
WPI-CS-TR-98-19 July 1998

The E�ects of High-Performance Processors, Real-Time Priorities

and High-Speed Networks on Jitter in a Multimedia Stream

by

Mark Claypool

Joe Habermann and John Riedl

Computer Science

Technical Report

Series
WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280

The E�ects of High-Performance Processors,

Real-Time Priorities and High-Speed Networks on

Jitter in a Multimedia Stream

Mark Claypool

claypool@cs.wpi.edu

Worcester Polytechnic Institute

Computer Science Department

Joe Habermann

John Riedl

fhabermann,riedlg@cs.umn.edu

University of Minnesota

Computer Science Department

August 12, 1998

1

Contents

1 Introduction 4

1.1 Contributions . 6

1.2 Jitter . 6

1.3 Potential Jitter Reduction . 7

1.4 Hypotheses . 8

2 Related Work 9

2.1 Teleconferencing Systems . 9

2.2 Delay Bu�ering . 9

2.3 Processor Performance . 10

2.4 Real-time Performance . 10

2.5 Network Performance . 11

3 Shared Experimental Design 11

4 Processor Experiments 15

4.1 Speci�c Experimental Design . 15

4.2 Jitter versus Processor Load . 16

4.3 Jitter versus Processor Power . 16

4.4 Summary . 19

5 Real-time Priority Experiments 19

5.1 Speci�c Experimental Design . 19

5.2 Results and Analysis . 20

5.3 Summary . 20

6 Network Experiments 22

6.1 Speci�c Experimental Design . 22

6.2 Results and Analysis . 22

6.3 Summary . 22

7 Quality 24

8 An Example: Videoconference Quality 26

8.1 The Region of Acceptable Videoconference Quality . 26

8.2 Predicting Jitter . 29

2

8.3 Predicting Latency . 30

8.4 Predicting Data Loss . 30

8.5 Predicting Quality . 31

8.5.1 Present Videoconference Assumptions . 31

8.5.2 Future High-Performance Processors and High-Speed Networks 31

8.5.3 Future Users . 31

8.5.4 Future Processor and Network Load . 33

9 Conclusions 35

10 Future Work 36

3

Abstract

Multimedia applications have the potential to enhance work for teams of users collaborating across distances.

Jitter hampers the e�ectiveness of these multimedia applications. Jitter is the variation in the end-to-end delay of

data sent from one user to another. Jitter can cause silent gaps in the playout of an audio stream such as in an

audioconference, or a choppy appearance to a video stream for a videoconference. We experimentally measure the

e�ects of three jitter reduction techniques: high-performance processors, real-time priorities and high-speed networks.

We incorporate our jitter measurements into a general model for multimedia application quality. Our model allows

us to explore how advances in networks and processors will improve application quality compared with real-time

priorities. As an example, we apply our model to a videoconference. We �nd high-performance processors, real-time

priorities and high-speed networks all signi�cantly reduce jitter under conditions of heavy processor and network

load. For the next �ve years, processor and network improvements alone will not reduce jitter enough to eliminate

the need for application bu�ering techniques. However, for multimedia on a LAN, real-time priorities can reduce

jitter enough to eliminate the need for application bu�ering today. On a WAN, especially the Internet, real-time

priorities may not be available on all routers, reducing the e�ectiveness of real-time priorities in reducing jitter. In

this case, bu�ering techniques may still be needed.

1 Introduction

There are many exciting new distributed multimedia applications. Today, two to tens of users can commu-
nicate through a computer audioconference. Tomorrow, tens to hundreds of neuroscientists will explore and
contribute to a distributed brain database [5]. Soon, tens, hundreds and perhaps even thousands of soldiers
will train for combat in a distributed interactive simulation [10]. In particular, there is an increasing interest
in the use of packet-switched networks for performing computer-based multimedia teleconferencing:

� Teleconferencing saves the time and trouble of traveling to collaborate.

� Multimedia is needed because people communicate best when they can draw pictures and use voice
inections and body language rather than simply type text.

� General-purpose workstations can have advantages over the use of specialized hardware: corporate and
academic environments have ready-access to necessary hardware; and teleconferencing can be enhanced
when computers are used through the use of record/playback, on-screen speaker identi�cation, oor
control and subgroup communication.

� Audio and video streams similar to those in a teleconference are often integrated into larger distributed
multimedia applications. For example, a shared editor may allow several users to simultaneously col-
laborate on a document from separate workstations. Audio and video links coupled with the shared
editor enhance the editing process by making it more like face-to-face collaboration.

� Most existing workstations are connected by packet-switched networks.

There are many examples of multimedia applications that are driving this interest in packet-switched mul-
timedia teleconferencing:

Distributed Interactive Simulation. Distributed Interactive Simulation (DIS) applications are designed
to enable soldiers to engage in simulated combat [10]. The DIS protocol allows participation from soldiers
at military bases across the country using current packet-switched networks, saving the time and trouble of
traveling for combat training. Many DIS developers are designing simulators that use o�-the-shelf general
purpose hardware [38]. In order for the combat to be realistic, the simulators use high-quality graphics
and allow communication among the soldiers with audio and video. With the high multimedia system
requirements and many users, applications such as DIS will stress all parts of a computer system.

4

Scienti�c Visualization. Neuroscientists from diverse disciplines plan to collaborate across distances in
exploring various aspects of brain structure [5]. Their design includes a zoomable multimedia database of
images of the brain tissue. High-resolution magnetic resonance imaging (MRI) show the entire brain in a
single dataset. Even higher resolution confocal microscope images are anchored to these MR images in three
dimensions. The user starts a typical investigation by navigating through the MR images in a coarse 3D
model of the brain to a site of interest. The user then zooms to higher resolution confocal images embedded
in the MRI landscape. This real-time navigating and zooming is called \ying." In order to be an e�ective
collaboration tool, ying must provide high-resolution images and a high-frame rate as well as high-quality
audio and video to allow neuroscientists to communicate.

Audioconferences. Audioconferences have been shown to enhance collaborative work among users on
distributed workstations [44, 36, 46]. Why are audioconferences becoming so important? Hearing is one of
our is one of our strongest senses. Thus, sound is one of our most powerful forms of communication. If we
wish to use the exibility and power of computers to support communication and collaboration, then they
must support audio data.

In order to build systems that will adequately support such applications, it is important to predict applica-
tion performance as the number of users increases and evaluate performance and cost tradeo�s for di�erent
system designs. One indication of the performance of an entire computer system is the user's opinion on
the multimedia quality of the applications they run. Multimedia quality is a measure of how closely the
performance of a multimedia application meets the requirements expected by the user. If the user perfor-
mance requirements are met, application quality will be acceptable. If the user performance requirements
are not met, application quality will be unacceptable. We are developing a quality planning model to aid in
designing systems that meet users' quality requirements for multimedia applications in the future.

Although we often think of a multimedia application as a continuous stream of data, computer systems
handle multimedia in discrete events. An event may be receiving an update packet or displaying a rendered
frame on the screen. The quantity and timing of these events give us measures that a�ect application quality.
We have identi�ed three measures that determine quality for most distributed multimedia applications:

� Latency. The time it takes information to move from the server through the client to the user we call
latency. Latency decreases the e�ectiveness of applications by making them less like real-life interaction
[53, 22, 45, 13].

� Data Loss. Any data less than the amount determined by the user requirements we call data loss. Data
loss takes many forms such as reduced bits of color, jumbo pixels, smaller images, dropped frames and
lossy compression [2, 40, 37, 49]. Data loss may be done voluntarily by either the client or the server
in order to reduce load or to reduce jitter and/or latency.

� Jitter. Distributed applications usually run on non-dedicated systems. The underlying networks are
often packet-switched and the workstations are often running multiple processes. These non-dedicated
systems cause variance in the latency, which we call jitter. Jitter can cause gaps in the playout of a
stream such as in an audioconference, or a choppy appearance to a video display [27, 43, 28].

The e�ects of latency on a user's perception of an application is well-understood and well-researched [53,
22, 45, 13]. Similarly, there is a clear relationship between data loss and application quality deterioration
[2, 40, 37, 49]. Methods to ameliorate the e�ects of jitter have been explored by many researchers [48, 43, 16].
The tradeo� between bu�ering and jitter has also been explored [31, 47]. However, to the best of our
knowledge, the e�ects of high-performance workstations, real-time priorities and high-speed networks on jitter
has not been thoroughly investigated. Moreover, the e�ects of jitter on the overall quality of a multimedia
application has not been established.

5

s0 s1 s2 s3 s4

r0 r1 r2 r3 r4

sender

receiver

Figure 1: A Jitter-Free Stream. The above �gure is a model of a jitter-free stream. Each si is the time at which the send
process initiates the transmission of frame i. Each ri is the time at which the receiving process plays frame i.

s0 s1 s2 s3 s4

r0 r1 r2 r3 r4

sender

receiver

Figure 2: A Stream with Jitter. The above �gure is a model of a stream with jitter. Each si is the time at which the send
process initiates the transmission of frame i. Each ri is the time at which the receiving process plays frame i.

1.1 Contributions

The major contributions of this paper are:

� A comparison of measures of jitter that have been used by jitter researchers.

� An experimentally-based study of the e�ects of high-performance processors, real-time priorities and
high-speed networks on jitter.

� A multimedia application quality model that enables the prediction of application performance and
evaluation of system design tradeo�s.

� Performance predictions for videoconferences with high-performance processors and networks, multiple
users and increasing system load.

� Predictions on the importance of application jitter reduction techniques in the future.

1.2 Jitter

In a distributed multimedia application, a multimedia stream is generated at the sending workstation and
sent over a network to the receiving workstation. The data is generated and sent in �xed-sized quantities
called frames. The end-to-end frame delay is the time between a frame's generation on the sender and the
time it is processed by the receiver. Variation in this end-to-end delay we call jitter. We have observed jitter
on the order of a few hundred milliseconds when sending a multimedia stream using unloaded workstations
on a quiet Ethernet local area network.

How does jitter a�ect a multimedia stream? In the absence of jitter, the frames can be played as they are
received, resulting in a smooth playout, depicted by Figure 1. However, in the presence of jitter, interarrival
times will vary, as depicted in Figure 2. In Figure 2 the third frame arrives late at r2. In the case of audio
speech, the listener would experience an annoying pause during this period. In the case of video, the viewer
would see the frozen image of the most recently delivered frame.

Human ears and eyes can smooth over occasional glitches in audio and video streams, so typically some
latency, jitter and data loss is acceptable. The amount of latency, jitter and data loss will determine the
application quality. The more, the worse the quality. The less, the better the quality. The acceptable amount
of latency, jitter and data loss varies from application to application. In Section 8, we study the acceptable
amount of latency, jitter and data loss for a videoconference application.

6

Level Possible Jitter Reducing Technique

Application Application tuning
Bu�ering

System Disk layout/scheduling
Alternate network protocols
Operating system priorities

Hardware High-performance processors
High-speed networks

Fast disks

Table 1: Hierarchy of Possible Jitter Reducing Techniques

1.3 Potential Jitter Reduction

To summarize, jitter is one of the fundamental components for multimedia application quality. Jitter can
cause gaps in the playout of an audio or video stream. Therefore, if we decrease jitter, we will have a
less choppy playout and better application quality. In seeking to decrease jitter, we can tune the applica-
tion, the operating system or the underlying hardware. This gives us a hierarchy of possible jitter reducing
techniques. Table 1 depicts this hierarchy. Application techniques for reducing jitter include application
tuning and bu�ering. System techniques for reducing jitter include disk layout/scheduling, alternate net-
work protocols and operating system priorities. Hardware techniques for reducing jitter include hardware
improvements, such as high-performance processors, high-speed networks and fast disks. We consider the
merits of conducting research on each jitter reducing technique:

Application Tuning and Bu�ering. Application-level techniques for reducing jitter are done in the
context of compensating for the jitter produced by the underlying computer system. There has been a
lot of research done on application techniques [15, 46, 35]. Controlled frame playout through bu�ering, in
particular, has been well studied [31, 43, 50, 48, 16]. With bu�ering, transmitted frames are held in memory
by the receiver for a period of time. Then, the receiver plays out each frame with a constant latency,
achieving a steady stream. If the bu�er is made su�ciently large so that it can hold all arriving data for a
period of time as long as the tardiest frame, then the user receives a complete, steady stream. However, the
added latency of data can be disturbing [41]. So there is a tradeo� between ameliorating the e�ects of jitter
and minimizing the amount of latency due to bu�ering.

Computer systems continue to get faster while human perceptions remain the same. Future system improve-
ments may remove enough of the underlying jitter such that application-level jitter reduction techniques
are unnecessary. How far in the future will this be? In this work, we seek to answer this question by ex-
perimentally measuring the e�ects of system improvements on jitter. Then, based on the rate of hardware
improvements, we predict when the jitter levels contributed by the underlying system will drop below human
perception.

Disk Layout/Scheduling and Fast Disks. Fast disks, and disk layout/scheduling strategies may be
crucial for reducing jitter for some multimedia applications. However, in a \live" teleconference, data is
generated and consumed in real-time, so in this work, we do not consider the e�ects of disk layout or
scheduling on jitter.

Alternate Network Protocols. Alternate network protocols may reduce jitter over traditional network
protocols. There has been a lot of research into network protocols designed for handling multimedia data

7

[33, 51, 45]. Our work experimentally measures the e�ects on jitter of two high-speed network protocols:
Fibre Channel and HIPPI.

Operating System Priorities. There is evidence to suggest that a signi�cant source of jitter in the
transmission of multimedia may be found in the operating system of the sending and receiving workstations
[18]. The principal de�ciency in process scheduling in modern operating system is that user-level processes
are not preempted while in kernel mode. As a result, increased system activity can increase response time
without bound. In addition, modern operating systems allow priority inversions to occur whereby a low
priority process excludes high-priority processes from accessing time-critical data, thus causing the high-
priority processes to miss deadlines. These de�ciencies can result in latency on the order of 100 milliseconds
[30]. Real-time scheduling allows the operating system to accurately time events and allocation of memory
to the process and provide for priority scheduling. This feature can reduce latency to the order of a few
milliseconds [30]. Our work experimentally compares the bene�ts of real-time scheduling to normal scheduling
to determine if real-time scheduling does reduce jitter.

High-Performance Processors and High-SpeedNetworks. High-performance processors have higher
throughput and a faster context switch time than typical processors resulting in better application response
time. High-speed networks deliver frames from the sender to the receiver faster than typical networks,
reducing the network transmission time. Together, high-performance processors and high-speed networks
networks will reduce application latency. The reduced latency should be accompanied by a reduction in
latency variation, or jitter. We run experiments on SGI Challenge workstation clusters and Fibre Channel
and HIPPI networks under both light and heavy load to determine the e�ects that hardware improvements
have on jitter.

1.4 Hypotheses

Given the above discussion, we make the following hypotheses:

1. High-performance processors reduce jitter.

2. Real-time operating system priorities reduce jitter.

3. High-speed networks reduce jitter.

Processor performance approximately doubles every year [20]. As processor performance increases, latency
decreases. This decrease in latency may be accompanied by a decrease in jitter. However, in order to
signi�cantly improve application quality, any jitter reduction from high-performance processors needs to be
large compared to jitter contributed by the network and operating system.

Since real-time operating system priorities have been shown to decrease latency, it seems natural to assume
that they may decrease jitter, also. If real-time priorities do prove to signi�cantly reduce jitter, application
quality may be improved without expensive hardware upgrades or time-consuming application tuning.

Under heavy loads, high-speed networks should deliver multimedia frames faster than traditional networks.
We would also expect high-speed networks to decrease jitter under such conditions. However under light
loads, the reduced latency from high-speed networks may not signi�cantly improve application quality.

In order to test our hypotheses, we looked at three possible performance evaluation techniques: analytic
modeling, simulation and experimental measurement. Frankowski and Riedl found that analyticallymodeling
jitter is very di�cult, even on a quiet, single-hop network [17]. The contributions to jitter from the operating
systems on both the sender and receiver and the contribution to jitter from the network are di�cult to capture
mathematically. Stein and Riedl had some success in using simulation to evaluate the e�ects of jitter on

8

audioconference quality [47]. However, according to Jain, simulations are most e�ective when they are based
on previous measurement [23]. Unfortunately, to the best of our knowledge, careful measurements of the
contributions to jitter from high-performance processors, real-time priorities and high-speed networks have
not been made. Simulating the e�ects of such components on jitter may give rise to inaccurate or misleading
results. We use experimental measurement to test our hypotheses about the e�ects of high-performance
processors, priorities and high-speed networks on jitter reduction. Future research may be able to use our
performance measurements as a basis for simulations.

Although our hypotheses are simply stated, the answers to these hypotheses are not quite as simple as
\true" or \false." The rest of this paper explains why. Section 2 lists related work. Section 3 details the
experimental design components that were common to all experiments. Section 4 explores the e�ects of
processor performance on jitter. Section 5 examines the e�ects of real-time priorities on jitter. Section 6
looks at the e�ects of high-speed networks on jitter. Section 7 describes how jitter �ts into our a model
for application quality. Section 8 applies our quality model to a videoconference. Section 9 summarizes our
conclusions and Section 10 lists possible future work.

2 Related Work

2.1 Teleconferencing Systems

Several experimental teleconferencing systems have been designed to explore teleconferencing performance
issues such as jitter.

Riedl, Mashayeki, Schnepf, Claypool and Frankowski developed SuiteSound [44]. SuiteSound attempted to
integrate support for multimedia into the Suite programming environment. They performed experiments
to determine the network and CPU load of the SuiteSound tools, including the e�ects of an algorithm that
removes silence from digitized speech.

Hopper developed the Pandora system to investigate the potential for creating and deploying a desktop
multimedia environment based on advanced digital video and audio technology [21]. Pandora o�ered a \tool
box" to those analyzing and working on information by providing a exible communications system that
allowed e�ective interaction between a number of users.

Je�ay, Stone and Smith developed a transport protocol that supports real-time communication of audio/video
frames across campus-area packet switched networks [26]. They demonstrated the e�ectiveness of their
protocol by measuring the performance of their protocol when transmitting audio and video across congested
networks.

Teleconferencing systems attempt to provide quality audio and video to groups of users. One component to
teleconferencing quality is jitter. We provide experimental results on the e�ects that system improvements
will have on reducing jitter. We also present a qualitymodel that can be used to evaluate system con�guration
tradeo�s in predicting teleconferencing quality from the users' perspective.

2.2 Delay Bu�ering

Research in delay bu�ering has looked at ways to ameliorate the e�ects of jitter by controlling the playout
and delivery of frames at either the sender or the receiver.

Ramjee, Kurose, Towsley and Schulzrinne compared the e�ects of four di�erent bu�ering algorithms for
adaptively adjusting the playout delay of audio packets over a wide area network [43]. They found that an
adaptive algorithm which explicitly adjusts to the sharp, spike-like increases in packet delay achieved the
lowest rate of lost packets.

9

Stone and Je�ay presented an empirical study of several bu�ering policies for managing the e�ect of jitter
on the playout of audio and video in computer-based conferences [48]. They evaluated a particular policy
called queue monitoring by comparing it with two policies from other literature. They showed that queue
monitoring performs as well or better than the other policies over the range of observed network loads.

As opposed to the two papers above that use receiver-side bu�ering, Ferrari presented a scheme for bu�ering
data at the network nodes between the sender and receiver [16]. He studied the feasibility of bounding
jitter in packet-switched wide area networks with a general topology. He presented a bu�ering scheme that
is capable of providing a signi�cant reduction in jitter, with no accumulation of jitter along the path of a
channel, and demonstrated that jitter control signi�cantly reduces the bu�er space required in the network.

Talley and Je�ay presented a method of bu�ering at the side of the sender, instead of the receiver [50]. They
presented a framework for transmission control that describes the current network environment as a set of
sustainable bit and packet transmission-rate combinations. They empirically demonstrated the validity of
adapting both packet and bit-rate using simple adaptation heuristics.

Naylor and Kleinrock developed a model for measuring the quality of an audioconference based on the
amount of dropped frames and client-side bu�ering [31]. They used their model to investigate two adaptive
receiver-side bu�ering schemes which may be used to achieve a smooth playout. Method E expands the
bu�er to preserve all incoming frames. Method I ignores all late frames in order to preserve timing.

We explore alternative means to delay bu�ering to reduce jitter. Speci�cally, we examine when hardware
improvements might make delay bu�ering techniques unnecessary. We extend the work of Naylor and
Kleinrock to develop a more general model for multimedia application quality.

2.3 Processor Performance

Dongarra compared the performance of di�erent computer systems in solving dense systems of linear equa-
tions [14]. He compared the performance of approximately 100 computers, from a CRAY Y-MP to scienti�c
workstations such as Apollos and Suns to IBM PC's.

SPEC, the Standard Performance Evaluation Corporation, has sought to create an objective series of
applications-oriented tests, which can serve as common reference points and be considered during the eval-
uation process [11]. The benchmarks are primarily meant for comparing processor speeds. The SPEC
benchmark numbers are the ratio of the time to run the benchmarks on a reference system and the system
being tested.

In our past work, we explored audioconference processor load, focusing on the e�ects of silence deletion [8].
We found silence deletion improves audioconference CPU load more than most alternatives, including 10
times faster processors and multicasting.

Also in our past work we found a strong inverse correlation between SPEC results and the execution times
for fundamental application components, such as the time to send a packet. We use SPEC results to make
predictions to processors other than the ones on which we perform experiments. Performance results from
our research may also be useful to other benchmark researchers.

2.4 Real-time Performance

Govindan and Anderson conjectured that the traditional operating system goals of fairness, maximum sys-
tem throughput and fast interactive response may conict with the needs of real-time applications such as
continuous media and proposed a new processor scheduling algorithm [18]. Je�ay, Stone and Smith made
similar remarks and provided experimental evidence [26]. Je�ay and Stone and went so far as to build an
operating system that supports real-time multimedia [24]. Khanna, Serbree and Zonowsky discussed the

10

design, implementation and performance of the SunOS 5.0 operating system as a real-time system [30].

We experimentally measure the e�ects of Solaris real-time priorities and the Unix nice facility on jitter. We
compare the e�ects of using operating system priorities with processes run under default priorities.

2.5 Network Performance

Boggs, Mogul and Kent discussed Ethernet performance [4]. Based on measurements, they show that for
a wide class of applications, Ethernet is capable of carrying its nominal bandwidth of useful tra�c and
allocates bandwidth fairly.

Lin, Hsieh, Du, Thomas and MacDonald studied the performance characteristics of several types of worksta-
tions running on a local Asynchronous Transfer Mode (ATM) network [34]. They measured the throughput
of four di�erent application programming interfaces (API). They found the native API achieved the highest
throughput, while TCP/IP delivered considerably less.

Lin, Hsieh, Du and MacDonald studied the performance of a Fibre Channel network [33]. The proposed
approaches for improving the maximum achievable bandwidth and reducing end-to-end communication la-
tency.

We experimentally measure the amount of jitter contributed by a traditional Ethernet and compare it with
jitter contributed by two high-speed networks, an Fibre Channel and a HIPPI. We study jitter contributions
under both light and heavy network load conditions.

3 Shared Experimental Design

We ran a series of experiments to test our hypotheses. This section details the design components that were
common to all experiments.

Our experiments were all conducted on a single-hop LAN. In our �rst set of experiments, we attempted to
measure jitter contributions on a WAN. However, getting tight con�dence intervals on WAN jitter proved
extremely di�cult. Perhaps in the future, our LAN measurements may be used in simulations to explore
the e�ects of a WAN on jitter.

Each experiment simulated the transmission of a multimedia stream under various conditions and measured
the amount of jitter. We used pairs of user-level processes that sent and received UDP datagrams using
Berkeley socket I/O. The send process used an interval timer to initiate frame delivery. The receive process
took timestamps using the gettimeofday() system call. These timestamps are used to measure the amount
of jitter.

A jitter measure must reect the extent to which the interarrival times vary. There are several classical
statistical measures of variation that have been used in jitter research:

� Range. The simplest measure of variation is the maximum delay between any two consecutive frames.
Generally speaking, more variation is reected in a larger range. The range also provides a maximum
delay variance for providing jitter guarantees to multimedia applications. For this reason, range has
been used in some past jitter research [52].

� Variance. The primary measure of variation determines the extent to which each frame deviates from
the mean frame interarrival time. The standard way to prevent values below the mean interarrival time
negate values above the mean interarrival time is to square them. Dividing by the number of frames
gives the average squared deviation. This is the standard de�nition of variance and is used by several
jitter researchers [16, 43]. The formula for variance is [12]:

11

V ariance =

Pn

i=1
(xi � x)2

(n� 1)

� Standard Deviation. By taking the square root of the variance, we get the same units as the frame
delay. This is the standard deviation, the classical measure of spread. Several researchers have used
the standard deviation of packet interarrival times as a measure of jitter [47, 28, 3]. The formula for
standard deviation is [12]:

StandardDeviation =

sP
n

i=1
(xi � x)2

(n� 1)

� Absolute Deviation. Variance and standard deviation have proven to be very sensitive to outliers. For
this reason, some researchers have used absolute deviation as a measure of jitter because it is less
sensitive to values far from the mean [46]. The formula for absolute deviation is :

Absdev =
nX

i=1

jxi � xj

In addition, there has been jitter research that has incorporated derived measures of jitter:

� Gaps. When playing out a multimedia stream, a late frame will cause a gap in the smooth playout.
The number of gaps per second can provide a measure of how much jitter there is in the stream. The
number of gaps per second has been used by several jitter researchers [48, 17].

� Jitter Compensation. In addition to determining bu�er size, the jitter compensation curve (see Fig-
ure 16) can be used to measure jitter. The more jitter in a multimedia stream, the larger the area under
the jitter compensation curve. This jitter measure has been used by [19].

There are many more possible measures of jitter: interquartile range, mean length of gaps, median length
and even second-order statistics such as variance on the mean length, etc. We do not consider these methods
further since, to the best of our knowledge, other researchers have not used them to measure of jitter.

However, we did want to compare the equivalence of jitter measures that had been used in previous research.
We recorded interarrival times for all experiments in Sections 4 through 6 and computed jitter values for
range, variance, standard deviation, absolute deviation, gaps and jitter compensation. We then computed
the Pearson's correlation coe�cient [12] for each pair of jitter measures. For the gaps jitter measure, we
assumed all late data is ignored and that there is a bu�er of 250,000 microseconds, values used by other
researchers [31]. Table 2 gives the correlation coe�cient for each jitter measure pair.

Range does not correlate well with any of the other jitter measures. Range measures variation as the distance
between the two most extreme values. Variation depends on more than just the extreme values as we can
see from these two samples: f10,15,15,15,20g and f10,10,15,20,20g both have the same range but there
is less dispersion in the �rst sample.

Gaps does not correlate well with Absolute Deviation and it correlates only slightly well with Area. The
number of gaps per second depends upon the initial bu�er chosen, so di�erent bu�er sizes might have di�erent
correlation results. The rest of the jitter measures correlate well (0.72) to to extremely well (0.99) with each
other. With the exception of Gaps, the measure of jitter chosen does not matter in terms of representing
the number and magnitude of late packets in a multimedia stream. We choose Variance as our measure of
jitter because it is easy to understand and compute and has been used by [47, 28, 3] to measure jitter.

Audio and video have very di�erent bandwidth needs. The Sun audio device records audio at a rate of
8000 bytes/second [1]. Video acquisition hardware typically generates 30 frames-per-second and compressed

12

Range Variance Stddev Absdev Gaps Area

Range 1.00 0.34 0.34 0.33 0.21 0.34
Variance 0.34 1.00 0.96 0.89 0.85 0.95
Stddev 0.34 0.96 1.00 0.95 0.73 0.99
Absdev 0.33 0.89 0.95 1.00 0.66 0.96
Gaps 0.21 0.85 0.73 0.66 1.00 0.72
Area 0.33 0.95 0.99 0.96 0.72 1.00

Table 2: Correlation Among Jitter Measures. This table depicts the correlation coe�cients for 9 di�erent jitter measures.
Range is the maximum interarrival time. Variance is the variance in interarrival times. Stddev is the standard deviation of
interarrival times. Absdev is the absolute deviation of interarrival times. Gaps are the number of playout gaps per second with
250,000 microseconds of bu�ering. Area is the area under the jitter compensation curve. The table is symmetric about the
diagonal.

frames with a resolution of 256x240 require around 2 megabits-per-second of bandwidth [6]. We wanted to
see if either packet size or packet rate changed the frequency and/or magnitude of the interarrival times.

Pairs of packets tend to reect about the mean packet arrival time. If a packet arrives late, the next packet
usually arrives early by the same time that the previous packet was late. When interarrival times become
small, the packet following a late packet is unable to arrive an equal amount early, being unable to arrive
in fewer than zero microseconds. Figure 3 depicts packet reection. There are two multimedia streams
shown. The top stream has a mean interarrival time of 160,000 microseconds. The lower stream has a mean
interarrival time of 30,000 microseconds. When the packet �rst packet arrives late in the 160,000 stream, the
subsequent packet arrives an equal amount early. However, when a packet arrives late in the 30,000 stream,
the subsequent packet arrives almost immediately, being unable to reect an equal amount. Mathematically,
the top stream will have a larger variance, even though they both have an equal chance of a having a packet
arrive late. This reection e�ect is an artifact of the environment and does not accurately indicate the
frequency and magnitude of late packets.

We performed three meta experiments to test if either packet size or packet rate changed the frequency
and/or magnitude of the interarrival times. We subtract the mean from each interarrival time and drop all
points that are below zero. This avoids the reection e�ect and allows us to compare the frequency and
magnitude of late packets. In the �rst experiment, we sent packets of three di�erent sizes at three di�erent
rates: audio-rate (160,000 microseconds) and audio-size (1280 bytes); video-rate (33,000 microseconds) and
video-size (6000 bytes); and mid-rate (100,000 microseconds) and mid-size (4000 bytes). Figure 4 depicts
the results. The correlation between packet rate and variance is an extremely low 0.09.

In the second experiment, we sent packets all of the same size (1280 bytes) at four di�erent rates: 30,000
microseconds, 70,000 microseconds, 110,000 microseconds, and 160,000 microseconds. Figure 5 depicts the
results. The horizontal axis is the time between packets. The vertical axis is the variance. The correlation
between packet rate and variance is an extremely low -0.02.

In both experiments, the correlation between packet rate and jitter was extremely low. This indicates that
the amount of jitter we would expect to see in a high-rate video stream would be the same as the jitter
from a lower-rate audio stream. For all subsequent experiments, we used the audio rate in order to avoid
the reection e�ect and to keep network and processor loads low. We can then measure the e�ects that
increased network and processor load had on jitter. To simulate the transmission of audio, we sent 1280-byte
datagrams every 160,000 microseconds.

13

0

50000

100000

150000

200000

250000

300000

1 2 3 4 5 6 7 8 9

In
te

ra
rr

iv
al

 T
im

e
(in

 m
ic

ro
se

co
nd

s)

Packet

Reflection

Cannot Reflect

160,000 microseconds
30,000 microseconds

Figure 3: The Reection E�ect. The horizontal axis is the packet number. The vertical axis the interarrival time in
microseconds. The zig-zag lines represent two multimedia streams with the top having a mean interarrival time of 160,000
microseconds and the bottom having a mean interarrival time of 30,000 microseconds.

0

5e+08

1e+09

1.5e+09

2e+09

2.5e+09

33000 100000 160000

V
ar

ia
nc

e
(m

ic
ro

se
co

nd
s

^
2)

Time Between Packets (in microseconds)

correlation -.02

Figure 4: Jitter versus Packet Rate. The horizontal axis is the time between packets. The vertical axis is the variance. Each
point represents an independent experiment. The correlation is 0.09.

14

0

5e+08

1e+09

1.5e+09

2e+09

2.5e+09

30000 70000 110000 160000

V
ar

ia
nc

e
(in

 m
ic

ro
se

co
nd

s
^

2)

Time Between Packets (in microseconds)

correlation .09

Figure 5: Jitter versus Packet Rate for 1280 Byte Packets. The horizontal axis is the time between packets. The vertical axis
is the variance. Each point represents an independent experiment. The correlation is -0.02.

Workstation MHz SPECint92

SLC 20 8.6
IPC 25 13.8
IPX 40 21.8
Sparc 5 85 64.0

Table 3: Workstations used in Processor Experiments

4 Processor Experiments

Processor performance approximately doubles every year [20]. These high-performance processors will prob-
ably have a huge e�ect on improving the quality of current multimedia applications and may enable new
multimedia applications. We explore the e�ects of processor performance on jitter, one component in mul-
timedia application quality.

4.1 Speci�c Experimental Design

We used four classes of Sun processors: SLC, IPC, IPX and Sparc 5. Table 3 summarizes the workstation
attributes. The workstations were connected to an 10 Mbits/second Ethernet. We used a process that
increments a long integer variable in a tight loop to induce processor load.

15

0

1e+10

2e+10

3e+10

4e+10

5e+10

0.5 1 1.5 2 2.5 3 3.5 4 4.5

V
ar

ia
nc

e

Load

Figure 6: Sun SLC Jitter versus Receiver Load. The horizontal axis is the processor load as reported by the Unix w command.
The vertical axis the the variance in interarrival times. The middle line is the least squares line �t. The outer two lines form a
95% con�dence interval around the line. The correlation coe�cient is 0.98.

4.2 Jitter versus Processor Load

We �rst test whether increasing processor load increases jitter. We ran an increasing number of counter
processes on the receiver and obtained the processor load from the Unix w command at the end of each
experiment run. The w command displays a summary of the current activity on the system, including the
average number of jobs in the run queue over the last 1, 5 and 15 minutes. Lastly, we did a least squares
line �t for the load versus variance and computed the correlation coe�cient. Figure 6 shows the results of
our experiments on the Sun SLC.

Figure 7 shows the results of our experiments on all the Sun workstations listed in Table 3. Again, we did a
least-squares line �t for the load versus variance, for each class of processor. The slopes of the least squares
line �ts decrease as the processors get more powerful.

From the data presented, we conclude that jitter increases with processor load and jitter decreases with
increased processor power.

4.3 Jitter versus Processor Power

We observed that more powerful processors decrease jitter under high loads, but what happens under con-
ditions of more normal load?

In Figure 7, the lines come to nearly the same point at a processor load of 1. At a load of 1, we could
show no correlation between jitter reduction and processor power, so we sought to isolate our experimental
environment from the outside world to better observe the e�ects of the processor. Figure 8 depicts a series
of attempts to do this. The top line in the picture represents the interarrival times for an experiment run in

16

0

1e+10

2e+10

3e+10

4e+10

5e+10

0 1 2 3 4 5 6 7

V
ar

ia
nc

e
(in

 m
ic

ro
se

co
nd

s
^

2)

Load

SLC
SLC
IPC
IPC
IPX
IPX

Sparc 5
Sparc 5

Figure 7: Jitter versus Receiver Load. The horizontal axis is the processor load as reported by the Unix w command. The
vertical axis the the variance in interarrival times. The lines are the least squares line �ts. The correlation coe�cients range
from 0.97 to 0.99.

normal multi-user processor mode during the day.

We wanted a quiet network to reduce e�ects of network on jitter. We assumed that most users do their work
in the day, so there should have been less network tra�c at night. We recorded interarrival times at night
to see if they appeared signi�cantly di�erent than those recorded during the day. These times are depicted
by the 2nd line from the top of Figure 8. The amount of jitter at night appears no better than the amount
of jitter during the day.

We also wanted to reduce the e�ects of other workstation processes on jitter. We ran an experiment in
single-user mode during the day and recorded the interarrival times, depicted by the 3rd line from the top
of Figure 8. Still, the amount of jitter in single-user mode appears no better than the amount of jitter in
multi-user mode.

We then tried a combination of single-user mode and nighttime. These interarrival times are depicted by the
2nd line from the bottom of Figure 8. The amount of jitter in this case is noticeably less than the amount of
jitter from the multi-user mode experiment run during the day. However, we could still show no correlation
between jitter reduction and processor power.

In our last e�ort to remove as much jitter as possible, we physically disconnected our workstations and subnet
from the surrounding networks and ran our experiments in single-user mode. Success! These interarrival
times are depicted by the bottom line in Figure 8. This nearly at line represents a multimedia stream that
is almost jitter-free.

Once we isolated the machines on a quiet network and ran our experiments in single user mode, we were
able to observe the e�ects di�erent power processors have on jitter under light loads. Figure 9 depicts these
results. There is a strong correlation between increased processor power and decreased jitter.

17

multi
day

multi
night

single
day

single
night

single
ded

0 1000 2000 3000 4000 5000 6000 7000
Time (seconds)

(Gap between lines is 200 milliseconds)

Figure 8: E�ects on Jitter. There are 5 multimedia streams represented in this picture, each by a horizontal line depicting
the interarrival times. \Single" is an experiment run in single-user mode. \Multi" is an experiment run in typical multi-user
mode. \Day" is an experiment run in the middle of the day. \Night" is and experiment run at night. \Ded" is an experiment
run on a dedicated network. Each multimedia stream is o�-set from the one below it by 200 milliseconds.

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0 10 20 30 40 50 60 70

1
/ V

ar
ia

nc
e

(in
 m

ic
ro

se
co

nd
s

^
2)

Power (SPECint92)

correlation: .99

Figure 9: Jitter versus Power. The horizontal axis is the SPECint92 result of the workstation. The vertical axis is 1 / variance
in packet interarrival times. The middle horizontal line is the least squares line �t. The outer two lines form a 95% con�dence
interval around the line. The correlation coe�cient is 0.98.

18

4.4 Summary

Jitter correlates highly with processor load. Since multimedia applications are often processor intensive, they
often force processors to run at a heavy load. Moreover, in the past, applications have tended to expand to
�ll (or surpass) available system capacity, making heavy-load conditions likely in the future. These heavily
loaded workstations will contribute to the jitter in multimedia applications.

Fortunately, under heavy loads, faster processors reduce jitter compared to slower processors. However,
under normal load, the reduction in jitter from the faster processors is overshadowed by the variance in
average processor and network loads. To fully determine the bene�ts of faster processors to jitter, it is
imperative to determine if future multimedia application will, in fact, push processor capacities to the limit.
If so, future multimedia application quality will bene�t from faster processors. If not, application quality
should be improved by means other than processor improvement.

We can use our model in Section 7 to determine if current and future processor capacities are being con-
sumed by multimedia applications. In addition, our model allows us quantitatively determine the bene�t to
application quality from high-performance processors for today's and tomorrow's multimedia applications.

5 Real-time Priority Experiments

From the previous experiments, single-user mode and a dedicated network can nearly eliminate jitter. How-
ever, in a multi-user system a dedicated processor is seldom available, and a dedicated network is even
more rare. It seems unlikely that the above results alone will help users in most cases. We turn to real-
time priorities to see how they compare to the bene�ts of a single-user mode processor under realistic load
conditions.

5.1 Speci�c Experimental Design

We used Sun SPARC Classics running SunOS 5.4, a Unix variant. In Unix, a processes priority determines
how much CPU time the process gets [39]. The kernel will decrease the priority of processes that have
accumulated what it considers \excessive" CPU time. The priority of a process is not the only thing that
determines when a process will be run. To determine which process should be run next, the scheduling
mechanism in the kernel uses a formula that takes into account each process's priority, how much CPU time
each process has gotten recently, and how long it has been since each process has run. SunOS 5.4 extends
Unix process scheduling with real-time support. A real-time process runs in a separate scheduling class than
normal processes. In the default con�guration, a runnable real-time process runs before any other process.
This gives real-time processes the highest priority.

Even without real-time extensions, Unix provides the nice facility. Nice allows you to change the default
priority of a process. Using nice, it is possible to improve the user-mode priority of a process allowing it to
run ahead of other eligible runnable user-mode processes. Processes using the nice facility may still su�er
long dispatch latencies, however. Any process that is suspended waiting for I/O will, upon being re-activated,
have a higher priority than any process that is in user-mode, regardless of its nice value [32].

We varied the process priority from Default (processes were run without enhanced priority), Niced (processes
were invoked using the setpriority(-19) system call as an o�set to determine the �nal user-mode priority
of the process) and Real-Time (processes were given �xed priorities in the SunOS real-time scheduling class
using priocntl() system call).

As in Section 4, we used a process that increments a long integer variable in a tight loop to induce processor
load. We ran separate experiments with one through six of these counter processes.

19

0

5e+09

1e+10

1.5e+10

2e+10

2.5e+10

3e+10

3.5e+10

0 1 2 3 4 5 6

V
ar

ia
nc

e
(in

 m
ic

ro
se

co
nd

s
^

2)

Load

Default

Nice Real-Time

Figure 10: Jitter versus Receiver Load. The horizontal axis is the processor load as reported by the Unix w command. The
vertical axis the the variance in interarrival times. The lines are the least squares line �ts for default priorities, niced priorities
and real-time priorities, as indicated.

5.2 Results and Analysis

Figure 10 compares the jitter for real-time, nice and default priorities as processor load increases. The slopes
of the lines indicate how sensitive a process running under the given priority is to the e�ects of increases in
processor load. The steeper the slope, the more jitter the process contributes as processor load increases.
Both nice and real-time priorities have signi�cantly gentler slopes than default priority, indicating that nice
and real-time processes do not su�er nearly as much jitter as do as default priority processes as processor
load increases.

Figure 11 is a close-up of the nice and real-time priorities in Figure 10. The most steeply line is for default
priority. The next most steeply sloped line is nice priority and the horizontal line is real-time priority. Real-
time priority has nearly a at slope, indicating that real-time processes show almost no increase in jitter
as processor load increases. Nice priority processes, however, do su�er from increased jitter with increased
processor load, as indicated by its steep slope. Notice that the line for nice priority intersects the x-axis at
about a load of two, as opposed to default priority which intersects the x-axis around a load of one. This
indicates that even under light loads, nice priority processes reduce jitter as opposed to default priority
processes.

5.3 Summary

Real-time priorities signi�cantly reduce jitter as processor load increases. The severity of jitter that was
observed when real-time priorities were used was extremely light compared to the jitter without real-time
priorities. Real-time priorities show almost no increase in jitter as processor load increases. Real-time
processes have priority over other processes, allowing them to respond to multimedia data with less jitter

20

0

1e+08

2e+08

3e+08

4e+08

5e+08

6e+08

7e+08

8e+08

0 1 2 3 4 5 6

V
ar

ia
nc

e
(in

 m
ic

ro
se

co
nd

s
^

2)

Load

Default

Nice

Real-Time

Figure 11: Zoom of Jitter versus Receiver Load. This graph is a close-up of Figure 10 by changing the upper bound on the
vertical axis from 3.5e+10 to 8e+08. The horizontal axis is the processor load as reported by the Unix w command. The vertical
axis the the variance in interarrival times. The lines are the least squares line �ts for niced priorities and real-time priorities,
as indicated.

than do nice or default priority processes. Note, however, that real-time priorities must be used carefully. A
real-time process can starve other process of CPU time, including critical operating system processes. We
found this out the hard way when we ran a counter process in real-time mode. The counter process consumed
all of the CPU cycles, not even allowing enough CPU time to kill the process as the super-user. We were
forced to reboot our computer. In addition, if many processes are run with real-time priorities the bene�ts
in jitter reduction will most certainly be reduced compared with having just one process with real-time.

Nice priorities signi�cantly reduce jitter as processor load increases. Under heavy loads, nice priority pro-
cesses had much less jitter than did default priority processes. Even under light loads, nice priorities signi�-
cantly reduced jitter versus default priorities. The improved user-mode priority of a niced process causes it
to run ahead of other eligible runnable user-mode processes, allowing the niced process to respond to mul-
timedia data with less jitter. However under heavy processor loads, nice priority processes did su�er from
some increased jitter while jitter under real-time processes remained nearly constant. Even a nice priority
process will run after any newly-activated process, regardless of its nice value, causing the niced process to
su�er from more jitter than would a real-time process.

The amount of jitter reduction from nice or real-time priorities depends upon the processor load. We can
use our model in Section 7 to determine the processor load from multimedia applications. With our model
we can also explore how the reduction in jitter from nice and real-time priorities bene�ts the application
quality as future multimedia applications push processors to the limit.

21

6 Network Experiments

From the experiments in Section 4 and Section 5, we know that high-performance processors and real-time
priorities a�ect jitter. We next examine the e�ects that high-speed networks have on jitter.

6.1 Speci�c Experimental Design

We used 4 processor SGI Challenge L workstations. Each workstation was connected to three networks: a
10 Mbit/s Ethernet; a 266 Mbit/s Fibre Channel; and a 800 Mbit/s HIPPI.

We induced network load using netperf [29]. Netperf is a benchmark that can be used to measure the
performance of many di�erent types of networks. It provides tests for both uni-directional throughput and
end-to-end latency.

Both HIPPI and Fibre Channel are point-to-point networks, unlike Ethernet which is a shared medium
network. Inducing network load between two workstations that were not the sender and receiver did not
increase jitter because they did not share the same physical wire. Instead, we ran the netperf and netserver
processes on the same workstations as the sender and receiver, respectively. We ran the netperf processes on
di�erent processors than the sender and receiver by using the runon command. This minimized the jitter
that might be contributed by the processor load induced by the netperf processes.

6.2 Results and Analysis

Figure 12 depicts the experiments results that show the interarrival times for the three networks under two
di�erent conditions of network load. The \no load" runs are the experiments on a quiet network. The
\load" runs are the experiments run with netperf. The three \no load" lines are almost indistinguishable,
indicating no correlation between jitter and network bandwidth. However, under high network load there is
a noticeable di�erence in the interarrival times for the three networks, indicating there may be a correlation
between jitter and network bandwidth.

Figure 13 shows the relationship between jitter and network bandwidth for loaded networks. We expect that
jitter decreases as network bandwidth increases, so we graphed the theoretical network bandwidth versus
1/variance. There are three data points plotted, one for each of Ethernet, Fibre Channel and HIPPI. The line
represents a least squares line �t through the three data points. The correlation coe�cient is 0.98, indicating
that there is a strong inverse relationship between jitter and network bandwidth. In other words, as network
bandwidth increases, jitter decreases. Note that although the correlation coe�cient is a high 0.98, the fact
that there are only three data points is evident in the width of the 95% con�dence intervals around the least
squares line �t. It would be nice to have more data points in order to strengthen the statistical signi�cance
of our results. To do this, however, we need to have new networks on which to experiment.

6.3 Summary

Under low network loads, high-speed networks do not signi�cantly reduce jitter. Under low loads, the
network contributes little variation to the interarrival times for the multimedia frames. Most of the variance
is caused outside the network, rendering any jitter reduction from the high-speed networks insigni�cant.

However, under heavy network loads, high-speed networks signi�cantly reduce jitter. Under heavy loads,
interfering network tra�c causes increased variation in the interarrival times for the multimedia frames.
High-speed networks reduce the amount of time to deliver the interfering network tra�c, decreasing the
variation in the multimedia interarrival times.

22

0 200 400 600 800 1000 1200 1400 1600 1800
Packet

Ethernet (no load)

Fibre Channel (no load)

HIPPI (no load)

Ethernet (load)

Fibre Channel (load)

HIPPI (load)

Figure 12: Interarrival Times for Di�erent Networks and Network Loads. There are 6 multimedia streams represented in this
picture, each by by a horizontal line depicting the interarrival times on the indicated network. The network was either either
loaded or unloaded. Each multimedia stream is o�-set from the one below it by 750,000 microseconds. The horizontal axis is
the packet number.

0

1e-06

2e-06

3e-06

4e-06

5e-06

0 100 200 300 400 500 600 700 800

1
/ V

ar
ia

nc
e

(in
 m

ic
ro

se
co

nd
s

^
2)

Mbits/Second

Ethernet

Fibre Channel

HIPPI

Figure 13: Jitter versus Network Bandwidth. The horizontal axis is the network bandwidth. The vertical axis is 1 / variance.
The line is a least squares line �t of jitter versus theoretical network bandwidth for three networks: Ethernet, Fibre Channel
and HIPPI. The correlation coe�cient is 0.98.

23

Acceptable

Predicted

Quality Metric Application

Quality

User

System

Latency
Jitter
Data Loss

Latency
Jitter
Data Loss

Figure 14: The Process for Computing Application Quality. The user de�nes the acceptable latency, jitter and data loss and
the system determines the actual values. Based on the acceptable values speci�ed in the user requirements, a quality metric
computes the application quality from the actual values.

The amount of jitter reduction from high-speed networks depends upon the network load. We use our model
in Section 7 to determine the network load from multimedia applications as the number of users increases.
Then, using the results from this section, we can determine what a�ect jitter reduction from high-speed
networks has on the application quality.

7 Quality

The quality of a distributed multimedia application is a measure of the application's acceptability to the
user. A measure of jitter alone is not su�cient to predict the quality of an application. As described
in Section 1, in addition to jitter, we have identi�ed two other measures that determine quality for most
distributed multimedia applications: latency and data loss.

There may be additional measures that a�ect application quality that are application speci�c. For example,
Distributed Interactive Simulation applications use a process of computing the location of other simulators
through \dead reckoning" [38]. When state update packets are dropped, the accuracy of the simulation
decreases [9]. The use of dead reckoning creates an additional quality measure speci�c to DIS applications.
In the rest of this paper, we consider only delay, jitter and data loss, but our analysis could be similarly
applied to such application speci�c measures.

Ideally, we would like there to be no latency, jitter or data loss. Unfortunately, on a variable delay network
and non-dedicated computer this can never be achieved. To compute the application quality, we use the
above quality components in a process depicted by Figure 14. The user requirements for the application
de�ne the acceptable latency, jitter and data loss. The system determines the predicted latency, jitter and
data loss. Acceptable and projected data are fed into a quality metric for the application. The quality
metric is a function, based on the acceptable components and dependent upon the projected components,
that computes the application quality.

In order to quantitatively compare application quality for di�erent system con�gurations, we need a reason-
able quality metric. To form our quality metric, we build upon the work of Naylor and Kleinrock [31]. Naylor
and Kleinrock developed a model for measuring the quality of an audioconference based on the amount of
dropped frames and client-side bu�ering. We extend this model by using each quality component as one axis,
creating a multi-dimensional quality space. We place the best quality value for each axis at the origin and
scale each axis so that the user-de�ned minimumacceptable values have an equal weight. An instantiation of
the application lies at one point in this space. We compute the application quality by taking the Euclidean
distance from the point to the origin. All points inside the region de�ned by the user-de�ned minimums
have acceptable quality while points outside do not.

24

Acceptable Quality

Jitter

Limit of Acceptable Jitter

Data Loss

Data Loss
Limit of Acceptable

Latency
Limit of Acceptable Latency

Figure 15: Application Quality Space. The user de�nes the acceptable latency, jitter and data loss. These values determine
a region of acceptable application quality, depicted by the shaded region. All points inside the shaded region have acceptable
quality, while those outside the region do not. An instantiation of the application and the underlying computer system would
lie at one point in this space.

Figure 15 depicts a 3-d quality space for multimedia applications. The user requirements determine a
region of acceptable application quality, depicted by the shaded region. All points inside the shaded region
have acceptable quality, while those outside the region do not. An instantiation of the application and the
underlying computer system would lie at one point in this space.

There can be many possible quality metrics for a given application. In fact, there may be many quality
metrics that agree with a user's perception of the application. Mean opinion score (MOS) testing can be
used to determine if a metric agrees with users' perception. The MOS is a �ve-point scale where a MOS of
5 indicates perfect quality and a score of 4 or more represents high quality. MOS has been used extensively
in determining the acceptability of coded speech. MOS testing is beyond the scope of this paper, so we
cannot be certain our quality metric �ts user perceptions. However, the metric we chose has several useful
characteristics. First, it treats the axes symmetrically which seems appropriate in the absence of user studies
to the contrary. Second, the Euclidean distance �ts our intuition about changes in quality: the measure
increases total quality with any increase in quality along one axis. Third, the metric produces a convex region
of acceptable quality, which avoids certain anomalies. For example, there are no pockets of unacceptable
quality within the acceptable quality region, nor can you move from unacceptable to acceptable by any
combinations of increase along the axes. The rest of our model is independent of the quality metric chosen.
If new metrics are developed and validated with MOS testing, they can be used in place of our quality metric.

One limitation to quality metrics is that after scaling, the upper limits on the axes have di�erent charac-
teristics. The \data loss" axis has a �nite upper-limit of 100%, while the \latency" and \jitter" axes each
have an in�nite bound. Comparing application quality for two di�erent con�gurations at the upper-limit of
any of the axes may not match user perception. Fortunately, this limitation only arises when comparing two
unacceptable con�gurations. The metric is most valuable for determining whether a con�guration provides
\acceptable" or \unacceptable" application quality and comparing con�gurations within the \acceptable"
region.

25

Note that the user-de�ned acceptability limits along each axis are greatly dependent upon the application and
must be re-evaluated for each new application. For example, the acceptable latency for an audio broadcast
application such as a radio program may be far more than the acceptable latency for an audioconference. In
an audioconference, users require low latencies so that the conversation is as life-like as possible. According
to Partridge, one-way delays over 400,000 microseconds are unacceptable for live audio [41]. However, in
an audio broadcast program, the users do not interact, allowing a larger delay to go unnoticed. You could
imagine a case where a user downloads an entire radio program overnight and then plays it back in the
morning. In this case, a latency of over twelve hours might be quite acceptable.

Our quality model may be used to compare the bene�ts from di�erent jitter reducing techniques, from
application techniques such as bu�ering to hardware techniques such as high-speed networks. This allows
us to �nd the bottleneck in reducing jitter and determine which techniques reduce jitter the most, possibly
directing further jitter reduction research. In addition, we can use our model to evaluate the potential
performance bene�ts from expensive high-performance processors and high-speed networks before installing
them. We can even investigate possible performance bene�ts from networks and processors that have not
yet been built. In the next section, we apply our model to videoconferences. We use our model to examine
the e�ects of hardware-level jitter reducing techniques of high-speed processors and high-speed networks,
and the system-level jitter reducing technique of real-time priorities.

8 An Example: Videoconference Quality

In this section, we apply the predictive powers of our quality model presented in Section 7 to a videocon-
ference. We can learn a lot from videoconferences. Videoconferences incorporate both audio and video.
Interactive videoconferences can have from two to tens of users, while videoconference broadcasts can have
hundreds or perhaps even thousands of viewers. In addition, videoconferences are often integrated into
larger distributed multimedia applications. Predicting quality for various system con�gurations to support
videoconferences is valuable for business' wishing to invest in videoconference technology. Our model allows
identi�cation of computer systems that will provide acceptable videoconference quality and a comparison of
their costs.

In order to apply our quality model to a videoconference under various system con�gurations, we must:
1) determine the region of acceptable videoconference quality; 2) predict jitter; 3) predict latency; and 4)
predict data loss.

8.1 The Region of Acceptable Videoconference Quality

To determine the region of acceptable videoconference quality, we need to de�ne acceptable limits for video-
conferences along each of the latency, jitter and data loss axes. According to Je�ay and Stone, delays of 230
milliseconds or under are acceptable for a videoconference [25]. For data loss, research in remote teleoperator
performance has found that task performance is virtually impossible below a threshold of 3 frames per second
[37]. We use 3 frames per second as the minimum acceptable frame rate.

The presence of jitter often presents an opportunity for a tradeo� among latency and data loss. Bu�ering, an
application-level technique for ameliorating the e�ects of jitter, can compensate for jitter at the expense of
latency. Transmitted frames are bu�ered in memory by the receiver for a period of time. Then, the receiver
plays out each frame with a constant latency, achieving a steady stream. If the bu�er is made su�ciently
large so that it can hold all arriving data for a period of time as long as the tardiest frame, then the user
receives a complete, steady stream. However, the added latency from bu�ering can be disturbing [41], so
minimizing the amount of delay compensation is desirable.

Another bu�ering technique to compensate for jitter is to discard any late frame at the expense of data loss.

26

0

50

100

150

200

250

0 2 4 6 8 10

B
uf

fe
rin

g
(M

ill
is

ec
on

ds
)

Dropped Frames (Percent)

Figure 16: Jitter Compensation. This picture depicts the amount of bu�ering needed for a given number of dropped frames.
The horizontal axis is the percentage of dropped frames. The vertical axis is the number of milliseconds of bu�ering needed.

Discarding frames causes a temporal gap in the play-out of the stream. Discarding frames can keep play-out
latency low and constant, but as little as 6% gaps in the playout stream can also be disturbing [31]. In the
case of audio speech, the listener would experience an annoying pause during this period. In the case of
video, the viewer would see the frozen image of the most recently delivered frame.

Naylor and Kleinrock describe two policies that make use of these bu�ering techniques: the E-Policy (for
Expanded time) and the I-Policy (for late data Ignored) [31]. Under the E-policy, frames are never dropped.
Under the I-policy, frames later than a given amount are dropped. Since it has been observed that using a
strict E-Policy tends to cause the playout latency to grow excessively and that dropping frames occasionally
is tolerable [6, 48], we use the I-Policy as a means of examining needed jitter compensation for a multimedia
stream.

The I-policy leads to a useful way to view the e�ects of jitter on a multimedia stream. Figure 16 depicts the
tradeo� between dropped frames and bu�ering as a result of jitter. We generated the graph by �rst recording
a trace of interarrival times. We then �xed a delay bu�er for the receiver and computed the percentage of
frames that would be dropped. This represents one point in the graph. We repeated this computation with
bu�ers ranging from 0 to 250 milliseconds to generate the curved line. The graph can be read in two ways.
In the �rst, we choose a tolerable amount of dropped frames (the horizontal axis), then follow that point up
to the line to determine how many milliseconds of bu�ering are required. In the second, we choose a �xed
bu�er size (the vertical axis), then follow that point over to the line to determine what percent of frames
are dropped. In Figure 16, if we wish to restrict the amount of bu�ering to 100 milliseconds, then we must
drop about 2% of the frames since that is how many will be more than 100 milliseconds late, on average. For
an 2 Mbps video stream consisting of 33 6000-byte frames per second, this equates to dropping one frame
every 1.5 seconds. On the other hand, if we wish to not drop any frames, we have to bu�er for over 200
milliseconds.

How much bu�ering should we chose? We normalize the axes from 6% gaps to 230 milliseconds bu�ering.

27

-2e+06

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

0 50000 100000 150000 200000 250000 300000 350000 400000 450000

B
uf

fe
r

S
iz

e
(in

 m
ic

ro
se

co
nd

s)

Area (in milliseconds ^ 2)

corelation 0.96

Figure 17: Jitter Compensation Area versus Bu�er Size. The horizontal axis is the area under the jitter compensation curve.
The vertical axis is the bu�er size in microseconds. The points are each a separate experiment run. The middle line is the least
squares line �t. The outer two lines form a 95% con�dence interval around the line. The correlation coe�cient is 0.96.

The best quality value in the jitter compensation curve is the closest point to the origin along the curve. We
would like to know how much latency is added from bu�ering at this point. It seems natural to assume that
as the area under the jitter compensation curve gets larger, the amount of bu�ering at the closest point along
the curve gets larger. We hypothesize that there is a strong correlation between the area under the jitter
compensation curve and the bu�er size. If this hypothesis is true, we can determine the latency attributed
to bu�ering from the jitter compensation area. We tested our hypothesis by generating jitter compensation
curves for all data points from the experiments detailed in Sections 4, 5 and 6. We then computed the area
under each curve. We computed the bu�er size by normalizing the axes as described in Section 8.1 and
�nding the lowest Euclidean distance to the origin along the curve. We plotted bu�er size versus area and
computed the correlation coe�cient. Figure 17 depicts these results. There is a high correlation between
jitter compensation area and bu�er size.

We can predict the optimal amount of bu�ering if we know the area of under the jitter compensation curve.
How can we determine the area under the jitter compensation curve? As the amount of jitter experienced
by the system gets larger, more bu�ering should be required to alleviate the e�ects of jitter and more gaps
should appear in the multimedia stream. Thus, the area under the jitter compensation curve should get
larger as jitter increases. We hypothesize that there is a strong correlation between the area under the jitter
compensation curve and the variance in the packet interarrival times. If this hypothesis is true, then we can
predict the area under the jitter compensation curve from the amount of jitter. Then, we can predict the
bu�er size from the jitter compensation area. We tested our hypothesis by computing jitter from all data
points from the experiments detailed in Sections 4, 5 and 6. We then compared these jitter values to the
areas under the jitter compensation curves from our previous hypothesis. We plotted area versus jitter and
computed the correlation coe�cient. Figure 18 depicts these results. There is a high correlation between
jitter and compensation curve area.

28

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

0 1e+10 2e+10 3e+10 4e+10 5e+10 6e+10

A
re

a
(in

 m
ill

is
ec

on
ds

 ^
 2

)

Variance (in microseconds ^ 2)

corelation 0.95

Figure 18: Jitter versus Jitter Compensation Area. The horizontal axis is the jitter (variance in packet interarrival times).
The vertical axis is the area under the jitter compensation curve. The points are each a separate experiment run. The middle
line is the least squares line �t. The outer two lines form a 95% con�dence interval around the line. The correlation coe�cient
is 0.95.

From the above graphs, we have:

Buf: = 26:5� Area� 624; 000

Area = 0:000198� Jitter + 1; 590; 000

Substituting the equation for Area into the equation for Bu�er, we have:

Buf: = 0:00525� Jitter + 41; 500; 000

This last equation allows us to compute the optimal bu�er size for an application given the amount of jitter.

8.2 Predicting Jitter

From our results in Sections 4 and 6, we know the relationship between load and jitter for faster processors
and networks. We hypothesize that a high network load along with a high processor load increases jitter by
the sum of the jitter from the network and processor. While perhaps seeming obvious, our hypothesis will
be false if processor jitter and network jitter are not independent. If some of the jitter attributed to the
processor is actually due to jitter from the network and/or some of the jitter attributed to the network is
actually due to jitter from the processor, adding the jitter from each component will result in more jitter

29

Network Processor Network Predicted Actual

Ethernet 564.63 411.37 976.00 913.72
Fibre Channel 590.60 58.33 648.93 641.14
HIPPI 501.15 28.62 529.77 538.41

Table 4: Predicted versus Actual Jitter

than the system actually experiences. However, if our hypothesis is true, we can then add the predicted
jitter from each component in predicting jitter for systems with both components.

We tested our hypothesis with an experiment. We �rst computed the jitter we would predict on a system
with a loaded processor and loaded network. This prediction is based on the amount of jitter attributed
from the processor as obtained in results from Section 4 and from the network as obtained in results from
Section 6. We next experimentally measured the jitter with a loaded processor and a loaded network for
each of the Ethernet, Fibre Channel and HIPPI networks. We then compared the predicted results to the
actual results. Table 4 depicts this comparison. The predicted jitter values are within 7% of the actual jitter
values. It seems appropriate to add the jitter attributed to processor load alone with the jitter attributed
to network load alone to predict the jitter attributed to processor load and network load together.

8.3 Predicting Latency

We can predict the amount of latency from the jitter compensation bu�er by using predictions on the amount
of jitter. In addition to the bu�ering latency, there is the additional latency from the sender processing, the
network transmitting and the receiver processing. From our previous experiments, we measured the latency
from recording and playing video [9]. From other previous experiments, we measured the latency attributed
to sending and receiving packets [8]. We can compute the latency from the network based on the frame size
and network bandwidth. To predict the total latency, we add the latencies from: recording the video frame;
sending the video frame to the client; receiving the video frame from the receiver; bu�ering in the jitter
compensation curve; and playing the video frame.

8.4 Predicting Data Loss

In order to predict data loss, we need to identify what form data loss may take and when data loss may
occur. In general, data loss can take many forms such as reduced bits of color, jumbo pixels, smaller images,
dropped frames and lossy compression. For a videoconference, we assume data loss only in the form of
dropped frames or reduced frame rate. For a videoconference, we assume data loss under three conditions:

� Voluntary. As described in Section 8.1, an application may chose to discard late frames in order to keep
playout latency low and constant. We assume the videoconference chooses to discard enough frames to
achieve the best quality.

� Saturation. When either the network or the processor do not have su�cient capacity to transmit data
at the required frame rate, data loss occurs. For example, if the network has a maximumbandwidth of
5 Mbps and the videoconference required 10 Mbps there will be a 50% data loss. We can compute when
systems reach capacity based on our previous work measuring processor capacities [8, 9] and theoretical
network bandwidths.

� Transmission Loss. In our previous experiments, we found that typically about 0.5% packets on the
average are lost when the network is running under maximum load [9]. We assume a maximum lost
data rate of about 0.5% due to network transmission.

30

8.5 Predicting Quality

At last! We have built and validated an experiment-based model that will allow us to explore videoconference
quality under di�erent system con�gurations. We can quantify how e�ectively today's computer systems
support multi-person videoconferences. We can predict when today's systems will fail due to too many users
or too much load on the processors or networks. We can see how much using real-time priorities will help
videoconference quality. We can evaluate the bene�ts of expensive high-performance processors and high-
speed networks before installing them. We can even investigate possible performance bene�ts from networks
and processors that have not yet been built. Let's go exploring!

We predict application quality for three scenarios: 1) high-performance processors and high-speed networks;
2) increasing users; and 3) increasing load.

8.5.1 Present Videoconference Assumptions

For all of our videoconference quality predictions we assume:

� Multicast. Our previous work has found that multicast is crucial for many-person multimedia applica-
tions [9]. Using unicast routing, multi-person multimedia applications saturate existing networks for
even a few participants. Multicast routing dramatically increases the user scalability of multi-person
applications.

� Specialized Hardware. The CPU load for processing video frames can be substantial [7]. We assume
specialized hardware that does most of the computation required for video frame processing.

8.5.2 Future High-Performance Processors and High-Speed Networks

Our results in Sections 4 and 6 showed that both high-performance processors and high-speed networks
reduce jitter. However, which reduces jitter more? And more importantly, which improves application
quality more?

We assume we have �ve videoconference participants. In Section 8.5.3, we use our model to evaluate quality
for a variable number of users, but here we evaluate a likely videoconference con�guration that has interesting
quality predictions. We compute quality under two di�erent scenarios. In the �rst, processor load remains
constant while the network bandwidth increases. In the second, network bandwidth remains constant while
processor power increases. Figure 19 shows these predictions. For �ve users, increasing the processor power
to a SPECint92 of 40 or greater results in acceptable videoconference quality. At no time does increasing
the network bandwidth result in an acceptable quality. In this scenario, we conclude that processor power
inuences videoconference quality more than does network bandwidth.

8.5.3 Future Users

While today's computer systems may struggle to support even �ve videoconference participants, tomorrow's
processor improvements promise to support more and more users. But how many more? How do more and
more videoconference users a�ect application quality? Figure 20 depicts the predicted e�ects of increasing
users on videoconference quality. We predict videoconference quality for three di�erent videoconference con-
�gurations: a low-end workstation with a typical network (Sun IPX and Ethernet), a mid-range workstation
with a fast network (Sun Sparc 5 and Fibre Channel), and a high-performance workstation with a high-speed
network (DEC Alpha and HIPPI). As we saw in Section 8.5.2, today's typical workstations and networks
cannot support even �ve videoconference participants. However, powerful workstations such as Sun Sparc
5s connected by fast networks such as a Fibre Channel can support up to 10 users. Very high-performance

31

0

1

2

3

4

5

0 200 400 600 800 1000

Q
ua

lit
y

SPECint92 or Mbps

Ethernet and Sun IPX

Fibre Channel HIPPI

SGI Indigo 2 DEC Alpha Server

Unacceptable Quality

Acceptable Quality

Network
Processor

Figure 19: Videoconference Quality versus Processor or Network Increase. The horizontal axis is the SPECint92 power of
the workstation or the network Mbps. The vertical axis is the predicted quality. There are two scenarios depicted. In the
�rst, the processor power is constant, equivalent to a Sun IPX (SPECint92 = 22), while the network bandwidth increases.
This is depicted by the solid curve. In the second scenario, the network bandwidth is constant, equivalent to an Ethernet (10
Mbps), while the processor power increases. This is depicted by the dashed curve. The horizontal line marks the limit between
acceptable and unacceptable videoconference quality.

32

0

2

4

6

8

10

10 20 30 40 50 60 70 80 90 100

Q
ua

lit
y

Users

Unacceptable Quality
Acceptable Quality

IPX, Ethernet
Sparc 5, Fibre Channel

DEC Alpha, HIPPI

Figure 20: VideoconferenceQuality versus Users. The horizontal axis is the number of users. The vertical axis is the predicted
quality. There are three scenarios depicted. In the �rst, the processors is a Sun IPXs connected by an Ethernet. In the second,
the processors is a Sun Sparc 5s connected by a Fibre Channel. In the third, the processors are DEC Alphas connected by a
HIPPI. The horizontal line marks the limit between acceptable and unacceptable videoconference quality.

workstations such as a DEC Alpha connected by high-speed networks such as a HIPPI can support over 50
users.

8.5.4 Future Processor and Network Load

Videoconferences are resource intensive, forcing processors and networks to run at a heavy loads. In addition,
videoconference streams are often integrated into larger distributed multimedia applications. In the past,
applications have tended to expand to �ll (or surpass) available system capacity. As system capacities
increase, videoconference users will demand higher frame rates and better resolution, making heavy-load
conditions likely in the future. We predict the e�ects of increasing load on videoconference quality.

Figure 21 depicts the predicted e�ects of load on videoconference quality (remember, we are assuming
specialized hardware for video processing and multicast routing). There are three classes of systems depicted.
A traditional system has Sun IPXs connected by an Ethernet. A high-end system has Sun Sparc 5 connected
by a Fibre Channel. A very high-end system has DEC Alphas connected by a HIPPI. The predictions for
videoconference quality are almost identical for the three systems. We saw in Section 8.5.2 that the processor
is more crucial than network for videoconference quality. Increasing processor load has a larger e�ect on
decreasing videoconference quality than does improving the network speed and processor power.

Figure 21 also depicts Sun IPXs connected by an Ethernet but using real-time priorities instead of default
priorities, shown by the bottom line. With real-time priorities, videoconference quality does not su�er from
increased jitter from the processor as processor load increases. For conditions of increasing load, real-time
priorities have a greater e�ect on improving quality than do faster processors and faster networks.

33

0

0.5

1

1.5

2

0 2 4 6 8 10

Q
ua

lit
y

Load

Unacceptable Quality

Acceptable Quality

Real Time Priorities

IPX, Ethernet
Sparc 5, Fibre Channel

DEC Alpha, HIPPI
IPX, Ethernet, Real Time

Figure 21: Videoconference Quality versus Load. The horizontal axis is the processor load. The vertical axis is the quality
prediction. There are four system con�gurations depicted. In the �rst, the processors are Sun IPXs connected by an Ethernet.
In the second, the processors are Sun Sparc 5s connected by a Fibre Channel. In the third, the processors are DEC Alphas
connected by a HIPPI. In the fourth, the processors are again Sun IPXs connected by an Ethernet, but they are using real-
time priorities instead of default priorities. The upper horizontal line marks the limit between acceptable and unacceptable
videoconference quality.

34

9 Conclusions

Most of the work people do is in groups. People communicate best when they can draw pictures and use
voice and body language. Computers supporting collaborative work can provide realistic person-to-person
communication by using multimedia. Multimedia applications can also provide collaboration in synthetic
environments through virtual reality. Today's explosive growth in fast networks and powerful workstations
has the potential to support and even enhance group work through multimedia.

Jitter hampers computer support for multimedia. Jitter is the variation in the end-to-end delay for sending
data from one user to another. Jitter can cause gaps in the playout of a stream such as in an audioconference,
or a choppy appearance to a video display for a videoconference. There are several techniques that can be
used to reduce jitter. In this work, we have experimentally measured the e�ects of three jitter reduction
techniques: high-performance processors, real-time priorities and high-speed networks.

We �nd high-performance processors, real-time priorities and high-speed networks all signi�cantly reduce
jitter under conditions of heavy load. Multimedia applications, tending to be resource intensive, are likely to
push processors capacities to the limit, making conditions of heavy load likely. As the growth in distributed
collaborative applications continues, multimedia applications will push network bandwidths to the limits,
also. Thus, high-performance processors, real-time priorities and high-speed networks will all be e�ective in
reducing jitter.

Computer systems continue to get faster while human perceptions remain the same. Future system improve-
ments may remove enough of the underlying jitter such that application-level jitter reduction techniques are
unnecessary. How far in the future will this be?

We saw in Section 8.1 that as the area under the jitter compensation curve decreased, the required bu�er
decreased. FromFigure 17, if we had an area of 75,000 square microseconds or less, we would require virtually
no bu�ering in order to achieve acceptable quality. From Figure 18, we can predict that this will happen if
jitter is 109 square microseconds or less. From our results in Section 4, Section 6 and Section 8.2, we can
predict how powerful hardware must become in order to achieve this low jitter rate. We can determine when
this will be if we assume both processor power and network bandwidth double each year, as has been the
trend in the past [20]. Figure 22 depicts these predictions.

For the next �ve years, hardware improvements alone will not reduce the e�ects of jitter enough to eliminate
the need for application bu�ering techniques. However, if we implement real-time priorities in scheduling
our multimedia stream, we can reduce jitter enough to eliminate the need for application bu�ering today.

However, improving jitter alone is not su�cient to guarantee improving application quality. In addition to
jitter, the application quality also depends upon latency, which decreases the application realism, and data
loss, which reduces the application resolution. We have developed a model that allows us to evaluate the
e�ects of jitter reduction in the larger context of a user's perception of the multimedia application. Our
model allows us to show how advances in networks and processors will improve application quality without
tuning the operating system or the application.

As an example, in Section 8 we applied our model to a videoconference, a fundamental multimedia applica-
tion. Videoconference applications can have from two to hundreds of users, support both audio and video
and are often integrated into larger multimedia applications.

In applying our model we found that for some con�gurations, high-performance processors will improve
videoconference quality more than will high-speed networks. However, for some system con�gurations, the
typical Ethernet network is the bottleneck in application quality as the number of users increases. Thus, even
high-performance processors will not su�ciently improve application quality when increasing users saturate
existing networks. The traditional Ethernet network will become the bottleneck in approximately a year
when workstation performance has doubled.

35

0

1e+09

2e+09

3e+09

4e+09

5e+09

6e+09

7e+09

8e+09

1 2 3 4 5 6 7 8 9 10

Ji
tte

r
(v

ar
ia

nc
e

in
 m

ic
ro

se
co

nd
s

^
s)

Years in the Future

Threshold of Human Perception

Without Real-Time
With Real-Time

Figure 22: Jitter versus Years. The horizontal axis is the number of years in the future. The vertical axis is the amount of
jitter. There are two sets of predictions. The top, slightly curved line depicts the amount of jitter in a system without real-time
priorities. The lowest, slightly curved line depicts the amount of jitter in a system with real-time priorities. The horizontal line
represent the threshold below which application bu�ering would not be needed.

When multimedia applications are running under conditions of increasing load, real-time priorities have
a greater e�ect on improving quality than do faster processors and faster networks. In fact, hardware
improvements alone will not reduce jitter enough to eliminate the need for application bu�ering techniques.
However, for multimedia on a Local Area Network (LAN), real-time priorities we can reduce jitter enough to
eliminate the need for application bu�ering today. On a Wide Area Network (WAN) especially the Internet,
real-time priorities will not be available on all routers, reducing the e�ectiveness of real-time priorities in
reducing. In this case, bu�ering techniques may still be needed.

10 Future Work

We studied the e�ects of real-time priorities on jitter when used at both the sender and receiver. Real-
time priorities may not signi�cantly reduce jitter when used at only the sender or at only the receiver. If
this is true, real-time priorities may only be e�ective in reducing jitter for a local area network, without
an intervening router. On a WAN, especially the Internet, real-time priorities may not be available on all
routers, reducing the e�ectiveness of real-time priorities on the sender and receiver. In this case, bu�ering
techniques will be needed.

Another possible potential jitter reduction technique would be a real-time network protocol. Future work
includes experiments to measure the e�ects of real-time network protocol on jitter. However, network delivery
of data within strict jitter bounds does not signi�cantly help the sender and receiver. They must still worry
about internal jitter due to queuing in the operating system. Stamping out jitter in the network does not
eliminate the need for jitter management code in the hosts.

36

In our analysis of a videoconference, we assumed a constant bit rate. Video is almost invariably transmitted in
a compressed form for the simple reason that compression is so e�ective. Commercial compression algorithms
can achieve 25-to-1 or better reductions in the average number of bits transmitted. However, the amount
of data that must be sent for each video frame can vary widely, depending upon the amount changes from
frame to frame. Transmission schemes that generate variable amounts of data for each frame are termed
variable bit-rate (VBR) video schemes, such as MPEG [42]. MPEG codes video using three frame formats.
The e�ects of losses in the MPEG data stream depend upon which type of frame is lost. In the absence of
results determining the e�ects of VBR frame rate losses on quality, we assumed that all frames are of equal
importance in determining video quality. Future work might determine the e�ects on video quality for losses
of each type of frame.

References

[1] Sparcstation audio programming. Technical report, Sun Microsystems, 1991.

[2] Ronnie T. Apteker, James A. Fisher, Valentin S. Kisimov, and Hanoch Neishlos. Video acceptability
and frame rate. IEEE Multimedia, pages 32 { 40, Fall 1995.

[3] Barberis and Pazzaglia. Analysis and optimal design of a packet voice receiver. IEEE Transactions on
Communication, February 1980.

[4] David R. Boggs, Je�rey C. Mogul, and Christopher A. Kent. Measured capacity of an Ethernet: Myths
and reality. In Proceedings of the SIGCOMM Conference, August 1988.

[5] J. Carlis, J. Riedl, A. Georgopoulos, G. Wilcox, R. Elde, J. H. Pardo, K. Ugurbil, E. Retzel, J. Maguire,
B. Miller, M. Claypool, T. Brelje, and C. Honda. A zoomable DBMS for brain structure, function and
behavior. In International Conference on Applications of Databases, June 1994.

[6] D. Clark, S. Shenker, and L. Zhang. Supporting real-time applications in and integrated services packet
network: Architecture and mechanism. Computer Communication Review, 22(4), July 1992.

[7] M. Claypool, J. Riedl, J. Carlis, G. Wilcox, R. Elde, E. Retzel, A. Georgopoulos, J. Pardo, K. Ugurbil,
B. Miller, and C. Honda. Network requirements for 3D ying in a zoomable brain database. IEEE
JSAC Special Issue on Gigabit Networking, 13(5), June 1995.

[8] Mark Claypool and John Riedl. Silence is golden? The e�ects of silence deletion on the CPU load of
an audio conference. In Proceedings of IEEE Multimedia, Boston, May 1994.

[9] Mark Claypool and John Riedl. A quality planning model for distributed multimedia in the virtual
cockpit. In Proceedings of ACM Multimedia, November 1996.

[10] The DIS Steering Committee. The DIS vision - a map to the future of distributed interactive simulation.
Technical report, Institute for Simulation and Training, May 1994.

[11] Standard Performance Evaluation Corporation. SPEC primer. July 1994. The SPEC primer is
frequently posted to the newsgroup comp.benchmarks. SPEC questions can also be sent to spec-
ncga@cup.portal.com.

[12] Jay Devore and Roxy Peck. Statistics { The Exploration and Analysis of Data. Wadsworth, Inc., second
edition edition, 1993.

[13] Spiros Dimolitsas, Franklin L. Corcoran, and John G. Phipps Jr. Impact of transmission delay on ISDN
videotelephony. In Proceedings of Globecom '93 { IEEE Telecommunications Conference, pages 376 {
379, Houston, TX, November 1993.

[14] Jack J. Dongarra. Performance of various computers using standard linear equations software. Technical
Report CS-89-85, University of Tennessee, February 1994. To obtain a postscript copy, send email to
netlib@ornl.gov with message body: send performance from benchmark.

37

[15] Chip Elliot. High-quality multimedia conferencing through a long-haul packet network. In Proceedings
of the First ACM International Conference on Multimedia, pages 91 { 98, New York, NY, 1993.

[16] Domenico Ferrari. Delay jitter control scheme for packet-switching internetworks. Computer Commu-
nications, 15(6):367{373, July 1992.

[17] Daniel Frankowski and John Riedl. Hiding jitter in an audio stream. Technical Report Technical Report
93-50, University of Minnesota Department of Computer Science, 1993.

[18] R. Govindan and D. Anderson. Scheduling and IPC mechanisms for continous media. ACM Operating
Systems Review, 25(5), October 1991.

[19] Joe Haberann and John Riedl. Using real-time priorities to eliminate jitter in a multimedia stream.
Technical report, University of Minnesota Department of Computer Science, January 1996.

[20] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative Approach. Morgan
Kaufmann Publishers, Inc., 1990.

[21] A. Hopper. Pandora { an experimental system for multimedia applications. ACM Operating Systems
Review, 24(2), April 1990.

[22] Satoru Iai, Takaaki Kurita, and Nobuhiko Kitawaki. Quality requirements for multimedia communcation
services and terminals { interaction of speech and video delays. In Proceedings of Globecom '93 { IEEE
Telecommunications Conference, pages 394 { 398, Houston, TX, November 1993.

[23] Raj Jain. The Art of Computer Systems Performance Analysis. John Wiley and Sons, Inc., 1991.

[24] K. Je�ay, D. Stone, and D. Poirier. YARTOS { kernel support for e�cient, predictable real-time systems.
In Joint IEEE Workshop on Real-Time Operating System and Software and IFAC/IFIP Workship on
Real-Time Programming, pages 8 { 13, May 1991.

[25] K. Je�ay, D. Stone, and F. Smith. Kernel support for live digital audio and video. Computer Commu-
nications, 15(6), 1992.

[26] K. Je�ay, D. Stone, and F. Smith. Transport and display mechanisms for multimedia conferencing across
packet-switched networks. Computer Networks and ISDN Systems, 26(10):1281 { 1304, July 1994.

[27] K. Je�ay, D. Stone, T. Talley, and F. Smith. Adaptive, best-e�ort, delivery of audio and video data
across packet-switched networks. In 3rd International Workshop on Network and Operating System
Support for Digital Audio and Video, November 1992.

[28] Saimin Jin, Dhadesugoor R. Vaman, and Divyendu Sina. A performance mangement framework to
provide bounded packet delay and variance in packet switched networks. Computer networks and ISDN
Sytems, pages 249 { 264, September 1991.

[29] Rick Jones. Netperf. Hewlett-Packard, 1995. The netperf home page can be found at
http://www.cup.hp.com/netperf/NetperfPage.html.

[30] S. Khanna, M. Serbree, and J. Zolnowsky. Realtime scheduling in SunOS 5.0. In Proceedings of the
Winter '92 Usenix Conference, 1992.

[31] Kleinrock and Naylor. Stream tra�c communication in packet switched networks: Destination bu�ering
considerations. IEEE Transactions on Communications, COM-30(12):2527 { 2534, December 1982.

[32] S. Le�er, M. McKusick, M. Karels, and J. Quarterman. The Design and Implementation of the 4.3BSD
UNIX Operating System. Addison-Wesley Publishing Company, 1989.

[33] Mengjou Lin, Jenwei Hsieh, David Du, and James MacDonald. Performance of high-speed network I/O
subsystems: Case study of a Fibre Channel network. In Proceedings of Supercomputing '94, November
1994.

[34] Mengjou Lin, Jenwei Hsieh, David H.C. Du, Joseph P. Thomas, and James A. MacDonald. Distributed
network computing over local ATM networks. ATM LANs: Implementation and Experience with An
Emerging Technology, 1995.

38

[35] Michael R. Macedonia, Michael J. Zyda, David R. Pratt, Paul T. Barham, and Steven Zeswitz.
NPSNET: A network software architecture for large scale virtual environments. Presence, 3(4):265
{ 287, October 1994.

[36] Vahid Mashayekhi, Janet Drake, Wei-Tek Tsai, and John Riedl. Distributed, collaborative software
inspection. IEEE Software, 10(5), September 1993.

[37] Michael J. Massimino and Thomas B. Sheridan. Teleoperator performance with varying force and visual
feedback. In Human Factors, pages 145 { 157, March 1994.

[38] W. Dean McCarty, Steven Sheasby, Philip Amburn, Martin R. Stytz, and Chip Switzer. A virtual
cockpit for a distributed interactive simulation. IEEE Computer Graphics and Applications, January
1994.

[39] Evi Nemeth, Garth Snyder, and Scott Seebass. Unix System Adminstration Handbook. Prentice Hall,
1989.

[40] Judith S. Olson, Gary M. Olson, and David K. Meader. What mix of video and audio is useful for
remote real-time work? In Proceedings of CHI'95 { Proceedings of the Conference in Human Factors
in Computing Systems, pages 362 { 368, 1995.

[41] Craig Partridge. Gigabit Networking. Addison-Wesley, 1994.

[42] Ketan Patel, Brian C. Smith, and Lawrence A. Rowe. Performance of a software mpeg video decoder.
In Proceedings of ACM Multimedia, Anaheim, 1993.

[43] Ramachandran Ramjee, Jim Kurose, Don Towsley and Henning Schulzrinne. Adaptive playout mech-
anisms for packetized audio applications in wide-area networks. In Proceedings of the 13th Annual
Joint Conference of the IEEE Computer and Communications Societies on Networking for Global Com-
munciation. Volume 2, pages 680{688, Los Alamitos, CA, USA, June 1994. IEEE Computer Society
Press.

[44] John Riedl, Vahid Mashayekhi, Jim Schnepf, Mark Claypool, and Dan Frankowski. SuiteSound: A sys-
tem for distributed collaborative multimedia. IEEE Transactions on Knowledge and Data Engineering,
August 1993.

[45] Radhika R. Roy. Networking contraints in multimedia conferencing and the role of ATM networks.
AT&T Technical Journal, July/August 1994.

[46] Henning Schulzrinne. Voice communications across the internet: A network voice terminal. Technical
report, University of Massachussetts Department of Electrical Engineering, August 1992.

[47] Michael V. Stein and John T. Riedl. The e�ects of transport method on the quality of audioconferences
with silence deletion. Technical report, University of Minnesota Department of Computer Science, June
1995.

[48] D. Stone and K. Je�ay. An empirical study of delay jitter management policies. ACM Multimedia
Systems, 2(6):267 { 279, January 1995.

[49] Merryanna Swartz and Daniel Wallace. E�ects of frame rate and resolution reduction on human per-
formance. In Proceedings of IS&T's 46th Annual Conference, Munich, Germany, 1993.

[50] T. Talley and K. Je�ay. Two-dimensional scaling techniques for adaptive, rate-based transmission
control of live audio and video streams. In Proceedings of the Second ACM International Conference on
Multimedia, pages 247 { 254, October 1994.

[51] Claudio Topolcic. Experimental internet stream protocol, version 2 (ST-II). RFC 1190, October 1990.

[52] Dinesh C. Verma, Hui Zhang, and Domenico Ferrari. Delay jitter control for real-time communication
in a packet switching network. IEEE Computer, pages 35 { 43, 1991.

[53] J.A. Zebarth. Let me be me. In Proceedings of Globecom '93 { IEEE Telecommunications Conference,
pages 389 { 393, Houston, TX, November 1993.

39

