
WPI-CS-TR-97-6 (revised) February 1998

A Model for Designing Adaptable

Software Components

by

George T. Heineman

Computer Science

Technical Report

Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department

100 Institute Road, Worcester, Massachusetts 01609-2280

A Model for Designing Adaptable Software Components

George T. Heineman
Worcester Polytechnic Institute

100 Institute Road
Worcester, MA 01609, USA

+1 508 831 5502
heineman@cs.wpi.edu
WPI-CS-TR-97-06

Abstract

The widespread construction of software systems from pre-existing, independently developed software compo-

nents will only occur when application builders can adapt software components to suit their needs. We propose

that software components provide two interfaces { one for behavior and one for adapting that behavior as needed.

The ADAPT framework presented in this paper supports both component designers in creating components that

can easily be adapted, and application builders in adapting software components. The motivating example, using

JavaBeans, shows how adaptation, not customization, is the key to component-based software.

1 INTRODUCTION

An important aim of software engineering is to produce reliable and robust software systems. As software sys-

tems grow in size, however, it becomes infeasible to implement software systems from scratch. Most software

developers are familiar with reusing code from component libraries to speed up tedious programming tasks, such

as constructing graphical user interfaces. However, it is still an elusive goal to construct applications entirely

from pre-existing, independently developed components. This paper presents a technique for designing software

components that provide a mechanism for adapting their behavior. Typically, software components o�er services

de�ned by a public interface that hides the actual implementation of those services. We propose that software

components provide two interfaces { one for behavior and one for adapting that behavior as needed. We also

believe that the component must make visible its key policy decisions to allow application builders to adapt the

component.

There are many obstacles to reusing software components. First, one must locate a component with the exact

functionality needed; then, once a component is found that (perhaps only closely) matches the desired need, one

must still overcome syntactic incompatibilities between interfaces, and implicit assumptions and dependencies that

components may have. The motivation is great, since reusing a component avoids implementing the same func-

1

tionality from scratch and (more importantly) reduces maintenance costs. However, using a software component

in a di�erent manner than for which it was designed is challenging because the new context may be inconsistent

with implicit assumptions made by the component. Techniques such as component adaptors [25] that overcome

syntactic incompatibilities between components do not address the need to adapt software components.

There will be an increasing problem (perhaps we may call it the software component crisis) in using components

constructed by other developers. There may be no way to standardize these heterogeneous components (although

consider component models such as JavaBeans [16]) and there is no guarantee that an application builder will

�nd a component to exactly match a particular need. Thus we must support both component designers and

application builders: the designers should create components that can easily be adapted (thus increasing reuse),

and application builders need mechanisms for adapting software components.

A review of the literature on component-based software development reveals many types of components,

such as calendars and calculators, but increasingly more powerful components are also being developed. Visual

Components [13] are a collection of ActiveX components for Windows applications, such as spreadsheets, spell

checkers, html browsers, and database front-ends. A recent NIST Advanced Technology Program [18] involves

sixteen companies pursuing the automated composition of complex large-scale applications from \relatively small"

�ne-grained components.

These \Black box" components allow minimal customization and are reusable only if they exactly match

a particular need in an application. For example, a groupware application builder will not be able to use a

database component to store application data if the default transaction behavior of the component cannot be

altered to share data among multiple users. The use of a component is thus heavily dependent upon (1) the

match in functionality between the component's capabilities and the application's requirements, and (2) the

ability for application builders to adapt the component to di�erent applications; the latter observation is too

often unrecognized.

We make the distinction between software evolution, where the software component is modi�ed by the compo-

nent designer, and adaptation, where an application builder adapts the component for a (possibly radical) di�erent

use. If the component designer performed the adaptation, a very di�erent sequence of actions would occur, since

the designer has access to the source code, has a full understanding of the design of the component, and will

likely select the optimal adaptation. The application builder has none of these advantages and thus may not be

able to overcome the many obstacles to adapt the component. We therefore need to support component designer

and application builder alike. It is also important to di�erentiate adaptation from customization. An end-user

customizes a software component by choosing from a �xed set of options that are already pre-packaged inside the

software component. An end-user adapts a software component to a new environment by writing new code to

alter existing functionality.

I D FACULTY STUDENTS
96BI 1 . 0 3 . 0
96RS 1 . 0 2 . 0
96DQ 1 . 0 2 . 0
961O 1 . 0 1 . 0

TOTAL: 4 . 0 8 . 0

1
2
3
4
5
6
7
8
9
10

A B C DC8

I D FACULTY STUDENTS
96BI 1 . 0 3 . 0
96RS 1 . 0 2 . 0
96DQ 1 . 0 2 . 0
961O 1 . 0 1 . 0

TOTAL: 4 . 0 8 . 0

1
2
3
4
5
6
7
8
9
10

A B C DC8

 (+ C2:C5)

Figure 1: Spreadsheet composed of eight Java beans

1.1 Context

Our framework for adaptable software components is independent of programming language and software archi-

tecture. For this paper, however, we assume that the components are written in Java [4] and that applications

follow the JavaBeans [16] software component model. A Java Bean is a reusable software component that can be

manipulated visually in a design environment, such as the sample Bean Developers Kit (BDK) shipped with the

initial release of JavaBeans. BDK allows application builders to instantiate a collection of Beans that communi-

cate with each other using events. The JavaBeans event model provides a convenient mechanism for components

to propagate state change noti�cations to one or more registered listeners. JavaBeans focuses on components that

can be manipulated visually and customized for some purpose. Each Bean contains a set of state properties (i.e.,

named attributes) and BDK allows application builders to customize a Bean by modifying its properties. For

example, one can change the font, background color, or dimensions of a Bean.

1.2 Motivating example

The motivating example is a simple spreadsheet application composed of eight interacting Beans as shown in

Figure 1. A TableBean tb displays a matrix of information with C columns and R rows. The column header

TableBean tbC has height of 1 and width of C. The row header TableBean tbR has width of 1 and height of R. A

status TableBean tbBox (showing C8 in Figure 1) has height and width of 1. There are two ScrollbarBeans, one

vertical (vs) and one horizontal (hs), that allow users to select values from within a particular range. A TextBean,

textb, allows users to enter text. Lastly, an invisible Spreadsheet Bean ss maintains and calculates all values in

the spreadsheet, of which only a few are visible as determined by tb. The entity responsible for creating these

Beans and setting up the interactions between the Beans is the parent Java applet, app.

The components react to GUI events (i.e., mouse clicks) and communicate with each other by passing along

special events. For example, when the user selects an entry in tb using the mouse, tb generates a TableEventObject

event. app processes this event by setting entry (1,1) for tbBox (the only one visible) to the designated Column/Row

while the contents of the spreadsheet cell (i.e., (+ C2:C5)) are shown in textb.

For this paper, we consider the following adaptations to highlight our approach: (A1) de�ne noti�cation

functions to be invoked whenever the value (not just the contents) of a particular cell changes; (A2) adapt ss

to only send to tb updated cells visible to tb; The original component designer can easily make these changes; a

competent software engineer could do the same after understanding the source code. For example, some behavioral

adaptations are typically implemented using subclasses in C++; this, however, requires that the component be

recompiled. We show how to design components so they can be adapted without directly accessing their source

code.

2 REQUIREMENTS

We have identi�ed several requirements for designing software components that provide a mechanism for adapting

their behavior.

Programming language independence

Since components are implemented in many di�erent programming languages, the mechanism for adaptation

must not depend on any language-speci�c feature. Thus, although the example components in this paper are

programmed using Java, the adaptation solutions described in Section 3 do not rely on object-oriented features

such as inheritance.

Handle existing code

The mechanism must work equally well for newly-developed code and existing software components. A compo-

nent designer should not be required to follow a particular architectural style or design pattern; nor should the

component classes (if object-oriented) be required to be subclasses of special adaptation superclasses. Thus, we

seek the least intrusive means. The additional code needed to convert a legacy component to be adaptable must

require only minimal understanding of the component itself.

Design sophisticated interfaces

There is an implicit assumption that the interface of a component is passive while the implementation contains the

active execution. An active interface is involved in the execution of its member methods, allowing or disallowing

method invocations much like a cell membrane allows or prevents substances from entering a cell. In this paper,

we show how an application builder can adapt the behavior of a component as necessary without violating its

encapsulation. Active interfaces provide an alternative to the common \wrapping" approach, whereby an extra

layer is written around an object to alter its behavior.

ADL compatibility

We build upon the large body of work on Architectural Description Languages (ADLs). Thus the component

speci�cation language must be compatible with Acme [3], the standard interchange language for architectural

descriptions. We also require that adaptations be speci�ed at the architectural level so that the changes to the

component can easily be integrated with the component.

3 ADAPT PROJECT

The goal of the ADAPT project is to increase the feasibility of component-based development of software appli-

cations by showing how to design adaptable software components. The main idea is that component designers

must provide mechanisms that allow application builders to incorporate and adapt these components into their

applications. We motivate our research using the example from Section 1.2. We �rst present our ADL in Sec-

tion 3.1 then introduce in Section 3.2 active interfaces as a way that component designers can help application

builders adapt components. We then show in Section 3.3 our arbitrator mechanism for adapting components

based on semantic information. Throughout, we include ADL fragments showing how component speci�cations

are modi�ed to re
ect their speci�cations.

3.1 Component speci�cation language

We are developing a Component Speci�cation Language (CSL) as a common means for describing the interface

for a component and its adaptations. As an Interface Description Language [23], CSL describes the interface for

adaptable components, and is used to de�ne the adaptation policies. As an Architectural Description Language [3],

CSL describes the interactions between components and the internal (private) structure of a component. CSL

extends Acme [3] to describe the internal structure of a component without revealing its implementation. A

bene�t of this language-based approach is that the same language used by the designer to describe the interface

of their component is used by an application builder when determining how to adapt the component.

The CSL speci�cation describes where new code and functionality should be integrated to adapt a component,

but there are several options for how this will be implemented. The code can be statically compiled and linked

together with the component in traditional fashion. Alternatively, the component could dynamically load and

execute the new code when needed (as BDK does).

Figure 2 describes the CSL speci�cation for the Spreadsheet Bean component. It has two properties (Function,

Value) that can be set, retrieved, or cleared; these are represented as ports. There is a public interface for

Spreadsheet, with three functions that any external component can invoke directly. Then there are two ports

for communicating using SpreadsheetEvents. A connector can attach to SpreadsheetGenerator if it wants to

receive events; alternatively, a connector can attach to SpreadsheetListener if it wants to give the Spreadsheet

component an event to handle. Lastly, there is a port explicitly for adaptation, as required by our ADAPT

component Spreadsheet = {

Port FunctionProperty = {

void clearFunction ();

Function getFunction (String s);

void setFunction (String s, Function f);

};

Port ValueProperty = {

void clearFunction ();

String getFunction (String s);

void setValue (String s, String v);

};

Port PublicInterface = {

float calculateFunction(Expression e);

float getNumericValue(String s);

void installFunctions();

};

Port SpreadsheetGenerator = {

void addSpreadsheetListener (SpreadsheetListener sl);

void removeSpreadsheetListener (SpreadsheetListener sl);

};

Port SpreadsheetListener = {

void handleSpreadsheetEvent (SpreadsheetEventObject seo);

};

Port Adaptable = {

void invokeCallback (String where, String method, Object args[]);

};

// Private, adaptable methods are listed

void evaluate (Node node);

float evaluateConstant(String s);

void generateRefreshEvents();

}

Figure 2: CSL speci�cation for spreadsheet

framework. Each internal method of the component that can be adapted is also listed separately, not associated

with any port. Such an accurate speci�cation of a component's interface is necessary before any attempt to adapt

that component.

CSL extends ADLs in two signi�cant directions. First, it de�nes interfaces for ports (and roles) containing the

set of associated functions that describe each port (and role); this provides a basis for attaching roles to ports.

Second, as we shall see in the next section, CSL shows how a component designer can tell the application builder

where to adapt a component, even if a private method is being adapted.

3.2 Active interfaces

The interface for a component must play a greater role in helping application builders adapt the component.

Components are active computational entities whose interface de�nes methods to invoke, events to receive and/or

send or complex access protocols [1]. An active interface decides whether to take action when a method is called,

an event is announced, or a protocol executes. Following the Acme ontology [3], components have ports that

represent interaction points between the component and other components in the system. A port is active when

there is any communication between the port and its attached connector.

Although there are many di�erent types of ports, there is no common agreement on the exact composition of a

port. A port can be a function port, representing a function or method of a component. In this case, there are two

phases to a port request: the \before-phase" occurs before the component performs any steps towards executing

the request; the \after-phase" occurs when the component has completed all execution steps for the request. A

port can be a data port, representing the
ow of data into or out of the component. In this case, there is only

one \after-phase", after the data has been accepted by the port, but before it has been processed. As a third

alternative, consider a data
ow port that follows the following protocol: the port receives a signal that data is

ready, it receives the actual data, then it replies with an acknowledgment that the data was received. This data
ow

port has four phases: one before, one after, and two \in-between". Ports de�ne the public communication allowed

a component. We also consider the internal component interface consisting of private methods. Although they are

private, these internal methods are able to support an active interface and can have associated \before-phase" and

\after-phase". Note that revealing the internal interface of a component does not mean that the implementation

is revealed.

An active interface allows user-de�ned callback functions to be invoked at each phase for a port (or internal

method), and thus may augment, replace, or even deny a port (or method) request. We claim this approach is

more general than the standard means of interposing entities between components to intercept/alter port requests.

Because such adaptation is likely to occur, the component should provide a mechanism for this purpose. Thus

the designer o�ers great
exibility, and the responsibility for correctness is placed on the application builders that

adapt the component.

Each component has an associated component arbitrator which maintains the set of all callback functions

installed for the active interface. Consider the void evaluate(Node node) private method in Figure 2. Figure 3a

ComponentArbitrator ca = new ComponentArbitrator(); | private void evaluate (Node node) {

|

// before Evaluate (Node) function | if (arbitrator != null) {

Class params[] = ca.paramList ("adapt.spreadsheet.Node"); | Object args[] = new Object[1];

try { | args[0] = node;

ca.insertCallback (ca.BEFORE, "evaluate", gl, | arbitrator.invokeCallback (BEFORE, "evaluate", args);

glueClass.getDeclaredMethod ("beforeEvaluate", params)); | }

|

ca.insertCallback (ca.AFTER, "evaluate", gl, | // Original Evaluate Function...

glueClass.getDeclaredMethod ("afterEvaluate", params)); |

} catch (NoSuchMethodException nsme) { | if (arbitrator != null) {

System.err.println ("Unable to install callbacks."); | Object args[] = new Object[1];

} | args[0] = node;

ss.setArbitrator (ca); | arbitrator.invokeCallback (AFTER, "evaluate", args);

| }

| }

(a) Creating callbacks | (b) Invoking callbacks

Figure 3: Installing and Invoking Active Interface

contains a fragment of code showing (from our Java implementation) how the application-builder sets up before-

and after- callback functions for evaluate, from the class glueClass. Figure 3b shows how the evaluate function

invokes the appropriate callback functions once installed. These fragments are speci�c for Java programs, but the

concept is independent of the programming language used.

We now implement adaptation A1 using the active interface mechanism. Observe that not every recalculation

of a spreadsheet changes the value of a cell. For example, if a cell contains the formula \(count A1:A10)" counting

the number of non-empty cells in the given region, it will not change value if the existing non-empty cells are

updated. The application builder decides to adapt the Spreadsheet component to include a before-evaluate

function that records the value of the cell before its update and an after-evaluate function that compares the

new value against the old. To adapt the component, the application builder modi�es the CSL speci�cation of

app in Figure 4, as shown by the vertical line. The arbitrator is itself a separate component, so conceptually it

communicates through the Adaptable port in ss. The arbitrator interprets the CSL speci�cation, and essentially

performs the same functionality as shown in Figure 3.

The storeValue and compareValue functions are coded (in the Java archive �le code.jar) and become part

of ss. Recall that the underlying implementation language for ss is Java; similar results can be achieved using

C/C++ and dynamic loading. This example shows how additional functionality can be seamlessly integrated with

low overhead if the component designers create an active interface. In object-oriented systems, inheritance is often

used to extend the behavior of a class; we suggest that, in many cases, active interfaces provide an alternative

mechanism.

The active interface mechanism is limited to adapting the behavior of a component at the standard interface

boundaries. The arbitration mechanism described in the next section builds upon the active interface by creating

special ports that allow policy decisions of the component to be adapted. The insight to arbitration is that

the component designer can identify decisions that application builders can augment or replace with their own

implementations.

System Application = {

component vs instanceof ScrollbarBean;

component hs instanceof ScrollbarBean;

component tb instanceof TableBean;

component tbBox instanceof TableBean;

component tbC instanceof TableBean;

component tbR instanceof TableBean;

component textb instanceof TextBean;

component app instanceof SpreadSheetApplet;

component ss adapts Spreadsheet {

code code.jar;

action Glue.storeValue (in Node);

action Glue.compareValue (in Node);

void evaluate (Node node) {

before Glue.storeValue (node);

after Glue.compareValue (node);

};

}

connector SpreadsheetEvent = {

Role generator {

void addSpreadsheetListener (SpreadsheetListener sl);

void removeSpreadsheetListener (SpreadsheetListener sl);

};

Role consumer {

void handleSpreadsheetEvent (SpreadsheetEventObject seo);

};

}

...

attachments {

SpreadsheetEvent.generator to ss.SpreadsheetGenerator

SpreadsheetEvent.consumer to app.SpreadsheetListener

...

};

}

Figure 4: Partial CSL speci�cation for the �nal application

class Glue {

private java.util.Hashtable values = new java.util.Hashtable (10);

int storeValue (Node node) {

Float fl = new Float (node.getNumericValue());

values.put (node.toString(), fl);

return 0;

}

void compareValue (Node node) {

Float newValue = new Float (node.getNumericValue());

Float oldValue = (Float) values.get (node.toString());

values.remove (node.toString());

if (oldValue.equals (newValue))

return;

notify (node); // notify appropriate listener

}

}

Figure 5: storeValue and compareValue code

3.3 Arbitrator to acquire semantic information

The options for an application builder using a component in ways not anticipated by its designer are: 1) modify the

component (very hard to accomplish without knowing how the component was constructed); 2) rely on language-

speci�c mechanisms (like inheritance) to replace fragments of the component; or 3) craft a special component

adapter that \wraps" the component, interposing itself between the application and the component (requiring

complex programming). Nearly twenty years ago, Parnas observed that software should be designed to be easily

extended and contracted [20]; the di�culty, of course, lies in foreseeing exactly what features will be adapted. For

example, when component C1 interacts with component C2, C1 knows its past history, its future actions, and its

usage patterns of C2. C2 could bene�t by having access to this semantic information since it could then select

the most appropriate manner in which to process requests from C1. A more signi�cant reason for C2 to have

this information is that C2 could be adapted to perform di�erently in certain situations. Instead of forcing C1 to

communicate this information directly to C2, we seek a generic method for C2 to acquire this information.

We extend the component arbitrator described in Section 3.2 to use CSL to model the semantic information

of a component and to have mechanisms for acquiring this semantic information. This separation between a

component and its arbitrator is essential since it reduces the complexity of the original component, which is not

involved in accessing or acquiring the semantic information. It also allows us to reuse this generic mechanism for all

components that can adapt their behavior based upon additional information. When a component makes a policy

decision, it can ask the associated component arbitrator to invoke any special-purpose policies as determined by

the application builder; the component will always have a default behavior in case there is no additional policy

de�ned. The arbitrator then acquires the information and executes actions according to the CSL speci�cation. A

CSL speci�cation describes the syntactic interface of a component and all policy decisions that are known to be

adaptable.

In our previous work [12], which focused on extending concurrency control for databases, we called this

a \mediator-based" approach since the arbitrator acted as a mediator between di�erent system components.

The CSL speci�cation describes how new code written by the application builder will be integrated with the

component; the application builder can de�ne special functions that retrieve the semantic information from the

desired components. These functions become part of the arbitrator and are executed when the arbitrator is asked

to fetch the desired semantic information. The policies de�ned in this language describe situations when the

component allow adaptation. Our current implementation has successfully been used to adapt the behavior of a

a transaction manager to implement di�erent extended transaction models [12].

Returning to our motivating example, the application builder implements adaptation A2 by e�ciently �ltering

the update messages from ss to tb. The speci�cation for app in Figure 6 has a VisibleCells port representing

the current region of visible cells. The Spreadsheet component has a function generateRefreshEvents that sends

to the listeners of the component all the refresh events of new values. The designer of the Spreadsheet component

allows
exible update policies by having this function invoke the arbitrator to selectively limit (or increase) the

Component app = {

Port VisibleCells {

CellRegion getVisibleCells ();

void setVisibleCells (CellRegion cr);

};

}

Component ss adapts Spreadsheet {

code code.jar;

action Glue2.filterCells (inout Vector, in CellRegion);

void generateRefreshEvents () {

negotiate refreshPolicy (Vector refreshList)

filterCells (refreshList, app.visibleCells);

};

}

Figure 6: Adaptation of Spreadsheet component

number of refresh events, as shown in Figure 6. The component designer cannot foresee all possible uses of

this refresh policy, but creates a place for this policy to be modi�ed. The interface between the component

and the arbitrator is de�ned by a set of negotiation entries (for example, refreshPolicy in Figure 6). Within the

generateRefreshEvents() function, the designer has the Spreadsheet component invoke the component arbitrator

directly:

\\ Negotiation Policy: refreshPolicy

arbitrator.resolve ("refreshPolicy", refreshList);

If the CSL speci�cation contains any adaptations for this negotiation policy, they are interpreted by the

arbitrator. In this example, the arbitrator receives the refreshList information from ss as a parameter.

Second, it acquires the visibleCells property from app by calling a special getVisibleCells function

(supplied by the application builder). This function determines the visible region given the property

information from Figure 6. Finally, the filterCells action is executed by the arbitrator. This function

is coded by the application builder to remove from the Vector of updated cells any non-visible cells. To

maintain the separation between components, only the arbitrator directly communicates with both ss

and app Note that this behavior could not have been created through either before- or after- callbacks.

A standard solution for implementing A2 would add a parameter to the function, such as generate-

RefreshEvents(visibleCells), that would restrict the list of refresh events generated. This is ill-

advised, however, since it increases the coupling between the components, needlessly complicates the

interface of the Spreadsheet component and limits the potential reuse of each component. This same

behavior could have been produced by wrapping Spreadsheet with a layer that �lters out refresh events

at the listening components, but this would be very ine�cient.

The arbitrator approach is useful when the component is solving a problem for which there is no

component TableBean {

indexedProperty String tableValue (int, int);

}

component tbC adapts TableBean {

code codeC.jar;

property int leftColumn;

action Glue4.retValue (int);

String getTableValue (int col, int row) {

before Glue4.retValue (col);

};

}

component tbR adapts TableBean {

code codeR.jar;

property int topRow;

action Glue5.retValue (int);

String getTableValue (int col, int row) {

before Glue5.retValue (row);

};

}

Figure 7: tbC and tbR adaptations

single \best" algorithm or implementation (see Template Method pattern for similar justi�cation [8]).

The component designer could produce multiple components, each one optimized for a di�erent context,

but this defeats the purpose of reuse. Alternatively one could pre-package a set of implementations (such

as OIA/D [15]), but this continues to limit the possible solutions. The arbitrator allows the application

builder to adapt the behavior of the component as required and retain the default behavior for most

cases. As components become more autonomous and intelligent, the arbitrator will be essential when two

interacting components must negotiate to make a common decision.

The arbitration mechanism also provides a convenient way for the component designer to supply code

that monitors the use of the component and adapts it. The arbitrator can dynamically construct state

information about the processing of the component to make not only performance-enhancing decisions

but also decisions that extend the core functionality of the component (for example, servicing a request

di�erently because of a change detected in the built-up state information).

We are currently investigating the many ways in which arbitrators can operate in component-based

architectures. One possibility, for example, is to associate a di�erent arbitrator with each component.

Alternatively, a federated approach would allow multiple arbitrators, each with their own set of associated

components. A centralized approach would have all the components in the application use one arbitra-

tor. There are many issues involved, ranging from how the components and arbitrators communicate,

how they resolve di�erences, and what architecture is suitable for multiple arbitrators. Some existing

component-based architectures, for example, place restrictions on the component communication. Batory

and O'Malley [5] de�ne a hierarchical layering of components, each of which is limited to communicating

with the component one higher/lower in the hierarchy. We believe that components should be relatively

insulated from the application architecture, and the arbitrator should be in charge of acquiring semantic

information.

The application in the motivating example contains four TableBean components. The column and row

Beans, tbC and tbR, clearly demonstrate the distinction between our CSL approach, and the standard

object-oriented approach. We could create, for example, a new ColumnTableBean component, sub-classed

from Tablebean, that overrides key methods to return the column, such as A, B, AA. Alternatively, we

could de�ne an additional property o�set and install callbacks for the adapted components. Figure 7

contains a partial CSL speci�cation with adaptations.

4 RELATED WORK

There have been many e�orts to describe software architectures using an ADL, but no concerted at-

tempt to allow third party application builders to describe adaptations from the software architecture

speci�cation. This is the novel addition of our work. Few ADLs support any notion of evolution, and

those that do are limited to structural sub-typing [17]. An ADL is not intended to capture all details of

an application (that is the responsibility of the underlying programming language of the components),

but it should provide some structural assistance when adapting components. CSL extends the Acme [3]

language in signi�cant ways as outlined in this paper.

Active interfaces are related to all work that seeks to alter the invocation of a component. From a

syntactic point of view, the before- and after- phases are similar to the Lisp advice facility described

in [21]. Alternatively, Filter objects [14] manipulate and/or disallow messages between objects and act

transparently without violating the encapsulation of the target objects. This particular wrapping ap-

proach is heavily dependent upon C++ and adds an extra class/object layer instead of extending the

responsibilities of the interface. Active interfaces have similar goals to re
ection [2], a design principle

whereby a system has a representation of itself that makes it easy to adapt the system to changing

environments, and meta-object protocols [19], where an interface allows incremental modi�cation of the

behavior and implementation of a component. Active interfaces are similar to the wrapping of internal

objects in C2 [24] except that they allow user-de�ned functions to be inserted and they can also a�ect

private methods of the component. Finally, active interfaces are distinct from the pre-packaged imple-

mentation strategies of OIA/D from which the client selects [15]. OIA/D sketches a solution showing how

the client can provide their own implementation strategy, but typically an entire method for a component

is replaced. Our approach is more �ne-grained, allowing adaptation to occur as needed and we do not

violate the encapsulation of the component, since the methods invoked within the active interface do not

directly access private information in the component.

The arbitrator is a more generalized instance of the Dialog and Constraint Manager (DCM) in the

C2 architectural style [24]. In C2, the internal wrapped component does not initiate interactions with

the DCM, but our framework depends on the component requesting assistance from the arbitrator when

making key decisions. The arbitrator is also more powerful than techniques that simply monitor a com-

ponent's usage. The designers of VINO [22], an extensible operating system, suggest that the operating

systems kernel can monitor the usage of its resources and adapt to di�erent workload conditions, but the

ways in which the component adapts are all pre-determined, �xed implementations.

5 CONCLUSION

5.1 Past Success

There needs to be increased awareness that software components will become e�ective only when ap-

plication builders can adapt them. Our previous work with the Programming Systems Laboratory at

Columbia University involved constructing a Process Centered Environment, called Oz [6], that sup-

ported extended transaction models. As described in [11], we developed an architecture for constructing

systems from pre-existing, independently developed software components. The primary di�culty we en-

countered was forcing components to adapt to �t within a larger application. This is distinct from the

architectural mismatch described in [9]. As part of this earlier work, we designed an extensible transaction

manager component (written in C) with an active interface and a component arbitrator with a special

language for tailoring its behavior based upon user-de�ned scenarios [10, 12]. In [12] we re-engineered

the active interface within the Exodus storage manager [7], thus allowing Exodus to negotiate with the

same component arbitrator to change its behavior. The success of this preliminary work con�rms that

software components can provide an interface for adaptation.

Table 1 describes the size of the Bean components developed for this paper. The Java applet, app,

that creates the components and directs their interact is only 15% of the entire application. These Beans

can be downloaded from www.cs.wpi.edu/~heineman/ADAPT.

5.2 Summary

We presented three main ideas in this paper:

� Active interfaces { a language-independent solution for creating components that can be adapted

Component LOC Number Classes

Spreadsheet 1675 17
TextBean 375 4
ScrollbarBean 303 2
TableBean 1055 7
Applet 606 1

Table 1: Size of Beans and Application

by application builders.

� Component arbitrators { components typically do not make visible the underlying policies that

dictate their behavior. If the component is to make reasoned decisions to alter one of its policies,

it must be able to access semantic information. The component arbitrator provides a powerful

mechanism for component designers to specify di�erent policies that the application builder can

adapt for their needs.

� CSL speci�cation language { component designers and application builders use CSL to specify the

adaptations allowed by a component, and the adaptations required by the application builder. In

this way, we support both parties in their e�orts.

We expect the impact of our research to increase the use of component architectures, such as Java-

Beans, by showing the full potential of component adaptation. By focusing on two of the most com-

plex/costly problems in software development { adapting existing code for new contexts, and designing

code to be extensible { our contributions will help solve the di�cult problem of developing large-scale,

high-quality, and robust software applications.

5.3 Future Work

We are currently extending the Beans Development Kit to interpret CSL speci�cations during design

time, and translate them into e�cient implementations at execution time. The users of BDK will be able

to compose applications from Bean components and will be able to adapt components, instead of simply

customizing them. An active interface will not help an application builder in all adaptations. Changing

internal data structures of a component, for example, requires redesign as well as recompilation. We plan

to determine the extent to which active interfaces and arbitration help adaptation e�orts.

References

[1] Gregory D. Abowd, Robert Allen, and David Garlan. Formalizing Style to Understand Descriptions

of Software Architecture. ACM Transactions on Software Engineering and Methodology, 4(4):319{

364, October 1995.

[2] ACM press. ACM Re
ection '96, San Francisco, CA, April 1996.

[3] John E. Arnold and Steven S. Popovich. Integrating, Customizing and Extending Environments with

a Message-Based Architecture. Technical Report CUCS-008-95, Columbia University, Department

of Computer Science, September 1994. The research described in this report was conducted at Bull

HN Information Systems, Inc.

[4] K. Arnold and J. Gosling. The Java Programming Language. Addison-Wesley, Reading, MA, 1996.

[5] Don Batory and Sean O'Malley. The Design and Implementation of Hierarchical Software Systems

with Reusable Components. ACM Transactions on Software Engineering and Methodology, 1(4):355{

398, October 1992.

[6] Israel Z. Ben-Shaul and Gail E. Kaiser. A Paradigm for Decentralized Process Modeling and its

Realization in the OZ Environment. In 16th International Conference on Software Engineering,

pages 179{188, Sorrento, Italy, May 1994.

[7] Michael J. Carey, David J. Dewitt, Goetz Graefe, Favid M. Haight, Joel E. Richardson, Daniel T.

Schuh, Eugene J. Shekita, and Scott L. Vandenburg. The EXODUS Extensible DBMS Project: An

Overview. In Stanley B. Zdonik and David Maier, editors, Readings in Object-Oriented Database

Systems, chapter 7.3, pages 474{499. Morgan Kaufman, San Mateo CA, 1990.

[8] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: Elements of

Reusable Software. Addison-Wesley, Reading, MA, 1995.

[9] D. Garlan, R. Allen, and J. Ockerbloom. Architectural Mismatch or Why it's Hard to Build Systems

out of Existing Parts. In 17th International Conference on Software Engineering, pages 179{185,

April 1995.

[10] George T. Heineman. A Transaction Manager Component Supporting Extended Transaction Models.

PhD thesis, Columbia University, May 1996.

[11] George T. Heineman and Gail E. Kaiser. An Architecture for Integrating Concurrency Control

into Environment Frameworks. In 17th International Conference on Software Engineering, pages

305{313, Seattle, WA, April 1995.

[12] George T. Heineman and Gail E. Kaiser. The CORD approach to Extensible Concurrency Control.

In 13th International Conference on Data Engineering, pages 562{571, Birmingham, UK, April 1997.

[13] Sybase Incorporated. ActiveX Components for Windows Applications, July 1997.

Internet site (http://www.visualcomp.com).

[14] Rushikesh K. Joshi, N. Vivekananda, and D. Janakiram. Message Filters for Object-Oriented Sys-

tems. Software { Practice & Experience, 27(6):677{699, June 1997.

[15] Gregor Kiczales, John Lamping, Cristina Lopes, Chris Maeda, Anurag Mendherkar, and Gail Mur-

phy. Open Implementation Design Guidelines. In 19th International Conference on Software Engi-

neering, pages 481{490, May 1997.

[16] Sun Microsystems, Inc. JavaBeans 1.0 API Speci�cation.

Internet site (http://www.javasoft.com/beans), December 4, 1996.

[17] Nenad Medvidovic and Richard N. Taylor. A Framework for Classifying and Comparing Arhchitec-

tural Description Languages. In Proceedings of the 6th European Software Engineering Conference

ESEC '97, 1997.

[18] National Institute of Standards and Technology. ATP Focused Program: Component-Based Software.

Internet publication (http://www.atp.nist.gov/atp/focus/cbs.htm).

[19] Xerox Parc. Metaobject Protocols.

Internet site (http://www.parc.xerox.com/spl/projects/mops).

[20] David L. Parnas. Designing Software for Ease of Extension and Contraction. IEEE Transactions on

Software Engineering, 5(6):310{320, March 1979.

[21] T. V. Raman. Emacspeak: A Speech-Enabling Interface. Dr. Jobb's Journal, 22(1):18{23, September

1997.

[22] Margo I. Seltzer and Christopher Small. Self-monitoring and Self-adapting Operating Systems. In

Sixth Workshop on Hot Topics in Operating Systems, Cape Cod, MA, May 1996.

[23] R. Snodgrass. The Interface Description Language: De�nition and Use. Computer Science Press,

Rockville, MD, 1989.

[24] Richard Taylor, Nenad Medvidovic, Kenneth Anderson, James Whitehead, and Jason Robbins.

A Component- and Message-Based Architectural Style for GUI Software. In 17th International

Conference on Software Engineering, pages 295{304, Seattle, WA, April 1995.

[25] Daniel M. Yellin and Robert E. Strom. Protocol Speci�cation and Component Adaptors. ACM

Transactions on Programming Languages and Systems, 19(2):292{333, March 1997.

