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Abstract

A work
ow management systems (WFMS) employs a work
ow manager (WM) to

execute and automate the various activities within a work
ow. To protect the con-

sistency of data, the WM encapsulates each activity with a transaction; a transaction

manager (TM) then guarantees the atomicity of activities. Since work
ows often group

several activities together, the TM is responsible for guaranteeing the atomicity of these

units. There are scalability issues, however, with centralized WFMSs. Decentralized

WFMSs provide an architecture for multiple autonomous WFMSs to interoperate, thus

accommodating multiple work
ows and geographically-dispersed teams. When atomic

units are composed of activities spread across multiple WFMSs, however, there is a

con
ict between global atomicity and local autonomy of each WFMS. This paper de-

scribes a decentralized atomicity model that enables work
ow administrators to specify

the scope of multi-site atomicity based upon the desired semantics of multi-site tasks

in the decentralized WFMS. We describe an architecture that realizes our model and

execution paradigm.
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1 Introduction

Work
ow management is a broad term for a technology that supports the reengineering of

business and information processes [25]. Work
ow Management Systems (WFMSs) provide

the ability to de�ne, evolve, and execute processes involving multiple human users, activities,

and artifacts (e.g., documents). They do so by providing a formalism (e.g., Petri nets,

task-graphs) in which processes are de�ned, and a work
ow engine in which the process is

executed, where forms of execution include: scheduling and automatically invoking activities

according to the control and data 
ow of a process; reactively triggering activities based

on state changes; monitoring the process; and enforcing process consistency constraints.

WFMSs have gained popularity in recent years, as evidenced by the large number of research

prototypes and products (e.g., InConcert [18],ActionWork
ow [23], ProcessWEAVER [22]).

Many WFMSs have realized the need to complement their process-centric approach with

database technology to store diverse information accessed as a work
ow progresses, as well

as to represent artifacts which are being manipulated by the work
ow tasks. In particular,

the concept of a transaction as an atomic unit of execution has been investigated to preserve

the consistency of work
ow steps in case of concurrent access, exceptions, and failures.

However, conventional transactions are often too restrictive for typical work
ow applications,

and WFMSs access and manipulate data in ways that cannot abide by such restrictions: (1)

Work
ow activities (i.e., the basic operations that are carried out as part of a work
ow

task, such as a �nancial analysis tool) may be highly interactive, entail much work and

require hours or days of operation { rollback of such activities might be undesirable; (2)

Activities trigger invocation of unforeseen related work
ow activities, a common feature in

WFMSs. This makes it hard to determine a priori the atomicity boundaries of transactions;

(3) Activities might need to cooperate with other activities on shared data, but conventional

transactions execute in isolation from each other. As a result, various advanced transaction

models have been proposed or adapted to work
ow management (see for example [1, 39]).

Another dimension in which work
ow technology has been rapidly evolving is scalability and

decentralization. The ever-increasing globalization in computing and the wide distribution of
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documents, information, and workers have reinforced the importance of WFMSs to manage

(inter-)organizational work
ows, but at the same time have presented new challenges to

work
ow management. Decentralized WFMSs (DWFMSs) must provide mechanisms to

enable cooperation among individuals, teams, or organizations while preserving the privacy

and autonomy regarding access to the local work
ows and their artifacts and activities. There

have been various research e�orts in large-scale work
ow management (e.g., [2, 3, 11, 25, 34]),

and aWork
ow Coalition [17] has been established to promote, among other issues, standards

for WFMS-interoperability [42].

A natural evolution in work
ow technology is then to explore the combination of both direc-

tions, i.e, decentralized and transactional WFMSs. This combination (which has also been

advocated in [25]) introduces a new challenge: how to reconcile the inherent con
ict between

the single-site (transactional) autonomy and the multi-site (transactional) atomicity. On one

hand, a DWFMS should be able to support the bottom-up de�nition and atomic execution

of cooperative multi-site work
ow activities, but on the other hand it may have to respect

the autonomy of each WFMS regarding access and manipulation of its private data. In some

cases (e.g., when independent organizations collaborate) autonomy is a given constraint, as

opposed to being merely a design choice, and therefore cannot be avoided or compromised.

Similarly, some activities (e.g., groupware activities [11], or composite activities created on

top of pre-existing activities) must access data from multiple sites simultaneously, thus re-

quiring multi-site atomicity. This paper is focused entirely on atomicity of work
ow tasks

and autonomy of the individual WFMSs within a DWFMS. Issues of concurrency control of

the transactions in a DWFMS are outside the scope of this paper; recovery issues, only as

they pertain to atomicity, are still discussed.

Motivating Example

Consider the hypothetical DWFMS in Figure 1 composed of three WFMSs: a Banking

system, a Plane-Reservation system, and a Car-Reservation system. Each WFMS has its

own private, pre-existing work
ow de�nition, users, data, and tools; the sites enter into
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Figure 1: Motivating Example

agreements on a set of multi-site activities in which each site will participate. The sample

multi-site work
ow task allows travel agents to create travel plans and automatically deduct

travel costs directly from a client's bank account. The edges in the �gure show the control


ow; an edge labeled \AT" between two activities requires that both activities be part of

the same atomic unit. This multi-site task contains three multi-site activities:

� Initiate Purchase (ip) | a travel agent wishes to book tickets for a round-trip 
ight
from city1 to city2, with a rental car reserved in city2.

� Check Available Funds (caf) | the client's bank account is veri�ed to contain su�cient
funds to purchase both the plane ticket and the car reservation.

� Purchase Package (pp) | the price of the entire travel package is deducted from the
client's bank account, and the package is shipped to the customer.

Each WFMS executes its own local activities as part of its work
ow de�nition (for example,

the Banking WFMS has an activity that records each access of a client's bank account),

and occasionally the sites engage in a multi-site activity that accesses data from multiple

sites. For example, the caf activity accesses both local data (the cost of the plane tickets)

and remote data (the cost of the car reservation and the client's bank account balance).
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Some multi-site activities may have dependencies with other local or multi-site activities.

For example, the Banking site may insist that record access succeed or else caf should be

invalidated, at least from its own perspective. At the same time, it may be desirable to limit

the impact that a local activity (possibly unknown in other sites) can have on the global

e�ect of a multi-site task. For example, even if the record access local activity at Banking has

failed and ip decides to terminate, the information already entered at the Car-Reservation

site may be left intact, and even partial e�ects of ip itself (e.g., updates of local data) may be

valid, depending on the semantics of the activity and on whether the inter-site consistency

overrules intra-site autonomy.

Thus, the main issue to resolve is how the individual WFMSs can de�ne their transactional-

interoperability to control the implications from failure of arbitrary activities in a multi-site

task. If the DWFMS enforces atomicity of the multi-site task, then the failure of any of

these activities will roll back all work at all sites. If no atomicity is enforced, then the failure

of an activity may leave the multi-site task in an inconsistent state. This paper describes a


exible and decentralized atomicity model that enables collaboration among geographically-

dispersed and autonomous work
ows. The model allows each WFMS in the DWFMS to

tailor the \scope" and \consistency" of atomicity to �t the semantics of multi-site tasks

and to address the autonomous demands of each participating site on a per-task basis. This

paper is organized as follows: Section 2 surveys related work and contrasts our approach with

similar investigations. Section 3 de�nes basic terms and describes the execution model and

system architecture assumed by the 3-level atomicity model, presented in Section 4. Section 5

discusses issues concerned with the realization of the model in an existing DWFMS from both

the language and system perspective. Section 6 summarizes the contributions of this paper

and points to future directions.

2 Related Work

In this paper we focus our attention on atomicity and autonomy issues that arise in de-

centralized WFMSs. DWFMSs are a possible solution to the problem of applying work
ow
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technology on a large scale. Alonso and Schek [3] cite Scalability, Correctness, and Interop-

erability as three (of �ve) of the most important limitations of existing work
ow technology.

We now summarize and compare existing approaches to autonomy and atomicity with our

proposed 3-level atomicity model.

There is a clear consensus that existing database technology is not suitable for WFMSs for

many reasons [3, 19, 37]; for example, Serializability as a correctness model is considered too

restrictive [5]. Many extended transaction models (ETMs) have been developed [24, 32, 33] to

de�ne advanced transaction behavior as needed by WFMSs. Most ETMs retain atomicity|

perhaps the primary objective of transactions| the property that all actions in a transaction

occur or none happen. Since transactions have structure, most ETMs extend atomicity to be

able to include multiple transactions and subtransactions, such as in nested transactions [36].

This is accomplished typically by commit and abort dependencies [16], the building blocks

of atomicity. ACTA [16] and the Transaction Speci�cation and Management Environment

(TSME) [26] allow for many more types of dependencies to be created (i.e., backward-commit-

begin means that a transaction cannot begin before another transaction commits), but we

view these as the responsibility of the work
ow engine. The transaction managers in a

DWFMS should be concerned with managing atomic units, and cooperation is needed when

these units spread across multiple sites. ETMs themselves do not necessarily solve the many

problems of work
ows, and some now view work
ow as a superset of transaction models [1].

The architecture we propose for DWFMSs is most similar to a hybrid multidatabase sys-

tem [40], a solution from the database community for managing multiple, heterogeneous

database repositories. The four aspects to autonomy discussed in [40] also apply to DWFMSs.

In the same way that local autonomy has implications on global concurrency control [20],

autonomy of each WFMS implies that the interoperating WFMSs must be willing to make

compromises on local autonomy and global correctness. The Work
ow Coalition standard

for interoperability [42] does not yet address this issue. An underlying theme in the �eld of

heterogeneous processing is to use data and control abstractions to cope with system hetero-

geneity and interoperability, by hiding everything that is not pertinent to interoperability,

minimize the \exposure" to global control, and determine the desired exposure at each site
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Figure 2: Comparative Architectures

autonomously. The atomicity model outlined in this paper provides these features.

3 A Decentralized Architecture and Execution Model

Our generic DWFMS architecture, depicted in Figure 2a, is compatible with the Work
ow

Coalition's reference architecture in Figure 2b [17]. A DWFMS consists of a set of local

WFMSs that share no resources and communicate via message passing. Each individual

WFMS (or work
ow engine, in [17]) consists of a local data manager (DM), local transac-

tion manager (TM), and local work
ow manager (WM). The WM enacts (e.g., interprets

or executes) work
ow speci�cations that are de�ned using a work
ow formalism loaded into

eachWM (Interface 1 in [17]). EachWFMS supports multiple users and applications through

a client/server paradigm (Interface 2 in the reference model). The communication manager

(CM) provides the necessary infrastructure support for interconnectivity of the sites (Inter-

face 4), such as the ability for a site to publish information about its DM so that a remote

site can access this data (through the TM).

Each WM accesses local data through its local TM and a local transaction is created to

manage the data. WM can access remote data using services from CM to contact the TM at

the remote site. If the access request is granted, the remote TM creates a transaction, and

a copy of the requested data item is transferred to, and cached by, the requesting WM. This

is in contrast to distributed database systems [13] that employ a global transaction manager
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that processes any request to access remote data.

Each site maintains its own private work
ow and we assume operational autonomy with re-

spect to access to data (more speci�cally execution and control autonomy as de�ned in [41]),

but we assume throughout the paper design homogeneity, i.e., similar WM, TM, and DM

components. Each WFMS is managed by a work
ow administrator who de�nes the partic-

ular work
ow that the WFMS executes on its data, involving its own users and tools. The

administrator of each local WFMS is responsible for creating the desired interconnections at

the work
ow level with other loosely-coupled DWFMSs.

All operations that are carried out within the WFMS are conducted in the context of work-


ow tasks. A task is a partially-ordered set of work
ow activities, which are logical groupings

of operations. An activity is an important notion that distinguishes work
ows from conven-

tional transactional applications. Each activity maps to a single step in the work
ow, perhaps

involving a user invoking some external tool, such as a spreadsheet application. Work
ow

formalisms typically guard activities with local constraints, as opposed to the global control


ow imposed by the task. For example, FUNSOFT nets [27] (extended Petri nets) allow

logical predicates to be attached to transitions (the equivalent of activities in our terminol-

ogy), task graphs [35] provide predecessor and successor edges, and rules [30] provide pre-

and post-conditions. An activity, aj , emanates from another activity, ai, when the results of

executing ai satis�es the logical guard for and triggers aj. The notion of emanating activities

is also an important characteristic of work
ows.

A decentralized work
ow is constructed from local work
ow tasks and activities spread

throughout sites. A multi-site activity accesses data from multiple sites and may involve zero,

one, or multiple users from the same or from di�erent sites; the activity is necessarily de�ned

in all participating work
ow processes. Multi-site activities are the main interoperability

building blocks in our multi-site execution model. A multi-site task contains at least one

multi-site activity, with possibly several local (i.e., involving data only from a single site)

activities de�ned at multiple sites.

A multi-site activity always executes at exactly one coordinating site, that is also the coor-
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dinator of the corresponding multi-site task within which the activity operates. The coordi-

nating site �rst retrieves the data needed for the multi-site activity from the remote sites,

then the WM at the coordinating site executes the activity and returns any modi�ed data to

the remote sites from which they originated. Before invoking a multi-site activity or upon its

completion, local (i.e., single-site) emanating activities may be invoked. Thus, the execution

of a multi-site task may be viewed as alternating between local and global modes. Global

mode involves synchronous execution of the shared multi-site activities at the coordinating

site, involving data from multiple sites and possibly multiple users. Local mode involves

execution of local (sub)tasks emanating from the global task at multiple sites. These local

tasks execute asynchronously and in parallel, only on local data, solely according to the

local work
ow de�nition. Upon completion of a multi-site activity, the task fans-out to the

local sites to carry out local activities that emanate from the multi-site activity. If another

multi-site activity is scheduled for execution, it is enabled when all local activities complete

and fan-in to the coordinating site. An interesting aspect of this execution model is that a

multi-site task does not specify which local activities will be part of the task, and therefore

the coordinating site requires no knowledge of the local activities or even of their interfaces.

Instead, each participating WFMS only knows about the multi-site activities of a task, and

the coordinating site requests each site to carry out its local activities (in local mode). This

model demands a high degree of freedom in balancing atomicity and autonomy, because as

we show in [9], one may need to limit the impact that (unknown) activities may have on

the (local and multi-site) work performed at other sites. Each site can simultaneously be a

coordinating site for several multi-site tasks and can be participating in several other multi-

site tasks. A peer-based mechanism that actually establishes and maintains agreements over

the execution of multi-site tasks among otherwise independent WFMSs is described in detail

in [9] and is beyond the scope of this paper.

Figure 3 illustrates execution of multi-site work
ow tasks from our motivating example. Site

SP has established an agreement with sites SB and SC over activities ip1, caf8, and pp10.

Note how each site integrates these activities into their own work
ow de�nitions. A multi-

site activity, ip1, is initiated at SP , involving SB and SC . Upon completion, SP contacts
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ow tasks

the participating WFMSs, requesting that any emanating local activities be executed, thus

activating ra2; ei3; ca4; cwc5; ei6, and cr7. These are all executed by the respective WMs; for

example, the WM at SP executes ei6 �rst before executing cr7. Once these all complete, a

new round of multi-site activities is initiated at site SP , causing the execution of caf8; this

execution sequence operates until all activities in the task have been completed.

3.1 Execution Model from TM Perspective

The WM initiates transactions in TM to guarantee the atomicity of activities (whether

local or multi-site). If an activity, ai, only accesses data from its local DM, then a single

local transaction, Ti, is initiated by WM to encapsulate the data requests for the activity.

In contrast, a multi-site activity ai involving n sites is associated with n transactions |

T 1
i ; T

2
i ; : : : ; T

n
i | one at the TM for each site. Each transaction T

j
i is local to Sj and only

accesses local data from that site. This division of a multi-site activity into local transactions

retains the autonomy of the individual TMs in the DWFMS.
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The TMs are not involved in the details of work
ow management and are only concerned

with the dependencies between transactions (see [15] for a supporting view). To implement

the atomicity model presented in this paper, the TMs only need to support two types of

dependencies: commit and abort. If Ti has an abort dependency on Tj, (Ti AD Tj), then if

Tj aborts, Ti must also abort. If Ti has a commit dependency on Tj , (Ti CD Tj), then Ti

cannot commit until Tj �nishes (either commits or aborts) [16].

Each TM expects full autonomy over its transactions, therefore the set of transactions for a

multi-site activity poses a problem. If a multi-site activity expects to execute as an atomic

unit, the commitment of the individual transactions must be synchronized, most likely by

using a simple two-phase commit (2PC) protocol [13]. Each TM must then distinguish

transactions for local activities from transactions that are part of a multi-site activity. The

coordinating site that executes the multi-site activity coordinates the 2PC protocol.

The atomicity of multi-site activities is protected by placing commit and abort dependen-

cies between the coordinating transaction and participating transactions. These cross-site

dependencies are allowed if the individual TMs allow them; thus the autonomy of each TM

can only be weakened by mutual agreement. The explicit agreements at the WM level are

supported by corresponding agreements between the TMs to honor and maintain cross-site

dependencies. For each multi-site activity, ai, the following cross-site dependencies are cre-

ated between the coordinating site and each participating site, Sj, for 1 < j � n:

(T 1
i AD T

j
i ) (T j

i AD T 1
i ) (T 1

i CD T
j
i )

4 Atomicity Model

When decomposing a work
ow task into activities, often a sequence of activities must be

grouped together atomically to protect sensitive data or to guarantee a consistent transition

of the data in DM. We assume that each work
ow modeling language has some means of

specifying these atomic units. For example, one can annotate transitions in Petri nets, edges

in Task graphs, and rule chains for rule-based systems. Since work
ows can be decentralized
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across multiple sites, the main question is how to associate proper semantics with these

annotations that, like the execution model itself, will be decentralized; there can be no

global overseer transaction manager.

One solution is to regard an entire multi-site task as a global atomic transaction. While it

may be desired in some cases, it is unacceptable as the sole alternative because it violates

autonomy and ignores the problems of typical work
ow activities (e.g., long duration). Au-

tonomy is violated because the failure of any activity in the multi-site task will force all

activities in the multi-site task at all sites to fail.

Another alternative would be to enclose atomically only single activities (both local and

multi-site) by transactions. Such an approach is acceptable from the perspective of autonomy

since all sites must agree on shared multi-site activities. However, this alternative does not

address the real need to atomically enclose several activities within a work
ow task. We can

go a step further and attempt to group atomically several multi-site activities along with the

intermediate local activities encountered. Once again, while possibly appropriate for some

tasks, it may be prohibitively global. In particular, there may be cases where a local site

prefers to retain its own consistency even if this violates global consistency.

Thus, a proper general solution should provide means to specify �ne-grained atomic units

within a multi-site task, and allow these units to be of arbitrary shape and cross sites as

needed. Speci�cally, our approach provides the following:

� Each work
ow task decides whether it is atomic or not; atomicity is an optional prop-

erty, not inherent. This decouples the notion of tasks as logical units of execution from

transactions, the logical units of atomicity.

� If global atomicity is required for correctness, local autonomy is compromised in favor

of atomic commitment; local and remote TMs may be a�ected by the global task.

� Most interestingly, when global atomicity can be compromised (at least for some seg-

ments of a task), local autonomy takes precedence over global atomicity.

In any case, all compromises of local autonomy or global atomicity are explicitly speci�ed
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and agreed upon by participating sites on a per-task basis, as opposed to being imposed by

a global authority and applied to all global tasks.

4.1 Three Atomicity Levels and their Combinations

We identify three core levels of atomicity, each of which can be explicitly and separately

speci�ed on a per-task basis. The atomicity within a multi-site task is characterized by

whether each of the three levels is turned-on or turned-o�, thereby enabling eight di�erent

atomicity con�gurations, each with di�erent scope and semantics of atomicity.

1. G Atomicity (Global) | This provides atomicity for a single multi-site activity. It

requires an atomic-commitment protocol such as two phase commit [14], since each

multi-site activity has a subtransaction acting on its behalf at the coordinating site

and each participating site. If any of these subtransactions abort, then to preserve

atomicity, all subtransactions for the multi-site activity must abort.

2. L Atomicity (Local) | This is orthogonal to G, i.e., it preserves local autonomy and

atomicity, possibly by compromising global atomicity. At site Sj, L binds into an

atomic unit the local transaction T
j
i , acting on behalf of multi-site activity ai, and the

local transactionsL= fT1; T2; : : : ; Tkg initiated for the emanating local activities at site

Sj from ai. Since each local activity is encapsulated by exactly one local transaction,

L only creates dependencies between transactions within the same site.

Within a given site, Sj, the local transactions, L, can commit independently from

transactions at other sites, but they must be synchronized locally since they are part

of an atomic unit. Once all the local activities emanating from ai have completed, T j
i

and the local transactions L, can commit.

If any of these local transactions fails, then the entire set L fails as well as T j
i , but

other local transactions acting on behalf of, or emanating from ai at other sites are not

necessarily a�ected; it depends on whether or not G atomicity was de�ned. Therefore,

the atomicity of ai might be compromised in favor of retaining atomicity within a given

12
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site Sj. Such inconsistencies are easily detected, and may be tolerated, in cases where

they make sense semantically, or �xed by a compensating operation (as in Sagas [24]).

3. GG Atomicity (Global to Global) | This level provides atomicity across several multi-

site activities. When coupled with G and L, it enforces global atomicity, where any

failure in a multi-site task forces it to fail at all sites, and therefore necessarily vio-

lates local autonomy. However, since it connects several multi-site activities that were

explicitly speci�ed and are known by all sites (by the de�nition of a global task), the

autonomy is voluntarily compromised by the local sites.

Figure 4 shows three common and nested atomic units, G, G-L, and G-L-GG, and their

di�erent scopes when applied to the execution of the multi-site task shown earlier in Figure 3.

The failure of any (sub)transaction forces all transactions within the same atomic unit to

fail. The full power of the model is obtained by combining G, L and GG in di�erent ways

to create atomic units with di�erent semantics.

Figure 5 illustrates the eight possible atomic units created by the combinations of levels,

using a simpli�ed version of the example from Figure 4. G-L-GG binds atomicallymulti-site

activities but has no dependencies with the local emanated subtasks. Thus, unlikeG-L-GG,

failure at a locally emanating activity does not lead to an abort of the global task and vice-

versa. G-L-GG is the L-only local con�guration explained earlier, which sacri�ces multi-site

atomicity in favor of local atomicity. G-L-GG can be viewed as a \longL", i.e., site atomicity
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Figure 5: Full Range of Atomic Units

that spans several multi-site activities which by themselves are not cross-site atomic. It is

useful, for example, when the multi-site tasks are used to only synchronize or regulate the

progress of a set of otherwise independent local tasks with minimal or no inter-site data

dependencies. G-L-GG may appear peculiar since it only binds local subtransactions that

are part of multi-site (hence \global") activities. However, it can be used in cases where,

like in G-L-GG, multi-site activities synchronize mostly independent local processes, but

unlike G-L-GG, the consistency-demanding work is done in the multi-site activities, not in

the emanating activities. Finally, G-L-GG is the simplest and degenerate case where each

subtransaction is a separate atomic unit.

An interesting aspect to consider in the model is whether all sites participating in the execu-

tion of a multi-site task must employ identical atomicity levels. To promote autonomy, the

answer should be no. While all sites must agree on the G-atomicity since it requires by def-

inition cross-site atomicity, the sites may not necessarily employ same L- or GG-atomicity.

Clearly, there is no reason why L, the level that promotes site atomicity, would have to

be de�ned identically in all sites. Indeed, there may be cases where one site must employ

L-atomicity to preserve some work
ow semantics, while another site must not employ L-

atomicity within the same task (as will be seen shortly). It may appear that GG must be

the identical by all sites since it spans multi-site (hence \global") activities. However, it

is important to distinguish the property that a set of multi-site activities are semantically
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bundled in a task, from the orthogonal (single-site or multi-site) atomicity property over

those activities. In particular, since GG is concerned with individual site atomicity across

the global activities, each site can select to enforce it on a per-task basis. To summarize, the

strength of our model is its ability to de�ne �ne-grained cross-site atomicity to match the

semantics of the interoperating work
ows, without consulting a global or brokering entity.

4.2 Motivating Example Revisited

Returning to our motivating example in Figure 1, we now consider various execution scenarios

in the face of transaction failure. Within this multi-site task, all sites have G and GG. For

multi-site activity ip and pp, sites SP and SC have L. For all three multi-site activities,

site SB has L. The �rst failure can occur when the multi-site activity ip is requested. For

example, some requested data at site SP might be locked by a user updating a passenger

list and as a result the transaction TP
ip is aborted (in this case, abort may be better then

blocking since if TP
ip were blocked instead, potentially unbounded delays might occur, forcing

the travel agent to wait inde�nitely). Since both site SB and SC have G atomicity, TB
ip and

TC
ip are also aborted.

Next, assume that multi-site activity ip successfully completes and the individual work
ows

at each site are executing their local activities which emanate from ip. If the transaction

for the Enter Information activity for SC fails and aborts (e.g., because of a semantic or

a system error) the multi-site activity ip is una�ected since SC does not have L mode for

this multi-site task. At a later point, when caf is executed, the DWFMS will record that a

plane reservation was made without a corresponding car reservation. Contrast this behavior

with a failure within the Record Access activity. Since the work
ow at SB speci�es that

Record Access and ip must operate within the same atomic unit, both transactions at SB

must be rolled back. This behavior might be required, for example, if every access request

must be logged for future inspection. Since the activity for ip is executing in G-mode, this

means that the corresponding transactions, TP
ip and TC

ip at SP and SC, must also be rolled

back. This shows the situation where the failure of a private work
ow activity forces the

abort of transactions at remote sites.
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If ip and all of the emanating activities at all sites succeed, site SP executes the caf multi-

site activity. If caf fails within site SC, there is no special atomicity requirement between ip

and caf, so only the transactions TB
caf and TP

caf need to be aborted; there is no other e�ect.

Contrast this with a failure in pp at site SB where caf and pp are directed to complete as

an atomic unit. This might be required, for example, to prevent arbitrary updates to occur

in the interim between checking the account and debiting the funds from the account. In

this case, T P
pp and TC

pp would need to be rolled back, as well as TB
caf , T

P
caf , and TC

caf . Since

SB has L activated, the second Record Access activity would also need to be rolled back

since it requires execution with caf in an atomic unit. In the next section we show how the

DWFMS can exploit the full potential of this model by specifying the atomic units within

each work
ow through the use of annotations.

5 Realization of the Model

A work
ow modeling language that intends to support some notion of atomicity must be

capable of designating parts of a work
ow task as atomic. In a single-site work
ow with a

modeling language that supports explicit control 
ow, this support can be easily provided by

a pair of begin-atomic and end-atomic directives. In declarative languages with implicit

and dynamically-determined control 
ow, as in rule-based languages, adding such support is

less straightforward; specifying atomic units across sites (and work
ows) seems even harder.

However, declarative modeling paradigms that support implicit communication seem to be

well-suited for interoperability (as shown in [38, 21]). We present here the realization of the

3-level atomicity model in the Oz DWFMS [9], focusing more on the language modeling

issues than on the underlying implementation of the transaction manager; for a discussion

of the latter, see [29, 28].

5.1 Oz Overview

Oz is a multi-site DWFMS that supports de�nition and execution of multiple autonomous

work
ows. Although targeted originally to support software engineering processes, it has
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1 Report [?care element:care element, ?report:literal, ?vital signs:literal]: Signature

2 (and (bind mlm ?mlm suchthat (member [?care element.post mlm ?mlm])) Bindings

3 (bind healthworker ?worker suchthat (linkto [?care element.care giver ?worker]))
4 (bind patient ?patient suchthat (?patient.MRN = ?care element.MRN))):

5 (forall ?care element (?care element.status <> Reported) Condition

6 (?care element.status = CheckedOut) atomicity)

7 f CarePlan tool report element ?care element.report ?report ?mlm.input ?vital signs Activity

8 return ?report status ?mlm output g

9 (and (?care element.update time = CurrentTime) atomicity E�ects

10 (?mlm.output = ?mlm output)
11 (link [?patient.track record ?care element])
12 (link [?worker.track record ?care element]));

Figure 6: Sample Oz Rule

recently shifted its focus to support general business processes (e.g., see [31] for a healthcare

management application). Oz follows the generic architecture shown earlier in Section 3.

Each site employs a client-server architecture with multiple clients communicating to a single

WM [12]. Across sites, Oz employs a multi-server \share-nothing" architecture, meaning

that the work
ows, schemas, and instantiated databases are kept separately and disjointly

by each site, with no global repository or \shared memory" of any sort [8, 7, 10].

Human interaction with the DWFMS is provided through a client that is connected primarily

to its localWM. Using the client's connection to its localWM, users can invoke local activities

on local data items, under the local process. Oz users can also open connections to remote

sites. A remote client can browse through remote databases and get information about

remote data (subject to access control permissions). However, a client has no access to remote

work
ows and manipulation of remote data can only occur within a multi-site activity.

Prior to invoking a multi-site activity, the participating sites follow an agreement-based pro-

tocol, called a Treaty, which determines various execution and access privileges, establishes

a veri�cation scheme to ensure a trustworthy interaction, and e�ectively turns the activity

into a shared multi-site activity by replicating it in the participating sites and integrating it

within each local process.

An executing multi-site activity is termed a Summit activity. When a Summit activity is
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attempted, the coordinating WM veri�es that it is part of a valid Treaty, retrieves copies of

the remote data, and sends the the activity for execution by the client. Upon completion, the

coordinating WM directs all participating sites to inspect their local work
ows to execute

local activities that emanate from the Summit activity. When all sites complete, control

returns to the coordinating task, that in turn may initiate a subsequent Summit activity, if

any, until there are no more Summit activities, at which time the task is completed.

5.2 Single-site Rules, Atomicity and Annotations

Each single-site activity within an Oz work
ow is enclosed in a rule. A rule consists mainly1

of a signature (i.e., a name and typed formal parameters); a (pre)-condition which is a

(composite) predicate over the arguments; the actual activity which interfaces to external

tools and data; and a set of mutually-exclusive e�ects. A rule can be invoked either directly

by a user, or indirectly, as a result of rule chaining, which is the mechanism to invoke

emanating activities. When a rule is invoked, its condition is evaluated. If the evaluation

fails (i.e., the predicate evaluates to false), WM attempts to automatically satisfy the rule

by backward chaining to other rules whose e�ect may satisfy the failed condition. If the

condition is (or has become) satis�ed, the activity of the rule is invoked. Upon completion,

the activity returns a status code that determines which e�ect of the rule to assert. The WM

then attempts to forward chain to rules whose condition have become satis�ed as a result of

the assertion. Both backward and forward chaining are recursive. Thus, work
ow steps are

implicitly interrelated by logical matchings between e�ects and conditions of rules.

A single-site rule is the smallest atomic unit. This does not mean that the rule actually

executes atomically, only that the outcome of its execution is all-or-nothing2. A chain of

single-site rules can be bundled atomically. Such a chain is called atomicity chain and is

due to Barghouti [6]. By default, rule chains are not atomic. Non-atomic chains are called

1Oz rules actually have various other optional clauses such as data queries and user delegation clauses,

but they are irrelevant to this discussion and hence ignored.
2In fact, since activities typically execute at the clients the WM usually switches context to serve other

requests while the client executes the activity, thus rules seldom really execute atomically.
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automation chains simply to distinguish them from the special atomicity chains.

Atomicity chains are denoted by annotations made to predicates of rules. A rule chain

exists from rule ri to rule rj if a predicate, pi, asserted by ri satis�es a predicate, pj, in the

condition of rj (i.e., rj emanates from ri). If both pi and pj are marked \atomicity", then an

atomicity chain exists which means that if rj fails the corresponding transactions for both

rj and ri are rolled back. If pj is marked \automation" and pi is marked either \atomicity"

or \automation", then an automation chain exists. If automation chaining fails, only the

updates of the failed rule are rolled back, without a�ecting the outcome of rules that were

previously executed in that chain. The sample Report Oz rule in Figure 6 allows atomicity

chaining from its assertion (line 9).

A rule chain may be composed of both atomicity and automation chains. This creates a

problem regarding the ordering of the rule chain execution since an abort of an atomicity

chain might rollback unnecessarily e�ects of rules which executed as automation. This might

be particularly harmful if these were long-duration activities, in which case their treatment as

non-atomic was a deliberate choice to avoid possible rollback. The solution employed inOz is

to execute all atomicity chains �rst, and any automation rules which are encountered during

the atomicity chaining are queued (�rst-in �rst-out). Once all immediate atomicity chains

complete and commit their work, automation chaining restarts with the queued rules. Since

automation chaining can lead to further atomicity chains, this procedure can be recursive.

One way to view this form of execution is as a chain of automation rules, with occasional

\bursts" of atomicity chaining.

5.3 Multi-site Rules, Atomicity and Annotations

Syntactically, there is no di�erence between a single-site and a multi-site rule. The di�erence

is that at run-time, a multi-site (Summit) rule is invoked with data from multiple sites, and

it must have been agreed upon by a Treaty (hence internally in the WM it is marked prop-

erly along with the necessary information such as validation timestamp [9]). The mapping
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of the three basic atomicity units (as shown in Figure 4) to rules is as follows: the G level

corresponds to the multi-site activity of a rule; G-L level corresponds to a multi-site rule,

along with its emanating backward and forward local chains; �nally, the G-L-GG level cor-

responds to a global chain from one multi-site Treaty rule to another, including all emanating

local chains. The annotations of the basic levels are as follows.

1. G atomicity is the default for multi-site activities, and thus no annotation is required to

specify it. To represent G, we allow an activity to be marked as non-atomic, meaning

that the intra-activity atomicity need not be enforced in case of transaction failure. By

agreeing on the semantics of the activity as de�ned in the Treaty, each site also agrees

on the transactional semantics of the activity.

2. L atomicity arises when an atomicity e�ect of a Summit rule matches with the atomic-

ity condition of a local rule, or when two local emanating rules are atomically bundled.

No new annotations (beyond the single-site atomicity annotations) are required be-

cause the multi-site transactional semantics are implied by the context in which the

rules are executed. Similarly, L is represented by automation annotations among the

rules. Unlike the G case, each site is free to choose the annotations for its local rules.

Therefore, the simultaneous execution of local implications of a particular multi-site

Treaty rule may be handled as L in one site and as L in another site.

3. GG atomicity (GG) is de�ned in the same manner as L (L), except the matching is

performed only among multi-site | and hence shared | Treaty rules; all sites employ

the same GG mode for a given set of multi-site rules.

Thus, the only additional annotation beyond the single-site annotations is for G mode. All

other annotations derive the proper semantics from the semantics of the multi-site Summit

execution. Once the three basic levels (and their complements) are speci�able, supporting

their combination does not incur additional syntax. For example, providingG-L-GG atom-

icity in a participating site SA for a Summit rule R1 that executes at SB involves: annotating

R1's activity as automation; annotating R1's e�ect(s) and the matching condition of local

rules in SA (if any) as atomicity predicates; and annotating matching conditions of other

multi-site rules (if any) in SB as automation.
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One last issue to resolve concerns the order of execution in the multi-site context. In addition

to the atomicity vs. automation ordering problem discussed earlier, we are faced with an

orthogonal ordering concern | global vs. local execution | and with proper combination of

both orthogonal ordering constraints. The solution employed in Oz is to have an atomicity

phase followed by an automation phase, where each phase alternates between global and local

modes as outlined in Section 3. When a Summit rule completes, all local atomicity rules �rst

execute in the local sites, queuing (locally) any local automation rules encountered. When

all sites complete their local atomicity, the next Summit atomicity rule (if any) is executed,

followed by all local atomicity, and so forth. When the Summit atomicity phase completes,

a global commit occurs. The next step is to execute all automation chains. Again, Summit

automation rules �re �rst, followed by local automation chains, followed by the next Summit

automation interval, and so forth. This design reduces the amount of work that would be

undone in case of failure.

5.4 Cross-Site Dependencies

Given a TM that supports commit and abort dependencies, our model requires a mecha-

nism for the cross-site dependencies that form as the Summit executes. Our mediator-based

approach [29] shows how a TM can be extended to augment its behavior (in this case, im-

plement 2PC on a centralized TM), similar to the transaction adapters proposed in [4]. In

short, mediator code can be inserted between the WM and TM to insulate WM from the

details of 2PC. The G level corresponds to the 2PC that synchronizes the transactions for

a multi-site activity; L corresponds to the nested transaction hierarchy within a single site;

GG provides the glue between multiple nested transaction hierarchies at each site.

6 Conclusions

Multi-site atomicity is often required to preserve the integrity of collaborative multi-site ac-

tivities. However, global atomicity and local autonomy are con
icting goals in decentralized

and transactional systems, and therefore one has to be compromised often in favor of the
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other. Work
ow management systems require 
exible transaction management, thus, we in-

vestigated approaches to modeling and managingmulti-site work
ow transactions that allows

a multi-site task to tailor the scope of atomic units of its participant activities. Moreover,

such an approach should be decentralized, with no globally enforced policy.

We believe that our 3-level atomicity model and the corresponding realization addresses

these issues. In particular:

� The scope of the desired multi-site atomicity can be de�ned in a �ne-grained manner.

Starting from the three basic levels | a single multi-site activity (G), a local intra-

site atomicity (L), and multiple multi-site activities (GG) | and by allowing any

intermediate mode formed by combining these levels, work
ow administrators have

full freedom in selecting the level that best matches the decentralized work
ow task.

� site-autonomy is maximized, both in specifying and in executing the work
ow tasks.

The atomicity of multi-site activities and their inter-relationships can be declared only

by explicit agreements that must be formed between the involved sites (using Treaties).

Moreover, multi-site atomicity speci�cations are the only ones that need to be speci�ed

globally; local implications and their relationships to global activities (represented by

the L level) are private and unknown by remote sites.

The atomicity model presented here assumes a homogeneous work
ow formalism, mostly to

clearly explain how it was realized in the Oz DWFMS. A Treaty between work
ows using

di�erent formalisms should still be possible because the logical predicates in conditions and

assertions should be common to all work
ow formalisms. As described, the Summit execution

protocol enforces a particular execution sequence that must be enforced among all WFMS

in the DWFMS. To be truly heterogeneous there need to be ways to allow the control 
ow

to be decentralized among sites in the same way that the work
ow is. The 3-level atomicity

model we have developed should be immediately applicable to any DWFMS struggling to

�nd ways to support failure atomicity.
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