
WPI-CS-TR-98-2 January 1998

Data Warehouse Evolution:

Trade-o�s between Quality and Cost of Query Rewritings

by

Amy J. Lee

Andreas Koeller

Anisoara Nica

Elke A. Rundensteiner

Computer Science

Technical Report

Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280

Data Warehouse Evolution:

Trade-o�s between Quality and Cost of Query

Rewritings �

Amy J. Leey, Andreas Koellerz, Anisoara Nicay, and Elke A. Rundensteinerz

(y) Department of EECS (z)Department of Computer Science
University of Michigan, Ann Arbor Worcester Polytechnic Institute

Ann Arbor, MI 48109-2122 Worcester, MA 01609-2280
famyleejanicag@eecs.umich.edu fkoellerjrundenstg@cs.wpi.edu

Abstract

The problem of rewriting queries has been heavily explored in recent years, including in work on query
processing and optimization, semantic query re�nement in decentralized environments, the rewriting of queries
using views, and view maintenance. Previous work has made the restricting assumption that the rewritten query
must be equivalent to the initially given query. We now propose to relax this assumption to allow for query
rewriting in situations where equivalent rewritings may not exist { yet alternate not necessarily equivalent query
rewritings may still be preferable to users over not receiving any answers at all. Our approach is based on a
preference model, an extension of SQL called E-SQL, that captures the intention of the query by how much
deviation from the original query would still be acceptable to the user. In this paper, we introduce an analytical
model of query rewritings that incorporates measures of quality of a query in addition to the commonly studied
measures of costs (query performance). Quality is modeled as a function of the divergence from the intended
view extent, both in terms of the preservation of the information amount and the information type. Both quality
and cost are integrated into one uniform model, called the QC-Model , to allow for a trade-o� among these two
measures. This model can be used to compare two alternate (even if not equivalent) rewritings, and thus to
establish a ranking among a possibly large set of query rewritings. Our model is the �rst to allow for automatic
selection of good solutions in environments with numerous non-equivalent query rewritings. In this paper, we
also report experimental studies that characterize trends, correlations and independence among the di�erent
e�ciency factors, and demonstrate the utility of the proposed QC-Model in terms of establishing a ranking
among rewritings.

Keywords: Evolvable view environment, view synchronization and preservation, data warehouse, cost model,
information descriptions, evolving information sources, rewriting views.

�This work was supported in part by the NSF NYI grant #IRI 94-57609. We would also like to thank our industrial sponsors, in
particular, IBM and Informix.

1 Introduction

Advanced applications such as web-based information services, data warehousing, digital libraries, and data

mining typically gather data from a large number of interconnected Information Sources (ISs) in an environment

such as the World Wide Web [Wid95]. There is generally a large variety and number of autonomous ISs to be

expected, having diverse data models, supporting di�erent query interfaces and query processing capabilities, and

even freely updating both their contents and their capabilities. In order to provide e�cient information access

in such environments, relevant data is often retrieved from several sources, integrated as necessary, and then

assembled into a materialized view . Besides providing simpli�ed and customized information access to customers

without the necessary technical background, materialized views may also o�er a higher availability | o�ering

better query performance as all information can be retrieved from a single location.

However, one important and as of now not yet addressed problem for these applications is that current view

technology only supports static, a-priori-speci�ed view de�nitions { meaning that views are assumed to be spec-

i�ed on top of a �xed environment. Once the underlying ISs change their capabilities, the views derived from

them may become unde�ned. This new problem is in contrast to work on incremental view maintenance which

addresses changes at the data but not at the schema level [ZGMW96, ZWGM97] and to recent work on view

rede�nition [GMR95, MD96].

In the EVE (Evolvable View Environment) project [LNR97b], we began to tackle this new problem [LNR97a,

NLR97, RLN97, NLR98]. We have proposed Evolvable SQL (E-SQL), an extension of SQL that allows a view

de�ner to specify preferences about what information is essential and what information can be replaced or dis-

carded in a materialized view when the base tables providing this information change or become unavailable.

Another contribution of our work is the Model for Information Source Description (MISD) that allows us to ex-

press semantic relationships and overlaps between ISs, while making minimal assumptions about the data model

and capabilities of the ISs. Based on this framework, the EVE system is able to maintain materialized views

(data warehouses) as underlying ISs change their schemas. This process, which we call view synchronization, is

accomplished by adapting view queries according to the schema changes that the underlying ISs undergo.

When a view is synchronized with a capability change, there are typically numerous possible new view queries

(rewritings) that preserve the original query to some degree, depending on how the view was speci�ed using

E-SQL and what meta data about ISs is known (i.e., has been recorded using the MISD). Each of these new view

queries will in general preserve a di�erent amount and di�erent types of information, which for the purpose of

this paper we will term the quality of the view. Also, each new view query will cause di�erent view maintenance

costs, since data will have to be collected from di�erent ISs. We contend that, with these two dimensions, it is

possible to compare di�erent view queries (or legal rewritings) with each other, even if they are not equivalent (as

commonly assumed for query rewritings in the context of query optimization [BLT86, GM95] or in more recent

work on rewriting queries using views [LMS95, CKP95]).

Since a large number of di�erent legal rewritings may exist for a capability change and a given view, we need

a model that allows us to compare these rewritings, establish some (numeric) ranking among them indicating

the relative preference of one solution over alternate ones, and to possibly allow us to identify the best solution.

This question becomes important with a growing number of ISs to query data from, especially if these ISs are

independent from each other and are prone to undergo capability changes during the lifetime of a materialized

view (as is the case on the Internet). A typical example would be a service that queries information about ights

2

and hotel reservations from several travel agencies on the WWW. Here, it is likely that one of the participants

in the system (e.g., an airline company or a hotel chain) changes the type of services (queries) it supports. This

would cause our algorithms to generate a number of suggestions for a new view query that preserve di�erent

amounts of information from the old view query and which would have to be compared against each other.

To solve this problem, we present the QC-Model in this paper which is capable of comparing di�erent view

rewritings (generated as replacements for an original view that has become invalid). It measures the e�ciency

of a query rewriting (view) in the two dimensions of quality and cost . Quality is a function of the view interface

and the set of data being returned from a view query compared to the original view. Cost refers to incremental

view maintenance costs and measures how expensive the new query would be for long-term maintenance of data

in the data warehouse. The two dimensions, quality and cost, are composed of several relevant factors, such as

interface and extent for the quality; transferred data, number of messages, and I/O cost for the cost. We have

integrated these two measures into an e�ciency model that lets us trade-o� between the quality and cost of a

view rewriting.

This QC-Model allows us to now easily compare di�erent view queries based on some computable numeric

e�ciency score taking complex aspects of the solutions into account. Our model can thus be helpful to users by

ranking all possible synchronization solutions in a linear order and allowing the user to make the �nal choice.

Given that view de�ners in EVE can provide the system with preferences on view evolution (using E-SQL), the

complete process of choosing among alternate solutions to view synchronization could even be made transparent

to a view user.

Our experimental studies reported in this paper demonstrate the utility of the proposed e�ciency model in

terms of establishing a ranking among rewritings. Our studies succeed in identifying cases with trends and

correlations among the di�erent e�ciency factors, as well as cases where the measures of cost and quality are

independent from one another. The former �ndings then lead us to suggest possible heuristics for the optimization

of the rewriting process itself. These heuristics may be utilized in the future to develop algorithms that �nd good

legal rewritings without �rst having to compute values for a complete set of rewritten queries. This is however

beyond the scope of this current work.

While we have initially developed this novel QC-Model in the context of our view synchronization problem

of EVE, it is also likely to be useful for a number of di�erent scenarios in the area of query reformulation such

as query rewriting using views [LMS95], where several di�erent ways of rewriting a query are conceivable, or

data warehouse maintenance [AAS97, ZGMHW95], for which our cost measurement approach and optimization

insights gained by our performance studies can be valuable.

This work builds partly upon the EVE project and is complementary to our previous work on �nding and

generating view rewritings [LNR97b]. It goes beyond the work in traditional query optimization [JK84, vdBK94,

AAS97] since it is not concerned with �nding the best way to execute a well-de�ned query, but with �nding the best

(not necessarily equivalent) query for a particular problem. It builds upon previous cost models of incremental

view maintenance [BLT86, ZGMHW95, ZWGM97] but extends the QC-Model to now also incorporate a measure

of divergence from the intended view speci�cation.

In summary, the contributions of this paper are fourfold: First, it identi�es the new problem of trade-o�s of

quality against cost for query rewriting in general and for view synchronization in particular and the need for

an e�ciency model for assessing and evaluating these measures. Second, we explore how to overall �nd good

replacements for materialized view queries that become invalid due to schema changes of underlying base tables.

3

Third, we elaborate this by introducing a new measure of quality for such a replacement, and adopt existing cost

models [ZGMHW95] for our purposes in order to establish an integrated e�ciency model for view synchronization

evaluation. The fourth contribution is an experimental evaluation of our �ndings that demonstrates the utility

of our QC-Model .

The remainder of this paper is organized as follows: Section 2 gives an overview over related work. Section 3

introduces our EVE framework addressing the issue of view adaptation under capability changes and explains

previous work that lead us to the research on the quality and cost issues discussed in this paper. Section 4

introduces our proposed overall solution strategy, whereas Sections 5 and 6 present a detailed analytic model

of quality and performance (cost) trade-o�s, respectively. Section 7 summarizes experiments we have run to

demonstrate the utility of our approach. Section 8 discusses our conclusions.

2 Related Work

To our knowledge, we are the �rst to study the problem of view synchronization caused by capability changes of

participating ISs. Most of the prior work on views in distributed database systems has focused on the problem

of view maintenance (e.g., propagating data changes to the view) [GM95, QW97, CKL+96].

In [RLN97], we establish a taxonomy of view adaptation problems that identi�es alternate dimensions of the

problem space, and hence serves as a framework for characterizing and hence distinguishing our view synchroniza-

tion problem from other (previously studied) view adaptation problems. In [LNR97a, LNR97b], we introduce the

overall EVE solution framework, in particular the concept of associating evolution preferences with view speci�-

cations. We also present an algorithm for achieving view synchronization, called the Simple View Synchronization

algorithm (SVS). SVS produces a set of view de�nitions that can all be used as legal rewritings for view queries

under capability changes. A new algorithm that is more general and imporves on the current SVS algorithm is

introduced in [NLR98]. This Complex View Synchronization algorithm (CVS) generates an even larger number

of alternative legal rewritings, thus raising the need for an e�ciency model as introduced. This current paper

now addresses this need by establishing a model for systematically ranking otherwise incomparable solutions for

view synchronization.

The problem of query optimization has been addressed for instance by Jarke et al. [JK84],

van den Berg et al. [vdBK94], or Agrawal et al. [AAS97]. These works are concerned with optimizing a given query

in order to execute it in an e�cient way. View synchronization in the EVE environment encounters a di�erent

problem, namely we have to select a good (but not necessarily equivalent) query among several possible ones. One

component of the desirability of a new view is of course the cost of view maintenance after IS data updates. For

this, we hence are able to adopt and adapt a measure similar to traditional view maintenance costs [ZGMHW95],

measuring di�erent parameters in an incremental update environment. But for our purposes, we also have to

look at the quality of di�erent view de�nitions in comparison to the original query in terms of their degrees of

preservation of interfaces and extents, a problem that does not occur in traditional query optimization.

For the problem of incremental view maintenance, a concept which we use in our performance studies, earlier

work has been done by several other projects in the literature [CTL+96, GMS93]. Blakeley et al. [BLT86]

are concerned with a centralized environment only. Also, they have looked at incremental view maintenance

assuming non-concurrent updates (updates are su�ciently spaced to not interfere with each other, each update

reaches the data warehouse before the next update is executed at any of the base relations). Lately, work

4

on concurrent updates has been done. Based on the concept of updates interfering with each other due to

long transmission times between base relations and the data warehouse, these works attack increasingly complex

scenarios of handling concurrent updates by collecting update information in queues and handling them in batches.

Zhuge et al. [ZGMHW95, ZWGM97] introduce the ECA algorithm for incremental view maintenance and report

on �ndings on the cost of their algorithm, but in a di�erent environment from ours (a single information source

is assumed). They also give a taxonomy for di�erent levels of correctness for view maintenance algorithms. A

second paper by the same authors (\Strobe", [ZGMW96]) extends their �ndings towards multi-source information

spaces, but does not incorporate any performance model or cost studies. Agrawal et al. [AAS97] propose the

SWEEP-algorithm, which can ensure consistency of the data warehouse in a larger number of cases compared to

the Strobe family of algorithms. Finally, [ZGMHW95] contains a performance study similar to ours. However,

their work is limited to a comparison between traditional view recomputation and incremental view maintenance

algorithms, and does not compare quality and cost between di�erent rewritings for a query, while the latter is

the topic of our work.

To determine the quality of a view rewriting, we need to estimate sizes of overlapping view extents in order to

determine how much information is retained by a new query and how much meaningless new data is introduced.

This in some way parallels the concept of precision and recall used in the �eld of information retrieval [RJB89],

although it is set in an entirely di�erent context. Information retrieval generally does not deal with selecting

subsets of tuples from a typed relation nor with combining such relation fragments via joins into larger result

tuples. Rather, the work on precision and recall establishes measures of how well boolean queries perform on

textual documents in terms of term similarities and counts.

Much research has been done on query reformulation using materialized views. For example, Levy et al. [LRU96,

LMS95, SDJL96] consider the problem of replacing an original query with a new expression containingmaterialized

view de�nitions such that the new query is equivalent to the old one. To the best of our knowledge, there is

no work done in this context of query reformulation using views with the goal of generating queries without

equivalence (for example, the new reformulated query could be a subset of the original query). This approach to

query reformulation [LMS95] has some similarities with our view synchronization process, but again it is set in a

di�erent environment and has di�erent goals. Namely, we have extended the idea of query reformulation by using

a well-de�ned query language E-SQL to specify constraints on query reformulation, thus, when in compliance

with those constraints, we allow the view rede�nitions to be for example a subset or a superset of the original

view. Furthermore, we introduce the concept of ranking alternative view rede�nitions through the QC-Model

presented in this paper.

3 Review of the EVE Project

In this section, we will review the concepts of the Evolvable View Environment (EVE) [LNR97b] as needed for the

remainder of this paper. Our EVE-system provides a solution for the problem of capability changes in distributed

networks of information systems (Figure 1).

Major concepts of this architecture are [LNR97b]:

5

. Information
 Source

Information
 Source

Information
 Source

 Query
Executor

 View
Synchronizer

capability
changes

 View
Knowledge
 Base

. . .
 View
Definition

Extent

 View
Definition

Extent

 Meta
Knowledge
 Base

 MKB
Evolver

 update
notifications

 MKB
 Consistency
 Checker

queries/query results

VIEW SPACE

 View
 Maintainer

INFORMATION SPACE

Materialized View Evolver

Wrapper WrapperWrapper

Figure 1: The Framework of the Evolvable View Environment (EVE).

� IS Registration

All information sources (IS) participating in the system register themselves with EVE through the Meta

Knowledge Base (MKB). The ISs are assumed to be autonomous in their actions, yet semi-cooperative in

the sense that it is possible to establish certain facts (constraints) about their data and relationships of data

between ISs. They also show a certain level of cooperation, in the sense that we assume that the EVE system

is noti�ed when a data or capability change in one of the ISs occurs.

� Meta Knowledge Base (MKB)

Meta information about participating ISs is stored in the MKB. The MKB consists primarily of information

about semantic interrelationships observed between di�erent ISs registered in the system (cf. Section 3.2 for

the Model of Information Source Description).

� View Knowledge Base

The view knowledge base stores information about views de�ned over the ISs by di�erent users. These views

are augmented with a user preference model about view evolution (cf. Section 3.1 for Evolvable SQL).

� View Synchronization

When underlying ISs change their schema (not just their data, as other projects typically assume), exist-

ing view queries have to be adapted in order to keep providing information to their users. This goal is

accomplished by EVE by synchronizing views with the schema changes of underlying ISs (cf. Section 3.3).

Important features of our approach are an extension of SQL to allow for expressing preferences in queries, a

model to specify relations between information sources, and an algorithm to keep up views under schema changes

of underlying ISs. These three features will now be introduced.

6

3.1 Establishing Preferences for the Evolution of SQL Views | E-SQL

E-SQL or Evolvable-SQL is an extension of SQL that allows the view de�ner to express preferences for view

evolution [LNR97b]. A user de�ning a view can specify what information is indispensable, what information is

replaceable by (well de�ned) similar information from other ISs and whether a changing view extent is acceptable

under certain circumstances. This enables the EVE system to better evolve a view under a schema change of one

of the underlying ISs. The following extension to the original SQL SELECT-FROM-WHERE syntax incorporates

user evolution preferences:

CREATE VIEW V (B1; : : : ; Bm) (VE = VEV) AS
SELECT R1:A1;1(AD = AD1;1;AR = AR1;1); : : : ; R1:A1;i1(AD = AD1;i1;AR = AR1;i1); : : : ;

Rn:An;1(AD = ADn;1;AR = ARn;1); : : : ; Rn:An;in(AD = ADn;in ;AR = ARn;in)
FROM R1(RD = RD1;RR = RR1); : : : ; Rn(RD = RDn;RR = RRn)
WHERE C1(CD = CD1; CR = CR1) AND : : : AND Ck(CD = CDk; CR = CRk)

(1)

Figure 2: Syntax of a Generic E-SQL View De�nition.

The set fB1; : : : ; Bmg corresponds to the local names given to attributes preserved in the view V, the set

fAsj;1; : : : ; Asj;ij
g is a subset of the attributes of relation Rj with j = 1; : : : ; n; Ci with i = 1; : : : ; k; are primitive

clauses de�ned over the attributes of relations in the FROM clause. A primitive clause has one of the follow-

ing forms: (< attribute � name > � < attribute � name >) or (< attribute � name > � < value >) with

� 2 f<;�;=;�; >g. All parameters VE ;AD;AR;RD;RR; CD, CR and their respective values are de�ned as

given in Figure 3. For view components that have their evolution parameter values omitted, the default value is

given in column 3 of the table.

Evolution Parameter Domain Default

Attribute- dispensable (AD) true/ false (attribute is dispensable/indispensable) false
replaceable (AR) true/ false (attribute is replaceable/non-replaceable) false

Condition- dispensable (CD) true/ false (condition is dispensable/indispensable) false
replaceable (CR) true/ false (condition is replaceable/non-replaceable) false

Relation- dispensable (RD) true/ false (relation is dispensable/indispensable) false
replaceable (RR) true/ false (relation is replaceable/non-replaceable) false

View- extent (VE) �: no restriction on the new extent �
�: new extent is equal to old extent
�: new extent is superset of old extent
�: new extent is subset of old extent

Figure 3: View Evolution Parameters of E-SQL Language.

A typical E-SQL query looks like this:

CREATE VIEW Asia-Customer (VE = \�") AS
SELECT Name, Address;Phone (AD = true, AR = true)
FROM Customer C (RR = true);FlightRes F
WHERE (C.Name = F.PName) AND (F.Dest = `Asia') (CD = true)

(2)

with all evolution parameters set to false omitted, as this is the default.

7

3.2 Describing Information Sources | MISD

MISD, our Model for Information Source Description, allows a variety of heterogeneous ISs to participate in EVE.

This is accomplished by expressing semantic relationships between these ISs using constraints. As the wrapper of

each IS translates the capabilities of its underlying IS into a common set of primitives, MISD provides a common

model to describe relationships and constraints between di�erent ISs1. Figure 4 shows some of the constraints

supported in our system. These descriptions are collected in a Meta Knowledge Base (MKB) (see Figure 1),

forming an information pool that is critical in �nding appropriate replacements for view components when view

de�nitions become unde�ned.

Name Syntax

Type Integrity Constraint T CR:Ai = (R(Ai) � Ai(Typei))
Join Constraint J CR1;R2

= (C1AND � � �Cl)
Partial/Complete Constraint PCR1;R2

= (� �A1
(�C(�B1)R1) � � �A2

(�C(�B2)R2))

Figure 4: Possible Types of Semantic Constraints for IS Descriptions.

The basic units of information available in each of the ISs are described as follows:

IS:R(A1; : : : ; An): (3)

The domain types of the attributes Ai are described using type integrity constraints, denoted by Ai(Typei). A

join constraint between two relations R1 and R2, denoted as JCR1;R2
, states that tuples in R1 and R2 can

be meaningfully joined if the join condition, i.e., a conjunction of primitive clauses, is satis�ed. A generic join

constraint, de�ned as

J CR1;R2
= (C1 AND � � � AND Cl) (4)

where C1; : : : ; Cl are primitive clauses over the attributes of R1 and R2 states that R1./C1^C2^:::^Cn
R2 is a

meaningful way to join R1 and R2.

A partial/complete (PC) constraint between two relations R1 and R2 states that a (horizontal and/or vertical)

fragment of R1 is semantically contained or equivalent to a (horizontal and/or vertical) fragment of R2 at all

times. EVE makes use of the PC constraints to decide if an evolved view extent is equivalent to, a subset of, or

a superset of the initial view extent. A generic PC constraint between two relations R1 and R2 is speci�ed as

follows:

PCR1 ;R2
= (�Ai1

;:::;Aik
(�C(Aj1

;:::;Ajl
)R1) � �An1

;:::;Ank
(�C(Am1

;:::;Amt
)R2)) (5)

where Ai1 ; : : : ; Aik ; Aj1; : : : ; Ajl are attributes of R1; An1 ; : : : ; Ank; Am1
; : : : ; Amt

are attributes of R2;

T C(R1:Ais) = T C(R2:Ans), for s = 1, : : :,k; and � is f�;�;�g for the partial (� and �) or complete (�)

information constraint, respectively.

1In our �rst implementation of EVE, this is a SQL-based relational type model, although extended object models used by other
projects will be employed in future versions.

8

3.3 View Synchronization

The EVE system employs several algorithms for keeping up views under schema changes of underlying ISs i.e.,

for achieving view synchronization [LNR97b, NLR98]. Once a view is de�ned, EVE tracks schema changes in all

participating ISs for this view. Once a�ected view queries are identi�ed, the view synchronizer then tries to �nd

relations or attributes as replacements for currently deleted information from an IS by exploring meta information

stored about the information space, such as join constraints or PC-constraints.

The E-SQL evolution preferences are then used to determine whether the adapted view is considered to be

acceptable by the user. If a view query can be found that preserves a \su�cient" part of the information that the

old view query originally retrieved, then the view is considered synchronized with the new state of the information

space. Such a rewritten query is called a view rewriting, and if it ful�lls certain criteria of correctness [LNR97b],

it is called a legal rewriting.

Schema changes supported in our current system are the ones commonly found in commercial systems, such

as delete-attribute, add-attribute, change-attribute-name, delete-relation, add-relation and change-relation-name.

4 Our Approach for Ranking Legal Rewritings: An Integrated Ana-
lytic Model for Quality and Cost

In the EVE-system described in the previous section, several possible solutions for the rewriting of a view query

are to be expected for each schema change. Depending on the degree of redundancy in the information space, the

view synchronizer may �nd a large and possibly exponentially (over the size of the information space) growing

number of legal rewritings for an a�ected view. Each legal rewriting may preserve a di�erent combination of

attributes (of the original view) and may be speci�ed on disparate base relations with di�erent cardinalities at

di�erent sites and even computed di�erently, e.g., with di�erent joins compared to the original view de�nition.

Ideally, we would like to preserve the original view fully in terms of both view interface and view extent, and at

the same time be able to maintain the materialized view in an economical way.

But since this goal cannot always be reached, we introduce measures of evaluating the e�ciency of a view

rewriting that is close to the \intent" of the initial query (although not necessarily equivalent) and also has low

long-term view maintenance costs. We express the e�ciency of a query rewriting in terms of its quality and

cost. The �rst measure is the degree of divergence of quality (i.e., information preservation) of the new view

with respect to the old view (See Section 5). The second measure takes the long term view maintenance cost

associated with the legal rewriting into account (See Section 6). In this paper, we will demonstrate that both

quality and cost are very di�erent for di�erent rewritings, which makes it important to select a good rewriting out

of all legal ones for a particular view query and schema change. Our paper focuses on how to de�ne e�ciency ,

i.e., an e�ciency model for query rewritings (which we will refer to as the QC-Model), and how to compute this

e�ciency for a given query rewriting.

Note that all traditional view maintenance strategies conform to the notion that the rewritten query is equivalent

to the original one. On the contrary, we relax the assumption that a query has to be replaced by an equivalent

one and introduce instead the concept of non-equivalent rewritings with a notion of \legality" that is expressed by

our preference model (E-SQL). Furthermore, the view results in EVE are materialized and used for an extensive

period of time. This means more care has to be given to long-term maintenance cost as opposed to one-time view

recomputation cost.

9

As an example, a legal rewriting may be able to preserve all the attributes in the old view, but only return

a small subset of the original results (compared to the original view result). Another legal rewriting may not

be able to preserve all the attributes, but may preserve the original results (when projecting both the new and

the old views at the common subset of attributes). Similarly, a legal rewriting may preserve information to a

higher degree (i.e., have a higher quality) but at the price of also a higher expected view maintenance cost. An

ideal legal rewriting should preserve the original view interface and generate the same set of results without

introducing any surplus tuples, and it should be e�ciently maintainable in the long run. If these ideal goals

cannnot be reached, we try to (1) assess the divergence from this ideal and assign this divergence a normalized

numerical value, (2) estimate (normalized) long-term view maintenance cost, and (3) establish a ranking among

otherwise non-comparable query rewritings by combining these two measures into one in order to compare di�erent

view rewritings.

Our proposed model gives a user of our EVE-system a tool to express the importance of these factors by

assigning weights to them. These weights are called the trade-o� parameters in our model. A legal rewriting

ranks high and is chosen by our system, if it shows low divergence from the original view and has low maintenance

cost. The EVE-system will recommend to replace the a�ected view by the legal rewriting which ranks the highest

in this measurement system. Our system can also show the other legal rewritings to the user in the order of their

numeric e�ciency ranking. Alternatively, a user could also tune the legal rewriting selection result by setting

the tradeo� parameters, if desired. A validation of the utility of our proposed QC-Model based on experimental

studies can be found in Section 7.

5 E�ciency Model: Quality of a Legal Rewriting

5.1 Information Preservation in Rewritings

The information returned by a view is of great importance to the view end-users. Thus in this section, we evaluate

the set of legal rewritings generated by the view synchronizer in terms of the amount of information preserved in

the rewritings.

The information preserved in a view can be discussed in terms of two aspects, namely the attributes preserved

in the view interface and the view extent returned by the query. Ideally, we would like to replace an a�ected view

V by a legal rewriting Vi that fully preserves the original view. That is, (1) Vi preserves the original view interface,

although some information may be taken from other information sources (denoted by Attr(Vi) = Attr(V)), and

(2) it returns the same set of tuples as the original query on the original information space (denoted by Ext(Vi)

= Ext(V)). Otherwise, Vi is said to diverge from the original view V . A legal rewriting Vi is less preferred than

another legal rewriting Vj in terms of the amount of information preservation (denoted by Vi <IP Vj), if Attr(Vi)

� Attr(Vj) and �Attr(Vi)\Attr(Vj)(Vi) � �Attr(Vi)\Attr(Vj)(Vj). That is to say, the \closer" a legal rewriting is to

the original view in terms of information preservation, the more preferred it is.

Example 1 Let a view V be de�ned as follows:

CREATE VIEW V (VE = `�') AS
SELECT A, B (AD = true;AR = true);

C (AD = true;AR = true)
FROM R
WHERE R.A > 10

(6)

10

Assume the attribute R.C is deleted from its site. Let's further assume that the view synchronizer fails to �nd

any appropriate substitute for R.C. Therefore, R.C is dropped from V , and we get a legal rewriting V1 as follows:

CREATE VIEW V1 (VE = `�') AS
SELECT A, B (AD = true;AR = true)
FROM R
WHERE R.A > 10

(7)

Since R.B in V1 is dispensable (its attribute-dispensable parameter AD is set to true), another legal rewriting

V2 of V is obtained by dropping the attribute R.B as well:

CREATE VIEW V2 (VE = `�') AS
SELECT A
FROM R
WHERE R.A > 10

(8)

Here, V2 is less preferred than V1 in terms of information preservation (V2 <IP V1), because

Attr(V2) = fAg � fA,Bg = Attr(V1) and �Attr(Vi)\Attr(Vj)(Vi) = �Attr(Vi)\Attr(Vj)(Vj) with duplicates removed.

(Rewriting V1 preserves \more" than rewriting V2.)

Note that not all legal rewritings can be ranked as easily as in the example shown above. In the following, �rst

we show an example that demonstrates that there is no simple way to order legal rewritings, then we present our

solution approach for ranking various legal rewritings.

Example 2 Let the view V be de�ned as follows:

CREATE VIEW V (VE = `�') AS
SELECT A (AD = true;AR = true);

B (AR = true);
C (AD = true;AR = true);
D (AD = true;AR = true)

FROM R (RD = true;AR = true)

(9)

Assume the relation R is deleted from its site. Let us assume that the view synchronizer �nds two relations S

and T as appropriate substitutes for R. The tuples in each of these relations and the view extent of the original

view V are shown in Figures 5(a) and 5(b). We assume the following two legal rewritings 2:

CREATE VIEW V1 (VE = `�') AS
SELECT A (AD = true;AR = true);

B (AR = true)
FROM S (RD = true;AR = true)

(10)

2Since the attributes preserved in V are all dispensable, our system can generate a whole spectrum of legal rewritings out of these
two legal rewritings by dropping a proper subset of the view components at a time. However, we do not list all these legal rewritings
one by one, because these unlisted legal rewritings are inferior to the legal rewritings listed in queries (10) and (11) in terms of
information preservation.

11

R

A B C D

1
1

1

2

2

2

3

3

9

9

6

6 3

1

2

5

4

6

1

3

7

9

5

0

A B

5

E

S

7

9

0

1

1

2

2

3

6

6
8

B C D

7

6 3 5 5

F

T

3 1 1 2

4

6

7

6 4 6

7 6

8 1 7 1

8 7 92

(a) Base Relations R, S, and T.

A B C D

1
1

1

2

2

2

3

3

9

9

6

6 3

1

2

5

4

6

1

3

7

9

5

0

V

A B

1

1

2

2

3

6

6
8

1

V
V

2 21

2

2
11

2
1

B C D

7

6 3 5

3 1 1

6 4 7

6 4 6

7 6

8 1 7

8 72

(c) View Rewriting: V (d) View Rewriting: V

(b) Original View: V

A B

1

1

2

3

6

6

V V

U
U

V V

B C D

6 3 5

3 1 1 6 4 6
77 6

8 1 7

8 72

B C D

(e) Comparing V with V. (f) Comparing V with V.

82

A B

6 4 7

6 4 7

Surplus tuples
in V but not
in the common
attribute set of V.

Surplus tuples
in V but not
in the common
attribute set of V.

Figure 5: Di�erent Amounts of Information Are Preserved in Legal Rewritings.

CREATE VIEW V2 (VE = `�') AS
SELECT B (AR = true);

C (AD = true;AR = true);
D (AD = true;AR = true)

FROM T (RD = true;AR = true)

(11)

In this example, V1 is able to preserve two attributes A and B, while V2 is able to preserve three attributes

B, C, and D. Therefore, from the point of view of information preservation on the view interface, V2 is superior

to V1. However, as shown in Figures 5(e) and (f), V1 and V2 each preserve three tuples if the common set of

attributes is considered between (V1 and V) and (V2 and V), respectively. But V1 generates one surplus tuple that

was not in the original view V while V2 returns four surplus tuples that were not in V . Thus, from the viewpoint

of information preservation on the view extent, V1 seems to be superior to V2. Therefore, our system must trade

o� the pros and cons between the view interface and view extent preservation in order to be able to rank these

potential rewritings of V in some linear order.

5.2 Information Preservation on the View Interface

The attributes in a view interface can be classi�ed into four categories according to their (attribute-dispensable,

attribute-replaceable) parameter values (see Figure 6). Each row represents one type of category to which a

preserved attribute may belong. Figure 6 has three columns: column one shows the values for the (attribute-

dispensable, attribute-replaceable) parameters, column two the preservation requirement, and column three the

weight. Since any legal rewriting must preserve all the indispensable attributes of the original view V , independent

12

of whether the attributes can be taken from other information sources, all attributes in categories 3 and 4 must

be preserved in the �nal view interface. Thus, we do not assign weights to attributes in categories 3 and 4, and

we do not include these attributes in our discussion any further.

Four Categories for Preserved Attributes

Category Preservation Weight
(dispensable, replaceable) Requirement

C1: (true; true) { w1

C2: (true; false) { w2

C3: (false; true) must stay n/a
C4: (false; false) must stay n/a

Figure 6: Four Categories for Preserved Attributes.

However a view rewriting is still legal if it omits attributes in categories 1 or 2. In e�ect, di�erent legal

rewritings may preserve di�erent combinations of attributes in these two categories. Therefore, we de�ne weights

w1 and w2 (0 � w1; w2 � 1) for a view de�ner to set as needed. We will discuss e�ects of changing weight

parameters in the evaluation section (Section 7), while in this section we now assume one �xed setting of w1

and w2. When w1 and w2 are not explicitly speci�ed by the user, EVE uses the default values set in the system

((w1; w2) = (0:7; 0:3)). The default settings have the property w1 > w2
3. This represents the fact that EVE is in

favor of preserving the replaceable attributes (i.e., attributes in category 1). A view having replaceable attributes

may be evolved further as more schema changes occur (as our experimental evaluation in Section 7 con�rms,

whereas having relatively many non-replaceable attributes (i.e., attributes in category 2) has a negative e�ect on

the further evolvability of a view query. In other words, it is harder to �nd good legal rewritings for a view if its

view elements are non-replaceable.

5.3 Information Preservation on View Extent

We now introduce the notation for common subset of attributes and common-subset-of-attributes-equivalence which

we will need in the remainder of this section.

De�nition 1 Common Subset of Attributes of V with respect to Vi.

Let V and Vi be two relations, such that Attr(V) \ Attr(Vi) 6= ;. We use V �(Vi) to denote the projection of

relation V on the common attributes of V and Vi. That is, V �(Vi) = �Attr(V)\Attr(Vi)V . Similarly, V
�(V)
i is

de�ned as �Attr(V)\Attr(Vi)Vi.

Besides considering the attributes preserved in the legal rewritings, the sets of tuples returned by the queries

will also have an impact on the user's satisfation with a view rewriting Vi. When the view interfaces of a legal

rewriting Vi and the original view V are not the same, the extent preservation evaluation is done by comparing

tuples on the common subset of attributes only 4. When Vi and V have di�erent view interfaces, we say Vi

is common-subset-of-attributes-equal to V , denoted by Vi =� V , if their projections on the common subset of

attributes are equal.

3Note that the absolute values of w1 and w2 are not as important as their relative values, since the measure will be normalized
later.

4When the view interfaces of Vi and V are the same, the extent comparison is done as usual.

13

De�nition 2 Common-Subset-of-Attributes Equivalence.

V =� Vi, i�

(I) 8t 2 V; 9 ti 2 Vi s.t. t[Attr(V) \Attr(Vi)] = ti[Attr(V) \Attr(Vi)]. That is, V
�(Vi) � V

�(V)
i .

(II) 8ti 2 Vi; 9 t 2 V s.t. ti[Attr(V) \Attr(Vi)] = t[Attr(V) \Attr(Vi)]. That is, V
�(V)
i � V �(Vi).

Condition (I) examines whether the legal rewriting Vi preserves all the tuples in the original view V with

respect to the common subset of attributes (with duplicates removed). Condition (II) investigates whether there

are surplus tuples in Vi, i.e., tuples in Vi but not in V with respect to the common subset of attributes. Other

set operations between the view extents of Vi and V can be similarly de�ned on the common subset of attributes

of Vi and V . We summarize the operations and their semantics in Figure 7.

Set Operator Semantics

V =� Vi 8 t 2 Vi, 9 ti 2 V s.t. t[Attr(V) \Attr(Vi)] = ti[Attr(V)\ Attr(Vi)] and
8 ti 2 Vi;9 t 2 V s.t. ti[Attr(V)\ Attr(Vi)] = t[Attr(V)\ Attr(Vi)]

Vi �� V 8 ti 2 Vi, 9 t 2 V such that ti[Attr(V)\ Attr(Vi)] = t[Attr(V)\ Attr(Vi)]
V \� Vi fz j 9 t 2 V ^ 9 ti 2 Vi; z = t[Attr(V) \Attr(Vi)] = ti[Attr(V) \Attr(Vi)]g
V n� Vi fz j 9 t 2 V; z = t[Attr(V) \Attr(Vi)]^ 6 9 ti 2 Vi; z = ti[Attr(V)\ Attr(Vi)]g

Figure 7: Set Operators on the Common Subset of Attributes of V and Vi.

Intuitively, we would like to choose a legal rewriting such that Conditions (I) and (II) are both satis�ed. If it

is not possible to �nd a legal rewriting that satis�es both conditions, we choose a legal rewriting that produces a

view extent as close as possible to the original one. Some legal rewritings may have a larger number tuples in V

preserved, but at the same time generate many extra tuples that were not in V . On the other hand, some legal

rewritings may preserve less tuples in V , but also generate less surplus tuples. In the next section, we discuss

how to generate a good rewriting according to the user's preference by making a choice which tries to have both

conditions (I) and (II) satis�ed to an as large degree as possible.

5.4 Metric of Quality: Degree of Divergence (DD)

We will now present the metric of quality, i.e., the degree of divergence DD, that we de�ne to appraise the

quality of legal rewritings of a view. In this section, we �rst discuss information preservation in terms of the view

interface, then we explain our �ndings on information preservation in terms of the view extent. Finally, we unify

the discussions into one quality measure { the Degree of Divergence of a legal rewriting from the original view.

5.4.1 Degree of Divergence on the View Interface (DDattr(Vi))

Let V be a view and Vi (i � 1) a legal rewriting of V under the capability change CC. Let Attr(Vi) (i � 0) be the

attributes speci�ed in the SELECT clause of Vi. As mentioned earlier, all indispensable attributes in V must be

preserved in every legal rewriting Vi for it to be considered legal. So the indispensable attributes do not have to

be included in our discussion. An attribute A in the view interface of Vi, A 2 Attr(Vi), has two boolean properties

attribute-dispensable AD(A) and attribute-replaceable AR(A) corresponding to their evolution parameters set in

the E-SQL de�nition of the view Vi. Thus, the attributes in Attr(Vi) are classi�ed according to the following

rules:

14

A1
i = fA j A 2 Attr(Vi) ^AD(A) = true ^AR(A) = trueg

A2
i = fA j A 2 Attr(Vi) ^AD(A) = true ^AR(A) = falseg

We de�ne the quality of the view interface of a view Vi as:

QVi = jA1
i j �w1 + jA2

i j �w2; for i � 1 (12)

where jAj
i j is the number of attributes of Vi that fall into the category j (i.e., the cardinality of the set Aj

i). The

quality of the original view V is de�ned likewise and denoted by QV .

The (normalized) degree of divergence of Vi from V in terms of the view interface, denoted by DDattr(Vi), can

then be de�ned as:

DDattr(Vi) =

(
0 if QV = 0
QV �QVi

QV
otherwise

This is a measure of distance of the interface of a view rewriting from the original view interface. QV = 0

means that the attributes contained in the original view V are all indispensable (since indispensable attributes do

not have weights and are not considered in this computation). In this case, if V is evolvable and a legal rewriting

Vi is found, then Vi must preserve the indispensable attributes entirely. That is, QVi = QV (i.e., DDattr(Vi) = 0).

However, when there are one or more attributes in Attr(V) that are dispensable, then QV > 0 and DDattr(Vi)

is computed as de�ned above. When Vi does not preserve any of the dispensable attributes, then QVi = 0 and

DDattr(Vi) = 1. So in terms of the view interface, a legal rewriting Vi is preferred to the legal rewriting Vj if

DDattr(Vi) < DDattr(Vj).

Example 3 We look at the view and legal rewritings de�ned in Example 1. In that example, Attr(V) = fA;B;Cg,

and the two attributes B and C fall into category 1. Therefore, QV = 2 �w1. The legal rewriting V1 preserves the

attribute B (besides the indispensable attribute A). Therefore, QV1 = 1 � w1. On the other hand, the legal rewriting

V2 only preserves the indispensable but none of the dispensable attributes. Therefore, QV2 = 0. Intuitively, V2

diverges more from V than V1 does in terms of view interface preservation. Thus, V1 is preferred to V2 as indicated

by 0:5 = DDattr(V1) < DDattr(V2) = 1.

5.4.2 Degree of Divergence on the View Extent (DDext(Vi))

The view extent of a legal rewriting Vi may diverge from the original view extent of V in two aspects:

D1. The (relative) number of tuples from the original view V that are not preserved in the new view Vi, denoted

by

DDext D1(Vi) = 1 �
jVi \� V j

jV �(Vi)j
=

jV n� Vij

jV �(Vi)j
(13)

D2. The (relative) number of surplus tuples in the new view Vi that are not in the original view V , denoted by

DDext D2(Vi) =
jVi n� V j

jV
�(V)
i j

=
jV

�(V)
i j � jV \� Vij

jV
�(V)
i j

(14)

15

with V �(Vi) and V
�(V)
i as de�ned in De�nition 1.

Note that, intuitively, the number of tuples that are not preserved (D1) has to be related to the size of the original

view extent jV �(Vi)j, whereas the number of extra tuples coming into the new view (D2) must be seen relative

to the size of the new view extent jV
�(V)
i j. Figure 8 shows the four possible cases of the relationship between the

original view V and a view rewriting Vi (none, either or both of D1, D2 can be empty sets).

(a) Equivalent (d) Approximate(b) Superset (c) Subset

V = Vi

V

V VVi
Vi

Vi D1

D2
D2

D1

Figure 8: Divergence of New View Extent Vi from Original View Extent V .

The total extent divergence of Vi from V is the weighed sum of DDext D1(Vi) and DDext D2(Vi), denoted by

DDext(Vi), and de�ned as follows:

DDext(Vi) = %1 �DDext D1(Vi) + %2 �DDext D2(Vi)

= %1 �
jV �(Vi)j � jVi \� V j

jV �(Vi)j
+ %2 �

jV �(V)
i j � jV \� Vij

jV
�(V)
i j

= 1�
(%1jV

�(V)
i j+ %2jV

�(Vi)j) � jVi \� V j

jV �(Vi)jjV �(V)
i j

(15)

where %1; %2 are the trade-o� parameters between DDext D1(Vi) and DDext D2(Vi) (%1; %2 � 0 and %1+%2 = 1).

Remember that we compare the common subset of attributes in the view extents of Vi and V only, with duplicates

removed �rst. Again, the view de�ner is given a chance to set the trade-o� parameters. If the view de�ner does

not set the parameters explicitly, then the default setting (%1; %2) = (0:5; 0:5) is used.

When the view de�ner sets the view-extent parameter VE = `�', no view extent divergence is allowed, i.e.,

DDext D1(Vi) and DDext D1(Vi) must be both zero. Therefore, we do not discuss this case further. When the

view-extent parameter VE = `�', the �rst number (DDext D1(Vi)) has to be zero for a rewriting to be legal (since

all objects of V must also appear in the new view Vi). Therefore, we only have to compute the second measure

in order to know the e�ciency of Vi in terms of view extent information preservation 5. On the contrary, when

the view-extent parameter VE = `�', the second measure returned is always zero. Therefore, we only need to

compute the �rst measure 6. Whenever the view-extent parameter VE =`�', both numbers have to be computed

(and for meaningful results we should have 0 < %1; %2 < 1). For VE = `�' and VE = `�', none of the expensive

set intersection operations is required. For these cases, the degree of divergence can be computed by counting

the numbers of tuples in the legal rewriting Vi and the original view V (since either V �� Vi or Vi �� V , so the

size of the intersection is equal to the size of the smaller relation).

When VE = `�', then Vi �� V . The expression of DDext(Vi) becomes:

5Since the value of %1 is not relevant in this case, one could set %1 = 0 and %2 = 1 for all \superset"-views.
6Similarly, this case can be supported by having %1 = 1 and %2 = 0

16

DDext(Vi) = %1 �DDext D1(Vi) + %2 �DDext D2(Vi)

= %1 �
jV n� (Vi \� V) j

jV �(Vi)j
+ %2 �

jVi n� (V \� Vi) j

jV �(V)
i j| {z }

0 because Vi �� V

= %1 �
jV �(Vi)j � jVi \� V j

jV �(Vi)j

= %1 �
jV �(Vi)j � jV

�(V)
i j

jV �(Vi)j
(16)

When VE = `�', then Vi �� V . The expression of DDext(Vi) becomes:

DDext(Vi) = %1 �DDext D1(Vi) + %2 �DDext D2(Vi)

= %1 �
jV n� (Vi \� V) j

jV �(Vi)j| {z }
0 because Vi �� V

+%2 �
jVi n� (V \� Vi) j

jV
�(V)
i j

= %2 �
jVi n� (V \� Vi) j

jV
�(V)
i j

= %2 �
jV �(V)
i j � jV �(Vi)j

jV �(V)
i j

(17)

5.4.3 Size Estimation of Overlapping View Extents

In order to compute degrees of divergence using Equation (15), we need to know how many tuples are common

to both the view extents of Vi and V (we need to determine the size of the intersection Vi \� V)
7. With this

number and the number of tuples in both the original view extent V and the new view extent Vi, we can compute

a degree of divergence DDext(Vi) for the view Vi. We will now discuss how one could estimate the size of the

intersection Vi\�V . To help to derive the size of the overlapping view extents, we consider the following example:

Example 4
CREATE VIEW V (VE = `�') AS
SELECT R:A (AR = true);

S:B

FROM R (RR = true);
S

WHERE R:A = S:A (CR = true)

(18)

with the constraints (in the MKB):

1. Three tables R, S, and T are de�ned as R(A), S(A;B), and T (A;B), respectively.

2. J CR, S = (R:A = S:A)

3. J CS, T = (S:A = T:A)

7As mentioned earlier, this computation is only necessary in the case of VE =\�"

17

After the capability change \delete-relation R", one possible rewriting for this view would be [LNR97b]

CREATE VIEW V1 (VE = `�') AS
SELECT T:A (AR = true);

S:B

FROM T (RR = true);
S

WHERE T:A = S:A (CR = true)

(19)

This rewriting replaces the dropped relation R with the relation T , replacing the one missing attribute R:A

in the view by the attribute T:A and adapting the FROM and WHERE clauses accordingly. Starting from this

example, we now demonstrate how to calculate the parameters for Equation (15). In our example, we replaced

attribute R:A with T:A. In order to do a meaningful estimation for an overlapping view extent, we need some

information about the underlying relations, which can be speci�ed for example using PC-constraints 8.

Estimating Overlaps of Relations Using PC-Constraints

We now discuss the estimation of the size of overlapping relations in general terms. We will refer to these �ndings

in the remaining discussion of Example 4. A PC constraint between two attributes in two di�erent relations in

the original and derived views, respectively, enables us to compute view extent overlaps between those two views.

As a reminder, a PC constraint (for a replacement of attributes in a relation R by attributes in a second relation

T) is of the following form (cf. Equation 5, page 8):

PCR1;R2
= (�Ai1

;:::;Aik
(�CR1 (Aj1

;:::;Ajl
)R1) � �An1

;:::;Ank
(�CR2 (Am1

;:::;Amt
)R2))

In such a constraint, either the left, or the right, or both selection conditions CR1
(Aj1 ; : : : ; Ajl), CR2

(Am1
; : : : ; Amt

)

can be conjunctions of primitive clauses or the tautologically true condition (i.e., always true). This gives us four

di�erent kinds of PC constraints to consider. With the relation in the PC-constraint set to any of the three

values � 2 f�;�;�g, we have twelve di�erent kinds of PC-constraints to consider when comparing old and new

view extents (see Figure 9). The size of the overlapping parts of the underlying relations for the original and

the evolved view can be computed for most of these kinds of constraints. For other cases we can �nd minimal

boundaries for the intersection sizes. In order to determine intersection sizes, some statistical parameters about

the underlying relations are necessary. In those cases where the selection conditions in the PC constraints are

not the tautologically true condition we need to know the selectivity of those conditions. For the following, we

assume that these selectivities �R1
and �R2

are known, and that we also know the cardinalities of the dropped

relation and the relation used for replacement (jR1j and jR2j, respectively)
9.

Now we can evaluate the di�erent cases of PC constraints. It turns out that in many of the cases the size

of the overlapping set is determined by the smaller of the two relations (all cases with exact inclusion of one

relation in another). In most other cases, the exact overlap cannot be determined since the PC constraint given

is not su�cient to determine all tuples in the intersection. A graphical representation of the �ndings is given in

Figure 9. In the �gure, each row represents PC constraints of a certain type as described above. For example,

the �rst row labeled no/no represents PC constraints with the selection conditions on both sides of the constraint

8Note that if the view extent parameter VE is not set to `�', PC constraints are necessary to even determine if a rewriting is legal.
But even in the `�'-case, PC constraints help to estimate overlapping view extents.

9These parameters are computed by many commercial database management systems and are stored in a data dictionary.

18

SubsetEquality Superset

R1

R2

(R1)σ

Projected relation R1)

(dropped relation)

Projected relation R2

(replacement relation)

Subsets of R1 or R2 (selected

through PC constraint selection condition)

Subset that cannot be determined

exactly using this PC constraint

*

no/no

no/yes

yes/no

yes/yes

R1=R2

(100% preservation)

R1

R2

R2
R1

R1

R2

(R2)

(R2)R1
R2

R1
R2

= (R1)
(R1)R1

R2

= (R2)

σ

σ

σ
σ

=
(R2)σR1

R2

R1

R2

(R1)σ

R1

R2 R1

R2

(R2)

(R1) (R2)

(R1)

σ

σ

σ

σ

*

*
* * *

*σ

Selection
cond. on
Relations
R1/R2

*

Figure 9: Determining overlapping extent sizes.

being true (i.e., no select conditions). The objects R1 and R2 represent projections of the relations mentioned in

the PC constraint (R1 = �Ai1
;:::;Aik

(R1), R2 = �An1
;:::;Ank

(R2)). Note that in �ve cases, the size of the overlap

can only be estimated so the �nal result for the view overlap may have a larger statistical error. The subsets that

cause these inexact results are marked by an asterisk (*) in the picture. Figure 10 summarizes the �ndings in an

algebraic way.

Type � =� � =� � =�

CR1
= true ^ CR2

= true (\no/no") jR1j = jR2j jR1j jR2j
CR1

= true ^ CR2
6= true (\no/yes") jR1j = �R2

jR2j jR1j � �R2
jR2j

CR1
6= true ^ CR2

= true (\yes/no") jR2j = �R1
jR1j � �R1

jR1j jR2j

CR1
6= true ^ CR2

6= true (\yes/yes") � �R1
jR1j = �R2

jR2j � �R1
jR1j � �R2

jR2j

Figure 10: Estimating jR1\� R2j: Intersection size for di�erent types of PC constraints.

In those cases in which the exact size of the overlapping extents cannot be determined from the PC constraint,

the approximations compute a minimal value for the intersection. In a well de�ned information space, all in-

formation about overlaps of relations should be covered by PC constraints. If this is the case, only the \exact"

overlap cases will occur when �nding replacements.

Computation of jV \� V1j for Example 4

With these calculations on the underlying relations, we can now try to determine the approximate size of the

actual view on top of these relations. The size of a view can be estimated by looking at its view de�nition and

determining how the view is computed from the underlying relations. For example, the size of our example view

rewriting (19) can be estimated as

jV1j � jsT;S � jT j � jSj

19

since the view has a join over these two tables T and S. jsT;S is the join selectivity for a join over T and S.

The size of the overlapping view extent can be estimated similarly. In our example (capability change delete-

relation), tuples from an old relation are replaced with similar tuples from a new relation. So the size of the

overlap is computed by the size of the overlap between the original and replacing relations (cf. Figure 9), joined

with any other relation that appears in the view query. In our example, relation R is replaced by relation T . The

size of the original view V is determined by

jV j � jsR;S � jRj � jSj

So the size of the overlap between the the extent of the original view V and the extent of view rewriting V1 is

approximated by:

jV \� V1j � jsT;S � jR\� T j � jSj

The size of R \� T can be estimated as introduced above from the relation sizes and a PC constraint between

these relations.

If no PC constraints are used (that is possible in the case of VE =`�'), the size of the intersection of two relations

cannot be determined. In this case, we use 0 (zero) as an approximation for the size of the overlapping part, since

without a PC constraint between two relations we have to assume that these relations do not overlap.

5.4.4 Total Degree of Divergence

With the �ndings of this section, we now de�ne the total degree of divergence of Vi from V as:

DD(Vi) = %attr �DDattr(Vi) + %ext �DDext(Vi); where %attr; %ext � 0 and %attr + %ext = 1: (20)

6 E�ciency Model: View Maintenance Cost of a Legal Rewriting

6.1 View Maintenance Basics

We assume that data content updates on the base relations, e.g., inserts or deletes of tuples to/from the base

relations, take place more frequently than capability changes in the information space. Therefore, we choose to

rank the legal rewritings by their long term view maintenance costs 10. A legal rewriting is considered to be

preferred if its expected view maintenance costs are low compared to other legal rewritings. We further assume

that a conventional incremental view maintenance algorithm similar to the one speci�ed in [ZGMHW95] is used

to bring the view extent up-to-date right after the IS data is updated. We assume the IS data updates are

su�ciently spaced from each other, so concurrent data updates are not considered in this paper. Considering

concurrent updates would signi�cantly complicate this portion of our analytical model, but we expect that it

would not have a large enough impact on our �ndings to justify this extra e�ort.

Now, we briey introduce the view maintenance algorithm used for keeping the view extent up-to-

date after one data content change. The cost for multiple updates can then be computed by sum-

ming over all individual costs. For the following, we assume a view V that references relations

R1;0; R1;1; : : : ; R1;n1; : : : ; Ri;1; : : : ; Ri;ni; : : : ; Rm;1; : : : ; Rm;nm residing in m ISs (see Figure 11). Let n = 1 +

10The cost for recomputing the original view extent after a view re-de�nition is a one-time cost. Thus we do not judge the legal
rewriting on this one-time view update cost.

20

V

... ...

IS
i

ISIS
1

... RR... R
1

R
1,1 1, ... RR

ii,1 i, m,1 m, m

m

single−site query + delta relation
from the previous site

results returned by a single site
(become the input to the next site)

RRR

R

R R

Q(V,1)+

Q(V,i)+ Q(V,m)+

 update
notification

R

n n n
R

1,0

1,0

in,1

out,1

in,i

out,i

in,m

out,m

Figure 11: View Maintenance Process.

Pm
i=1 ni be the total number of relations in the information space that are referred to in the view (that is,

including the relation where the data update originated). Further assumptions are:

� the ISs are fully cooperative and are able to join their local relations with incoming delta-relations.

� the data warehouse is not doing any joins.

� the partial results are sent along to the next IS (for all ISs).

� the maintenance is done in a non-parallel way.

� the relations referenced in the view are joined in an order that does not make it necessary to again query

data from an IS already visited11.

� each source may have more relations that are not used by the view de�nition V , but these relations are not

relevant to our computation and thus are not shown in Figure 11.

Without loss of generality, we assume IS1:R1;0 changes its data content, and there are n1 other relations in the

same source referenced in V . After the change is completed, IS1 noti�es EVE about the data change by sending

the update information �R1;0 to the view site. Upon receiving this data update noti�cation, EVE decides which

views are a�ected by it. Then our view maintainer brings the view extents of these a�ected views up-to-date by

executing the following view maintenance algorithm.

Algorithm 1 View-maintenance(V):

begin

1. Delta = data content update at source 1 by relation R(1,0)

2. for (i = 1; i <= m; i++) {

3. view maintainer sends appropriate single site query Q(V,i) with Delta to source i;

4. source i sends the query results, a new Delta, back to view maintainer;

5. }

6. view maintainer updates the view extent of V

end

11If this is the case, we can treat such a physical IS as two or more logical ones and count it more than once in our computation,
which would then generate the correct results for the cost estimates

21

Note that the delta relation (�Rout;i) sent back by the information source ISi to the warehouse becomes the

delta relation (�Rin;i+1) sent along with the single site query Q(V,i+1) to the next information source ISi+1
12.

In order to compute the join at information source ISi+1, the tuples of the delta relation �Rin;i+1 are created

as a new relation at the IS which is then joined with the local relations.

For the estimation of the view maintenance costs of the legal rewritings, similar to prior work, we assume the

following database statistics:

1. The cardinality (number of tuples) of each relation R is known and denoted as jRj.

2. The size of each attribute R:A is known as sR:A (and registered in the MKB). From this information, we can

estimate the size of any set of attributes in a query sent to an IS and the size of the results returned by an

IS.

3. The join selectivity (js) is the percentage of tuples in a relation that would join (with an equijoin condition13)

with tuples in the other relation. For simplicity, we assume the join selectivity is a constant for any two

relations across the information sources (and is also registered in the MKB).

4. We assume there is a local selection condition for each relation involved in a view de�nition. Similar to joins,

we further assume all the operators of the local condition are equality-based (in order to have a constant

local selectivity �ISi)
14.

5. jRj and js do not change signi�cantly as updates occur.

6. K = the number of bytes per physical block.

Similar to previous work [ZGMHW95], we now introduce three major cost factors (for a single data content

update) for a particular legal rewriting: the number of messages exchanged, the number of bytes transferred, and

the I/O cost at the local ISs. Then, we present our workload model that is used to compare the view maintenance

costs of di�erent legal rewritings.

6.2 Cost Factor Based on Number of Messages Exchanged (CFM)

The number of messages exchanged between the information space and the view site for a single base data update,

denoted as CFM , is in the range [0; 2m] (withm denoting the number of information sources involved in the view).

To be more speci�c:

CFM =

8>><
>>:

0 if m = 1 and n1 = 0
2 if m = 1 and n1 > 0
2 � (m � 1) if m > 1 and n1 = 0
2 �m otherwise

n1 is the number of relations in the update-generating IS besides the relation where the update occured. The best

case CFM = 0 occurs when there is only one relation referred to in the view V (or when V is self-maintainable as

discussed in [GJM96]. Self-maintainability is out of the scope of this paper, so we do not discuss it any further.).

Note that when there is only one relation in IS1 referred to in V (n1 = 0), then no query needs to be sent to IS1.

12Note that if there is only a single relation at IS1 referred in V, then the view maintainer does not need to send a query to IS1.
13To simplify we assume all the relations are joined by some equijoin conditions.
14The reason for this assumption is to keep the current dicussion simple. The model can be extended to handle all comparison

operators.

22

6.3 Cost Factor Based on Bytes of Data Transferred (CFT)

Considering an information space consisting of n relations R1; : : : ; Rn in m information sources IS1; : : : ; ISm, we

can derive a general computation for the number of bytes transferred (assuming the algorithm described earlier

in the Section 6.1). This computation assumes that one inserted/deleted tuple is sent from IS1 to the view site,

which is the initial delta relation (the �rst line in Equation 21). Then this delta relation is sent down to the

information source IS1 to join with other relations in IS1 referred to in the view query (the �rst term in the

second line), and the resulting new delta relation (the second term in the second line) is sent back to the view

site. The same process iterates through all the information sources referred to in the view to build up the delta

relation that contains the tuples a�ected by the data update.

In summary, the number of bytes transferred can thus be approximated by:

CFT = sR1;0| {z }
update notification

+ sR1;0| {z }
�Rin;IS1

+�IS1 � JIS1 � s�Rout;IS1| {z }
�Rout;IS1

+ �IS1 � JIS1 � s�Rout;IS1| {z }
�Rin;IS2

+�IS1�IS2 � JIS1JIS2 � s�Rout;IS2| {z }
�Rout;IS2

+ � � �

+ (�IS1 � : : : � �ISm�1)(JIS1 � : : : � JISm�1)s�Rout;ISm�1| {z }
�Rin;ISm

+(�IS1 � : : : � �ISm)(JIS1 � : : : � JISm)s�Rout;ISm| {z }
�Rout;ISm

(21)

where sR is the size (sum of the length of attributes in bytes) of the relation R or intermediate query result R,

�ISi is the average selectivity for the selection conditions used in the single-site query to source ISi 15, and JISi

is the estimated size of the resulting join relation Ri;1 1 Ri;2 1 � � � 1 Ri;ni returned by the source ISi. That is,

JISi � jsni � jRi;1j � jRi;2j � : : : � jRi;nij, with jsni being the average join selectivity for this IS, raised to the power

of the number of relations in this IS.

If all selectivities (�), join selectivities (js), relation cardinalities (jRj), and tuple sizes (s) of the relations are

assumed to be the same for all Rs, we can simplify the above summation as follows:

CFT = 2s+ 2
m�1X
j=1

�
�j � (jRj � js)nR(j) � s(1 + nR(j))

�
+ �j � (jRj � js)nR(j) � s(1 + nR(m)) (22)

with nR(k) =
Pk

i=1 ni.

6.4 Cost Factor Based on I/O (CFI=O)

In this section we use the total number of estimated input and output operations performed by local ISs in order

to process incremental view maintenance for each legal rewriting (in the information space) as a criterion to rank

the legal rewritings. Intuitively, a legal rewriting is preferred if it requires less I/O-operations (resources) from

the overall information space to keep its view extent up-to-date in the long run.

15Since we assume there is one local condition for each relation residing in ISi, �ISi = �Ri;1 � �Ri;2 � : : : � �Ri;ni
for 1 � i � m.

23

Let CFI=O;ISi be the number of estimated I/Os at the information source ISi. CFI=O;ISi is the sum of the

I/Os of the relations that reside at source ISi, i.e., incorporating the I/O-costs of all relations at ISi. Then the

total number of I/Os in the information space, denoted as CFI=O, is the sum of the I/Os at all m sources, i.e.,

CFI=O =
mX
i=1

CFI=O;ISi (23)

CFI=O is inuenced by many parameters, such as the number of relations referred to in the query, the tuple

sizes of the relations, the cardinalities of the relations, the join selectivity factors of the joined relations, the index

structures available for each join attribute, the size of local bu�ers available to the information sources and the

view site, and the join methods available to each of the ISs. For a more detailed discussion, the reader is referred

to Appendix A.

6.5 Total View Maintenance Cost for a Single Data Update

The total view maintenance cost of a view V with respect to a single data update can now be de�ned as:

Cost(V) = CFM � costM + CFT � costT + CFI=O � costI=O (24)

where costM ; costT , and costI=O are the unit prices for sending a message, transferring a data block, and per-

forming a disk I/O, respectively.

6.6 Workload Model

On the one hand, di�erent legal rewritings of a view may make use of information from di�erent information

sources. And, on the other hand, a particular data update only a�ects the views that refer to this data. Therefore,

it is not su�cient to compare various legal rewritings with respect to the same set of data updates. Instead, we

have the following choices for a workload model for our system:

M1. We assume the number of updates of a relation is proportional to the number of tuples in the relation. This

assumption is equivalent to data updates happening to p percent of a relation's tuples within a given time

frame. So a view V is facing a total of p �
Pm

i=1(jRi;1j+ jRi;2j+ � � �+ jRi;nij) updates per time unit 16.

M2. We assume each relation R has a constant number of updates per time unit u, independent of the size or

the location of R. If an information source ISi has ni of its relations used by V , then V is facing a total of

u �
Pm

i=1 ni data updates per time unit.

M3. We assume each information source is facing a constant number of data updates u. In this case, view V

would face a total of m � u updates.

M4. We assume each legal rewriting is a�ected by a constant number u (but di�erent sets) of data content updates.

In this case, we would have to make further assumptions as to the distribution of these updates over all ISs,

e.g., we could assume that data updates happen equally for each view element in the view.

16Remember that we have m ISs and each ISi has ni relations for 1 � i � m.

24

Note that after selecting a speci�c workload model, we can compute the total view maintenance costs,

COST(Vi), for the updates within a certain time unit. If we assume that there are k legal rewritings for an

a�ected view, the total cost of legal rewriting Vi can be normalized as follows:

COST �(Vi) =
COST (Vi)�min1�j�k(COST (Vj))

max1�j�k(COST (Vj))�min1�j�k(COST (Vj))
(25)

This gives us a view maintenance cost between 0 and 1 that we can trade o� against the view quality (Section 5).

6.7 Overall E�ciency of a Legal Rewriting

The overall e�ciency of a legal rewriting can now be computed as

QC(Vi) = 1� (%quality � DD(Vi) + %cost �COST
�(Vi)) (26)

with 0 � %quality; %cost � 1 and %quality + %cost = 1. With both quality and cost normalized, this number will

be between 0 and 1. An e�ciency of 0 means a legal rewriting that preserves no information (which renders it

\useless"), An e�ciency of 1 would identify a \perfect" legal rewriting preserving the complete view interface and

all tuples at no cost. Since the incremental view maintenance cost will never be zero, an e�ciency of 1 can only

be reached if the costs are given no consideration, i.e., if %cost = 0.

7 Experimental Evaluation

We now set out to verify the validity of our proposed QC-Model and get a deep understanding of the interplay

between quality and maintenance costs through a number of experiments. These experiments were conducted in

the context of our EVE system, i.e., all rewritings of a view were being generated by our synchronization algo-

rithm [LNR97a, NLR98]. However, as our system is not fully instrumented with our QC-Model yet, the reported

measures are computed using our algebraic �ndings instead of measuring them directly from an implemented

system. This means, that in this section, we evaluate the QC-Model rather than the complete EVE system.

7.1 Experiment 1: \Survival" of a View

The number of capability changes a view can \survive"17 depends on its evolution parameter settings and the

degree of data redundancy in the information space. In general, when the evolution parameters are set to

dispensable and replaceable and when data is amply duplicated in the information space, then the view has a

higher chance to survive in an evolving environment. As an example, we assume an attribute R:A referred to

in a view is replaceable. When R:A is deleted from its site, EVE will be able to replace R with its replica from

another information site. On the other hand, if R:A is non-replaceable, then even if there is a replica of R:A in the

information space, EVE will not be able to replace R:A in the future. Therefore, when salvaging an a�ected view

de�nition, EVE gives a higher priority to view components with their evolution parameters set to replaceable.

Employing this strategy, EVE has a higher chance to keep the view alive in the future. Theoretically, if there is a

high number of data replicas (i.e., larger than the number of relevant delete{capability-changes) in the information

space and the view components are replaceable, then a view could be kept alive inde�nitely. This observation is

supported by the following experiment in our EVE system. Let's assume a view is de�ned as follows:

17The view can be evolved by our algorithm and stay valid after these capability changes.

25

CREATE VIEW V0 (VE = \�") AS
SELECT R:A (AD = true;AR = true);

R:B (AD = true)
FROM R (RR = true)

(27)

We now assume that R:A is deleted by its information provider. Further, we assume two relations, S(A;C) and

T (A;D), in other information sources are related to the relation R. We have two PC constraints de�ned in the

MKB: PCR;S = (�A(R) � �A(S)) and PCR;T = (�A(R) � �A(T)).

Then, there are three alternative ways to evolve V0:

� One possible solution is to drop the attribute R:B, since it is nonreplaceable but dispensable, and then

replace R:A with an appropriate attribute from either relation S or T . Using this strategy, we get the two

legal rewritings V1 and V2.

CREATE VIEW V1 (VE = \�") AS
SELECT S:A (AD = true;AR = true)
FROM S (RR = true)

(28)

CREATE VIEW V2 (VE = \�") AS
SELECT T:A (AD = true;AR = true)
FROM T (RR = true)

(29)

� Another possible solution is to simply drop the attribute R:A from V0, since it is dispensable. We get V3 as

a legal rewriting:

CREATE VIEW V3 (VE = \�") AS
SELECT R:B (AD = true)
FROM R (RR = true)

(30)

V0

V1 V2 V3

V2

still
alive

deceased

selected when w > w
selected when w < w

1

2

2

1

Figure 12: The Life Span of Legal Rewritings.

Ignoring the view extent quality factor for the time being, if w1 > w2 (that is, if we give a larger weight to

replaceable attributes than to non-replaceable attributes), then EVE would choose V1 and V2 over V3 (attribute

A is in category 1, and attribute B is in category 2; see Section 5.2 for a de�nition of these categories and weight

factors). On the other hand, if w2 > w1, then EVE may choose V3 over the other two legal rewritings (see

Figure 12). Assume EVE chooses V1 to rewrite V0. If S gets deleted later, then the view can still be evolved by

26

rewriting it into V2. On the other hand, if V3 were to be chosen for this �rst rewriting, then any further capability

change in the information space will cause the view to become unde�ned. This supports the default setting of

w1 > w2 for the QC-Model .

7.2 Experiment 2: Ratio between Relations and ISs

In this experiment, we study the relationships between the number of ISs involved in a view and the view

maintenance cost attributed to the view. We conduct this experiment by varying the number of ISs involved in a

view, while �xing all other parameter settings, such as the number of relations referred in a view, the selectivity

and the join selectivity. The main purpose of this experiment is to investigate whether it is bene�cial to retrieve

all information from as few sites or as many sites as possible.

For this experiment, we assume that six relations are used in the view. That implies there are at most six

information sources involved in the view (each relation resides in a di�erent information source) and at least one

information source (all six relations are in one site). The system parameters for our experiment are summarized

in Table 1.

Name Meaning Default Value

n Total number of relations in the information space 6

m Total number of information sites referred in a view f1,6g
jRij Cardinality of the relation Ri, for all i 400
sRi Tuple size of the relation Ri, for all i 100

� Selectivity of a local condition 0.5
js Join selectivity factor 0.005
bfr Blocking factor 10

Table 1: List of System Parameters.

Sites (m) Relation Distribution (# of relations in each site)

1 (6)

2 (1,5), (2,4), (3,3), (4,2), (5,1)
3 (1,1,4), (1,2,3), (1,3,2), (1,4,1), (2,1,3),

(2,2,2), (2,3,1), (3,1,2), (3,2,1), (4,1,1)
4 (1,1,1,3), (1,1,2,2), (1,1,3,1), (1,2,1,2), (1,2,2,1),

(1,3,1,1), (2,1,1,2), (2,1,2,1), (2,2,1,1), (3,1,1,1)
5 (1,1,1,1,2), (1,1,1,2,1), (1,1,2,1,1), (1,2,1,1,1), (2,1,1,1,1)
6 (1,1,1,1,1,1)

Table 2: Relation Distribution across Information Sources.

With this experimental setting, there are six possible scenarios corresponding to the six rows of Table 2. Row

1 for example indicates that the data for the view is retrieved from a single IS, row 2 indicates it is from two

ISs, and so on. Within each scenario, the relations may be distributed di�erently among the ISs. For example,

when there are two information sources involved in a view, one relation can be retrieved from one IS and the

other �ve relations from another IS { represented by (1,5) on the second row; two relations from one IS and the

remaining four relations from another IS { represented by (2,4); and so on. Case (3,3) exhibits the most even

distribution, since there is an equal number of relations in each IS. Cases (1,5) and (5,1) are the most skewed

27

relation distributions. Note that (1,5) is di�erent from the Case (5,1), because in this experiment we assume that

data updates are initiated at the �rst IS. Therefore, (1,5) and (5,1) may incur di�erent view maintenance costs.

We �rst compute the view maintenance cost for every relation distribution in each scenario, then we compute the

average view maintenance cost for that scenario. The results are shown in Figure 13.

1 2 3 4 5 61 2 3 4 5 6

4

8

12

1000

2000

3000

4000

1 2 3 4 5 6

60

30

Number of Sites Number of Sites Number of Sites

(a) Messages Exchanged (b) Bytes Transferred (c) I/O Operations

Figure 13: The Relationships between Numbers of ISs in the View and Three View Maintenance Cost Factors.

As shown in Figure 13, the number of messages exchanged and the number of bytes transferred between the

view site and the information space both increase when the number of information sources involved in a view

increases. That is, the view maintenance cost of a single data update increases when the number of information

sources involved in a view goes up.

7.3 Experiment 3: Relation Distribution

Now we look at the previous experiment from another angle. Within each scenario (i.e., with a �xed number of

information sources involved in a view) we study whether the relation distributions a�ect the view maintenance

costs. Namely, we study whether the view maintenance costs are lower when the relations referred to in a view

are evenly (or uniformly) distributed among the information sources or when they are unevenly distributed. The

results are summarized in Figure 14. The graphs show the number of bytes transferred for three particular join

selectivities. For each setting of js, we compare possible distributions of 6 relations in 2,3, and 4 information

sources, respectively. The possibilities are listed in Table 2, in the chart we group the cases (i.e., (1; 5) � (5; 1)).

Best Legal Rewriting Worst Legal Rewriting

1/5 2/4 3/3 1/2/3 2/2/2 1/1/1/3 1/1/2/21/1/4
(2 sites) (3 sites) (4 sites)

1/5 2/4 3/3 1/2/3 2/2/2 1/1/1/3 1/1/2/21/1/4
(2 sites) (3 sites) (4 sites)

1/5 2/4 3/3 1/2/3 2/2/2 1/1/1/3 1/1/2/21/1/4
(2 sites) (3 sites) (4 sites)

100000

75000

50000

25000250

500

750 3000

2000

1000

Relation Distributions Relation DistributionsRelation Distributions

B
yt

es
 T

ra
ns

fe
rr

ed

B
yt

es
 T

ra
ns

fe
rr

ed

B
yt

es
 T

ra
ns

fe
rr

ed

(a) js = 0.001 (b) js = 0.0022 (c) js = 0.005

Figure 14: The Relationships between Evenness of Relation Distributions and View Maintenance Costs.

28

We �nd no apparent relationship between the view maintenance costs and the evenness of the relation dis-

tribution. Our experimental results show that when the number of tuples in the intermediate results during a

query update grows fast (i.e., we have a relatively high average join selectivity js in our information space), it is

bene�cial to have a more evenly distributed relation allocation (see Figure 14(c) with js = 0:005). On the other

hand, when the number of joined tuples of the delta relation does not grow as fast, it may be advantageous to

have a more skewly distributed information space (see Figure 14(a) when js = 0:001). There are cases where

the evenness of the relation distributions does not have a clear impact. However, as stated in Experiment 2, we

have found a dependency of the view maintenance costs on the number of ISs involved. Therefore, minimizing

the number of ISs involved in a view rewriting should have a higher priority over choosing a certain relation

distribution among the ISs.

7.4 Experiment 4: Relation Cardinality

In this experiment, we study the relationship between the cardinalities of the substituted relations and the overall

e�ciency of the legal rewritings. We conduct this experiment by varying the cardinalities of the substituted

relation while keeping all other parameter settings the same. Let us assume a view V is de�ned as follows:

CREATE VIEW V (VE = `�') AS
SELECT � � �, R2:A (AR = true);R2:B (AR= true);R2:C (AR = true)
FROM R1;R2 (RR = true)
WHERE � � �

(31)

Let us assume that relation R2 is deleted by its information provider, and that there are �ve relations S1; � � � ; S5

in the information space that are identi�ed by the view synchronizer to be appropriate substitutes for R2. Five

new views, V1 : : :V5 can be de�ned that are formed by replacing relation R with the respective relation Rn. The

cardinalities of R2 and the substitute relations for our experiment are summarized in Table 3.

Site Name Relation Name Cardinality

IS1 R2(A;B;C) 4000

IS2 S1(A;B;C) 2000

IS3 S2(A;B;C) 3000
IS4 S3(A;B;C) 4000
IS5 S4(A;B;C) 5000

IS6 S5(A;B;C) 6000

Table 3: Cardinalities of R2, S1; � � � ; S5.

We further assume that the following inter-relationships among these relations hold true: Relation S1 is contained

in relation S2, denoted by a PC constraint: PCS1;S2 = (S1 � S2), S2 in turn is contained in S3, S3 is equivalent

to the deleted relation R2, S3 is contained in S4, and S4 contained in S5 (i.e., S1 � S2 � S3 = R2 � S4 � S5).

Therefore, replacing R2 with Si, for 1 � i � 5, we get �ve alternate yet legal rewritings with di�erent view extents

and view maintenance costs18. Setting the system parameters to w1 = 0:7, w2 = 0:3, %D1 = 0:5, %D2 = 0:5,

%attr = 0:7, %ext = 0:3, costM = 0:1, costT = 0:7, costI=O = 0:2, %quality = 0:9, and %cost = 0:1, we get the metrics

18Note that VE = `�' for this view as given in Equation 31

29

of quality and cost that are summarized in Table 4 (see also Case 1 in Figure 15). The other two cases in Table 4

and Figure 15 are obtained with (%quality = 0:75, %cost = 0:25) and (%quality = 0:5, %cost = 0:5), respectively.

Rewriting DDattr DDext DD Cost (Normalized Cost) QC(Vi) Rating

V1 0 0.25 0.075 842.3 (0) 0.9325 3
V2 0 0.13 0.0375 1193.3 (0.25) 0.94125 2
V3 0 0.00 0.00 1544.3 (0.5) 0.95 1

V4 0 0.10 0.027 1895.3 (0.75) 0.898 4
V5 0 0.17 0.045 2246.3 (1) 0.855 5

Table 4: Ranking of Legal Rewritings for Experiment 4. (Detailed Data for Case 1)

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

�
�
�

�
�
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5

Legal Rewriting

Case 1 (qual. 0.9, cost 0.1) Case 2 (qual. 0.75, cost 0.25)

Case 3 (qual. 0.5, cost 0.5)

O
ve

ra
ll

G
o

o
d

n
es

s

Figure 15: Results of Assessing Legal Rewritings for Experiment 4.

In Section 5 we postulated that the degree of divergence DD(i) for a view rewriting Vi will be large for a relation

whose size is very di�erent from the size of the original relation, and vice versa. The cost of a legal rewriting will

be larger, all other factors equal, with a growing size of the replaced relation(s). Trading o� these two factors

against each other will therefore lead to di�erent results depending on how the trade-o� parameters are set. Our

experiment validates these �ndings.

For example, when the parameters are set to (%quality = 0:9, %cost = 0:1, Case 1), the QC-Model chose legal

rewriting V3 over the other four legal rewritings. Here, we give a high priority to the quality of the rewriting,

which is best when the replacing relation comes as close as possible to the original relation, which is the case in

legal rewriting V3. The graph depicted in Figure 15 shows that the overall e�ciency increases from legal rewriting

V1 until V3 (because the size of the replacing relation approaches the size of the original relation), then becomes

worse as the di�erence between the relation sizes grows bigger.

30

However, in Case 3, with (%quality = 0:5, %cost = 0:5), the cost has a larger impact on the overall e�ciency of

the legal rewriting. Since the cost is continuously increasing as the replacing relations get bigger (i.e., from legal

rewriting V1 to V5), the overall e�ciency of the rewritings decreases, so rewriting V1 (with the smallest replacing

relation) is chosen by our view synchronizer. Even in Case 2, the inuence of the cost on the total result is large

enough for V1 to be selected as best legal rewriting.

Two observations we made from Figure 15 are:

� If we focus our attention on the legal rewritings V3, V4, and V5 (labeled 3, 4, and 5 in Figure 15, rows 3

to 5 in Table 4), we can see that these rewritings are obtained by substituting the deleted relation R2 by a

superset relation. Among these three legal rewritings, V3 is always ranked highest among the three in various

parameter settings. This is because the degrees of divergence (fourth column in Table 4, labeled DD) as

well as the view maintenance costs (�fth column, labeled Cost) go up when the cardinalities of the replaced

relations go up. For these cases, the trade-o� parameters have no inuence on what rewriting is selected to

be best. A consequence is that if we have only superset replacements at our disposal, the replacement that

is closest to the original in terms of the relation size is also the smallest replacement and will always rank

best among legal rewritings.

� If we focus on the legal rewritings V1, V2, and V3 (labeled 1, 2, and 3 in Figure 15, rows 1 to 3 in Table 4), these

rewritings are obtained by replacing the deleted relation R2 with a subset relation. The degrees of divergence

of the rewritings go down as the sizes of the replacement relations go up (column four in the table), but

the view maintenance cost of the legal rewritings increases with the cardinality of the substituted relations

(column �ve). Therefore, the overall e�ciency of these rewritings depends on the trade-o� parameters. For

Case 1, V3 is the best among the three. For Cases 2 and 3, i.e, when the view maintenance costs are weighted

heavier, then V1 is ranked higher by the e�ciency model.

7.5 Experiment 5: Workload Models

While our previous experiment computed the view maintenance cost for a single data update, Experiment 5

considers the e�ect of the four di�erent workload models M1, M2, M3 and M4 as de�ned in Section 6.6 for

computing the view maintenance cost within a period of time.

Workload model M1 assumes a number of updates which is proportional to the size of a relation. In order to

evaluate the inuence of this workload model on our �ndings, we look again at Experiment 4, which compares

�ve di�erent legal rewritings with di�erent relation sizes (cardinalities). With the cardinalities of the replacing

relations growing from rewriting V1 through V5 (i.e., from left to right in Figure 15), the number of updates in

this workload model grows proportionally. As an example, we assume a ratio of 1 update per 100 tuples. This

gives us the situation in Table 5.

We observe that a workload model only inuences the cost (and not the quality) of a legal rewriting, and in

the case of M1, the inuence is proportional to the relation size. However, since our model normalizes the cost

factor before combining it into the overall e�ciency measure, both the normalized cost factors and hence the �nal

e�ciency values are unchanged.

The workload model M2 assumes a constant number of updates per relation, i.e., a total number of updates

proportional to the number of relations in a view. As there is no direct correlation between the number of relations

in a view and the quality of the view, a general evaluation would not be very meaningful. However, assuming

31

Rewriting DD Cost # of updates Normalized Cost QC(Vi) Rating

V1 0.075 842.3 20 0 0.9325 3
V2 0.0375 1193.3 30 0.25 0.94125 2
V3 0.00 1544.3 40 0.5 0.95 1

V4 0.027 1895.3 50 0.75 0.898 4
V5 0.045 2246.3 60 1 0.855 5

Table 5: Ranking of Legal Rewritings for Experiment 5. (Workload Model M1)

we could �nd other rewritings with the same quality but with a di�erent number of relations, then the workload

model M2 would encourage us to pick a legal rewriting with the fewest relations possible as the cost factor would

be most reduced.

The workload model M3 assumes that there are n updates per information source per time unit. That is, if

a view is speci�ed over m information sources, then there is a total of m � n updates for the view per time unit.

Extending Experiment 2, the results obtained from this experiment are shown in Table 6 and in Figure 16.

Rewriting # sites # updates CFM CFT CFI=O

V1 1 10 30 8000 310

V2 2 20 92 27200 620
V3 3 30 186 57600 930
V4 4 40 312 99200 1240

V5 5 50 470 152000 1550
V6 6 60 660 216000 1860

Table 6: Assessments of Legal Rewritings for Experiment 5.

1 2 3 4 5 61 2 3 4 5 6

Bytes Transferred

1 2 3 4 5 6

I/O OperationsMessages Exchanged

Number of Sites Number of Sites Number of Sites

200

400

600

100000

150000

200000

50000

2000

1500

1000

500

Figure 16: Results of Assessing Legal Rewritings for Experiment 5.

Under this experimental setup, our e�ciency model would favor a legal rewriting that has the smallest possible

number of information sources involved in the view de�nition to replace the a�ected view de�nition. Under this

workload model, a small number of information sites has the advantage of a small number of updates, plus the

overall e�ciency is also better for rewritings with a smaller number of ISs.

Workload model M4 (i.e., having a �xed number of data updates for each legal rewriting) gives the same results

as when considering a single data update, since a �xed number is multiplied with the single data update view

maintenance cost for each scenario (as discussed in Experiment 2). Hence, it need not be considered any further

here.

32

7.6 Heuristics

Based on the �ndings in Sections 5 and 6, we identify some heuristics that can help a view synchronizer to pick

a good legal rewriting without having to compute all possible legal rewritings for a certain capability change.

As Equation (21) suggests and we now con�rmed with Experiments 2 and 3, a view optimizer would prefer a

legal rewriting with a smaller number of information sources and with relations with smaller cardinalities.

Experiment 4 supports the following heuristic: A view optimizer should choose a legal rewriting whose view

component replacement is as close as possible to the original view component in terms of size. For example, when

a relation R is deleted from its site, if two relations S and T are both legitimate replacements for R and we know

T � S � R, then we would select relation S as the replacement since its size is closer to the size of the original

relation.

Experiment 5 supports some �ndings on heuristics for di�erent workload models (cf. also Section 6.6). For the

workload model M1 (number of updates proportional to relation size), we would prefer a legal rewriting that refers

to smaller relations, i.e., we would use the smallest relation that provides a satisfactory amount of information to

the view user. For the models M1 and M2 (constant number of updates per relation), and M3 (constant number of

updates per IS), we would aim to minimize the number of information sites referred in a view. Even in workload

model M4 (globally constant number of updates for a legal rewriting) with the number of information sites �xed,

we would minimize the number of joins or the number of primitive clauses in the WHERE clause.

Assuming that data updates are equally likely to occur at each relation (model M2), we can �nd an intuitive way

to minimize the number of messages exchanged. All other parameters equal, the number of messages exchanged

between the information space and the view site is minimized when the number of information sources referred

in V is minimized, since no messages have to be sent between information sources when relations are located in

the same IS. That is, a legal rewriting is chosen over other legal rewritings if the number of information sources

involved in its view de�nition is smaller.

Lastly, we would choose a legal rewriting with a smaller number of relations referred to in the FROM clause,

e.g., even if only one attribute is deleted from a relation R, we would replace R entirely if an appropriate relation

can be found that already participates in the view de�nition (this is valid for all workload models).

8 Conclusion

View synchronization refers to the new and important problem of how to maintain views in dynamic distributed

information systems [RLN97]. These issues become important as more and more diverse and autonomous database

systems are incorporated into large data warehouses. Local schema changes at information sources participating

in a data warehouse will generally cause a view in the warehouse to become invalid. This problem has been

addressed by our previous work on the EVE-project [LNR97a, NLR97, LNR97b, NLR98, LKNR98].

In this work, we now focussed on performance issues raised by view synchronization. Since view evolution

under capability changes of underlying data sources will generate a large number of possible rewritings for an

original view query, it is necessary to compare these rewritings and identify the best solution to maintaining a

view. A novel measure of e�ciency is introduced in this paper that explores the two dimensions of quality and

cost and leads to the de�nition of the QC-Model . This model can be used to establish a ranking among alternate

legal query rewritings for an a�ected view de�nition. It turns out that a ranking is possible among seemingly

33

incomparable solutions using the goodness model we developed, and that it is feasible to introduce parameters to

trade o� quality against cost (and also sub-dimensions of either against each other).

Since the number of query rewritings is potentially large, we also discussed heuristics that can be used to prune

the search space for the best legal rewriting for a given view query, information space, and capability change.

For instance, it is always preferable to select a legal rewriting that refers to a minimal number of information

sources. Also, a rewriting that replaces a dropped relation with a relation similar in size is always preferred. The

experiments that we ran using our system and varying di�erent parameters of the information space (database

size, number of information sources, \strictness" of view query de�nition in E-SQL) support our �ndings.

A �rst prototype of the EVE system is fully functional, and has been demonstrated at the IBM technology

showcase during the CASCON '97 conference [LNR97a]. The results of this paper are currently being incorporated

into our EVE prototype system which had previously simply picked the �rst legal view rewriting it discovered

and not necessarily the best one.

Once the QC-Model has been implemented as evaluation module in the EVE system, we plan to instrument

our view synchronizer tool to associate an e�ciency ranking with all generated rewriting solutions. Other future

work may be to conduct experimental studies to compare the cost portion of our QC-Model with the actual

costs encountered by our system for incremental view maintenance. Lastly, an extension and elaboration of the

heuristics identi�ed in this current work may lead to the development of a novel heuristic view synchronization

algorithm that instead of �rst generating all rewriting solutions and then ranking them, would be able to discard

some of the search space early on.

Acknowledgments. The authors would like to thank students at the Database Systems Research Group at
WPI for their interactions and feedback on this research. In particular, we are grateful to Yong Li and Xin Zhang
for implementing several of the major components of the EVE system, including the MKB, the VKB, and the
SVS algorithm.

References

[AAS97] D. Agrawal, A. El Abbadi, and A. Singh. E�cient View Maintenance at Data Warehouses. In

Proceedings of SIGMOD, pages 417{427, 1997.

[BLT86] J. A. Blakeley, P.-E. Larson, and F. W. Tompa. E�ciently Updating Materialized Views.

Proceedings of SIGMOD, pages 61{71, 1986.

[CKL+96] L.S. Colby, A. Kawaguchi, D.F. Lieuwen, I.S. Mumick, and K.A. Ross. Supporting Multiple View

Maintenance Policies. AT&T Technical Memo, 1996.

[CKP95] S. Chaudhuri, R. Krishnamurthy, and S. Potamianos. Optimizing Query with Materialized Views.

In Proceedings of IEEE International Conference on Data Engineering, 1995.

[CTL+96] L.S. Colby, T.Gri�n, L.Libkin, I.S.Mumick, and H.Trickey. Algorithms for Deferred View Main-

tenance. In Proceedings of SIGMOD, pages 469{480, 1996.

[GJM96] A. Gupta, H.V. Jagadish, and I.S. Mumick. Data Integration using Self-Maintainable Views. In

Proceedings of International Conference on Extending Database Technology (EDBT), 1996.

[GM95] A. Gupta and I.S. Mumick. Maintenance of Materialized Views: Problems, Techniques, and Appli-

cations. IEEE Data Engineering Bulletin, Special Issue on Materialized Views and Warehousing,

18(2):3{19, 1995.

34

[GMR95] A. Gupta, I.S. Mumick, and K.A. Ross. Adapting Materialized Views after Rede�nition. In Pro-

ceedings of ACM SIGMOD International Conference on Management of Data, pages 211{222, 1995.

[GMS93] A. Gupta, I.S. Mumick, and V.S. Subrahmanian. Maintaining Views Incrementally. In Proceedings

of SIGMOD, pages 157{166, 1993.

[JK84] M. Jarke and J. Koch. Query Optimization in Database Systems. ACM Computing Surveys,

pages 111{152, 1984.

[LKNR98] A. J. Lee, A. Koeller, A. Nica, and E. A. Rundensteiner. Data Warehousing Evolution: Trade-o�s

between Quality and Cost. Technical Report WPI-CS-TR-98-2, Worcester Polytechnic Institute,

Dept. of Computer Science, 1998.

[LMS95] A.Y. Levy, A.O. Mendelzon, and Y. Sagiv. Answering Queries Using Views. In Proceedings of

ACM Symposium on Principles of Database Systems, pages 95{104, May 1995.

[LNR97a] A. J. Lee, A. Nica, and E. A. Rundensteiner. Keeping Virtual Information Resources Up and

Running. In Proceedings of IBM Centre for Advanced Studies Conference CASCON97, Best Paper

Award, pages 1{14, November 1997.

[LNR97b] A. J. Lee, A. Nica, and E. A. Rundensteiner. The EVE Framework: View Evolution in an Evolv-

ing Environment. Technical Report WPI-CS-TR-97-4, Worcester Polytechnic Institute, Dept. of

Computer Science, 1997.

[LRU96] A. Y. Levy, A. Rajaraman, and J. D. Ullman. Answering queries using limited external processors.

In Proceedings of the Fifteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of

Database Systems, pages 227{237, Montreal, Canada, 3{5 June 1996.

[MD96] M. Mohania and G. Dong. Algorithms for Adapting Materialized Views in Data Warehouses.

International Symposium on Cooperative Database Systems for Advanced Applications, December

1996.

[NLR97] A. Nica, A.J . Lee, and E. A. Rundensteiner. View Synchronization with Complex Substitution Al-

gorithms. Technical Report WPI-CS-TR-97-8,Worcester Polytechnic Institute, Dept. of Computer

Science, 1997.

[NLR98] A. Nica, A. J. Lee, and E. A. Rundensteiner. The CVS Algorithm for View Synchronization in

Evolvable Large-Scale Information Systems. To appear in Proceedings of International Conference

on Extending Database Technology (EDBT'98), Valencia, Spain, March 1998.

[QW97] D. Quass and J. Widom. On-Line Warehouse View Maintenance. In Proceedings of SIGMOD,

pages 393{400, 1997.

[RJB89] V. V. Raghavan, G. S. Jung, and P. Bollmann. A critical investigation of recall and precision

as measures of retrieval system performance. ACM Transactions on O�ce Information Systems,

pages 205{229, July 1989.

[RLN97] E. A. Rundensteiner, A. J. Lee, and A. Nica. On Preserving Views in Evolving Environments.

In Proceedings of 4th Int. Workshop on Knowledge Representation Meets Databases (KRDB'97):

Intelligent Access to Heterogeneous Information, pages 13.1{13.11, Athens, Greece, August 1997.

[SDJL96] D. Srivastava, S. Dar, H.V. Jagadish, and A.Y. Levy. Answering Queries with Aggregation Using

Views. In International Conference on Very Large Data Bases, pages 318{329, 1996.

[vdBK94] C. A. van den Berg and M.L. Kersten. An Analysis of a Dynamic Query Optimization Schema for

Di�erent Data Distributions. In J. C. Freytag, D. Maier, and G. Vossen, editors, Query Processing

for Advanced Database Systems, chapter 15, pages 449{473. Morgan Kaufmann Pub., 1994.

35

[Wid95] J. Widom. Research Problems in Data Warehousing. In Proceedings of International Conference

on Information and Knowledge Management, pages 25{30, November 1995.

[ZGMHW95] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View Maintenance in a Warehousing

Environment. In Proceedings of SIGMOD, pages 316{327, May 1995.

[ZGMW96] Y. Zhuge, H. Garcia-Molina, and J. L. Wiener. The Strobe Algorithms for Multi-Source Ware-

house Consistency. In International Conference on Parallel and Distributed Information Systems,

December 1996.

[ZWGM97] Y. Zhuge, J. L. Wiener, and H. Garcia-Molina. Multiple View Consistency for Data Warehousing.

In Proceedings of IEEE International Conference on Data Engineering, pages 289{300, 1997.

36

A Cost Factor Based on I/O (CFI=O)

We make the following simpli�cation assumptions for computing the number of I/O operations: (clustered or

non-clustered) indexing is available for all the joined attributes, ample memory is available in each site, and each

query optimizer at the information sites are able to select the best plan of whether to use indexing to retrieve

the joined tuples or retrieve the entire relation, i.e., when the number of tuples in the delta relation is greater

than the number of I/Os to retrieve the entire relation, the query optimizer will retrieve the entire relation. The

number of I/Os required to retrieve the entire relation Ri is

IOi =

�
jRij

bfrRi

�
: (32)

with bfrRi
being the blocking factor on relation Ri.

In order to compute the number of I/Os, we consider an update in relation IS1:R1;0. The tuple value is used

to retrieve the joined tuples from the other relations. Depending on the number of matching tuples and if tuples

can be retrieved in clusters, the number of I/O-operations for this join is within the boundaries

IOi =

2
4min

0
@� jRij

bfrRi

�
; jsi�1 �

i�1Y
j=1

jRjj �

�
js � jRij

bfrRi

�1A ;min

0
@� jRij

bfrRi

�
; jsi �

iY
j=1

jRjj

1
A
3
5 (33)

where 1 � i � n and n is the total number of relations referred in the view de�nition V besides the updated

relation R0.

The total number of I/Os in order to bring the view extent up-to-date is:
Pn

i=1 IOi.

37

