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Abstract

There are many contexts in which several quantitative measures that provide in-
formation about a given phenomenon are available and it is desired to combine these
measures into a single measure that uses the information encoded in each of them.
Examples include knowledge aggregation in knowledge-based systems [4], [16], later-
alization measurement in neurobiology [2], [5], and relevance ranking in information
retrieval. Mostly ad-hoc approaches are currently in use for this purpose in different
domains. The objective of this paper is to introduce a rational framework that sys-
tematically provides families of combination operators for the integration of disparate
measures in a variety of situations. Our approach uses a single canonical form to pro-
duce a multitude of different combination functions by choosing different geometric
frames of reference in the space of measurement values. We show that previously used
combination functions may be obtained through our approach in a natural way, that
they may be easily modified and generalized for increased flexibility, and that new com-
bination operators may be systematically generated. We provide a characterization of
the differentiable combination functions that are expressible via conjugacy in terms of
the canonical form and give an algorithm to construct an appropriate reference frame
if one exists. We also address the asymptotic behavior of the combination functions
produced by our framework when the number of source measures grows without bound.

1Portions of this paper are based on research carried out by the author at the Center for Nonlinear
Analysis at Carnegie Mellon University. The author acknowledges partial support provided by the U.S.
Army Research Office and the National Science Foundation. The author wishes to thank Bruce Buchanan
for helpful discussions regarding knowledge revision in the expert system MYCIN.
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Introduction

The issue of combination or aggregation of knowledge sources is central to many areas of
applied science and engineering. Consider for example the problem of knowledge revision
in belief systems. Various approaches to this problem in the presence of uncertainty are
elegantly subsumed by the Shenoy-Shafer valuation network theory [16] in which a net-
work of valuations encodes approximate knowledge about the joint values of collections of
system variables and knowledge revision is reduced to the two basic operations of marginal-
ization and combination of valuations. Specific forms of the combination functions are pro-
vided within formalisms such as Bayesian probability and Dempster-Shafer belief theory. In
Bayesian probability the valuations are true probabilities and combination proceeds accord-
ing to Bayes’ rule. The simplest version of this combines probabilities p and q by measuring
the probability of the union of the corresponding events assuming independence between
these events:

f(p, q) = p+ q − pq (1)

In the Dempster-Shafer theory the valuations are so-called basic probability assignments and
combination follows Dempster’s rule [15]. More ad-hoc approaches have also been proposed,
as in the framework of certainty factors introduced into rule-based expert systems by the
creators of the medical diagnosis system MYCIN [4]. In this method the valuations are
numbers between −1 and 1 called certainty factors which represent confidence levels about
both facts and inference rules. The MYCIN combination function takes two certainty factors
c1 and c2 of different signs and combines them into a single certainty factor c as follows:

c =
c1 + c2

1 + min(c1, c2)
(2)

Because of the constraint on the signs of the ci, this measure may be described as a difference
measure rather than a sum measure like that in Eq. 1. Such difference measures are required
also in the area of anatomical and functional lateralization measurement in biology [12],
[5]. For example, in studying a bihemispheric brain one is interested in assessing the degree
of asymmetry of the patterns of organization and functionality of the system. If one has
access to two individual measures representing the competence of each of the hemispheres
on some task of interest, then one may seek to combine these measures into a single measure
of the lateral dominance of one hemisphere over the other as regards the given task. Related
examples include the measurement of directional asymmetry in experimental psychology [6],
[10] and high energy physics [7]. Prior work in the above mentioned areas has tended to use
simple, ad-hoc measures of directional asymmetry, such as the standard arithmetic difference
of the given unilateral measures.

In the present paper we present a systematic approach for generating numerical combi-
nation functions and related difference measures. We will show that several previously used
measures are subsumed by our framework and we will propose mechanisms that yield ratio-
nal generalizations and modifications of these measures as well as completely new ones. Our
framework is based on thinking of different measures as corresponding to the same canonical
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form viewed in different geometric frames on the space of measurement values. We consider
measures of sum and difference type interchangeably by allowing sign changes in the argu-
ments. For concreteness, we now phrase our fundamental postulate in terms of combination
(sum) functions only.

Postulate (existence of a canonical form). Combination functions should reduce
to the standard arithmetic sum in a suitably constructed frame.

In words, given an admissible combination function f : V × V → V , there should exist
a suitable choice of frame transformation β such that we have a commutative diagram as
shown below, where + denotes the usual arithmetic sum operator on the real line R = β(V ):

V × V β×β−−−→ β(V )× β(V )yf y+

V
β−−−→ β(V )

Equivalently, the combination function f should satisfy

f
(
β−1(a), β−1(b)

)
= β−1(a+ b) (3)

At first sight, the above may seem like an odd requirement. In the present paper we aim to
show that the canonical form postulate is not only natural, being satisfied by commonly used
combination operators already in existence and slight variations of them, but also constitutes
a powerful source of new combination operators. In particular, through this unification, our
new framework based on the canonical form and frame transformations provides a much
needed theoretical foundation for combination operators.

Example 1. Consider the case of the following simple probabilistic combination function
which is often used for aggregation of measures of uncertainty in knowledge-based systems:

f(p, q) = p+ q − pq (4)

Analysis shows that one may rewrite the function of Eq. 1 in the form given in Eq. 3, where
the transformation β : [0, 1]→ [0,∞] that defines the “normalizing frame” is given by

β(x) = log

(
1

1− x

)
(5)

Indeed, the inverse of the frame transformation is

β−1(y) = 1− e−y (6)

and by direct computation using Eq. 1 and Eq. 6 we confirm that Eq. 3 holds:

f(β−1(p), β−1(q)) = β−1(p) + β−1(q)− β−1(p)β−1(q)

= 1− (1− β−1(p))(1− β−1(q))

= 1− e−pe−q

= β−1 (p+ q)

(7)
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The present paper provides, as part of a coherent theory, a method that allows one to
construct an appropriate frame transformation β as in Eq. 5 directly from the combination
function f . Related results in the case of difference measures only were obtained in [1].

Overview of the paper

We begin the paper by presenting a set of axioms which state the properties required for
a combination function to be admissible. No assumptions are made about the particular
method used to construct the functions at this point. We then study the class of combina-
tion functions defined from the canonical form via frame transformations on the range of the
valuations as in the above commutative diagram and Eq. 3. We determine what properties
a frame transformation must satisfy in order for the associated combination function to be
admissible. We show that admissible frame transformations may be described “microscop-
ically” in terms of a Riemannian metric associated with the subjective difference measure
obtained from the frame transformation. We give examples of admissible frame transforma-
tions and the combination functions obtained from them. We then present a general method
to extract a suitable normalizing frame transformation directly from a given combination
function as was done for the above example in Eqs. 5 and 7. We conclude by describing the
asymptotic behavior of aggregate values obtained via our transformation-based framework
in the presence of an unbounded number of sources of information.

1 Admissible combination and difference functions

In this brief section we give axioms for the binary operations that we are interested in
studying. The basic notion is that of a combination function, which is a generally nonlinear
function that aggregates two different measurements into a single one. The simplest pos-
sible combination function is the arithmetic operation of addition. Just as addition yields
subtraction by changing the sign of one of the arguments, any combination function gives
rise to a difference measure in the same way. We give equivalent axioms for both combi-
nation functions and difference measures. One version or the other will typically be more
immediately useful in a given context. For example, in lateralization measurement in com-
putational neurobiology [2] one uses difference measures, while in knowledge aggregation in
knowledge-based systems it is more natural to use combination functions.

Definition 1.1. A function ⊕ : [0,+1] × [0,+1] → [0,+1] is an admissible combination
function if and only if it satisfies the following axioms:

Commutativity

p⊕ q = q ⊕ p

Monotonicity

(·)⊕ q is an increasing function for each q
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Boundary values

0⊕ q = q, 1⊕ q = 1

Definition 1.2. We define the subjective difference measure 	 associated with the combi-
nation operator ⊕ to be the operator 	 defined as follows:

p	 q = p⊕ (−q) (8)

The operator 	 is said to be symmetric if it satisfies

q 	 p = − (p	 q) (9)

It is clear that 	 is symmetric if and only if the associated combination operator ⊕ satisfies

Belief / disbelief symmetry

(−p)⊕ (−q) = − (p⊕ q)

Example 2. The probabilistic combination operator given in the Example that appears
in the Introduction is admissible in the sense of the above definition. The commutativity
property clearly holds for this operator. Also, by rewriting the operator in the form

p⊕ q = p(1− q) + q,

it becomes apparent that p⊕q increases as p increases if q is held fixed. Finally, the boundary
values for the probabilistic combination operator are given by:

0⊕ q = 0(1− q) + q = q, 1⊕ q = 1(1− q) + q = 1

This proves admissibility as claimed.

Example 3. The MYCIN combination function is admissible. Recall that this combination
function is defined by:

p⊕ q =
p+ q

1 + p ∧ q
,

where p ∧ q denotes the minimum of the two numbers p and q. The properties of com-
mutativity and boundary values are easy to see. Verification of the monotonicity property
is conceptually simple but requires an analysis by cases. Assume that q is fixed and that
1 ≥ p′ ≥ p ≥ 0. We must show that p′ ⊕ q ≥ p⊕ q. The difference p′ ⊕ q − p⊕ q equals

p′ ⊕ q − p⊕ q =
p′ + q

1 + p′ ∧ q
− p+ q

1 + p ∧ q
=
p′ − p+ (p ∧ q)(p′ + q)− (p′ ∧ q)(p+ q)

(1 + p′ ∧ q)(1 + p ∧ q)
(10)
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• Case 1: q ≤ p ≤ p′. Then p∧ q = q = p′∧ q, and the right-hand side of Eq. 10 becomes

p′ − p+ (p ∧ q)(p′ + q)− (p′ ∧ q)(p+ q)

(1 + p′ ∧ q)(1 + p ∧ q)
=
p′ − p+ q(p′ + q)− q(p+ q)

(1 + q)2

=
(p′ − p)(1 + q)

(1 + q)2
≥ 0

• Case 2: p ≤ q ≤ p′. Then p ∧ q = p and p′ ∧ q = q, so in Eq. 10 we have

p′ − p+ (p ∧ q)(p′ + q)− (p′ ∧ q)(p+ q)

(1 + p′ ∧ q)(1 + p ∧ q)
=
p′ − p+ p(p′ + q)− q(p+ q)

(1 + p′ ∧ q)(1 + p ∧ q)

=
p′ − p+ pp′ − q2

(1 + q)(1 + p)

≥ p′ − p+ pp′ − (p′)2

(1 + q)(1 + p)

=
(p′ − p)(1− p′)
(1 + q)(1 + p)

≥ 0

• Case 3: p ≤ p′ ≤ q. Then p ∧ q = p and p′ ∧ q = p′, and Eq. 10 yields:

p′ − p+ p(p′ + q)− p′(p+ q)

(1 + p′ ∧ q)(1 + p ∧ q)
=
p′ − p+ pq − p′q
(1 + p′)(1 + p)

=
(p′ − p)(1− q)
(1 + p′)(1 + p)

≥ 0

This concludes the verification of the monotonicity property and thus establishes that the
MYCIN combination function is admissible in the sense of Definition 1.1.

In the next section we develop a framework that incorporates combination functions
similar to those considered in the preceding examples and that yields new combination
functions systematically.

2 The transformation framework

As explained in the Introduction, our viewpoint is that generation of combination functions
is equivalent to the construction of suitable frame transformations mapping the range of
the valuations into the extended real number line [−∞,+∞]. The intuition behind this
viewpoint is that a combination operator is really just the standard arithmetic sum viewed
through the warped glasses of the frame transformation. Mathematically, each admissible
choice of a frame transformation induces a pullback to the valuation interval (which we will
assume is [−1, 1]) of the standard vector space structure of the real numbers. Addition pulls
back to a combination function and scalar multiplication pulls back to an operation which
controls what we call the degree of skepticism of the members of the resulting family of
combination functions. We develop the above concepts in the next few sections. We assume
for simplicity that all valuations take values in the interval [−1, 1]. More general ranges of
values can be dealt with by performing a straightforward preliminary symmetrization step
as in [1].
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2.1 Combination functions as nonlinear sums

We propose to consider as a combination function on the normalized measurement interval
[−1,+1] the binary operation ⊕β on [−1,+1] that is conjugate to the standard addition
operation f(y1, y2) = y2 + y1 on the interval [−∞,+∞] via an appropriate frame transfor-
mation β from [−1,+1] to [−∞,+∞]; we assume that β is an invertible and increasing map
from [−1,+1] onto [−∞,+∞]. In other words, we require that the diagram shown below be
commutative, where + denotes the usual arithmetic sum operator on (−∞,+∞):

(−1,+1)× (−1,+1)
β−−−→ (−∞,+∞)× (−∞,+∞)y⊕β

y+

(−1,+1)
β−−−→ (−∞,+∞)

Equivalently, the combination function ⊕β on [−1,+1] is defined by

a ⊕β b = β−1(β(a) + β(b)) (11)

Visually, the frame transformation β deforms the standard valuation interval [−1,+1] into
the valuation range [−∞,+∞]. Each point x of [−1,+1] is mapped to a corresponding
point β(x) of the interval [−∞,+∞]. Pairs of points are combined in [−1,+1] in such
a way that the result is the point that is mapped by the frame transformation β into the
arithmetic sum of the images of these points. Different frame transformations define different
deformations and thus lead to different combination functions, with the exception that frame
transformations that are constant multiples of one another lead to the same combination
function (c.f. the proof of Theorem 3.1).

2.2 Admissible frame transformations

We now consider the question of determining the properties that must be satisfied by a frame
transformation β : [−1,+1] → [−∞,+∞] so that the combination function associated to β
via conjugation as in Eq. 11 is admissible in the sense of Definition 1.1. Such a mapping β
is called an admissible frame transformation.

Proposition 2.1. A mapping β : [−1,+1] → [−∞,+∞] is admissible if and only if it is
increasing and satisfies the boundary conditions β(0) = 0, β(+1) = +∞.

Proof. Recall the definition of ⊕ in terms of β from Eq. 11:

p⊕ q = β−1(β(p) + β(q))

This definition assumes that β is an invertible mapping from [−1,+1] to [−∞,+∞]. Thus,
β must be either strictly increasing or strictly decreasing. We will now prove the necessary
boundary conditions β(0) = 0, β(1) = ∞, which imply that β is increasing. Letting q = 0
above, we have:

β−1(β(p)) = p = p⊕ 0 = β−1(β(p) + β(0))
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This equation holds for all values of p if and only if β(0) = 0. Next, let q = 1 above. Then
we have:

β−1(β(1)) = 1 = p⊕ 1 = β−1(β(p) + β(1))

This equation is equivalent to β(+1) = +∞. Thus, we have proved that admissibility is
equivalent to the boundary conditions given in the statement of the Proposition.

It is straightforward to interpret the commutativity and belief / disbelief symmetry ax-
ioms for the corresponding combination function (as given following Definition 1.1) in terms
of the frame transformation β, as we now show.

Proposition 2.2. An admissible frame transformation β : [−1,+1]→ [−∞,+∞] yields an
associated combination function that satisfies the belief/disbelief symmetry property if and
only if β has odd symmetry about 0, i.e. β(−x) = −β(x).

Proof. Let q = −p. Then assuming belief / disbelief symmetry and commutativity:

(p⊕ (−p)) = − ((−p)⊕ p) = − (p⊕ (−p)) ,

so that
p⊕ (−p) = 0,

and therefore using the definition of ⊕:

β−1 (β(p) + β(−p)) = 0 (12)

Applying β to both sides of this equation we see that

β(p) + β(−p) = β(0), (13)

and letting p = 0 in particular it follows that

β(0) = 0

Eq. 13 now yields the desired conclusion that β has odd symmetry about 0. Conversely,
if we know that β has odd symmetry about 0 then so does its inverse β−1, and we see by
Eq. 11 that the corresponding combination function ⊕ is commutative and exhibits belief /
disbelief symmetry. This completes the proof of the Proposition.

2.3 The pulled-back metric

If one considers the subjective difference measure 	 as defined in Eq. 8, one may view the
analog of Eq. 11 defining the combination function ⊕ via the frame transformation β as
involving two distinct steps. In the first step, the pair (a, b) is mapped to the difference
β(a) − β(b), which is simply the signed version of the pullback to [−1, 1] via (β, IR) of the
Euclidean metric on the real line R. In the second step, this signed distance function is
pulled back to a metric on [−1,+1] via β. Explicitly, the pulled-back metric referred to here
is given by:

d(a, b) = |β(a)− β(b)| (14)
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Assuming that β is differentiable, the pulled-back metric is a Riemannian metric (see, e.g.,
[11]) on [−1,+1] with length element ds given by:

ds = β′(x)dx (15)

Observe that since β(0) = 0 by Proposition 2.1, the frame transformation β may be expressed
in terms of the blown-up metric ds = β′(x)dx quite simply:

β(x) =

∫ x

0

β′(u)du (16)

Thus, the frame transformation β and the blown-up metric β′(x)dx are completely equivalent:
given either one of the two, the other can be constructed without difficulty. Since the frame
transformation leads directly to the corresponding combination function, this implies that
the combination function may also be constructed from the metric. In section 3 we will show
that the metric may be constructed from the combination function (Theorem 3.1). Together
with the above comments, this will show that the three basic objects of our theory, the
combination function, the frame transformation, and the metric, are completely equivalent,
so that if one of the three is specified then the other two may be constructed from it.

2.4 Nonlinear scaling and weighted combinations

Given a combination function⊕ : [−1,+1]→ [−1,+1] obtained via a blow-up transformation
β : [−1,+1] → [−∞,+∞], a new combination function is obtained by letting the group of
scalings x 7→ tx for t ∈ R+ act on [−1,+1] via conjugation by the blow-up transformation
β. Thus we have the commutative diagram shown below:

[−1,+1]
β−−−→ [−∞,+∞]yβ←t yx 7→tx

[−1,+1]
β−−−→ [−∞,+∞]

The collection of pullbacks β←t forms a group of nonlinear scalings of the measurement
interval [−1,+1]. The pulled-back scaling by t is given by:

(β←t)x = β−1 (tβ(x)) (17)

If we let the pulled-back scaling act on the combination function ⊕β on [−1,+1] conjugate
to the difference operator on [−∞,+∞] via β, we obtain the following new combination
function:

p⊕tq = β−1
(
tβ
(
β−1(β(p) + β(q))

))
= β−1 (t(β(p) + β(q))) (18)

The corresponding blown-up metric on [−1,+1] is:

ds = tβ′(x)dx (19)
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We note that the scaled t-version of the combination function fails to be associative unless
t = 1. Furthermore, it is not admissible in the sense of Definition 1.1, as it fails to satisfy
the boundary conditions p⊕t 0 = p, p⊕t 1 = 1. However, nonlinear scaling is quite useful
in providing a scale of functions parametrized according to their degree of skepticism. By
the latter term we are referring to the weight accorded to new information. This can be
measured by comparing the a priori value p with the quantity

p⊕t 0 = β−1 (tβ(p)) (20)

which is the confidence assigned to the certainty level p by the combination function ⊕t.
The right-hand side of Eq. 20 is simply the result of scaling p by t as viewed in the frame
defined by the transformation β (c.f. Eq. 17). We now define the degree of skepticism as
the fraction of the confidence level that is rejected by the combination function ⊕. Notice
that any combination function that satisfies the boundary condition p ⊕ 0 = p required for
admissibility will automatically have a marginal skepticism of 0.

Definition 2.1. The marginal skepticism of a combination function ⊕ is the quantity

σ(⊕) = lim
p→0

(
1− p⊕ 0

p

)
(21)

The value of t determines the marginal skepticism of the scaled combination function ⊕t in
the following very simple way.

Proposition 2.3.

σ(⊕t) = 1− t (22)

Proof. By definition of the marginal skepticism σ we have

σ(⊕t) = 1− d

dp
|p=0 (p⊕t 0)

It suffices to compute the derivative that appears on the right-hand side of this equation.
Using the fact that β(0) = 0 (by Proposition 2.1) one finds:

d

dp
|p=0

(
β−1(tβ(p))

)
=

(
t

β′(p)

β′ (β−1(tβ(p)))

)
|p=0 = t

This concludes the proof of the Proposition.

Observe that the resulting skepticism in Proposition 2.3 is independent of the choice of frame
transformation β. For t = 1 the skepticism is 0: confidence estimates are accepted at face
value. Values of t greater than 1 yield negative skepticism, i.e. the combination function ⊕t
amplifies confidence estimates. Values of t less than 1 yield skeptical combination functions
that accept only a fractional portion of an incoming confidence estimate. We will say more
below about the level of skepticism in connection with the rate at which consensus is attained
in the presence of multiple sources of information.
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Analogously, one may consider the nonlinear conjugated versions of linear combinations.
In this way, one obtains operators such as the following:

p⊕s,tq = β−1 (sβ(p) + tβ(q)) (23)

If the parameters s and t are chosen to satisfy 0 ≤ s ≤ 1, 0 ≤ t ≤ 1, s + t = 1, then Eq. 23
yields a nonlinear version of the convex combination operator (x, y) 7→ sx + ty. Certain
properties of convex combinations are shared by the nonlinear version. For example, one
recovers one argument or the other as the parameter s approaches one of its limiting values:

p⊕s,1−s q −→ q as s→ 0

p⊕s,1−s q −→ p as s→ 1

Intermediate values of the weight parameter s yield other combinations of p and q; the closer
s is to 0, the lower the weight accorded to p will be, while if s is close to 1 then p will
be weighted more heavily than q in the combination. Notice that although this behavior is
shared by the standard convex combination operators, the standard operators fail to satisfy
the boundary conditions 0 ⊕ q = q and 1 ⊕ q = 1. The new weighted nonlinear operators
should be useful for purposes such as the combination of relevance ratings in information
retrieval and the combination of preference ratings in recommendation systems (collaborative
filtering). In such contexts the weights s and t may be used to give higher credence to certain
information sources over others, based perhaps on prior experience.

2.5 Some admissible combination functions

Example 2.1 (Inverse hyperbolic tangent frame β(x) = tanh−1(x)). Using the fact that

tanh−1(x) =
1

2
log

(
1 + x

1− x

)
(24)

we see that if we choose the frame transformation β to be the function tanh−1 in Eq. 11 then
we obtain the following very simple expression for the associated combination function:

p⊕q = tanh
(
tanh−1 p+ tanh−1 q

)
=

p+ q

1 + pq
(25)

Nonlinear scaling by t as in Eq. 17 is given for the present choice of β by:

(β←t)x =
(1 + x)t − (1− x)t

(1 + x)t + (1− x)t
(26)

and it follows from Eq. 24 and from the identity for the hyperbolic tangent of a sum contained
in Eq. 25 that the combination function of Eq. 25 embeds as the case t = 1 of the family:

p⊕tq = tanh
(
t
(
tanh−1(p) + tanh−1(q)

))
=

(
1+p
1−p

)t
−
(

1−q
1+q

)t
(

1+p
1−p

)t
+
(

1−q
1+q

)t (27)
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The pulled back Riemannian metric is given as in Eq. 15 by:

ds = t
(
tanh−1

)′
(x)dx =

tdx

1− x2
(28)

Nonlinear weighting leads to the operators

p⊕s,tq = tanh
(
s tanh−1(p) + t tanh−1(q)

)
=

(
1+p
1−p

)s
−
(

1−q
1+q

)t
(

1+p
1−p

)s
+
(

1−q
1+q

)t (29)

As shown in [1], the inverse hyperbolic tangent frame transformation admits very interesting
interpretations in terms of probability, Dempster-Shafer evidence theory, and the special
theory of relativity.

Example 2.2 (Tangent frame β(x) = 2
π

tan(π
2
x)). This choice yields the following family

of combination functions:

p⊕tq =
2

π
tan−1

(
t sin(π

2
(p+ q))

cos(π
2
p) cos(π

2
q)

)
(30)

The pulled back metric on the standard interval [−1,+1] is:

ds =
tdx

cos2(π
2
x)

(31)

A significant difference between the tangent frame transformation considered here and the
inverese hyperbolic tangent frame transformation of the preceding Example lies in their
asymptotic behavior. The values of the hyperbolic tangent approach +1 exponentially fast
as the argument approaches +∞. On the other hand, the values of 2/π times the arctangent
of y approach the limiting value +1 at the rate 1/y as y → +∞. We show below in
Proposition 4.1 that this difference in asymptotic rates leads to a corresponding difference in
the rates at which the combination functions based on these frame transformations aggregate
values produced by a large number of source measures.

3 Recovering the frame transformation from the com-

bination function

In this section we address the issue of determining whether a given combination function ⊕
that is admissible in the sense of Definition 1.1 is expressible via some frame transformation
β as in Eq. 11. Our solution to this problem may be seen as a two-step process. We
first show how to construct a special candidate frame transformation β⊕ directly from the
original combination function ⊕. In order to determine whether ⊕ is transformation-based,
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one merely needs to check whether it is expressible in terms of this single special frame
transformation β⊕. The second step of our process provides a method for checking whether
⊕ is expressible via β⊕.

Our frame transformation recovery process is useful from a practical point of view since
it provides an explicit method for constructing a frame transformation that yields a given
combination function. With such a frame transformation in hand, one may proceed to gener-
alize the original combination function by using nonlinear scaling operations as described in
the preceding sections. Furthermore, our results are interesting from a theoretical viewpoint,
as they show the equivalence of three basic objects of our theory: the combination function
⊕, the frame transformation β, and the blown-up metric β′(x)dx. A frame transformation
β may easily be expressed in terms of the corresponding blown-up metric ds = β′(x)dx as
in Eq. 16. The following result shows that the metric β′(x)dx and the frame transformation
β may be recovered (modulo a scale factor) from the combination function ⊕.

Theorem 3.1. Let (p, q) 7→ p ⊕ q be a continuously differentiable combination operator
such that p ⊕ z(p) = 0 for some function p 7→ z(p). Let β denote an arbitrary frame
transformation. Then the following statements are equivalent:

1. ⊕ is conjugate to the arithmetic sum operator via the frame transformation β

2. β is of the form Cβ⊕, where C is a nonzero constant and β⊕ is the special frame
transformation defined by:

β⊕(p) =

∫ p

0

(∂1⊕)(x, z(x)) dx (32)

3. ⊕ is conjugate to the arithmetic sum operator via the frame transformation β⊕ as given
in Eq. 32

4. The composite function φ := β⊕ ◦ ⊕ satisfies the partial differential equation

∂1∂2φ = 0 (33)

Proof.

• ((1) implies (2)): If ⊕ is conjugate to + via β, then we must have:

β(p⊕ q) = β(p) + β(q) (34)

Taking partial derivatives with respect to p we obtain:

β′(p⊕ q)(∂1⊕)(p, q) = β′(p) (35)

Letting q = z(p), and observing that p⊕ z(p) = 0 we have:

β′(0)(∂1⊕)(p, z(p)) = β′(p) (36)
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Therefore:

β′(p) = β′(0)(∂1⊕)(p, z(p)) (37)

Integration w.r.t. p now yields β = Cβ0, with C = β′(0):

β(p) = β′(0)

∫ p

0

(∂1⊕)(x, z(x)) dx (38)

This proves that (2) holds.

• ((2) implies (3)): Just observe that the conjugacy condition is invariant under scalings.
That is, if one assumes that ⊕ is conjugate to + via β:

p⊕ q = β−1 (β(p) + β(q)) ,

and if K is any nonzero constant, then since the inverse of the scaled transformation
Kβ is given by

(Kβ)−1 (y) = β−1
( y
K

)
,

the fact that multiplication by K distributes over addition yields

p⊕ q = (Kβ)−1 ((Kβ) (p) + (Kβ) (q)) ,

so that ⊕ is also conjugate to + via the scaled transformation Kβ. Choosing K = 1/C,
one now obtains (3) from (2).

• ((3) implies (4)): If (3) holds, then φ(p, q) := β0(p⊕ q) = β0(p) + β0(q) clearly satisfies
∂1∂2φ = 0.

• ((4) implies (1)): Suppose that (4) holds. Then iterated partial integration shows that
there exist functions α1 and α2 such that

β⊕(p⊕ q) = φ(p, q) = α1(p) + α2(q)

Notice that the functions αi are defined only up to an additive constant. Assume
without loss of generality that α2(0) = 0. Since p⊕ 0 = p, we obtain

β⊕(p) = φ(p, 0) = α1(p) + α2(0) = α1(p)

Now use the fact that 0⊕ q = q. We must have

β⊕(q) = φ(0, q) = α1(0) + α2(q)

= β⊕(0) + α2(q) = α2(q)

We have now shown that both α1 and α2 equal β⊕, so that

β(p⊕ q) = φ(p, q) = β⊕(p) + β⊕(q)

We know that β⊕ is strictly increasing and therefore invertible on its image, so we
conclude that ⊕ is conjugate to the standard arithmetic sum operator + via the frame
transformation β⊕. This proves (2) and (1), and concludes the proof of the Theorem.
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Example 4. Let us now re-examine the probabilistic combination operator considered in
the Example of the Introduction in the light of the above Theorem. Recall the form of the
combination operator:

p⊕ q = p+ q − pq

Notice that p⊕ p
p−1

= 0, i.e. we have z(p) = p
p−1

. The frame transformation β must satisfy:

β(p+ q − pq) = β(p) + β(q)

Differentiating with respect to p and letting q = p
p−1

we have:

β′(0)
1

1− p
= β′(p)

As in the proof of the Theorem we may assume that β′(0) = 1, so that the metric is given
by

β′(p) =
1

1− p
and we obtain the frame transformation

β(p) = log

(
1

1− p

)
as given in the Example of the Introduction. A straightforward calculation shows that the
composite operator φ := β◦⊕ satisfies the partial differential equation given in the Theorem.
Indeed, we have

φ(p, q) = − log (1− p− q + pq)

so that

∂pφ(p, q) =
1− q

1− p− q + pq

and therefore

∂q∂pφ(p, q) =
1− p− q + pq − (1− q)(1− p)

(1− p− q + pq)2
= 0

as claimed. The implication (3) ⇒ (2) of the Theorem thus implies that we have found a
correct conjugating frame transformation β. Of course, even before checking that φ satisfies
the partial differential equation one may have noticed that φ(p, q) may be decomposed as
follows:

φ(p, q) = − log ((1− p)(1− q)) = log

(
1

1− p

)
+ log

(
1

1− q

)
which is merely a restatement of the conjugacy condition itself. Nonetheless, in more involved
examples it may be difficult to see that the analogous decomposition holds for φ in such a
direct fashion; in such cases it is advantageous to apply the partial differential equation
criterion as was done above.
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Physical Interpretation of Theorem 3.1

The characterization in Theorem 3.1 of the composition φ = β ◦ ⊕ as the solution of a
partial differential equation may be interpreted in physical terms related to wave propagation.
Defining new variables (x, y) from the variables (p, q) by:

x = p+ q

y = p− q

the partial differential condition on φ̃(x, y) := φ(p, q) becomes

∂

∂x2
φ̃ =

∂

∂y2
φ̃ (39)

which is the classical equation describing linear wave propagation [17]. The new variables x
and y may be interpreted as space and time. The old variables p and q represent position
as viewed in frames moving at the wave velocity in opposite directions. Taking into account
the restriction that in the old variables

φ(p, z(p)) = 0,

we have in the new variables

φ̃(x, y)|x−y=z(x+y) = 0 (40)

Equations 39 and 40 together constitute a so-called boundary-value problem. As is known
from the theory of partial differential equations, an additional boundary condition should
be specified in order for the boundary-value problem to be uniquely solvable. For example,
information concerning the rate of change of the function φ in a direction transverse to the
“zero curve” q = z(p) (or x − y = z(x + y)) would be sufficient. In any case, we see that
the function φ may be constructed by specifying “initial data” on the curve q = z(p) and
allowing this information to “propagate” via the wave equation (Eq. 39).

4 Asymptotic consensus growth

In this section we address the growth of the degree of consensus in the presence of multiple
sources of information. We assume that an infinite sequence of observations, each having
certainty value p, is provided to a system that uses a combination function ⊕ to aggregate
certainty values. The main issue is to quantitatively describe the aggregation of certainty as
the number of observations increases without bound. The issue of the asymptotic consensus
growth rate is an important one. For example, the creators of MYCIN encountered diffi-
culties associated with the fact that their combination function leads to very rapid growth
of consensus [3]. We will show that our framework allows the growth rate to be controlled
by choosing appropriate frame transformations. We will also show that the degree of skep-
ticism of nonlinearly scaled transformation-based combination functions is reflected in the
asymptotic consensus value as the number of sources increases.
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Concretely, the situation at hand is as follows. Given a combination function ⊕ and
given a number p between 0 and 1, consider the sequence (pn)n∈N defined by:

p0 = 0

pn+1 = pn ⊕ p
(41)

In words, pn is the combined degree of certainty associated with n certainty judgements of
value p, according to the combination function ⊕. We are interested in determining the
behavior of pn for large values of n.

4.1 Admissible transformation-based combination functions

Let us begin by illustrating the sort of analysis that we are interested in, for the special case
of the probabilistic combination function given in the Example of the Introduction. In this
case one obtains the following sequence of combined certainty estimates as in Eq. 41:

p0 = 0

pn+1 = pn + p− pnp = pn(1− p) + p
(42)

The pn are therefore the partial sums of a geometric sequence:

pn = p
n−1∑
j=0

(1− p)j = 1− (1− p)n (43)

and approach the limiting value 1 exponentially fast as n→ 0. Our analysis in terms of frame
transformations below will show that this rate of convergence follows from the asymptotic
behavior of the inverse frame transformation in this case.

Proposition 4.1. Let ⊕ be an admissible transformation-based combination function with
associated frame transformation β. Define the sequence (pn) of combined values as in Eq. 41.
Then

pn → 1 as n→∞ (44)

Furthermore, convergence occurs at the rate

pn = β−1(Cn) (45)

with C = β(p), where p is the confidence value that generates the sequence (pn).

Proof. Start with a combination function based on a frame transformation β as in Eq. 11:

a ⊕β b = β−1(β(a) + β(b)) (46)

The sequence of combined certainty estimates defined in Eq. 41 becomes:

p0 = 0

pn+1 = β−1 (pn + p)
(47)
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Define:

πn = β(pn), π = β(p) (48)

Then one has

π0 = 0

πn+1 = πn + π
(49)

Therefore:

πn = nπ, (50)

so that the pn approach β−1(∞) = 1 as n→∞. The rate of consensus growth is determined
by the asymptotic behavior of the frame transformation β. Indeed, by Eq. 50 one obtains

pn = β−1 (nβ(p))

This completes the proof of the Proposition.

The preceding Proposition shows that if β−1(x) approaches 1 exponentially fast as x→ ∞,
as is the case for the probabilistic combination function considered above, for which β−1(y) =
1−e−y, then pn also approaches 1 exponentially fast as n→∞. Other growth rates translate
from β−1 to the sequence pn analogously. For example, the tangent frame transformation
yields a sequence pn that approaches 1 like 1/n. This provides the ability to control the
asymptotic consensus growth rate, thus offering a way to avoid the problems encountered
with the MYCIN combination function.

4.2 Skeptical combination functions

Next we are interested in studying the nature of consensus growth for skeptical transformation-
based combination functions. Specifically, consider the combination function ⊕t correspond-
ing to the frame transformation β including nonlinear scaling by t as in Eq. 18:

p⊕tq = β−1
(
tβ
(
β−1(β(p) + β(q))

))
= β−1 (t(β(p) + β(q))) (51)

In particular, if β = tanh−1 then one has the combination function

p⊕t q =

(
1+p
1−p

)t
−
(

1−q
1+q

)t
(

1+p
1−p

)t
+
(

1−q
1+q

)t (52)

The parameter t is a positive number but is otherwise free. If t = 1, this combination
function is rather similar to the MYCIN combination function of Eq. 2:

p⊕1 q =

(
1+p
1−p

)
−
(

1−q
1+q

)
(

1+p
1−p

)
+
(

1−q
1+q

) =
p+ q

1 + pq
(53)
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It was shown above that, regardless of the choice of frame transformation β, the nonlinearly
scaled operator ⊕t exhibits skeptical behavior when t < 1. We measure the degree of
skepticism using the notion of marginal skepticism; we showed that the marginal skepticism
of ⊕t is 1− t.

We study the convergence of the sequence pn associated by the combination function ⊕t
to a collection of n judgements of certainty p. With notation as above we have:

p0 = 0

pn+1 = β−1 (t (β(pn) + β(p)))
(54)

In contrast to the case of admissible combination functions discussed above, for the nonlin-
early scaled combination functions ⊕t with t < 1, the rate of convergence of the pn toward
their limiting value is always exponential. However, the limiting value p∞ depends on the
scaling parameter t and may therefore be controlled.

Proposition 4.2. Let ⊕ be an admissible transformation-based combination function with
associated frame transformation β. Consider the sequence (pn) defined in terms of the skep-
tical t-version ⊕t of ⊕ as in Eq. 54. Then

pn → β−1(Cβ(p)) as n→∞,

where C = t/(1 − t). In particular, if t < 1 then the limiting value is strictly less than 1.
The rate of convergence is exponential whenever t < 1.

Proof. Define

πn = β(pn), π = β(p) (55)

Then one has

π0 = 0

πn+1 = t (πn + π)
(56)

If t = 1, one then sees that πn = nπ, so that the pn approach β−1(∞) = 1 as n → ∞ as
described above in our analysis for admissible combination functions. In the case t < 1, the
linear recurrence in Eq. 56 may be solved by using the method of variation of constants,
yielding:

πn =
n−1∑
j=0

tn−jtπ =
tπ

1− t
(1− tn) , (57)

Eq. 57 shows that the rate of convergence toward the limiting value is always exponential in
the case t < 1. It also follows in the case t < 1 that the limiting value as n→∞ is:

π∞ =
tπ

1− t
(58)
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The limiting value of the pn is now obtained from Eq. 58 by using Eq. 55:

p∞ = β−1(π∞) = β−1

(
tπ

1− t

)
This completes the proof.

Proposition 4.2 shows that the asymptotic limit p∞ of the pn is obtained from the “seed”
value p by a nonlinear scaling transformation with steepness parameter t/(1− t). The limit
p∞ of the pn is the inverse image via β of the finite number on the right-hand side of Eq. 58
and is thus strictly less than 1. For example, if t = 1/2 one has p∞ = p. Values of t greater
than 1/2 yield values of p∞ between p and 1, while values of t smaller than 1/2 yield values
of p∞ less than p, which is “skeptical” behavior. An asymptotic version of the degree of
marginal skepticism of Definition 2.1 may be defined here in a natural way:

σ∞ = 1− lim
p→0

p∞
p

It is easy to see that the asymptotic marginal skepticism σ∞ is given here by:

σ∞ = 1− t

1− t

In terms of the marginal skepticism σ = 1− t of the combination function ⊕t, one has:

σ∞ = 2− 1

σ

Thus, the asymptotic marginal skepticism is an increasing function of the marginal skepticism
of the underlying combination function ⊕t.

Conclusions

We have presented a new framework which provides a unified foundation for the construction
of combination operators for use in such areas as confidence aggregation in knowledge-based
systems, relevance rating combination in information retrieval, and lateralization assessment
in neurobiology. Our framework is based on the postulate that different combination opera-
tors are warped versions of the standard arithmetic sum operator as viewed in appropriate
frames of reference. We have given examples showing that certain probabilistic combination
operators and MYCIN-like combination operators arise in this way. In addition to unifying
such previously considered operators, our framework provides a nonlinear scaling mechanism
that allows one to modify a given combination operator by providing parametrized families
of operators that extend the original operator. We have shown that this feature allows con-
trol over the degree of skepticism of the operators, i.e. their sensitivity to new information.
We provide an algorithmic method to check whether a given combination operator fits into
our framework or not, and that constructs an appropriate reference frame relating the op-
erator to the arithmetic sum operator whenever such a frame exists. Furthermore, we have
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shown that our framework makes it easy to construct new combination operators, merely
by selecting among the infinitely many admissible frame transformations available. Finally,
we have shown that our framework provides control over the rate at which the combined
measure increases when combining a large number of source measures. This should allow one
to address the difficulties associated with excessively high convergence rates such as those
produced by the ad-hoc combination operator used in the classical knowledge-based system
MYCIN.
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