
Composing Software Systems from Adaptable Software Components
WPI-CS-TR-97-9

George T. Heineman
Worcester Polytechnic Institute

Worcester, MA 01609

http://www.cs.wpi.edu/~heineman

Abstract

The construction of software systems from pre-existing, independently developed software components
will only occur when application builders can adapt software components to suit their needs. Our
ADAPT framework [Hein97] supports both component designers in creating components that can easily
be adapted, and application builders in adapting software components. We propose that software
components provide two interfaces -- one for behavior and one for adapting that behavior as needed. In
this position paper, we outline some requirements for composing software systems from components
and suggest that adaptation be recognized as a significant factor.

1 Introduction

The goal of constructing software applications from reusable software components is proving to be very
challenging. We believe that adapting software components for use by a particular application is a key
enabling technology towards realizing this goal. Using a software component in a different manner than
for which it was designed, however, is challenging because the new context may be inconsistent with
implicit assumptions made by the component. Techniques such as component adaptors [Yell97] that
overcome syntactic incompatibilities between components do not address the need to adapt software
components.

Our focus is on supporting both component designers and application builders: the designers will be
aided in creating components that can easily be adapted (thus increasing reuse), and for the first time,
application builders will have mechanisms for adapting software components. By design, black box
components often only allow minimal customization and are reusable if they exactly match a particular
need in an application. However, the use of the component is also heavily dependent on the ability for
application builders to adapt the component for use in different applications.

We make a distinction between software evolution, where the software component is modified by the
component designer, and adaptation, where an application builder adapts the component for a different
use. We also differentiate adaption from customization; an end-user customizes a software component
by choosing from a fixed set of options (such as OIA/D [Kicz97]). An end-user adapts a software
component by writing new code to alter existing functionality.

1.1 ADAPT

The goal of the ADAPT framework is to increase the feasibility of component-based software
development by showing how to design adaptable software components. The main idea is that
component designers must provide mechanisms that allow application builders to incorporate and adapt
these components into their application. Two research directions for the ADAPT project that are

relevant to the discussion of compositional software architecture are:

A Component specification language for specifying the interface of a component and how it is
adapted.
Active interfaces

1.1.1 Component Specification Language

component Spreadsheet {
 implements Serializable,
 SpreadsheetListener;

 // one-dimensional property.
 indexedProperty Function function(String)

 // one-dimensional property.
 indexedProperty String Value(String);

 // Basic state properties of this component
 property boolean debug;

 // Methods
 float getNumericValue(String);
 void installFunctions();

 float evaluateConstant(String);
 void evaluate(Node);
 float calculateFunction(Expression);

 // expects add/remove
 void addSpreadsheetListener(SpreadsheetListener);
 void removeSpreadsheetListener(SpreadsheetListener);

 // SpreadsheetListener Interface
 void handleSpreadsheetEvent(SpreadsheetEventObject);
}

The ADAPT (Architectural Description of adAPTable components) language is used to describe the
interface for a component and its adaptations. If the component is written in a reflective language, such
as Java, then the specification for a component can initially be generated directly from the component.
The above figure describes one such specification generated for a Spreadsheet Bean. This Bean supports
a set of spreadsheet services, allowing clients to set individual cell values (through the Value property),
and allows external client Beans to become listeners for refresh requests as new values are added and
computed. An ADAPT description provides a convenient place to specify adaptations to the component,
as we now describe.

1.1.2 Active Interfaces

The interface must play a greater role in helping application builders adapt the component. The
component interface is more than a syntactic description of the method invocations accepted by the
component. As defined in [Abow95], components are active computational entities whose interfaces
defines methods to invoke, events to receives and/or send, or complex access protocols. An active
interface decides whether to take action when a method is called, an event is announced, or a protocol

executes. There are two phases to all interface requests: the "before-phase" occurs before the component
performs any steps towards executing the request; the "after-phase" occurs when the component has
completed all execution steps for the request. These phases are similar to the Lisp advice facility
described in [Rama97]. A standard way to alter the behavior of a component is to interpose an entity to
intercept messages and/or events. Because such adaptation is likely to occur, the component should
provide an interface for this purpose.

Suppose that the application builder wishes to modify the Spreadsheet Bean in Figure 1 so that it
generates an event whenever the particular value of a cell changes (for example, because the cell
contains a calculated formula), not just when the contents change; for example, changing a cell from "(+
2 3)" to "(* 5 1)" changes the contents, but not the value. The application builder could modify the
component directly (which we are trying to avoid) or filter out messages from the Spreadsheet (but this
would require the client to store duplicate values to detect differences, and is space/time inefficient). We
use an active interface to insert a before-evaluate function that has the Spreadsheet component record
the value of the cell before its update and an after-evaluate function that compares the new value against
the old; if the values are different, the after-evaluate function generates the appropriate notification.
These functions would then be incorporated into the object ss, the instantiation of the Spreadsheet
component. With this scheme, different component objects from the same class can be adapted in
different ways, offering even more flexibility to the application builder.

component ss adapts Spreadsheet {
 code code.jar;
 action storeValue (in Node);
 action compareValue (in Node);

 void evaluate (Node node) {
 before storeValue(node);
 after compareValue(node);
 };
};

Active interfaces are different from the pre-packaged implementation strategies of OIA/D [Kicz97].
OIA/D sketches a solution showing how the client can provide their own implementation strategy, but
typically an entire method for a component is replaced. Our approach is more fine-grained, allowing
adaptation to occur when needed. We do not violate the encapsulation of the component, since the
methods invoked within the active interface do not directly access private information in the component.
Thus the component designer has great flexibility, and can place the responsibility for correctness on the
application builders that adapt the component.

1.2 Context

Our ADAPT framework [Hein97] is independent of the particular programming language and
architectural style, and is thus widely applicable. For our initial prototype, we have chosen to use the
JavaBeans [SUN97] software component model. A Java Bean is a reusable software component written
in Java that can be manipulated visually in a design environment, such as the sample Bean Developers
Kit (BDK) shipped with the initial release of JavaBeans. BDK allows application builders to instantiate
a collection of Beans that communicate with each other using events. The JavaBeans event model
provides a convenient mechanism for components to propagate state change notifications to one or more
listeners. Each Bean contains a set of state properties (i.e., named attributes) and BDK allows

application builders to customize a Bean by modifying its properties.

We are interested in extending the JavaBean component model to distributed applications. In particular,
we are designing a message framework called SOWER on which a distributed application composed of
beans can be built. SOWER is based on the Event-Based Software Integration (EBI) described in
[Barr96]. The key features of SOWER are:

It is integrated with the BDK.
JavaBean components can be used as is without modification.
Connector code is automatically generated as needed to deliver JavaBean events between remote
components.
The registration of the communication between Beans is separate from the actual delivery of Bean
events.

In this way, we can experiment with constructing distributed applications from components and
investigate the evolvability of such software systems.

2 Requirements

For this position paper, we identify the following requirements for compositional software architectures.
We discuss these requirements in the context of JavaBeans, but they apply equally regardless of
programming language.

2.1 Core Requirements

1. Separation of physical composition from logical composition. JavaBeans provides a convenient
abstraction for communication between two components, and the distribution mechanism must
maintain this separation.

2. Using JavaBeans without design modification. The JavaBeans standard is gathering support in
industry, so any approach to building distributed applications must be compatible with the basic
Bean model.

3. Support for dynamic configuration. The framework enabling communication between distributed
Beans must allow the application builder to deploy and move Beans between each site. The virtual
communication between Beans should be flexible enough to be reconfigured when Beans move.

2.2 Advanced Requirements

As part of our efforts towards building adaptable software components, we feel the following
requirements are essential for realizing the goal of building distributed applications from software
components.

1. In Situ Adaptation. When adapting the behavior of a class C, object-oriented design methodologies
suggest that a new subclass SC be created that extends C to create the new, desired functionality.
This approach does not work when we wish to adapt the behavior of a component. First, even
though a component may syntactically be equivalent to a class (as in JavaBeans), inheritance is
ill-suited for such adaptation. Consider a component constructed using the Facade design pattern
[Gamm95]; creating a subclass of the Facade class complicates the design. Second, once a

component is deployed, the application builder should be able to adapt the component by
supplying new code to be integrated into the component; inheritance is strictly a compile-time
mechanism.

3. Conclusions

In this paper, we outlined some requirements for compositional software architectures. We are focused
on creating design methods and implementation mechanisms that allow application builders to adapt
software components in their applications. We showed that component models must provide some
mechanism for adaptation, and we introduced active interfaces for this purposes. We sketched the
ADAPT and SOWER frameworks, and described their usefulness in constructing distributed
applications from software components.

References

1. [Abow95] Formalizing Style to Understand Descriptions of Software Architecture. ACM
Transactions on Software Engineering and Methodology, 4(4):319-364, October 1995.

2. [Barr96] A Framework for Event-Based Software Integration. Daniel Barrett, Lori Clarke, Peri
Tarr, Alexander Wise. ACM Transactions on Software Engineering and Methodology,
5(4):378-421, October 1996.

3. [Gamm95] Design Patterns: Elements of Reusable Object-Oriented Software. Erich Gamma,
Richard Helm, Ralph Johnson, John Vlissides. Addison-Wesley, 1995.

4. [Hein97] A Model for Designing Adaptable Software Components. George Heineman. Submitted
for Publication.

5. [Kicz97] Open Implementation Design Guidelines. Gregor Kiczales, et al. 19th International
Conference on Software Engineering, pages 481-490, May 1997.

6. [Rama97] A Emacspeak: A Speech-Enabling Interface. Dr. Dobb’s Journal, 22(1):18-23,
September 1997.

7. [SUN97] JavaBeans 1.0 API Specification. Sun Microsystems, Inc. December 4, 1996.
8. [Yell97] Protocol Specification and Component Adaptors. Daniel Yellin and Robert Strom. ACM

Transactions on Programming Languages and Systems, 19(2):292-333, March 1997.

