
WPI-CS-TR-97-4 Spring 1997 (Revised Dec. 1997)

The EVE Framework: View Synchronization In Evolving

Environments

by

Amy J. Lee

Anisoara Nica

Elke A. Rundensteiner

Computer Science

Technical Report

Series

WORCESTER POLYTECHNIC INSTITUTE

Computer Science Department
100 Institute Road, Worcester, Massachusetts 01609-2280

The EVE Framework: View Synchronization In Evolving

Environments �

Amy J. Leey, Anisoara Nicay, and Elke A. Rundensteinerz

(y) Department of EECS (z)Department of Computer Science
University of Michigan, Ann Arbor Worcester Polytechnic Institute

Ann Arbor, MI 48109-2122 Worcester, MA 01609-2280
amylee,anica@eecs.umich.edu rundenst@cs.wpi.edu

(313) 764-1571 (508) 831-5815

Abstract

The construction and maintenance of data warehouses (views) in large-scale environments composed of numer-
ous distributed and evolving information sources (ISs) such as the WWW has received great attention recently.
Such environments are plagued with changing information because ISs tend to continuously evolve by modifying
not only their content but also their query capabilities and interface and by joining or leaving the environment
at any time. We are the �rst to introduce and address the problem of capability (schema) changes of ISs, while
previous work in this area, such as incremental view maintenance, has mainly dealt with data changes at ISs. In
this paper, we outline our solution approach to this challenging new problem of how to adapt views in such evolv-
ing environments. We identify a new view adaptation problem for view evolution in the context of ISs capability
changes, which we call View Synchronization. We also outline the Evolvable View Environment (EVE) approach
that we propose as framework for solving the view synchronization problem, along with our decisions concerning
the key design issues surrounding EVE. The main contributions of this paper are: we provide an E-SQL view
de�nition language with which the view de�ner can direct the view evolution process, we introduce a model for in-
formation source description which allows a large class of ISs to participate in our system dynamically, we formally
de�ne what constitutes a legal view rewriting, we develop replacement strategies for a�ected view components
which can be shown to be correct, and we provide a set of view synchronization algorithms. A prototype of our
EVE system has successfully been built using Java, JDBC, Oracle, and MS Access; and is currently running in
the CS Department at WPI.

1 Introduction

1.1 Motivation and Problem De�nition

Advanced applications such as web-based information services, data warehousing, digital libraries, and data
mining typically create and maintain tailored information repositories gathered from among a large number of

�This work was supported in part by the NSF RIA grant #IRI-9309076 and NSF NYI grant #IRI 94-57609. We would also like to
thank our industrial sponsors, in particular, IBM and Informix.

1

internetworked information sources (ISs) [Wid95], such as the World Wide Web. There is generally a large variety
and number of ISs in these modern environments, each modeled by diverse data models and each supporting di�erent
query interfaces and query processing capabilities. Furthermore, individual ISs are autonomous, freely updating both
their content and their capabilities, even frequently joining or leaving the environment.

In order to provide e�cient information access in such environments, relevant data is often retrieved from several
sources, integrated as necessary, and then materialized into what is called a view in database terminology [Wid95]. In
fact, businesses are beginning to boom that focus exactly on this type of \middle layer" service by o�ering to collect
related information (about products or services) from multiple sources and integrating it into an on-line resource
(view) easily accessible by potential information seekers. For instance, many WWW users may be interested in all
aspects of travel information including car rental and hotel fares, special bargains and
ight availabilities of di�erent
airlines. While such information could principally be retrieved by each of the interested customers by querying
many ISs and integrating the results into a meaningful answer, it is much preferable if one travel consolidator service
were to collect such travel-related information from di�erent airlines and travel agent sources on the WWW and to
organize such information into materialized views. Besides providing simpli�ed and customized information access
to customers who may not have the time nor skill to identify and retrieve relevant information from all sources,
materialized views may also o�er more consistent availability { shielding customers from the fact that some of the
underlying ISs may temporarily become disconnected as well as o�ering better query performance as all information
can be retrieved from a single location.

However, views in such evolving environments introduce new challenges to the database community [Wid95].
One important and as of now not yet addressed problem for these applications is that current view technology
only supports static apriori-speci�ed view de�nitions { meaning that views are assumed to be speci�ed on top
of a �xed environment [LNR97, RLN97]. Once the underlying ISs change their capabilities, the views derived
from them may become unde�ned. It is this problem of view evolution caused by external environment changes
(at the schema level rather than at the data level as done by practically all previous work on view maintenance
[BCL89, Wid95, ZGMHW95]) that we tackle in this paper. We call this the view synchronization problem [RLN97].
There are two exceptions to this previous view maintenance work for data changes, namely by Gupta et al. [GJM96]
and Mohania et al. [MD96]. While we assume that the evolution of the a�ected view de�nitions is triggered by
capability changes of ISs, Gupta and Mohania assumed that view rede�nition was explicitly requested by the user
at the view site. Hence, previous work on view rede�nition did not deal with the problem of how to salvage the
a�ected view de�nitions itself (at the schema level) but was exactly told how to modify it. Instead they dealt with
e�ciently managing changes at the data level to now comply with the modi�ed view de�nition. Our problem and
solution thus is complimentary to work by others as once we have determined an acceptable view rede�nition then
algorithms proposed by others [GJM96, MD96] on how most e�ciently to maintain the view, if materialized, could
be applied to our system.

The issues associated with this new problem are now explained by the following example of a travel scenario,
which will serve as the basis for all examples throughout the remainder of the paper.

Example 1 Assume a traveller plans to visit Boston in one month for pleasure. To make his stay in Boston without
last minute hastiness, he would like to make arrangements for car rental and hotel stay. The query for getting the
necessary information can be speci�ed as an SQL view de�nition as follows:

CREATE VIEW Travel-Info-in-Boston AS
SELECT C.Name, C.Address, C.Phone, H.Name, H.Address, H.Phone
FROM CarRental C, Hotel H
WHERE (C.City = `Boston') AND (C.State = `MA') AND

(H.City = `Boston') AND (H.State = `MA')

(1)

2

where CarRental and Hotel are relations that contain the car rentals and lodging information in Boston only.

Assume for some reason the Hotel relation cannot be accessed (this e�ect could be caused by the IS that provided
the Hotel relation to go out of business). Executing the Travel-Info-in-Boston query to get requested data (or to
materialize the view) will then cause an error message such as \Error: the Hotel relation is unde�ned". This is
state-of-the-art view technology. We, on the other hand, propose that are may be many potential ways to \remedy"
this view de�nition evolution. To name a few:

1. Assume there is a EastRegionHotel relation that has the lodging information for the entire eastern region of the
USA (that is, EastRegionHotel � Hotel). Query 1 can be rewritten to have the Hotel relation replaced by the
EastRegionHotel relation. This would return the initially expected answer plus possibly additional hotels not in
Boston.

2. Assume there is a BackBayHotel relation that contains the lodging information in the Back Bay area only (that
is, BackBayHotel � Hotel). Query 1 can be rewritten to have the Hotel relation replaced by the BackBayHotel
relation, which is likely to return a useful answers for the traveller but it will not be a complete listing of all
answers for the initial query.

3. The traveller may even be content to have the car rental information only, since with a car he can drive
around and �nd a hotel after he arrives in Boston. In this case, removing the Hotel relation and the attributes
referencing the Hotel relation from the Travel-in-Boston query is acceptable to the user.

As illustrated in Example 1, there may be many alternative ways to salvage the a�ected view de�nition. The
research questions that we hence attempt to answer are:

1. How do we determine which among these possible alternative synchronization options are acceptable to the
user (as they are not necessarily equivalent)?

2. What type of information must be available to EVE in order to provide su�cient information for �nding
appropriate replacements for the a�ected components of a view de�nition?

3. What are the criteria for a synchronized view de�nition to be considered correct?

4. What are appropriate strategies for �nding correct view synchronizations (replacements) for a�ected views?

1.2 The EVE Approach

In this paper, we de�ne a novel paradigm towards addressing the view synchronization problem that provides a
solution to all of the above research questions. We put forth that it is important for the person in charge of de�ning
the virtual information resource (i.e., view) to be able to express preferences about the view evolution process (instead
of our system making automatic and generic choices) { as these view de�ners are the ones that know the criticality
and dispensability of the di�erent components of a view for applications and end users of the view.

As these view evolution preferences refer to speci�c components of view de�nition, in our system the view de�ner
can directly embed their preferences about view evolution into the view de�nition itself. We design an extended view
de�nition language (a derivative of SQL, which we call Evolvable-SQL or short E-SQL) that incorporates user
preferences for change semantics of the view (see Section 4). Such view preference speci�cation would allow us to
avoid human interaction each and every time a change occurs in the environment.

3

To facilitate the replacement �nding task, we exploit a model for information source description (MISD) for
capturing the capabilities of each IS as well as the interrelationships between ISs. Similar to the University of
Michigan Digital Library system [NR97] and the Garlic project [CHA+95], each IS registers its description expressed
by this model in a Meta Knowledge Base (MKB) when joining the system. This Meta Knowledge Base (MKB)
thus represents a resource that can be exploited when searching for an appropriate substitution for the a�ected
components of a view in the global environment.

Based on this solution framework of E-SQL and the MISD, we introduce strategies for evolving views transpar-
ently. Our proposed view rewriting process, which we call view synchronization, �nds a view rede�nition that meets
all view preservation constraints speci�ed by the E-SQL view de�nition (VD). That is, it identi�es and extracts ap-
propriate information from other ISs as replacement of the a�ected components of the view de�nition and produces
an alternative view de�nition.

Our goal is to \preserve as much as possible" of the original view extent of the a�ected view de�nitions instead
of completely disabling them with each IS change [LNR97, RLN97]. To the best of our knowledge, our work is the
�rst to study this view synchronization problem, and no alternate framework designed to solve this problem has
been put forth thus far. A EVE prototype system has been implemented using Java, JDBC, Oracle, and MSAccess,
and it is running at the Worcester Polytechnic Institute, and has been shown in CASCON'97 Technology Showcase
([LNR97]).

1.3 Outline of Paper

The remainder of the chapter is structured as follows. In Section 2, we present the EVE framework, and in
Section 3 we introduce a web-based travel agency example used as running example throughout the paper. The
extended view de�nition language, E-SQL, designed to add
exibility to current view technology is presented in
Section 4. In Section 5, we present the information source description model (MISD), while criteria for selecting
appropriate substitutions for view components are given in Section 6. In Section 7, we give our algorithms for the
view synchronization problem. Section 8 lists related work in the literature, and Section 9 presents our conclusions.

2 Evolvable View Environment (EVE) Framework

Our view synchronization process tempts to evolve views, when they are a�ected by capability changes triggered
by the participating ISs. Next, we present the Evolvable View Environment (EVE) framework that we propose for
tackling the view synchronization problems in dynamic environments (Figure 1). We give an architectural overview
of the EVE framework next and outline our key design decisions.

IS Registration. Our environment can be divided into two spaces, i.e., the view space and information space. The
information space is populated by a large number of external ISs. External ISs are heterogeneous and distributed.
Most importantly, they are dynamic and can autonomously change their capabilities, when desired. They could even
join or leave the system at any time. An IS is \integrated" in the global framework via a wrapper that serves as a
bridge between the information space and the view space. The main functionality of a wrapper is to translate the
messages speci�ed in the underlying data de�nition/manipulation languages into a common language used in the
view site, and vice versa. The wrapper is assumed to be intelligent so that it can extract not only raw data, but
also meta information about the IS, such as changes at the schema level of the IS, performance data, or relationships
with other ISs. Any IS that supports a query interface can participate in our environment.

Meta Knowledge Base (MKB). When an IS joins EVE, it advertises to the MKB its capabilities, data model
(e.g., the semantic mappings from its concepts to the concepts already in the MKB), and data content. The

4

. Information
 Source

Information
 Source

Information
 Source

 Query
Executor

 View
Synchronizer

capability
changes

 View
Knowledge
 Base

. . .
 View
Definition

Extent

 View
Definition

Extent

 Meta
Knowledge
 Base

 MKB
Evolver

 update
notifications

 MKB
 Consistency
 Checker

queries/query results

VIEW SPACE

 View
 Maintainer

INFORMATION SPACE

Materialized View Evolver

Wrapper WrapperWrapper

Figure 1: The Framework of Evolvable View Environment (EVE).

information providers have strong economic incentives to provide the meta knowledge of their individual ISs as well
as the relationships with other ISs, since populating the MKB makes their data known by the view users, and thus
increases the data utilization of their data set (especially, if they o�er the same information at a better price).

We have designed a model for information source descriptions (MISD) [LNR97, RLN97] that is capable of
describing the content and capabilities of heterogeneous ISs. MISD captures meta knowledge such as an attribute
must have a certain type (type integrity constraint), one relation can be meaningful joined with another relation if
certain join constraints are satis�ed (join constraint), a fragment of a relation is partially or completely contained in
another fragment of some other relation (partial/complete information constraint), and so on (see Section 5). The IS
descriptions collected in the MKB form an information pool that is critical in �nding appropriate replacements for
view components when view de�nitions become unde�ned (See Section 5) and for translating loosely-speci�ed user
requests into precise query plans [NR97].

MKB Evolution. When an underlying IS makes a change to its capabilities (e.g., adds a new relation), the MKB
no longer reveals the IS correctly in the sense that the meta knowledge describing the IS and the actual capabilities
of the IS are distinct. For this, we have designed the MKB Evolution process to react to capability changes in the
information space. In our framework, each IS will via the wrapper interface notify the MKB of any such capability
changes so that they can be properly registered in the MKB. The MKB Evolver module will then take appropriate
actions to update the MKB [NLR97]. For example, deleting an attribute A from a relation S may cause the MKB
evolver to modify a subset constraint between two relations S and R, e.g., \S � R", into the constraint \S � (project
all attributes of R besides A from R)". In other cases, some constraints may have to be completely removed from
the MKB if they contain references to the deleted attribute.

View Maintenance. The view maintainer tool (Figure 1) in general is in charge of propagating data updates
executed on an IS site to all a�ected views. In our system, this tool will also be in charge of bringing the view
content up-to-date after the view de�nition already has been changed by the view synchronizer in response to a
capability change.

5

View Synchronization. The view synchronizer tool (Figure 1) evolves a�ected views transparently according to
users' preferences expressed by our extended view de�nition language E-SQL. View synchronization is the focus of
this paper, and we will present replacement strategies and view synchronization algorithms in later sections.

Global Consistency Checking Across Sources. There are two types of inconsistencies (related to meta knowl-
edge) in EVE. The �rst one is that constraints expressed in the MKB do not correspond to the information actually
provided by ISs; and the second one is that di�erent assertions in the MKB contradict each other. The �rst type of
inconsistency occurs when (1) either an IS provider makes an error when entering a MISD description, (2) an update
occurred at one IS that causes a constraint that used to hold to become invalid, or (3) the usage and hence content
of an IS changes over time without proper noti�cation to the MKB. For example, the information provider for IS1
inserts the fact that the relation R is equivalent to a relation S in another site IS2 into the MKB. Now, the provider
of IS2, that is not aware of this assertion made about S in IS2, inserts a new tuple t that makes the assertion become
false.

There are alternative approaches for resolving this inconsistency. For example, (1) insert the tuple t into the
relation R as well, (2) reject the insertion into S, (3) modify the invalid assertion in the MKB so to make it valid
(i.e., in this case change \IS1:R � IS2:S" into \IS1:R � IS2:S"), or (4) remove the invalid assertion from the MKB.
Since checking and enforcing constraints across distributed autonomous ISs is an extremely di�cult problem all on
its own, in this work we assume that providers of individual ISs are in charge of assuring that their data is consistent
with the meta knowledge collected in the MKB. We do not at this time incorporate a tool into our EVE framework
that resolves possible inconsistencies. However, once being noti�ed about the entry or removal of some data item
by an IS, EVE will notify the creators of all constraints in the MKB that may possibly be violated by this data
modi�cation. For example, on inserting a new tuple t into the relation S in the above example, both the providers
of S and R are noti�ed that the update occurred and that the constraint \IS1:R � IS2:S" may now be inconsistent.
It is up to the providers of IS1 and IS2 to determine how to handle this situation, once given the noti�cation.

MKB Consistency. The second type of MKB consistency concerns con
icts between the constraints entered in the
MKB, and thus can be detected by our MKB Consistency Checker module without help from the IS providers. One
example of this type of con
ict is that one information provider declares that a relation R of IS1 is a strict subset of a
relation S in another site IS2, and at the same time the provider of S claims that the extent of S is a strict subset of
R. This is clearly an inconsistency. Our MKB consistency checker discovers such controversial meta knowledge using
various types of inference techniques. Once detected, inconsistent assertions are reported to responsible information
providers to have the di�erences resolved.

3 Running Example: The Travel Consolidator Service

To demonstrate our solution approach, we use a travel consolidator service provider as running example through-
out this paper. Below we describe the relevant information sources (expressed using relations in our system) and two
example SQL views, while additional relations and views are added later in the paper, as needed.

Example 2 Consider a large travel consolidator which has a headquarter in Detroit, USA, and many branches
all over the world. It helps its customers to arrange
ights, car rentals, hotel reservations, tours, and purchasing
insurances. Therefore, the travel consolidator needs to access many disparate information sources, including domestic
as well as international sites. Since the connections to external information sites, such as the overseas branches,
are very expensive and have low availability, the travel consolidator materializes the query results (views) at its
headquarter or other US branches (at the view site). Some of the relevant ISs are listed in the table in Figure 2.

Assume the headquarter maintains complete sets of information of the customers, tours, and tour participants in
the following formats: Customer(Name, Address, Phone, Age), Tour(TourID, TourName, Type, Duration) - where

6

IS 1: Customer Information
Customer(Name, Address, Phone, Age)
IS 2: Tour Information
Tour(TourID, TourName, Type, Duration)
IS 3: Tour Participant Information
Participate(Participant, TourID, StartingDate)
IS 4: Flight Reservation Information
FlightRes(PName, Airline, FlightNo, Source, Dest, Date)
IS 5: Insurance Information
Accident�Ins(Holder, Amount, Birthday)
IS 6: Car Rental Information
CarRental(Name, Address, Phone, City, State, Country)
IS 7: Hotel Information
Hotel(Name, Address, Phone, City, State, Country)

Figure 2: Descriptions of Relevant Information Sources.

Type = fluxurious, economy, super�valuedg, and Participate(Participant, TourID, StartingDate) that states which
customer joins which tour starting on what day. We further assume the local branches keep partial sets of information
of its local customers, the tours o�ered locally, and the participation information of its local customers. The
ight
reservation information FlightRes(PName, Airline, FlightNo, Source, Dest, Date) is managed by each individual air-
line company. Insurance information Accident�Ins(Holder, Amount, Birthday) is kept by each individual insurance
company. The car rental company and lodging information, CarRental(Name, Address, Phone, City, State, Country)
and Hotel(Name, Address, Phone, City, State, Country), are managed by each individual company, respectively.

Let's assume that the travel agency has a promotion for the customers who travel to Asia. Therefore, the travel
agency needs to �nd the customers' names, addresses, and phone numbers in order to send promotion letters to these
customers or call them by phone. The view query for getting the necessary information can be speci�ed as follows:

CREATE VIEW Asia-Customer AS
SELECT Name, Address, Phone
FROM Customer C, FlightRes F
WHERE (C.Name = F.PName) AND (F.Dest = 'Asia')

(2)

In addition, the travel consolidator wants to study the correlation between the type of tour a customer (older than
18) participates in and the type of accidental insurance she buys. Therefore, the second view query can be speci�ed
as:

CREATE VIEW Tour-Insurance AS
SELECT C.Age, T.Type, T.Duration, I.Amount
FROM Customer C, Participate P, Tour T, Accidental-Insurance I
WHERE (C.Name = P.Participant) AND (P.TourID = T.TourID) AND

(C.Name = I.Holder) AND (C.Age > 18)

(3)

Note that Queries 2 and 3 are static apriori-speci�ed queries. We use this travel consolidator service example
to demonstrate the usage of and interactions among proposed evolution parameters in later sections.

7

4 E-SQL: The View De�nition Language

A novel principle of our approach is to explore the evolution of an a�ected view based on preferences by its
de�ner. In this section, we thus design the EVE view de�nition language for evolvable views, called Evolvable-SQL
or E-SQL, for this purpose. E-SQL is an extension of the SELECT-FROM-WHERE SQL syntax augmented with
speci�cations for how the view de�nition may be evolved under IS capability changes. EVE attempts to salvage
the a�ected views by following the evolution preferences expressed in the evolution parameters of the E-SQL view
de�nitions. The general format of an E-SQL view de�nition V is given in Query (4) in Figure 3.

CREATE VIEW V (B1; : : : ; Bm) (VE = VEV) AS
SELECT R1:A1;1(AD = AD1;1;AR = AR1;1); : : : ; R1:A1;i1(AD = AD1;i1;AR = AR1;i1); : : : ;

Rn:An;1(AD = ADn;1;AR = ARn;1); : : : ; Rn:An;in(AD = ADn;in ;AR = ARn;in)
FROM R1(RD = RD1;RR = RR1); : : : ; Rn(RD = RDn;RR = RRn)
WHERE C1(CD = CD1; CR = CR1) AND : : : AND Ck(CD = CDk; CR = CRk)

(4)

Figure 3: Syntax of a Generic E-SQL View De�nition.

In Figure 3, the set fB1; : : : ; Bmg corresponds to the local names given to attributes preserved in the view V,
the set fAsj;1 ; : : : ; Asj;ij

g is a subset of the attributes of relation Rj with j = 1; : : : ; n; Ci with i = 1; : : : ; k; are

primitive clauses de�ned over the attributes of relations in the FROM clause. A primitive clause has one of the
following forms: (< attribute � name > � < attribute � name >) or (< attribute � name > � < value >) with
� 2 f<;�;=;�; >g. And, all parameters VE ;AD;AR;RD;RR; CD and CR and their respective values are de�ned
as given in the table in Figure 4.

Query 4 corresponds to a SELECT-FROM-WHERE SQL query augmented with evolution parameters. For sim-
plicity's sake, we assume in this work that views are de�ned by SQL queries in the format of Query (4) with a
conjunction of primitive clauses in the WHERE clause.

De�nition 1 View Component. The attributes in the SELECT clause (A), relations in the FROM clause (R),
and primitive conditions in the WHERE clause (C) are the basic units of a view. These basic units are called the view
components of a view.

Each view component has attached two evolution parameters. One is the dispensable parameter, denoted as XD
where X could be A, R or C for attribute, relation, or condition component, respectively. The dispensable parameter
states whether the view component is essential and hence must be kept in the evolved view (when the value is false);
or the view component could be dropped if a replacement cannot be found (when the value is true). The other
is the replaceable parameter, denoted as XR with X likewise de�ned as above. The replaceable parameter speci�es
whether the view component could be replaced in the view synchronization process (if its value is true) or the view
component cannot be replaced (if the value is false). A view de�ner can also specify that the evolved view extent
could be anything (if the value is \don't care"), or must be equivalent to (if the value is �), a superset of (if the
value is �), or a subset of (if the value is �), with respect to the original view extent using the VE parameter.

The evolution parameters VE ;AD;AR;RD;RR, CD, and CR and their respective values are summaried in
Figure 4. Each type of evolution parameter used in E-SQL is represented by a row in the table, with column one
giving the parameter name and the abbreviation for the parameter, column two the possible values of the parameter
can take on plus the associated semantics, and column three the default value. When the parameter setting is
omitted from the view de�nition, then the default value is assumed. This means that a conventional SQL query

8

Evolution Parameter Semantics Default Value

Attribute- dispensable (AD) true: the attribute is dispensable false
false: the attribute is indispensable

replaceable (AR) true: the attribute is replaceable false
false: the attribute is nonreplaceable

Condition- dispensable (CD) true: the condition is dispensable false
false: the condition is indispensable

replaceable (CR) true: the condition is replaceable false
false: the condition is nonreplaceable

Relation- dispensable (RD) true: the relation is dispensable false
false: the relation is indispensable

replaceable (RR) true: the relation is replaceable false
false: the relation is nonreplaceable

View- extent (VE) approximate: no restriction on the new extent �

�: the new extent is equal to the old extent
�: the new extent is a superset of the old extent
�: the new extent is a subset of the old extent
�: the new extent can be anything

Figure 4: View Evolution Parameters of E-SQL Language.

(without explicitly speci�ed evolution preferences) has well-de�ned evolution semantics in our system, i.e., anything
the user speci�ed in the original view de�nition must be preserved exactly as originally de�ned in order for the view
to be well-de�ned. Our extended view de�nition semantics are thus well-grounded and compatible with current view
technology. Below we now discuss the evolution parameters in detail. Each treatment of the evolution parameters is
backed-up with a working example to demonstrate the utility and usage of them.

4.1 Attribute-Dispensable Parameter AD

This parameter tells us whether an attribute from the view interface has to be kept in the modi�ed view
de�nition in order for that view to be acceptable to the view de�ner. Therefore AD is associated with the attributes
in the SELECT clause. This parameter is of Boolean type. AD = true means that the attribute is dispensable;
whereas AD = false means that the attribute is essential for the view de�nition, thus removing the attribute from
the view makes the view meaningless to the view user. The default value of the parameter is false.

Example 3 Assume the travel agency is content with the query results of Query 2 with the customer's names and
addresses only, i.e., the company is willing to put o� the phone marketing strategy if the customer's phone number
attribute is deleted from the relation Customer for some reason and a suitable substitute cannot be found. The user
can state this preference in the SELECT clause of Query (2) by using the attribute dispensable parameter AD as
follows:

SELECT Name (AD = false);Address (AD = false);Phone (AD = true)

In this example, the view de�ner instructs the view synchronization system that the customer's name and address
are indispensable to the view, since without the customer's names and addresses the travel agency cannot send its
promotion letters to the customers. On the other hand, the customer's phone numbers can be omitted from the
original view de�nition, if keeping it becomes impossible.

9

4.2 Attribute-Replaceable Parameter AR

This parameter is also associated with the attributes in the SELECT clause. It characterizes whether the
associated attribute is allowed to be replaced by another attribute other than the original one. AR = true means
the associated attribute is allowed to be substituted with an \appropriate" attribute (see Section 6.1) either from
the same IS or from other IS. On the other hand, AR = false means that the attribute cannot be substituted by
any other data. The default value is false.

Example 4 In addition to instructing our system that the customer name and address have to be kept in the view
interface, the user may want to further guide our system as to whether it is acceptable for an attribute to be obtained
from other sources besides the original relation. For example, if the user only accepts the customer name and address
to come from the Customer relation, but agrees to have the phone number come from other source(s), then the user
can augment the SELECT clause of Query (2) with the attribute replaceable parameter AR as follows:

SELECT Name (AR = false);Address (AR = false);Phone (AR = true)

4.3 Relation-Dispensable Parameter RD

This parameter is associated with the participating relations in the FROM clause. It tells the view synchro-
nization system whether the accompanied relation is allowed to be dropped from the original view de�nition. This
parameter is of type Boolean. RD = true indicates the relation is allowed to be dropped, whileRD = false indicates
that the information contained in the relation is crucial to the user, therefore dropping the relation makes the view
meaningless. The default value of RD is false.

Example 5 Let's look at the Query 1 speci�ed in Example 1. Originally the query returns the car rental and lodging
information in Boston area. If the traveller would be content with the car rental information only when the lodging
information cannot be obtained before hand, then the view de�ner can set the relation dispensable parameter of the
Hotel relation to true, i.e., CarRental C (AD = false), Hotel H (AD = true). In this case, removing the Hotel
relation and the attributes referencing the Hotel relation from Query 1 is acceptable to the user.

4.4 Relation-Replaceable Parameter RR

This parameter is associated with the participating relations in the FROM clause. It indicates whether the
relation is allowed to be substituted by other relations (or a combination of relations). The parameter value is again
of Boolean type. RR = true indicates the relation is allowed to be substituted with some \appropriate" relation in
the global environment (see Section 6.1). and RR = false indicates that the user does not accept any substitution
for the original relation. The default value of RR is false.

Example 6 The user may augment the Customer relation in the FROM clause of Query 2 by setting the relation-
replaceable parameter RR to true, i.e., Customer C (RR = true). In this case, if if the Customer relation is removed
from its IS (the headquarter), then our system can substitute it with a redundant Customer relation managed at the
Asia branch. This may be a less desirable view de�nition in the sense of resulting in a view that is more expensive
to maintain and due to network delay more likely to be not completely up-to-date, but preferable over not having any
view supported at all.

10

4.5 Condition-Dispensable Parameter CD

This parameter indicates whether a condition in the WHERE clause is allowed to be dropped, e.g., it happens
when any one of the condition's operands is no longer available. This parameter, with type Boolean, is associated
with the conditions in the WHERE clause. CD = true means the associated condition may be dropped if it cannot
be kept any longer in the view de�nition, while CD = false means the condition cannot be dropped for the view
de�nition to still be meaningful to the view user. The default value of CD is false.

Example 7 Let's look at the WHERE clause of Query (2) with two conditions. The �rst condition is an equijoin
condition that joins the Customer relation with the FlightRes relation by customer' names, and the second one is a
local condition speci�ed on the relation FlightRes that �nds all the passengers who travel to Asia. Assume the view
de�ner of the view Asia-Customer is willing to accept a view without the second (local) condition speci�ed, as long
as the equijoin condition is kept1. That is, if the second (local) condition is dropped, i.e., the destination information
is not kept in the FlightRes relation anymore, then the promotion invitation letters are sent to all customers traveling
by air. This preference would be expressed in E-SQL by adding the condition-dispensable parameter to the conditions
in the WHERE clause of Query (2) as:

(C.Name = F.Passenger)(CD = false) AND (F.Dest = Asia)(CD = true)

4.6 Condition-Replaceable Parameter CR

This (Boolean) parameter is also associated with the conditions in the WHERE clause. It characterizes whether
the associated condition is allowed to be replaced by an \appropriate" condition2. CR = true means the condition
is allowed to be replaced by a semantically equivalent condition with operand(s) either from the same or from other
information source(s). On the other hand, CR = false means that the condition cannot be substituted, i.e., the
information is sensitive and uses of the information do not trust the reliability of alternate ISs. The default value of
CR is false.

Example 8 Let's look at the view Tour-Insurance speci�ed in Example 3. Assume the user allows the condition
(C.Age > 18) to be replaced by a semantically equivalent condition expressed by:

(C.Age > 18)(CR = true)

Then when the information provider of the relation Customer decides to drop its attribute Age, our system can
replace (C.Age > 18) with (((today � I.Birthday)=365) > 18) to preserve the original WHERE clause.

4.7 View-Extent Parameter VE

This parameter is speci�ed for the view as a whole. It instructs the view synchronization system whether the
view extent of the evolved view must be equivalent to (�), a superset of (�), or a subset of (�) the original view
extent in terms of the common subset of attributes in the original and the evolved view de�nitions. If no restrictions
on the view extent are given, then VE is set to \approximate". The default value of VE is (�).

1Note that in general dropping a local condition is more acceptable than dropping a join condition, since dropping a join condition
may change the view de�nition dramatically. For example, replacing a join condition that returns some subset of tuples by a Cartesian
product which then would return all pairwise combinations of tuples from both relations as view result.

2We give a formal de�nition of what we de�ne as appropriate substitution in the context of this work in Section 6.2.1.

11

Example 9 The user may augment Query (2) with the view-extent parameter as:

CREATE VIEW Asia-Customer AS (VE = \ � ")

This means any new view de�nition must return a view extent equivalent to or larger than the original view extent
for the view evolution process to be valid. That is, if originally the Asia-Customer view returns the customers who
travel to Japan, Korea, or Hong Kong, then the view is still valid if in addition to these customers it also returns the
customers who travel to Thailand or Malaysia.

4.8 Putting Evolution Parameters all Together

Example 10 Putting together all view evolution parameters for Query (2), we get Query (5).

CREATE VIEW Asia-Customer (VE = \ �") AS
SELECT Name, Address;Phone (AD = true, AR = true)
FROM Customer C (RR= true);FlightRes F
WHERE (C.Name = F.PName) AND (F.Dest = 'Asia') (CD = true)

(5)

Note that for the view components that have their evolution parameter values omitted, the default value is
assumed as indicated in Figure 4. To name a few, the attributes Name and Address in the SELECT clause are
indispensable, and the relation FlightRes is indispensable and nonreplaceable.

5 MISD: Model for Information Source Description

Information sources may be constructed using di�erent data models, and the wrapper of each information source
expresses the capabilities of its underlying information source into a common simple model that is understood by
our EVE system. MISD allows a large divergent class of ISs to participate in EVE. Figure 5 summarizes the type
of constraints supported in our current system. Note that other constraints such as key or foreign key constraints
could easily be added in the future. These descriptions are collected in a Meta Knowledge Base (MKB) (see Figure
1), forming an information pool that is critical in �nding appropriate replacements for view components when view
de�nitions become unde�ned.

Name Syntax

Type Integrity Constraint T CR:Ai = (R(Ai) � Ai(Typei))
Order Integrity Constraint OCR = (R(A1; : : : ;An) � C(Ai1 ; : : : ;Aik))
Join Constraint J CR1;R2

= (C1AND � � �Cl)

Partial/Complete Constraint PCR1;R2
= (�Ais

(�C(Aj1
;:::;Ajl

)R1) � �Ans
(�C(Am1

;:::;Amt
)R2))

Figure 5: Possible Types of Semantic Constraints for IS Descriptions.

5.1 Data Content Description

The model used to describe the basic units of information available in each of the ISs is the relational model. An
IS has a set of relations IS:R1, IS:R2; : : : ; IS:Rn. A base relation is an n-ary relation with n � 2. A relation name

12

is not required to be unique in the MKB, but the pair (IS name, relation name) is. That is, if the information source
IS exports the relation R then IS:R is assumed to be unique in the MKB. A relation R is described by specifying
its information source and the set of attributes belonging to it as follows:

IS:R(A1; : : : ; An): (6)

5.2 Type Integrity Constraints

The domain types of the attributes Ai are described using type integrity constraints, denoted by Ai(Typei). A
type constraint for a relation R(A1; : : : ; An) is speci�ed as:

T CR(Ai) = (R(Ai) � Ai(Typei)) (7)

where Ai(Typei) can be viewed as a one-column relation with domain type Typei. The type integrity constraint
of T CR(Ai) says that any of the possible values of the attribute Ai is contained in the relation Ai(Typei). The
type integrity constraints of the attributes A1 to An of the relation R can be combined into a single type integrity
constraint as follows:

T CR(A1;:::;An) = (R(A1; : : : ; An) � A1(Type1) � : : :�An(Typen)) (8)

which says that the attribute Ai is of domain type Typei, for i = 1; : : : ; n. For simplicity, we assume that the
attribute types are primitive. If two attributes are exported with the same name, they are assumed to have the same
type (which must be re
ected by the type integrity constraints for their relations)3.

5.3 Order Integrity Constraints

An order integrity constraint on a relation R speci�es constraints on the tuples in R, such that the tuples must
satisfy the order constraint at any time. For a relation R(A1; : : : ; An), a generic order constraint is speci�ed as
follows:

OCR = (R(A1; : : : ; An) � C(Ai1 ; : : : ; Aik)) (9)

where Ais 2 R for s = 1, : : :, k, and C(Ai1 ; : : : ; Aik) is a conjunction of primitive clauses de�ned over the attributes.
A primitive clause has one of the following forms: (<attribute-name> � <attribute-name>) or (<attribute-
name> � <value>) with � 2 f<;�;=;�; >g. Expression (9) speci�es that for any state of the database R and for
any tuple t 2 R, C(t[Ai1]; : : : ; t[Aik])

4 is satis�ed.

Example 11 An insurance relation Expensive-Insurance, containing all expensive accidental insurances that
cover more than $1; 000; 000, can be expressed by the following order constraint:

Expensive-Insurance(Holder; T ype;Amount;Birthday) � (Amount > 1; 000; 000):

3In the future, we plan to allow complex types and a hierarchy of types. We anticipate that most of the proposed solution approach
will continue to apply to these extended types.

4The expression t[A] refers to the value of the attribute A in the tuple t.

13

5.4 Join Constraints

A join constraint between two relations R1 and R2, denoted as J CR1;R2
, states that tuples in R1 and R2 can be

meaningfully joined if the join condition, i.e., a conjunction of primitive clauses, is satis�ed. A generic join constraint
is as follows:

J CR1;R2
= (C1 AND � � � AND Cl) (10)

where C1; : : : ; Cl are primitive clauses over the the attributes of R1 and R2.

Example 12 Some of the join constraints for our running example presented in Section 3 are given in the table of
Figure 6.

J C Join Constraint

JC1 Customer.Name = FlightRes.PName
JC2 (Customer.Name = Accident�Ins.Holder) AND (Customer.Age > 1)
JC3 Customer.Name = Participate.Participant
JC4 Participate.TourID = Tour.TourID
JC5 FlightRes.PName = Accident�Ins.Holder

Figure 6: Relevant Join Constraints for Example 2

5.5 Partial/Complete Information Constraints

A partial/complete (PC) constraint between two relations R1 and R2 states that a (horizontal and/or vertical)
fragment of R1 is semantically contained or equivalent to a (horizontal and/or vertical) fragment of R2 at all times.
EVE makes use of the PC constraints to decide if an evolved view extent is equivalent, subset of, or superset of the
initial view extent. A generic PC information constraint between two relations R1 and R2 is speci�ed as follows:

PCR1;R2
= (�Ai1

;:::;Aik
(�C(Aj1

;:::;Ajl
)R1) � �An1

;:::;Ank
(�C(Am1

;:::;Amt
)R2)) (11)

where Ai1 ; : : : ; Aik; Aj1 ; : : : ; Ajl are attributes of R1; An1 ; : : : ; Ank ; Am1
; : : : ; Amt

are attributes of R2; T C(R1:Ais) =
T C(R2:Ans), for s = 1, : : :,k; and � is f�;�;�g for the partial (� and �) or complete (�) information constraint,
respectively.

Example 13 Let Customer(Name, Address, Phone, Age) be a relation that maintains all the customer information
at the headquarter site, and MABranch(Name, Address) be a relation that manages the customers who reside in
Massachusetts. The PC constraint shown in Eq. (12) states that the MABranch relation is contained in the Customer
relation:

PCMABranch;Customer = (�Name;Address(MABranch) � �Name;Address(Customer)) (12)

6 View Evolution Foundations

Given a capability change of an underlying IS, EVE �nds views in the VKB a�ected by the capability change.
The view synchronizer in EVE attempts to salvage these views by �nding appropriate replacements for the a�ected

14

view components. In this chapter, we �rst de�ne what constitutes a \legal" view rewriting of an a�ected view; and
then introduce replacement strategies for substituting various a�ected view components.

6.1 Formal Foundation for View Synchronization

In this section we give a formal de�nition of what is considered to be a legal view rewriting for a view which
became obsolete after a capability change of an underlying information source. First we introduce some basic
de�nitions that are used in the legal view rewriting de�nition.

De�nition 2 A�ected View. A view is \a�ected" by a delete-attribute/delete-relation capability change if the
deleted capability is referred to in the SELECT, FROM, and/or WHERE clause(s) of the view.

De�nition 3 Amendable View. An a�ected view de�ned as above is \amendable", if none of a�ected view com-
ponents has its evolution parameters set to (false; false).

De�nition 4 Evolution Parameter Assignment. When a view component C' is used to replace an a�ected view
component C, the evolution parameters associated with C' are set by the following rules:

� Rule 1. If C' is used to replace exactly one view component C of the original view V , the new evolution
parameters are set to be the same as those of the original C. If a view component is replaced by more than one
new view component, we say that each of the new view components replaces exactly one view component.

� Rule 2. If a new view component C' is used to replace more than one view component of the original view
X1(par1;1 = val1;1; par1;2 = val1;2), : : :, Xk(park;1 = valk;1; park;2 = valk;2) where pari;j are view evolution pa-
rameters and vali;j 2 ftrue; falseg, we set the evolution parameters of C' as: (par1 = val1;1 AND � � � AND valk;1; par2 =
val1;2 AND � � � AND valk;2).

Next, we show examples applying Rules 1 and 2, respectively.

Example 14 An example when Rule 1 is applied is given �rst. Let a view V 1 be de�ned as follows:

CREATE VIEW V 1 AS
SELECT R.A (AR = true), R.B
FROM R
WHERE C

(13)

Assume R:A is deleted from its site, and R:A is referenced in the SELECT clause, but not in the WHERE clause. We
further assume the view synchronizer �nds a counterpart in another relation S:A, which can be joined with R based
on attributes other than R:A, i.e., JCR;S = (R:C = S:D), where R:C 6= R:A. Therefore, one rewriting is as follows:

CREATE VIEW V 10 AS
SELECT S:A (AR = true), R.B

FROM R; S (RR = true)

WHERE C AND (R:C = S:D) (CR = true)
(14)

15

In this example, the view component R:A and its associated evolution parameters (AR = true) are replaced by three
new view components, all of which are underlined in Query (14) (using Rule 1 from Def. 4). Each of the new view
components has its evolution parameters set equal to that of the replaced view component, i.e., (AR = true) and AD
has the default value.

Example 15 The next example shows how Rule 2 is applied. Let a view V 2 be de�ned as follows:

CREATE VIEW V 2 AS
SELECT R.A (AD = false, AR = true), R.B
FROM R, T
WHERE (R.A = T.E) (CD = true; CR = true) AND C

(15)

We have the same assumptions as above, except for the fact that R:A is being referenced in the SELECT and in the
WHERE clauses. Therefore, one rewriting is as follows:

CREATE VIEW V 20 AS
SELECT S:B (AR = true), R.B

FROM R, T; S (RR = true)

WHERE (S:B = T:E) (CD = true; CR = true) AND

C AND (R:C = S:D) (CR = true)

(16)

In this example, there are four new view components (underlined) in V 20. Two among the four, S in the FROM clause
and (R:C = S:D) in the WHERE clause, are brought in by the overall replacement process for replacing two old view
components { R:A in the SELECT clause and (R:A = T:E) in the WHERE clause of V 2. Therefore, their evolution
parameters are set using Rule 2. That is, the evolution parameters of S and (R:C = S:D) are both set to (false; true).

De�nition 5 Legal Rewriting. Given a capability change CC and an amendable view V , V 0 is a legal view rewriting
for V if the following properties hold:

P1. The view rewriting V 0 is no longer a�ected by the capability change CC, by either dropping or replacing the
a�ected view components in V .

P2. V 0 is well-de�ned and can be evaluated in the evolved state of the MKB after the capability change 5. That is,
any attributes and relations referred to in V 0 must be registered in the new state of the MKB.

P3. New view components are added to V 0 only if they are used to replace some view components in V . That is,
new view components are introduced into V 0 with some purpose.

P4. The evolution preference conveyed by the evolution parameters (ignoring the view-extent parameter) speci�ed
in the view V are satis�ed by V 0. That is, all the indispensable view components of V are preserved in V 0, and
the non-replaceable view components are not replaced with information taken from other sources.

P5. If the view-extent parameter is di�erent than \don't care" (i.e., \�"), then it must be satis�ed by V 0. I.e., the
relationship between the view extents of V 0 and V is imposed by VE 's value. If V 0 and V have di�erent view
interfaces, i.e., the new view de�nition V 0 preserves a subset of the attributes of V , we compare the projections
on the common set of attributes in both views. To state it more formally, let Attr(V 0) and Attr(V) be the
interfaces of V 0 and V , respectively, and the relationship between V 0 and V be de�ned by Equation 17.

5We do not go into depth on how the MKB changes in this paper.

16

�Attr(V)\Attr(V 0)(V
0)��Attr(V)\Attr(V 0)(V) (17)

The view-extent parameter VE = � is satis�ed, if the following relationship between � and � holds:

if view-extent parameter VE is \ �"; then � must be \ �"; (18)

if view-extent parameter VE is \ �"; then � must be \ �" or \ �"; and

if view-extent parameter VE is \ �"; then � must be \ �" or \ �".

P6. If a view component of V is preserved in the view rewriting V 0, then the evolution parameters attached to
it remain the same as those of the original view component. For new view components of V 0, the evolution
parameters are set according to the assignment rules de�ned in De�nition 4.

6.2 Replacement Strategies

In this section, we give formal descriptions of what are considered to be legal replacements for a�ected view
components under a capability change. Any replacement strategy that follows these guidelines can then be proven
to be consistent with the evolution semantics of E-SQL views as de�ned in Section 4. The proposed substitution
guidelines represent the foundation based on which we will validate that the EVE approach can indeed achieve view
preservation in many situations where conventional view management systems would have to declare the a�ected
views to be unde�ned.

6.2.1 Principles of Attribute Substitution

When an attribute R:A referred in the view V (in the SELECT or WHERE clauses) is deleted from its site, the
view synchronizer attempts to �nd a substitute to replace the deleted attribute, if replacing R:A is permitted. An
attribute S:B is said to be an appropriate substitute for R:A if the following conditions are satis�ed6.

Condition 1: Type Match Condition. This condition requires that S:B has the same domain type as the
attribute R:A. I.e., there exist in MKB the following constraints for some type Type1:
(1) T C(S:B) = (S(B) � B(Type1)) and
(2) T C(R:A) = (R(A) � A(Type1)).

Condition 2: Tuple Linkage Condition. This requirement demands that there exists a meaningful join rela-
tionship between the relations R and S. I.e., there exists a join constraint in MKB between R and S such that the
attribute R:A is not used in the join condition:

J CR;S =
�
C1(�J1) AND � � � AND Cm(�Jm)

�
= C(�J) (19)

where for all 1 � i � m, Ci(�Ji) is a primitive clause, and A 62 (�J1 [: : :[�Jm). We use the expression C(�J) to denote
the conjunction of all primitive clauses in J CR;S where �J = �J1 [: : :[�Jm.

Condition 3: Extent Satisfaction Condition. Let the value of the view-extent parameter of the view V be �.
The condition from Equation 20 is su�cient to have the view-extent parameter VE satis�ed:

6Note that when it is not necessary to explicitly specify the full name of an attribute i.e., ISi:R:A, we use R:A.

17

�((Attr(V)\Attr(R))nfR:Ag)[fS:Bg

�
R 1C(�J) S

�
� �((Attr(V)\Attr(R))nfR:Ag)[fR:Ag(R) (20)

where C(�J) is the join condition de�ned by Condition 2, and Attr(V) represents all the attributes referred in the
SELECT and WHERE clauses of the view V . Note that the projection lists in Equation (20) represent ordered sets
with the attribute R:A on the right hand side having the same position as the attribute S:B on the left hand side.
The view-extent parameter VE = �, if di�erent than \�", and � must satisfy the conditions imposed in Equation 18.

The following theorem states that Conditions 1, 2 and 3 are su�cient to obtain a legal rewriting (e.g., with the
view-extent parameter VE satis�ed) by using the attribute S:B for replacing the attribute R:A in a view de�nition.

Theorem 1 Let a view V be de�ned as follows:

CREATE VIEW V (VE = �) AS
SELECT R:A;R: �D;R1: �D1; : : : ; Rn: �Dn

FROM R;R1; : : : ; Rn

WHERE CV (�W)
(21)

where R:A 62 R: �D.

Let S and S:B be a relation and one of its attributes, respectively, that satisfy Conditions 1, 2 and 3. Let the
view V 0 be obtained from V by replacing all occurrences of the attribute R:A in the view V with the attribute S:B and
adding the condition C(�J) from the join constraint JCR;S de�ned in Equation 19 to the WHERE clause. V 0 obtained
in this way is shown in Equation 22 (where the new view components are underlined).

CREATE VIEW V 0 (VE = �) AS
SELECT S:B;R: �D;R1: �D1; : : : ; Rn: �Dn

FROM S;R;R1; : : : ; Rn

WHERE CV0((�W n fR:Ag)[fS:Bg) AND C(�J)
(22)

where CV0((�W n fR:Ag)[fS:Bg) is the conjunction of primitive clauses in the WHERE clause of the view V de�ned
in Equation 21 where all occurrences of the attribute R:A were replaced by the attribute S:B.

Then V 0 � V .

Proof.

Case 1. VE = � = \�" and � 2 f \�" , \�"g.

We have to prove that for � 2 f \�", \�" g in Condition 3, V 0 is a subset of V . I.e., V 0 � V .

Let t0 be a tuple in the view V 0, t0 2 V 0. Then there exist some tuples in S, R, R1; : : : ; Rn that have been used
to derive the tuple t0 in V 0. I.e., the following properties hold:

18

(1) 9tS 2 S, such that t0[S:B] = tS [S:B],
(2) 9t0R 2 R, such that t0[R: �D] = t0R[R:

�D],
(3) for all 1 � i � n, 9ti 2 Ri, such that t0[Ri: �Di] = ti[Ri: �Di],
(4) tS ; t0R; t1; : : :tn derive t0 in V 0,
(5) CV0(tS [S:B]; t0R; t1; : : : tn)

7 is satis�ed,
(6) C(tS ; t0R) is satis�ed.

Property (6) implies that tS and t0R are two tuples of S and R, respectively, that derive a tuple in the left
hand relation from Equation 20 of Condition 3. I.e., 9g 2

�
�((Attr(V)\Attr(R))nfR:Ag)[fS:Bg(R 1C(�J) S)

�
such that

g = �((Attr(V)\Attr(R))nfR:Ag)[fS:Bg

�
t0R 1C(tS;t0R)

tS

�
. Then from Condition 3 (with � 2 f \�", \�" g) we have

that there exists tR 2 R such that

(7) g
�
= �((Attr(V)\Attr(R))nfR:Ag)[fS:Bg

�
t0R 1C(tS;t0R)

tS

��
= �((Attr(V)\Attr(R))nfR:Ag)[fR:AgtR.

We want to show that tR 2 R, t1 2 R1; : : : ; tn 2 Rn derive a tuple t in V such that t = t0.

From (7), we have that
(8) tR[R:A] = tS [S:B] and
(9) tR[R: �D] = t0R[R:

�D] (because R: �D � (((Attr(V) \Attr(R)) n fR:Ag) [fS:Bg)).

Properties (5) and (8) imply
(10) CV(tR; t1; : : : ; tn) is satis�ed.
From (8), (9) and (10) we have that
(11) the tuples tR 2 R, t1 2 R1; : : : ; tn 2 Rn derive a tuple t 2 V .
Properties (8), (9) and the fact that t1; : : : ; tn derive t0 2 V 0 as well (properties (3) and (4)), imply
(12) t = t0.

From (11) and (12) we have that t0 2 V . Since t0 was an arbitrarily chosen tuple of V 0, we have proven that
V 0 � V .

Case 2. VE = � = \�" and � 2 f \�" , \�" g.

We have to prove that for � 2 f \�", \�" g in Condition 3, V is a subset of V 0. I.e., V 0 � V . Let t be a tuple
in V , t 2 V . Then there exist some tuples in R, R1; : : : ; Rn that derive t in V . Thus, the following properties are
true:
(1) 9tR 2 R, such that t[R: �D] = tR[R: �D], and t[R:A] = tR[R:A]
(2) for all 1 � i � n, 9ti 2 Ri, such that t[Ri: �Di] = ti[Ri: �Di],
(3) tR; t1; : : : tn derive t in V ,
(4) CV(tR; t1; : : : tn) is satis�ed.

By de�nition we know that tR[Attr(V) \Attr(R)] 2 �((Attr(V)\Attr(R))nfR:Ag)[fR:Ag(R). Then from Condition

7Even so the conjunction of primitive clauses CV 0 is de�ned on a subset of attributes (i.e., ((�W n fR:Ag) [fS:Bg)) of the tuples
tS; t

0

R
; t1; : : : tn, we use this notation do denote the conjunction CV 0 applied to this set of tuples. We stress the fact that the tuple tS has

at most one attribute in ((�W n fR:Ag)[fS:Bg), that is S:B.

19

3 (with � 2 f \�", \�" g), there exists t0R 2 R and tS 2 S such that:
(5) tR[Attr(V) \Attr(R)] = �((Attr(V)\Attr(R))nfR:Ag)[fS:Bg(t

0
R 1C(t0

R
;tS) tS).

Property (5) implies
(6) tR[R:A] = tS [S:B],
(7) t0R[(Attr(V) \Attr(R)) n fR:Ag] = tR[(Attr(V) \Attr(R)) n fR:Ag],
(8) C(t0R; tS) is satis�ed.

Properties (6) and (7) imply that
(9) CV0(tS [S:B]; t0R; t1; : : : ; tn) is satis�ed.

We want to prove that the tuples tS ; t
0
R; t1; : : : ; tn derive a tuple t0 in V 0, and this tuple is equal to t, i.e., t0 = t.

Properties (8) and (9) state that the tuples tS ; t0R; t1; : : : ; tn satisfy the two conditions from the WHERE clause
of the view V 0, thus this set of tuples derive a tuple t0 in V 0. From (1), (2), (3), (6) and (7) we have that t0 is equal
to t. More precisely,

(10) t0[S:B] = tS [S:B]
(6)
= tR[R:A]

(1)
= t[R:A],

(11) t0[R: �D] = t0R[R:
�D]

(7)
= tR[R: �D]

(1)
= t[R: �D],

(12) for all 1 � i � n, t0[Ri: �Di] = ti[Ri: �Di]
(2)
= t[Ri: �Di].

Hence, we can conclude that t0 = t. Since, t was chosen arbitrary from V , we have proven that V 0 � V .

Case 3. VE = � = \�" and � = \�".

We want to show that V 0 � V when � = \�" in Condition 3. Hence, we have to prove two inclusions:
(I) V 0 � V and
(II) V 0 � V .

The inclusion (I) is implied by Case 1 proven above when � = \�"8 Similarly, the inclusion (II) is implied by
Case 2 with � = \�". Thus, we conclude that V � V 0.

Q.E.D.

The following theorems are special cases when PCs and J Cs constraints speci�ed for the relation R and a
relation S in MKB imply Conditions 1, 2 and 3 and make relation S a good replacement. The theorem thus leads us
to guidelines when our meta knowledge in the form of PCs and JCs constraints will be su�cient to identify current
replacements.

Theorem 2 Let V be de�ned as in Equation 21 and � = \�". Let S be a relation with the following constraints:

8Cases 1 and 2 are more general cases proven for � 2 f \�", \�" g and � 2 f \�", \�" g, respectively.

20

(I) J CR;S =
�
R: �A1 = S: �B1

�
with A 62 �A1;

(II) PCR;S = (�R: �A(R) � �S: �B(S)) with

(1) R:A 2 R: �A, R: �A1 � R: �A, Attr(V) \Attr(R) � R: �A; and

(2) S:B 2 S: �B, S: �B1 � S: �B;

(3) R:A, R: �A1 and S:B, S: �B1 have the same position in the attribute vectors R: �A and S: �B, respectively.

Then Conditions 1, 2 and 3 are satis�ed for � = \�" for the relation S and the attribute S:B.

Theorem 3 Let V be de�ned as in Equation 21 and � = \�". Let S be a relation with the following constraints:

(I) J CR;S =
�
R: �A1 = S: �B1 AND C(�J)

�
with A 62 (�A1 [�J) and C(�J) a conjunction of local9 primitive clauses.

(II) PCR;S = (�R: �A(R) � �S: �B(S)) with

(1) R:A 2 R: �A, R: �A1 � R: �A, Attr(V) \Attr(R) � R: �A; and

(2) S:B 2 S: �B, S: �B1 � S: �B;

(3) R:A, R: �A1 and S:B, S: �B1 have the same position in the attribute vectors R: �A and S: �B, respectively.

Then Conditions 1, 2 and 3 are satis�ed for � = \�" for the relation S and the attribute S:B.

6.2.2 Principles of Relation Substitution

When a relation IS1:R referred in the FROM clause of a view V is deleted from its site, the view synchronizer will
under certain conditions, e.g., checking the relevant evolution parameters to see whether the view V can be evolved,
attempt to �nd a substitution for it. A relation IS2:S is said to be an appropriate substitute for IS1:R if the following
three conditions are satis�ed.

Condition 1: Type Match Condition. All attributes of relation S that are used as replacements for attributes
of relation R must have the same domain type, respectively, i.e., there exist type constraints: T C(A) = (R(A) �
A(Type)) and T C(B) = (S(B) � B(Type)) in the MKB for all attribute pairs (R:A; S:B) used for substitution.

Condition 2: Minimal Preservation Condition. This condition requires that relation S must contain at least
the corresponding attributes of the relation R that are indispensable and replaceable in the view V . That is, all the
attributes of R in the SELECT clause with AD = false and AR = true and all the attributes of the relation R that
appear in the WHERE clause in a condition C with CD = false and CR = true. This is formally stated below.

We use the notationAttr(V (R))SELECT (d; r) to denote all the attributes of the relationR from the SELECT clause
with the evolution parameters set to d and r (d and r can be false or true), respectively:

Attr(V (R))SELECT (d; r) = fR:A j R:A in SELECT clause,AD(R:A) = d;AR(R:A) = rg (23)

9A local primitive clause is a predicate having only one attribute (e.g., R:C > 20).

21

And, we use Attr(V (R))WHERE (d; r), for the set of all the attributes of relation R used in primitive clauses of
the WHERE clause which have the evolution parameters set to d and r, respectively:

Attr(V (R))WHERE (d; r) = fR:A j R:A in a condition C from WHERE clause,CD(C) = d; CR(C) = rg (24)

With the notations de�ned above, we can formally state the minimal preservation condition as:

Case 1. VE = \�" or \�"

Attr(V (R))SELECT (false; true) [Attr(V (R))WHERE (false; false) [Attr(V (R))WHERE (false; true) [

[Attr(V (R))WHERE (true; false) [Attr(V (R))WHERE (true; true) � S: (25)

Case 2. VE = \�"

Attr(V (R))SELECT (false; true) [Attr(V (R))WHERE (false; true) � S: (26)

In short, the minimal preservation constraint states that all attributes of R that are essential for the view (i.e.,
the indispensable attributes) and replaceable (i.e., their attribute-replaceable evolution parameter values are set to
true) must be obtained from S. Moreover, if the view-extent evolution parameter is \�", then all attributes of R
used in the WHERE clause must have replacements in S (we cannot drop a condition from the WHERE clause and
still have the view-extent evolution parameter satis�ed). Clearly, this is a necessary (but not su�cient) condition in
order for the relation R to be replaced by S.

Condition 3: Extent Satisfaction Condition. Let the value of the view-extent parameter of the view V be �.
The following condition is su�cient to have the view-extent parameter VE satis�ed:

� �B(S) � � �A(R) (27)

where �A must be a superset of the attributes covered by S (i.e., attributes mentioned in the minimal preservation
condition) and �B refers to the attributes in S that are used as replacements for attributes R: �A. Thus, the following
conditions must hold:

Case 1. VE = \�" or \�"

Attr(V (R))SELECT (false; true) [Attr(V (R))WHERE (false; false) [Attr(V (R))WHERE (false; true) [

[Attr(V (R))WHERE (true; false) [Attr(V (R))WHERE (true; true) � �A: (28)

Case 2. VE = \�"

Attr(V (R))SELECT (false; true) [Attr(V (R))WHERE (false; true) � �A: (29)

If the value of the view-extent parameter is di�erent than \don't care", i.e., � 6=�, then the values of � and �
must satisfy the property from Equation 18.

22

The above conditions are su�cient but not necessary. The following theorem states that Conditions 1, 2 and 3
are su�cient to have the view-extent evolution parameter VE satis�ed when S is used to replace the relation R.

Theorem 4 Let a view V be de�ned as follows:

CREATE VIEW V (VE = �) AS
SELECT R: �D;R1: �D1; : : : ; Rn: �Dn

FROM R;R1; : : : ; Rn

WHERE CV(�W)
(30)

where all attributes of R in �W are denoted by R: �D0.

Let S be a relation that satis�es Conditions 1, 2 and 3. Let the view V 0 be obtained from V by replacing R with
S and replacing all the attributes of R with the corresponding attributes of S. V 0 obtained in this way is shown in
Equation 31 (where the new view components are underlined).

CREATE VIEW V 0 (VE = �) AS
SELECT S: �F;R1: �D1; : : : ; Rn: �Dn

FROM S;R1; : : : ; Rn

WHERE CV0((�W nR: �D0) [S: �F 0)
(31)

In Equation 31, S: �F are the attributes from S: �B corresponding to the attributes from R: �A\ R: �D. From Conditions
2 and 3, we have that S: �F corresponds to a superset of the attributes in Attr(V (R))SELECT (false; true).
S: �F 0 are the attributes from S: �B corresponding to the attributes from R: �A\R: �D0. From Conditions 2 and 3, we have
that this must be the set of all the attributes of R from the WHERE clause in Case 1; and, in Case 2, it contains
at least the attributes from Attr(V (R))WHERE (false; true). CV

0((�W n R: �D0) [S: �F 0) is the conjunction of primitive
clauses in the WHERE clause of the view V de�ned in Equation 30 where all occurrences of the attributes R: �D0 were
replaced by the corresponding attributes in S: �F 0 or the conditions containing attributes from R: �D0 were dropped (if it
is legal to do so).

Then V 0 � V .

Proof.

Case 1. VE = � = \�" and � 2 f \�" , \�"g.

We have to prove that for � 2 f \�", \�" g in Condition 3, V 0 is a subset of V (for common attributes). I.e.,
V 0 �� V 10. For this particular case we have to impose that all attributes of R that appear in the WHERE clause
are replaced by attributes of S. That is
(0) CV0((�W nR: �D0) [S: �F 0) has the same set of primitive clauses as CV(�W)11. And, jR: �D0j = jS: �F 0j.

Let t0 be a tuple in the view V 0, t0 2 V 0. Then there exists some tuples in S, R1; : : : ; Rn that derive the tuple
t0 in V 0. I.e., the following properties hold:

10�� is de�ned in [].
11If some of the clauses in the WHERE clause are dropped in V 0 then in general we cannot prove V 0 �� V .

23

(1) 9tS 2 S, such that t0[S: �F] = tS [S: �F],
(2) for all 1 � i � n, 9ti 2 Ri, such that t0[Ri: �Di] = ti[Ri: �Di],
(3) tS ; t1; : : : tn derive t0 in V 0,
(4) CV0(tS [S: �F 0]; t1; : : : tn) is satis�ed.

From Condition 3 we have that the attributes of S used in the new view de�nition are among the ones used in
the Equation 27. I.e.,
(5) S: �F; S: �F 0 � S: �B.
Then from Equation 27 (with � 2 f \�", \�" g) we have that there exists a tuple tR 2 R such that
(6) tS [S: �B] = tR[R: �A].

We want to show that tR 2 R, t1 2 R1; : : : ; tn 2 Rn derive a tuple t in V such that t =� t0.

From (0), (5) and (6) we have that
(7) tS [S: �F 0] = tR[R: �D0]12 and tS [S: �F] =� tR[R: �D] where S: �F [S: �F 0 are all the attributes of S that replace attributes
of R (they must include at least the indispensable and replaceable attributes of R described in the Condition 2).

From (0),(4) and (7) we have
(8) CV(tR[R: �D0]; t1; : : : tn) is satis�ed13.

Then from (8) we can deduce that
(9) the tuples tR 2 R, t1 2 R1; : : : ; tn 2 Rn derive a tuple t in V .

Now let's prove that t =� t
0. From (2) and (9) we have that

(10) for all 1 � i � n, (ti 2 Ri), t0[Ri: �Di]
(2)
= ti[Ri: �Di]

(9)
= t[Ri: �Di].

From (1) and (7) we have that

(11) t0[S: �F]
(1)
= tS [S: �F]

(7)
=� tR[R: �D]

(9)
= t[R: �D].

In (10) and (11) we have proven that t =� t
0. Since, t0 was an arbitrary chosen tuple of V 0, we have proven that

V 0 �� V .

Case 2. VE = � = \�" and � 2 f \�" , \�" g.

We have to prove that for � 2 f \�", \�" g in Condition 3, V is a subset of V 0. I.e., V 0 �� V .

Let t be a tuple in V , t 2 V . Then there exist some tuples in R, R1; : : : ; Rn that derive t in V . Thus, the
following properties are true:
(1) 9tR 2 R, such that t[R: �D] = tR[R: �D],
(2) for all 1 � i � n, 9ti 2 Ri, such that t[Ri: �Di] = ti[Ri: �Di],
(3) tR; t1; : : : tn derive t in V ,

12From (0) we have that jS: �F 0j = jR: �D0j.
13HERE IS THE PLACE WHERE WITHOUT (0) we cannot prove V 0 � V .

24

(4) CV(tR; t1; : : : tn) is satis�ed.

From Condition 3 (with � 2 f \�", \�" g), there exists tS 2 S such that
(5) tR[R: �A] = tS [S: �B].

Property (5) implies
(6) tS [S: �F 0] =� tR[R: �D0],
(7) tS [S: �F] =� tR[R: �D].

We want to prove that the tuples tS ; t1; : : : ; tn derive a tuple t0 in V 0, and this tuple is equal to t, i.e., t0 =� t.

Property (6) implies that
(8) CV0(tS [S: �F 0]; t1; : : : ; tn)14 is satis�ed.

Properties (8) states that the tuples tS ; t1; : : : ; tn satisfy the condition from the WHERE clause of the view V 0,
thus this set of tuples derive a tuple t0 in V 0. From (1), (2), (3), (6) and (7) we have that t0 is equal to t. More
precisely,

(9) t0[S: �F] = tS [S: �F]
(7)
=� tR[R: �D]

(1)
= t[R: �D],

(10) for all 1 � i � n, t0[Ri: �Di] = ti[Ri: �Di]
(2)
= t[Ri: �Di].

Hence, we can conclude that t0 =� t. Since, t was chosen arbitrary from V , we have proven that V 0 �� V .

Case 3. VE = � = \�" and � = \�".

We want to show that V 0 �� V when � = \�" in Condition 3. Hence, we have to prove two inclusions:
(I) V 0 �� V and
(II) V 0 �� V .

The inclusion (I) is implied by Case 1 proven above when � = \�" with the restriction imposed in (0).
Similarly, the inclusion (II) is implied by Case 2 with � = \�". Then, we conclude that V �� V 0 when the
restriction imposed in Case 1 at (0) is satis�ed.

Q.E.D.

7 View Synchronization Algorithms

In this section, we present the view synchronization algorithms which serve as proof of concept that adaptability
of views can indeed be achieved within our proposed EVE framework. For the remainder, we make the following
simplifying assumptions:

14Note that this case can be proven in general when CV 0 is obtained from CV by dropping some of the conditions and replacing the
attributes of R.

25

� A relation R appears in the FROM clause only once.

� At least one attribute of R is referenced in the SELECT and/or WHERE clause, i.e., no redundant relations are
listed in the FROM clause.

� We consider precisely-de�ned view queries only and not loosely-speci�ed ones as studied in [NR97].

We believe our solution approach could be easily adapted for a more general case when the assumptions are
relaxed. The capability changes supported in EVE and thus treated below are listed next:

1. del-attr(IS.R.A): delete the attribute A from the relation R residing at site IS.

2. add-attr(IS.R.A): add an attribute A to the relation R at site IS.

3. chg-attr-name(IS.R.A,B): change an attribute's name from A to B in the relation R at site IS.

4. del-rel(IS.R): delete the relation R from the site IS.

5. add-rel(IS.R): add a relation R to the site IS.

6. chg-rel-name(IS.R,S): change the relation's name from R to S at site IS.

7.1 The Delete-Attribute Evolution Operator{del-attr(IS1 :R:A)

Deleting the attribute A from IS1:R could potentially a�ect a view V in three ways:

1. A appears in the SELECT clause of V only.

2. A appears in the WHERE clause of V only.

3. A appears in both the SELECT and WHERE clauses of V (i.e., a combination of cases 1 and 2).

Below, we now provide solutions to each of these three cases one by one.

Case 1: A appears in the SELECT clause of V only.

When an attribute is deleted from the SELECT clause, the view synchronizer decides whether V is amendable
by taking the attribute's attribute-dispensable AD and attribute-replaceable AR parameters, and the view-extent VE
parameter into account to decide whether the a�ected view can be evolved into a valid view de�nition. The view
evolution algorithm (VEA) for this case is listed below.

Algorithm 1 VEA-delete-attribute(A,SELECT):

00. Success = TRUE

01. IF attribute-replaceable(A) = FALSE

02. THEN IF attribute-dispensable(A) = TRUE

03. THEN drop A from V /* report success */

04. ELSE /* attribute-dispensable(A) = FALSE */

26

05. Success = FALSE /* report failure */

06. END IF

07. ELSE /* attribute-replaceable(A) = TRUE */

08. IF attribute-dispensable(A) = TRUE

09. THEN find-substitute-select(A, B) /* see Section 6.2.1 */

10. IF found

11. THEN replace-attribute(A,B) /* report success */

12. ELSE /* not found */

13. drop A from V /* report success */

14. END IF

15. ELSE /* attribute-dispensable(A) = false */

16. find-substitute-select(A, B) /* see Section 6.2.1 */

17. IF found

18. THEN replace-attribute(A,B) /* report success */

19. ELSE /* not found */

20. Success = FALSE /* report failure */

21. END IF

22. END IF

23. END IF

Algorithm 2 PROCEDURE replace-attribute(R.A,S.B):

begin

1. drop A from the SELECT clause

2. add the relation S, that B belongs to, to the FROM clause along with R.

3. add the join constraint between R and S to the WHERE clause (Section 6.2.1).

4. add B to the SELECT clause

end

Algorithm 3 Boolean PROCEDURE �nd-substitute-select(in: R.A, out: S.B):

begin

the strategy of appropriate attribute substitution is outlined in Section 6.2.1.

end

Next, we use an example to show how the view synchronization algorithm �nds a legal rewriting for a view
a�ected by a delete-attribute capability change.

Example 16 For easy reference, we re-display Query (5) �rst introduced in Section 4.8 over the ISs as de�ned in
Section 3.

CREATE VIEW Asia-Customer (VE = \ �") AS
SELECT Name, Address;Phone (AD = true, AR = true)
FROM Customer C (RR= true);FlightRes F
WHERE (C.Name = F.PName) AND(F.Dest = 'Asia') (CD = true)

(32)

27

We assume that the travel agency has the Customer relation backed up at the Boston branch to guarantee
availability and reliability of the information service. That is, our MKB holds the PC constraint (CustomerBak �
Customer) and the join constraint (J CCustomerBak;Customer = (CustomerBak:Name = Customer:Name)).

Assume the Phone attribute is deleted from the Customer relation at the headquarter. Upon receiving this del-
attr(Customer.Phone) noti�cation, the view synchronizer checks with the MKB in order to �nd an \appropriate"
counterpart of it (based on the process in Section 6.2.1). In this case, CustomerBak.Phone is found to be a promising
candidate. In this example, steps 16 - 19 of the View Evolution Algorithm VEA-delete-attribute (algorithm 1) are
executed. Using this algorithm, one valid strategy of rewriting Asia�Customer into Asia�Customer

0

thus results
into Equation (33) (new components are underlined):

CREATE VIEW Asia-Customer' (VE = \ �") AS
SELECT Name, Address; C2:Phone(AD = true;AR = true)

FROM Customer C (RR= true);FlightRes F;
CustomerBak C2 (RD = true;RR = true)

WHERE (C.Name = F.PName) AND(F.Dest = 'Asia') (CD = true) AND
(C2:Name = C:Name)(CD = true; CR = true)

(33)

This legal rewriting uses the join constraint J CCustomerBak;Customer to obtain the phone number from the relation
CustomerBak.

Note that there may be several alternative solutions for salvaging a view. For example, if the Name and Address
attributes in Query 32 are allowed to be taken from other sources, then the Customer relation could be replaced
entirely by the CustomerBak relation { even if only the attribute Phone is deleted from the Customer relation but
not the entire Customer relation. The main advantage of the latter rewriting is that the join operation between
the relations Customer and CustomerBak can be avoided entirely, which should reduce the view computation and
view maintenance costs. Our current view synchronizer starts with the simplest strategy of view rewriting and
progressively explores alternative more complex view synchronization solutions until one is found that is valid given
the view evolution constraints as well as the constraints in the MKB. Hence, while our current view synchronizer
will �nd one solution for view evolution if one exists based on our chosen set of view synchronization algorithms, it
is not guaranteed to select the \best" one. In the future, we will explore optimization strategies that address the
issue of selecting the \best" solution for view evolution given cost criteria, such as costs of accessing ISs, availability
and contracts with ISs, communication costs, view self-maintainability, etc.

Case 2: A appears in the WHERE clause of V only.

When a condition in the WHERE clause is a�ected because one of its operands A is deleted from its IS, our
system takes the condition-dispensable CD, condition-replaceable CR, and view-extent VE parameters into account
to decide whether the a�ected view is amendable. If it is amendable, then the view synchronizer tries to remedy it.
The view evolution algorithm that handles cases when one or more WHERE conditions of a view V, denoted by c =
(R:A � operand2), are a�ected by the removal of the attribute A is given next.

Algorithm 4 VEA-delete-attribute(A,WHERE):

01. C = {affected conditions}

28

02. Success = TRUE

03. WHILE (C != empty) AND (Success) DO

04. take c from C

05. IF condition-replaceable(c) = FALSE

06. IF condition-dispensable(c) = TRUE

07. THEN

08. C = C - c; drop c from V;

09. ELSE /* condition-dispensable(c) = FALSE */

10. Success = FALSE

11. END IF

12. ELSE /* condition-replaceable(c) = TRUE */

13. IF condition-dispensable(c) = TRUE

14. THEN find-substitute-condition(c, c1) /* see Section 6.2.1 */

15. IF found

16. THEN replace-condition(c,c1)

17. ELSE /* not found */

18. drop c from V

19. END IF

20. C = C - c

21. ELSE /* condition-dispensable(c) = FALSE */

22. find-substitute-condition(c, c1) /* see Section 6.2.1 */

23. IF found

24. THEN replace-condition(c,c1)

25. C = C - c

26. ELSE /* not found */

27. Success = FALSE

28. END IF

29. END IF

30. END IF

31. END DO

Algorithm 5 Boolean PROCEDURE �nd-substitute-condition(C,C'):

begin

// Section 6.2.1 describes how substitution C' for C is found

// by finding replacements for its attributes.

end

Algorithm 6 PROCEDURE replace-condition(C,C'):
// C = (R:A � operand2)
// C 0 = (S:B � operand2)

1. drop C from the WHERE clause

2. add the relation S, that B belongs to, to the FROM clause

3. add the join constraint between R and S to the WHERE clause

4. add C' to the WHERE clause

Example 17 Let's assume a view is speci�ed on R1(A1; A2); R2(B1; B2), and R3(C1; C2) as follows:

29

CREATE VIEW V (VE = \ �") AS
SELECT A2;B1;B2; C2

FROM R1;R2; R3

WHERE (A1 = B1) (CD = true;CR = true) AND (A1 = C1) (CD = true;CR = true)
(34)

Figure 7(a) shows a valid database state of R1(A1; A2); R2(B1; B2); R3(C1; C2), and Figure 7(b) the view extent
of V derived from R1; R2, and R3 (with one tuple). In the view de�nition V , R1(A1; A2); R2(B1; B2), and R3(C1; C2)
are related to each other through the join conditions: (A1 = B1) and (A1 = C1) (see Figure 7.c).

R1

A1 A2
2
1

3
6

R2

2
B1 B2
7
2 6

R3

C1 C2
9
2

3
8

C2

8

A2 B1 B2

3 2 6

V

(a)

(b)

R1

R2 R3

A1=B1 A1=C1

(c)

Figure 7: Example Data Set.

C2A2 B1 B2

3

V’

83

83 2 6
3 2 6

2 6
8

82 6

7 2 3

7 2
3

6 7 2 3
6 7 2
6 3
6

C2A2 B1 B2

83 2 6

V’’

82 66

R1

R2 R3
R1

R2 R3

(a) Redefined View: V’.

(b) Redefined View: V’’.

B1=C1

Figure 8: Two Alternative Ways to Evolve V.

Let's assume that the information provider of R decides to delete R.A1. Obviously, both of the primitive clauses
in the WHERE clause of the view de�nition V are a�ected. When EVE fails to �nd appropriate replacements for
these conditions, both primitive clauses are dropped since their condition-dispensable (CD) parameters are set to true.
Hence, V is rewritten into V

0

as follows:

CREATE VIEW V
0

(VE = \ �") AS
SELECT A2; B1;B2; C2

FROM R1;R2;R3
(35)

That is, the original view de�nition V becomes a Cartesian product in V
0

, because the new view de�nition V
0

has an empty WHERE clause and the relations have no common attribute names, hence, no natural join takes place.

30

In the rede�ned view de�nition V
0

, R1; R2, and R3 are no longer related to each other through any join conditions.
As a consequence, the view extent now contains 8 instead of 1 tuples (see Figure 8(a)).

When a condition from the WHERE clause has to be dropped (as in the above example), more sophisticated
techniques could be used to evolve the view in order to preserve the original view to a larger degree. The basic idea
is to make inferences based on the implicit constraints hidden in the conditions of the originalWHERE clause to help
our system preserve the original view. While there are several potential solution approaches, we propose below one
such technique that improves upon the algorithm described above.

Algorithm 7 PROCEDURE replace-condition*(C,C'):

1. Find any implicit constraints in the WHERE clause by computing the transitive closure of the conditions;

2. Add these implicit constraints to the WHERE clause;

3. Remove the a�ected conditions from the WHERE clause.

To be more precise, let's consider a view de�nition V with a conjunction C of primitive clauses in theWHERE clause
and attribute A appearing only in the WHERE clause. Let C0 be the conjunction of all the primitive clauses in C
which don't use the attribute A (i.e., C0 is obtained from C by dropping the primitive clauses that contain A). Let C00

be obtained from C by �nding �rst the transitive closure of C and then removing the primitive clauses that contain
attribute A (see Step 1 to Step 3 from above). Let V 0 be obtained from V by replacing the conjunction C with C0

in the WHERE clause; and V 00 be obtained from V by replacing the conjunction C with C00 in the WHERE clause.
Then, we have that V � V 00 � V 0 for any database instance. The proof of this statement follows immediately from
the theorem of containment for conjunctive queries with built-in predicate given by Ullman in [Ull89].

Example 18 Continuing with the above example, our system �nds an implicit constraint in the WHERE clause
between R2 and R3, namely, R2:B1 = R3:C1, derived from R2:B1 = R1:A1 and R1:A1 = R3:C1 by transitivity. We
add this constraint into the WHERE clause. After removing the conditions containing A1, the WHERE clause is left
with one join condition: B1 = C1. As shown in Figure 8.b, R2 is joined with R3 in the modi�ed view V

00

through
the join condition B1 = C1, but R2 and R3 are not joined with R1 any longer (hence, the Cartesian product is used
to combine these two relations in the modi�ed view). The evolved view de�nition V

00

is given below:

CREATE VIEW V
00

(VE = \ �") AS
SELECT A2;B1;B2; C2

FROM R1;R2;R3

WHERE (B1 = C1) (CD = true;CR = true)

(36)

In this case, our system is able to preserve the original view \to a larger degree" in the sense of only generating
one super
uous tuple compared to the original view extent. (See Figure 8(a) versus 8(b)). While in V

0

, all the
information of R1; R2, and R3 is dumped to the user, V

00

comes close to providing to the user only what he requested
to begin with. It is not only less meaningful, but also more expensive to ship such extra unneeded data.

Case 3: A appears in both the SELECT and WHERE clauses of V.

The main idea is to (1) go through the a�ected view components of V once to decide the possibility of view
evolution, and (2) if V has the potential to be evolved, then �nd a substitute for the a�ected SELECT component

31

and, if no failure happens when replacing/dropping the SELECT component, replace the WHERE components by the
corresponding substitute, as needed.

Algorithm 8 VEA-delete-attribute(A,ALL):

1. AC1 = affected-components(A) /* find components that reference A in V */

2. Success = TRUE

3. WHILE (AC1 != empty) AND (Success) DO

4. get component from AC1

5. IF (dispensable(component) = FALSE AND replaceable(component) = FALSE)

6. THEN Success = FALSE

7. END IF

8. AC1 = AC1 - component

9. END DO

10. IF (Success) /* it is possible to evolve V */

11. THEN call VEA-delete-attribute(A,SELECT);

12. IF (Success)

13. THEN /* use substitute for SELECT component, if found */

14. call VEA-delete-attribute'(A,WHERE);

15. END IF

16. END IF

VEA-delete-attribute'(A,WHERE) is identical to VEA-delete-attribute(A,WHERE) procedure introduced ear-
lier, except that now if a replacement of A by A

0

had been found by the successful execution of the VEA-Delete-
Attribute(A,SELECT) procedure earlier, then use A

0

in place of A in the WHERE clause without taking any further
replacement steps.

7.2 The Add-Attribute Evolution Operator

This add-attr(IS.R.A) operator reports that a new attribute A has been added to the relation R at site IS. We
assume EVE does not attempt to further optimize existing views using the newly added attribute, so this capability
change does not a�ect any of the existing views in our current system.

7.3 The Change-Attribute-Name Evolution Operator

This chg-attr-name(IS.R.A,B) operator changes the name of an attribute A of IS:R to a new name B. This
operation does not a�ect the view de�nitions that refer to R:A, assuming our system keeps a name-mapping table
in the MKB along with other meta knowledge. Even if a name changes more than once, our system could keep track
of this information in the same entry of the name mapping table. The alternate solution of identifying all locations
where the old name of the attribute was being used both in the MKB and in the VKB and replacing the old name
by the new name is also straightforward, yet potentially expensive.

7.4 The Delete-Relation Evolution Operator

The delete-relation operator removes a relation R from its IS, and it a�ects views that reference R in their
FROM clauses. Since (1) several attributes of the deleted relation R may be referenced in a view de�nition, and (2)
it is generally more expensive to �nd an appropriate replacement for an a�ected view component that references an

32

attribute of R than to check the possibility of view evolution, we propose to handle the view synchronization problem
in two steps. First, we evaluate the possibility of view evolution by examining the view evolving parameters of each
of the a�ected view components in V. Basically, if there is an a�ected view component whose evolving parameters
are (dispensable(component) = false, and replaceable(component) = false) then it is impossible to evolve the view
de�nition. As soon as we decide that evolving a component of V is impossible (given its evolving parameters), our
system will report failure without looking further.

Otherwise, the second stage is to �nd appropriate replacements for the a�ected view components using a simple
(one-step) solution shown below.

Algorithm 9 VEA-delete-relation(R)

01. tempSet = affected-components(VD,R) /* view components referring to R or attrs(R) */

02. code = 2 /* code = 1, must find replacement; 2, good if finds replacement */

03. WHILE (tempSet != empty) AND (code != 1) DO /* test for possibility of evolution */

04. BEGIN /* WHILE */

05. component = get-component(tempSet)

06. IF (dispensable(component) = FALSE AND replaceable(component) = FALSE) THEN

07. return failure with msg "VD cannot be evolved"

08. ELSE IF (dispensable(component) = FALSE) THEN

09. BEGIN

10. code = 1 /* some view component is indispensable, must find replacement */

11. tempSet = tempSet - component

12. END

13. END /* WHILE */

14. /* possible to evolve VD */

15. IF (replaceable(R) = FALSE)

16. THEN IF (code = 1)

17. THEN return failure with msg "VD cannot be evolved"

18. ELSE drop affected-component(VD,R) from VD

19. ELSE /* replaceable(R) = TRUE */

20. BEGIN

21. found = find-substitute-relation(VD,R,S)

22. IF (NOT found) THEN

23. THEN IF (code = 1)

24. THEN return failure with msg "VD cannot be evolved"

25. ELSE drop affected-component(VD,R) from VD

26. ELSE /* found */

27. replace-relation(R,S)

28. END /* replaceable(R) = TRUE */

Note that a�ected-components(R,V) set contains the relation R listed in the FROM clause, the attributes of R
preserved in the SELECT clause, and the conditions in the WHERE clause that have one or two attributes of R as
their operands.

Algorithm 10 PROCEDURE replace-relation(R,S):

01. tempSet = affected-attr-components(VD,R) U affected-condition-component(VD,R)

02. While (tempSet != empty) DO

03. BEGIN /* WHILE */

33

04. component = get-component(tempSet)

04. IF substitute S.B for component exists IN S

05. THEN replace component by S.B

06. ELSE drop component from VD

07. tempSet = tempSet - component

08. END /* WHILE */

09. replace R by S in FROM clause of VD

7.5 The Add-Relation Evolution Operator

This add-rel(IS.R) operator adds a new relation R to the IS site. It does not a�ect any views described in
VKB, since none of the existing views refer to this new relation.

7.6 The Change-Relation-Name Evolution Operator

This chg-rel-name(IS.R,S) operator changes the name of the relation from R to S at site IS. Similarly to the
chg-attr-name operation, this operation does not a�ect the view de�nitions that refer to R, assuming our system
keeps a name-mapping table in the MKB along with other meta knowledge.

8 Related Work

To our knowledge, we are the �rst to study the problem of view synchronization caused by capability changes
of participating ISs. In [RLN97], we establish a taxonomy of view adaptation problems that identi�es alternate
dimensions of the problem space, and hence serves as a framework for characterizing and hence distinguishing our
view synchronization problem from other (previously studied) view adaptation problems. In [LNR97], we then lay the
basis for the solutions presented in this current paper by introducing the overall EVE solution framework, in particular
the idea of associating evolution preferences with view speci�cations. However, formal criteria of correctness for view
synchronization as well as actual algorithms for achieving view synchronization are the key contributions of this
current work. While no one has addressed the view synchronization problem as such, there are several issues we
address for EVE that relate to work done before in other contexts as outlined below.

Gupta et al. [GJM96] and Mohania et al. [MD96] address the problem of how most e�ciently to maintain
a materialized view after a view rede�nition explicitly initiated by the user takes place. They study under which
conditions this view maintenance can take place without requiring access to base relations, i.e., the self-maintainability
issue. Their algorithms could potentially be applied in the context of our overall framework, once EVE has determined
an acceptable view rede�nition. Their results are thus complimentary to our work.

In the work of Levy et al. [LSK95], a global information system is designed using the world-view approach
where the external ISs are described relative to the uni�ed world-view relations. The language used here to describe
external relations relative to the world-view schema parallels our MKB description language, except the fact that
we don't have an apriori de�ned schema. Further, we introduce the concept of a join constraint in our model that
allows expressing default conditions among external relations that should be used by the system to attempt to
integrate information instead of evaluating (blindly) all possible Cartesian combinations based on value matches (full
disjunction) [NR98]. The problem of view evolution as posed by our work, i.e., that the world view itself may evolve,
is not discussed in [LSK95].

Papakonstantinou et al. [PGMW95, PGMU96] are pursuing the goal of information gathering across multiple

34

sources. Their proposed language OEM assumes queries that explicitly list the source identi�ers of the database from
which the data is to be taken. Like our MISD model, their data model allows ISs to describe their capabilities, but
they don't assume that these capabilities could be changed and thus they do not address the view synchronization
problem.

EVE system can be seen as an information integration system using view technology to gather and customize
data across heterogeneous ISs. On this venue, related work that addresses the problem of information integration
are among others the SIMS [AKS96] and SoftBot [EW94] projects. In the SIMS project, a uni�ed schema is apriori
de�ned and the user interaction with the system is via queries posed against the uni�ed schema. Although addressing
di�erent issues, SIMS's process of translating a user query into subqueries targeting external relations raises some of
the same problems as �nding the right substitution for an a�ected view component in EVE. The SoftBot project has
a very di�erent approach to query processing as they assume that the system has to discover the \link" among data
sources that are described by action schemas. While related to our view synchronization algorithms, the SoftBot
planning process also has to discover connections among ISs when very di�erent source description languages are
used. None of the two projects address the particular problem of evolution under capability changes of participating
external ISs.

We give a solution for a related problem in our transparent schema evolution (TSE) project [RR95, RR97],
namely, to use view technology to handle schema changes transparently. However, this TSE work is all done in a
centralized environment, assuming one single global database that is cooperating, i.e., that is maintaining all infor-
mation possibly still used by any views de�ned on top of it. In the TSE framework, a user speci�es schema changes
against her special-tailored view schema de�ned over one common base schema. The TSE system is responsible
for deriving an alternate view schema to simulate the e�ects of schema evolution while preserving the current view
schemas. In TSE, the existing view schemas are not a�ected by schema changes, because the original base schema
upon which they all are de�ned is always preserved. Unlike the problem addressed in this current paper, a delete
operation speci�ed against a view is not actually executed as a delete against the base schema rather simply desired
data is hidden from that particular view. Thus the view evolution problem of EVE is not an issue in TSE.

In the University of Michigan Digital Library project [NR98, NR97], we have proposed the Dynamic Information
Integration Model (DIIM) to allow ISs to dynamically participate in an information integration system. The DIIM
query language allows loosely speci�ed queries that the DIIM system re�nes into executable, well-de�ned queries
based on the capability descriptions each IS exports when joining the DIIM system. For this, the notion of connected
relations is introduced as a natural extension of the concept of full disjunction [GL94]. In the default case when only
natural joins are de�ned in the IS descriptions in the MKB it then can be shown that the semantics of these two
concepts (connected rules and full disjunction) are equivalent [NR97]. AI planning techniques are used in DIIM for
query re�nement. In EVE, instead, we now assume that precise (SQL) queries are used to de�ne views (instead of
loosely-speci�ed ones), and thus query re�nement in the sense of DIIM is not needed.

9 Conclusion

9.1 Current Status of EVE

A prototype of the EVE system has been implemented by the Database Systems Research Group at Worcester
Polytechnic Institute. The EVE graphical user interface, the MKB, the MKB evolver, the VKB, and the view
synchronizer are implemented using Java and C++, and the participating ISs are built on top of Oracle and Microsoft
Access. The communication between EVE and the information space is via JDBC. The set of view synchronization
algorithms presented in Section 7 are all fully implemented in this current prototype. The EVE system has been
demonstrated at the CASCON'97 Technology Showcase in Toronto, Canada [LNR97].

35

9.2 Conclusion

Our e�ort is the �rst work to study the new problem of view adaptation in dynamic environments. This problem,
which we call view synchronization, corresponds to the process of adapting view de�nitions triggered by capability
changes of ISs. We propose the Evolvable View Environment (EVE) architecture as a generic framework within
which to solve view adaptation when underlying ISs change their capabilities. The EVE approach is described in
detail in the current paper. To summarize, the main contributions of this paper are:

� The identi�cation of an open problem with current view technology in the context of dynamic large-scale
environments such as the WWW, which we coin the view synchronization problem.

� The development of a general solution approach (and architecture), called the EVE framework, for addressing
this view evolution problem based on the concept of view synchronization.

� The proposal of an extended view de�nition language, called E-SQL, that is capable of de�ning
exible views
by incorporating view change preferences into the view de�nition.

� The design of an IS description model, called MISD, that can capture capabilities of diverse ISs, and thus
serves as foundation for the view synchronization process.

� The development of formal foundations for view evolution and correctness criteria for the replacement of a�ected
components of a view de�nition with alternate components.

� The introduction of a complete set of algorithms for view synchronization for all standard schema changes. The
proposed algorithms generate view de�nitions as output that are consistent with both the change semantics
expressed by E-SQL as well as the MISD descriptions captured in the meta knowledge base (MKB).

� The presentation of several scenarios that demonstrate that EVE maintains views in situations where state-of-
the-art view technology would simply render the views unde�ned.

� The implementation of EVE concepts in a working system to demonstrate feasibility of the EVE ideas, and its
demonstration at the CASCON'97 Technology Showcase in Toronto, Canada.

In short, this paper has opened up a new direction of research by identifying view synchronization as an
important and so far unexplored problem of current view technology in dynamic large-scale environments such as the
WWW. This work has laid a solid foundation for addressing the new problem of how to maintain views in dynamic
environments, and is thus likely to be bene�cial for many diverse applications such as web-based information services,
electronic catalog providers, etc.

In the future, we plan to design and implement more complex view synchronization algorithms so a larger
number of a�ected views could survive in dynamic distributed environments.

Acknowledgments. The authors would like to thank students at the University of Michigan Database Group and
at the Database Systems Research Group at WPI for their interactions on this research. In particular, we thank
Andreas Koeller, Yong Li, Xin Zhang, and Esther Dubin (CRA summer research student) for helping to proof-read
the paper and for implementing components of the EVE system.

References

[AKS96] Y. Arens, C. A. Knoblock, andW.-M. Shen. Query Reformulation for Dynamic Information Integration.
Journal of Intelligent Information Systems, 6 (2/3):99{130, 1996.

36

[BCL89] J. A. Blakeley, N. Coburn, and P-A Larson. Updating derived relations: Detecting irrelevant and au-
tonomously computable updates. ACM Transactions on Database Systems, 14(3):369{400, September
1989.

[CHA+95] M. J. Carey, L. M. Haas, P. M. Schwarz M. Arya, W. F. Cody, R. Fagin, Myron Flickner, A. W.
Luniewski, Wayne Niblack, Dragutin Petkovic, J. H. Williams J. Thomas, and Edward L. Wimmers.
Towards Heterogeneous Multimedia Information Systems: The Garlic Approach. In Proceedings of
the Fifth International Workshop on Research Issues in Data Engineering(RIDE): Distributed Object
Management, 1995.

[EW94] O. Etzioni and D. Weld. A Softbot-Based Interface to the Internet. Communication of ACM, 1994.

[GJM96] A. Gupta, H.V. Jagadish, and I.S. Mumick. Data Integration using Self-Maintainable Views. In
Proceedings of International Conference on Extending Database Technology (EDBT), 1996.

[GL94] C. Galindo-Legaria. Outerjoins as disjunctions . Proceedings of SIGMOD, 1994.

[LNR97] A. J. Lee, A. Nica, and E. A. Rundensteiner. Keeping Virtual Information Resources Up and Running.
In Proceedings of IBM Centre for Advanced Studies Conference CASCON97, Best Paper Award, pages
1{14, November 1997.

[LSK95] A. Y. Levy, D. Srivastava, and T. Kirk. Data Model and Query Evaluation in Global Information
Systems. Journal of Intelligent Information Systems. Special Issue on Networked Information Discovery
and Retrieval, 1995.

[MD96] M. Mohania and G. Dong. Algorithms for Adapting Materialized Views in Data Warehouses. Inter-
national Symposium on Cooperative Database Systems for Advanced Applications, December 1996.

[NLR97] A. Nica, A.J . Lee, and E. A. Rundensteiner. View Synchronization with Complex Substitution
Algorithms. Technical Report WPI-CS-TR-97-8, Worcester Polytechnic Institute, Dept. of Computer
Science, 1997.

[NLR98] A. Nica, A. J. Lee, and E. A. Rundensteiner. View Preservation in Evolveable Large-Scale Information
Systems. To appear in Proceedings of International Conference on Extending Database Technology
(EDBT'98), Valencia, Spain, March 1998.

[NR97] A. Nica and E. A. Rundensteiner. On Translating Loosely-Speci�ed Queries into Executable Plans
in Large-Scale Information Systems. In Proceedings of Second IFCIS International Conference on
Cooperative Information Systems CoopIS'97, pages 213{222, June 1997.

[NR98] A. Nica and E. A. Rundensteiner. Loosely-Speci�ed Query Processing in Large-Scale Information
Systems. International Journal of Cooperative Information Systems, 1998.

[PGMU96] Y. Papakonstantinou, H. Garcia-Molina, and J. Ullman. Medmaker: A Mediation System Based on
Declarative Speci�cations. In Proceedings of IEEE International Conference on Data Engineering,
1996.

[PGMW95] Y. Papakonstantinou, H. Garcia-Molina, and J. Widom. Object Exchange Across Heterogeneous
Information Sources. In Proceedings of IEEE International Conference on Data Engineering, pages
251{260, March 1995.

[RLN97] E. A. Rundensteiner, A. J. Lee, and A. Nica. On Preserving Views in Evolving Environments. In Pro-
ceedings of 4th Int. Workshop on Knowledge Representation Meets Databases (KRDB'97): Intelligent
Access to Heterogeneous Information, pages 13.1{13.11, Athens, Greece, August 1997.

[RR95] Y. G. Ra and E. A. Rundensteiner. A Transparent Object-Oriented Schema Change Approach Using
View Schema Evolution. In IEEE International Conference on Data Engineering, pages 165{172,
March 1995.

[RR97] Y. G. Ra and E. A. Rundensteiner. A transparent schema-evolution system based on object-oriented
view technology. IEEE Transactions on Knowledge and Data Engineering, September 1997.

[Ull89] J.D. Ullman. Principle of Database and Knowledge-Base Systems. Computer Science Press, 1989.

[Wid95] J. Widom. Research Problems in Data Warehousing. In Proceedings of International Conference on
Information and Knowledge Management, pages 25{30, November 1995.

[ZGMHW95] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View Maintenance in a Warehousing Envi-
ronment. In Proceedings of SIGMOD, pages 316{327, May 1995.

37

