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1 Introduction

The ability to manage spatial data has become more and more crucial in a wide range of applications

such as geographic information systems, image processing, VLSI, and CAD/CAM. To e�ectively

manage spatial data, a spatial database must e�ciently process queries on spatial data. Spatial

joins are one such query function that combines objects from two data sets based on a spatial

predicate such as intersect or contain.

Queries Q1: \Find all parks which are in a city." and Q2: \Find all trails that go through

some forest." are examples of spatial joins. In Q1, the two data sets are parks and cities, the

spatial predicate is contain, whereas in Q2, the two data sets are trails and forests, and the spatial

predicate is intersect.

Spatial joins are very expensive in terms of both CPU and I/O because (1) spatial join operations

require multiple scans of the data sets, (2) spatial objects are typically represented by structures

that require extensive storage, and (3) resolving spatial predicates between two objects requires

super-linear time complexity. The �rst two factors contribute to high I/O costs whereas the third

one results in high CPU costs. As a result, spatial join queries over large data sets usually incur a

long response time.

This paper now presents a new method in spatial joins whose performance is a substantial

improvement (up to 50%) over the state-of-the-art approach. Like other spatial join techniques

[3, 9], our method is based on the existence of R-tree indexes created for the two target data

sets. Using R-tree indexes for spatial join processing is very useful because many spatial data sets

are large, therefore they require spatial indexes for query optimization. Furthermore, in recent

years, the R-tree and its variants have become one of the most popular spatial access methods.

Examples of spatial database systems which use R-trees are the Illustra database [20], Intergraph's

GIS databases [8], and Postgres [19].

An important advantage of R-tree based spatial joins is that the join process traverses both

R-tree hierarchies such that subtrees from both R-trees are only explored further if the Minimum

Bounding Rectangles (MBRs) of their root nodes satisfy the spatial predicate. Thus, spatial join

e�ciency is improved because many of the potential false hits can be discarded early in the join

process. To optimize spatial joins without using existing indexes, one typically requires special-

purpose data structures in order to detect and reduce false hits. For example, [9] constructs seeded

trees; [13] performs spatial partitioning; and [10] uses hash tables. While these techniques are

important when no spatial index exists for the target data sets, they are not the method of choice

when such indexes exist. This is because spatial joins based on existing indexes require no extra

data access structures and typically have a superior performance [13].

While previous techniques on R-tree spatial joins [3, 9] follow a depth-�rst order for traversing

the two input R-trees, we demonstrate in this paper that a spatial join technique based on a

breadth-�rst ordering approach o�ers new unique opportunities for optimization and thus results

1



in signi�cant performance improvements beyond previous solutions. This new technique, which we

call Breadth First R-tree Join (BFRJ), traverses both R-trees synchronously and processes

join computation level by level. The BFRJ then exploits the intermediate join results created at a

given level, called the intermediate join index (IJI), in order to make informed decisions as to which

two nodes from the two R-trees respectively are to be joined at the next lower level. This is in

contrast to the state-of-the-art R-tree spatial join technique [3] which using depth-�rst ordering has

the inherent limitation that optimization can only be achieved locally because the access pattern

for nodes beyond the current scope (i.e., local sub-trees) is not captured. The IJIs generated by

the BFRJ instead capture more global information such as the order of accesses for all nodes at

a certain level and the number of times each of these nodes will be accessed. This enables the

BFRJ to apply global optimization strategies for e�ectively managing these IJIs. In particular,

in this paper, we propose three such global optimization dimensions that include the IJI ordering

optimization, IJI memory management optimization, and the bu�er management optimization.

The IJI ordering optimization dimension incorporates strategies for ordering each IJI such that

page faults are minimized during join computation at the next level. The IJI memory management

optimization determines the proper means of storage (main memory bu�er or secondary storage) for

IJIs based on various bu�er sizes. The bu�er management optimization adjusts the bu�er paging

behavior exploiting knowledge available in the IJI about which pages are more likely to be accessed

in the (near) future. Although managing IJIs incurs overhead such as computation and storage

costs, we will demonstrate in our experimental studies that these costs are small compared to the

performance gain achieved by the global optimizations.

Because an analytical investigation of R-tree based spatial join is very di�cult [3], it remains

an open issue to date. Therefore, our performance studies of BFRJ, like other spatial join research

in the literature, are based on an experimental evaluation. We experiment with contrasting the

respective impacts of alternative solutions for each of the three global optimization dimensions for

BFRJ, as well as comparing the performance of BFRJ with the state-of-the-art techniques in

R-tree joins [3]. Our experimental evaluation shows that, with the proper selection of options in

global optimizations, BFRJ consistently outperforms the competitor. Its performance gain over

the competitor is particularly signi�cant (50%) when a medium or large bu�er space is available

for the spatial join task. This is important because modern databases tend to have a large system

bu�er so that compute-intensive tasks such as spatial joins are likely to have access to at least

a medium-sized bu�er space. BFRJ therefore �ts modern databases better because it improves

spatial join performance by deploying global optimizations that take advantage of a larger bu�er

allocation. Although the extreme case where a very small bu�er (< 400 KBytes) is used for a

spatial join task is not practical, BFRJ still moderately outperforms the competitor in this case.

The rest of the paper is organized as follows. Section 2 provides the background on spatial

joins. Section 3 introduces the framework of BFRJ, followed by Section 4 where BFRJ global

optimizations are proposed. We present our experimental results in Section 5 and conclude the
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paper in Section 6.

2 Background on Spatial Joins

2.1 Related Work

There are many recent research e�orts reported in the literature that focus on spatial join processing.

In [12], the z-ordering technique is used to transform multi-dimensional data into the 1-dimensional

domain. Spatial join is then conducted on the B+-tree structures that store z-ordering values of

the spatial data. In [15], spatial join indexes are computed using Grid �les [11] to index the spatial

data. In [6], a model of the generalization tree is proposed to compare the tree-based spatial joins

with the alternative approaches using cost estimation. Spatial joins based on depth-�rst traversal

of R-trees were proposed in [3]. Their techniques exploit the R-tree hierarchy by synchronously

traversing subtrees from both R-trees only if the MBRs of the subtrees' root nodes overlap. A

variety of CPU and I/O optimizations are also presented in [3]. To this date, this R-tree join [3]

has become the state-of-the-art approach for spatial joins when R-tree indexes exist for both spatial

data sets. Its performance has also become the yardstick used by other researchers to measure the

performance of their proposed non-index based spatial join methods [9, 10, 13].

More recently, spatial join research has focused on joining spatial data when the associated

spatial indexes do not exist for both data sets. In [9], a seeded tree is constructed for the data set

without index in order to join it with the R-tree of the other data set. When indexes do not exist

for both data sets, a spatial hash join is proposed in [10] that uses spatial partitioning as the hash

function. A similar partition-based spatial-merge join is proposed in [13].

2.2 The R-tree Structure

R-trees [7] are an extension of B-trees [1] that store multi-dimensional data. Like B-trees, R-trees

are balanced and dynamically adjustable. Unlike B-trees, a non-leaf node in an R-tree contains

entries of the form < addr;mbr > where addr is the address of a child node and mbr is the MBR

that encloses MBRs of all entries in that child node. A leaf node contains entries of the form

< oid;mbr > where oid refers to a spatial object stored in the database and mbr is the MBR of

that spatial object.

R-trees are dynamically balanced by queries such as insert or delete. Therefore, no periodic

reorganization is necessary. In most R-tree variants, however, entry MBRs are allowed to overlap

one another [2, 7, 5]. This means that there may not be only one search path as in the case of

B-trees. To improve this weakness, recently proposed R-tree variants tried to minimize the overlap

between the entry MBRs. Among them, R*-tree [2] introduces heuristics that yields a better query

performance. In [5], R-trees are constructed in a bottom-up approach called the packed R-tree

based on the Hilbert curve transformation. As a result, the node occupancy rate is maximized

whereas the overlap between entry MBRs is minimized. We exploit these previous results in this
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paper by basing our performance studies on spatial joins using packed R-trees.

2.3 The Notations

For brevity, we denote the two R-trees used for spatial joins as R and S. Below, we present the

notations that describe R. Applying the notations to S is straightforward.

� jRj is the number of spatial objects indexed by R

� hR is the height (number of levels) of R.

� lRi is the number of nodes at level i of R, where 0 � i < hR. Note that lR0 = 1.

� nRl
i is the i-th tree node at level l of R, where 0 � l < hR and 0 � i < lRl. Since there is

only one root node at level 0, we use nR0 to denote the root node of R.

� eRl
i is the number of entries in the tree node nRl

i.

� < oidRl
j; mbrRl

j >i is the i-th entry in the tree node nRl
j , where 0 � l < hR, 0 � j < lRl,

0 � i < eRl
j , oidR

l
j is the addr (for non-leaf nodes) or oid (for leaf nodes) and mbrRl

j is the mbr

of this entry.

In this paper, the spatial join process pertains to the MBR-spatial joins and the spatial predicate

is overlap1. The result of the MBR-spatial join, called the candidate set, is a set of 2-tuples

< oidRhR�1; oidShS�1 > where oidRhR�1 and oidShS�1 are the spatial object IDs from the leaf

nodes of R and S respectively such that their associated MBRs overlap each other. The MBR-

spatial join process is called the �lter step. To complete the spatial join process, a spatial intersect

algorithm [14, 18] is then applied to each item in the candidate set to determine if the two objects

really overlap. This process is called the re�nement step.

2.4 Local Optimizations for R-tree Based Spatial Joins

In R-tree based spatial joins, such as the techniques proposed in this paper and in [3], an important

atomic operation is to retrieve two nodes, one from each R-tree, and join the entry MBRs between

the two nodes. We call this process node-pair join computation. Let nRr
i and nS

s
j (0 � r < hR and

0 � s < hS) be the two nodes retrieved from R and S respectively. The node-pair join computation

between nRr
i and nSs

j computes a set of ID pairs < oidRr; oidSs > such that their associated

MBRs, mbrRr and mbrSs, overlap. The naive approach in node-pair join computation is to check

all entry MBRs in one node for each entry MBR in the other node. Such a nested-loop approach

demands a high CPU computation complexity O(n � m) where n = eRr
i and m = eSs

j . Local

optimizations pertain to the techniques that improve the CPU cost for node-pair join computation.

In the following, we describe two local optimization techniques presented in [3], namely restricting

the search space and plane sweep, that are incorporated by BFRJ.

1We use overlap and intersect interchangeably.
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2.4.1 Restricting the Search Space

During join computation for a node-pair nRr
i and nSs

j , the intersecting area between the MBRs

of the two nodes can be easily computed2. The intersected area itself is an MBR, called intersect-

MBR. If an entry < oidRr
i ; mbrRr

i >x in nRr
i overlaps an entry < oidSs

j ; mbrSs
j >y in nSs

j , it must

be true that both mbrRr
i and mbrSs

j intersect the intersect-MBR between nRr
i and nSs

j . Based on

this observation, we can scan all entries in nRr
i and nS

s
j once to discard the entries whose MBRs do

not overlap the intersect-MBR between the two nodes. This is called restricting the search space [3].

The CPU time complexity for restricting the search space is O(n+m). The actual join computation

takes only the selected entries as input. Let n0 and m0 be the numbers of entry respectively in nRr
i

and nSs
j that overlap the intersect-MBR between the two nodes. The CPU time complexity for

the nested-loop join computation with restricting the search space becomes O(n0 �m0). The CPU

complexity for the entire node-pair join operation therefore is O(n+m)+O(n0�m0). With n0 < n

and m0 < m being very likely, CPU computation time improvement is expected.

2.4.2 Plane Sweep

Plane sweep optimization is similar to the sort-merge join technique used to join two simple data

sets. Sort-merge join �rst sorts the two data sets, then conducts join computation by sequentially

scanning both data sets simultaneously. Because the two data sets are sorted, only a single scan of

both data sets is required for join computation. Therefore, sort-merge join is an improvement over

the nested-loop join.

Similarly, during the plane sweep optimization of a node-pair join computation between nRr
i

and nSs
j , we �rst sort the MBR entries in the two nodes respectively. To sort multi-dimensional

data, we use the low x-coordinate value of each MBR as the key. In the merge process, we scan

the two sorted entries of MBRs sequentially based on their ordered key values. For each MBR

(say mbri) evaluated in the merge process, we only conduct intersect tests against the MBRs from

the opposite entry which overlap mbri based on their x-coordinate values. The term plane sweep

pertains to the merge process in which a vertical line can be imagined to sweep from mbri's low

x-coordinate value to its high x-coordinate value in order to �nd the potential intersecting MBRs

from the other entry.

The restricting the search space and plane sweep techniques incorporated by BFRJ are referred

to as local optimizations because they improve the computation e�ciency within each node-pair

join process. In Section 4, we introduce three novel techniques that can further optimize BFRJ

by exploiting the inter-relation between the node-pair join computations. We call them global

optimizations.

2The enclosing MBR for a R-tree node k can be passed from k's parent node or computed by one scan of k's
entries.
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3 Spatial Joins Based on Breadth-First Traversal of R-Trees

In this section we present the framework of the proposed Breadth-First R-tree Join (BFRJ). We

start by assuming that R and S are of the same height, and relax this restriction in Section 3.3.

3.1 Search Pruning by Traversing R-Trees

An R-tree can be viewed as multiple levels of MBRs such that MBRs at each level partition3 the

entire data space. The MBRs of the higher level nodes in an R-tree form more coarse-grained

partitions whereas those of the lower level nodes form more �ne-grained partitions. The spatial

join between R and S corresponds to joining entries in R's leaf nodes with those in S's leaf nodes.

Level 1
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Figure 1: Breadth-First R-tree Join (BFRJ) on R-trees of the Same Height.

One important information captured in an R-tree is that its hierarchy manifests the enclose

relation, i.e., the MBR of a tree node always encloses the MBRs of its descendant nodes. To take

advantage of this property, pair-wise join computation between two nodes, nRr
i and nSs

j , is only

needed when the MBR of nRr
i 's parent node overlaps that of nS

s
j 's parent node. We call this search

pruning. Simple top-down graph-traversal algorithms can be used to achieve search pruning at all

levels. In [3], search pruning is done by synchronously traversing the two input R-trees depth-�rst

3In most R-trees variances [2, 7, 5], partitions at each level may overlap. An exception is R+-tree [17], for which
partitions at each level do not overlap. BFRJ is independent of this variance.
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whereas in BFRJ it is achieved by synchronized breadth-�rst traversal of both R-trees. The e�ect

of search pruning at all R-tree levels is that, starting from the top level, the two nodes, one from each

R-tree, are only traversed for join computation if the MBRs of their parent nodes overlap. Thus,

the number of node-pair traversals is reduced by search pruning comparing with the nested-loop

approach.

The BFRJ Framework. The BFRJ �rst joins the entries in R's root node (nR0) with those

in S's root node (nS0) (see Figure 1). The join results are a set of 2-tuples < oidR0; oidS0 >

called intermediate join index at level 0, or IJI0. Because we focus on spatial overlap join in this

paper, each tuple < oidR0; oidS0 > speci�es that the MBRs of the two elements overlap. Next,

for each tuple in IJI0, BFRJ retrieves the two nodes referenced by the tuple items from R and S

respectively. It then conducts spatial node-pair join between the entries from the two nodes. While

BFRJ reads tuples of IJI0 for join computation, it stores the join results, also in the form of 2-tuple

< oidR1; oidS1 >, to the current intermediate join index at level 1, or IJI1. When it completes join

computation for all tuples in IJI0, it discards IJI0 and proceeds to process the tuples in IJI1 for join

computation. This process continues as BFRJ traverses down the two R-trees synchronously level

by level. It terminates when the intermediate join index is created by joining the leaf entries in R

with the leaf entries in S. At this point, the �lter step of the spatial join process is completed and

the current (leaf-level) intermediate join index is the output of the spatial join process.

Figure 1 depicts the join process of BFRJ between two R-trees with the same height. Note that

nodes 1, 3, 4 from R and nodes 3, 5 from S are never read from disk because the search pruning

optimization determines that these nodes are not needed for join computation.

3.2 BFRJ on R-Trees with the Same Height

We now give the algorithm (Figure 2) that conducts an R-tree spatial join based on the BFRJ

framework described previously. We call it BFRJ Same Height because we assume that the heights

of the two input R-trees are the same (hR = hS).

The Node Pair Join Same Level() procedure (lines 1 and 5 in Figure 2) takes two nodes from

the two input R-trees respectively and conducts a spatial join between the entries in the two nodes.

We assume the node-pair join process in Figure 2 deploys the local optimizations described in

Section 2.4.

3.3 BFRJ on R-Trees with Di�erent Heights

The BFRJ algorithm that assumes the two input R-trees are of di�erent heights is illustrated in

Figure 3. Let hR < hS, the BFRJ algorithm behaves exactly the same as the BFRJ Same Height

algorithm before it reaches level hR�1 (R's leaf level). After it reaches level hR�1 while traversing

R, the BFRJ algorithm stays at R's leaf level but proceeds to traverse S downwards level by level

until S's leaf level is reached.

TheNode Pair Join() procedure (lines 1 and 5 in Figure 3) behaves slightly di�erently from the
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PROCEDURE BFRJ Same Height (R, S)

// R, S are two R-trees, hR = hS
DATA STRUCTURES: set IJI [hR] := ;;
// IJI [i] is the intermediate join indexes created at level i
01 IJI [0] := Node Pair Join Same Level(nR0; nS0); // join the two root nodes

02 integer i := 0;
03 while i < hR� 1 do

04 8 < oidRi; oidSi >2 IJI [i] do
05 IJI [i+ 1] = IJI [i+ 1] [Node Pair Join Same Level(oidRi; oidSi);
06 end do

07 i := i+ 1; //down one level

08 end while

09 output IJI [i]; // IJI [i] is the output

Figure 2: The BFRJ Algorithm with Input R-trees of the Same Height.

Node Pair Join Same Height() procedure in the BFRJ Same Height algorithm. While joining

two nodes nRr
i and nRs

j , where 0 � r < hR and 0 � s < hS, the Node Pair Join() procedure

checks to see if either node is a leaf node. Suppose nRr
i is a leaf node (r = hR � 1) and nRs

j is

not (s < hS� 1), the Node Pair Join() procedure uses the enclosing MBR of node nRr
i and scans

through all nSs
j 's entry MBRs to conduct the MBR overlap test. The result is a list of 2-tuples

< oidRr; oidSs > where oidRr is the ID of node nRr
i and oidSs stands for various entry IDs in

nSs
j whose MBRs overlap nRr

i 's MBR. When the two input nodes nRr
i and nSs

j are both leaf

nodes or both non-leaf nodes, the Node Pair Join() procedure behaves exactly the same as the

Node Pair Join Same Height() procedure, which is to conduct overlap join between all entries

in nRr
i and all entries in nSs

j .

4 Global Optimizations of BFRJ

This section investigates how spatial join based on theBFRJ framework o�ers unique opportunities

for global optimizations. Note that in the BFRJ framework, an intermediate join index at level i

(IJIi) is created after all R nodes at level i are joined with all S nodes at level i. The selection of an

R node and an S node for node-pair join computation at level i can now be based on IJIi�1 which

was generated at the previous higher level (level i�1). We thus have global information at our avail

about all anticipated accesses of nodes at a given level (including their possible order of access as

well as the number of times each node gets re-accessed) before processing joins at that level. This

naturally lends itself to the application of alternative techniques for the e�ective management of

the intermediate join indexes. In this section, we investigate alternative design decisions on three

di�erent IJI optimization dimensions: IJI ordering, IJI memory management, and IJI-related bu�er

management. We assume hR = hS in the following sections. Applying the global optimization to

cases when hR 6= hS is straightforward.
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PROCEDURE BFRJ (R, S)

DATA STRUCTURES: set IJI [max(hR; hS)] := ;;
01 IJI [0] := Node Pair Join(nR0:nS0); // join the two root nodes

02 integer i := r := s := 0;
03 while r < hR� 1 or s < hS � 1 do

04 8 < oidRr; oidSs >2 IJI [i] do
05 IJI [i+ 1] = IJI [i+ 1] [Node Pair Join(oidRr; oidSs);
06 end do

07 if r : 6= hR� 1 then

08 r := r + 1; //down one level if not yet leaf-level

09 end if

10 if s : 6= hS � 1 then

11 s := s+ 1; //down one level if not yet leaf-level

12 end if

13 i := i+ 1;
14 end while

15 output IJI [i]; // IJI [i] is the output

Figure 3: The BFRJ Algorithm.

4.1 Ordering of Intermediate Join Indexes

Suppose the MBR of an R node nRl
i intersects the MBRs of k di�erent l-level S nodes, where k > 1.

Then the ID of nRl
i will appear k times in IJIl�1. This means that, during the join computation at

level l, nRl
i will participate in the node-pair join computation exactly k times. With a �xed-sized

LRU system bu�er, node nRl
i may be read from a disk multiple (up to k) times if the k appearances

of its ID are widely scattered in IJIl�1 . This is because the initial and subsequent retrievals of nRl
i

may be too far apart, and nRl
i may already be paged out by the time it is needed again. Therefore,

we propose that the IJIs be kept in an order so that no multiple appearances of the same node ID

are spread too widely in the intermediate join indexes.

However, each tuple < oidR; oidS > in IJIs has two items that need to be fetched from the

secondary storage. Clustering by one obviously does not assure a good clustering for the other.

Consequently, an e�ective ordering may need to take into account both items of the index tuples

in order to achieve better global optimization. We investigate the following ordering options4:

Option 1: No particular ordering (OrdNon). OrdNon does not perform global ordering for

the intermediate join indexes, therefore it incurs no ordering cost. The intermediate join index cre-

ated at each level however is not truly randomly ordered because the plane sweep local optimization

partially orders the entries within each node. Therefore, there may exist many regional orderings

in each IJI. However, because an MBR from one R-tree may overlap more than one MBR from

the other R-tree, its corresponding entry ID may exist in several locally ordered regions in the IJI.

Therefore, OrdNon is not expected to contribute to a good global ordering.

4We now ignore specifying the levels since ordering optimization applies to IJIs at all levels.
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Option 2: Ordering by items from one tree (OrdOne). OrdOne sorts the intermediate

join indexes by the lx's of items from one tree. Because each IJI tuple is composed of two items

< oidR; oidS >, one from each R-tree, ordering based on items from one tree, say oidR, creates a

perfect clustering for oidR while ignoring the clustering of oidS.

Option 3: Ordering by the sum of the centers (OrdSum). For each tuple < oidR; oidS >

in IJI, OrdSum �rst calculates the center x coordinate values of the MBRs for oidR and oidS,

namely:

CXoidR = (lxoidR + hxoidR)=2.

CXoidS = (lxoidS + hxoidS)=2.

OrdSum then sorts the IJI based on the sum of CXoidR and CXoidS . Therefore,

sortkey = (lxoidR + hxoidR)=2 + (lxoidS + hxoidS)=2.

Option 4: Ordering by center point (OrdCen). OrdCen creates an enclosing MBR by

combining oidR's MBR with oidS's MBR. It then sorts the IJI based on the x coordinate values

of the center point of the enclosing MBRs. Namely,

sortkey = (lxmin + hxmax)=2,

where lxmin is the smaller lx and hxmax is the larger hx between oidR's MBR and oidS's MBR.

Option 5: Ordering by Hilbert curve value of the center (OrdHil). OrdHil is similar to

OrdCen in that it sorts the IJI based on the x-coordinate values of the center point of the enclosing

MBRs. Instead of using the x coordinate values, OrdHil calculates a Hilbert curve value for each

center point, and sorts the IJI by the Hilbert curve values.

4.2 Memory Management of Intermediate Join Indexes

The most e�cient way of ordering the intermediate join indexes is to sort them in main memory.

This is only possible if the largest IJI �ts into the main memory bu�er allocated to the spatial

join task. Because BFRJ is based on tree-structured indexes, the largest IJI is the one created at

the lowest level before the �nal join output is computed. Let IJImax be the largest IJI created by

BFRJ in spatial join computation on R and S. IJImax is then computed by joining the entries in

nRhR�2 with those in nShS�2. Let k be the average number of nodes at level hS � 2 in S whose

MBRs overlap that of a node at level hR � 2 in R, o the average node occupancy rate of R, and

m the maximum number of entries an R node can hold. The size of IJImax can be approximately

estimated as:

jIJImaxj = (jRj � k)=(o�m).

In modern databases, typically 50% � o � 100% and 50 � m � 800. For example, our

test data5, jRj = 131; 461, jSj = 128; 971, m = 203, o is 100% for the packed R-tree, and k is

5The test data are derived from the TIGER/Line �les [4] that represent the streets, rivers, and rails of an area in
California.
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approximately 12 for the packed R-tree6. With each join index tuple being 12 bytes long, the size

of IJImax in our test data is less than 100 KBytes, and therefore �ts into a bu�er of moderate size.

The sizes of the smaller IJIs at the higher levels are signi�cantly smaller than jIJImaxj, therefore

are negligible. If jIJImaxj is larger than the available bu�er size, IJImax must be stored on disk,

and a disk-based sort such as merge-sort can be used to reorder the index. In addition to the more

costly sorting process, the disk-based approach has an overhead of moving the IJIs between the

main memory bu�er and disk. If jIJImaxj is smaller than the bu�er size, it may reside on disk or in

main memory. While the main memory solution is more e�cient in sorting IJIs, it requires bu�er

space to store the IJIs, hence has less bu�er pages for join computation.

StorDisk: Storing indexes on disks. In the StorDisk approach, the intermediate join indexes

are stored on disk. During the join computation, only one bu�er page needs to be reserved for

them as they can be written out sequentially. All other bu�er pages can be dedicated to join

computation. Sorting the indexes happens after the indexes at one level are completely written

and before join computation starts at the next level. This means the entire bu�er space can be

dedicated to the sorting process. During sorting, the intermediate join indexes only need to be read

once if they �t into the bu�er, or more than once7 if merge-sort is required for a smaller bu�er.

After sorting, the join computation at the next level can then start based on the ordered indexes.

Note that these sorted indexes need not be removed from main memory on purpose during join

computation because the LRU paging mechanism will automatically expel the least recently used

pages.

StorMem: Storing indexes in main memory. StorMem keeps the intermediate join indexes

at the current level in main memory (jIJImaxj must be smaller than the bu�er size). This way, join

computation has less bu�er pages available, but the indexes do not need to be shu�ed between disk

and memory. During join computation, a special purge technique can be used to remove a index

page from the active bu�er to the free page list if all index tuples in this page have been processed

for join computation. This technique creates more room for join computation as more index tuples

are being processed.

4.3 Bu�er Management of Intermediate Join Indexes

The ordering optimization (Section 4.1) attempts to keep the join indexes in an order such that

no two appearances of the same ID are spread out too widely. However, since a perfect clustering

is not possible for both tuple items, multiple disk reads for a tree node may still happen during

join computation. Such multiple reads can be further minimized if the bu�er manager can predict

which nodes have completed their join computation and which ones are to be fetched again in the

future. This way, the bu�er manager may retain the node pages to be accessed in the future in main

memory and purge node pages that have completed their join computation from main memory.

6
k can be approximated by sampling on both R-trees.

7In our experiments, the merge-sort process reads and writes the intermediate join indexes once for partial sorting,
and reads the partially sorted indexes once for merging.
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To accomplish such an optimization, we assume the bu�er manager supports three bu�er oper-

ations: pin, unpin and purge. The pin marks a page in the LRU bu�er so that this page is retained

in memory until it is unpinned. The unpin simply removes the pin marker. The purge removes a

page from the LRU and inserts it into the free list of pages that are available for use during page

faults.

To predict which tree nodes are to be accessed, a counter for each node in both R-trees is kept.

During the generation of each intermediate join index, each appearance of a tree node nRr
i increases

its counter by 1. Therefore a counter corresponds to the number of appearances of its tree node in

IJI. After the join computation between a node-pair, say nRr
i and nSs

j , is complete, their counters

are both decremented by 1. If a counter reaches 0, it means that the tree node associated with

this counter no longer appears in the remainder of the current IJI and will no longer be needed in

the spatial join processing. Therefore, such a tree node can be unpinned if it has been pinned, and

purged so that its page can be used immediately. If a counter remains above 0, its tree node will be

accessed again in the future. The bu�er manager can then keep the page of this tree node pinned

until its counter reaches 0 later on.

Note that if the size of the bu�er is small or the intermediate join index is not in an adequate

order, it is possible that all bu�er pages are pinned during join computation. In this case, we

assume that the bu�er manager handles this situation by unpinning the least recently used page

in order to free up the bu�er space.

4.4 BFRJ versus Spatial Join Based on Depth-First Traversal of R-Trees

Because the depth-�rst approach [3] goes not keep any global information (such as the intermediate

join indexes), it requires no additional data structures to store the IJIs. However, the depth-

�rst approach does not have the ability to achieve global optimization by doing global ordering

or global paging prediction. This is because the order by which each node-pair is to be joined is

determined by the recursive depth-�rst sequence that cannot be globally changed. Another major

di�erence between BFRJ and the depth-�rst approach is that BFRJ never traverses upwards

in an R-tree while the depth-�rst approach traverses upwards as part of function returns of the

recursive routines. Therefore, redundant disk access of the same page may happen to BFRJ while

processing joins at the same level if the ordering of the intermediate join indexes is not optimized,

whereas it may happen to the depth-�rst approach during backtracking.

5 Experimental Results

Our performance studies are based on the experiments conducted on a testbed implemented in

C++ on a SUN Sparc-20 workstation running the UNIX operating system. The testbed includes

the BFRJ with all optimizations introduced in this paper, the spatial join techniques proposed

in [3], an I/O bu�er manager, and many other supporting data structures and procedures. We
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use real-world test data that consists of a data set of streets (131,461 objects) and a data set of

rivers and railway tracts (128,971 objects) from an area in California. The data is derived from the

TIGER/Line �les distributed by the US Census Bureau [4]. We created two Hilbert curve packed

R-trees [5], each for a data set, with the page size set to 4 KBytes.

5.1 Intermediate Join Index Ordering Optimizations

The �rst set of experiments determine which index ordering optimization has the best performance.

These schemes include OrdNon, OrdOne, OrdSum, OrdCen, and OrdHil (Section 4.1). We conduct

BFRJ spatial join on the two packed R-trees for each index ordering optimization by varying the

bu�er sizes from 100 KBytes to 1,200 KBytes. We �x the other global optimization options to

StorDisk and PinNo, meaning we store the intermediate join indexes on disk and we do not deploy

the pinning optimization (Section 4.3).
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Figure 6: I/O Cost on Ordering Optimiza-
tion (Small Bu�ers).

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

600 700 800 900 1000 1100 1200

T
ot

al
 I/

O
 p

ag
es

 (
4 

K
by

te
s/

P
ag

e)

Buffer Size (KByte)

I/O On Packed R-trees (StorDisk, PinNo)

OrdNon
OrdOne
OrdSum
OrdCen

OrdHil
Optimal

Figure 7: I/O Cost on Ordering Optimiza-
tion (Large Bu�ers).

Figure 4 shows the I/O results and Figure 5 the CPU results of all IJI ordering optimizations.
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Note that the horizontal line that is marked optimal in Figure 4 and other �gures represents the

theoretical lower bound of page I/O based on the two packed R-trees8 used for testing. Because

the I/O costs with smaller bu�ers in Figure 4 are very high, the performance di�erence with larger

bu�ers cannot be clearly seen. For clarity, we separate the I/O results into two charts, namely

Figure 6 representing the results for small bu�er sizes and Figure 7 the results for larger bu�ers.

Figure 5 shows that the di�erences in CPU cost among OrdNon, OrdOne, OrdSum, and OrdCen

are negligible, whereas the CPU cost of OrdHil is consistently higher than others. This is because

computing the Hilbert curve values requires additional CPU time, making OrdHil the most CPU

expensive option. The results in Figure 6 show that OrdOne outperforms all other alternatives in

I/O for all bu�er sizes (100 KBytes - 500 KBytes) except for the case of bu�er size 100 KBytes

where OrdOne is second to OrdHil. We believe processing spatial joins with only an available bu�er

size of 100 KBytes is an extreme case, given that modern databases tend to have a large system

bu�er. Therefore, when the bu�er size is moderate (� 500 KBytes), OrdOne is the best choice in

IJI ordering optimization for processing BFRJ. Although the I/O cost for OrdSum is very high

when the bu�er size is small, it decreases dramatically as the bu�er size grows larger. From Figure

7, we can see that OrdSum is the clear winner when a more generously-sized bu�er (� 600 KBytes)

is available. Without the ordering overhead, OrdNon performs better than OrdCen and OrdHil in

I/O, but worst than OrdOne for smaller bu�ers and OrdSum for larger bu�ers. In conclusion, we

believe OrdOne is a good choice when the bu�er size is moderate, and OrdSum is the best choice

when the bu�er size is larger.

The reason why OrdSum outperforms others when the bu�er size is large is because it sorts

the join indexes by taking the spatial locations (on x-axis) of both index tuple items into account.

However, its storage locality spreads wider in order to cover both items. Therefore OrdSum has

the best performance if a larger bu�er that can cover OrdSum's storage locality is available. If

the bu�er is too small to cover the locality, OrdSum's performance deteriorates dramatically. For

smaller bu�ers, sorting by one item (OrdOne) performs better because its storage locality does

not spread as widely as in OrdSum. Given that both OrdCen and OrdHil do not improve over no

ordering (OrdNon), the center points of the MBR combined from the MBRs of both items is not

relevant in controlling the storage locality for either item of the join index tuples. In the following

sections, we continue to investigate the performance of other global optimization options, such as

memory and bu�er management, with OrdOne and OrdSum as the chosen ordering optimizations.

5.2 Intermediate Join Index Memory Management Optimizations

We conduct experiments to test the performance of the alternatives in memory management of IJIs,

namely StorDisk and StorMem. For the StorDisk option, IJIs are stored on disk and only loaded

into main memory when necessary, such as during sorting or join computation. The StorMem

8Because our two test data are evenly distributed in the same area, the optimal lower bound is equal to the sum
of the number of tree nodes in both R-trees.
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option, on the other hand, keeps the current IJI in main memory at all time while it remains

current. Because the estimated size of the largest intermediate join index is about 100 KBytes for

our test data (See Section 4.2), we test the memory management options by ranging bu�er sizes

starting from 200 KBytes to 1,200 KBytes. Based on the previous experimental results, we select

OrdOne and OrdSum as the ordering optimizations.
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The results in Figure 8 show that storing the join indexes in main memory (StorMem) has a

worse I/O performance than storing them on disk (StorDisk) when the available bu�er is small

or medium in size (< 900 KBytes). The CPU results in Figure 8 indicate StorMem can improve

the CPU usage time over StorDisk, but not very signi�cantly. Figures 10 and 11 provide close-ups

of Figure 8 di�erentiated by bu�er sizes. The results in Figure 11 show that StorMem starts to

outperform StorDisk in I/O when the bu�er size is larger than 800 KBytes. The reason StorMem

performs so poorly with smaller bu�ers is that it needs additional main memory space to store

the join indexes. Thus, join computation in StorMem has less bu�er pages to work with, thereby

creating a bu�er contention over a limited number of bu�er pages.

We conclude that StorMem does improve the CPU time over StorDisk, but not to a signi�cant

degree. Although StorMem outperforms StorDisk in I/O when the bu�er sizes are large (> 800

KBytes in Figure 11), its performance on a smaller bu�er is much worse than StorDisk. Besides,

when the bu�er size is smaller than the size of the largest join index (< 100 KBytes), StorMem is

not applicable. Therefore, StorDisk is a more viable option with small- or moderate-sized bu�ers,

whereas StorMem become advantageous when a large bu�er is available.

5.3 Intermediate Join Index Bu�er Management Optimizations

In Section 4.3, we described a bu�er management technique (pinning optimization) that could

further improve the I/O performance for BFRJ. We use PinYes to denote that the pinning opti-

mization is applied, and PinNo to denote otherwise. Because so far we have identi�ed that OrdOne

works the best for smaller bu�ers and OrdSum has the best performance for larger bu�ers, we con-
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Figure 10: I/O Cost on Memory Manage-
ment (Small Bu�ers).
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duct experiments on the pinning optimization based on OrdOne with smaller bu�ers and OrdSum

on larger bu�ers separately. For the �rst set of experiments (Figure 12), we run BFRJ based on

OrdOne with both pinning optimizations by varying bu�er sizes from 100 KBytes to 500 KBytes

for StorDisk option, and from 200 KBytes to 500 KBytes for StorMem option. We do not test

StorMem with a 100 KBytes bu�er because we need about 100 KBytes just to store the intermedi-

ate join indexes in the main memory bu�er. For the second set (Figure 13), we run BFRJ based

on OrdSum with both pinning optimizations and vary the bu�er sizes from 600 KBytes to 1,200

KBytes.

The results in Figure 12 show that when the bu�er is very small (< 300 KBytes), the combined

option of StorDisk and PinNo works the best with OrdOne, although combining StorMem and

PinYes outperforms StorDisk+PinNo for OrdOne for a more moderate bu�er size (400 KBytes |

500 KBytes). When the bu�er sizes are larger, the results in Figure 13 indicate that StorMem+PinYes

with OrdSum achieves the optimal performance when the bu�er size is greater than 700 KBytes,
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and StorDisk+PinYes with OrdSum perform very close to the optimal when the bu�er size is greater

than 600 KBytes. The reason that the performance of StorDisk+PinYes with OrdSum can only be

very close to the optimal is that StorDisk has an overhead of transferring the join indexes between

disks and main memory. We did not show the comparison in CPU time because our test results

do not show any noticeable di�erence between PinNo and PinYes options. Therefore, I/O is the

dominant factor in determining the performance between PinYes and PinNo .

We conclude that when the bu�er size is relatively small, OrdOne+StorDisk+PinNo is the most

attractive combination. With a moderate bu�er size, the combination of OrdOne+StorMem+PinYes

starts to outperform OrdOne+StorDisk+PinNo. When the bu�er sizes are larger, the pinning opti-

mization is e�ective for OrdSum as both OrdSum+StorMem+PinYes and OrdSum+StorDisk+PinYes

have excellent performance, with OrdSum+StorMem+PinYes slightly better because it does not

require any overhead in transferring the IJIs between disk and main memory.

5.4 Comparing BFRJ with the State-of-the-Art R-Tree Join

We believe the state-of-the-art in spatial join methods using existing indexes is the depth-�rst R-

tree join technique with various CPU and I/O optimizations proposed in [3]. Our assumption is

based on the evidence that it is the most recently proposed spatial join technique based on existing

indexes; it uses R-trees which are deployed by many spatial database products [8, 19, 20]; and

most importantly, its performance has become the yardstick used by other researchers to measure

the performance of their recently proposed non-index based spatial join methods [9, 10, 13]. We

have implemented this method with proper optimizations, and will call it DFRJ, which stands for

Depth-First R-tree Join.

To compare withDFRJ, we choose two combinations of global optimizations in BFRJ, namely

OrdOne+StorDisk+PinNo (denoted as Combo1) and OrdSum+StorMem+PinYes (denoted as

Combo2). The choice of the two combinations is based on the results of the previous experiments

where we concluded that Combo1 is among the best options for small bu�ers, and Combo2 is the

best for large bu�ers. We ran experiments varying bu�er sizes from 100 KBytes to 1,200 KBytes

for both Combo1 and DFRJ, and from 200 KBytes to 1,200 KBytes for Combo2. The Combo2

option stores IJIs in the main memory bu�er and therefore is not applicable when the available

bu�er is very small. We collected both the I/O and CPU results.

Figure 14 shows the I/O results for all bu�er sizes. For clarity, we plot the I/O results in two

close-up charts, namely Figures 16 and 17 (discussed later) di�erentiated by the bu�er sizes. The

CPU usage results in Figure 15 show that the di�erences between the three alternatives (Combo1,

Combo2, DFRJ) are insigni�cant, with DFRJ having a very slight edge. This is because DFRJ

does not need to manage the intermediate join indexes as required by the BFRJ approaches.

As for the I/O cost, Combo1 consistently outperforms DFRJ and Combo2 when the bu�er

size is relatively small (Figure 16). Although Combo2 incurs a higher I/O cost with small bu�ers

(< 400 KBytes), its performance improves dramatically as the bu�er size increases. In fact, in
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Figure 14: I/O Cost: BFRJ Vs. DFRJ.
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Figure 16: I/O Cost: BFRJ Vs. DFRJ
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Figure 17: I/O Cost: BFRJ Vs. DFRJ
(Large Bu�ers).

Figure 17, the performance of Combo2 achieves the optimal performance when the bu�er size is

greater than 700 KBytes.

From this set of experiments, we conclude that for smaller bu�ers, BFRJ's Combo1 has the

best I/O performance. For large bu�er sizes, BFRJ's Combo2 performs the best in I/O. Because

Combo1 and Combo2 do not outperform DFRJ in CPU usage time, we in the next section

combine the I/O cost and CPU usage cost in order to evaluate the overall performance between

BFRJ and DFRJ.

5.5 Combining CPU Usage Cost and I/O Cost

Our testbed is built on the UNIX operating system which caches �le blocks and conducts CPU

scheduling independent of our testbed database operations. As a result, the elapse time recorded by

UNIX does not serve as a good measurement of query performance. Instead, we use the combination

of the CPU usage time and the total I/O access time to measure the overall query performance.
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We believe such a measurement is more accurate as it takes both the CPU cost and I/O cost into

consideration.

Let t be the total cost, c be the CPU usage time in ms, p be total number of page I/Os incurred

during spatial join query computation, and m be the average page access time, then our overall

cost formula is as follows:

t = c+ (m� p):

To compute t, we need to estimate the m value since our experimental results have already

yielded the c and p values. In this paper, we assume m = 10 ms for each 4-KByte page. In theory,

the total page access time is the sum of the seek time, latency time, and transfer time. The 10

ms page access time that we use here is derived from the performance speci�cations of one class

of modern disk drives, namely the Seagate Barracuda 2LP family disk drives [16]. This family

of hard drives have an average seek time between 8 and 9 ms, an average latency time of 4.17

ms, and an average transfer time for a 4-KByte page between 0.4 and 0.6 ms. Although the total

access time per 4-KByte page exceeds 10 ms, our test data are not very large (both packed R-trees

are around 2.7 MBytes), which can be properly clustered to reduce disk seek time. Therefore, we

conservatively use 10 ms as our estimated access time per 4-KByte page to compute the overall

cost.
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The results in Figure 18 show that Combo1 has a better overall performance than DFRJ and

Combo2 when the bu�er sizes are small. When a larger bu�er is available, the results in Figure

19 indicate that Combo2 outperforms both Combo1 and DFRJ by a signi�cant margin (up to

50%). Note that the curves in Figures 18 and 19 look very similar to those in Figures 16 and

17 respectively. This is because the CPU cost di�erence among the three options is very small,

therefore the I/O cost becomes the dominant factor in overall performance.
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6 Conclusions

E�cient processing of spatial joins in spatial databases is crucial for many applications such as GIS,

CAD/CAM, etc. In this paper, we present a new spatial join method that is based on breadth-�rst

traversal of R-trees. We call it Breadth-First R-tree Join (BFRJ). Spatial join using R-trees is

very important because it is one of the most e�cient spatial join methods when R-tree indexes

exist for both data sets. Whereas the state-of-the-art technique in R-tree spatial joins relies on

local optimizations for performance improvement, our proposed BFRJ is capable of both local

and global optimizations. As a result, our experimental evaluation shows that, with the proper

selection of options in global optimizations, BFRJ consistently outperforms the competitor.

The contributions of this paper are:

1 A new join method, BFRJ, is developed for spatial joins based on breadth-�rst traversal of

R-trees that o�ers unique opportunities for performance optimization.

2 Three dimensions for global optimization are proposed for BFRJ, namely, the ordering,

memory management, and bu�er management optimizations of the intermediate join indexes.

Alternative solution techniques are identi�ed for each of these three dimensions.

3 Extensive experimental evaluation of the performance of BFRJ (using real GIS data sets

from the US Census Bureau) is conducted to show the e�ectiveness of alternative options

of the three global optimization techniques based on various bu�er sizes. The experimental

results give insights into selecting the best combinations of global optimization strategies

based on the available system resources such as the bu�er space.

4 Comparative performance evaluation between BFRJ with e�ective global optimizations and

the state-of-the-art competitor is conducted. Our experimental results show that while the

BFRJ with one combination of global optimizations (Comb1) outperforms the competitor

by some margin when the bu�er space is small, another combination (Comb2) outperforms

the competitor by an even more signi�cant margin (up to 50%) when a medium or large bu�er

space is available. The signi�cant performance gain by Combo2 is particularly important

because modern databases tend to have a very large system bu�er so that each task is likely to

have access to at least a medium-sized bu�er space. BFRJ therefore is well-suited for modern

databases because it improves spatial join performance by deploying global optimizations that

take advantage of a larger bu�er allocation.
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