting V 1 when V 1 � V 2 using PC-constraint SUPPLIER1
� SUPPLIER2: the experimental results for maintenance after synchronization with insertion by varying the
di�erence between V 1 and V 2: Cases 3.1 (upper chart) and 3.2 (bottom chart)
.

38



20

40

60

80

100

120

140

160

180

200

220

240

60 70 80 90 100

tim
e(

se
c)

% of SUPPLIER1  tuples in the Aggregation View V3

SUPPLIER1 == SUPPLIER2

Rematerialization
Redefinition
SYNCMAB

20

40

60

80

100

120

140

160

180

200

220

240

60 70 80 90 100

tim
e(

se
c)

% of SUPPLIER1  tuples in the   Aggregation View V3

SUPPLIER2 = 90% SUPPLIER1

Rematerialization
Redefinition
SYNCMAB

0

50

100

150

200

250

60 70 80 90 100

tim
e(

se
c)

% of SUPPLIER1  tuples in the  Aggregation View V3

SUPPLIER2 = 80% SUPPLIER1

Rematerialization
Redefinition
SYNCMAB

0

50

100

150

200

250

60 70 80 90 100

tim
e(

se
c)

% of SUPPLIER1  tuples in the   Aggregation View V3

SUPPLIER2 = 50% SUPPLIER1

Rematerialization
Redefinition
SYNCMAB

0

50

100

150

200

250

60 70 80 90 100

tim
e(

se
c)

% of SUPPLIER1  tuples in the   Aggregation View V3

SUPPLIER2 = 40% SUPPLIER1

Rematerialization
Redefinition
SYNCMAB

0

50

100

150

200

250

60 70 80 90 100

tim
e(

se
c)

% of SUPPLIER1  tuples in the Aggregation View V3

SUPPLIER2 = 30% SUPPLIER1

Rematerialization
Redefinition
SYNCMAB

0

50

100

150

200

250

60 70 80 90 100

tim
e(

se
c)

% of SUPPLIER1  tuples in the Aggregation View V3

SUPPLIER2 = 20% SUPPLIER1

Rematerialization
Redefinition
SYNCMAB

0

50

100

150

200

250

60 70 80 90 100

tim
e(

se
c)

% of SUPPLIER1  tuples in the Aggregation  View V3

SUPPLIER2 = 10% SUPPLIER1

Rematerialization
Redefinition
SYNCMAB

Figure 18: Case 5, for the AGGR-SPJ view V 3, the legal rewriting V 4 when V 4 � V 3 using PC-constraint
SUPPLIER2 � SUPPLIER1: the experimental results for maintenance after synchronization with deletion by
varying the size of the SUPPLIER2 when SUPPLIER2 � SUPPLIER1.

39



0

50

100

150

200

250

60 70 80 90 100

tim
e(

se
c)

SUPPLIER2 = % SUPPLIER1

V3 ==  V4

Rematerialization
Redefinition
SYNCMAB

SYNCMAB strategy, Case 5.1: V 3 � V 4

0

50

100

150

200

250

10 20 30 40 50 60 70 80 90

tim
e(

se
c)

SUPPLIER2 = % SUPPLIER1

V4 <  V3

Rematerialization
Redefinition
SYNCMAB

SYNCMAB strategy, Case 5.2: V 3 � V 4

Figure 19: Case 5, for the AGGR-SPJ view V 3, the legal rewriting V 4 when V 4 � V 3 using PC-constraint
SUPPLIER2 � SUPPLIER1: the experimental results for maintenance after synchronization with deletion by
varying the di�erence between V 4 and V 3: Cases 5.1 (upper chart) and 5.2 (bottom chart).

40



0

50

100

150

200

250

300

10 20 30 40 50 60 70 80 90 100

tim
e(

se
c)

% of SUPPLIER1  tuples in the Aggregation View V3

SUPPLIER2 == SUPPLIER1

Rematerialization
Redefinition
SYNCMAB

0

50

100

150

200

250

300

10 20 30 40 50 60 70 80 90 100

tim
e(

se
c)

% of SUPPLIER1  tuples in the   Aggregation View V3

SUPPLIER1 = 110% SUPPLIER2

Rematerialization
Redefinition
SYNCMAB

100

120

140

160

180

200

220

240

260

280

300

10 20 30 40 50 60 70 80 90 100

tim
e(

se
c)

% of SUPPLIER1  tuples in the   Aggregation View V3

SUPPLIER1 = 140% SUPPLIER2

Rematerialization
Redefinition
SYNCMAB

80

100

120

140

160

180

200

220

240

260

280

300

10 20 30 40 50 60 70 80 90 100

tim
e(

se
c)

% of SUPPLIER1  tuples in the   Aggregation View V3

SUPPLIER1 = 150% SUPPLIER2

Rematerialization
Redefinition
SYNCMAB

80

100

120

140

160

180

200

220

240

260

280

300

10 20 30 40 50 60 70 80 90 100

tim
e(

se
c)

% of SUPPLIER1  tuples in the   Aggregation View V3

SUPPLIER1 = 160% SUPPLIER2

Rematerialization
Redefinition
SYNCMAB

80

100

120

140

160

180

200

220

240

260

280

10 20 30 40 50 60 70 80 90 100

tim
e(

se
c)

% of SUPPLIER1  tuples in the Aggregation View V3

SUPPLIER1 = 170% SUPPLIER2

Rematerialization
Redefinition
SYNCMAB

Figure 20: Case 7, for the AGGR-SPJ view V 4, the legal rewriting V 3 when V 3 � V 4 using PC-constraint
SUPPLIER1 � SUPPLIER2: the experimental results for maintenance after synchronization with insertion by
varying the size of the SUPPLIER1 when SUPPLIER1 � SUPPLIER2.

41



0

50

100

150

200

250

300

110 120 130 140 150 160 170 180 190 200

tim
e(

se
c)

SUPPLIER1 = % SUPPLIER2

V4 ==  V3

Rematerialization
Redefinition
SYNCMAB

SYNCMAB strategy, Case 7.1: V 3 � V 4

140

160

180

200

220

240

260

280

300

320

110 120 130 140 150 160 170 180 190

tim
e(

se
c)

SUPPLIER1 = % SUPPLIER2

V3 >  V4

Rematerialization
Redefinition
SYNCMAB

SYNCMAB strategy, Case 7.2: V 3 � V 4

Figure 21: Case 7, for the AGGR-SPJ view V 4, the legal rewriting V 3 when V 4 � V 3 using PC-constraint
SUPPLIER1 � SUPPLIER2: the experimental results for maintenance after synchronization with insertion by
varying the di�erence between V 3 and V 4: Cases 7.1 (upper chart) and 7.2 (bottom chart).

42



[SDJL96] D. Srivastava, S. Dar, H.V. Jagadish, and A.Y. Levy. Answering Queries with Aggregation Using
Views. In International Conference on Very Large Data Bases, pages 318{329, 1996.

[TD95] TPC-D. Benchmark standard speci�cation. May 1995.

[Wid95] J. Widom. Research Problems in Data Warehousing. In Proceedings of International Conference
on Information and Knowledge Management, pages 25{30, November 1995.

[ZGMHW95] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View Maintenance in a Warehousing
Environment. In Proceedings of SIGMOD, pages 316{327, May 1995.

[ZR98] X. Zhang and E. A. Rundensteiner. Data Warehouse Maintenance Under Concurrent Schema
and Data Updates. Technical report, Worcester Polytechnic Institute, Dept. of Computer Science,
August 1998.

[ZWGM97] Y. Zhuge, J. L. Wiener, and H. Garcia-Molina. Multiple View Consistency for Data Warehousing.
In Proceedings of IEEE International Conference on Data Engineering, pages 289{300, 1997.

43


