
WPI-CS-TR-98-23 October 1998

Integrating the Rewriting and Ranking Phases of View

Synchronization

by

Andreas Koeller

Elke A. Rundensteiner

Nabil Hachem

Computer Science

Technical Report

Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280

Integrating the Rewriting and Ranking Phases of View

Synchronization�

Andreas Koeller, Elke A. Rundensteiner and Nabil Hachem

Department of Computer Science

Worcester Polytechnic Institute

Worcester, MA 01609{2280
fkoellerjrundenstjhachemg@cs.wpi.edu

Abstract

Materialized views (data warehouses) are becoming increasingly important in the context of distributed
modern environments such as the World Wide Web. Information sources (ISs) in such an environment may
change their capabilities (schema). This causes a data warehouse de�ned by view queries over distributed
sources to become unde�ned. Algorithms have been proposed to evolve (rewrite) view queries after capability
changes of ISs by exploiting meta-descriptions about ISs and their relationships. This view rewriting process
is referred to as view synchronization. View synchronization algorithms generate a potentially large number of
valid solutions for the rewriting of a view query. Our analysis, as presented in this paper, shows that the most
expressive algorithm for view synchronization has very high complexity (in O(n!)). The objective of this current
work is hence to propose optimizations for this view synchronization process in order to make it practically
usable. For this, we identify the expensive operations within the overall process of view synchronization and
propose to reduce this complexity by representing the synchronization problem as a graph traversal problem.
Once this mapping has been applied, the problem can be reduced to a single-source shortest-path problem in
graphs. The solution to the view synchronization problem can thus be found by the Bellman-Ford algorithm,
which has O(n3) complexity. This optimized polynomial approach towards view synchronization is now being
incorporated as an optimizer module into the Evolvable View Environment (EVE) system.

Keywords: Evolvable view environment, view synchronization, optimized synchronization algorithm, data
warehouse, cost model, e�ciency, evolving information sources, shortest path problem.

�This work was supported in part by several grants from NSF, namely, the NSF NYI grant #IRI 94{57609, the NSF CISE
Instrumentation grant #IRIS 97{29878, and the NSF grant #IIS 97{32897. Dr. Rundensteiner would like to thank our industrial
sponsors, in particular, IBM for the IBM partnership award and for the IBM corporate fellowship for one of her graduate students.

1 Introduction

WWW-based information services such as data warehousing, digital libraries, data mining typically gather data

from a large number of interconnected Information Sources (ISs). In order to provide e�cient information access

to such information services, relevant data is often retrieved from several sources, integrated as necessary, and

then assembled into a materialized view (data warehouse) [Wid95]. Besides providing simpli�ed information

access to customers without the necessary technical background, materialized views also o�er higher availability

and query performance.

One important unsolved problem for these applications is that traditional view technology only supports

static, a-priori-speci�ed view de�nitions. In our recent work we study the maintenance of data warehouses

de�ned over distributed dynamic information sources [LNR97a, LNR97b, RLN97]. A view can survive schema

changes of its underlying information sources by making use of meta-information about those sources and applying

algorithms for rewriting the view query; a process to which we refer to as view synchronization. The dynamicity

of information sources in terms of not only data updates but also schema (query interface) changes motivated the

development of algorithms for rewriting view de�nitions triggered by such schema changes [LNR97a, LNR97b].

View synchronization is in contrast to the large body of work on incremental view maintenance that addresses

changes at the data but not at the schema level [ZGMHW95] and to recent work on view rede�nition that again

focuses on how to e�ciently update the view data [GMR95].

Previous work on query optimization [vdBK94, AAS97, BLT86] and rewriting view queries [LMS95] was re-

stricted to always requiring exact equivalence between the original and replacement queries. This condition is

not likely to be always achievable in a dynamic environment such as the WWW. We have proposed a model of

relaxed query semantics to allow for the rewritings of view queries that preserve di�erent view extents and view

interfaces (we call this the quality of the view) and result in di�erent view maintenance costs [NLR98]. Since

we will in general be able to generate a number of di�erent such rewritings for a given situation, we need to

compare rewritings with each other and with the original view to determine their desirability for a view user.

To address this open issue, we have developed the QC-Model1 [LKNR98] as an integrated measure of both the

quality and cost dimensions of a view rewriting. Once the synchronization algorithm generates a set of possibly

non-equivalent rewritings of view queries, the QC-Model is applied as a metric to each rewriting to establish a

ranking among them.

In this paper, we now examine the complexity of this view synchronization process [LNR97b, NLR97]. We

identify that its most powerful algorithm has a high complexity (in O(n!)). It generates an exponential (in the

number of relations in the information space) number of query rewritings to which we then have to apply the

QC-Model to establish a ranking among all solutions. We now reduce this complexity by mapping the problem

of complex view synchronization to a polynomial complexity graph traversal problem. One key ingredient of our

solution is the observation that the computation of quality and cost measures, namely the ranking of view queries,

1QC stands for the Quality- and Cost dimensions of the model.

1

previously done as a post-processing step to each view query identi�ed by the view synchronization algorithm,

can be decomposed into a stepwise computation by expressing view synchronization as a graph problem. This

also allows us to integrate the query ranking phase with the �nding of rewritings instead of executing two separate

phases of view synchronization. We term our solution the Optimized CVS algorithm and show that the algorithm

has a complexity in O(n3).

The contributions of this work are: the identi�cation of a problem in view synchronization, namely the high

complexity of available synchronization algorithms; the proposal of a mapping of the view synchronization problem

into a graph problem; semantics for this mapping; the solution of the mapped graph problem by a shortest-path

graph algorithm; a proof for the correctness and applicability of the approach.

The remainder of this paper is organized as follows. Section 2 reviews related work, while Section 3.1 introduces

background material on view synchronization. Section 3 reviews the CVS algorithm and the computation of QC-

values and examines the complexity of the (previous) algorithm. Section 4 proposes the new Optimized CVS

algorithm. We also prove the correctness of the new algorithm and show its implications for view synchronization.

We conclude this work in Section 5.

2 Related Work

While most prior work on database views in distributed environments has focused on view maintenance (e.g.,

propagating data changes to the view) [QW97], we have proposed algorithms for view rede�nition caused by

capability changes of ISs (called view synchronization), which is, to the best of our knowledge, the �rst solution to

this problem. In [RLN97, LNR97a, LNR97b], the overall EVE solution framework was introduced, in particular

the concept of associating evolution preferences with view speci�cations and algorithms for view synchronization.

The Complex View Synchronization (CVS) algorithm [NLR98] generates a large number of alternative legal

rewritings, thus raising the need for a way to evaluate and compare these rewritings. In [LKNR98], this need

was addressed by establishing a model for systematically ranking otherwise incomparable solutions for view

synchronization based on the two dimensions of quality and maintenance costs.

Much research has been done on query reformulation using materialized views. Levy et al. [LMS95] consider

the problem of replacing an original query with a new expression containing materialized view de�nitions such

that the new query is equivalent to the old one. To the best of our knowledge, generating such queries without

equivalence (for example, the new reformulated query could be a subset of the original query) has not been studied.

The problem of query rewriting for optimization purposes has been addressed for instance by van den Berg

et al. [vdBK94] and Agrawal et al. [AAS97]. They are concerned with optimizing a given query for e�cient

execution. View synchronization encounters a di�erent problem, namely to select a good (but not necessarily

equivalent) query among several possible ones. We are concerned with the problem of �nding such a good query

(or a small number of them) in an e�cient way, taking view maintenance cost [ZGMHW95] and the new concept

of view quality into account.

Incremental view maintenance has been an active area of research [CTL+96, GMS93] but is limited to changes

2

at the data level, whereas we are concerned with view maintenance under schema changes. Blakeley et al. [BLT86]

assumed a centralized environment, while Zhuge et al. [ZGMHW95] introduce the ECA algorithm for incremental

view maintenance restricted to a single IS. In Strobe [ZGMW96], they extend their �ndings towards multi-source

information spaces. Agrawal et al. [AAS97]'s SWEEP algorithm ensures consistency of the data warehouse in a

larger number of cases compared to Strobe.

3 The View Synchronization Process

3.1 Foundations of Non-Equivalent View Synchronization

In this section, we brie
y review the concepts of the Evolvable View Environment (EVE) [LNR97b, RLN97,

NLR98] system as needed for the remainder of this paper. EVE has been designed to evolve views in the presence

of capability changes of information sources.

E-SQL or Evolvable-SQL is an extension of SQL that allows the view de�ner to express preferences for view

evolution [LNR97b]. A user de�ning a view can specify what information is indispensable, what information is

replaceable by similar information from other ISs, and whether a changing view extent is acceptable. This is the

key to obtaining non-equivalent but useful query rewritings as E-SQL provides the EVE system with
exibility

to evolve a view under schema changes in a controlled way while preserving the user's intended semantics. For

the purpose of this paper, we will not need details of the E-SQL extensions. The reader is referred to [LNR97b,

RLN97].

In order to enable view synchronization, our system needs to be able to identify view element replacements

from other ISs. MISD, our Model for Information Source Description, expresses relationships between ISs using

constraints (e.g., agreeing data types, functional dependencies between attributes, extent overlaps between rela-

tions). These descriptions form an information pool that is critical in �nding appropriate replacements for view

components when view de�nitions become unde�ned. Constraints relevant for this paper are join-constraints

and containment-constraints. A join constraint between two relations R1 and R2, denoted as JCR1;R2
, states

that tuples in R1 and R2 can be meaningfully joined over the given set of join conditions with possibly another

conjunction of primitive clauses satis�ed. A typical join constraint is:

J CPreferredCust;Accident�Ins =(PreferredCust:PrefName=Accident�Ins:Holder AND Accident�Ins:Amount>100000) (1)

A PC-constraint (partial/complete constraint) between two relations R1 and R2 states that a (horizontal and/or

vertical) fragment of R1 is semantically contained or equivalent to a (horizontal and/or vertical) fragment of R2

at all times. The information described in MISD is stored in our system in the Meta Knowledge Base (MKB).

3.2 The CVS Algorithm for Rewriting Queries

We brie
y review the view synchronization process used by the EVE-system [NLR98, LKNR98]: Once a view is

de�ned, EVE tracks schema changes in all ISs participating in this view. Once a relevant change has been discov-

3

ered, EVE attempts to �nd replacements for missing view elements from other ISs based on MISD descriptions

and E-SQL view evolution preferences (see Section 3.1). The EVE system employs several algorithms for generat-

ing such evolved view rewritings under schema changes of underlying ISs, i.e., for achieving view synchronization

[LNR97b, NLR98]. In this current paper, we focus on the most powerful and comprehensive algorithm used for

view synchronization thus far, which is the Complex View Synchronization (CVS) algorithm [NLR98] 2. CVS

handles all common relational capability-changes, such as add-relation, delete-relation, add-attribute, change-

relation-name, and so on. Below, we give an example for a rewriting generated by CVS for the delete-relation

capability change.

After a delete-relation capability change on a relation R is detected, the CVS algorithm traverses the informa-

tion space in order to �nd possible replacements for those attributes of R that were used by the view V (�rst step

in Figure 3). CVS will �nd all possible replacements for a missing relation in a given information space3 using

chains of joins to \reach" a candidate replacement relation. This procedure is executed in two steps: Finding

candidate replacement relations, and building legal view queries by joining those relations with existing ones.

Example 1 We de�ne an information space (Meta Knowledge Base) according to Figures 1 and 2. Assume

IS 1: Flight Information

Relation: Customer(Name, Address, PhoneNo, Age)

Relation: FlightRes(PName, Airline, FlightNo, Source, Dest, Date)

IS 2: Insurance Information

Relation: Accident�Ins(Holder, Type, Amount, Birthday)

Relation: PreferredCust(PrefName, PrefAddress, PrefPhone)

IS 3: Tour Participant Information

Relation: Participant(Participant, TourID, StartDate, Location)

Relation: Tour(TourID, TourName, Type, NoDays)

Figure 1: Information Sources Content Descriptions for Example 1

the view Customer-Passengers-Asia in Equation 2 de�nes (passenger; participant) pairs of passengers
ying

to Asia and participants to a tour in Asia that
y and start the tour at the same day, respectively. Such a view

could be used to see what participants of a tour are
ying to \Asia" on the same day as the tour starts. We now

show how to apply the CVS algorithm and �nd replacements under the \delete relation Customer" change for

this view.

2E-SQL evolution preferences described in Section 3.1 are used to determine whether the adapted view is considered acceptable

to the user. Such a rewritten query is called a view rewriting, and if it ful�lls certain criteria of correctness [LNR97b], it is called a

legal rewriting.

3For the current paper, we assume that we can replace all missing view elements from the same relation. Extending the optimization

for multi-relation replacements is part of our current research.

4

J C Join Constraint

JC1 IS1.Customer.Name = IS1.FlightRes.PName

JC2 IS2.PreferredCust.PrefName = IS2.Accident�Ins.Holder AND

IS2.Accident�Ins.Amount > 100000

JC3 IS1.Customer.Name = IS3.Participant.Participant

JC4 IS3.Participant.TourID = IS3.Tour.TourID

JC5 IS1.FlightRes.PName = IS2.Accident�Ins.Holder

JC6 IS1.FlightRes.PName = IS2.PreferredCust.PrefName

Figure 2: Join Constraints for Example 1

CREATE VIEW Customer-Passengers-Asia AS

SELECT C.Name, C.Age, P.Participant, P.TourID
FROM Customer C , FlightRes F, Participant P
WHERE (C.Name = F.PName) AND (F.Dest = 'Asia')

AND (P.StartDate = F.Date) AND (P.Location = 'Asia')

(2)

The CVS algorithm traverses the information space and constructs chains of joins (according to join constraints

given in MISD) that connect the new relation to the remaining relations in the existing query. Here, we can replace

the attribute Customer.Age by the similar attribute AccidentIns.Age in relation Accident�Ins and join

the new table with FlightRes using join constraint JC5 from Figure 2. Then, all view elements (i.e., attributes,

WHERE-clauses) that depend on the old relation are replaced by view elements using the new relation. A possible

rewriting of query (2) using this substitution is given by query (3).

CREATE VIEW Customer-Passengers-Asia1 AS

SELECT AI.Holder, AI.Age, P.Participant, P.TourID
FROM Accident�Ins AI, FlightRes F, Participant P
WHERE (AI.Holder = F.PName) AND (F.Dest = 'Asia')

AND (P.StartDate = F.Date) AND (P.Location = 'Asia')

(3)

3.3 Ranking Query Rewritings

Once the CVS algorithm enumerates all possible query rewritings, we need to select one of them. For this, the

QC-Model [LKNR98] is used as a metric to compare di�erent legal rewritings by taking both the quality and cost

of a query rewriting into account. Each legal query rewriting will in general preserve a di�erent amount (extent)

and di�erent types (interface) of information, which we refer to as the quality of the view. Also, each new view

query will cause di�erent view maintenance costs, since in general data will have to be collected from a di�erent

set of ISs4. With these two dimensions, the QC-Model can compare di�erent view queries with each other, even

4Cost in this context refers to the long term cost of incremental view maintenance, i.e., the cost that is caused by a data update

in an underlying information source, and not the immediate and one-time cost caused by updating the view extent after a capability

change and the application of our algorithms for �xing the schema.

5

if they are not equivalent. This comparison is accomplished by assessing �ve di�erent factors (two quality factors

and three cost factors) as explained below [LKNR98].

� Quality Factors: Quality refers to the similarity (vs. divergence) between an original view and its

rewriting.

� The Degree of Divergence in Terms of the View Interface (DDattr) determines how di�erent the view

interfaces of the two queries are (expressed numerically by counting the common and non-common

attributes in both queries and computing a percentage).

� The Degree of Divergence in Terms of the View Extent (DDext) is determined by the relative numbers

of missing and additional tuples in the extent of a view rewriting (as compared to the extent of the

original view).

� Cost Factors: Cost factors measure the (long-term) cost associated with future incremental view mainte-

nance after the view has been rewritten and the extent has been updated.

� Number of Messages between data warehouse and information sources|CFM

� Number of Bytes Transferred through the network|CFT

� Number of I/Os at the information sources|CFI=O

These �ve factors are normalized and then combined by multiplying them with trade-o� factors and adding

them to a common metric called the QC-Value:

QC(Vi) = 1�
h
%quality � (%attr � DDattr + %ext � DDext) + (4)

%cost � (costM � CFM + costT � CFT + costI=O � CFI=O)
�

with Vi being the view rewriting with the index i; DDattr;DDext; CFM; CFT ; CFI=O as de�ned above; the

trade-o� factors %attr; %ext � 0; %attr + %ext = 1; %quality; %cost � 0; %quality + %cost = 1; and the unit costs

costM ; costT ; costI=O > 0. The unit costs can be empirically computed for a given data warehouse by a method

proposed in [LKNR99], whereas the trade-o� factors have to be set according to a user's preferences. This

computation returns a numerical value between 0 and 1 that determines the QC-Value of a query rewriting. Since

a low degree of divergence as well as low cost are semantically \good", we subtract the factors from 1 and obtain a

QC-Value in which 1 describes a perfect query rewriting and 0 a query essentially useless to the user. In the view

synchronization process discussed so far, all query rewritings have to be generated �rst in order to be compared

by their QC-Values (cf. Figure 3, second step).

3.4 Complexity of the View Synchronization Process

The basic principle underlying CVS is that a missing view element (relation or attribute) can be replaced by a new

element that is connected to the rest of the view query by a chain (or path) of joins. Finding a replacement for

6

an attribute involves iterating through the complete information space and �nding all possible replacements (i.e.,

�nding a relation containing a replacement and then all possible paths of join constraints between the original and

the replacing relations). For each of these paths of joins through the information space, a number of conditions

outlined below have also to be met. We will now give a graph-oriented description of this CVS process more

formally described in [NLR98]:

� All relations that are in a certain sense \connected" to the original view query (by join constraints, as de�ned

in [LKNR98]) have to be considered for a replacement. Thus, CVS iterates through those relations in the

information space. That is, the remaining steps in CVS (explained below) have to be executed up to nR

times.

� For each relation that is considered for replacement, all possible paths of joins that lead from the deleted

relation to this relation in the information space have to be found (R-replacement). Since an exhaustive

search through the graph is necessary here, this is of complexity O(n0R!) with n0R being the number of

relations considered (i.e., n0R < n, �rst step in Figure 3). The algorithm generates an exponential number of

possibly ine�cient queries.

� For each path found, it has to be decided if the replacement is valid (i.e., satis�es the users' expectations

with respect to extent containment speci�ed in E-SQL). This is determined by �nding appropriate PC-

constraints [NLR97]. The �nding of these constraints is of linear complexity in the number of constraints per

relation if they are stored in an e�cient way (indexed by relation). We also have to check if new WHERE-

clauses introduced by the replacement not contradict WHERE-clauses already in the query which is of low

polynomial complexity in the number of WHERE-clauses.

� After all (i.e., exponentially many in the number of relations) possible view rewritings have been generated,

the QC-Value for each rewriting has to be computed (second step in Figure 3, cf. Section 3.3 and [LKNR98]).

The computation of the cost and quality factors involves the estimation of intermediate relation sizes, the

computation of local costs, and a summation of the results. This computation is polynomial in the number

of relations in the rewriting, but has to be executed for a exponential number of queries, which gives it

exponential complexity. Finally, the rewritings found have to be sorted by their QC-Value (third step in

Figure 3) in order to present them to the view user.

Our graph oriented description reveals that the most expensive operation in the algorithm above involves

�nding all paths of joins. Also, it is ine�cient to generate view rewritings �rst and then compute QC-Values for

each rewriting (i.e., performing view synchronizationin two separate phases).

4 The New Optimized View Synchronization Process

To recall from Section 3.4, the current view synchronization process generates all possible query rewritings Vi for

an original query V by considering all paths leading through the information space between the to-be-replaced

7

relation R and the replacement relation Ri. It then applies the QC-Model to each rewriting Vi and recomputes

the QC-Value for this rewriting. We will refer to this computation as QCtotal:

QCtotal(Vi) = QC(Vi) = f(V; Vi;MKB): (5)

with the old view query V , the new view query Vi, and the MKB.

The key to reducing the complexity of the view synchronization process is avoiding the expensive operation of

�nding all paths of joins from the view to a replacing relation by �nding only the minimal path. This then would

reduce the number of generated ine�cient rewritings that later would be discarded anyways. To achieve this, we

propose to integrate the two separate stages of �rst query generation and then query evaluation into one tightly

integrated algorithm, e�ectively performing a cost-based search space pruning optimization. Since we will now

�nd (optimal) paths from a deleted relation R to all other relations Ri in the information space that may serve

as potential replacements of R in the view query, we will obtain one rewriting only (and thus one QC-Value) for

each relation Ri. So we have:

QCincr(Ri) = f(V;R;Ri;MKB): (6)

Figure 4 contrasts our new approach, referred to as the Optimized CVS algorithm, with the original process

Generating all possible view rewritings

CVS

exponential complexity

Capability change

E-SQL view definition

Meta Knowledge

Input

Output

Sorting according to QC-Value

(query rewriting, QC-Value)

exponential number of pairs

in the (exponential)

number of view rewritings

n*log(n) complexity

list of all queries ordered by ranking

exponential number of rewritten queries

old E-SQL query and

Assign a ranking to each rewriting

QC-Model
for each query

polynomial complexity
using QC-Model

Figure 3: View Synchronization as a Two-Stage Com-

putation Process

considered for replacement

List of the best n queries ordered by ranking

Output

E-SQL view definition

Capability changes

with n < number of relations

Sorting according to QC-Value

Efficient View Synchronization (EVS)

with n < number of relations
n*log(n) complexity

augmented by QC-weights)
Meta Knowledge (Information Source Graph,

Input

shortest path algorithm polynomial (n^3) complexity

for each relation considered for replacement

One optimal query rewriting

Graph traversal by

(using QC value as edge "length")

Figure 4: View Synchronization as One Integrated

Process

in Figure 3, showing its two key advantages: With the new algorithm, only a small number (at most nR, the

number of relations considered for replacements) of queries are ever generated. Furthermore, the QC-Values of

8

the queries do not have to be computed after generating the queries, but they are already determined during the

rewriting construction process itself.

4.1 Expressing View Synchronization as a Graph Problem

Figure 5 shows an example of mapping our view synchronization problem to a graph representation G(N;E) that

we call the Information Space Graph (IS-Graph). We map the relations from the MKB into vertices in N and

the join constraints into edges in E, i.e., N = fRijRi 2 MKBg and E = fJ CRi;Rj
jJ CRi;Rj

2 MKBg. Given

that mapping, a path through the IS-Graph (from the view query to an end vertex Ri) represents exactly one

possible query rewriting Vi that uses the relation Ri for a replacement for missing view elements. Hence, all paths

between the vertices representing the original query and each other (reachable) vertex have to be considered as

possible replacements.

Figure 5 depicts the IS-Graph for the example information space from Section 3. Assume the relation Customer

is deleted and we try to use PreferredCust as its replacement. In this case, we have two paths (two query rewritings)

from the remaining view query (FlightRes ./ Participant) to Accident-Ins, namely:

FlightRes ./JC6
PreferredCust

and FlightRes ./JC5
Accident-Ins ./JC2

PreferredCust

In order to select one of these paths (rewritings), we now apply the QC-Model to compute a numerical measure

Accident-Ins

Customer Relation

Join Constraint

FlightRes

Original Query

Joins of the

JC4JC2

JC6

Participant

JC5

JC1

JC3

PreferredCust Tour

Figure 5: An Example of the Information Space Graph.

of \desirability" (its QC-Value) for each query rewriting.

In order to map the view synchronization problem into a graph problem, we need to integrate the QC-

computation into the path �nding process. For this, we de�ne a measure for the length of a join path that

re
ects the semantics associated with each path in terms of its quality and cost to serve as replacement chain for

a query rewriting. We will assure that the shortest path between two relations in this weighted graph will give us

the expected result (i.e., the best query rewriting for the given replacement). To accomplish this, we �rst need

to de�ne meaningful semantics for the weight of an edge in the IS-Graph (i.e., express the QC-Value by edge

weights). We also need to show that computing the QC-Value for a query incrementally along a path using these

weights (i.e., computing QCincr) yields the same results as computing the QC-Value at once (i.e., computing

9

QCtotal).

4.1.1 Augmentation of the IS-Graph with QC-Edge Weights

We label the edges in our graph with parameters that are used to determine the values of the quality and cost

factors. A value that is a property of a relation NR (a vertex in the graph)5 instead of a pair of relations

(i.e., an edge) will be attached to edges adjacent to NR. The label for an edge Ei is a four-tuple qcEi =

(DDext(i); CFM(i); CFT (i); CFI=O(i))
6. With these edge weights, we can now incrementally compute a four-

tuple qc(Pi) of numerical values de�ned on a path Pi = (El0 ; El1 ; : : : Eli) with Eli 2 E, which we call the raw

incremental QC-Value, denoted by:

qc(Pi) = (qcDDext(Pi); qcCFM (Pi); qcCFT (Pi); qcCFI=O (Pi)): (7)

This raw incremental QC-Value qc(Pi) is computed as follows:

qc(P0) = qcEl0

qc(Pk) = (qcDDext(Pk); qcCFM (Pk); qcCFT (Pk); qcCFI=O(Pk))

= (qcDDext(Pk�1) � DDext(lk); qcCFM(Pk�1) + CFM(lk); (8)

qcCFT (Pk�1) + CFT (lk); qcCFI=O(Pk�1) + CFI=O(lk);

for k � 1 with Elk being the k-th edge traversed in the path Pi and l = (l0; l1; : : : lk) the sequence of the indices

of the edges Eli that have been traversed for this computation. We motivate these computations (multiplication

for qcDDext(Pi) and addition for the other factors) in our technical report on the QC-Model [LKNR98] (see also

Section 4.1.2.

At any vertex Nk in the path, we compute the intermediate QC-Value QCincrPk
(Ri) for original view V and

deleted relation R for sub-path Pk traversed for the replacement relation Ri (see also Equation 4):

QCincrPk
(Ri) = 1�

h
%quality � (%attr � DDattr + %ext � qcDDext(Pk)) + (9)

%cost � (costM � qcCFM (Pk) + costT � qcCFT (Pk) + costI=O � qcCFI=O (Pk))
�
:

Note that DDattr depends solely on the two relations that mark the end points of the path and therefore is

independent of Pk. This explains why we can work with a four- instead of a �ve-tuple.

The incremental QC-Value for the complete replacement path for Ri, can now be de�ned as:

QCincr(Ri) = QCincrP (Ri)

with P being the complete path to the replacement relation.

5E.g., a relation size.

6The factor DDattr does not have to be taken into consideration, as explained later in this section

10

4.1.2 Semantics of Incremental Computation

We now need to show that the computation of the QC-Value for a complete query is equivalent to the incrementally

computed QC-Value along the replacement path using the method outlined above. That is, we need to show that

QCtotal(Vi) = QCincr(Rk) (10)

for the \best" Vi according to our QC-Model that uses Rk as a replacement. Previously, the QC-Value was

computed by the quality and cost formulas given in [LKNR98] (Section 3.3). Since we can apply Equation 9 at

any point in the incremental computation, we have to show that the incremental computation of the �ve factors

that contribute to the QC-Value yields the same �nal result as the total computation. So we must express the

computation of each factor in an incremental way, i.e., our approach is to �nd a way to compute qcf (k) as

qcf (k) = f(l0)�f f(l1)�f : : :�f f(lk) (11)

with f 2 fDDext; CFM ; CFT ; CFI=Og and operations �f on these values (cf. Equation 8). Since this computes

the QC-Value from left to right for each factor f , �f has to be shown to be left-associative, i.e.,

f(l0)�f f(l1)�f f(l2)�f : : :�f f(lk) = (: : : ((f(l0)�f f(l1))�f f(l2)) : : :�f f(lk)) (12)

for our path Pi = (El0 ; El1 ; : : : ; Eli). If we can compute all factors incrementally and all four operations �f

are left-associative, then the incremental computation of QCincr(i) will deliver the same result as the total

computation, i.e., QCincrn(Rk) = QCtotal(Vi) for a path with n+1 edges7 that leads to Rk and a view rewriting

Vi that uses Rk as replacement relation for R. In order to show these required characteristics for each factor, we

now describe the construction of the labels qcEi = (DDext(i); CFM(i); CFT (i); CFI=O(i)) for the edges Ei in the

IS-Graph.

View interface|DDattr. This quality factor is a function of the original and rewritten view de�nition only,

i.e., it is independent of the path of joins that is used to rewrite a query. Therefore this factor does not need to

be included in this discussion.

View extent|DDext. Due to limited space, the derivation of the total computation for DDext cannot be

repeated here. In [LKNR98] , we compute the size of view extents jVij and overlaps jVi \ Vj j by multiplying

sizes of relations jRij used in the view Vi and selectivities jsRi;Rj of the joins between them. The Degree of

Divergence is then computed as DDext(V ;Vi) = f(jVj; jVij; jV \ Vij) for a view V and a rewriting Vi. This

computation of jVij and jV \ Vij by multiplying constant factors can be executed incrementally as qcDDext(k) =

f(qcDDext(k�1); jcRlk�1
;Rlk

; jRlk j). We associate jRij and jcRi;Rj , respectively, with the edge Ek between vertices

Ri and Rj , together representing the DDext(k) component of qcEi
8.

7We start counting QCincrk with 0.

8The size of the original view jV j is known beforehand and does not have to be computed during the incremental QC-computation.

11

0

IS3

IS1

IS2

0

1

1

1

0

Relation

Information Source

Customer

FlightRes

Accident-Ins Participant

Tour

PreferredCust

Join Constraint

Figure 6: Assigning Weights for CFM .

If the E-SQL view speci�cation requires the new view to be a superset or subset of the original one, the join

selectivity alone is not su�cient for determining if the view rewriting Vi is legal. The selectivity of PC-constraints

has to be used in place of the join selectivity. In this case, PC-constraints between each pair of relations (Ri; Rj)

on the path to the replacing relation are necessary. Whenever such constraints are not available, we will assign a

value of 1 to DDext.

Note that DDext is computed in a multiplicative way and that the weights are not necessarily larger than 1.

For a shortest-path algorithm, this means that the \length" of the complete path does not necessarily increase

with the inclusion of a new edge, but that it could also decrease9. This computation, a multiplication of rational

numbers, is left-associative. This supports that the Degree of Divergence can in fact be incrementally computed

as we traverse a path from a deleted relation to its replacement.

Number of messages|CFM . To compute the number of messages CFM exchanged between the data ware-

house and the underlying information sources incrementally, we assign 1 to an edge if the two relations that it

connects are in di�erent information sources and a 0 otherwise (CFM (k) = f0; 1g, cf. Figure 6). With these

edge weights, an incremental computation as qcCFM (k) = qcCFM (k � 1) + CFM (lk) is possible. The operation

is additive, i.e., we can compute an intermediate value for CFM by adding the current value to a previously

computed intermediate value. Since addition is associative, this cost factor is associative.

Number of bytes|CFT . The number of bytes transferred CFT is computed by a sum of factors:

CFT (k) = 2 � (�ISl1 � : : : � �ISlk)(JISl1 � : : : � JISlk)s�Rout;ISlk
(13)

with k an index denoting the sequence number of the relation in the path for which CFT is currently computed,

�ISi the selectivity of the selection conditions for ISi, JISi the estimated size of a joined relation (computed

from join selectivities and relation sizes), and s�Rout;ISk
the size (sum of the lengths of attributes in bytes) of a

9This indicates the requirement that a shortest-path algorithm for this problem must be able to handle \negative" edge lengths,

as we further discussed for our solution in Section 4.2.1.

12

sub-query to an IS [LKNR98]. The operation is addition, with the summands (from Equation 13) dependent on

the previous path through the graph. In order to compute CFT (k), we need all CFT (i) for i = 0 : : : k � 1 for the

path (El0 ; El1 ; : : : ; Elk�1
) that led from the starting node to the current edge. If we compute path lengths from

the starting node (rather that computing sub-paths at random and adding the results)10, we can perform this

computation incrementally as qcCFT (k) = qcCFT (k � 1) + CFT (lk). This addition is again associative.

Number of I/Os|CFI=O. Similarly to the previous case, we compute CFI=O as a sum of several factors

depending on the current information source and the relations included in the join [LKNR98] (since the I/O-cost

depends on the number of tuples that have to be retrieved from the current relation for an incremental update).

So we have qcCFI=O (k) = qcCFI=O (k � 1) + CFI=O(lk). Due to addition, associativity is given.

4.1.3 Equivalence of Incremental and Total Computation

Since we have shown all parameters to be computable in an incremental way and left-associative, this assures

that it is possible to compute the QC-Value incrementally, i.e.,

QCtotal(Vi) = QCincr(Rk) (14)

for the \best" view rewriting Vi (\best" according to the QC-Model) that uses Rk as the replacement relation.

4.2 Finding the Best View Rewriting: The Shortest Path Approach

We can now to apply a shortest-path-algorithm in order to �nd the optimal view rewriting Vi for a given replacing

relation Rk. One algorithm that matches the requirements identi�ed in the previous section (stability over

\negative" edge-lengths and knowledge of the path \history") is the Bellman-Ford -algorithm (BF) for the single-

source shortest path in a graph [CLR90]. This single source would be our original view query V which can be

abstracted as one node in the IS-Graph.

On a graph with n vertices, BF loops n times over all edges and applies an edge relaxation in each iteration.

This relaxation step determines whether applying the current edge would decrease the distance of a vertex from

the original vertex and updates this distance parameter (kept with that vertex) accordingly. BF �nds the best

path between a source vertex and all other vertices. It returns an ordered set of vertices for a given \destination"

vertex Ri, which, in our mapping, represents the \chain" of joins to a relation Ri used to rewrite the given query

V after a capability change.

The complexity of BF is O(jV j � jEj). For a fully connected graph, this is O(n3) with n being the number of

relations considered. For a sparsely connected graph11, the complexity of this operation is O(n2). So in at most

O(n3) operations we can compute the best \join chains" for all possible replacing relations. Since BF computes

10In Section 4.2, we con�rm that our solution meets this requirement.

11A graph G = (V;E) is sparsely connected if jEj 2 O(jV j).

13

the shortest paths for all reachable destination relations Ri in the IS-Graph, all optimal view rewritings Vi (one

for each replacement relation Ri) can be directly constructed after the algorithm �nishes.

4.2.1 \Negative Length" Cycles

Since one of our QC-Model factors (DDext) can potentially lead to \contracting" edge lengths (meaning that

QCincrk (Ri) < QCincrk�1
(Ri) for a given k) it is necessary to look at the possibility of contracting cycles, usually

referred to as negative-length cycles, in our algorithm. In order to show that the problem of negative length cycles

does not occur in our context, we take a closer look at the computation of the quality factor DDext. Intuitively, a

good quality of a view rewriting is given if the extent of the new view Vi is \close" to the extent of the old view V .

The quality, i.e., the Degree of Divergence of Extents DDext, is de�ned as a weighted sum of the relative amounts

of missing tuples DDext D1(Vi) and surplus tuples DDext D2(Vi) between the old and the new view [LKNR98].

The objective for obtaining a small Degree of Divergence is to minimize the two ratios:

DDext D1(Vi) =
jV n Vij

V
and DDext D2(Vi) =

jVi n Vj

Vi

since the Degree of Divergence, computed as DDext(Vi) = %1 �DDext D1(Vi)+%2 �DDext D2(Vi) with %1; %2 � 0

and %1 + %2 = 1, has to be minimized.

Note that this value cannot become negative. If a contracting cycle occurs in the IS-Graph, this can be caused

only by the Degree of Divergence being lowered with each loop through the cycle (since this is the only one

of the �ve cost factors that possibly could decrease the QC-Value, while the other factors except DDattr are

guaranteed to increase the QC-Value with each addition of an edge). This would mean that the quality of the

view rewriting becomes better with the inclusion of another relation and join in the view query, which is unlikely.

Also, since the Degree of Divergence has the lower limit of 0 and we have a discrete domain (the number of tuples

in a relation is a natural number, i.e., the function f : fqcDDext(li)g ! DDext cannot be asymptotic), DDext

can not be contracting in�nitely. After a �nite number of loops through this contracting cycle, the Degree of

Divergence cannot become lower (we would have a \perfect" rewriting, preserving all attributes and tuples from

the original query). The remaining factors CFM , CFT and CFI=O have been increasing all along, which causes

DDext to increase. For this reason, a shortest path algorithm would not get \caught" in an in�nite loop for our

problem. We note that the original BF (well-known from the literature on algorithms [CLR90]) does not pursue

such loops through the graph, but rather terminates that particular path. If one would want to make use of those

cycle-based solutions, unlikely to occur in a real situation, slight adaptations to the algorithm would be needed.

5 Conclusion

View synchronization addresses an important new problem in dynamic distributed information systems

[RLN97, LNR97a, NLR97, LNR97b, NLR98, LKNR98]. In this present paper, we show the complexity of the view

synchronization process based on two separate phases (view rewriting [NLR98] and QC-computation [LKNR98])

14

to be O(n!) in the number of relations in the information space. This implies that the original view synchro-

nization process is too ine�cient to be practically viable for very large information spaces. In this paper, we

developed a solution based on integrating the two phases into one process that is capable of discarding inferior

solutions without �rst having to enumerate them. This reduces the complexity to polynomial (O(n3)), making

view synchronization now e�cient even for large information systems.

A prototype of the EVE-system has been implemented and is fully functional. It has been successfully demon-

strated at the IBM technology showcase during the CASCON '97 conference [LNR97a], and will be available on

our EVE project web page soon 12. A new view synchronization optimizer designed based on the basic con-

cepts outlined in this paper is currently being implemented in the EVE-system. This new implementation of

EVE will allow us to e�ciently handle schema evolution in a distributed data warehousing environment, which

is a signi�cant improvement over current technology handling only data updates at the underlying information

sources [GMR95, vdBK94, AAS97, BLT86].

Acknowledgments. The authors would like to thank students at the Database Systems Research Group at WPI
for their interactions and feedback on this research. In particular, we are grateful to Xin Zhang, Yong Li, and
Amber Van Wyk for implementing several of the major components of the EVE system, and Ani�soara Nica and
Amy Lee for their work on the foundations of view synchronization and their valuable suggestions and discussions
in the current context.

References

[AAS97] D. Agrawal, A. El Abbadi, and A. Singh. E�cient View Maintenance at Data Warehouses. In
Proceedings of SIGMOD, pages 417{427, 1997.

[BLT86] J. A. Blakeley, P.-E. Larson, and F. W. Tompa. E�ciently Updating Materialized Views.
Proceedings of SIGMOD, pages 61{71, 1986.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. Cambridge, The
MIT Press, 1990.

[CTL+96] L.S. Colby, T.Gri�n, L.Libkin, I.S.Mumick, and H.Trickey. Algorithms for Deferred View Main-
tenance. In Proceedings of SIGMOD, pages 469{480, 1996.

[GMR95] A. Gupta, I.S. Mumick, and K.A. Ross. Adapting Materialized Views after Rede�nition. In Pro-
ceedings of ACM SIGMOD International Conference on Management of Data, pages 211{222, 1995.

[GMS93] A. Gupta, I.S. Mumick, and V.S. Subrahmanian. Maintaining Views Incrementally. In Proceedings
of SIGMOD, pages 157{166, 1993.

[LKNR98] A. J. Lee, A. Koeller, A. Nica, and E. A. Rundensteiner. Data Warehouse Evolution: Trade-o�s
between Quality and Cost of Query Rewritings. Technical Report WPI-CS-TR-98-2, Worcester
Polytechnic Institute, Dept. of Computer Science, 1998.

[LKNR99] A. J. Lee, A. Koeller, A. Nica, and E. A. Rundensteiner. Data Warehouse Evolution: Trade-o�s
between Quality and Cost of Query Rewritings. In Proceedings of IEEE International Conference
on Data Engineering, Accepted as poster paper, 1999.

[LMS95] A.Y. Levy, A.O. Mendelzon, and Y. Sagiv. Answering Queries Using Views. In Proceedings of
ACM Symposium on Principles of Database Systems, pages 95{104, May 1995.

[LNR97a] A. J. Lee, A. Nica, and E. A. Rundensteiner. Keeping Virtual Information Resources Up and
Running. In Proceedings of IBM Centre for Advanced Studies Conference CASCON97, Best Paper
Award, pages 1{14, November 1997.

12http://davis.wpi.edu/dsrg/EVE

15

[LNR97b] A. J. Lee, A. Nica, and E. A. Rundensteiner. The EVE Framework: View Synchronization in Evolv-
ing Environments. Technical Report WPI-CS-TR-97-4, Worcester Polytechnic Institute, Dept. of
Computer Science, 1997.

[NLR97] A. Nica, A. J . Lee, and E. A. Rundensteiner. The Complex Substitution Algorithm for View
Synchronization. Technical Report WPI-CS-TR-97-8, Worcester Polytechnic Institute, Dept. of
Computer Science, 1997.

[NLR98] A. Nica, A. J. Lee, and E. A. Rundensteiner. The CVS Algorithm for View Synchronization in
Evolvable Large-Scale Information Systems. In Proceedings of International Conference on Ex-
tending Database Technology (EDBT'98), pages 359{373, Valencia, Spain, March 1998.

[QW97] D. Quass and J. Widom. On-Line Warehouse View Maintenance. In Proceedings of SIGMOD,
pages 393{400, 1997.

[RLN97] E. A. Rundensteiner, A. J. Lee, and A. Nica. On Preserving Views in Evolving Environments.
In Proceedings of 4th Int. Workshop on Knowledge Representation Meets Databases (KRDB'97):
Intelligent Access to Heterogeneous Information, pages 13.1{13.11, Athens, Greece, August 1997.

[vdBK94] C. A. van den Berg and M.L. Kersten. An Analysis of a Dynamic Query Optimization Schema for
Di�erent Data Distributions. In J. C. Freytag, D. Maier, and G. Vossen, editors, Query Processing
for Advanced Database Systems, chapter 15, pages 449{473. Morgan Kaufmann Pub., 1994.

[Wid95] J. Widom. Research Problems in Data Warehousing. In Proceedings of International Conference
on Information and Knowledge Management, pages 25{30, November 1995.

[ZGMHW95] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View Maintenance in a Warehousing
Environment. In Proceedings of SIGMOD, pages 316{327, May 1995.

[ZGMW96] Y. Zhuge, H. Garcia-Molina, and J. L. Wiener. The Strobe Algorithms for Multi-Source Ware-
house Consistency. In International Conference on Parallel and Distributed Information Systems,
December 1996.

16

