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Abstract

The tremendous power and low price of today's computer systems have created the opportunity for

exciting applications rich with graphics, audio and video. Despite this potential, planning computer systems

to support the intensity of these multimedia applications is an extremely di�cult task. We have developed

a 
exible model and method that allows us to predict multimedia application performance from the user's

perspective. Our model takes into account the components fundamental to multimedia application quality:

latency, jitter and data loss. In applying our method to three speci�c applications, we have identi�ed some

general traits: 1) processors are the bottleneck in performance for many multimedia applications; 2) networks

with more bandwidth often do not increase the quality of multimedia applications; and 3) performance for

many multimedia applications can be improved greatly by shifting capacity demand from computer system

components that are heavily loaded to those that are more lightly loaded.

1 Introduction

Planning is the �rst fundamental step in developing a software system. Accurate planning is the key
to success in building distributed, collaborative multimedia applications that are robust, scalable
and meet the needs to today's and tomorrow's users. Unfortunately, planning computer systems
to support the intensity of high-quality, collaborative multimedia is an extremely di�cult task.
Planning for acceptable performance of these applications may require computing capabilities that
are perhaps not even available today. Several researchers have looked at capacity planning, the
study of computer resources needed to meet expected computer demand, for such applications.
However, while capacity planning may help plan growth it is unable to identify whether a user
would be satis�ed with the quality of the application.

In this paper we address the performance of distributed, collaborative multimedia applications from
the user's perspective of distributed, collaborative multimedia applications. We have developed a
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quality method orthogonal to capacity planning which helps users plan for acceptable quality. To
apply our planning method, we start from the perspective of the user. The user describes the
distributed collaborative multimedia application and de�nes a set of requirements that need must
be met for the application performance to be acceptable. We then simulate the user, the application,
the computer system and a measure of application quality. At the heart this method is a 
exible
model, adjustable to applications with di�erent user requirements and tunable to systems with
di�erent system designs and hardware. Our model uses a quality metric as a means of measuring
the application performance on a distributed computer system.

In summary, our quality planning is composed of: a quality metric to quantify the quality of an
application from the user's perspective; a quality model to do quality planning for users; micro
experiments to measure the fundamental components of the application; macro experiments to test
the accuracy of the analytic model based on the micro experiments; a calibration mechanism to
tune the quality model; and a prediction method to predict the application quality as the various
components of the model change.

In this paper we present:

� a detailed description of our quality metric

� the general method of applying our quality metric

� application of our method to audioconferences

� highlights of the application of our method to two other applications

� trends in distributed collaborative multimedia application performance

The rest of this paper is organized as follows: Section 2 presents our metric for measuring multi-
media quality; Section 3 describes the methods and models we use to apply our metric; Section 4
details the application of our method to audioconferences; Section 5 presents the highlights and
summary of results of quality planning for two additional applications; and Section 6 summarizes
our conclusions.

2 Multimedia Quality

\There is an old network saying: `Bandwidth problems can be cured with money. Latency

problems are harder because the speed of light is �xed { you can't bribe God.' " David
Clark, MIT

One indication of the performance of an entire computer system is the users' opinions on the mul-
timedia quality of the applications they run. Multimedia quality is a measure of the performance of
a multimedia application based on the requirements expected by the user. Although we often think
of a multimedia application as a continuous stream of data, computer systems handle multimedia in
discrete events. An event may be receiving an update packet or displaying a rendered video frame
on the screen. The quantity and timing of these events give us measures that a�ect application
quality. Based on previous multimedia application research [SW93, RS94, MS94, NK82, AFKN95],
we use three measures to determine quality for most distributed multimedia applications:
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Figure 1: The Process for Computing Application Quality. The user de�nes the acceptable latency, jitter and
data loss and the system determines the predicted values. Based on the acceptable values speci�ed in the user
requirements, a quality metric computes the application quality from the predicted values.

� Latency, the time it takes information to move from the server through the client to the user

� Jitter, the variation in latency, can cause gaps in the playout of a stream such as in an
audioconference, or a choppy appearance to a video display

� Data Loss which can take many forms such as reduced bits of color, pixel groups, smaller
images, dropped frames and lossy compression.

Ideally, we would prefer that there to be no latency, jitter or data loss. Unfortunately, on a
variable delay network and non-dedicated computer this can never be achieved. To compute the
application quality, we use the above quality components in a process depicted by Figure 1. The
user requirements for the application de�ne the acceptable latency, jitter and data loss. The system
determines the predicted latency, jitter and data loss. Acceptable and projected data are fed into
a quality metric for the application. The quality metric is a function, based on the acceptable
components and dependent upon the projected components, that computes the application quality.

In order to quantitatively compare application quality for di�erent system con�gurations, we need
a reasonable quality metric that is compliant with the mathematical de�nitions of a metric. We
further de�ne a multimedia quality metric as having several other important properties:

1. It incorporates the three fundamental multimedia quality components: latency, jitter and data
loss.

2. It treats the fundamental components equally, which seems appropriate in the absence of user
studies to the contrary.

3. It produces a convex region of acceptable quality. This �ts our intuition about changes in
quality: the measure increases total quality with any increase in quality along one axis. There
are no pockets of unacceptable quality within the acceptable quality region, nor can you move
from unacceptable to acceptable by any combinations of increase along the axes.

To form our quality metric, we build upon the work of Naylor and Kleinrock [NK82]. Naylor
and Kleinrock developed a model for measuring the quality of an audioconference based on the
probability of playout gaps and end-to-end delay. The quality of the audioconference was computed
by taking the normalized distance of the audioconference's delay and gaps from the origin in the
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Figure 2: Multimedia Application Quality Space. The user de�nes the acceptable latency, jitter and data loss.
These values determine a region of acceptable application quality, depicted by the shaded region. All points inside
the shaded region have acceptable quality, while those outside the region do not. An instantiation of the application
and the underlying computer system lies at one point in this space. Four application con�guration instantiations are
shown.

delay-gap plane. We extend this model by using latency, jitter and data loss as axes, creating a
multi-dimensional quality space. We place the best quality value for each axis at the origin and
normalize each axis so that the user-de�ned minimum acceptable values have an equal weight.
An instantiation of the application lies at one point in this space. The location of the point is
determined by our predictions of the amount of latency, jitter an data loss that would occur with
the given system con�guration. In order to satisfy the mathematical properties of a metric, we
compute the application quality by taking the Euclidean distance from the point to the origin. All
points inside the region de�ned by the user-de�ned minimums have acceptable quality while points
outside do not.

Figure 2 depicts a 3-d quality space for multimedia applications. The user requirements determine
a region of acceptable application quality, depicted by the shaded region. Each instantiation of the
application and the underlying computer system is a point in this space.

There can be many possible quality metrics for a given application. In fact, there may be many
quality metrics that agree with a user's perception of the application. However, the rest of our
model is independent of the quality metric chosen. If new metrics are developed and validated with
user testing, they can be used in place of our quality metric.

3 Methods

In order to use the quality metric presented in Section 2, we must predict the amount of latency,
jitter and data loss for the distributed, collaborative multimedia application being studied. We
have developed a method that enables us to verify the accuracy of our model and predict quality
bottlenecks as various model components change. Our predictions are based on a detailed model

4



Perform Micro
Experiments

Send

Study
Application

Make 
Predictions

Calibrate
Model

Model
Application
Users

Apps

U Req

S Req

Architecture

Hardware

Quality

Jitter

Perform Macro
Experiments

Send RecvDisplay

Figure 3: Quality Planning Method and Model. We have developed a method for applying our model to distributed
multimedia applications. We start with an application, develop our model, perform micro and macro experiments
and make quality predictions.

of the user, application and computer system. In this section, we present our method and model,
depicted in Figure 3.

Study Application Our method begins by studying the application to obtain information on
the users and their requirements. The application is founded on a set of user requirements that
need to be ful�lled for the application to be e�ective for the user. The user requirements include
information such as frame rate and frame size, acceptable latency and jitter and tolerance of data
loss.

Model Application We use the information about the users and their requirements in our
model. Our model for the quality of a distributed multimedia application incorporates: Users: the
users of the application are those we used during the \Study Application" phase of our method
as described above; Applications: the applications are the software programs the users will run;
User Requirements: the user requirements are the user's interface to our model. The requirements
they specify may drive the selection of the underlying system in order to make the application
acceptable for the user; System Requirements: the user requirements impose a series of requirements
on the system. Some of these include network bandwidth, disk throughput and processor power;
Architecture: architecture is the structure of the distributed program which determines the location
of data and the distribution of the processing; Hardware: given the system requirements and
architecture, the hardware needed to support the application can be determined; Quality: the
variations in hardware, architecture, system requirements, user requirements and the application
all e�ect the application quality as perceived by the user.

As a brief example to better illustrate how we might use our model, suppose we wish to predict the
performance of a proposed voice mail system that will allow a group of software engineers browse
their archived voice-mail [BFJ+96]. We �rst determine the quality of the audio required by the
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users, either by user testing or by an analogy to similar applications. The audio quality determines
the user requirements. The system requirements are derived from the user requirements, with key
system components used to examine tradeo�s. For example, we might vary the number of users,
the amount of compression or the network protocol. We choose an architecture and hardware on
which to analyze the system. For example, we might pick Sun Sparc 5 workstations connected
via a 10-baseT Ethernet cable. As described in Section 2, we build a quality model based on the
user requirements. The system requirements, architecture and hardware are all used in the quality
model to determine if the proposed con�guration is acceptable to the users. We can then iterate
by modifying the component parameters and determining a new application quality.

Perform Micro Experiments Experiments that measure performance of the fundamental pro-
cessor components of an application we call micro experiments. We do micro experiments to allow
us to predict the e�ects of systems on applications built with those components. Some fundamental
components for many multimedia applications include: Record data from the microphone or video
codec; Play data to the speakers; Render a frame to be displayed; Display a frame to the screen;
Read data from a disk; Write data to a disk; Compress data; Decompress data; Send a data packet
to a client; and Receive a data packet from a server.

After carefully measuring the processor load of each component, we can predict the processor load
of an application built with those components. Changes in application con�guration or changes in
hardware are represented by modifying the individual components and observing how that a�ects
performance.

Perform Macro Experiments Experiments that measure performance of applications built
with micro experiment components we call macro experiments. We do macro experiments to test
the accuracy of micro experiment-based predictions of application performance. For example,
assume we have a two-person audioconference that lasts for three minutes. Each component of the
audioconference (record, send, receive and play) processes the three minutes of audioconference
data. We predict the total processor load from our micro experiment measurements of the record,
send, receive and play loads. In addition, we predict the network load based on the audio data rate
of the workstations. In our macro experiments, we run a two-person audioconference and carefully
measure the processor and network load. We then compare these measured values to the predicted
values in an attempt to test the accuracy of our prediction methods.

Make Predictions By modifying the fundamental application components, we can predict per-
formance on alternate system con�gurations. This allows us to evaluate the potential performance
bene�ts from expensive high-performance workstations and high-speed networks before installing
them. Moreover, we can investigate possible performance bene�ts from networks and workstations
that have not yet been built. Our approach for evaluation of each alternative system is the same:
we modify the parameters of our performance model to �t the new system, then evaluate the re-
sulting model to obtain performance predictions. These analyses are intended to provide a sense
of the relative merits of the various alternatives, rather than present absolute measures of their
performance.

Our micro and macro experiments are done on only a handful of platforms. However, we would like
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our predictions to be accurate for untested platforms, and even future, as yet unbuilt hardware.
In order to attempt these extrapolations we rely on research in benchmarks that compare the
performance among systems and alternate system con�gurations. In particular, we rely upon SPEC
benchmarks results to predict the performance of application components on untested workstations
[spe]. We rely upon landmark studies in network and disk performance to predict performance on
alternate networks [BMK88, LHD+95, LHDM94, RO94, SH80].

4 A Detailed Example: Audioconferences

In this section, we present a detailed example of applying our quality planning method to audio-
conferences.

Study Application Audioconferences have been a popular topic for multimedia research on the
Internet, especially over the MBone. We chose to study a small group, peer-to-peer audioconference
with voice-quality sound with each user on a separate workstation.

Model Our model of an audioconference is based on the components of recording, silence deletion,
sending, receiving, mixing and writing. Recording is the processor load for taking the digitized
sound samples from the audio device. Silence deletion is the processor load for applying one of
the deletion algorithms to the recorded sample. 1 Sending is the processor load for packetizing
the sample and sending it to all other stations. Receiving is the processor load for processing all
incoming packetized samples. Mixing is the processor load for combining sound packets that arrive
simultaneously. Writing is the processor load for delivering the incoming samples to the audio
device.

Micro Experiments Our micro experiments were designed to measure the processor load of
audioconference components. We chose two Sun workstations, the 20 MHz SLC and the 40 MHz
IPX, to test if the components of the audioconference scale with processor speed.

We use a process that increments a long integer variable in a tight loop to measure the processor
load for the individual components: Record, Deletion, Send, Receive, Mix and Play. To obtain a
baseline for our counter, we run the counter process on a quiet machine. This gives the processor
potential for the machine. We then run the counter process with each component in the model. The
di�erence in the bare count and the component count is the component-induced load. In [CR93],
we verify that the counter process does indeed accurately report loads of processor-bound processes
with which it runs concurrently.

Figure 4 [Left] shows the line equations obtained from the counter measurements for di�erent silence
deletion algorithms on the IPX. We have similar graphs for the SLC and for other components of
the model [CR93], but to avoid redundancy we do not present them here.

1Silence deletion removes silent parts from speech. Experiments have shown that silence deletion substantially
reduces network load [RMS+93].
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Figure 4:
[Left] Processor Time for Deletion Algorithms on the Sun IPX. The four deletion algorithms are shown for their time
to process 300 seconds worth of sound. All points are shown with 95% con�dence intervals.

[Right] Jitter Compensation. This picture depicts the amount of bu�ering needed for a given number of dropped
frames. The horizontal axis is the percentage of dropped frames. The vertical axis is the number of milliseconds of
bu�ering needed.

Table 1 shows the values for the line equations for each of the audioconference components for each
machine type.

The per-packet and per-byte terms above pertain to the equations: Load(component) = per-packet

+ per-byte * bytes. The equations are the processor costs for each component of an audiocon-
ference from which we can project the cost of a complete audioconference.

Macro Experiments In order to test the accuracy of our model in predicting audioconference
processor loads, we measured the performance of a simple audioconferencer, Speak. Speak is two
person, uses UDP, can employ any of the �ve deletion algorithms (Absolute, Di�erential, Exponen-

Operation SLC per-packet SLC per-byte IPX per-packet IPX per-byte

Record 0.810 0.0145 0.597 0.00169

Absolute 0.00 0.00302 0.000 0.000164

Di�erential 0.00 0.00563 0.000 0.00300

Exponential 0.00 0.0130 0.000 0.00489

Ham 0.00 0.00454 0.000 0.00245

Send 0.807 0.000194 0.210 0.000100

Receive 0.910 0.000129 0.187 0.000103

Mix 0.00 0.00546 0.000 0.00245

Play 1.26 0.0137 0.726 0.00103

Table 1: Values for Sun SLC and Sun IPX Line Fits for audioconference components. Units are in milliseconds.
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tial, Ham or None), and has little extra user-interface overhead.

We used Internet Talk Radio (ITR) �les rather than real conversants. This made our experiments
more reproducible and gave us a large conversation sample space from which to choose. Since
the ITR �les have one person speaking most of the time, the silence deletion algorithms typically
deleted only 10% of the packets. As the number of audioconference participants increased, the one
person speaking in the ITR audio would re
ect the group communication characteristics less and
less. However, the actual audio data used in these experiments does not matter, since our model
is parameterized by the amount of silence deleted.

We did experiments on the �ve possible silence deletion methods on the SLC and two such methods
on the IPX. A shell script initiated a remote Speak process and a local Speak process. One two
hundred second conversation was one data point. We repeated each data point 5 times. We predict
the load from the speak processes by using the micro experiment results. From the conversation
length, the record size and the sample rate, we calculate the total packets read. By pro�ling the
sound �les with the deletion algorithms, we know the number and size of the packets sent, received
and written. Because sound only arrives from one other Speak process, there is no mix component.

The complete results are given in [CR93], but for brevity, we summarize the results here. In most
cases, the predicted values are within 10% of the actual values. We therefore consider the predicted
results to be signi�cant only if the di�erences are larger than 10%.

4.1 Predictions

In order to apply our quality metric to a audioconference under various system con�gurations,
we must: 1) determine the region of acceptable audioconference quality; 2) determine jitter; 3)
determine latency; and 4) determine data loss.

4.1.1 The Region of Acceptable Audioconference Quality

To determine the region of acceptable audioconference quality, we need to de�ne acceptable limits
for audioconferences along each of the latency, jitter and data loss axes. According to [FM76],
fewer than 6% gaps in an audio stream playout and 230 milliseconds or less of delay resulted in
acceptable audio quality. Audioconference quality is then the Euclidean distance from the origin
to a point represented by delay milliseconds normalized over 230 and the percentage of audio gaps
normalized over 6%. Any quality value under 1 is considered acceptable.

The presence of jitter often presents an opportunity for a tradeo� among latency and data loss.
Bu�ering, an application-level technique for ameliorating the e�ects of jitter, can compensate for
jitter at the expense of latency. Transmitted frames are bu�ered in memory by the receiver for a
period of time. Then, the receiver plays out each frame with a constant latency, achieving a steady
stream. If the bu�er is made su�ciently large so that it can hold all arriving data for a period of
time as long as the tardiest frame, then the user receives a complete, steady stream. However, the
added latency from bu�ering can be disturbing, so minimizing the amount of delay compensation
is desirable.

Another bu�ering technique to compensate for jitter is to discard any late frame at the expense of
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data loss. Discarding frames causes a temporal gap in the play-out of the stream. Discarding frames
can keep play-out latency low and constant, but as little as 6% gaps in the playout stream can also
be disturbing [NK82]. In the case of audio speech, the listener would experience an annoying pause
during this period. In the case of video, the viewer would see the frozen image of the most recently
delivered frame.

Figure 4 [Right] depicts the tradeo� between dropped frames and bu�ering as a result of jitter. We
generated the graph by �rst recording a trace of audio frame interarrival times. We then �xed a
delay bu�er for the receiver and computed the percentage of frames that would be dropped. This
represents one point in the graph. We repeated this computation with bu�ers ranging from 0 to
250 milliseconds to generate the curved line. The graph can be read in two ways. In the �rst, we
choose a tolerable amount of dropped frames (the horizontal axis), then follow that point up to the
line to determine how many milliseconds of bu�ering are required. In the second, we choose a �xed
bu�er size (the vertical axis), then follow that point over to the line to determine what percent
of frames are dropped. In Figure 4 [Right], if we wish to restrict the amount of bu�ering to 100
milliseconds, then we must drop about 2% of the frames since that is how many will be more than
100 milliseconds late, on average. For an 2 Mbps video stream consisting of 33 6-Kbyte frames per
second, this equates to dropping one frame every 1.5 seconds. On the other hand, if we wish to not
drop any frames, we have to bu�er for over 200 milliseconds.

4.1.2 Determining Jitter

Our previous experiments measuring the e�ectiveness of several jitter reduction techniques give
us the relationship between load and jitter for faster processors and networks [CHR97]. We use
these results as the basis for determining the jitter in the audioconference under various system
con�gurations.

4.1.3 Determining Latency

We can predict the amount of latency from the jitter compensation bu�er by using predictions on the
amount of jitter. In addition to the bu�ering latency, there is the additional latency from the sender
processing, the network transmitting and the receiver processing. In our micro experiments, we
measured the latency from all the micro experiments. We can compute the latency from the network
based on the frame size and network bandwidth. To predict the total latency, we add the latencies
from: recording the audio frame; performing silence deletion; sending the audio frame to the the
other users; receiving the audioframe from the other users; bu�ering in the jitter compensation
curve; and playing the audio frame to the speakers.

4.1.4 Determining Data Loss

In order to predict data loss, we need to identify what form data loss may take and when data loss
may occur. In general, data loss can take many forms such as reduced bits of color, jumbo pixels,
smaller images, dropped frames and lossy compression. For a audioconference, we assume data loss
only in the form of dropped frames, when an application chooses to discard late frames in order to
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keep playout latency low and constant, or when either the network or the processor do not have
su�cient capacity to transmit data at the required frame rate.

4.1.5 Determining Quality

We can now use our metric to explore audioconference quality under di�erent system con�gurations.
We can quantify how e�ectively today's computer systems support multi-person audioconferences.
We can determine when today's systems will fail due to too many users. We can evaluate the
bene�ts of expensive high-performance processors and high-speed networks before installing them.
We can even investigate possible performance bene�ts from networks and processors that have not
yet been built. Let's go exploring!

We determine audioconference quality for two scenarios: 1) increasing users; and 2) high-performance
processors and high-speed networks. For all of our audioconference quality predictions we assume
multicast routing and audio hardware for capturing and displaying frames.

Users Tomorrow's processor improvements promise to support more and more users. But how
many more? How do more and more simultaneous audioconference users a�ect application qual-
ity? Figure 5 [Left] depicts the predicted e�ects of increasing users on audioconference quality.
We predict audioconference quality for three di�erent audioconference con�gurations: a low-end
workstation with a typical network (Sun IPX and Ethernet), a mid-range workstation with a fast
network (Sun Sparc 5 and Fibre Channel), and a high-performance workstation with a high-speed
network (DEC Alpha and HIPPI). However, workstations such as Sun Sparc 5s connected by fast
networks such as a Fibre Channel can support up to 10 users. Very high-performance workstations
such as DEC Alphas connected by a high-speed network such as a HIPPI can support over 50 users.

High-Performance Processors and High-Speed Networks Our previous experimental re-
sults showed that both high-performance processors and high-speed networks reduce jitter [CHR97].
However, which reduces jitter more? And more importantly, which improves application quality
more?

We assume we have �ve audioconference participants. In the previous analysize, we use our model
to evaluate quality for a variable number of users, but here we evaluate a likely audioconference
con�guration that has interesting quality predictions. We compute quality under two di�erent sce-
narios. In the �rst, processor load remains constant while the network bandwidth increases. In the
second, network bandwidth remains constant while processor power increases. We use the Stan-
dard Performance Evaluation Corporation (SPEC) benchmarks to make predictions about quality
on more powerful workstations [spe]. Figure 5 [Right] shows these predictions. For �ve users,
increasing the processor power to a SPEC Cint95 of 3 or greater results in acceptable audioconfer-
ence quality. At no time does increasing the network bandwidth result in an acceptable quality. In
this scenario, we conclude that processor power in
uences audioconference quality more than does
network bandwidth.
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Figure 5: Audioconference Quality.

[Left] Increasing Users. The horizontal axis is the number of users. The vertical axis is the predicted quality. There
are three scenarios depicted. In the �rst, the processors is a Sun SPARCstation 10 connected by an Ethernet. In the
second, the processors is a Sun Sparc 5s connected by a Fibre Channel. In the third, the processors are DEC Alphas
connected by a HIPPI. The horizontal line marks the limit between acceptable and unacceptable audioconference
quality.

[Right] Processor or Network Increase. The horizontal axis is the SPEC Cint95 power of the workstation or the
network Mbps. The vertical axis is the predicted quality. There are two scenarios depicted. In the �rst, the processor
power is constant, equivalent to a Sun SPARCstation (SPEC Cint95 = 1.5), while the network bandwidth increases.
This is depicted by the solid curve. In the second scenario, the network bandwidth is constant, equivalent to an
Ethernet (10 Mbps), while the processor power increases. This is depicted by the dashed curve. The horizontal line
marks the limit between acceptable and unacceptable audioconference quality.
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5 Highlights of Applications

In Subsections 5.1 and 5.2, we present a few select details from the application of our method and
model to two emerging multimedia applications: a \
ying" interface to a zoomable database, and
a 
ight simulator for combat training called the Virtual Cockpit.

5.1 Flying through the Zoomable Database

Neuroscientists from diverse disciplines plan to collaborate across distances in exploring various
aspects of brain structure [CRG+94]. Their design includes a zoomable multimedia database of
images of the brain tissue. High-resolution magnetic resonance imaging (MRI) shows the entire
brain in a single dataset. Even higher resolution confocal microscope images are anchored to these
MR images in three dimensions. The user starts a typical investigation by navigating through the
MR images in a coarse 3-d model of the brain to a site of interest. The user then zooms to higher
resolution confocal images embedded in the MRI landscape. This real-time navigating and zooming
is called \
ying." In order to be an e�ective collaboration tool, 
ying must provide high-resolution
images and a high-frame rate as well as high-quality audio to allow neuroscientists to communicate
e�ectively.

Figure 6 [Left] depicts our quality predictions for multi-processor 
ying clients. The individual
points are all SGI Indigo 2 clients with a di�erent number of processors. The curve represents
an acceptable level of quality; all points inside the curve will have acceptable quality while points
outside will not. In this �gure, we have not assumed any specialized 
ying hardware. We assume
that the servers will be able to provide the bandwidth requested by all the clients to simplify the
computation. At least an 8-processor client is required in order to have acceptable 
ying quality.

Figure 6 [Right] depicts quality versus the number of clients for both 
ying with compression and

ying without compression. Clients are assumed to be 20 processor Indigo 2's without specialized
hardware. The server is assumed to be an SGI Indigo 2 workstation with specialized hardware (see
[CRC+95] for more information). The arrows indicate points at which the server can no longer keep
up with the bandwidth requests by the clients. At this point, application performance decreases, as
depicted by the increasing quality values. For fewer than 4 clients, compression decreases client-side
quality, mostly because of the latency increase from the clients decompressing the images. However,
for 5 or more clients, compression increases application quality because the server can meet the
bandwidth requirements of more clients.

5.2 The Virtual Cockpit

The Virtual Cockpit is a 
ight simulator prototype built by the Air Force Institute of Technology
and designed to integrated into Distributed Interactive Simulation (DIS) [MSA+94]. DIS applica-
tions are designed to enable soldiers to engage in simulated combat [Com94]. The DIS protocol
allows participation from soldiers at military bases across the country using current packet-switched
networks, saving the time and trouble of traveling for combat training. In order for the combat to
be realistic, the simulators use high-quality graphics and allow communication among the soldiers
with audio and video. With the high multimedia system requirements and many users, applications
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Figure 6: Flying Quality.

[Left] Multi-processor Clients. The horizontal axis is the number of Mbits/second of data reduction received by the
client. The vertical axis is the latency added by the client. The points are SGI Indigo 2's clients with di�erent num-
bers of processors. The curve represents an acceptable level of quality; all points inside the curve will have acceptable
quality while points outside will not. Note that the clients are not equipped with any special 
ying hardware.

[Right] E�ects of Compression. Clients are 100 processor SGI Indigo 2 workstations with no specialized hardware.
The server is an SGI Indigo 2 workstation with specialized hardware. The arrows indicate points at which the server
can no longer keep up with the bandwidth requested by the clients. At this point, application quality gets worse as
depicted by the increasing quality values.
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Figure 7: Virtual Cockpit Quality versus Soldiers.

[Left] High-Speed Networks. Virtual Cockpit Quality versus Soldiers. The two curves represent the quality predic-
tions for an Ethernet and an ATM network. The horizontal line represents the acceptable quality limit. Both the
horizontal and vertical axes are in log scale.

[Right] High-Performance Processors. The three curves represent the quality predictions for three di�erent processors.
The top curve is an SGI Personal Iris. The second curve is an SGI Indigo 2. The bottom curve is a processor 15 times
more powerful than the Indigo 2. The horizontal line represents the acceptable quality limit. Both the horizontal
and vertical axes are in log scale.

such as DIS applications will stress all parts of a computer system.

Our work in [CR96] showed that low-end SGI Personal Iris workstations do not provide acceptable
Virtual Cockpit quality for any number of users. Is there further bene�t from higher-performance
processors? We assume the network has su�cient bandwidth to handle all necessary updates in
order to minimize the e�ects of the network. We compare the quality of the Virtual Cockpit with
SGI Personal Irises and SGI Indigo 2s to the quality of the Virtual Cockpit with processors 15
times more powerful than the Indigo 2.2 Figure 7 [Left] shows the quality predictions for the
Virtual Cockpit with di�erent processors. The top curve is an SGI Personal Iris. The second curve
is an SGI Indigo 2. The bottom curve is a processor 15 times more powerful than the Indigo 2.
The horizontal line represents the acceptable quality limit. The \knee" in the curve for the 15x
processor is where the processor decreases the frame rate in order to handle the updates from the
other soldiers. High-performance processors are crucial for acceptable Virtual Cockpit quality. SGI
Personal Iris' are unable to deliver acceptable application quality. More powerful SGI Indigo 2s
can deliver acceptable application quality for up to 500 soldiers. 15x's provides better application
quality than Indigo 2s and can deliver acceptable application quality for up to 7000 soldiers.

With the Virtual Cockpit running on a processor 15 times more powerful than the SGI Indigo 2,
a T1 network will become saturated while supporting just 100's of soldiers. How much quality
bene�t will then be gained from a high-speed network? We compare the quality of the Virtual
Cockpit with an Ethernet to that of the Virtual Cockpit with an ATM network. The ATM network

2Processor performance has approximately doubled every year for the last 5-10 years. If this trend continues, the
15x processor will come along in about 8 years.
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transmits the update packets faster (155 Mbits/second versus 10 Mbits/second for an Ethernet).
Past work has found jitter and missed updates in the ATM network are the same as jitter and
missed updates in the Ethernet [HR96]. We assume jitter and missed updates remain the same in
high-speed networks.

Figure 7 [Right] shows the quality predictions for the Virtual Cockpit with di�erent networks. The
top curve is the quality predictions for an Ethernet. The lower curve is the quality predictions for
an ATM. The steep increase in the Ethernet curve occurs when the Ethernet becomes saturated.
At this point, the Virtual Cockpit begins to increasingly miss updates. The �rst bend in the ATM
curve occurs when the processor must decrease the frame rate in order to process all updates. The
second bend in the ATM curve occurs when the ATM becomes saturated. High-speed networks are
unimportant for the Virtual Cockpit quality until existing networks reach saturation. The quality
prediction curves for the Ethernet and the ATM are indistinguishable until the Ethernet becomes
saturated. At this point, the ATM network greatly increases scalability.

6 Conclusions

Despite the real and potential bene�ts of multimedia, there are several obstacles that need to be
overcome in designing multimedia applications and systems. Multimedia and multi-user applica-
tions are more resource intensive than traditional text-based, single-user applications. In addition,
multimedia applications have di�erent performance requirements than do text-based applications.
Text-based applications are sensitive to latency and loss, while multimedia applications are sensi-
tive to latency and jitter. The bottlenecks to text-based application performance might lie in those
components that induce latency, while the bottlenecks to multimedia applications might lie in the
those components that induce the jitter. New techniques must be developed to identify bottlenecks
in multimedia application performance.

We have developed a quality planning method for distributed collaborative multimedia applications
that allows us to investigate potential bottlenecks in application quality. At the heart of our method
is a model that allows us to predict the application performance from the user's perspective. Our
model takes into account the components fundamental to multimedia applications: latency, jitter
and data loss. Our model allows us to investigate application bottlenecks by being adjustable
to: the number of users; new hardware and architectures; alternate quality metrics; and di�erent
applications.

Using our model, we can explore the performance tradeo�s for a variety of multimedia applications
as the underlying computers systems change. In Section 4, we have shown a detailed example of
how our model can be applied to audioconferences and in Section 5, a summary of the results to
Flying in a zoomable database [CRC+95], and the Virtual Cockpit [CR96]. There are three general
results common to all the applications we studied:

1. Processors are the bottleneck in performance for many multimedia applications. Audioconfer-
ences, Flying and the Virtual Cockpit all saw a dramatic increase in application performance
with an increase in processor power.

2. Networks with more bandwidth often do not increase the quality of multimedia applications.
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For Audioconferences, a faster network did very little to improve application quality. In
Flying, more network bandwidth did increase the performance for one user, but once that user's
requirements were met, there was little bene�t from more bandwidth. For the Virtual Cockpit,
more bandwidth did not noticeably a�ect application quality at all, but it did allow more
simultaneous users to train for combat when existing networks became saturated. Networks
with more bandwidth do not bene�t few-person multimedia applications but serve only to
increase the scalability of the applications by allowing more simultaneous users.

3. Application capacity requirements are not equally distributed across computer systems. Per-
formance for many multimedia applications can be greatly improved by shifting capacity de-
mand from computer system components that are heavily loaded to those that are more lightly
loaded. Shifting capacity demand is crucial as the number of application users increases. For
audioconferences, silence deletion transfered load from the network to the processor. While this
decreased application quality for two audioconference users, it greatly increased application
quality for three or more users. For Flying, application performance was totally unacceptable
unless capacity demand was shifted from the processor to specialized hardware. For the Vir-
tual Cockpit dead reckoning shifted capacity demand dramatically from the network, enabling
current networks to support the tens of thousands of soldiers required for e�ective combat
training.

Our objective in identifying application bottlenecks is to understand the system limits that will
prevent applications from meeting users' needs. After identifying each bottleneck, we explore
ways to reduce the e�ect of the bottleneck through improving system resources. We then explore
the new bottlenecks that arise in the enhanced system. Our analysis at each stage is likely to
overstate system performance, because we assume maximum possible performance of each system
component. However, the bottlenecks we identify are likely to be bottlenecks in practice, and the
design principles suggested by the analysis should ameliorate these bottlenecks in practice.

To conclude, the major contributions of this paper are:

� A multimedia quality metric that provides a quantitative means to measure multimedia ap-
plication performance from the users perspective.

� A model and method that uses our multimedia quality metric and enables the prediction of
application performance and evaluation of system design tradeo�s.

� Detailed performance predictions for three distributed collaborative multimedia applications:
a Audioconference, a \
ying" interface to a 3D scienti�c database and a collaborative 
ight
simulator called the Virtual Cockpit.

� The e�ects of system improvements on the performance of these multimedia applications.
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