
DNA Computation to solve the Hitting String Problem

George T. Heineman, Richard

Resnick, Gabor Sarkozy

Worcester Polytechnic Institute

100 Institute Road

Worcester, MA 01609, USA

WPI-CS-TR-98-15

1 Hitting String Problem

1.1 The Problem

Given a set of strings A, jAj = m, of strings of length n over an alphabet f0; 1; $g, let aij be the j
th character of the

ith string in A. Is there a hitting string x 2 f0; 1g with jxj = n such that for each ai 2 A, there is some j, 0 � j < n

for which aij and xj (the j
th symbol of x) are identical? Without loss of generality, we assume that the strings in A

are unique, since multiple copies of the same string do not a�ect the selection of x. We also throw out all columns
that consist entirely of $ character; this can be done in O(mn) time. If a row consists entirely of $ characters then
no solution is possible. These pre-processing steps can be performed in O(mn) time.

A hitting string is sparse if 9j; 0 � j < n such that 8i; 0 � i < m, aij 6= xj ; a dense hitting string does not
have this property. A sparse hitting string can be converted to a dense hitting string in O(mn) using the algorithm
described in appendix A.

1.2 The Approach

We construct a directed acyclic graph G = (V;E) consisting of vertices vij representing the digit positions of each
ai 2 A; this results in a graph of mn vertices. First some de�nitions: row(vij) = i, column(vij) = j, and cj
is the sequence of m vertices fv0j ; v1j ; : : : ; vm�1;jg. We de�ne a partial function next(vij) = vlj if 9l such that
m > l > i; alj = aij , and 8c; i < c < l; acj 6= aij ; next(vij) is unde�ned otherwise. We also de�ne the partial function
prev (vlj) = vkj if and only if next (vkj) = vlj .

We intend to create a set of edges such that a hitting string x maps to a path containing at least one vertex from
every row ri, 0 � i < m. We populate G with two types of directed edges, vertical and cross. A vertical edge (u,
next(u)) exists for all nodes u 2 V if next(u) is de�ned. In the worst case, this will create (m � 1)n vertical edges
in O(mn) steps using the algorithm in Figure 1. Vertical edges ensure that paths through G traverse vertices in cj
with the same digit value.

Cross edges connect vertices between two adjacent columns, creating opportunities for paths to visit each column
in G. Let Bottom[digit]j be the vertex vkj where digit 2 f0; 1g; akj = digit, and next(vkj) is unde�ned. This is the
vertex vkj with largest k such that 8i, k < i < m, aij 6= digit. If such a vertex does not exist, then Bottom[digit]j is
unde�ned. Let Top[digit]j be the vertex vkj where digit 2 f0; 1g; akj = digit, and prev(vkj) is unde�ned. This is the
vertex vkj with the smallest k such that 8c, 0 � c < k, acj 6= digit; Top[digit]j is unde�ned if no such vertex exists.

Brie
y, if each cj is connected by a cross edge to cj+1, a path can thread itself through G starting from c0 and
terminating in cn�1. A search for a hitting string is analogous to a search for a path that contains vertices from
every row. We now show how to construct G to determine at least one possible dense hitting string. There are at
most four cross edges from each cj (Bottom[digj]j , Top[digj+1]j+1), with digj and digj+1 in f0; 1g. Naturally, no
cross edge is possible if either Bottom[digj]j or Top[digj+1]j+1 is unde�ned; note that there are no cross edges leading
away from cn�1.

1

procedure createVerticalEdges

begin

maxVertical := 0;
for j := 0 to n� 1

lastPos[0] := lastPos[1] := �1;
numVertical := 0;
for i := m� 1 downto 0

prevArray[i][j] := nextArray[i][j] := �1;
digit := aij ;
if (digit = 0) or (digit = 1) then

if (lastPos[digit] � 0) then
nextArray[i][j] := lastPos[digit];
prevArray[lastPos[digit]][j] := i;
numVertical++;

end if

lastPos[digit] := i;
end if

end for

maxVertical := max (maxVertical, numVertical);
end for

end procedure

Figure 1: Algorithm for calculating values for constructing graph

1.3 The Computation

Now that we have constructed an acyclic graph G, we show that a dense hitting string exists if and only if there
exists a path P (v0,v1)(v1,v2) : : : (vp�1,vp), with the following properties: (P1) that 8i; 0 � i < m, 9j; 0 � j < n,
some vij is a vertex for an edge in P and; (P2) for every vertex vkj in P that belongs to cj , akj is the same digit.

First, given a dense hitting string x, we know that each column cj contains at least one correct digit position,
vkj ;j , 0 � kj < m. In each column cj either Top[xj]j = Bottom[xj]j (in which case Pj contains the single vertex
Top[xj]j) or there is a path Pj from Top[xj]j to Bottom[xj]j composed of vertical edges. vkj ;j must be a vertex on
Pj by de�nition of the next partial function. We construct a path on G of the form P0 � ce0 � P1 � ce1 � � � cen�1 � Pn�1,
where cej is a cross edge from cj to cj+1. This path satis�es properties P1 and P2.

In the reverse direction, we are given a directed acyclic graph G = (V;E) composed of a matrix of n columns
and m rows, for a total of mn vertices. Edges in E are either down within the same column or start in cj and end
in cj+1. From this graph, we generate paths for dig1, dig2 2 f0; 1g from Top[dig1]0 to Bottom[dig2]n�1; those paths
that contain at least one vertex from each of the m rows map to dense hitting strings. The algorithm in Figure 2
generates all dense hitting strings but is ine�cient, since it must generate all possible paths to locate the solution.
The DNA computation in the next section shows how to overcome this barrier.

1.4 DNA Solution

We show how to convert the vertices V and edges E into DNA sequences that will combine to form DNA strings that
map to paths through G. From these possible paths we show how to extract solutions to the hitting string problem.

The goal is to generate DNA sequences for each column that will combine to form strands containing n sequences.
Observe that vertical edges gather together all the rows with the same digit value for a particular column; we
construct, therefore, a DNA sequence for each cj and digit 2 f0; 1g that contains all the information from the vertical
edges. Let bitsi be the binary representation of i using the alphabet fC, Gg. Representing row ri by the substring A
� bitsi � T, we de�ne verticaljd to be the concatenation (in any order) of the substrings for row rk such that akj = d.

headj and tailj are unique poly-nucleotide sequences generated for each cj over the alphabet fA, Tg. Columns c1
through cn�2 each have associated head and tail polymeres while c0 only has head polymeres and cn�1 only has tail
polymeres. There will be at most 2(n�1) sequences needed to be generated, thus the length of these poly-nucleotide

function fullPath : boolean
begin

for i := 0 to m� 1
if (count[i] = 0) then return false;

end for

return true;
end function

function search (in u, inout P) :boolean
begin

prev := u;
do

P .addVertex(u);
count[row(u)] ++;
if (fullPath()) then return true;
u := next(u);

while (u is de�ned);
u := prev;
if (exists cross edge (u, v) for 0) then

if (search (v, P) = true) then return true;
end if

if (exists cross edge (u, v) for 1) then
if (search (v, P) = true) then return true;

end if

count[row(u)] ��;
P .removeVertex(u);
return false;

end procedure

function constructHittingString (in startDigit) : boolean
begin

top := Top[startDigit]0;
if (top is unde�ned) then return ;
P := empty path;
return (search (top, P));

end procedure

procedure generateDenseHittingStrings

begin

if (constructHittingString (0) = true) then
outputPath(P);

else if (constructHittingString (1) = true) then
outputPath(P);

end if

end procedure

Figure 2: Creating hitting string from path

Element Column Composition
column cjd 0 < j < n� 1 tailj � T � A � verticaljd � T � d � bitsj � A � headj

j = 0 A � verticaljd � T � d � bitsj � A � headj
j = n� 1 tailj � verticaljd � d � bitsj � A

cross edge (cj , cj+1) head j � C � tail j+1

Figure 3: DNA sequences for elements of graph G

1

Vertical Edges

Cross Edges

0
c c

3
c

2
c

1

0

1

2

3

4

0

$

Legend:

Figure 4: Graph for sample problem

sequences is bounded by b = d log(2(n� 1)) e.
Cross edges are represented by polymere chains of length 2b composed of the complement of the head for vij and

the tail for vk;j+1. Since head and tail are composed only of A and T nucleotides, cross edges are also composed only
of A and T nucleotides.

This mapping to nucleotide strings will construct DNA strands representing all paths P in G. Since each headij
and tailij is a unique b-length nucleotide for each column, we can determine the extensions of path DNA. The 5'-
strand of a two-strand DNA represents the path (c0,c1)(c1,c2) : : : (cp�1,cp). The path DNA at the 3' end can be
extended by a cross edge (cj , cj+1) because the leftmost part of the cross edge is the complement of the rightmost
part of a column sequence; also note that there can be no cross edges from cn�1.

The DNA strand is constructed from left to right, and since the graph is acyclic, the DNA strings will reach a
maximum �nite length in �nite time. Once the DNA sequences have been formed, they need to be separated to
locate hitting string solutions. Using the magnetic technique, we separate out from the mixture those DNA strands
that have embedded sequences for each of the m layers. This is accomplished in m steps and the resultant mixture
is separated into single-strand DNA.

The �rst post-processing phase eliminates all DNA strands that are not hitting strings. We search for sequences
of the form A � bitsi � T for 0 � i < m. These sequences are the primary markers embedded within each column
encoding. A hitting string must contain all the embedded levels. The second post-processing phase reads the results
from the remaining strings to determine the actual hitting string x. At this point, each strand is a solution and we
sequence the entire strand. Within this sequence, we search for secondary markers that embed the column position
with each vertex. These sequences are of the form T � xj � bitsj � A, using C to encode xj = 0 and G for xj = 1.
We perform n searches for T � C � bitsj � A; for each j that this string is found, xj = 0; otherwise xj = 1. 2

1.5 Sample Problem

Consider the simple example of A = f 0$01, 11$0, $$11, 100$, $0$0 g, with m = 5, and n = 4. This creates a graph
of twenty vertices and seventeen edges, as shown in Figure 4. Vertical edges are created for each column between

Columns c00 A� CCC�T� C � CC�A� ATA
c01 A� CCG� T�A� CGG�T� G � CC�A� ATA
c10 TTA � A� CGG� T�A� GCC�T� C � CG�A� TAT
c11 TTA � A� CCG�T� G � CG�A� TAT
c20 TTT � A� CCC� T�A� CGG�T� C � GC�A� AAA
c21 TTT � A� CGC�T� G � GC�A� AAA
c30 AAT � A� CCG� T�A� GCC�T� C � GG�A
c31 AAT � A� CCC� T�A� CGC�T� G � GG�A

Cross Edges (c0,c1) TAT � C� AAT
(c1,c2) ATA � C� AAA
(c2,c3) TTT � C� TTA

Figure 5: DNA sequences for sample problem

Solution for: 0010

C00 C10 C21 C30

(A CCC T C CC A ATA) (TTA A CGG T A GCC T C CG A TAT) (TTT A CGC T G GC A AAA) (AAT A CCG T A GCC T C GG A)

(TAT C AAT) (ATA C AAA) (TTT C TTA)

Solution for: 1011

C01 C10 C21 C31

(A CCG T A CGG T G CC A ATA) (TTA A CGG T A GCC T C CG A TAT) (TTT A CGC T G GC A AAA) (AAT A CCC T A CGC T G GG A)

(TAT C AAT) (ATA C AAA) (TTT C TTA)

Solution for: 1001

C01 C10 C20 C31

(A CCG T A CGG T G CC A ATA) (TTA A CGG T A GCC T C CG A TAT) (TTT A CCC T A CGG T C GC A AAA) (AAT A CCC T A CGC T G GG A)

(TAT C AAT) (ATA C AAA) (TTT C TTA)

Figure 6: DNA solution for sample problem

vertices representing the same digit. There are �ve vertical edges and twelve cross edges. Because there are m = 5
strings in A, we need three digit nucleotide sequences to represent the bit position for each row 0 � i < m.

Figure 5 contains the DNA solution for this example graph, and Figure 6 contains the three hitting string solutions.
Recall that only 2(n� 1) unique head/tail strings are necessary; in this case d log(2(n� 1)) e = 3.

1.6 Counting hitting strings

A more di�cult problem with current technology is counting the total number of unique hitting strings for a given
A. If one can accurately produce exact sequences of very long DNA, then for \reasonable" n, one possible solution
would be to use the device of measuring the length of the DNA strands, and count the number of unique bands that
appear in the gel. Richard: add something about this technology here. For this to work properly, we must
ensure that x1 and x2 are the same if and only if jx1j = jx2j. To do this, we �rst construct the nucleotide sequences
for the columns to be of the same length z; currently it
uctuates based upon the number of vertical edges within
a column. Given a particular column encoding, such as Figure 5, include \padding" bases to extend the shorter
fragments to be of size z, where z = 13 + 5 �MaxVertical and MaxVertical is the largest number of vertical edges in
any single column. The padding must be carefully added to ensure that no additional bindings are possible between
the DNA sequences. For c0, prepend a string of length b of alternating bases C and A. This ensures no false match
to some headj . Then, for those columns with less than MaxVertical, insert alternating bases of C and A. Finally,
for cn�1, append a string of length b of alternating bases C and A. Under this situation, all hitting strings have the
same length zn. Now, for those sequences representing cj , insert alternating sequences of C and A of length 2j .

The length of the hitting string will be equivalent to zn +
Pn�1

j=0 2
j , and di�erent hitting strings will have di�erent

Columns c00 CAC � C� ACA� C�A� CCC�T� C � CC�A� ATA
c01 CAC � CA� CCG� T�A� CGG�T� G � CC�A� ATA
c10 TTA � A� CGG� T�A� GCC�T� C � CG�A� TAT
c11 TTA � CAC� ACA� C�A� CCG�T� G � CG�A� TAT
c20 TTT � A� CCC� T�A� CGG�T� C � GC�A� AAA
c21 TTT � CACAC� ACA� C�A� CGC�T� G � GC�A� AAA
c30 AAT � A� CCG� T�A� GCC�T� C � GG�A� CAC
c31 AAT � CACACACAA� CCC� T�A� CGC�T� G � GG�A� CAC

Cross Edges (c0,c1) TAT � C� AAT
(c1,c2) ATA � C� AAA
(c2,c3) TTT � C� TTA

Figure 7: Padded DNA sequences for counting Hitting Strings

lengths, and appear at di�erent bands in the resulting gel. Our example of padded strings appears in Figure 7. This
approach is clearly limited since the size of the DNA is exponential. If one could discover another additive feature,
this counting approach would be feasible.

2 3 Satis�ability

This section shows how to create an instance of the hitting string problem from an instance of 3SAT [Fagin, 1974].
A 3SAT instance is in conjunctive normal form whereby each clause is composed of three literals, either a Boolean
variable x or a negated Boolean variable, x. Let � be a formula with m clauses such that � = (a1 _ b1 _ c1) ^ (a2 _
b2 _ c2) ^ � � � ^ (ak _ bk _ ck). Let n be the total number of unique Boolean variables in �. Construct m strings such
that akj = 1 if the jth Boolean variable is negated in clause k, akj = 0 if the jth Boolean variable appears as normal
in clause k, and akj = $ otherwise. This process can be performed in polynomial time. Hitting string solutions for
this set of strings determine the variable assignment of the di�erent Boolean variables. 2

Algorithms The following is an algorithm for converting a sparse hitting string into a dense hitting string in
O(mn).

