
Adaptation and Software Architecture
WPI-CS-TR-98-13

George T. Heineman
Worcester Polytechnic Institute

Worcester, MA 01609

http://www.cs.wpi.edu/~heineman

Abstract

This paper focuses on the need to adapt software components and software architectures. Too often,
examples from the literature avoid the difficult problem of constructing a software system from sets of
(possibly independently constructed) software components. Consider the following example: given a set
of components, an application builder attempts to construct a software system. Along the way, however,
some components are adapted with new code to suit the requirements of the final application. If the
components have architectural specifications, how are these adaptations reflected? In particular, changes
in the component implementation (i.e., new classes, modified methods, new lines of code) must be
reflected in the specification of the component (i.e., ports, roles). This problem is more important than
simply keeping documentation synchronized with software -- the architectural description of a software
system is essential in understanding the interconnections between the various software components.

1 Introduction

As the size of software applications increases, it becomes infeasible to implement software systems from
scratch. Software developers are responding to this growing complexity by constructing software systems
based on software components. However, it is still an elusive goal to construct applications entirely from
pre-existing, independently developed software components. One aim of software architecture research is
to better specify the high-level design and overall structure of a software system, focusing on the
individual components and their interconnections [GS93]. An Architectural Description Language (ADL)
provides the syntax for describing a software architecture. As software developers construct systems from
components, they can describe the developing software architecture using an ADL specification. This
position paper addresses two issues. (1) Mapping programming-level constructs such as methods and
classes to ADL constructs such as Ports and Roles. (2) Modifying ADL descriptions in response to
component-specific adaptations.

1.1 Context

We explore these issues by investigating the JavaBeans [SUN97] component model. A Java Bean is a
reusable software component that can be manipulated visually in a design environment, such as the
sample Bean Development Kit (BDK). A Bean is defined by its Properties, Methods, and Events.
JavaBeans relies on an implicit naming scheme of its public methods; for example, if a Bean has public
methods setHeight (int h) and int getHeight() , one can infer that the Bean has a property (i.e., a
named state attribute) Height. All public methods of a Bean are made available for other Beans to invoke
as needed. Finally, Beans communicate with one another through events that allow components to
propagate event notifications to one or more registered listeners. If a Bean has methods void

addControlEventListener (ControlEventListener cel) and void

removeControlEventListener (ControlEventListener cel) then one can infer that the Bean is
capable of generating ControlEvent events.

The simplicity of JavaBeans is offset by the drawbacks of such an implicit approach to component
construction. First, because there is no explicit specification of the interactions between the component

1 of 5 7/14/98 4:05 PM

Position Paper for Third International Software Architecture Workshop http://www.cs.wpi.edu/~heineman/Workshop/position.html

and its environment, the standard ADL concepts of Connectors, Ports, and Roles are implicit in
JavaBeans. Second, interoperability between JavaBeans and other non-Bean Java components is made
more difficult. Third, because a Bean interface is simply a collection of methods, the interface of complex
Beans is often a confused list of (seemingly arbitrary) methods. To overcome these drawbacks, we have
concretely defined the various Port and Role types that are possible in JavaBeans [OH98]. In doing so, we
uncovered some problems in mapping programming-level constructs such as methods to standard ADL
constructs such as Ports.

1.2 Motivating Example

Consider the simple Spreadsheet application in Figure 1 composed of nine interacting Beans. A
TableBean tb displays a matrix of information with C columns and R rows. The column header
TableBean tbC has height of 1 and width of C. The row header TableBean tbR has width of 1 and height
of R. A status TableBean tbBox (showing C8 in Figure 1) has height and width of 1. There are two
ScrollbarBeans, one vertical (vs) and one horizontal (hs), that allow users to select values from within a
particular range. A TextBean textb allows users to enter text. A List Bean selectb allows users to switch
between sheets, or create new ones. Lastly, an invisible SpreadsheetBean ss maintains and calculates all
values in the spreadsheet, of which only a few are visible as determined by tb. A Java applet app creates
these Beans and registers the interactions between them.

Figure 1. JavaBeans Spreadsheet Application

The components react to GUI events (i.e., mouse clicks) and communicate with each other using events.
For example, when the user selects an entry in tb using the mouse, tb generates a TableEventObject

event. app processes this event by setting entry (1,1) for tbBox to the designated cell while the contents of
the spreadsheet cell (i.e., (+ C2:C5)) are shown in textb. This type of integrated collaboration is typical
of component-based software systems.

We have defined a Component Specification Language (CSL) [Hein97] for specifying components. This
language is based on ACME [GMW96], the standard interchange language for ADLs. The specification in
Figure 2 was automatically generated by a Classifier tool we have written that uses the Java reflection
model to inspect a component's methods. Note that there is a separate Port for each Java interface
implemented by the component. The Classifier also detects all properties and events by reviewing the
names of all public methods for the Bean. Finally, there is a special port publicInterface that groups all
methods that are not based on the JavaBeans implicit naming scheme.

2 of 5 7/14/98 4:05 PM

Position Paper for Third International Software Architecture Workshop http://www.cs.wpi.edu/~heineman/Workshop/position.html

component adapt.gui.TableBean extends java.awt.Component {
 property java.lang.String TableValue (int, int);
 property int RowHeight;
 property int ColumnWidth;
 property java.awt.Color Foreground;
 property java.awt.Color Background;
 property java.awt.Font Font;
 property adapt.gui.TableRegion SelectedRegion;
 property int NumColumns;
 property int NumRows;
 property adapt.ComponentAdapter Adapter;

 listener TableListener;
 listener ActionListener;
 listener PropertyChangeListener;

 Port adapt.gui.TableListener = {
 void handleTableEvent (adapt.gui.TableEventObject);
 }

 Port java.io.Serializable = { }
 Port java.awt.event.MouseMotionListener = {
 void mouseDragged (java.awt.event.MouseEvent);
 void mouseMoved (java.awt.event.MouseEvent);
 }
 Port java.awt.event.MouseListener = {
 void mouseClicked (java.awt.event.MouseEvent);
 void mousePressed (java.awt.event.MouseEvent);
 void mouseReleased (java.awt.event.MouseEvent);
 void mouseEntered (java.awt.event.MouseEvent);
 void mouseExited (java.awt.event.MouseEvent);
 }

 Port publicInterface = {
 void paint (java.awt.Graphics);
 void redraw (java.awt.Graphics, int, int);
 boolean select (adapt.gui.TableRegion);
 boolean select (adapt.gui.TableElement, adapt.gui.TableElement);
 java.awt.Dimension getPreferredSize ();
 }
}

Figure 2. CSL specification of TableBean

2 Adaptation

We make a distinction between software evolution, where the software component is modified by the
component designer, and adaptation, where an application builder adapts the component for a different
use. We also differentiate adaption from customization; an end-user customizes a software component by
choosing from a fixed set of options (such as OIA/D [Kicz97]). An end-user adapts a software component
by writing new code to alter existing functionality.

If the source code for a software component is available, a software developer can theoretically make any
change to the code. Typically, however, programmers tread cautiously when modifying third party code,
making slight extensions or carefully modifying a small number of lines. Ideally, a software component
should be designed to allow easy extension and adaptation. We consider two situations when adaptation
can occur: either the component provides a mechanism for adaptation or the source code is available. Our
ADAPT framework [Hein97] defines a style for adaptable software components using active interfaces.
There are two phases to all interface requests: the "before-phase" occurs before the component performs
any steps towards executing the request; the "after-phase" occurs when the component has completed all

3 of 5 7/14/98 4:05 PM

Position Paper for Third International Software Architecture Workshop http://www.cs.wpi.edu/~heineman/Workshop/position.html

execution steps for the request. These phases are similar to the Lisp advice facility described in [Rama97].
A standard way to alter the behavior of a component is to interpose an entity to intercept messages and/or
events. Because such adaptation is likely to occur, the component should provide an interface for this
purpose.

Consider the use of the TableBean components tbR and tbC. The application designer would like to reuse
the basic functionality of the TableBean component, but tbR and tbC behave differently from tb. In
particular, the values can be calculated and the standard setTableValue() interface can be bypassed.
The TableBean component has been designed to allow "before-phase" methods to be registered for the
getTableValue (int col, int row) method. As shown in Figure 3, the application developer
provides extra code that will be invoked before the getTableValue request is processed. For tbR, as
shown in Figure 4, the developer inserts special code to calculate the actual row number based upon the
current topRow, a property maintained by the new Glue5 class.

 component tbR adapts TableBean {
 Port Glue5.topRow = { ... };
 action Glue5.retValue (int);

 String getTableValue (int col, int row) {
 before Glue5.retValue (row);
 };
 }

Figure 3. CSL specification of adaptation

public String retValue (Integer colI, Integer rowI) {
 int col = colI.intValue();
 int row = rowI.intValue();

 int actualRow = row + topRow - 1;
 return new String (new Integer (actualRow).toString());
}

Figure 4. Adaptation code inserted before getTableValue() for tbR

The TableBean component allows per-instance adaptations, so both tbC and tbR have special code that
adapt the Bean for both specialized uses. This is possible only because the designer of TableBean has
foreseen that other developers may use the Bean in unanticipated ways. The benefit for the component
designer is that the Bean can be used by a wider range of developers, and the benefit for the application
builder is easy adaptation of existing code without source code modification. Our architectural approach
to component adaptation maintains a clean separation between the original component and all future
adaptations of it, allowing components to be released without source code and yet still allow adaptation.

The Connectors and Roles have similar structure that we briefly present in Figure 5. This connector is
responsible for integrating the various Beans to process events occuring in the TableBean. In Figure 1, for
example, when the user clicks on the cell C7, tbBox is updated to contain the cell reference, textb is
updated to contain the cell contents, and tbR and tbC are updated to unselect any regions (i.e., entire
columns or rows) that were previously selected). The connector that accomplishes these tasks is specified
in Figure 5.

4 of 5 7/14/98 4:05 PM

Position Paper for Third International Software Architecture Workshop http://www.cs.wpi.edu/~heineman/Workshop/position.html

Connector handleTBEvent:BeanConnector composedof TextRole extended with {
 Role consumeTableBeanEvent : ConsumeEvent;

 Role getSelectedRegion_tb : GetProperty;
 Role getTableValue_tbR : GetProperty;
 Role getTableValue_tbC : GetProperty;
 Role getValue : GetProperty;
 Role getLeftColumn : GetProperty;
 Role getTopRow : GetProperty;

 Role setTableValue : SetProperty;
}

Attachments {
 tbR.Leftcolumn.getLeftColumn to handleTBEvent.getLeftColumn;
 tbC.TopRow.getTopRow to handleTBEvent.getTopRow;
 tbC.SelectedRegion.setSelectedRegion to handleTBEvent.setSelectedRegion;
 tbR.SelectedRegion.setSelectedRegion to handleTBEvent.setSelectedRegion;
 tbBox.TableValue.setTableValue to handleTBEvent.setTableValue;
 ss.Value.getValue to handleTBEvent.getValue;

 textBean.Text to handleTBEvent.RoleText;
}

Figure 5. Connector Description

3 Conclusion

In this short paper, there is not enough room to discuss how Roles are also defined using CSL. We are
making progress, however, at capturing the complexity inherent in the interface of software components
and showing how the specification can reflect adaptations to the components. In [OH98] we defined three
possible views of a component's interface -- informational, behavioral, and functional. Our initial findings
support the idea that composition and inheritance should be more widely used in defining Ports and
Roles. The essential understanding we reached is that the interface of a Port clearly defines how the
Role for a Connector should be attached. More work now needs to be performed on how useful these
complex specifications are when adapting software components to build software systems. This paper is
based on work sponsored in part by National Science Foundation grant CCR-9733660.

1. [GS93] David Garlan and Mary Shaw. An Introduction to Software Architecture, volume I of
Advances in Software Engineering and Knowledge Engineering. World Scientific Publishing
Company, New Jersey, 1993.

2. [GMW96] ACME: An Architectural Interchange Language. D. Garlan, R. Monroe, and D. Wile.
Submitted for publication, 1996.

3. [Hein97] A Model for Designing Adaptable Software Components. George Heineman. To Appear
in Compsac98.

4. [OH98] Complex Ports and Roles within Software Architecture. Helgo Ohlenbusch and George
Heineman. Submitted for publication. Techreport WPI-CS-TR-98-12.

5. [Kicz97] Open Implementation Design Guidelines. Gregor Kiczales, et al. 19th International
Conference on Software Engineering, pages 481-490, May 1997.

6. [Rama97] A Emacspeak: A Speech-Enabling Interface. T. V. Raman. Dr. Dobb's Journal,
22(1):18-23, September 1997.

7. [SUN97] JavaBeans 1.0 API Specification. Sun Microsystems, Inc. December 4, 1996.

5 of 5 7/14/98 4:05 PM

Position Paper for Third International Software Architecture Workshop http://www.cs.wpi.edu/~heineman/Workshop/position.html

