
1

Java Jitters - The Effects of Java on Jitter in a Continuous Media Server

Mark Claypool and Jonathan Tanner

Computer Science Department, Worcester Polytechnic Institute
{claypool,jtanner}@cs.wpi.edu

Introduction
The tremendous power and low price of today's computer systems have created the opportunity for

exciting applications rich with audio and video. These new continuous media applications promise to
enrich our lives by enhancing our stream-like interactions with the power and flexibility of computers.
Java is equally promising with the potential to transform application development as we know it. The
“write once, run anywhere” nature of Java bytecode continues to score major implementation wins,
especially at large organizations whose need for cross-platform solutions overrides other factors. The
Java Media APIs are designed to meet the increasing demand for continuous media, supporting audio,
video, animations and telephony [JMA98]. The use of Java for continuous media applications is
inevitable.

Before Java can be executed, it must first be compiled from source code into what is known as
bytecode. There are several different ways of executing bytecode as native machine code: a Java Virtual
Machine (JVM) is an interpreter that translates the bytecodes into machine code one by one, over and
over again; a Just in Time (JIT) compiler translates some the bytecodes into machine code just before
they are to be used and caches them in memory for reuse; and a static native compiler translates all the
bytecode operations into native machine code, taking full advantage of traditional compiler
optimizations.

Related work on Java performance has concentrated on the performance of traditional benchmarks
such as Spec95 and the jBYTEmark in Java environments [HCJ+97, HG98]. CaffeineMark seeks to
provide an indicator of Java Applet performance in a Java runtime environment [CM98]. Such research
has shown that JIT and static native compilation can provide impressive performance improvements
over purely interpreted Java. However, traditional benchmarks tend to model traditional application
performance. Continuous media applications have very different performance requirements than
traditional applications.

Although we often think of continuous media as a stream of data, computer systems handle
continuous media in discrete events. An event may be receiving an update packet or displaying a
rendered video frame on the screen. The quantity and timing of these events give us measures that
affect application quality. There are three measures that determine quality for most continuous media
applications [CR98]: Latency, the time it takes information to move from the server through the client to
the user; Jitter, the variation in latency, can cause gaps in the playout of a stream such as in an
audioconference, or a choppy appearance to a video display; and Data Loss which can take many forms
such as reduced bits of color, pixel groups, smaller images, dropped frames and lossy compression.

Delay and loss are the primary concerns for traditional text-based applications. Jitter, however, is a
concern unique to continuous media performance. In the absence of jitter, continuous media frames can
be played as they are received, resulting in a smooth playout, depicted by Figure 1. However, in the
presence of jitter, inter-frame times will vary, as depicted in Figure 2. In Figure 2, the third frame arrives
late at time r2. In the case of audio speech, the listener would experience an annoying pause during this
period. In the case of video, the viewer would see the frozen image of the most recently delivered
frame.

2

In past research, we have empirically shown that an increase in processor load results in an increase
in jitter [CR97]. Interpreted Java has the added processor load of the interpreter, making increased jitter
seem likely. Moreover, object-oriented languages such as Java make heavy use of memory. Java
removes the burden of memory management from the programmer through runtime garbage collection.
This freedom comes at a performance price, however, as JVMs often spend 15 percent to 20 percent of
their time on garbage collection [HG98]. Most significantly, a chart of the memory usage of a JVM
shows a jagged sawtooth pattern (see Figure 3, from [HG98]), indicating that garbage collection is
intermittent.

We hypothesize continuous media applications suffer from increased jitter under most Java runtime
environments because of periodic garbage collection and interpreter processor load. We further
hypothesize compiled Java achieves nearly the same frame rate as C++ but suffers from jitter because of
the overhead of garbage collection in the runtime environment.

Experiments
To evaluate Java performance and test our hypotheses, we designed a portable, platform-neutral

server benchmark that simulated a continuous media server. Our server benchmark captures the
fundamental components of a continuous media server:

• Capture – obtaining data from the codec or data file (in our benchmark, a data file).

0

200

400

600

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Seconds

Fr
ee

 K
b

Heap is running out
of mem, triggering
garbage collection.

Garbage collector
frees up memory
in the heap.

Figure 3. This jagged pattern is typical of memory availability when
the garbage collector disposes of groups of objects.

Title:
jitter-free
Creator:
Tgif-3.0-p7 by William Chia-Wei Cheng (william@cs.UCLA.edu)
Preview:
This EPS picture was not saved

Figure 1. The above figure is a model of a jitter-free stream. Each si is the time at which the server
initiates the transmission of frame i. Each ri is the time at which the client plays frame i.

Figure 2. The above figure is a model of a stream with jitter. Each si is the time at which the server
initiates the transmission of frame i. Each ri is the time at which the client plays frame i.

3

• (De)Compress – formatting the data to a format suitable for the client (in our benchmark,
incrementing a long integer variable in a tight loop, and then modifying the frame array values to
represent compression or decompression).

• Send – transmitting the data over the network (in our benchmark, written to an output file).
Read, (De)Compress and Send are tunable parameters, enabling benchmarking of different

continuous media formats. For example, a video server sending a MPEG video stream would require
different read sizes, compression amounts and send sizes than an audio server sending an voice stream.
In addition, altering the limits of each parameter enables the location of performance bottlenecks. The
following table shows the steps carried out by our server benchmark compared to steps that would be
carried out by an actual continuous media server:

Server Simulated Server

1. Establish connection 1. Open output data file
2. Verify video feed 2. Open input data file
3. Capture frame data 3. Read frame data
4. Compress/decompress 4. Simulate decompression
5. Send frame data 5. Write frame data to output file
6. Sleep until next frame 6. Sleep until next frame

One of the concerns with simulations is that they may abstract away too many details that affect real
application performance. In order to address this concern, in our previous work, we conducted
experiments that verified that the performance of similar simulations comes within 10% of the
performance of real applications built with the same components [CR96].

We implemented our server in Java and ran it under two Java runtime environments: interpreted and
static native compiled. For the interpreted Java, we used the JVM from Sun’s JDK 1.0.2, and for the
static native compiled Java, we used Toba v1.0, a freeware static native compiler [PH98]. In order to
obtain a performance baseline for the Java results, we implemented our server in C++ and ran it under
the same hardware configuration as the Java server. The hardware configuration used for all
experiments was a dedicated PC with an Intel Pentium 166 MHz, 32 MB RAM, 512 KB cache, EIDE
hard disk running Linux 2.0.30. For each experiment run, we captured 50 MB of continuous media
data. We recorded the time between successive frames which we used to derive the inter-frame times.

In order to locate bottlenecks in the Java runtime environments across a variety of different types of
continuous media servers, we tuned the server components, varying the:

• Frame Rate from three frames per second up to thirty frames per second. Previous research has
shown four three frames per second, as being the minimum frame rate needed for remote tasks.
Thirty frames per second is equivalent to full-motion video.

• Read Size from 4k to 76k. 4k was chosen as the average frame size in an MPEG format video
file while seventy six kilobytes was the size of an uncompressed frame of 320x240 at 256 colors.

• Compression Rate over minimal, partial and maximal levels of compression.

• Send Size from 4k to 76k, to match the read size.

Results and Analysis
The effects of Java runtime environments on jitter were striking. Figure 4 shows a visual

comparison of the jitter in the JVM, static native and C++ streams, for a 5 frame-per-second stream with

4

average compression. Visually, the JVM and Toba environments had the same amount of jitter while
C++ by far had the least. We found similar amounts of jitter for all read sizes, send sizes and
compression levels. Surprisingly, jitter increased only slightly under higher levels compression, even
with the JVM.

Java runtime environments had an equally noticably reduced framerate. Figure 5 depicts the results
for a MPEG-type server with minimal compression. If the runtime environment were able to keep up
with the expected frame rate the curve would fall exactly on the “expected” curve in the graph, as was
almost the case for the C++ runtime system. However, both the JVM and Toba were unable to achieve
more than 10 frames per second, as is evident by their curves departing the “expected” curve. We found
similar results for all read and send sizes. Higher levels of compression, however, resulted in a reduced
frame rate for Java and Toba, while C++ was able to achieve full-motion frame rates for all levels of
compression.

Conclusions
We find Java can achieve only 1/3 the framerate of full-motion video (30 frames/second). However,

if the overhead of garbage collection is improved, we predict interpreted Java could achieve 2/3 the
framerate of full-motion video. Static native compiled Java suffers from nearly as much jitter as
interpreted Java. In all cases, C++ is still vastly superior in amount of jitter and maximum framerate to
both interpreted and compiled Java.

In summary, the contributions of this work are:

Figure 4. Observable jitter. Three graphs of server jitter are depicted. From the left, JVM, Toba
and C++. The horizontal axes are seconds. The vertical axes are interframe times in milliseconds.
The frame rate is 5 frames per second with average compression.

Title:

Creator:
gnuplot
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

Title:

Creator:
gnuplot
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

Title:

Creator:
gnuplot
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

Figure 5. Framerate. This graph depicts the expected plus actual frame rate for server runs
with an increasing frame rate. The horizontal axis is the framerate required by the client. The
vertical axis is the time between frames. The expected time is graphed as a baseline. Runs for
JVM, Toba and C++ are shown for framerates from 3-25 with minimal compression.

Title:

Creator:
gnuplot
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

5

• To the best of our knowledge, we are the first to provide experiment-based Java runtime
performance for continuous media applications.

• In addition, we provide a continuous media server benchmark that is tunable to different media
formats. Our server allows us to benchmark Java runtime systems for different continuous media
servers and compare performance to C++ runtime systems.

Will Java always be noticeably slower than C++? While still a matter of debate, many experts agree
that Java will achieve at least 60-70% the speed of native performance. However, as evidenced by the
jitter results in this paper, typical speed improvements do not always result in an equal improvement to
continuous media performance. In particular, the timing constraints imposed by continuous media
applications must be accomodated as well, if continuous media jitter is to be improved.

Future Work
As mentioned in the introduction, a particularly promising means of improving Java runtime

performance is through JIT compilation. We have obtained some preliminary results using Kaffe, a
freeware JIT compiler [Wi98] that suggests that Kaffe, like Toba, performs similarly the Sun JVM under
our continuous media benchmark. Future work is needed to determine these results under reproducable
conditions.

Cross-platform compatibility is one of the most exciting promises offered by Java. This will most
likely bear out in numerous Java continuous media clients to connect to the continuous media servers.
We are developing a benchmark for continuous media clients that will allow Java runtime performance
comparisons similar to those that we have demonstrated here for continuous media servers.

References
[CM98] CaffeineMark Java Benchmark: The industry standard Java benchmark, Pendragon Software. Internet site:

http://www.webfayre.com/cm.html
[CR96] Mark Claypool and John Riedl. A Quality Planning Model for Distributed Multimedia in the Virtual

Cockpit. In Proceedings of ACM Multimedia, pages 253-264, November 1996.
[CR97] Mark Claypool, Joe Habermann and John Riedl. The Effects of High-Performance Processors, Real-Time

Priorities and High-Speed Networks on Jitter in a Multimedia Stream. Technical Report TR 97-023,
Computer Science Department, University of Minnesota, May 1997.

[CR98] M. Claypool and J. Riedl, End-to-End Quality in Multimedia Applications, Chapter 40 in Handbook on
Multimedia Computing, CRC Press, Fall 1998.

[HCJ+97] C. Hsieh, M. Conte, T. Johnson, J. Gyllenhaal and W. Hwu, Optimizing NET Compilers for Improved Java
Performance, IEEE Computer, June 1997.

[HG98] T. Halfhill and A. Gallant, How to Soup Up Java, Byte Magazine, Vol. 23, No. 5, May 1998.
[JMA98] Java Media APIs, Sun Microsystems, 1998. Internet site: http://java.sun.com/products/java-

media
[PHT+97] T. Proebsting, Gregg Townsend, Patrick Bridges, J. Hartman, Tim Newsham, Scott A. Watterson, Toba: Java

for Applications, Technical Report TR97-01, University of Arizona, 1998. Internet site:
http://www.cs.arizona.edu/sumatra/toba

 [Wi98] T. Wilkinson, Kaffe - A Free Virtual Machine to run Java Code, 1998. Internet site:
http://www.kaffe.org/

